WorldWideScience

Sample records for full-scale experimental wind

  1. Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis

    Science.gov (United States)

    Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo

    2016-09-01

    Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed

  2. Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis

    Science.gov (United States)

    Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo

    2016-12-01

    Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed

  3. A novel full scale experimental characterization of wind turbine aero-acoustic noise sources - preliminary results

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas;

    2016-01-01

    The paper describes a novel full scale experiment on a 500 kW wind turbine with the main objective to characterize the aero-acoustic noise sources. The idea behind the instrumentation is to study the link and correlation between the surface pressure (SP) fluctuations in the boundary layer...... of the blade and the noise on the ground in a distance of about one rotor diameter. In total six surface microphones were used to measure the SP at the leading edge (LE) and trailing edge (TE) of the blade. In parallel noise was measured by eight microphones placed on plates on the ground around the turbine...

  4. Experimental characterization of turbulent inflow noise on a full-scale wind turbine

    Science.gov (United States)

    Buck, Steven; Oerlemans, Stefan; Palo, Scott

    2016-12-01

    An extensive experimental campaign was conducted on a 108-m diameter 2.3-MW wind turbine in order to assess the effect of inflow turbulence conditions on wind turbine acoustics. Over 50 h of continuous acoustic data was acquired at power-generating wind speeds. Twelve precision microphones were used, arranged in a one rotor radius ring about the turbine tower in order to assess the directivity of the noise emission. Turbine operational and atmospheric conditions were gathered simultaneously with acoustics measurements. The testing and analysis constitute perhaps the most thorough experimental characterization of turbulent inflow noise from a wind turbine to date. Turbulence intensities typically varied between 10 percent and 35 percent, and wind speeds covered most of the operational range of the wind turbine, from cut-on to well above its rated power. A method was developed for using blade-mounted accelerometers for determining the turbulence conditions in the immediate vicinity of the blades, which are the primary turbulence noise generating bodies. The method uses the blades' vibrational energy within a specified frequency range to estimate the overall turbulence conditions by assuming a von Kármán turbulence spectrum. Using this method, a clear positive correlation is shown between turbulence intensity and noise levels. The turbulence noise is dominant at low frequencies and is primarily observed in the upwind and downwind directions. Low frequency noise increases by as much as 6 dB for the range of turbulence conditions measured. Comparisons are made between the measured turbine noise directivity and theory using a simple acoustic model of the turbine as three point-sources. Strong agreement is found between the theoretical leading edge noise directivity model and the measured low frequency noise directivity.

  5. Model Wind Turbines Tested at Full-Scale Similarity

    Science.gov (United States)

    Miller, M. A.; Kiefer, J.; Westergaard, C.; Hultmark, M.

    2016-09-01

    The enormous length scales associated with modern wind turbines complicate any efforts to predict their mechanical loads and performance. Both experiments and numerical simulations are constrained by the large Reynolds numbers governing the full- scale aerodynamics. The limited fundamental understanding of Reynolds number effects in combination with the lack of empirical data affects our ability to predict, model, and design improved turbines and wind farms. A new experimental approach is presented, which utilizes a highly pressurized wind tunnel (up to 220 bar). It allows exact matching of the Reynolds numbers (no matter how it is defined), tip speed ratios, and Mach numbers on a geometrically similar, small-scale model. The design of a measurement and instrumentation stack to control the turbine and measure the loads in the pressurized environment is discussed. Results are then presented in the form of power coefficients as a function of Reynolds number and Tip Speed Ratio. Due to gearbox power loss, a preliminary study has also been completed to find the gearbox efficiency and the resulting correction has been applied to the data set.

  6. Power Performance Test on a Full-Scale Wind Turbine

    OpenAIRE

    Wangsness, Erik Brevik

    2014-01-01

    There is a standard made by the International Electrotechnical Commission (IEC) for how a power performance test on a full-scale wind turbine should be performed. By using this standard as a guideline, I have performed a power performance test on the 3 MW wind turbine at Valsneset. This was done by measuring the incoming wind towards the wind turbine rotor area with a lidar in conjunction with a cup anemometer at a 33 m high meteorological mast (met-mast). The lidar and cup anemometer measure...

  7. Combined Production Of A Full-Scale Wave Converter And A Full-Scale Wind Turbine

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kramer, Morten; Sørensen, H.C.

    2012-01-01

    correlation between winds and waves, characterised by an average delay of 2 to 3 hours. Up to 9hours-delay the correlation remains high. Regarding power productions, results show every portfolio combining wave and wind technologies provides important benefits: minimises the percentage of time of zero...

  8. Combined Production Of A Full-Scale Wave Converter And A Full-Scale Wind Turbine

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kramer, Morten; Sørensen, H.C.

    2012-01-01

    correlation between winds and waves, characterised by an average delay of 2 to 3 hours. Up to 9hours-delay the correlation remains high. Regarding power productions, results show every portfolio combining wave and wind technologies provides important benefits: minimises the percentage of time of zero...

  9. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...... of the three velocity components over a wide range from 1 day−1 to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence statistics in the boundary layer....

  10. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various......,followed by a −2/3 slope, which can be described by f S( f ) = a1 f −2/3 + a2 f −2, ending in the frequency range for which the debate on the spectral gap is ongoing. It is shown here that the spectral gap exists and can be modelled. The linear composition of the horizontal wind variation from the mesoscale...

  11. Full-Scale Spectrum of Boundary-Layer Winds

    Science.gov (United States)

    Larsén, Xiaoli G.; Larsen, Søren E.; Petersen, Erik L.

    2016-05-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr^{-1} to 10 Hz. 10-min cup anemometer data are used to estimate the spectrum from about 1 yr^{-1} to 0.05 min^{-1}; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day^{-1} to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various spectral ranges, including the spectral gap, are revisited. Following the seasonal peak at 1 yr^{-1}, the frequency spectrum fS( f) increases with f^{+1} and gradually reaches a peak at about 0.2 day^{-1}. From this peak to about 1 hr^{-1}, the spectrum fS( f) decreases with frequency with a -2 slope, followed by a -2/3 slope, which can be described by fS(f)=a_1f^{-2/3}+a_2f^{-2}, ending in the frequency range for which the debate on the spectral gap is ongoing. It is shown here that the spectral gap exists and can be modelled. The linear composition of the horizontal wind variation from the mesoscale and microscale gives the observed spectrum in the gap range, leading to a suggestion that mesoscale and microscale processes are uncorrelated. Depending on the relative strength of the two processes, the gap may be deep or shallow, visible or invisible. Generally, the depth of the gap decreases with height. In the low frequency region of the gap, the mesoscale spectrum shows a two-dimensional isotropic nature; in the high frequency region, the classical three-dimensional boundary-layer turbulence is evident. We also provide the cospectrum of the horizontal and vertical components, and the power spectra of the three velocity components over a wide range from 1 day^{-1} to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence

  12. Fatigue life on a full scale test rig: Forged versus cast wind turbine rotor shafts

    Science.gov (United States)

    Herrmann, J.; Rauert, T.; Dalhoff, P.; Sander, M.

    2016-09-01

    To reduce uncertainties associated with the fatigue life of the highly safety relevant rotor shaft and also to review today's design practice, the fatigue behaviour will be tested on a full scale test rig. Until now tests on full scale wind turbine parts are not common. Therefore, a general lack of experience on how to perform accelerated life time tests for those components exists. To clarify how to transfer real conditions to the test environment, the arrangements and deviations for the upcoming experimental test are discussed in detail. In order to complete investigations of weight saving potentials, next to getting a better comprehension of the fatigue behaviour by executing a full scale test, a further outcome are suggestions for the usage of cast and forged materials regarding the fatigue and the remaining life of the rotor shaft. It is shown, that it is worthwhile to think about a material exchange for the forged rotor shaft.

  13. LiDAR measurements of full scale wind turbine wake characteristics

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Mann, Jakob

    2009-01-01

    Full scale wind speed measurements, recorded inside the wake of an operating 2MW/80m wind turbine,has been performed during the spring 2009, as part of the EU-TOPFARM project. Longitudinal wind speeds in wake cross sections are measured with a LiDAR system mounted in the rear of the nacelle. The ...

  14. LiDAR measurements of full scale wind turbine wake characteristics

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Mann, Jakob;

    2009-01-01

    Full scale wind speed measurements, recorded inside the wake of an operating 2MW/80m wind turbine,has been performed during the spring 2009, as part of the EU-TOPFARM project. Longitudinal wind speeds in wake cross sections are measured with a LiDAR system mounted in the rear of the nacelle...

  15. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    Science.gov (United States)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  16. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun;

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia ...

  17. Wind tunnel testing of a full scale helicopter blade section with an upstream active Gurney flap

    NARCIS (Netherlands)

    Loendersloot, R.; Freire Gomez, J.; Booker, J.D.

    2014-01-01

    Wind tunnel tests were performed on an aerofoil section comparable to that of a full scale helicopter blade section with an upstream active Gurney flap in the framework of the European project CleanSky ITD Green RotorCraft. A modified NACA0012 profile was used, with 23 Kulite pressure transducers em

  18. Aeroacoustic calculations of a full scale Nordtank 500kW wind turbine

    DEFF Research Database (Denmark)

    Debertshäuser, Harald; Shen, Wen Zhong; Zhu, Wei Jun

    2016-01-01

    The Actuator Line/ Navier-stokes technique is used to compute the incompressible flow around a full scale Nordtank 500kW wind turbine under different complex flow conditions such as atmospheric turbulence and wind shear. The flow field is used as an input to aeroacoustic calculations based on; a ...... resolution, and due to the simplification in the actuator line method using body forces to represent the blade. Noise levels are compared to field measurements of a Nordtank 500kW wind turbine at different wind speeds and in flow profiles.......The Actuator Line/ Navier-stokes technique is used to compute the incompressible flow around a full scale Nordtank 500kW wind turbine under different complex flow conditions such as atmospheric turbulence and wind shear. The flow field is used as an input to aeroacoustic calculations based on......; a semi empirical noise model; and a Navier-Stokes based computational aeroacoustic code (CAA). The Navier-Stokes based approach is solving acoustic perturbation equations and is capable of taking propagation and ground effects into account, but is limited to low frequency noise due to feasible mesh...

  19. Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing

    Science.gov (United States)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2005-01-01

    The adaptation of a proven wind tunnel test technique, known as Videogrammetry, to flight testing of full-scale vehicles is presented. A description is presented of the technique used at NASA's Dryden Flight Research Center for the measurement of the change in wing twist and deflection of an F/A-18 research aircraft as a function of both time and aerodynamic load. Requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the flight-testing technique and differences compared to wind tunnel testing are given. Measurement and operational comparisons to an older in-flight system known as the Flight Deflection Measurement System (FDMS) are presented.

  20. Reliability and Energy Loss in Full-scale Wind Power Converter Considering Grid Codes and Wind Classes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    power converter is studied considering the grid code with reactive power production as well as the annual wind profile. Regarding the reliability, it is found that either the Over-Excited (OE) or the Under-Excited (UE) reactive power injection threatens the lifespan under all wind classes. Meanwhile......, if the specific designed wind turbine system operates at different wind classes, it can be seen that higher wind class level results in lower lifetime of the power converter. In respect to the cost of the reactive power, either the OE or the UE reactive power increases the energy loss per year significantly......With the increasing penetration of the wind power, reliable operation and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the cost on reliability and production losses of permanent-magnet synchronous generator based full-scale wind...

  1. Full scale monitoring of wind and traffic induced response of a suspension bridge

    Directory of Open Access Journals (Sweden)

    Cheynet Etienne

    2015-01-01

    Full Text Available This paper presents a full-scale analysis of wind and traffic-induced vibrations of a long-span suspension bridge in complex terrain. Several wind and acceleration sensors have been installed along the main span on Lysefjord Bridge in Norway. In the present study, three days of continuous records are analysed. Traffic-induced vibrations are dominant at low and moderated wind speed, with non-negligible effects on the overall bridge response for heavy vehicles only. Traffic and wind-induced vibrations are compared in terms of root mean square of the acceleration response, and three simples approaches are proposed to isolate records dominated by wind-induced vibration. The first one relies on the separation of nocturnal and diurnal samples. The second one is based on the evaluation of the time-varying root mean square of the acceleration response. The last one evaluates the relative importance of the high frequency domain of the acceleration bridge response. It appears that traffic-induced vibrations may have to be taken into account for the buffeting analysis of long-span bridge under moderated wind.

  2. Drag coefficients of lattice masts from full-scale wind-tunnel tests

    DEFF Research Database (Denmark)

    Georgakis, Christos; Støttrup-Andersen, Ulrik; Johnsen, Marie;

    2009-01-01

    :5 scale section model tests performed at the National Physics Laboratory and the National Maritime Institute in the UK in the 1970´s. ESDU provides velocity-dependent drag coefficients equivalent to those obtained from the same series of tests. In all cases, the mast legs and diagonals are comprised......In this paper, the drag coefficients obtained from a series of full-scale section model wind-tunnel tests of several lattice mast configurations are presented and compared to those provided in Eurocode 3 and ESDU. The drag coefficients provided in Eurocode are conservative interpretations of 1...

  3. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-01

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it--this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  4. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-21

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it - this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  5. Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Science.gov (United States)

    Yeo, Hyeonsoo; Romander, Ethan A.

    2012-01-01

    Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition.

  6. FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Science.gov (United States)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2013-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.

  7. Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing

    DEFF Research Database (Denmark)

    Zhang, Zili; Staino, Andrea; Basu, Biswajit

    2016-01-01

    Highlights •Performance evaluation of full-scale tuned liquid dampers carried out for wind turbines. •Coupled blade-tower model considered in the numerical sub-structure. •Stochastic turbulence due to rotationally sampled spectra considered. •Effect of damping screens experimentally investigated...

  8. Damping Estimation of a Prototype Bucket Foundation for Offshore Wind Turbines Identified by Full Scale Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard;

    2013-01-01

    techniques, the cross-wind modal damping is estimated on a regular basis. Analyses show maximum cross-wind damping at rated wind speed. For higher wind speeds decreasing damping is observed, mainly due to blade pitch activation. In addition, a high structural acceleration level is needed to activate the soil...

  9. Full-scale experimental research on fire fume refluence of sloped long and large curved tunnel

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A full-scale experimental research is conducted on the fire fume refluence of a sloped long and large curved tunnel in the underground plant of a hydraulic and hydropower engineering project under three different fire powers.As a result,the eddy effect and pattern of the fire fume flow in the tunnel in case of fire is discovered and the refluence of the fume layers in case of fire is observed.Through analysis of the temperature measurement resulted in the course of the experiment,the main characteristics and performance of the fire fume refluence are discussed under the three different fire powers.

  10. Damping Estimation of a Prototype Bucket Foundation for Offshore Wind Turbines Identified by Full Scale Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2013-01-01

    -wind direction. Therefore, in order to assess the fatigue damage accumulation during the lifetime of the offshore wind turbine structure, a correct estimation of the cross-wind modal damping is necessary. This paper describes the cross-wind modal damping of the lowest eigenmode of a fully operational Vestas V90......-3.0 MW offshore wind turbine installed on a prototype bucket foundation. The foundation and the turbine tower are equipped with a monitoring system with 15 Kinemetrics force balance accelerometers and a Digitexx acquisition system. Using free vibration decays from “rotor-stop” tests and operational modal...

  11. Control of Full-Scale Converter based Wind Power Plants for damping of low frequency system oscillations

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    to Full-Scale Converter based type. Moreover resemblance of such Wind Power Plant to modern FACTS devices is recognized and exploited. Paper discusses many aspect of damping controller design, including feedback signal selection and control effectiveness with respect to wind farm location. Analysis......Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability...... and design is based on modal analysis, therefore matching modeling approach for wind power plant is proposed. Finally, performance of Wind Power Plant damping control is compared to a regular power system stabilizer installed on a synchronous generator....

  12. Harmonic Generation and Mitigation by Full-Scale Converter Wind Turbines:

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2011-01-01

    on representative harmonic measurements of the wind turbine generators at Avedøre Holme. The nature of generation and mitigation of harmonic components in the wind turbine generators are clearly presented and explained. The mechanism of harmonic generation, some dynamic behaviour aspects and interaction...

  13. Aerodynamic noise from wind turbines. Experiments with modification of full scale rotors, 2

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsen, J.; Andersen, B.

    1996-10-01

    Two series of measurements have been made where the noise from a wind turbine is measured during different modifications of its rotor. One series dealt with different shapes of trailing edge, while the other focused on the tip design. The investigations form a succession of earlier work and basically the same measurement technique was used. In the present investigation the pitch setting of the wind turbine was varied so that the significance of this parameter could be quantified as well. Measurement were made simultaneously of noise in the downwind direction and of the wind speed at 10 m height upwind of the wind turbine, both averaged over 1-minute periods. Regression analysis was made between the wind speed and the noise level in each 1/3-octave band in the range 50 Hz - 10 kHz. Intermittent background noise was omitted during the data collection, and stationary and wind-induced background noise was corrected for. The investigations of trailing edge noise gave no clear indication of an optimum trailing edge sharpness. The characteristic narrowband noise from trailing edge bluntness was demonstrated, and its dependence on trailing edge thickness, wind speed, and pitch setting was determined. The noise level of the narrowband has a `reverse` wind speed dependence; it decreases with increasing wind speed (and increasing angle of attack). In the tip noise investigation three tip shapes were tested, the original thick square tips with slightly rounded edges, an elliptically rounded thin tip shape, and an Ogee tip designed after the most quiet tip tested in the previous project. The round tip was slightly more noisy than the square tip, and the Ogee tip gave rise to a broadband noise around 2 kHz where the wind speed dependence was again `reversed`. (EG)

  14. Effect of Trailing Edge Damage on Full-Scale Wind Turbine Blade Failure

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Branner, Kim

    2015-01-01

    Modern wind turbine rotor blades are normally assembled from large parts bonded together by adhesive joints. The structural parts of wind turbine blades are usually made of composite materials, where sandwich core materials as well as fibre composites are used. For most of the modern wind turbine...... where the load bearing structure is connected to the shells and at the joints of the upper and lower shells, usually at the leading and trailing edges. Maintenance inspections of wind turbines show that cracks in the vicinity of the trailing edge are typically occurring forms of damage. The cause...... blades the aerodynamically formed outer shell structure is manufactured as an upper and a lower part in separate moulds in order to simplify the production process. The aerodynamic shell structures are then bonded to internal load bearing structures during the production process. Adhesive joints exist...

  15. Process of Levee Breach by Overflow at the Full Scale Chiyoda Experimental Channel

    Science.gov (United States)

    Shimada, T.; Yokoyama, H.

    2011-12-01

    The increased occurrence of storm disasters caused by typhoons and local downpours in recent years has given rise to concerns over the possibility of large-scale floods resulting from river overflow. Levee breaches cause particularly severe damage, and in Japan, more than 80% of such accidents in the past have been attributed to overflow. Previous studies on overflow-induced levee breaches have not revealed the mechanisms of these issues on a full-scale 3D basis (i.e., side-overflow taking river flow on the riverside land into consideration). It is important to clarify these mechanisms in terms of disaster prevention and for the purpose of bringing progress in future studies on overflow-induced failure. Levees (levee crown width is 3m in 2010 and 6m in 2011, levee height is 3m, levee length is 80m) were built in the Chiyoda Experimental Channel (full-scale experimental channel; width is 30m, length is 1,300m, maximum discharge is 170t/s) in Hokkaido Japan, and a three-dimensional experiment on levee breach by overflow. The findings of the experiment are as follows: After the beginning of overflow, levee breach widening did not begin until after most of the levee section had collapsed. And in case of 6m of the levee crown width, that time in becomes long. It was also considered that, even if overflow occurred, extremely serious damage (e.g., sudden increase in levee breach width and overflow discharge) was unlikely unless the majority of the levee section collapsed.

  16. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    Science.gov (United States)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  17. Identification of aeroelastic forces on twin bridge cables from full-scale measurements in skew winds

    DEFF Research Database (Denmark)

    Acampora, Antonio; Macdonald, J.H.G.; Georgakis, Christos T.;

    2012-01-01

    Despite much research in recent years, large amplitude vibrations of inclined bridge cables continue to be of concern. Various mechanisms for the excitation have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced-velocity vortex shedding and excitation from...... of this paper is to identify the aeroelastic forces for in-plane and out-of-plane vibrations of bridge cables in dry conditions as in [2], but now for skewed winds. To achieve this, an output-only system identification employing the Eigenvalue Realisation Algorithm (ERA) [3] has been applied to selected...

  18. Identification of support structure damping of a full scale offshore wind turbine in normal operation

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand; Vesth, Allan

    2015-01-01

    The support structure damping of a 3.6 MW pitch controlled variable speed offshore wind turbine on a monopile foundation is estimated both in standstill conditions and in normal operation. The net substructure damping is identified from the parameters of an exponential curve fitted to the relative...... maxima of an impulse response caused by a boat impact. The result is used in the verification of the non aerodynamic damping in normal operation for low wind speeds. The auto-correlation function technique for damping estimation of a structure under ambient excitation was validated against the identified...

  19. Full scale measurements of wind loads on stand-off photovoltaic systems

    NARCIS (Netherlands)

    Geurts, C.P.W.; Steenbergen, R.D.J.M.

    2009-01-01

    Solar energy systems are becoming increasingly popular. A large potential for these systems is found on buildings, in particular on roofs. For existing buildings with pitched roofs, stand-off systems, which can be applied as retrofit solutions, are frequently applied. Wind loads for such systems are

  20. The model chain and the full scale spectrum of the boundary layer wind

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Lundtang Petersen, Erik; Larsen, Søren Ejling

    and high frequency sonic anemometer data from the 100m meteorological mast at Danish test station Høvsøre. Datasets from the offshore wind farm Horns Rev were also analyzed. The conclusions from the analysis are given below. In the present study we complement and extend the analysis using a new dataset...

  1. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    Introduction In recent years the use of wind lidars mounted directly on wind turbines has received increasing attention, and such systems are becoming commercially available. One aim of turbine-mounted wind lidars is to use them for prevision in connection with advanced feed-forward control systems...... for alleviating loads and also for active individual pitch control. Approach Two small telescope units with 1” optics were mounted on either side of one blade of a Vestas NM80 turbine, 15 m from the spinner and connected through fibre optical cables to a modified ZephIR 300 continuous-wave Doppler lidar from...... Natural Power, UK. The ZephIR was installed in the tip of the spinner of the turbine. The two telescopes’ line-of-sights were converging with 10 angle, resulting in an intersection at 5 m in front of the blade along the cord extension line. By using an optical switch, the line-of-sight wind speeds could...

  2. Levee Breach Experiment by Overflow at the Full Scale Experimental Channel

    Science.gov (United States)

    Shimada, T.; Yokoyama, H.

    2010-12-01

    The increased occurrence of storm disasters caused by typhoons and local downpours in recent years has given rise to concerns over the possibility of large-scale floods resulting from river overflow. Levee breaches cause particularly severe damage, and in Japan, more than 80% of such accidents in the past have been attributed to overflow. Studies on levee breach by overflow have been conducted from various viewpoints using diverse methods. However, the mechanism of three-dimensional levee breach by overflow has not been clarified in past studies. Elucidation of this mechanism is very important for disaster prevention as well as for the future progress of studies on levee breach by overflow. Levees (levee crown width; 3m, levee height; 3m, levee length; 80m) were built in the Chiyoda Experimental Channel (full-scale experimental channel; width is 30m, length is 1,300m, maximum discharge is 170t/s) in Hokkaido Japan in 2010, and a three-dimensional experiment on levee breach by overflow. The findings of the experiment are as follows: After the beginning of overflow, levee breach widening did not begin until after most of the levee section had collapsed. It was also considered that, even if overflow occurred, extremely serious damage (e.g., sudden increase in levee breach width and overflow discharge) was unlikely unless the majority of the levee section collapsed.

  3. Full scale testing of wind turbine blade to failure - flapwise loading

    DEFF Research Database (Denmark)

    Jørgensen, E.R.; Borum, Kaj Kvisgaard; McGugan, Malcolm

    2004-01-01

    A 25m wind turbine blade was tested to failure when subjected to a flapwise load. With the test setup, it was possible to test the blade to failure at three different locations. The objective of these tests is to learn about how a wind turbine bladefails when exposed to a large flapwise load...... and how failures propagate. The report shows also results from ultrasonic scan of the surface of the blade and it is seen to be very useful for the detection of defects, especially in the layer between the skinlaminate and the load carrying main spar. Acoustic emission was successfully used as sensor...... for the detection of damages in the blade during the test. The report contains measurements of the total deflection of the blade, the local deflection of the skinand the load carrying main spar and also measurement of strain all as a function of the applied load and up to failure of the blade. The “post mortem...

  4. Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests.

    Science.gov (United States)

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-05-07

    Three different cyclist positions were evaluated with Computational Fluid Dynamics (CFD) and wind-tunnel experiments were used to provide reliable data to evaluate the accuracy of the CFD simulations. Specific features of this study are: (1) both steady Reynolds-averaged Navier-Stokes (RANS) and unsteady flow modelling, with more advanced turbulence modelling techniques (Large-Eddy Simulation - LES), were evaluated; (2) the boundary layer on the cyclist's surface was resolved entirely with low-Reynolds number modelling, instead of modelling it with wall functions; (3) apart from drag measurements, also surface pressure measurements on the cyclist's body were performed in the wind-tunnel experiment, which provided the basis for a more detailed evaluation of the predicted flow field by CFD. The results show that the simulated and measured drag areas differed about 11% (RANS) and 7% (LES), which is considered to be a close agreement in CFD studies. A fair agreement with wind-tunnel data was obtained for the predicted surface pressures, especially with LES. Despite the higher accuracy of LES, its much higher computational cost could make RANS more attractive for practical use in some situations. CFD is found to be a valuable tool to evaluate the drag of different cyclist positions and to investigate the influence of small adjustments in the cyclist's position. A strong advantage of CFD is that detailed flow field information is obtained, which cannot easily be obtained from wind-tunnel tests. This detailed information allows more insight in the causes of the drag force and provides better guidance for position improvements.

  5. Full scale wind turbine test of vortex generators mounted on the entire blade

    DEFF Research Database (Denmark)

    Bak, Christian; Skrzypinski, Witold Robert; Gaunaa, Mac;

    2016-01-01

    are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean......Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements...

  6. Static and fatigue experimental tests on a full scale fuselage panel and FEM analyses

    Directory of Open Access Journals (Sweden)

    Raffaele Sepe

    2016-02-01

    Full Text Available A fatigue test on a full scale panel with complex loading condition and geometry configuration has been carried out using a triaxial test machine. The demonstrator is made up of two skins which are linked by a transversal butt-joint, parallel to the stringer direction. A fatigue load was applied in the direction normal to the longitudinal joint, while a constant load was applied in the longitudinal joint direction. The test panel was instrumented with strain gages and previously quasi-static tests were conducted to ensure a proper load transferring to the panel. In order to support the tests, geometric nonlinear shell finite element analyses were conducted to predict strain and stress distributions. The demonstrator broke up after about 177000 cycles. Subsequently, a finite element analysis (FEA was carried out in order to correlate failure events; due to the biaxial nature of the fatigue loads, Sines criterion was used. The analysis was performed taking into account the different materials by which the panel is composed. The numerical results show a good correlation with experimental data, successfully predicting failure locations on the panel.

  7. Full scale wind turbine test of vortex generators mounted on the entire blade

    Science.gov (United States)

    Bak, Christian; Skrzypiński, Witold; Gaunaa, Mac; Villanueva, Hector; Brønnum, Niels F.; Kruse, Emil K.

    2016-09-01

    Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean, but also that the loads are almost neutral when vortex generators are installed if there is leading edge roughness on the blades. Finally, it was shown that there was a good agreement between the measurements and the predictions from the design tool.

  8. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian;

    2015-01-01

    The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush......-mounted relative to the blade surface. The measurements of surface pressure spectra are compared with the results of two engineering models for trailing edge noise and for turbulent inflow noise. The measured pressure fluctuations are related to the local inflow angle and are also compared to measurements...

  9. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2016-10-01

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.

  10. Real-time hybrid simulation technique for performance evaluation of full-scale sloshing dampers in wind turbines

    Science.gov (United States)

    Zhang, Zili; Basu, Biswajit; Nielsen, Saren R. K.

    2016-09-01

    As a variation of the pseudodynamic testing technique, the real-time hybrid simulation (RTHS) technique is executed in real time, thus allowing investigation of structural systems with rate-dependent components. In this paper, the RTHS is employed for performance evaluation of full-scale liquid sloshing dampers in multi-megawatt wind turbines, where the tuned liquid damper (TLD) is manufactured and tested as the physical substructure while the wind turbine is treated as the numerical substructure and modelled in the computer using a 13-degree-of-freedom (13-DOF) aeroelastic model. Wind turbines with 2 MW and 3 MW capacities have been considered under various turbulent wind conditions. Extensive parametric studies have been performed on the TLD, e.g., various tuning ratios by changing the water level, TLD without and with damping screens (various mesh sizes of the screen considered), and TLD with flat and sloped bottoms. The present study provides useful guidelines for employing sloshing dampers in large wind turbines, and indicates huge potentials of applying RTHS technique in the area of wind energy.

  11. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    Science.gov (United States)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  12. Reliability and Energy Loss in Full-scale Wind Power Converter Considering Grid Codes and Wind Classes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    power converter is studied considering the grid code with reactive power production as well as the annual wind profile. Regarding the reliability, it is found that either the Over-Excited (OE) or the Under-Excited (UE) reactive power injection threatens the lifespan under all wind classes. Meanwhile...... if they are provided all year around, in which the OE reactive power injection even has a worse scenario. Moreover, it is also concluded that in order to realize an energy loss saving of the wind turbine system, the constant power factor control strategy is more preferred compared to an extreme reactive power...... injection....

  13. Cross-wind fatigue analysis of a full scale offshore wind turbine in the case of wind–wave misalignment

    DEFF Research Database (Denmark)

    Koukoura, Christina; Brown, Cameron; Natarajan, Anand

    2016-01-01

    in offshore wind turbine sub-structure design, due to the low sensitivity of the measured side–side fatigue loads to the misalignment angle. Choice of an accurate damping value implemented in the model during the design of the wind turbine sub-structure can lead to material and cost savings.......Wind–wave misalignment is often necessary to consider during the design of offshore wind turbines due to excitation of side–side vibration and the low aerodynamic damping in that direction. The measurements from a fully instrumented 3.6 MW pitch regulated-variable speed offshore wind turbine were...... used for the estimation of the side–side fatigue loads at the tower bottom. The joint wind–wave distribution and the distribution of the wind–wave misalignment angles were considered. The side–side fatigue at the tower bottom and the damping from site measurements are presented as function...

  14. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure

    Directory of Open Access Journals (Sweden)

    Linda Monfardini

    2016-08-01

    Full Text Available Alkali Activated Concrete (AAC is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam’s length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0–4 mm and coarse aggregate 6–10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.

  15. Losses Analysis of Different Grounding Schemes for Transformer-less Wind Turbine with Full-Scale Power Converter

    DEFF Research Database (Denmark)

    Sztykiel, Michal; Teodorescu, Remus; Munk-Nielsen, Stig;

    2013-01-01

    Following work examines IGBT power loss and temperature distribution with regard to specific grounding method for the future concept of transformer-less offshore wind turbine. Analysis is performed via steady-state IGBT power loss estimator, which is made based on averaging of repetitive pulse...... cycles. Obtained results are validated with the experimental test set-up consisting of high power IGBTs....

  16. Experimental damping assessment of a full scale offshore mono bucket foundation

    DEFF Research Database (Denmark)

    Gres, Szymon; Fejerskov, Morten; Ibsen, Lars Bo

    2016-01-01

    This paper quantifies the system damping of a offshore meteorological mast supported by a Mono Bucket foundation based on a long-term experimental campaign. The structure is located at Dogger Bank west, North Sea, and equipped with a measurement system monitoring acceleration, strain, inclination...

  17. Experimental data from a full-scale facility investigating radiant and convective terminals

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    The objective of this technical report is to provide information on the accuracy of the experiments performed in “the Cube” (part I, II and III). Moreover, this report lists the experimental data, which have been monitored in the test facility (part IV). These data are available online and can be...

  18. Experimental data from a full-scale facility investigating radiant and convective terminals

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    The objective of this technical report is to provide information on the accuracy of the experiments performed in “the Cube” (part I, II and III). Moreover, this report lists the experimental data, which have been monitored in the test facility (part IV). These data are available online and can be...

  19. Experimental damping assessment of a full scale offshore mono bucket foundation

    DEFF Research Database (Denmark)

    Gres, Szymon; Fejerskov, Morten; Ibsen, Lars Bo;

    2016-01-01

    This paper quantifies the system damping of a offshore meteorological mast supported by a Mono Bucket foundation based on a long-term experimental campaign. The structure is located at Dogger Bank west, North Sea, and equipped with a measurement system monitoring acceleration, strain, inclination...... shows that the total damping ratio of the lowest eigenmode is normally distributed with mean value of 1.11% of critical damping. Linear correlation between the damping ratio and the significant wave height is observed....

  20. Experimental study on CO2/CO of typical lining materials in full-scale fire test

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; ZHANG HePing; WAN YuTian

    2007-01-01

    Lining materials are widely used in buildings to cover walls and ceilings. Combustible linings may produce a potential high fire hazard in buildings. Once ignited, it propagates fire and accelerates the enclosure fire growth. Two types of lining materials were studied during the tests: blook board and plywood. The test was conducted in an ISO 9705 room, where linings were mounted on walls without the ceiling. By changing the heat output of the burner, the ventilation, etc., the concentrations of CO2/CO of different lining materials were researched. The effect of test conditions on the production of CO2/CO of different lining materials was investigated, and useful experimental data were provided for the further development of numerical modeling to simulate enclosure fire growth lined with combustible materials.

  1. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Zhaoan

    2009-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation.This paper presents a simulation model of a megawatt-level variablespeed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of PSCAD/EMTDC. Fli...

  2. Full scale test of a SSP 34m box girder 2. Data report; Reinforced glass fiber/epoxy used in wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Find M.; Branner, K.; Nielsen, Per H. (and others)

    2008-05-15

    This report presents the setup and result from three static full-scale tests of the reinforced glass fiber/epoxy box girder used in a 34m wind turbine blade. One test was without reinforcement one with cap reinforcement and the final test was with rib reinforcement. The cap reinforcement test was part of a proof of concept investigation for a patent. The tests were performed at the Blaest test facility in August 2007. The tests are an important part of a research project established in cooperation between Risoe National Laboratory for sustainable energy--Technical university of Denmark, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Moelholt Jensen's PhD thesis. This report is the second data report containing the complete test data for the three full-scale tests. This report deals only with the test methods and the obtained results, no conclusions are drawn. These can be found in papers and patent referenced in the data report. Various kinds of measuring equipment have been used during these tests: acoustic emission, force transducers, strain gauges and optical deformation measuring system (DIC). The experimental investigation consisted of the following tests: 1) Flapwise bending with no reinforcement 2) Flapwise bending with wire reinforcements 3) Flapwise bending with rib reinforcements. (au)

  3. Comparison and validation of full-scale data from wind measurements in the Cape Peninsula, South Africa

    DEFF Research Database (Denmark)

    Kruger, Andries C.; Goliger, Adam M.; Larsén, Xiaoli Guo

    2014-01-01

    The complexity of the wind climate of Cape Town and its surroundings can be shown by the measurements of specific wind phenomena by weather stations around Table Mountain. It is shown that there are substantial differences between wind speed characteristics affecting various parts of the city...

  4. Full scale measurements and simulations of the wind speed in the close proximity of the building skin

    Directory of Open Access Journals (Sweden)

    Ponechal Radoslav

    2017-01-01

    Full Text Available 36 meteorological stations are located on the facade of the Research Centre building´s from 2016. Weather stations measure basic climate parameters and wind velocity and direction using a powerful ultra-sonic anemometers. These are located on the walls of the building oriented to four cardinal points at different heights and positions on the façade. The location selections were made with use of CFD simulation which analysed flow around the building. Thus they give faithful image of wind flow near the façade of five-storey office building. Such detailed measurements make it possible to achieve high accurate calibration of CFD models and measurements in the wind tunnel. This paper describes these meteorological stations in detail. First outputs from measurement in autumn are published and analysed.

  5. High Performance Reduced Order Models for Wind Turbines with Full-Scale Converters Applied on Grid Interconnection Studies

    DEFF Research Database (Denmark)

    Pereira, Heverton A.; F. Cupertino, Allan; Teodorescu, Remus

    2014-01-01

    Wind power has achieved technological evolution, and Grid Code (GC) requirements forced wind industry consolidation in the last three decades. However, more studies are necessary to understand how the dynamics inherent in this energy source interact with the power system. Traditional energy...... in interconnection studies of synchronous machines with full converter technology. The performance of all models is evaluated based on time domain simulations in the Simulink/MATLAB environment. A detailed model is described, and four reduced order models are compared using the performance index, Normalized Integral...... of Absolute Error (NIAE). Models are analyzed during wind speed variations and balanced voltage dip. During faults, WPPs must be able to supply reactive power to the grid, and this characteristic is analyzed. Using the proposed performance index, it is possible to conclude if a reduced order model is suitable...

  6. Experimental Investigation of a Hypersonic Glider Configuration at a Mach Number of 6 and at Full-Scale Reynolds Numbers

    Science.gov (United States)

    Seiff, Alvin; Wilkins, Max E.

    1961-01-01

    The aerodynamic characteristics of a hypersonic glider configuration, consisting of a slender ogive cylinder with three highly swept wings, spaced 120 apart, with the wing chord equal to the body length, were investigated experimentally at a Mach number of 6 and at Reynolds numbers from 6 to 16 million. The objectives were to evaluate the theoretical procedures which had been used to estimate the performance of the glider, and also to evaluate the characteristics of the glider itself. A principal question concerned the viscous drag at full-scale Reynolds number, there being a large difference between the total drags for laminar and turbulent boundary layers. It was found that the procedures which had been applied for estimating minimum drag, drag due to lift, lift curve slope, and center of pressure were generally accurate within 10 percent. An important exception was the non-linear contribution to the lift coefficient which had been represented by a Newtonian term. Experimentally, the lift curve was nearly linear within the angle-of-attack range up to 10 deg. This error affected the estimated lift-drag ratio. The minimum drag measurements indicated that substantial amounts of turbulent boundary layer were present on all models tested, over a range of surface roughness from 5 microinches maximum to 200 microinches maximum. In fact, the minimum drag coefficients were nearly independent of the surface smoothness and fell between the estimated values for turbulent and laminar boundary layers, but closer to the turbulent value. At the highest test Reynolds numbers and at large angles of attack, there was some indication that the skin friction of the rough models was being increased by the surface roughness. At full-scale Reynolds number, the maximum lift-drag ratio with a leading edge of practical diameter (from the standpoint of leading-edge heating) was 4.0. The configuration was statically and dynamically stable in pitch and yaw, and the center of pressure was less

  7. High Performance Reduced Order Models for Wind Turbines with Full-Scale Converters Applied on Grid Interconnection Studies

    Directory of Open Access Journals (Sweden)

    Heverton A. Pereira

    2014-11-01

    Full Text Available Wind power has achieved technological evolution, and Grid Code (GC requirements forced wind industry consolidation in the last three decades. However, more studies are necessary to understand how the dynamics inherent in this energy source interact with the power system. Traditional energy production usually contains few high power unit generators; however, Wind Power Plants (WPPs consist of dozens or hundreds of low-power units. Time domain simulations of WPPs may take too much time if detailed models are considered in such studies. This work discusses reduced order models used in interconnection studies of synchronous machines with full converter technology. The performance of all models is evaluated based on time domain simulations in the Simulink/MATLAB environment. A detailed model is described, and four reduced order models are compared using the performance index, Normalized Integral of Absolute Error (NIAE. Models are analyzed during wind speed variations and balanced voltage dip. During faults, WPPs must be able to supply reactive power to the grid, and this characteristic is analyzed. Using the proposed performance index, it is possible to conclude if a reduced order model is suitable to represent the WPPs dynamics on grid studies.

  8. Test-bed and Full-Scale Demonstration of Plasma Flow Control for Wind Turbines. Phase 1

    Science.gov (United States)

    2013-07-15

    International Electrotechnical Commission (IEC) Standard 61400-12-1. The wind speed range is divided into 0.5 m/s bins from 0 to 30 m/s. Since we don’t...lateral turbulence, and lateral mean velocity variations in the flow. While paper honeycombs can be adequate for small tunnels, aluminum was chosen

  9. Understanding of bridge cable vibrations and the associate flow-field through the full-scale monitoring of vibrations and Wind

    DEFF Research Database (Denmark)

    Acampora, Antonio

    such as cable vibrations amplitude, cables frequencies involved in the vibrations, wind directions, wind speeds and rainfall rates. Those indications are used to select full-scale cables vibrations for further analyses. In particular, aerodynamic damping is investigated by means of system identification......This dissertation investigates the conditions that promote rain-wind-induced vibrations of inclined cable on cable-stayed bridges. Rain-wind-induced vibrations are known as the most common type of cable vibrations and capable of severe vibrations. The recent increase in the number of cable stayed...... bridges continuously becoming longer and lighter have resulted in a high number of observations of cable vibrations. A theoretical background for the tool used in this work is presented in terms of cables vibrations mechanisms, aerodynamic damping and system identification techniques. A detailed...

  10. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh;

    2016-01-01

    , installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean...... deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models....

  11. The Development and Full-Scale Experimental Validation of an Optimal Water Treatment Solution in Improving Chiller Performances

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chiang

    2016-06-01

    Full Text Available An optimal solution, in combining physical and chemical water treatment methods, has been developed. This method uses a high voltage capacitance based (HVCB electrodes, coupled with biocides to form a sustainable solution in improving chiller plant performances. In this study, the industrial full-scale tests, instead of laboratory tests, have been conducted on chiller plants at the size of 5000 RT to 10,000 RT cooling capacities under commercial operation for more than two years. The experimental results indicated that the condenser approach temperatures can be maintained at below 1 °C for over two years. It has been validated that the coefficient of performance (COP of a chiller can be improved by over 5% by implementing this solution. Every 1 °C reduction in condenser approach temperature can yield approximately 3% increase on chiller COP, which warrants its future application potential in the HVAC industry, where Ta can degrade by 1 °C every three to six months. The solution developed in this study could also reduce chemical dosages and conserve makeup water substantially and is more environment friendly.

  12. Exploratory study to induce fan noise in the test section of the NASA Langley full-scale wind tunnel

    Science.gov (United States)

    Ver, I. L.; Hayden, R. E.; Myles, M. M.; Murray, B. E.

    1975-01-01

    Measures to reduce the intensity of fan noise in the NASA Langley 30 ft x 60 ft subsonic wind tunnel were sought. Measurements were first performed to document existing aerodynamic and acoustic conditions. The purpose of these experiments was to (1) obtain the transfer function between the sound power output of the fan and the sound pressure on the test platform, (2) evaluate the sound attenuation around the tunnel circuit, (3) measure simultaneously the flow profile and the turbulence spectrum of the inflow to the fan and the noise on the test platform, and (4) perform flow observations and identify secondary noise sources. Subsequently, these data were used to predict (1) the relative contribution of the major aerodynamic parameters to total fan noise and (2) the effect of placing a dissipative silencer in the collector duct upstream of the fan. Promising noise control measures were identified and recommendations were made on how to evaluate them.

  13. Full-scale structural testing for severe wind, 1995. Proceedings of the INEL severe windstorm testing workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, C.C.

    1996-05-01

    This document provides brief background information and reports the discussions and findings of the Idaho National Engineering Laboratory (INEL) Severe Windstorm Testing Workshop held November 29-30, 1995, in Idaho Falls, Idaho. Section 1 presents a historical perspective on wind engineering and testing in the U.S. Section 2 discusses INEL`s and the U.S. Department of Energy`s (DOE`s) interest in a new testing facility, and the efforts that led to the organization of the work-shop. The workshop discussions are then described in Sections 3 through 8. These sections focus on the interaction of the participants and are not intended to be exhaustive discussion of the subjects. A summary of the findings, along with the INEL`s recommendations, are presented in Section 9. A list of the workshop participants, a glossary, and additional technical information provided by selected participants are included in the Appendices.

  14. Full scale test of a SSP 34m box girder 1. Data report; Reinforced glass fiber/expoxy used in wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Find M.; Branner, K.; Nielsen, Per H. (and others)

    2008-03-15

    This report presents the setup and result of a full-scale test of a reinforced glass fibre/epoxy box girder used in 34m wind turbine blade. The tests were performed at the Blaest test facility in August 2006. The test is an important part of a research project established in cooperation between Risoe DTU, the National Laboratory for Sustainable Energy at the Technical University of Denmark -, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Moelholt Jensen's PhD study. This report contains the complete test data for the final test, in which the box girder was loaded until failure. A comprehensive description of the test setup is given. This report deals only with tests and results. There are no conclusions on the data in this report, but references are given to publications, where the data are used and compared with FEM etc. Various kinds of measuring equipment have been used during these tests: acoustic emission, 330 strain gauges, 24 mechanical displacement devices and two optical deformation measuring systems. The mechanical displacement devices measured both global (absolute) and local (relative) deflection and the optical systems measured surface deformation. A prediction was made on the location of the failure of the girder. At this location the majority of the measuring equipment was concentrated. The prediction was proved to be correct and valuable information of the behaviour of the box girder prior to failure was obtained. The experimental investigation consisted of the following load configurations: -Flapwise bending -Torsion Ultrasonic scanning of the box girder was performed before, during and after the test the box girder. This was done to investigate whether the girder was damaged by the load or imperfection (productions defects) growth. (au)

  15. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex E. Full-scale test of wind turbine blade, using sensors and NDT

    DEFF Research Database (Denmark)

    Kristensen, O.J.D.; McGugan, Malcolm; Sendrup, P.

    2002-01-01

    A 19.1 metre wind turbine blade was subjected to static tests. The purpose of the test series was to verify the abilities of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test-series an artificial damagewas made on the blade. The damage made...

  16. Computational and Experimental Study of the Transient Transport Phenomena in a Full-Scale Twin-Roll Continuous Casting Machine

    Science.gov (United States)

    Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong

    2017-02-01

    To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.

  17. Full-Scale Experimental Investigation to Quantify Building Component Ignition Vulnerability from Mulch Beds Attacked by Firebrand Showers.

    Science.gov (United States)

    Manzello, Samuel L; Suzuki, Sayaka; Nii, Daisaku

    2017-03-01

    Structure ignition by wind-driven firebrand showers is an important fire spread mechanism in large outdoor fires. Experiments were conducted with three common mulch types (shredded hardwood mulch, Japanese Cypress wood chips, and pine bark nuggets) placed adjacent to realistic-scale reentrant corners. In the first series of experiments, mulch beds were placed adjacent to a re-entrant corner constructed with wood studs and lined with oriented strand board (OSB) as the sheathing. The premise behind conducting experiments with no siding treatments applied was predicated on the notion that bare OSB mulch contact would be a worst-case scenario, and therefore, a wall assembly in the most vulnerable state to mulch ignition. In the second series of experiments, vinyl siding was applied to the re-entrant corner assemblies (wood studs/OSB/moisture barrier/vinyl siding), and the influence of vertical separation distance (102 mm or 203 mm) on wall ignition from adjacent mulch beds was determined. The vertical separation distance was maintained by applying gypsum board to the base of the re-entrant corner. The siding itself did not influence the ignition process for the mulch beds, as the mulch beds were the first to ignite from the firebrand showers. In all experiments, it was observed that firebrands produced smoldering ignition in the mulch beds, this transitioned to flaming ignition, and the re-entrant corner assembly was exposed to the flaming mulch beds. With no siding treatments applied, the flaming mulch beds ignited the re-entrant corner, and ignition was observed to propagate to the back side of re-entrant corner assembly under all wind speeds (6 m/s to 8 m/s). With respect to the re-entrant corners fitted with vinyl siding, the mulch type, vertical separation distance, and wind speed were important parameters as to whether flaming ignition was observed to propagate to the back-side of a reentrant corner assembly. Mulches clearly pose an ignition hazard to structures

  18. Sub-Scale Orion Parachute Test Results from the National Full-Scale Aerodynamics Complex 80- By 120-ft Wind Tunnel

    Science.gov (United States)

    Anderson, Brian P.; Greathouse, James S.; Powell, Jessica M.; Ross, James C.; Schairer, Edward T.; Kushner, Laura; Porter, Barry J.; Goulding, Patrick W., II; Zwicker, Matthew L.; Mollmann, Catherine

    2017-01-01

    A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.

  19. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project. Annex D - Full-scale test of wind turbine blade, using sensors and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, O.J.D.; McGugan, M.; Sendrup, P.; Rheinlaender, J.; Rusborg, J.; Hansen, A.M.; Debel, C.P.; Soerensen, B.F.

    2002-05-01

    A 19.1 metre wind turbine blade was subjected to static tests. The purpose of the test series was to verify the abilities of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test-series an artificial damage was made on the blade. The damage made for each test-series was surveyed during each series by acoustic emission, fiber optic micro bend displacement transducers and strain gauges. The propagation of the damage was determined by use of ultra sonic and X-ray surveillance during stops in the test series. By use of acoustic emission it was possible to measure damage propagation before the propagation was of visible size. By use of fiber optic micro bend displacement transducers and strain gauges it was possible to measure minor damage propagation. By use of both ultra sonic, and X-ray NDT-equipment it were possible to determine the size of propagated damage. (au)

  20. A Comparison of Full-Scale Experimental Measurements and Computational Predictions of the Transom-Stern Wave of the R/V Athena I

    CERN Document Server

    Wyatt, Donald C; Taylor, Genevieve L; Terrill, Eric J; Xing, Tao; Bhushan, Shanti; O'Shea, Thomas T; Dommermuth, Douglas G

    2014-01-01

    Full-scale experimental measurements and numerical predictions of the wave-elevation topology behind a transom-sterned vessel, the R/V Athena I, are compared and assessed in this paper. The mean height, surface roughness (RMS), and spectra of the breaking stern-waves were measured in-situ by a LIDAR sensor over a range of ship speeds covering both wet- and dry-transom operating conditions. Numerical predictions for this data set from two Office of Naval Research (ONR) supported naval-design codes, NFA and CFDship-Iowa-V.4, have been performed. Initial comparisons of the LIDAR data to the numerical predictions at 5.4 m/s (10.5 kts), a wet-transom condition, are presented. This work represents an ongoing effort on behalf of the ONR Ship Wave Breaking and Bubble Wake program, to assess, validate, and improve the capability of Computational Fluid Dynamics (CFD) to predict full-scale ship-generated wave fields.

  1. Full-Scale Tunnel (FST)

    Science.gov (United States)

    1929-01-01

    Modified propeller and spinner in Full-Scale Tunnel (FST) model. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project

  2. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    Science.gov (United States)

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis

    Science.gov (United States)

    Volpe, Raffaele; Devinant, Philippe; Kourta, Azeddine

    2015-05-01

    In recent years, the increasing interest in reducing the aerodynamic drag of vehicles, such as station wagons, minivans or buses, has led research to focus on the characterization of square back bluff geometries. In this paper, the results of an extensive experimental campaign on the full-scale well-known body of Ahmed et al. (1984) are presented, for two height-based Reynolds numbers, and . Eighty-one measurement points were used to map the base pressure field, while the wake topology was investigated by means of a series of ten 2D Particle Image Velocimetry planes. These measurements clearly show that the wake presents a bi-stable behavior, characterized by a random succession of switches between two well-defined mutually symmetric configurations, confirming the results from Grandemange et al. (J Fluid Mech 722:51-84, 2013b. doi: 10.1017/jfm.2013.83) for the same model. For the presented results, the timescale of this phenomenon is of the order of . The sensitivity of the bi-stability to the yaw angle was also investigated, and considerations on how to take such a behavior into account in post-processing this kind of field are given. High-frequency measurements were also carried out with four piezoelectric transducers and a synchronized two-component hot-wire. The results show a low-frequency spectral activity: peaks at and 0.19, corresponding to vortex shedding modes, were found on the lateral base pressures and in the far wake, whereas a signature at was visible on the vertical base centerline and in the recirculation bubble shear layer. Correlation analysis and proper orthogonal decomposition confirm the interpretation of the latter mode as the pumping of the recirculation bubble.

  4. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.

    Science.gov (United States)

    Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-10-03

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  5. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......Full-scale experiments under both steady-state and dynamic conditions have been performed to compare the energy performance of a radiant wall and an active chilled beam. From these experiments, it has been observed that the radiant wall is a more secure and efficient way of removing heat from...... the test room than the active chilled beam. The energy saving, which can be estimated to around 10%, is due to increased ventilation losses. The asymmetry between air and radiant temperature, the air temperature gradient and the possible short-circuit between inlet and outlet play an equally important role...

  6. Full scale lightning test technique

    Science.gov (United States)

    Walko, L. C.; Schneider, J. G.

    1980-01-01

    A test technique was developed for applying a full scale mean value (30 kiloampere peak) simulated lightning return stroke current on a complete flight ready aircraft to assess the threat of lightning to aircraft electrical circuits. A computer-aided generator design was used to establish the parameters of the test system. Data from previous work done on development of low inductance current paths determined the basic system configuration.

  7. A framework for experimental determination of localised vertical pedestrian forces on full-scale structures using wireless attitude and heading reference systems

    Science.gov (United States)

    Bocian, M.; Brownjohn, J. M. W.; Racic, V.; Hester, D.; Quattrone, A.; Monnickendam, R.

    2016-08-01

    A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.

  8. Determination of the sedimentation constants for total suspended solids and the algal component in a full-scale primary facultative pond operating at high wind velocities under tropical conditions.

    Science.gov (United States)

    Saraiva, L B; Ribeiro Meneses, C G; de Souza Melo, H N; Calado Araújo, A L; Pearson, H

    2005-01-01

    This study evaluated the amount, distribution and sedimentation constant of solids in a full-scale primary facultative pond operating mostly under high wind conditions and the contribution made by the algal biomass. Solids deposition rates were measured using sedimentation traps placed in the inlet and outlet zones of the pond. Most sludge accumulation occurred, not surprisingly, in the inlet zone A1 with a sludge volume of 9072.m3 accumulating over an operating time of approximately 3 years. However, sludge deposition within this zone was uneven and affected by wind action. Mean proportionality constant (K) values for solids sedimentation were 3.02 and 5.70 for depths of 50 cm and 100 cm respectively for A1. In contrast in zone A3, (the outlet zone), reduced K values of 1.38 and 3.22 were obtained for depths of 50 cm and 100 cm respectively. The algal sedimentation constant varied from 0.8 d(-1) in zone A1 to 0.02 d(-1) in A3. These data suggest that in this large facultative pond the wind, blowing predominantly from the direction of the outlets towards the pond inlets, had a greater influence on solids deposition than the bulk hydraulic flow and also kept the pond completely mixed for most of the time.

  9. Characterization of the excavation disturbance caused by boring of the experimental full scale deposition holes in the Research Tunnel of Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J. [Saanio and Riekkola Oy, Helsinki (Finland)

    1997-09-01

    Three holes, the size of deposition holes, were bored in the Research Tunnel using a novel full-face boring technique. During the boring test, procedures were carried out in order to determine the effect of changes in operating parameters on the performance of the boring machine and the quality of the hole. Evaluation of the quality of the hole included studies of the geometry of the holes, measurements of surface roughness using a laser profilometer, rock mechanical determinations and study of excavation disturbances in the zone adjacent to the surface of the holes using two novel methods, the He-gas method and the {sup 14}C-polymethylmethacrylate ({sup 14}C-PMMA) method. It was found that there is a distinct disturbed zone adjacent to the surface of the full scale deposition holes which can be divided into three different zones. The zones are as follows: a crushed zone penetrating to a depth of about 3 mm from the surface, a fractured zone extending to a depth of 6 - 10 mm from the crushed zone and a micro fractured zone extending to a depth of 15 - 31 mm from the fractured zone. The porosity of the rock in the disturbed zone measured using the {sup 14}C-PMMA method was clearly greater than the porosity of undisturbed rock to a depth of about 11 mm. The values of permeability and effective diffusion coefficient in the disturbed zone measured in a direction perpendicular to the disturbed surface were found to be approximately one order of magnitude larger than those of undisturbed rock. The degree of disturbance was found to be greater where higher levels of thrust had been employed during the boring process. The results obtained also suggest that the disturbance caused by using 4- and 5-row cutters in the cutter head is more pronounced than the disturbance caused when using 5- and 6-row cutters 31 refs, 118 figs, 15 tabs

  10. Engineering design and prototype development of a full scale ultrasound system for virgin olive oil by means of numerical and experimental analysis.

    Science.gov (United States)

    Clodoveo, Maria Lisa; Moramarco, Vito; Paduano, Antonello; Sacchi, Raffaele; Di Palmo, Tiziana; Crupi, Pasquale; Corbo, Filomena; Pesce, Vito; Distaso, Elia; Tamburrano, Paolo; Amirante, Riccardo

    2017-07-01

    The aim of the virgin olive oil extraction process is mainly to obtain the best quality oil from fruits, by only applying mechanical actions while guaranteeing the highest overall efficiency. Currently, the mechanical methods used to extract virgin oils from olives are basically of two types: the discontinuous system (obsolete) and the continuous one. Anyway the system defined as "continuous" is composed of several steps which are not all completely continuous, due to the presence of the malaxer, a device that works in batch. The aim of the paper was to design, realize and test the first full scale sono-exchanger for the virgin olive oil industry, to be placed immediately after the crusher and before the malaxer. The innovative device is mainly composed of a triple concentric pipe heat exchanger combined with three ultrasound probes. This mechanical solution allows both the cell walls (which release the oil droplets) along with the minor compounds to be destroyed more effectively and the heat exchange between the olive paste and the process water to be accelerated. This strategy represents the first step towards the transformation of the malaxing step from a batch operation into a real continuous process, thus improving the working capacity of the industrial plants. Considering the heterogeneity of the olive paste, which is composed of different tissues, the design of the sono-exchanger required a thorough fluid dynamic analysis. The thermal effects of the sono-exchanger were monitored by measuring the temperature of the product at the inlet and the outlet of the device; in addition, the measurement of the pigments concentration in the product allowed monitoring the mechanical effects of the sono-exchanger. The effects of the innovative process were also evaluated in terms of extra virgin olive oil yields and quality, evaluating the main legal parameters, the polyphenol and tocopherol content. Moreover, the activity of the polyphenol oxidase enzyme in the olive

  11. 基于PXI技术的全功率风电变流器监测系统%A Full-Scale Wind Power Converter Monitor System Based on PXI Technology

    Institute of Scientific and Technical Information of China (English)

    陈昭宇; 张建文; 蔡旭

    2012-01-01

    To test the performance of the full—scale wind power converter in its development, a monitoring system is needed not only for the high speed sampling of the numerous channels, but also serves as fault alert, data saving, and data analyzing. In this paper a monitor system for a 3MW full-scale wind power converter based on PXI technology is proposed and realized to meet the above —mentioned requirements. Its realization is described in detail with the solution to the problem of the real time system given. At the end of this paper an application example of the 3WM full —scale wind power converter monitoring system is provided, in which the monitor system has successfully detected and recorded a fault occurred in a converter study test, suggesting that the converter monitor system works well and it is very important to the study of the full-scale wind power converter.%在风力发电并网全功率变流器的研发过程中,为了测试和验证变流器的运行性能,需要一个变流器监测系统,不仅能够满足大量通道的高速数据采集,同时还要具有故障报警、录波、以及数据分析的能力.提出了并实现了一种基于PXI技术的3 MW全功率变流器监测系统以满足上述的要求.详细描述了监测系统软硬件的实现方法,并且给出了大数据量监测系统的实时性问题的软件解决方法.在最后,给出了监测系统在3 MW变流器实际调试过程中捕捉并记录下变流器故障的实例,表明了所提出的变流器监测系统的实效性.

  12. Full-scale measurements of aerodynamic induction in a rotor plane

    Science.gov (United States)

    Larsen, Gunner Chr; Hansen, Kurt S.

    2014-12-01

    Reliable modelling of aerodynamic induction is imperative for successful prediction of wind turbine loads and wind turbine dynamics when based on state-of- the-art aeroelastic tools. Full-scale LiDAR based wind speed measurements, with high temporal and spatial resolution, have been conducted in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented.

  13. Full-scale measurements of aerodynamic induction in a rotor plane

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2014-01-01

    in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented.......Reliable modelling of aerodynamic induction is imperative for successful prediction of wind turbine loads and wind turbine dynamics when based on state-of- the-art aeroelastic tools. Full-scale LiDAR based wind speed measurements, with high temporal and spatial resolution, have been conducted...

  14. Full-Scale Tunnel (FST) model

    Science.gov (United States)

    1929-01-01

    Model of Full-Scale Tunnel (FST) under construction. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. Small included angle for the exit cone; 2. Carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. Tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project. In a 1979

  15. Development of a High-fidelity Experimental Substructure Test Rig for Grid-scored Sandwich Panels in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Laustsen, Steffen; Lund, Erik; Kühlmeier, L.;

    2014-01-01

    This paper outlines high-fidelity experimental substructure testing of sandwich panels which constitute the aerodynamic outer shell of modern wind turbine blades. A full-scale structural experimental and numerical characterisation of a composite wind turbine blade has been conducted. The developm...... of substructure tests for composite wind turbine blades. Furthermore, recommendations on the use of grid-scored sandwich structures in wind turbine blades are presented, which outline the sensitivity in terms of quasi-static strength to the established loading conditions.......This paper outlines high-fidelity experimental substructure testing of sandwich panels which constitute the aerodynamic outer shell of modern wind turbine blades. A full-scale structural experimental and numerical characterisation of a composite wind turbine blade has been conducted...

  16. NOAA NOS SOS, EXPERIMENTAL - Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have wind data. *These services are for testing and evaluation use only*...

  17. Why Online Education Will Attain Full Scale

    Science.gov (United States)

    Sener, John

    2010-01-01

    Online higher education has attained scale and is poised to take the next step in its growth. Although significant obstacles to a full scale adoption of online education remain, we will see full scale adoption of online higher education within the next five to ten years. Practically all higher education students will experience online education in…

  18. Full Scale Test of a SSP 34m boxgirder 2

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Branner, Kim; Nielsen, Per Hørlyk

    This report presents the setup and result from three static full-scale tests of the reinforced glass fiber/epoxy box girder used in a 34m wind turbine blade. One test was without reinforcement one with cap reinforcement and the final test was with rib reinforcement. The cap reinforcement test...... of the following tests: 1) Flapwise bending with no reinforcement 2) Flapwise bending with wire reinforcements 3) Flapwise bending with rib reinforcements...

  19. Education, Wechler's Full Scale IQ and "g."

    Science.gov (United States)

    Colom, Roberto; Abad, Francisco J.; Garcia, Luis F.; Juan-Espinosa, Manuel

    2002-01-01

    Investigated whether average Full Scale IQ (FSIQ) differences can be attributed to "g" using the Spanish standardization sample of the Wechsler Adult Intelligence Scale III (WAIS III) (n=703 females and 666 men). Results support the conclusion that WAIS III FSIQ does not directly or exclusively measure "g" across the full range…

  20. Experimental and Numerical study of Wake to Wake Interaction in Wind Farms

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Troldborg, Niels; Larsen, Gunner Chr.;

    2012-01-01

    In this paper, wake interaction between two wind turbines is analyzed using experimental and numerical approaches. Full-scale wake measurements are conducted at Tjæreborg wind farm and are obtained using a continuous wave lidar mounted on the back of the nacelle of a 2MW NM80 turbine. Numerical...... are compared, and good agreement is seen between the measurements and the computations despite of a lateral offset and other discrepancies due to uncertainties on the measured inflow conditions and lidar mounting alignment....

  1. Rotor blade full-scale fatigue testing technology and research

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Berring, Peter; Pavese, Christian

    Full scale fatigue test is an important part of the development and design of wind turbine blades. Testing is also needed for the approval of the blades in order for them to be used on large wind turbines. However, usually only one prototype blade is tested. Fatigue test of wind turbine blades...... was started in the beginning of the 1980´s and has been further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. These methods...... will be presented in this report giving the blade test facility operator a guide to choose the method that best fit the needs and economic constraints. The state of the art method is currently dual axis mass resonance, where the purpose of the test is to emulate the loads the blades encounter in operation....

  2. Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results

    Directory of Open Access Journals (Sweden)

    Marcin Luczak

    2014-01-01

    Full Text Available This paper presents selected results and aspects of the multidisciplinary and interdisciplinary research oriented for the experimental and numerical study of the structural dynamics of a bend-twist coupled full scale section of a wind turbine blade structure. The main goal of the conducted research is to validate finite element model of the modified wind turbine blade section mounted in the flexible support structure accordingly to the experimental results. Bend-twist coupling was implemented by adding angled unidirectional layers on the suction and pressure side of the blade. Dynamic test and simulations were performed on a section of a full scale wind turbine blade provided by Vestas Wind Systems A/S. The numerical results are compared to the experimental measurements and the discrepancies are assessed by natural frequency difference and modal assurance criterion. Based on sensitivity analysis, set of model parameters was selected for the model updating process. Design of experiment and response surface method was implemented to find values of model parameters yielding results closest to the experimental. The updated finite element model is producing results more consistent with the measurement outcomes.

  3. Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results

    DEFF Research Database (Denmark)

    Luczak, Marcin; Manzato, Simone; Peeters, Bart;

    2014-01-01

    of model parameters was selected for the model updating process. Design of experiment and response surface method was implemented to find values of model parameters yielding results closest to the experimental. The updated finite element model is producing results more consistent with the measurement...... is to validate finite element model of the modified wind turbine blade section mounted in the flexible support structure accordingly to the experimental results. Bend-twist coupling was implemented by adding angled unidirectional layers on the suction and pressure side of the blade. Dynamic test and simulations...... were performed on a section of a full scale wind turbine blade provided by Vestas Wind Systems A/S. The numerical results are compared to the experimental measurements and the discrepancies are assessed by natural frequency difference and modal assurance criterion. Based on sensitivity analysis, set...

  4. Full Scale Experiment with Interactive Urban Lighting

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    This paper presents and discusses the results of a full-scale interactive urban illumination experiment. The experiment investigates how human motion intensities can be used as input for controlling the illumination of a town square in the city of Aalborg in Denmark. The trajectory, velocity...... changed according to their presence or actions, whereas people watching from the outside noticed to a larger degree the interaction between the illumination and the immersed persons. We seek to develop new knowledge about the experience of responsive environments and to explore technical, social...

  5. ARKTOS full-scale evacuation tests

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, B.; Hatfield, P. [ARKTOS Developments Ltd., Surrey, BC (Canada); Bercha, F. [Bercha Group, Calgary, AB (Canada)

    2008-09-15

    The ARKTOS amphibious vehicle can be used for evacuation operations in both open water and ice conditions. It is approved as an evacuation system by various regulators, such as the United States Coast Guard, and is operational in several marine cold regions as an escape, evacuation, and rescue (EER) system. An EER research project was performed in 2006 that provided a general reliability evaluation of the ARKTOS system. However, the project did not have the benefit of detailed full-scale tests in order to validate the associated computer model in drill or non-life threatening evacuation conditions. This paper described a follow-up set of full-scale evacuation tests designed to provide more detailed information and validation data for the reliability that the computer model described in the 2006 research project. A description and photographic illustrations of the ARKTOS system were presented. The tests and subsequent analyses were described. Specifically, the paper described the observations, and presented the statistical results from the data collected, and compared observed results with predicted results of a probabilistic EER simulation computer model. Conclusions and recommendations for reliability improvements were also provided. It was concluded that under the benign conditions, the drill performance was satisfactory in all aspects, both in the evacuation activities and the rescue or de-boarding activities. 3 refs., 1 tab., 17 figs.

  6. Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test

    Science.gov (United States)

    Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.

    2012-01-01

    Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.

  7. An experimental and numerical study of wind turbine seismic behavior

    OpenAIRE

    Prowell, I.

    2011-01-01

    This dissertation presents an experimental and numerical investigation into the seismic response of modern wind turbines. Currently, no consensus exists in the industry and there is significant interest in improving prediction of the behavior of wind turbines simultaneously subjected to wind, earthquake, and operational excitation. To this end, an experimental program was planned in order to evaluate seismic loading of wind turbines. In 2004, a preliminary shake table test of a 65-kW utility ...

  8. The utilization of coal mining wastes as filling materials in reinforced earth structures. III. Construction of a full scale experimental structure; Utilizacion de los esteriles del carbon como material de relleno en estructuras de tierra reforzada. II. Construccion de una estructura experimental

    Energy Technology Data Exchange (ETDEWEB)

    CaNibano Gonzalez, J.; Martinez, C.; Gonzalez, M.R. [HUNOSA. Programa Desarrollo Esteriles. Oviedo (Spain); Pardo, F.; SopeNa, L. [CEDEX. Laboratorio Geotecnia, Madrid (Spain); Torres, M. [Escuela Tecnica Superior de Ingenieros de Minas, Oviedo (Spain); Perez, J.J. [MOPTMA. Demarcacion Carreteras del Estado, Oviedo (Spain)

    1997-06-01

    This article describes the construction of a full scale experimental structure in which coal mining wastes (mine stones) were utilized as a filling material. In such structure, which was 20 m long and 2 high coal mining wastes from two different tips were tested together with different types of reinforcing frames such as metal bands, geomeshes and Paraweb (Freyssisol) bands. Also, thermocouples were placed at different heights. On the other hand, the said structure was subjected to 3.085 passes of a truck having a ballast of 10.5 tons on its rear axle. The performance of the coal mining wastes was completely satisfactory. (Author) 3 refs.

  9. Full-Scale Cookoff Model Validation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M A; Rattanapote, M K; Heimdahl, E R; Erikson, W E; Curran, P O; Atwood, A I

    2003-11-25

    This paper presents the experimental results of the third and final phase of a cookoff model validation effort. In this phase of the work, two generic Heavy Wall Penetrators (HWP) were tested in two heating orientations. Temperature and strain gage data were collected over the entire test period. Predictions for time and temperature of reaction were made prior to release of the live data. Predictions were comparable to the measured values and were highly dependent on the established boundary conditions. Both HWP tests failed at a weld located near the aft closure of the device. More than 90 percent of unreacted explosive was recovered in the end heated experiment and less than 30 percent recovered in the side heated test.

  10. Full-scale validation of a model of algal productivity.

    Science.gov (United States)

    Béchet, Quentin; Shilton, Andy; Guieysse, Benoit

    2014-12-02

    While modeling algal productivity outdoors is crucial to assess the economic and environmental performance of full-scale cultivation, most of the models hitherto developed for this purpose have not been validated under fully relevant conditions, especially with regard to temperature variations. The objective of this study was to independently validate a model of algal biomass productivity accounting for both light and temperature and constructed using parameters experimentally derived using short-term indoor experiments. To do this, the accuracy of a model developed for Chlorella vulgaris was assessed against data collected from photobioreactors operated outdoor (New Zealand) over different seasons, years, and operating conditions (temperature-control/no temperature-control, batch, and fed-batch regimes). The model accurately predicted experimental productivities under all conditions tested, yielding an overall accuracy of ±8.4% over 148 days of cultivation. For the purpose of assessing the feasibility of full-scale algal cultivation, the use of the productivity model was therefore shown to markedly reduce uncertainty in cost of biofuel production while also eliminating uncertainties in water demand, a critical element of environmental impact assessments. Simulations at five climatic locations demonstrated that temperature-control in outdoor photobioreactors would require tremendous amounts of energy without considerable increase of algal biomass. Prior assessments neglecting the impact of temperature variations on algal productivity in photobioreactors may therefore be erroneous.

  11. Drone Based Experimental Investigation of Wind Turbine Wake Evolution

    Science.gov (United States)

    Subramanian, Balaji, , Dr.; Chokani, Ndaona, , Dr.; Abhari, Reza, Prof. _., Dr.

    2016-11-01

    The characteristics of the wake downstream of a wind turbine has an important bearing on the optimized micrositing of wind turbines in a given land area, as well as on the loads seen by downstream turbines. We use a novel measurement system to measure the flow field upstream and in the wake of a full-scale wind turbine. The system consists of a fast response aerodynamic probe, mounted on an autonomous drone that is equipped with a suite of sensors. These measurements detail, for the first time at full-scale Reynolds number conditions, the evolution and breakdown of tip vortices that are characteristic of the near wake, as well as the turbulent mixing and entrainment of more energised flow, which are distinctive in the far wake. A short-time Fourier transform (STFT) analysis method is used to derive time-localized TKE along the drone's trajectory. Detailed upstream and wake measurements are needed to understand the flow behavior, as it helps in developing and validating simplified wake models that can approximate the wake qualities. Comparisons of these measurements to recently developed wake prediction models highlights how these measurements can support further model development.

  12. Model of Full-Scale Tunnel (FST) under construction

    Science.gov (United States)

    1929-01-01

    Model of Full-Scale Tunnel (FST) under construction. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project. In a 1979

  13. Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multi-based Logging.

    Science.gov (United States)

    Cleveland, William S.

    Experimentation with graphical methods for data presentation is important for improving graphical communication in science. Several graphical methods are discussed including full scale breaks, dot charts, and multibased logging. Full scale breaks are suggested as replacements for partial scale breaks since partial scale breaks can fail to provide…

  14. Experimental Investigation of the Wind Turbine Blade Root Flow

    NARCIS (Netherlands)

    Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.

    2010-01-01

    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by

  15. Experimental studies on power transformer model winding provided with MOVs

    Directory of Open Access Journals (Sweden)

    G.H. Kusumadevi

    2017-05-01

    Full Text Available Surge voltage distribution across a HV transformer winding due to appearance of very fast rise time (rise time of order 1 μs transient voltages is highly non-uniform along the length of the winding for initial time instant of occurrence of surge. In order to achieve nearly uniform initial time instant voltage distribution along the length of the HV winding, investigations have been carried out on transformer model winding. By connecting similar type of metal oxide varistors across sections of HV transformer model winding, it is possible to improve initial time instant surge voltage distribution across length of the HV transformer winding. Transformer windings with α values 5.3, 9.5 and 19 have been analyzed. The experimental studies have been carried out using high speed oscilloscope of good accuracy. The initial time instant voltage distribution across sections of winding with MOV remains nearly uniform along length of the winding. Also results of fault diagnostics carried out with and without connection of MOVs across sections of winding are reported.

  16. Full scale monitoring of the twin chimneys of the rovinari power plant

    Directory of Open Access Journals (Sweden)

    Bayati I.

    2015-01-01

    Full Text Available The presented paper deals with the structural identification and monitoring of two twin chimneys in very close arrangement. Due to twin arrangement, important interference effects are expected to modify the chimney response to wind action, causing vortex shedding and state-dependent excitation associated to the oscillatory motion of the leeward chimney, in and out of the windward chimney wake. The complexity of the physics of this problem is increased by the dependency of the aerodynamics of circular cylinders on Reynolds number; however, there is a weakness of literature about cylinders behaviour at critical and super-critical range of Reynolds number, due to experimental limitations. Also the International Committee on Industrial Chimneys (CICIND does not provide, at present, any specific technical guideline about twin chimneys whose interaxis distance is less or equal two times the diameter, as in this case. For this reason a Tuned Mass Damper (TMD has been installed in order to increase the damping of the chimney, as merely suggested. This work aims at assessing the effectiveness of the installed TMD and characterizing the tower dynamic behaviour itself due to the wind excitation, as well as providing full scale measurements for twin cylinders configuration at high Reynolds numbers.

  17. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  18. Experimental Study of Fully Developed Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Turner v, John; Wosnik, Martin

    2014-11-01

    Results from an experimental study of an array of up to 100 model wind turbines with 0.25 m diameter, conducted in the turbulent boundary layer of the 6.0 m wide × 2.7 m tall × 72.0 m long test section of the UNH Flow Physics Facility, are reported. The study aims to address two questions. First, for a given configuration (turbine spacing, initial conditions, etc.), when will the model wind farm reach a ``fully developed'' condition, in which turbulence statistics remain the same from one row to the next within and above the wind turbine array. Second, how is kinetic energy transported in the wind turbine array boundary layer (WTABL). Measurements in the fully developed WTABL can provide valuable insight to the optimization of wind farm energy production. Previous experimental studies with smaller model wind farms were unable to reach the fully developed condition. Due to the size of the UNH facility and the current model array, the fully developed WTABL condition can be achieved. The wind turbine array was simulated by a combination of drag-matched porous disks, used in the upstream part of the array, and by a smaller array of realistic, scaled 3-bladed wind turbines immediately upstream of the measurement location.

  19. Characterization of AGIPD1.0: The full scale chip

    Science.gov (United States)

    Mezza, D.; Allahgholi, A.; Arino-Estrada, G.; Bianco, L.; Delfs, A.; Dinapoli, R.; Goettlicher, P.; Graafsma, H.; Greiffenberg, D.; Hirsemann, H.; Jack, S.; Klanner, R.; Klyuev, A.; Krueger, H.; Marras, A.; Mozzanica, A.; Poehlsen, J.; Schmitt, B.; Schwandt, J.; Sheviakov, I.; Shi, X.; Trunk, U.; Xia, Q.; Zhang, J.; Zimmer, M.

    2016-12-01

    The AGIPD (adaptive gain integrating pixel detector) detector is a high frame rate (4.5 MHz) and high dynamic range (up to 104 ·12.4 keV photons) detector with single photon resolution (down to 4 keV taking 5σ as limit and lowest noise settings) developed for the European XFEL (XFEL.EU). This work is focused on the characterization of AGIPD1.0, which is the first full scale version of the chip. The chip is 64×64 pixels and each pixel has a size of 200×200 μm2. Each pixel can store up to 352 images at a rate of 4.5 MHz (corresponding to 220 ns). A detailed characterization of the AGIPD1.0 chip has been performed in order to assess the main performance of the ASIC in terms of gain, noise, speed and dynamic range. From the measurements presented in this paper a good uniformity of the gain, a noise around 320 e- (rms) in standard mode and around 240 e- (rms) in high gain mode has been measured. Furthermore a detailed discussion about the non-linear behavior after the gain switching is presented with both experimental results and simulations.

  20. Full-scale fire experiments on vertical horizontal cable trays

    Energy Technology Data Exchange (ETDEWEB)

    Mangs, J.; Keski-Rahkonen, O. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1997-10-01

    Two full-scale fire experiments on PVC cables used in nuclear power plants were carried out, one with cables in vertical position and one with cables in horizontal position. The vertical cable bundle, 3 m high, 300 mm wide and 30 mm thick, was attached to a steel cable ladder. The vertical bundle experiment was carried out in nearly free space with three walls near the cable ladder guiding air flow in order to stabilise flames. The horizontal cable experiment was carried out in a small room with five cable bundles attached to steel cable ladders. Three of the 2 m long cable bundles were located in an array, equally spaced above each other near one long side of the room and two correspondingly near the opposite long side. The vertical cable bundle was ignited with a small propane gas burner beneath the lower edge of the bundle. The horizontal cable bundles were ignited with a small propane burner beneath the lowest bundle in an array of three bundles. Rate of heat release by means of oxygen consumption calorimetry, mass change, CO{sub 2}, CO and smoke production rate and gas, wall and cable surface temperatures were measured as a function of time, as well as time to sprinkler operation and failure of test voltage in cables. Additionally, the minimum rate of heat release needed to ignite the bundle was determined. This paper concentrates on describing and recording the experimental set-up and the data obtained. (orig.)

  1. Experimental and numerical study of a 10MW TLP wind turbine in waves and wind

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Hansen, Anders Mandrup; Laugesen, Robert

    2016-01-01

    This paper presents tests on a 1:60 version of the DTU 10MW wind turbine mounted on a tension leg platform and their numerical reproduction. Both the experimental setup and the numerical model are Froude-scaled, and the dynamic response of the floating wind turbine to wind and waves is compared...... in terms of motion in the six degrees of freedom, nacelle acceleration and mooring line tension. The numerical model is implemented in the aero-elastic code Flex5, featuring the unsteady BEM method and the Morison equation for the modelling of aerodynamics and hydrodynamics, respectively. It was calibrated...

  2. Full-scale implementation of external nitrification biological nutrient ...

    African Journals Online (AJOL)

    driniev

    preliminary design of this full-scale plant and initial implementation. Introduction ... activated sludge (AS) system, the nitrification process is removed from the .... system. Design concept ... This latter mass fraction distribution is the one recom-.

  3. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  4. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  5. Experimental Investigation of Very Large Model Wind Turbine Arrays

    Science.gov (United States)

    Charmanski, Kyle; Wosnik, Martin

    2013-11-01

    The decrease in energy yield in large wind farms (array losses) and associated revenue losses can be significant. When arrays are sufficiently large they can reach what is known as a fully developed wind turbine array boundary layer, or fully developed wind farm condition. This occurs when the turbulence statistics and the structure of the turbulence, within and above a wind farm, as well as the performance of the turbines remain the same from one row to the next. The study of this condition and how it is affected by parameters such as turbine spacing, power extraction, tip speed ratio, etc. is important for the optimization of large wind farms. An experimental investigation of the fully developed wind farm condition was conducted using a large array of porous disks (upstream) and realistically scaled 3-bladed wind turbines with a diameter of 0.25m. The turbines and porous disks were placed inside a naturally grown turbulent boundary layer in the 6m × 2.5m × 72m test section of the UNH Flow Physics Facility which can achieve test section velocities of up to 14 m/s and Reynolds numbers δ+ = δuτ / ν ~ 20 , 000 . Power, rate of rotation and rotor thrust were measured for select turbines, and hot-wire anemometry was used for flow measurements.

  6. Full scale computer simulators in anesthesia training and evaluation.

    Science.gov (United States)

    Wong, Anne K

    2004-05-01

    With the advent of competency-based curriculum, technology such as full scale computer simulators have acquired an increasingly important role in anesthesia both in training and evaluation. This article reviews the current role of full scale computer simulators in teaching and evaluation in anesthesia. This review draws from existing anesthesia and medical education literature in order to examine and assess the current role of full scale computer simulators in anesthesia education today. The last decade has witnessed a major increase in the use of full scale computer simulators in anesthesia. Many applications have been found for these simulators including teaching and training, evaluation and research. Despite the increasing use and application of full scale computers in anesthesia in the area of teaching and training, definitive studies evaluating its cost effectiveness, its efficacy compared to traditional training methods or its impact on patient outcome are still pending. Although there is some preliminary evidence of reliability and validity in using the simulator to evaluate clinical competence, development in this area has not progressed enough to justify its use in formal, summative evaluation of competence in anesthesia at this time. As technology acquires an increasingly important role in medical education, full scale computer simulators represent an exciting potential in anesthesia. However, the full potential and role of simulators in anesthesia is still in development and will require a dovetailing of clinical theory and practice with current research in medical education.

  7. Dynamic stall of an experimental wind turbine blade

    Science.gov (United States)

    Melius, Matthew; Cal, Raúl Bayoán; Mulleners, Karen

    2016-03-01

    To understand the complex flow phenomena over wind turbine blades during stall development, a scaled three-dimensional non-rotating blade model is designed to be dynamically similar to a rotating full-scale NREL 5 MW wind turbine blade. A time-resolved particle image velocimetry (PIV) investigation of flow behavior during the stall cycle examines the processes of stall development and flow reattachment. Proper orthogonal decomposition (POD) and vortex detection techniques are applied to the PIV fields to quantify relevant flow characteristics such as vortex size, separation angle, and separation point throughout a dynamic pitching cycle. The behavior of the POD coefficients provides time scales for the transitional stages which are quantified and compared, revealing that transition from attached flow to full stall is delayed to higher angles of attack and occurs at a higher rate than the transition from full stall to attached flow. The instantaneous flow fields are then reconstructed using the first four POD modes to demonstrate their prominent roles throughout the stall cycle and their ability to capture the general separation behavior over the blade surface.

  8. Blade Motion Correlation for the Full-Scale UH-60A Airloads Rotor

    Science.gov (United States)

    Romander, Ethan A.; Meyn, Larry A.; Barrows, Danny; Burner, Alpheus

    2014-01-01

    Testing was successfully completed in May 2010 on a full-scale UH-60A rotor system in the USAF's National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel.[1] The primary objective of this NASA Army sponsored test program was to acquire a comprehensive set of validation-quality measurements ona full-scale pressure-instrumented rotor system at conditions that challenge the most sophisticated modeling andsimulation tools. The test hardware included the same rotor blades used during the UH-60A Airloads flight test.[2] Key measurements included rotor performance, blade loads, blade pressures, blade displacements, and rotorwake measurements using large-field Particle Image Velocimetry (PIV) and Retro-reflective Background Oriented Schlieren (RBOS).

  9. Wind turbine and actuator disc wake: Two experimental campaigns

    NARCIS (Netherlands)

    Lignarolo, L.; Ragni, D.; Simao Ferreira, C.J.; van Bussel, G.J.W.

    2015-01-01

    The present paper is the summary of 3 years of research on the wake aerodynamics of horizontal axis wind turbine at Delft University of Technology, the Netherlands. In particular, the main results and the conclusions of two experimental campaigns are collected. The underlying research question is: h

  10. China's experimental pragmatics of "Scientific development" in wind power: Algorithmic struggles over software in wind turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Julia

    2016-01-01

    This article presents a case study on the development of China's wind power market. As China's wind industry has experienced a quality crisis, the Chinese government has intervened to steer the industry towards a turn to quality, indicating a pragmatist and experimental mode of market development....... This increased focus on quality, to ensure the sustainable and scientific development of China's wind energy market, requires improved indigenous Chinese innovation capabilities in wind turbine technology. To shed light on how the turn to quality impacts upon the industry and global competition, this study...... unfold over issues associated with intellectual property rights (IPRs), certification and standardisation of software algorithms. The article concludes that the use of this STS lens makes a fresh contribution to the often path-dependent, structuralist and hierarchical China literature, offering instead...

  11. On the impact of non-Gaussian wind statistics on wind turbines - an experimental approach

    Science.gov (United States)

    Schottler, Jannik; Reinke, Nico; Hoelling, Agnieszka; Whale, Jonathan; Peinke, Joachim; Hoelling, Michael

    2016-11-01

    The effect of intermittent and Gaussian inflow conditions on wind energy converters is studied experimentally. Two different flow situations were created in a wind tunnel using an active grid. Both flows exhibit nearly equal mean velocity values and turbulence intensities, but strongly differ in their two point uτ = u (t + τ) - u (t) on a variety of time scales τ, one being Gaussian distributed, the other one being strongly intermittent. A horizontal axis model wind turbine is exposed to both flows, isolating the effect of the differences not captured by mean values and turbulence intensities on the turbine. Thrust, torque and power data were recorded and analyzed, showing that the model turbine does not smooth out intermittency. Intermittent inflow is converted to similarly intermittent turbine data on all scales considered, reaching down to sub-rotor scales in space, indicating that it is not correct to assume a smoothing of wind speed fluctuations below the size of the rotor.

  12. Blade Displacement Measurements of the Full-Scale UH-60A Airloads Rotor

    Science.gov (United States)

    Barrows, Danny A.; Burner, Alpheus W.; Abrego, Anita I.; Olson, Lawrence E.

    2011-01-01

    Blade displacement measurements were acquired during a wind tunnel test of the full-scale UH-60A Airloads rotor. The test was conducted in the 40- by 80-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at NASA Ames Research Center. Multi-camera photogrammetry was used to measure the blade displacements of the four-bladed rotor. These measurements encompass a range of test conditions that include advance ratios from 0.15 to unique slowed-rotor simulations as high as 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective of these measurements is to provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft computational tools. The methodology, system development, measurement techniques, and preliminary sample blade displacement measurements are presented.

  13. Systems for animal exposure in full-scale fire tests

    Science.gov (United States)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  14. Prediction of Full-Scale Propulsion Power using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction...... of propulsion power. The model was optimized using a double cross validation procedure. The network was able to predict the propulsion power with accuracy between 0.8-1.7% using onboard measurement system data and 7% from manually acquired noon reports....

  15. Prediction of Full-Scale Propulsion Power using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction...... of propulsion power. The model was optimized using a double cross validation procedure. The network was able to predict the propulsion power with accuracy between 0.8-1.7% using onboard measurement system data and 7% from manually acquired noon reports....

  16. Experimental and numerical investigation of 3D aerofoil characteristics on a MW wind turbine

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Sørensen, Niels N.;

    2013-01-01

    3D aerofoil characteristics on a MW wind turbine is investigated through a combination of field measurements, wind tunnel tests and computational fluid dynamics (CFD). Surface pressuremeasurements as well as the integrated force coefficients for selected aerofoil sections on a blade of the turbine...... is compared to wind tunnel measurements on the same aerofoil sections in order to reveal the difference in performance of aerofoils on full scale rotors in atmospheric conditions and aerofoils in wind tunnels. The findings of the measurements are backed up by analogous CFD analysis involving fully resolved 3D...

  17. Full scale trials for qualification of the manufacture of the ITER TF coils in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Kunihiro, E-mail: matsui.kunihiro@jaea.go.jp; Hemmi, Tsutomu; Kajitani, Hideki; Yamane, Minoru; Mizutani, Takumi; Nakano, Toshihide; Takano, Katsutoshi; Ando, Shinji; Koizumi, Norikiyo

    2016-11-01

    Highlights: • High accuracy conductor winding of 0.1% was achieved in TF coil fabrication. • Conductor elongation due to heat treatment satisfied with the expected value of 0.06% ± 0.02%. • Commissioning of a transfer tooling without adding strain to conductor was completed. • Commissioning of a conductor insulation and CP welding was successfully completed. - Abstract: JAEA performed full-scale trials to qualify and optimize manufacturing procedure of TF coil fabrication prior to series production. In the full-scale trials, conductor winding, heat treatment, conductor transfer, conductor insulation and cover plate (CP) welding trials were performed to resolve some technical issues and to demonstrate the fabrication procedure. The followings are major achievement. (1) High accuracy conductor winding of 0.01%, (2) the evaluation of 0.06% conductor elongation due to heat treatment, (3) conductor transfer in a radial plate (RP) groove with addition strain under 0.1%, (4) conductor insulation without breakage of the insulation tape and (5) flatness of 2 mm of the double pancake (DP) by CP welding. Then JAEA started the 1st TF coil fabrication from March 2014, and has already completed ten conductor windings and heat treatment of nine windings.

  18. Experimental and numerical study of a 10MW TLP wind turbine in waves and wind

    Science.gov (United States)

    Pegalajar-Jurado, Antonio; Hansen, Anders M.; Laugesen, Robert; Mikkelsen, Robert F.; Borg, Michael; Kim, Taeseong; Heilskov, Nicolai F.; Bredmose, Henrik

    2016-09-01

    This paper presents tests on a 1:60 version of the DTU 10MW wind turbine mounted on a tension leg platform and their numerical reproduction. Both the experimental setup and the numerical model are Froude-scaled, and the dynamic response of the floating wind turbine to wind and waves is compared in terms of motion in the six degrees of freedom, nacelle acceleration and mooring line tension. The numerical model is implemented in the aero-elastic code Flex5, featuring the unsteady BEM method and the Morison equation for the modelling of aerodynamics and hydrodynamics, respectively. It was calibrated with the tests by matching key system features, namely the steady thrust curve and the decay tests in water. The calibrated model is used to reproduce the wind-wave climates in the laboratory, including regular and irregular waves, with and without wind. The model predictions are compared to the measured data, and a good agreement is found for surge and heave, while some discrepancies are observed for pitch, nacelle acceleration and line tension. The addition of wind generally improves the agreement with test results. The aerodynamic damping is identified in both tests and simulations. Finally, the sources of the discrepancies are discussed and some improvements in the numerical model are suggested in order to obtain a better agreement with the experiments.

  19. China First Full-scale Comprehensive Drilling Test Unit

    Institute of Scientific and Technical Information of China (English)

    Zhang Ailin

    1997-01-01

    @@ The full-scale comprehensive drilling test unit built in Daqing Oilfields is the first one in China which can simulate the bottom-hole environments and the working conditions of drilling string with well depth up to 6 000 m.

  20. Characterization of convective heating in full scale wildland fires

    Science.gov (United States)

    Bret Butler

    2010-01-01

    Data collected in the International Crown Fire modeling Experiment during 1999 are evaluated to characterize the magnitude and duration of convective energy heating in full scale crown fires. To accomplish this objective data on total and radiant incident heat flux, air temperature, and horizontal and vertical gas velocities were evaluated. Total and radiant energy...

  1. Full-Scale Theater Production and Foreign Language Learning

    Science.gov (United States)

    Ryan-Scheutz, Colleen; Colangelo, Laura M.

    2004-01-01

    This article reports a case study designed to explore the effectiveness of full-scale, authentic-text theater production for second language learning. Based on the results of preproduction and postproduction tests completed by cast and crew members, as well as the observations of all involved, the authors maintain that the diverse communication…

  2. On the Uses of Full-Scale Schlieren Flow Visualization

    Science.gov (United States)

    Settles, G. S.; Miller, J. D.; Dodson-Dreibelbis, L. J.

    2000-11-01

    A lens-and-grid-type schlieren system using a very large grid as a light source was described at earlier APS/DFD meetings. With a field-of-view of 2.3x2.9 m (7.5x9.5 feet), it is the largest indoor schlieren system in the world. Still and video examples of several full-scale airflows and heat-transfer problems visualized thus far will be shown. These include: heating and ventilation airflows, flows due to appliances and equipment, the thermal plumes of people, the aerodynamics of an explosive trace detection portal, gas leak detection, shock wave motion associated with aviation security problems, and heat transfer from live crops. Planned future projects include visualizing fume-hood and grocery display freezer airflows and studying the dispersion of insect repellent plumes at full scale.

  3. Confirmatory tests of full-scale condensers for SBWR

    Energy Technology Data Exchange (ETDEWEB)

    Masoni, P. [ENEA, Bologna (Italy); Botti, S. [SIET SpA, Piacenza (Italy); Fitzsimmons, G.W.

    1993-12-31

    A full-scale isolation condenser and a full-scale passive containment cooling condenser for the Simplified Boiling Water Reactor (SBWR) will be tested to confirm the thermal-hydraulic and structural design characteristics of these components. The condensers provide vital roles in removing heat from the reactor vessel and the containment during certain design basis events. This paper describes the condensers and the test facilities which are under construction and summarizes the test objectives, the planned instrumentation, and the conditions to be tested. The results of some pre-test performance predictions, calculated with the TRACG code are presented. The results of the testing program are expected to demonstrate that the condenser designs will provide the required heat removal capacity and will survive the design basis temperature/pressure cycles without structural damage.

  4. From lab to full-scale ultrafiltration in microalgae harvesting

    Science.gov (United States)

    Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.

    2017-07-01

    Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.

  5. Full scale tests of all-steel buckling restrained braces

    Science.gov (United States)

    Ma, Ning; Wu, Bin; Li, Hui; Ou, Jinping; Yang, Weibiao

    2009-03-01

    Buckling-restrained braces (BRBs) are widely used seismic response-controlling members with excellent energy dissipation capacity without buckling at design deformation. However, the property of all-steel BRBs with cruciform cross section encased in a square steel tube remains insufficiently studied. In this paper, the properties of this kind of BRBs, which were used in two office buildings in Beijing, were examined by full-scale test. First, initial design was done according to the client's requirement. Then, two full-scale specimens were tested under uniaxial quasi-static cyclic loading. The test results indicate that there should be no welding in yielding portion of the core. Finally, the full-scale subassemblage test was done with an improved BRB and gusset plates installed in a frame. The result shows that the brace exhibited high energy dissipation capacity and stable hysteretic characteristic. According to the results from above tests, some important issues are summarized to provide advices for practical applications.

  6. Microbial community analysis of a full-scale DEMON bioreactor.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

  7. Cross-Wind Modal Properties of Offshore Wind Turbines Identified by Full Scale Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard;

    2013-01-01

    -2011, the paper evaluates the first natural frequency and modal damping of the structures. In addition, fitting of theoretical energy spectra to measured response spectra of operating turbines is presented as an alternative method of determining the system damping. Analyses show distinctly time-dependent cross...

  8. Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model

    Science.gov (United States)

    Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.

    2016-09-01

    Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.

  9. Experimental optimization of an electric blower by corona wind

    Energy Technology Data Exchange (ETDEWEB)

    Rashkovan, A.; Sher, E.; Kalman, H. [Ben-Gurion University of the Negev, Beer Sheva (Israel). Dept. of Mechanical Engineering

    2002-10-01

    The effect of corona wind produced by stretched steel wire and two copper wings on the heat transfer from a heated horizontal plate was investigated experimentally. Although in such an arrangement the heat transfer augmentation is expected to be lower, some advantages may be postulated. In such a construction, the plate to be cooled is not a part of the wind generation system, it is not charged, the electrical field next to it is negligible, and it may be constructed from non-metallic materials. In the course of the study, optimal geometric parameters of the electric blower together with optimal value of high voltage supply have been established. Under these optimal conditions, augmentation by three times of the heat transfer coefficient over that for the natural convection has been achieved. (author)

  10. Full-Scale Dynamic Testing of Dolosse to Destruction

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    1981-01-01

    It is well known that the relative dynamic strength of unreinforced slender concrete units decreases as the size increases. Big units can resist relatively smaller movements than small units. When model tests of cover layer stability are performed the determination of the damage criterion...... that should be adopted must therefore be based on knowledge of the dynamic strength of the corresponding prototype units. With the purpose of establishing a relationship between the size and the dynamic strength of unreinforced units, some full-scale tests to destruction of 1.5 and 5.4 t units were performed...

  11. Cylindrical acoustical holography applied to full-scale jet noise.

    Science.gov (United States)

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated.

  12. Microbubble Swarms in a Full-Scale Water Model Tundish

    Science.gov (United States)

    Chang, Sheng; Cao, Xiangkun; Zou, Zongshu; Isac, Mihaiela; Guthrie, Roderick I. L.

    2016-10-01

    Water modeling, using microbubble swarms, was performed in a full-scale, four-strand, delta-shaped tundish, located at the McGill Metals Processing Centre (MMPC). The objective of the study was to investigate the effectiveness of microbubbles in removing inclusions smaller than 50 μm, applying the principles and conditions previously researched using a smaller scale arrangement. Air was injected into a full-scale model of a ladle shroud (the connecting tube through which liquid steel flows into the tundish below). The model ladle shroud was fitted with twelve, laser-drilled orifices, so as to create microbubbles. The bubbles generated using different gas injection protocols were recorded using a high-speed camera, and the bubble images were postprocessed using the commercial software, ImageJ. With this newly designed ladle shroud, bubble sizes could be reduced dramatically, to as small as a 675 µm average diameter. A three-dimensional, CFD model simulation was developed, using parameters obtained from the corresponding water model experiments, in order to predict the behavior of these microbubbles within the tundish and their potential influence on flow patterns and inclusion float-out capability.

  13. EXPERIMENTAL STUDY AND NONLINEAR FINITE ELEMENT ANALYSIS ON THE SEISMIC PERFORMANCE OF FULL-SCALE STEEL TRUSS COUPLING BEAMS%足尺钢桁架连梁抗震性能试验研究及非线性有限元分析

    Institute of Scientific and Technical Information of China (English)

    林倩; 邓志恒; 刘其舟

    2012-01-01

    Based on a low-cyclic loading experimental study on 4 full-scale specimens of a new type of steel truss coupling beam, the failure patterns and the load-displacement hysteretic curves of the beams' loading point were studied, and the beams' ductility, rigidity degradation discipline and energy dissipation mechanism were analyzed as well. Nonlinear finite element analyses were conducted on these beams under monotonic loading and low cyclic loading using ABAQUS. The result of finite element calculation and test shows that the load-displacement curves and bearing capacities' characteristic points of both methods are in a good agreement, which all prove that the steel truss coupling beam has good ductility and good ability of dissipating earthquake energy. Parametric analyses were carried on to investigate the influences of the sections of web members and chord members, and the span-to-depth ratio on the beams' mechanical property, which can be available for reference of further research and aseismic design of the steel truss coupling beam system.%对4个足尺的新型钢桁架连梁试件进行了低周反复荷载试验,研究了试件的破坏形态,测量分析了连梁加载点的荷载位移滞回曲线,并分析了连梁的延性、刚度退化规律和耗能能力。采用通用软件ABAQUS对钢桁架连梁进行了单调加载及低周反复加载作用下的非线性有限元分析。有限元计算和试验结果对比分析表明:两者的荷载位移曲线及承载力特征点吻合较好,都证明钢桁架连梁具有较好的延性,能够耗散较大的地震能量。在此基础上对钢桁架连梁进行了参数分析,研究了腹杆截面、弦杆截面和跨高比对连梁受力性能的影响,以供进一步研究和工程设计参考。

  14. Effects of aerodynamic fairing on full scale blade fatigue test

    Science.gov (United States)

    Pan, Zujin; Wu, Jianzhong; Sun, Yuanrong; Jian, Liu

    2017-06-01

    The reliability of large blades should be verified by means of full scale fatigue test. In order to solve the problem of lack of exciting force during fatigue test in the flap wise direction, the program that aerodynamic fairing is installed in the tip of blade to reduce the air resistance is proposed. The numerical model of blade vibration and damping ratio calculation is established. The relationship between damping ratio, exciting force and amplitude is constructed by finite element method respectively. The difference of the exciting bending moment of blade and the damping ratio before and after the installation of aerodynamic fairing is compared respectively. The results show that damping ratio decreased by 27.9%. When the vibration of the blade reaches the target bending moment, the exciting force of the equipment decreases by 45.4%. It is an effective way to reduce the exciting force.

  15. Full-scale Data Assessment in OWC Pico Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brito-Melo, A.; Neumann, F. [Wave Energy Centre Lisbon (Portugal); Sarmento, A.J.N.A. [Wave Energy Centre, Lisbon (Portugal)]|[Instituto Superior Tecnico, Department of Mechanical Engineering, Lisbon (Portugal)

    2007-07-01

    After being idle for a period of several years after its first commissioning in 1999, the European OWC pilot plant on the island of Pico in the Azores has been reactivated by 2005 and initial tests have been performed since then. The refurbishment, co-ordinated by the Wave Energy Centre in Portugal, started in 2004, and was supported by National funding under a new Portuguese funding scheme for scientific pilot projects (PRIME/DEMTEC). The activities included the complete replacement of the degraded electrical equipment and refurbishments of the existing mechanical components. This paper describes the Pico plant monitoring during the full-scale demonstration from September 2005 to October 2006 and discusses the data and results obtained so far.

  16. Polyethylene encapsulation full-scale technology demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental & Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control.

  17. N2O emissions from full-scale nitrifying biofilters.

    Science.gov (United States)

    Bollon, Julien; Filali, Ahlem; Fayolle, Yannick; Guerin, Sabrina; Rocher, Vincent; Gillot, Sylvie

    2016-10-01

    A full-scale nitrifying biofilter was continuously monitored during two measurement periods (September 2014; February 2015) during which both gaseous and liquid N2O fluxes were monitored on-line. The results showed diurnal and seasonal variations of N2O emissions. A statistical model was run to determine the main operational parameters governing N2O emissions. Modification of the distribution between the gas phase and the liquid phase was observed related to the effects of temperature and aeration flow on the volumetric mass transfer coefficient (kLa). With similar nitrification performance values, the N2O emission factor was twice as high during the winter campaign. The increase in N2O emissions in winter was correlated to higher effluent nitrite concentrations and suspected increased biofilm thickness.

  18. Design and Control of Full Scale Wave Energy Simulator System

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Hansen, Anders Hedegaard; Hansen, Rico Hjerm

    2012-01-01

    For wave energy to become feasible it is a requirement that the efficiency and reliability of the power take-off (PTO) systems are significantly improved. The cost of installing and testing PTO-systems at sea are however very high, and the focus of the current paper is therefore on the design...... of a full scale wave simulator for testing PTO-systems for point absorbers. The main challenge is here to design a system, which mimics the behavior of a wave when interacting with a given PTO-system. The paper includes a description of the developed system, located at Aalborg University......, and the considerations behind the design. Based on the description a model of the system is presented, which, along with a description of the wave theory applied, makes the foundation for the control strategy. The objective of the control strategy is to emulate not only the wave behavior, but also the dynamic wave...

  19. Flow Induced segregation in full scale castings with SCC

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2007-01-01

    Though promising, pioneering work has been carried out with rheological characterization and numerical modelling of form filling with SCC, the approach is far from standard in the concrete industry and clearly the approach does not yet hold all the answers to relevant questions. In particular flow...... induced segregation is a major risk during casting and it is not yet clear how this phenomenon should be modelled. In this paper testing and numerical simulations of full-scale wall castings are compared. Two different SCCs and three different filling methods were applied resulting in different flow...... patterns during form filling. Results show that the flow patterns have a major influence on the risk of flow induced segregation and the surface finish of the hardened concrete. A hypothesis for the mechanism of flow induced segregation is put forth....

  20. Fire spread simulation of a full scale cable tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Huhtanen, R. [VTT Energy, Espoo (Finland)

    1999-11-01

    A fire simulation of a full scale tunnel was performed by using the commercial code EFFLUENT as the simulation platform. Estimation was made for fire spread on the stacked cable trays, possibility of fire spread to the cable trays on the opposite wall of the tunnel, detection time of smoke detectors in the smouldering phase and response of sprinkler heads in the flaming phase. According to the simulation, the rise of temperature in the smouldering phase is minimal, only of the order 1 deg C. The estimates of optical density of smoke show that normal smoke detectors should give an alarm within 2-4 minutes from the beginning of the smouldering phase, depending on the distance to the detector (in this case it was assumed that the thermal source connected to the smoke source was 50 W). The flow conditions at smoke detectors may be challenging, because the velocity magnitude is rather low at this phase. At 4 minutes the maximum velocity at the detectors is 0.12 m/s. During the flaming phase (beginning from 11 minutes) fire spreads on the stacked cable trays in an expected way, although the ignition criterion seems to perform poorly when ignition of new objects is considered. The Upper cable trays are forced to ignite by boundary condition definitions according to the experience found from ti full scale experiment and an earlier simulation. After 30 minutes the hot layer in the room becomes so hot that it speeds up the fire spread and the rate of heat release of burning objects. Further, the hot layer ignites the cable trays on the opposite wall of the tunnel after 45 minutes. It is estimated that the sprinkler heads would be activated at 20-22 minutes near the fire source and at 24-28 minutes little further from the fire source when fast sprinkler heads are used. The slow heads are activated between 26-32 minutes. (orig.)

  1. Hybrid airfoil design methods for full-scale ice accretion simulation

    Science.gov (United States)

    Saeed, Farooq

    The objective of this thesis is to develop a design method together with a design philosophy that allows the design of "subscale" or "hybrid" airfoils that simulate fullscale ice accretions. These subscale or hybrid airfoils have full-scale leading edges and redesigned aft-sections. A preliminary study to help develop a design philosophy for the design of hybrid airfoils showed that hybrid airfoils could be designed to simulate full-scale airfoil droplet-impingement characteristics and, therefore, ice accretion. The study showed that the primary objective in such a design should be to determine the aft section profile that provides the circulation necessary for simulating full-scale airfoil droplet-impingement characteristics. The outcome of the study, therefore, reveals circulation control as the main design variable. To best utilize this fact, this thesis describes two innovative airfoil design methods for the design of hybrid airfoils. Of the two design methods, one uses a conventional flap system while the other only suggests the use of boundary-layer control through slot-suction on the airfoil upper surface as a possible alternative for circulation control. The formulation of each of the two design methods is described in detail, and the results from each method are validated using wind-tunnel test data. The thesis demonstrates the capabilities of each method with the help of specific design examples highlighting their application potential. In particular, the flap-system based hybrid airfoil design method is used to demonstrate the design of a half-scale hybrid model of a full-scale airfoil that simulates full-scale ice accretion at both the design and off-design conditions. The full-scale airfoil used is representative of a scaled modern business-jet main wing section. The study suggests some useful advantages of using hybrid airfoils as opposed to full-scale airfoils for a better understanding of the ice accretion process and the related issues. Results

  2. Full scale investigation on aerogel windows exposed to real climatic conditions

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Nielsen, Lars Thomsen

    The aim of the project “Full scale experiments with aerogel windows exposed to natural conditions” is to test the durability of aerogel windows exposed to real climatic conditions and to investigate the influence of aerogel windows compared to common low-energy windows with respect to heat balanc...... of the ambient air, and condensation on the outside surface will occur. This problem has been analysed theoretically by calculation of the number of hours per year where condensation will occur....... and indoor thermal comfort.The influence of temperature and wind load on the durability of sealed glazing units including aerogel windows has been investigated theoretically. The analyses show that evacuated aerogel glazings are significantly more robust to temperature changes and wind load than common...

  3. Experimental Investigation of Bearing Slip in a Wind Turbine Gearbox During a Transient Grid Loss Event

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Jan; Guo, Yi; Keller, Jonathan; Guillaume, Patrick

    2016-12-01

    This work investigates the behaviour of the high speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full scale wind turbine nacelle is used. A combination of external and internal gearbox measurements is analysed. Particular focus is on the characterization of the high speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as potential bearing failure initiator. However only limited full scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing behaviour in detail. It is shown that during the transient event the high speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing.

  4. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation.

    Science.gov (United States)

    Bajracharya, Rohan Muni; Manalo, Allan C; Karunasena, Warna; Lau, Kin-Tak

    2016-02-01

    In Australia, the plastic solid waste (PSW) comprises 16% by weight of municipal solid waste but only about one-fourth are recycled. One of the best options to increase the recycling rate of mixed PSW is to convert them into products suitable for construction. However, a comprehensive understanding on the mechanical behaviour of mixed PSW under different loading conditions is important for their widespread use as a construction material. This study focuses on investigating the mechanical behaviour of recycled mixed PSW containing HDPE, LDPE and PP using coupon and full-scale specimens. From coupon test, the strength values were found to be 14.8, 19.8, 20, 5.6MPa in tension, compression, flexure and shear respectively, while the modulus of elasticity are 0.91, 1.03, 0.72GPa in tension, compression and flexure respectively. The coefficient of variance of the measured properties for coupon and fullscale specimens was less than 10% indicating that consistent material properties can be obtained for mixed PSW. More importantly, the strength properties of mixed PSW are comparable to softwood structural timber. The flexural behaviour of full-scale specimens was also predicted using fibre model analysis and finite element modelling. Comparison showed that using coupon specimen's properties, the flexural behaviour of the full-scale specimens can be predicted reliably which can eliminate the costly and time consuming arrangements for full-scale experimental tests.

  5. Prediction model of gas explosion overpressure in full-scale coal mine blind roadway

    Energy Technology Data Exchange (ETDEWEB)

    Yun-Feng Liang; Xin-Quan Zhou; Jiu-Ling Zhang; Shao Shao [China University of Mining and Technology (Beijing), Beijing (China). State Key Laboratory of Coal Resources and Safe Mining

    2009-01-15

    On the basis of the TNT equivalency method and by analysing data from gas explosion experiments, a new prediction method was put forward to estimate the attenuation of explosion overpressure in a full-scale coal mine blind roadway and its validity was testified in three cases. The results show that there is good agreement between the calculated and experimental data. 8 refs., 2 figs.

  6. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien

    2015-03-01

    The aim of this study was to assess the formation and the behavior of halogenated byproducts (regulated THMs and HAAs, as well as nitrogenous, brominated and iodinated DBPs including the emerging iodo-THMs) along the treatment train of full-scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF or RO). Desalination plants fed with good seawater quality and using intermittent chlorine injection did not show high DBP formation and discharge. One RO plant with a lower raw water quality and using continuous chlorination at the intake formed more DBPs. In this plant, some non-regulated DBPs (e.g., dibromoacetonitrile and iodo-THMs) reached the product water in low concentrations (< 1.5 μg/L). Regulated THMs and HAAs were far below their maximum contamination levels set by the US Environmental Protection Agency. Substantial amounts of DBPs are disposed to the sea; low concentrations of DBPs were indeed detected in the water on shore of the desalination plants.

  7. Full-scale alkaline hydrolysis of organic explosives in soil

    Energy Technology Data Exchange (ETDEWEB)

    Britto, R.; Nolin, J. [Tetra Tech Inc., Oakville, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed the remediation of explosives at defence sites in North America. Organic explosives and residues are prevalent at ordinance, ammunition, and range sites, as well as at federal explosives manufacturing and storage facilities. The predominant explosives residues include trinitrotoluene (TNT), dinitrotoluenes (DNTs), and royal demolition explosive (RDX). Chemical oxidation treatments for the residues can require several applications and are costly. Biological treatments are feasible, but can be slow and difficult to apply. An alkaline hydrolysis process was used to destroy contaminants at an army ammunition site. Soil pan studies were conducted to characterize the nucleophilic substitution processes under varying quantities of chemical amendments. Effectiveness sampling included pH and moisture content; nitrates and nitrites; and explosives SW8330B. The study showed that high levels of explosives can be rapidly treated using the alkaline hydrolytic agent, which produced nitrites as the largest identifiable end product. Citric acid was then used to treat elevated nitrate and nitrite concentrations in soil samples resulting from the chemical destruction of TNT and DNT. An analysis of the treated samples showed a substantial decrease in nitroaromatic compounds. Details of full-scale ex situ treatments conducted to further assess the remediation processes were included. tabs., figs.

  8. Lightweight alumina refractory aggregate: Phase 3, Full-scale demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Technical problems (higher than target fired density, and poor intermediate strength after burnout but before sintering) were addressed and solved; solution involved use of large loading of CP-5 alumina (controlled pore, rehydratable), increased loading of one of the binders, and a steam aging step. Resistance of the lightweight aggregate in a brick formulation to steel slag penetration was assessed in a preliminary test and found to be almost as good as that of T-64. Pelletized process economic feasibility study was updated, based on production levels of 10,000 and 20,000 mt/year, the most up- to-date raw material costs, and the assumption of a retrofit into the Arkansas plant tabular production facility. For the 10,000 mt/y production level, the required selling price of 35% more than the T- 64 selling price exceeds the {le}25% objective. The market survey will determine whether to proceed with the full scale demonstration that will produce at least 54.4 mt (120,000 lb) of the aggregate for incorporation into products, followed by end-user testing and evaluation.

  9. Development of Full-Scale Ultrathin Shell Reflector

    Directory of Open Access Journals (Sweden)

    Durmuş Türkmen

    2012-01-01

    Full Text Available It is aimed that a new ultrathin shell composite reflector is developed considering different design options to optimize the stiffness/mass ratio, cost, and manufacturing. The reflector is an offset parabolic reflector with a diameter of 6 m, a focal length of 4.8 m, and an offset of 0.3 m and has the ability of folding and self-deploying. For Ku-band missions a full-scale offset parabolic reflector antenna is designed by considering different concepts of stiffening: (i reflective surface and skirt, (ii reflective surface and radial ribs, and (iii reflective surface, skirt, and radial ribs. In a preliminary study, the options are modeled using ABAQUS finite element program and compared with respect to their mass, fundamental frequency, and thermal surface errors. It is found that the option of reflective surface and skirt is more advantageous. The option is further analyzed to optimize the stiffness/mass ratio considering the design parameters of material thickness, width of the skirt, and ply angles. Using the TOPSIS method is determined the best reflector concept among thirty different designs. Accordingly, new design can be said to have some advantages in terms of mass, natural frequency, number of parts, production, and assembly than both SSBR and AstroMesh reflectors.

  10. Evaluation of full-scale biofilter media performance

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Gonzalez, B.; Ergas, S.J.; Switzenbaum, M.S.; Phillibert, N.

    1999-09-30

    The objective of this study was to characterize the key physical, chemical and biological properties of compost media from a full-scale biofiltration system used to control VOC emissions. Results of media characterization were used to assess the need for operational changes and media replacement. Biofilter media properties evaluated included: moisture content, pH, total organic carbon (TOC) and nitrogen content in water extracts and solid matrix, oxygen uptake rates, and microbial plate counts including total heterotrophs, oligotrophs, actinomycetes and fungi. Samples were taken from various locations and depths in the biofilter after three and five years of system operation. Media moisture content was highly variable, with samples from deeper in the bed dryer than surface samples. Low moisture contents were associated with low pH values and low oxygen uptake rates. Total organic carbon contents in water extracts were higher than typical biosolids compost in samples near the inlet to the biofilter, possibly due to extracellular polysaccharides. After five years of use, total nitrogen and organic carbon contents in the solid matrix did not significantly differ from initial levels or those in typical biosolids compost.

  11. Investigation of Bearing Axial Cracking: Benchtop and Full-Scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gould, Benjamin [Argonne National Lab. (ANL), Argonne, IL (United States); Greco, Aaron [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-16

    The most common failure mode in wind turbine gearboxes is axial cracking in intermediate and high-speed-stage bearings, also commonly called white-etching cracks (WECs). Although these types of cracks have been reported for over a decade, the conditions leading to WECs, the process by which this failure culminates, and the reasons for their apparent prevalence in wind turbine gearboxes are all highly debated. This paper summarizes the state of a multipronged research effort to examine the causes of WECs in wind turbine gearbox bearings. Recent efforts have recreated WECs on a benchtop test rig in highly loaded sliding conditions, wherein it was found that the formation of a dark etching microstructure precedes the formation of a crack, and a crack precedes the formation of white-etching microstructure. A cumulative frictional sliding energy criterion has been postulated to predict the presence of WECs. Bearing loads have also been measured and predicted in steady state and transient drivetrain operations in dynamometer testing. In addition, both loads and sliding at full scale will be measured in planned uptower drivetrain testing. If the cumulative frictional sliding energy is the dominant mechanism that causes WECs, understanding the amount of frictional sliding energy that wind turbine bearings are subjected to in typical operations is the next step in the investigation. If highly loaded sliding conditions are found uptower, similar to the examined benchtop levels, appropriate mitigation solutions can be examined, ranging from new bearing coatings and improved lubricants to changes in gearbox designs and turbine operations.

  12. Experimental study on seismic behavior of full-scale composite walls with cold-formed thin-walled steel tubular truss%足尺冷弯薄壁管桁架组合墙体抗震性能试验研究

    Institute of Scientific and Technical Information of China (English)

    王静峰; 余波; 朱旭峰; 董传明

    2013-01-01

    为揭示地震作用下开洞类型和开洞率对冷弯薄壁管桁架组合墙体的抗震性能影响,进行六榀足尺冷弯薄壁管桁架组合墙体的水平低周反复荷载试验,了解其抗震性能和破坏模式,深入研究墙体的水平荷载-水平位移滞回曲线和骨架曲线、强度和刚度退化规律、耗能能力等.结合现有规范,对新型墙体的延性进行评价.试验表明,冷弯薄壁管桁架结构组合墙体具有良好的滞回性能、延性和耗能能力,其中延性系数μ=3.78 ~6.54,极限状态能量耗散系数E =0.55 ~0.68;开洞类型、开洞率和蒙皮效应对此类墙体的抗震性能影响较大,在设计中应合理考虑这些因素.双面OSB板对冷弯薄壁骨架结构起到较好的蒙皮效应;墙体开洞会削弱墙体的承载力和刚度,当开洞面积较小时增加四肢柱数量和加强洞口两侧构造可明显提高其受力性能和抗震性能.%To investigate the influence of opening type and opening rate on seismic behavior of composite walls with cold-formed thin-walled steel tube truss, an experimental program on six full-scale specimens under horizontal cyclic loading was conducted. The seismic behavior and failure modes of the composite walls were investigated. The load-displacement hysteresis curves and envelope curves, degeneration regulation of strength and stiffness, and energy dissipation were also analyzed. The test results show that the proposed composite wall has good hysteretic behavior, ductility and energy dissipation, for which ductility coefficient μ = 3 . 78 ~ 6. 54 and energy dissipation coefficient E -0. 55 ~ 0. 68. It is found that the opening type, the opening rate and the skin diagram action may affect the seismic behavior of the composite walls, and hence these parameters should be considered effectively in the structural design. The double-side OSB plates have good skin diaphragm effects on the cold-formed thin-walled steel framework. The strength

  13. Dynamic Modeling of Wind Turbine Gearboxes and Experimental Validation

    DEFF Research Database (Denmark)

    Pedersen, Rune

    is presented. The model takes into account the effects of load and applied grinding corrections. The results are verified by comparing to simulated and experimental results reported in the existing literature. Using gear data loosely based on a 1 MW wind turbine gearbox, the gear mesh stiffness is expanded...... analysis in relation to gear dynamics. A multibody model of two complete 2.3MWwind turbine gearboxes mounted back-to-back in a test rig is built. The mean values of the proposed gear mesh stiffnesses are included. The model is validated by comparing with calculated and measured eigenfrequencies and mode...... shapes. The measured eigenfrequencies have been identified in accelerometer signals obtained during run-up tests. Since the calculated eigenfrequencies do not match the measured eigenfrequencies with sufficient accuracy, a model updating technique is applied to ensure a better match by adjusting...

  14. Wind energy conversion. Volume V. Experimental investigation of a horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Dugundji, J.; Larrabee, E.E.; Bauer, P.H.

    1978-09-01

    The results are presented of some brief experiments conducted on a wind turbine model of a rotor system to verify the aerodynamic theories developed and to investigate the dynamic excitation characteristics of wind turbines.

  15. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    environment. The model and the test rig are tested up against different design load cases and the results are compared. The experiments show that the model is valid for comparing the overall dynamics of the hydraulic yaw system. Based on the results it is concluded that the model derived is suitable......To comply with the increasing demands for life time and reliability of wind turbines as these grow in size, new measures needs to be taken in the design of wind turbines and components hereof. One critical point is the initial testing of the components and systems before they are implemented...... market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation...

  16. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  17. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  18. Full Scale Test of a SSP 34m box girder 1. Data report

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Branner, Kim; Nielsen, Per Hørlyk;

    This report presents the setup and result of a full-scale test of a reinforced glass fibre/epoxy box girder used in 34m wind turbine blade. The tests were performed at the Blaest test facility in August 2006. The test is an important part of a research project established in cooperation between...... the box girder was loaded until failure. A comprehensive description of the test setup is given. This report deals only with tests and results. There are no conclusions on the data in this report, but references are given to publications, where the data are used and compared with FEM etc. Various kinds...... of measuring equipment have been used during these tests: acoustic emission, 330 strain gauges, 24 mechanical displacement devices and two optical deformation measuring systems. The mechanical displacement devices measured both global (absolute) and local (relative) deflection and the optical systems measured...

  19. National Atmospheric Release Advisory Center Dispersion Modeling of the Full-scale Radiological Dispersal Device (FSRDD) Field Trials.

    Science.gov (United States)

    Neuscamman, Stephanie; Yu, Kristen

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.

  20. Strength of Glued-in Bolts after Full Scale Loading

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars;

    1999-01-01

    In 1993 after 9 years of use one of the blades of a windmill with wooden blades was struck by lightning. After demounting the damaged blade was handed over to the Technical University of Denmark for the investigation of potential fatigue damage. The paper presents an experimental determination...... of the residual strength of the glued-in bolts that served as the blade to rotor hub connection in the windmill. The load history of the bolts, the test method, the observed fracture modes and the force displacement curves are presented along with the recorded residual strength of the bolts. The bolts...

  1. An Experimental Analysis of the Effect of Icing on Wind Turbine Rotor Blades

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen

    2016-01-01

    are printed with 3D printer and tested one by one in a Wind Tunnel. Lift, drag and moment coefficients are calculated from the measured experimental data and program WT-Perf based on blade-element momentum (BEM) theory is used to predict the performance of wind turbine. Cp curves generated from the test......Wind Turbine is highly nonlinear plant whose dynamics changes with change in aerodynamics of the rotor blade. Power extracted from the wind turbine is a function of coefficient of power (Cp). Wind turbine installed in the cold climate areas has an icing on its rotor blade which might change its...

  2. Dynamic Stability of Deep and Slender Wide-Flange Steel Columns – Full Scale Experiments

    OpenAIRE

    Elkady, Ahmed Mohamed Ahmed; Lignos, Dimitrios

    2016-01-01

    In North America, a common design practice for steel frame buildings with perimeter steel special moment frames (SMFs) is to employ deep and slender wide-flange steel columns (i.e., range of column depth, d > 16 inches). Till recently, very little was known regarding the hysteretic behavior of such members because of lack of available experimental data. This paper discusses selective findings from a full-scale testing program that was conducted at École Polytechnique Montréal with the use o...

  3. Method of Harmonic Balance in Full-Scale-Model Tests of Electrical Devices

    Science.gov (United States)

    Gorbatenko, N. I.; Lankin, A. M.; Lankin, M. V.

    2017-01-01

    Methods for determining the weber-ampere characteristics of electrical devices, one of which is based on solution of direct problem of harmonic balance and the other on solution of inverse problem of harmonic balance by the method of full-scale-model tests, are suggested. The mathematical model of the device is constructed using the describing function and simplex optimization methods. The presented results of experimental applications of the method show its efficiency. The advantage of the method is the possibility of application for nondestructive inspection of electrical devices in the processes of their production and operation.

  4. Evaluation of wind-induced internal pressure in low-rise buildings: A multi scale experimental and numerical approach

    Science.gov (United States)

    Tecle, Amanuel Sebhatu

    Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30--40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30--40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet

  5. Wind refrigeration : design and results of an experimental facility; Refrigeracion eolica: Diseno y resultados de una instalacion experimental

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, R. G.; Talero, A.

    2004-07-01

    This article describes the experimental setup used to obtain design parameters for a wind driven refrigeration equipment. The system compressor is directly coupled to the wind mill and will provide refrigeration to a community located in La Guajira in northern Colombia. The testing on the experimental installation assessed the refrigeration capacity that could be provided by an open type commercial compressor coupled to the wind mill axis. Power and torque requirements have been evaluated for different wind mill rotational speeds. An assessment of the local conditions relating to wind speed, frequency and preferred direction for the installation site has been made based on measurements by the Meteorological National Institute and independent data from other sources. (Author)

  6. An experimental investigation of end treatments for nonreturn wind tunnels

    Science.gov (United States)

    Eckert, W. T.; Mort, K. W.; Piazza, J. E.

    1976-01-01

    The results of a series of flow quality and performance tests on several inlet and exit configurations for nonreturn wind tunnels are presented. Test section flow angularities, local dynamic pressure variations, and total-pressure-loss variations are presented as functions of wind-to-test-section dynamic pressure ratio. The results show that a nonreturn wind tunnel should have end treatments with three characteristics: (1) a vertical exit system, (2) a horizontal inlet system, and (3) an area of protected enclosure at the inlet. Inlet and exhaust treatments were developed that produced good aerodynamic flow qualities with low power penalties.

  7. Full-scale physical model of landslide triggering

    Science.gov (United States)

    Lora, M.; Camporese, M.; Salandin, P.

    2013-12-01

    of our experiments is to reproduce the instability trigger that occurs in saturated or partially unsaturated conditions depending on the specific characteristics of the soil and its initial conditions; the retention curve of fine sand and the initial porosity are taken into account to highlight the hydrological condition of the surface layer during the trigger occurrence. Through our experimental setup we can investigate the succession of phases and their magnitude that cause the landslide trigger, in order to understand the instability mechanism that heavy rainfall can induce in fine sandy hillslopes. Particular attention is given on the role of water pressure head, not only with respect to the violation of Coulomb failure within a sloping soil, but also with respect to the subsequent deformation that involves the upper hillslope layers. In particular, we report here on the characterization of the sandy terrain used in the experiments and the preliminary results, together with a first discussion of the observed data.

  8. Experimental Investigation on Power Output in Aged Wind Turbines

    Directory of Open Access Journals (Sweden)

    N. Murugan

    2012-01-01

    Full Text Available An investigation on the power output on effect of tower height with same diameter of rotor was conducted in a wind turbine site. As the wind acceleration is varying with height, 3 levels were selected according to the availability of tower. The responses of power output with respect to variation of wind speed are changing for the tower heights of 30, 40, and 50 m. The study showed that the actual ideal power output and measured real power output follow the same trend within range of operating wind speed. The empirical model used for calculation of actual ideal power output was compared with real power output and the overall concepts in power output also had been analysed.

  9. Experimental wind-driven rain erosion study on agricultural soils

    Science.gov (United States)

    Marzen, Miriam; Iserloh, Thomas; Brings, Christine; Fister, Wolfgang; Seeger, Manuel; Ries, Johannes B.

    2014-05-01

    Wind is potentially capable to considerably increase soil erosion by rain drops. In contrast to laboratory experiments, in-situ experiments enable the measurement of soil erosion by wind and rain including the reactions of relatively intact soil surfaces and a complete body of soil. The Portable Wind and Rainfall Simulator of Trier University was applied on winter cereal fields to measure rain erosion on agricultural areas with and without the influence of wind. The test areas are situated near Pamplona, Navarre and recognized to be representative for large parts of northern Spain concerning soil, land use and climate. The soil surfaces on the fields were ploughed and sparsely covered by recently sowed winter cereals. The soil water content was close to saturation due to long lasting rainfall. Runoff was medium to high with runoff-coefficients ranging from 26 to 100%. The eroded material from rainfall simulations ranged from 14.5 to 42.5 g m² / 30min. The eroded material from wind-driven rain ranged from 28.1 to 47.3 g m² / 30 min. Compared to windless rainfall, the wind-driven rain increased erosion of soil material up to 82.2%. In one case, the eroded material decreased by 18.3%. The results indicate a strong influence of wind on rain erosion on recently seeded agricultural soils. Wind influence can be an important aspect for the general assessment of sheet erosion and supports the finding that a neglect of this factor might lead to severe underestimation of soil loss.

  10. Experimental investigation into the degradation of model superconducting windings

    Energy Technology Data Exchange (ETDEWEB)

    Trusov, N.B.; Broitman, I.M.; Pleshchunov, N.N.; Samoilov, S.F.

    1984-01-01

    Results are reported for an investigation into degradation of critical current in model compound-treated windings fabricated from type KETV-2NT superconducting conductors with nonsteady stabilization. It is shown that the way in which the critical current depends on the heat-removal conditions and the rate of entry of current is determined by a mechanism of steady-state heat release occationed by plastic strain of the winding materials under the action of ponderomotive forces.

  11. Experimental investigation of the characteristics of a Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.K.; Gupta, R.; Singh, S.K.; Singh, S.R.

    2005-01-01

    Many tests have been conducted on models in a wind tunnel for an optimum configuration of a Savonius rotor wind turbine. Three types of Savonius rotor have been used (a simple Savonius rotor of mild steel, an overlapped Savonius rotor of mild steel and one overlapped Savonius rotor of aluminium). The effect of different design parameters, namely rotor shape, overlap between rotor blades was studied. The results have corroborated some of the original findings of Savonius. (author)

  12. Initiation of trailing edge failure in full-scale wind turbine blade test

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Branner, Kim

    2016-01-01

    The reliability and accuracy of a numerical shell model simulation and its predictive capabilities with existing failure criteria are compared to experiments of a 34 m long blade tested to ultimate failure. Strengths and weaknesses of in-plane failure criteria are highlighted and the geometrical...... non-linear buckling effect of the trailing edge under combined loading, and how it affects the ultimate strength of a blade in a trailing-edge failure dominated load direction were investigated. The study details the interaction between trailing edge buckling on damage onset and sandwich panel failure...

  13. Design and wind tunnel experimentation of a variable blade drag type vertical axis wind turbine

    Science.gov (United States)

    Mays, Samuel; Bahr, Behnam

    2012-04-01

    The primary purpose of this research effort is to propose a novel efficiency boosting design feature in a drag type vertical axis wind turbine (VAWT), explore practicality through design and fabrication, and test the viability of the design through wind tunnel experiments. Using adaptive control surface design and an improved blade shape can be very useful in harnessing the wind's energy in low wind speed areas. The new design is based on a series of smaller blade elements to make any shape, which changes to reduce a negative resistance as it rotates and thus maximizing the useful torque. As such, these blades were designed into a modified Savonius wind turbine with the goal of improving upon the power coefficient produced by a more conventional design. The experiment yielded some positive observations with regard to starting characteristics. Torque and angular velocity data was recorded for both the conventional configuration and the newly built configuration and the torque and power coefficient results were compared.

  14. Kinetic energy entrainment in wind turbine and actuator disc wakes: an experimental analysis

    NARCIS (Netherlands)

    Lignarolo, L.E.M.; Ragni, D.; Simao Ferreira, C.J.; Van Bussel, G.J.W.

    2014-01-01

    The present experimental study focuses on the comparison between the wake of a two-bladed wind turbine and the one of an actuator disk. The flow field at the middle plane of the wake is measured with a stereoscopic particle image velocimetry setup, in the low-speed Open Jet Facility wind tunnel of t

  15. Kinetic energy entrainment in wind turbine and actuator disc wakes: an experimental analysis

    NARCIS (Netherlands)

    Lignarolo, L.E.M.; Ragni, D.; Simao Ferreira, C.J.; Van Bussel, G.J.W.

    2014-01-01

    The present experimental study focuses on the comparison between the wake of a two-bladed wind turbine and the one of an actuator disk. The flow field at the middle plane of the wake is measured with a stereoscopic particle image velocimetry setup, in the low-speed Open Jet Facility wind tunnel of t

  16. Experimental investigation of the wake behind a model of wind turbine in a water flume

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor; Kabardin, I.;

    2014-01-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert’s optimization. The transitional regime, generally characterized as in between...

  17. Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    Science.gov (United States)

    Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.

    2001-01-01

    Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  18. Full Scale Thermo-hydraulic Simulation of a Helium-Helium Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun; Hong, Sungyull; Bai, Cheolho; Shim, Jaesool [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Chansoo; Hong, Sungdeok; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the thermo-hydraulic full scale simulation is performed to study the temperature distributions, thermal stress, pressure drop and outlet temperature in a Helium-Helium printed circuit heat exchanger (PCHE) in a VHTR simulate helium loop. The entire PCHE is composed of 40 stacks of rectangular shaped micro-channels for helium gas [type A] (inlet temperature, 400 .deg. C) and 40 stacks of semi-ellipse shaped micro-channels for helium [type B] (inlet temperature, 300 .deg. C). The experimental result is compared to that of computer simulation, COMSOL multi-physics software. The Helium-Helium PCHE is considered a prototype of the newly developed PCHE by Korea Atomic Energy Research Institute (KAERI). The full scale thermo-hydraulic simulation was successfully performed to obtain temperature distribution, pressure drop and thermal stress in 40 sets of flow channel stacks in a helium-helium printed circuit heat exchanger in a VHTR simulate helium loop. We obtained a quite similar temperature distribution with the 3D measured infrared temperature distribution. To our knowledge, this is the first full scale numerical study on the PCHE, which considers all microchannels, that the convection effect on the outside surfaces of the PCHE is applied. The very high-temperature reactor (VHTR) or high-temperature gas-cooled reactor(HTGR) is a fourth-generation nuclear power reactor that uses the ceramic coated fuel, TRISO, in which the fission gas does not leak even at temperatures higher than 1600 .deg. C. The VHTR necessarily requires an intermediate loop composed of a hot gas duct (HGD), an intermediate heat exchanger (IHX) and a process heat exchanger (PHE). The IHX is one of the important components of VHTR system because the IHX transfers the 950 .deg. C of high temperature massive heat to a hydrogen production plant or power conversion unit at high system pressure.

  19. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    Science.gov (United States)

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems. Copyright © 2014 Elsevier Ltd. All

  20. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    Science.gov (United States)

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  1. Full-Scale Measurements and System Identification on Sutong Cable-Stayed Bridge during Typhoon Fung-Wong

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available The structural health monitoring system (SHMS provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT combined with the random decrement technique (RDT. The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.

  2. Full-scale measurements and system identification on Sutong cable-stayed bridge during Typhoon Fung-Wong.

    Science.gov (United States)

    Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun

    2014-01-01

    The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.

  3. Wind slab formation in snow: experimental setup and first results

    Science.gov (United States)

    Sommer, Christian; Lehning, Michael; Fierz, Charles

    2016-04-01

    The formation of wind-hardened surface layers, also known as wind slabs or wind crusts, is studied. Better knowledge about which processes and parameters are important will lead to an improved understanding of the mass balances in polar and alpine areas. It will also improve snow-cover models (i.e. SNOWPACK) as well as the forecast of avalanche danger. A ring-shaped wind tunnel has been built and instrumented. The facility is ring-shaped to simulate an infinitely long snow surface (infinite fetch). A SnowMicroPen (SMP) is used to measure the snow hardness. Other sensors measure environmental conditions such as wind velocity, air temperature, air humidity, the temperature of the snow and of the snow surface. A camera is used to detect drifting particles and to measure the Specific Surface Area (SSA) at the snow surface via near-infrared photography. First experiments indicate that mechanical fragmentation followed by sintering is the most efficient process to harden the surface. The hardness increased rapidly during drifting snow events, but only slowly or not at all when the wind speed was kept below the threshold for drifting snow. With drifting, the penetration resistance increased from the original 0.07 N to around 0.3 N in about an hour. Without drifting, a slow, further increase in resistance was observed. In about six hours, the hardness of the top 1-2 cm increased to 0.5 N. During this eight-hour experiment consisting of about two hours with intermittent drifting and six hours without drifting, the density at the surface increased from 66 kg/m3 to around 170 kg/m3. In the unaffected region close to the ground, the density increased from 100 kg/m3 to 110 kg/m3.

  4. In-service Structural Health Monitoring of a Full-scale Composite Horizontal Tail

    Institute of Scientific and Technical Information of China (English)

    WU Zhanjun; GAO Dongyue; WANG Yishou; Gorgin RAHIM

    2015-01-01

    In-service structural health monitoring (SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring (DRM) stage and damage imaging diagnosis (DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coefifcient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time;damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure.

  5. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds.

    Science.gov (United States)

    Hong, A J; Li, L; He, R; Gong, J J; Yan, Z B; Wang, K F; Liu, J-M; Ren, Z F

    2016-01-01

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half-Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k code and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley's deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens' equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Ti-doped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. The present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.

  6. Seasonal Variation of Nutrient Removal in a Full-Scale Artificial Aerated Hybrid Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Jun Zhai

    2016-11-01

    Full Text Available To improve nutrient removal, a full-scale hybrid constructed wetland (CW consisting of pre-treatment units, vertical-baffled flow wetlands (VBFWs, and horizontal subsurface flow wetlands (HSFWs was installed in August 2014 to treat sewage wastewater. Artificial aeration (AA was applied continuously in the VBFW stage to improve the aerobic condition in the hybrid CW. Water samples were collected and analyzed twice a month between the period of August 2015 and July 2016. The results suggest that this new hybrid CW can achieve a satisfactory reduction of chemical oxygen demand (COD, ammonium nitrogen (NH4+-N, total nitrogen (TN, and total phosphorus (TP with average removal rates of 85% ± 10% (35% ± 19 g/m2 per day, 76% ± 18% (7% ± 2 g/m2 per day, 65% ± 13% (8% ± 2 g/m2 per day, and 65% ± 21% (1 g/m2 per day, respectively. AA significantly improved the aerobic condition throughout the experimental period, and the positive influence of AA on nitrogen removal was found to be higher during summer that during winter. A significant positive correlation between water temperature and nutrient removal (p < 0.01 was observed in the system. Overall, this study demonstrates the application of AA in a full-scale hybrid CW with satisfactory nutrient removal rates. The hybrid CW system with artificial aeration can serve as a reference for future applications areas where land availability is limited.

  7. An Experimental Investigation of FNN Model for Wind Speed Forecasting Using EEMD and CS

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2015-01-01

    Full Text Available With depletion of traditional energy and increasing environmental problems, wind energy, as an alternative renewable energy, has drawn more and more attention internationally. Meanwhile, wind is plentiful, clean, and environmentally friendly; moreover, its speed is a very important piece of information needed in the operations and planning of the wind power system. Therefore, choosing an effective forecasting model with good performance plays a quite significant role in wind power system. A hybrid CS-EEMD-FNN model is firstly proposed in this paper for multistep ahead prediction of wind speed, in which EEMD is employed as a data-cleaning method that aims to remove the high frequency noise embedded in the wind speed series. CS optimization algorithm is used to select the best parameters in the FNN model. In order to evaluate the effectiveness and performance of the proposed hybrid model, three other short-term wind speed forecasting models, namely, FNN model, EEMD-FNN model, and CS-FNN model, are carried out to forecast wind speed using data measured at a typical site in Shandong wind farm, China, over three seasons in 2011. Experimental results demonstrate that the developed hybrid CS-EEMD-FNN model outperforms other models with more accuracy, which is suitable to wind speed forecasting in this area.

  8. Armature reaction effects on a high temperature superconducting field winding of an synchronous machine: experimental results

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2014-01-01

    This paper presents experimental results from the Superwind laboratory setup. Particular focus in the paper has been placed on describing and quantifying the influence of armature reaction on performance of the HTS filed winding. Presented experimental results have confirmed the HTS field winding...... sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS field winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque....

  9. Armature reaction effects on a high temperature superconducting field winding of an synchronous machine: experimental results

    Science.gov (United States)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2014-05-01

    This paper presents experimental results from the Superwind laboratory setup. Particular focus in the paper has been placed on describing and quantifying the influence of armature reaction on performance of the HTS filed winding. Presented experimental results have confirmed the HTS field winding sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS field winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque.

  10. Full scale numerical analysis of high performance concrete columns designed to withstand severe blast impact

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Georgakis, Christos; Stang, Henrik;

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Scaled experimental and numerical results of PCRC columns (200x200x1600mm) subjected to close-in detonation are presented in this paper. Based on these results and the use of geometrical scaling lows, a full scale column (800x800x6400mm) is designed and verified numerically to withstand 486.5 kg...... of PETN (85/15) High Explosives at stand off 1600 mm. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description of the LS-DYNA multi-material Eulerian method for modeling the blast event...

  11. Lightweight Grid Shell Pavilion - Design, Manufacture and Erection of Full Scale Grid Shell Prototypes

    Science.gov (United States)

    Vaněk, Aleš

    2016-12-01

    The main goal of author's research is to design and construct grid shell structures, which are subsequently realized as experimental structures in full scale. These structures should make the place suitable for various events and also a friendly, pleasant, relaxing and free time space. By thinking about how such structure should look like and what materials and structure types are suitable, there were many kinds of lightweight structures considered. The most logical solution is to create a grid shell structure combining with a single layer membrane that would fulfill all aspects of elegant remarkable lightweight structure using some original details and workflow advancements. These grid shell projects should demonstrate another possibility to build and think about unconventional structures and provoke a deeper interest in these unique structures. The goal of this project was to create a feasible design of a grid shell structure and to build up the structures while being capable to understand the core of such an interesting phenomenon.

  12. A full-scale study of mixing and foaming in egg-shaped anaerobic digesters.

    Science.gov (United States)

    Subramanian, Bhargavi; Miot, Alexandre; Jones, Bonnie; Klibert, Corey; Pagilla, Krishna R

    2015-09-01

    Seasonal foaming in full-scale egg-shaped digesters (ESD) at the Oceanside Water Pollution Control Plant was investigated over a two-year period. The causes and contributors of anaerobic digestion (AD) foaming, namely, Gordonia amarae filaments and mixing effects were evaluated in these ESDs. The seasonal presence of high levels of G. amarae as a primary cause and excessive induced mixing as an important contributor of AD foaming has been established. The induced mixing frequency in the ESDs was gradually reduced and eventually shut off in a series of controlled experimental phases. Total solids and temperature profiles indicated that reducing mixing frequency did not significantly impact digester performance or disrupt the homogeneity of digester contents, although it did reduce the occurrence of foam in the digesters. Excessive induced mixing, a contributor to foaming, increased foam events at G. amarae thresholds above 10(6)intersections/mg VSS in the mixed liquor.

  13. Design of full scale wave simulator for testing Power Take Off systems for wave energy converters

    DEFF Research Database (Denmark)

    Pedersen, H. C.; Hansen, R. H.; Hansen, Anders Hedegaard

    2016-01-01

    For wave energy to become a major future contributor of renewable energy it is a requirement that the efficiency and reliability of the Power Take-Off (PTO) systems is significantly improved. However, the cost of installing and testing PTO-systems at sea is very high. The focus of the current paper...... is therefore on the design and commissioning of a full scale wave simulator for testing PTO-systems for point absorbers. The challenge is to be able to design a system, which mimics the behavior of a wave when interacting with a given PTO-system – especially when considering discrete type PTO......-systems. The paper presents the designed system, including the major design considerations. A model of the complete system is presented and controllers for the system are developed. These enable the system to emulate the wave behavior and the wave–float interaction. Finally both simulation and experimental results...

  14. Full-scale validation of an air scour control system for energy savings in membrane bioreactors.

    Science.gov (United States)

    Monclús, Hèctor; Dalmau, Montserrat; Gabarrón, Sara; Ferrero, Giuliana; Rodríguez-Roda, Ignasi; Comas, Joaquim

    2015-08-01

    Membrane aeration represents between 35 and 50% of the operational cost of membrane bioreactors (MBR). New automatic control systems and/or module configurations have been developed for aeration optimization. In this paper, we briefly describe an innovative MBR air scour control system based on permeability evolution and present the results of a full-scale validation that lasted over a 1-year period. An average reduction in the air scour flow rate of 13% was achieved, limiting the maximum reduction to 20%. This averaged reduction corresponded to a decrease in energy consumption for membrane aeration of 14% (0.025 kWh m(-3)) with maximum saving rates of 22% (0.04 kWh m(-3)). Permeability and fouling rate evolution were not affected by the air scour control system, as very similar behavior was observed for these variables for both filtration lines throughout the entire experimental evaluation period of 1 year.

  15. Full-scale validation of wireless hybrid sensor on an in-service highway bridge

    Science.gov (United States)

    Jang, Shinae; Dahal, Sushil; Li, Jingcheng

    2013-04-01

    With the rapid development of electrical circuits, Micro electromechanical system (MEMS) and network technology, wireless smart sensor networks (WSSN) have shown significant potential for replacing existing wired SHM systems due to their cost effectiveness and versatility. A few structural systems have been monitored using WSSN measuring acceleration, temperature, wind speed, humidity; however, a multi-scale sensing device which has the capability to measure the displacement has not been yet developed. In the previous paper, a new high-accuracy displacement sensing system was developed combining a high resolution analog displacement sensor and MEMS-based wireless microprocessor platform. Also, the wireless sensor was calibrated in the laboratory to get the high precision displacement data from analog sensor, and its performance was validated to measure simulated thermal expansion of a laboratory bridge structure. This paper expands the validation of the developed system on full-scale experiments to measure both static and dynamic displacement of expansion joints, temperature, and vibration of an in-service highway bridge. A brief visual investigation of bridges, comparison between theoretical and measured thermal expansion are also provided. The developed system showed the capability to measure the displacement with accuracy of 0.00027 in.

  16. Behavior of full-scale concrete segmented pipelines under permanent ground displacements

    Science.gov (United States)

    Kim, Junhee; O'Connor, Sean; Nadukuru, Srinivasa; Lynch, Jerome P.; Michalowski, Radoslaw; Green, Russell A.; Pour-Ghaz, Mohammed; Weiss, W. Jason; Bradshaw, Aaron

    2010-03-01

    Concrete pipelines are one of the most popular underground lifelines used for the transportation of water resources. Unfortunately, this critical infrastructure system remains vulnerable to ground displacements during seismic and landslide events. Ground displacements may induce significant bending, shear, and axial forces to concrete pipelines and eventually lead to joint failures. In order to understand and model the typical failure mechanisms of concrete segmented pipelines, large-scale experimentation is necessary to explore structural and soil-structure behavior during ground faulting. This paper reports on the experimentation of a reinforced concrete segmented concrete pipeline using the unique capabilities of the NEES Lifeline Experimental and Testing Facilities at Cornell University. Five segments of a full-scale commercial concrete pressure pipe (244 cm long and 37.5 cm diameter) are constructed as a segmented pipeline under a compacted granular soil in the facility test basin (13.4 m long and 3.6 m wide). Ground displacements are simulated through translation of half of the test basin. A dense array of sensors including LVDT's, strain gages, and load cells are installed along the length of the pipeline to measure the pipeline response while the ground is incrementally displaced. Accurate measures of pipeline displacements and strains are captured up to the compressive and flexural failure of the pipeline joints.

  17. Experimental investigation of the dependence of radar backscattering on wind speed, wind stress and wave height

    Science.gov (United States)

    Gogineni, S. P.; Katsaros, K. B.

    1989-01-01

    During summer 1988, radar measurements were performed in conjunction with detailed environmental observations on Lake Washington at the University of Washington Sand Point field station. Radar data were collected at 5.3 and 10 GHz for incidence angles between 30 and 60 deg with VV-polarization. The environmental measurements included wind speed and direction, large-wave heights, the high-frequency portion of the wave spectrum, humidity, and air and water temperatures. The small-scale wave spectrum was measured using a resistance wire gauge. The results show that backscatter increased with wind speed as expected. However, little difference was observed in the scattering coefficient for upwind and crosswind directions. The results also indicated an increase in the amplitude of small waves with friction velocity.

  18. Small scale experimental study of the dynamic response of a tension leg platform wind turbine

    DEFF Research Database (Denmark)

    Hansen, Anders Mandrup; Laugesen, Robert; Bredmose, Henrik

    2014-01-01

    A floating Tension Leg Platform (TLP) wind turbine was constructed at scale 1/200 and its dynamic response was analysed experimentally in co-directional wind and waves. The wind turbine was Froude scaled and a new rotor was designed to yield maximum power and Froude scaled thrust at the low model...... Reynolds number. Physical limitations due to the large scaling ratio further meant that some structural adjustments were necessary. Nacelle and floater accelerations were measured by means of two accelerometers. The TLP was moored with four different tendon configurations and exposed to different constant...... increases the occurrence of slack tendons and the magnitude of the pitch accelerations. In a robust commercial design, however, slack tendons must be avoided. The experiments demonstrate the ability of the wind turbine model and the experimental setup to give insight to the dynamic characteristics...

  19. Toward a full-scale computational model of the rat dentate gyrus.

    Science.gov (United States)

    Schneider, Calvin J; Bezaire, Marianne; Soltesz, Ivan

    2012-01-01

    Recent advances in parallel computing, including the creation of the parallel version of the NEURON simulation environment, have allowed for a previously unattainable level of complexity and detail in neural network models. Previously, we published a functional NEURON model of the rat dentate gyrus with over 50,000 biophysically realistic, multicompartmental neurons, but network simulations could only utilize a single processor. By converting the model to take advantage of parallel NEURON, we are now able to utilize greater computational resources and are able to simulate the full-scale dentate gyrus, containing over a million neurons. This has eliminated the previous necessity for scaling adjustments and allowed for a more direct comparison to experimental techniques and results. The translation to parallel computing has provided a superlinear speedup of computation time and dramatically increased the overall computer memory available to the model. The incorporation of additional computational resources has allowed for more detail and elements to be included in the model, bringing the model closer to a more complete and accurate representation of the biological dentate gyrus. As an example of a major step toward an increasingly accurate representation of the biological dentate gyrus, we discuss the incorporation of realistic granule cell dendrites into the model. Our previous model contained simplified, two-dimensional dendritic morphologies that were identical for neurons of the same class. Using the software tools L-Neuron and L-Measure, we are able to introduce cell-to-cell variability by generating detailed, three-dimensional granule cell morphologies that are based on biological reconstructions. Through these and other improvements, we aim to construct a more complete full-scale model of the rat dentate gyrus, to provide a better tool to delineate the functional role of cell types within the dentate gyrus and their pathological changes observed in epilepsy.

  20. On the ASR and ASR thermal residues characterization of full scale treatment plant.

    Science.gov (United States)

    Mancini, G; Viotti, P; Luciano, A; Fino, D

    2014-02-01

    In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste. Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC - European Waste Catalogue - code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.

  1. Experimental verification of computational model for wind turbine blade geometry design

    Directory of Open Access Journals (Sweden)

    Štorch Vít

    2015-01-01

    Full Text Available A 3D potential flow solver with unsteady force free wake model intended for optimization of blade shape for wind power generation is applied on a test case scenario formed by a wind turbine with vertical axis of rotation. The calculation is sensitive to correct modelling of wake and its interaction with blades. The validity of the flow solver is verified by comparing experimentally obtained performance data of model rotor with numerical results.

  2. Experimental measurement of wind and water erosion in Aragón and Andalusia, Spain

    Science.gov (United States)

    Fister, Wolfgang; Iserloh, Thomas; Marzen, Miriam; Ries, Johannes B.; Schmidt, Reinhard-G.

    2010-05-01

    For more than 50 years rainfall simulators and wind tunnels are important tools for soil erosion studies in the field. Laboratory investigations in wind tunnels with the ability of simultaneous rainfall production showed that wind significantly alters drop sizes, drop fall velocities and impact angles of falling raindrops. Leading to higher kinetic energies and increased soil detachment in comparison to falling drops with no wind influence. In most simulators this combined effect of wind and water is either not taken into account or deliberately excluded from the system, because of increasing complexity of processes involved. Within the project Ri 835/3-1, founded by the Deutsche Forschungsgemeinschaft, a portable combined wind an rainfall simulator for in-situ soil erosion studies was developed and used in Spain (Aragón, Andalusia), Morocco (Souss valley), and Germany (Eifel). The main objective of these field experiments was to quantify the susceptibility of different soil surface conditions and soil surface treatments to soil erosion by wind, water, and the combined effect of wind and water. Here, an overview of the results of the experimental measurements in Spain is given. The results show that wind erosion in Aragón is more or less negligible on undisturbed, crusted soil surfaces, but it can reach high amounts of up to 50 g m-² on rolled and grazed fields. Measurements in Andalusia show mean erosion rates of 24 g m-² on crusted soil surfaces. The expected increase of soil detachment, due to the combined force of wind and water in comparison to solely rainfall simulations, is apparent in most of the simulated runs. In total, the results proof that this combined wind and rainfall simulator is a valuable tool for soil erosion studies in the field and that it can be used to investigate various research questions.

  3. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    Science.gov (United States)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  4. Full scale investigation on aerogel windows exposed to real climatic conditions

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Nielsen, Lars Thomsen

    and indoor thermal comfort.The influence of temperature and wind load on the durability of sealed glazing units including aerogel windows has been investigated theoretically. The analyses show that evacuated aerogel glazings are significantly more robust to temperature changes and wind load than common...... sealed glazing units, due to the rough vacuum. A non-evacuated aerogel glazing has been mounted in a experimental house for 3 years without any sign of degeneration of the aerogel material.An energy saving of 30% has been found if aerogel windows are used instead of low-energy windows with argon......-filling and hard low-emissivity coatings. The energy saving is reached without significant change in the indoor thermal comfort level.Highly insulating glazing types as aerogel glazings and triple-layered low-energy glazings lead to outside surface temperatures on the glazing that often are below the dew point...

  5. Control of Microthrix parvicella and sludge bulking by ozone in a full-scale WWTP.

    Science.gov (United States)

    Levén, Lotta; Wijnbladh, Erik; Tuvesson, Malin; Kragelund, Caroline; Hallin, Sara

    2016-01-01

    Bulking and rising sludge are common problems in wastewater treatment plants (WWTPs) and are primarily caused by increased growth of filamentous bacteria such as Microthrix parvicella. It has a negative impact on sludge settling properties in activated sludge (AS) process, in addition to being responsible for foam formation. Different methods can be used to control sludge bulking. The aim of this study was to evaluate the dosage of on-site generated ozone in the recycled AS flow in a full-scale WWTP having problems caused by M. parvicella. The evaluation of the experiment was assessed by process data, microscopic analysis and microbial screening on the experimental and control line before, during and after the period of ozone dosage. The ozone treatment resulted in decreased abundance of M. parvicella and improved the settling properties, without impairing the overall process performance. Both chemical oxygen demand (COD)- and N-removal were unaffected and the dominant populations involved in nitrification, as analysed by fluorescent in situ hybridization, remained during the experimental period. When the ozone treatment was terminated, the problems with sludge bulking reappeared, indicating the importance of continuous evaluation of the process.

  6. Evaluation of the airway of the SimMan full-scale patient simulator

    DEFF Research Database (Denmark)

    Hesselfeldt, R; Kristensen, M S; Rasmussen, L S

    2005-01-01

    SimMan is a full-scale patient simulator, capable of simulating normal and pathological airways. The performance of SimMan has never been critically evaluated.......SimMan is a full-scale patient simulator, capable of simulating normal and pathological airways. The performance of SimMan has never been critically evaluated....

  7. Simulation in full-scale mock-ups: an ergonomics evaluation method?

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm; Broberg, Ole

    2014-01-01

    This paper presents and exploratory study of four simulation sessions in full-scale mock-ups of future hospital facilities.......This paper presents and exploratory study of four simulation sessions in full-scale mock-ups of future hospital facilities....

  8. An experimental investigation of two 15 percent-scale wind tunnel fan-blade designs

    Science.gov (United States)

    Signor, David B.

    1988-01-01

    An experimental 3-D investigation of two fan-blade designs was conducted. The fan blades tested were 15 percent-scale models of blades to be used in the fan drive of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. NACA 65- and modified NACA 65-series sections incorporated increased thickness on the upper surface, between the leading edge and the one-half-chord position. Twist and taper were the same for both blade designs. The fan blades with modified 65-series sections were found to have an increased stall margin when they were compared with the unmodified blades.

  9. Alkali/chloride release during refuse incineration on a grate: Full-scale experimental findings

    DEFF Research Database (Denmark)

    Bøjer, Martin; Jensen, Peter Arendt; Frandsen, Flemming;

    2008-01-01

    Vestforbraending unit S in Denmark was used for measurements of temperature, gas-concentration (O-2/CO/CO2), and sampling of gas phase Cl, Na, K, Pb, Zn, and S. Unit 5 has 6 ports distributed along the 13 in long grate between 1.5-1.8 in above the grate. Five of these ports were used for measurements. Two aqueous...

  10. Experimental determination of plume properties in full-scale hydrogen-oxygen rockets

    Science.gov (United States)

    Brown, D. G.; Limbaugh, C. C.; Zaccardi, V. A.; Eskridge, R.

    1989-01-01

    An IR emission/absorption technique for determining radial profiles of static temperature and species partial pressure for cylindrically symmetric combustion gases typical of the effluent of turbine engines and liquid-propellant rockets is described. In the technique, the IR plume radiance and absorption is measured using a 1 x 256-element platinum silicide detector array which is filtered to obtain plume emission measurements in the H2O band near 3.0 microns. A minicomputer is employed to control data acquisition and reduction.

  11. Experimental Set-up and Full-scale measurements in the ‘Cube'

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    devices etc. Moreover, the superior control of the thermal conditions in the room adjacent to the DSF and the opening control allow to investigate the DSF both as a part of complete ventilation system and as a separate element of building construction. The test facility is equipped to allow measurements......The Cube' is an outdoor test facility located at the main campus of Aalborg University. It has been built in the fall of 2005 with the purpose of detailed investigations of the DSF performance, development of the empirical test cases for validation and further improvements of various building...... simulation software for the modelling of buildings with double skin facades in the frame of IEA ECBCS ANNEX 43/SHC Task 34, Subtask EDouble Skin Facade. The test facility is designed to be flexible for a choice of the DSF operational modes, natural or mechanical flow conditions, different types of shading...

  12. An estimation method of full scale performance for pulling type podded propellers

    Directory of Open Access Journals (Sweden)

    Hyoung-Gil Park

    2014-12-01

    Full Text Available This paper presents a new estimation method of full scale propulsive performance for the pulling type podded propeller. In order to estimate the drag of pod housing, a drag velocity ratio, which includes the effects of podded propeller loading and Reynolds number, is presented and evaluated through the comparison of model test and numerical analysis. By separating the thrust of propeller blade and the drag of pod housing, extrapolation method of pod housing drag to full scale is deduced, and correction method of propeller blade thrust and torque to full scale is presented. This study utilized the drag coefficient ratio of the pod housing as a measure for expanding it to full scale, but in order to increase the accuracy of performance evaluation, additional study is necessary on the method for the full scale expansion via separating the drag of pod body, strut and fin which consist the pod housing.

  13. Comparison of high-latitude thermospheric meridional winds I: optical and radar experimental comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Mueller-Wodarg, I.C.F.; Aruliah, A.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)

    2004-07-01

    Thermospheric neutral winds at Kiruna, Sweden (67.4 N, 20.4 E) are compared using both direct optical fabry-perot interferometer (FPI) measurements and those derived from European incoherent scatter radar (EISCAT) measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974) and the meridional wind model (MWM) (Miller et al., 1997) application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the coupled thermosphere and ionosphere (CTIM) numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical horizontal wind model (HWM), though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations. (orig.)

  14. Experimental study of wind loads on unique buildings and structures in Russia

    Directory of Open Access Journals (Sweden)

    Poddaeva Olga

    2016-01-01

    Full Text Available Design and construction of unique buildings and structures (sports arenas, airport complexes, business centres, etc. from an engineering point of view is a very difficult task as in most cases these facilities have an original architectural form. Therefore, consideration of wind loads is an important part of the design. The paper presents the definition of wind load for two complex of airport. Researches was applied the combined calculation an experimental method. During the experimental study a wind tunnel architectural and construction type NRU MSUCE was used. Numerical simulations were performed using the software package ANSYS. The result of research on each object are integral aerodynamic loads on the object (coefficients Cx, Cy, Cmz and picture of the distribution of aerodynamic pressure coefficient Cp obtained in the numerical simulation. In conclusion, we discuss the possible formation of deposits of snow and recommendations to eliminate them from the roof of researched objects.

  15. Mathematical modeling and full-scale shaking table tests for multi-curve buckling restrained braces

    Institute of Scientific and Technical Information of China (English)

    C. S. Tsai; Yungchang Lin; Wenshin Chen; H. C. Su

    2009-01-01

    Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.

  16. Full-scale study of removal effect on Cyclops of zooplankton with chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    LIN Tao; CUI Fu-yi; LIU Dong-mei; AN Dong

    2004-01-01

    Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this paper, a full-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Cyclops removal was conducted in a waterworks. The experimental results were compared with that of the existing prechlorination process in several aspects: including the Cyclops removal efficiencies of water samples taken from the outlets of sedimentation tank and sand filter and the security of drinking water etc. The results showed that chlorine dioxide might be more effective to inactivate Cyclops than chlorine and Cyclops could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that of prechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.

  17. Experimental Aeroelastic Models Design and Wind Tunnel Testing for Correlation with New Theory

    Directory of Open Access Journals (Sweden)

    2016-04-01

    Full Text Available Several examples of experimental model designs, wind tunnel tests and correlation with new theory are presented in this paper. The goal is not only to evaluate a new theory, new computational method or new aeroelastic phonomenon, but also to provide new insights into nonlinear aeroelastic phenomena, flutter, limit cycle oscillation (LCO and gust response.

  18. The use of model-test data for predicting full-scale ACV resistance

    Science.gov (United States)

    Forstell, B. G.; Harry, C. W.

    The paper summarizes the analysis of test data obtained with a 1/12-scale model of the Amphibious Assault Landing Craft (AALC) JEFF(B). The analysis was conducted with the objective of improving the accuracy of drag predictions for a JEFF(B)-type air-cushion vehicle (ACV). Model test results, scaled to full-scale, are compared with full-scale drag obtained in various sea states during JEFF(B) trials. From the results of this comparison, it is found that the Froude-scale model rough-water drag data is consistently greater than full-scale derived drag, and is a function of both wave height and craft forward speed. Results are presented indicating that Froude scaling model data obtained in calm water also causes an over-prediction of calm-water drag at full-scale. An empirical correction that was developed for use on a JEFF(B)-type craft is discussed.

  19. Performance of Four Full-Scale Artificially Aerated Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment

    National Research Council Canada - National Science Library

    Butterworth, Eleanor; Richards, Andrew; Jones, Mark; Mansi, Gabriella; Ranieri, Ezio; Dotro, Gabriela; Jefferson, Bruce

    2016-01-01

      A comparison of the performance of four full-scale aerated horizontal flow constructed wetlands was conducted to determine the efficacy of the technology on sites receiving high and variable ammonia...

  20. Composting trial with BioFoam® products in a full scale commercial composting facility

    NARCIS (Netherlands)

    Zee, van der M.

    2015-01-01

    The main objective of the trial was to be able to judge whether BioFoam® material degrades at sufficient rate to be composted together with regular source separated municipal solid biowaste in a full scale industrial composting facility.

  1. Theoretical and experimental insights into effects of wind on leaf heat and gas exchange

    Science.gov (United States)

    Schymanski, Stanislaus J.; Or, Dani

    2014-05-01

    Transpiration and heat exchange by plant leaves are coupled physiological processes of significant importance for surface-climate interactions and ecohydrology. The common practice of modelling transpiration as an isothermal process (assuming equal leaf and air temperatures) may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). In contrast, explicit consideration of stomatal and leaf boundary layer resistances in series and the leaf energy balance in a physically-based model led to some surprising results, such as suppressed transpiration rates for increasing wind speed at constant stomatal conductance. The model predicts that for high wind velocities, the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. If this leaf-scale effect is consistent across most leaves, it may have profound implications for canopy-scale water use efficiency under globally decreasing wind speeds. This presentation reports the results of a systematic study of the effect of wind speed on leaf heat and gas exchange rates and introduces a novel experimental design to verify the modelling results using an insulated wind tunnel and artificial leaves with defined pore geometries, allowing to measure leaf-scale latent and sensible heat fluxes independently. First experimental results and new insights will be highlighted.

  2. Theoretical analysis of the kinetic performance of laboratory- and full-scale composting systems.

    Science.gov (United States)

    Baptista, Marco; Silveira, Ana; Antunes, Fernando

    2012-07-01

    Composting research at laboratory-scale is critical for the development of optimized full-scale plants. Discrepancies between processes at laboratory-scale and full-scale systems have been investigated in terms of heat balances, but a kinetic analysis of this issue is still missing. In this study, the composting rate at laboratory-scale was, on average, between 1.9 and 5.7 times faster than in full-scale systems for a set of published studies using municipal solid waste, food waste or similar materials. Laboratory-scale performance and full-scale systems were limited to 71 and 46%, respectively, of their maximum potential due to poor management of environmental process conditions far from their optimum. The main limiting environmental factor was found to be moisture content, followed by temperature. Besides environmental factors, waste composition and particle size were identified as factors accounting for kinetic differences between laboratory- and full-scale systems. Overall, this study identifies those factors that affect the kinetics of the composting process most and revealed a significant margin for reducing process time in full-scale composting.

  3. Experimental and numerical characterization of wind-induced pressure coefficients on nuclear buildings and chimney exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Laurent, E-mail: laurent.ricciardi@irsn.fr; Gélain, Thomas; Soares, Sandrine

    2015-10-15

    Highlights: • Experiments on scale models of nuclear buildings and chimney exhausts were performed. • Pressure coefficient fields on buildings are shown for various wind directions. • Evolution of pressure coefficient vs U/W ratio is given for various chimney exhausts. • RANS simulations using SST k–ω turbulence model were performed on most studied cases. • A good agreement is overall observed, with Root Mean Square Deviation lower than 0.15. - Abstract: Wind creates pressure effects on different surfaces of buildings according to their exposure to the wind, in particular at external communications. In nuclear facilities, these effects can change contamination transfers inside the building and can even lead to contamination release into the environment, especially in damaged (ventilation stopped) or accidental situations. The diversity of geometries of facilities requires the use of a validated code for predicting pressure coefficients, which characterize the wind effect on the building walls and the interaction between the wind and chimney exhaust. The first aim of a research program launched by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), was therefore to acquire experimental data of the mean pressure coefficients for different geometries of buildings and chimneys through wind tunnel tests and then to validate a CFD code (ANSYS CFX) from these experimental results. The simulations were performed using a steady RANS approach and a two-equation SST k–ω turbulence model. After a mesh sensitivity study for one configuration of building and chimney, a comparison was carried out between the numerical and experimental values for other studied configurations. This comparison was generally satisfactory, averaged over all measurement points, with values of Root Mean Square Deviations lower than 0.15 for most cases.

  4. Convective heat transfer and experimental icing aerodynamics of wind turbine blades

    Science.gov (United States)

    Wang, Xin

    The total worldwide base of installed wind energy peak capacity reached 94 GW by the end of 2007, including 1846 MW in Canada. Wind turbine systems are being installed throughout Canada and often in mountains and cold weather regions, due to their high wind energy potential. Harsh cold weather climates, involving turbulence, gusts, icing and lightning strikes in these regions, affect wind turbine performance. Ice accretion and irregular shedding during turbine operation lead to load imbalances, often causing the turbine to shut off. They create excessive turbine vibration and may change the natural frequency of blades as well as promote higher fatigue loads and increase the bending moment of blades. Icing also affects the tower structure by increasing stresses, due to increased loads from ice accretion. This can lead to structural failures, especially when coupled to strong wind loads. Icing also affects the reliability of anemometers, thereby leading to inaccurate wind speed measurements and resulting in resource estimation errors. Icing issues can directly impact personnel safety, due to falling and projected ice. It is therefore important to expand research on wind turbines operating in cold climate areas. This study presents an experimental investigation including three important fundamental aspects: (1) heat transfer characteristics of the airfoil with and without liquid water content (LWC) at varying angles of attack; (2) energy losses of wind energy while a wind turbine is operating under icing conditions; and (3) aerodynamic characteristics of an airfoil during a simulated icing event. A turbine scale model with curved 3-D blades and a DC generator is tested in a large refrigerated wind tunnel, where ice formation is simulated by spraying water droplets. A NACA 63421 airfoil is used to study the characteristics of aerodynamics and convective heat transfer. The current, voltage, rotation of the DC generator and temperature distribution along the airfoil

  5. An Experimental and Theoretical Investigation of Micropiiting in Wind Turbine Gears and Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Ahmet

    2012-03-28

    In this research study, the micro-pitting related contact failures of wind turbine gearbox components were investigated both experimentally and theoretically. On the experimental side, a twin-disk type test machine was used to simulate wind turbine transmission contacts in terms of their kinematic (rolling and sliding speeds), surface roughnesses, material parameters and lubricant conditions. A test matrix that represents the ranges of contact conditions of the wind turbine gear boxes was defined and executed to bring an empirical understanding to the micro-pitting problem in terms of key contact parameters and operating conditions. On the theoretical side, the first deterministic micro-pitting model based on a mixed elastohydrodynamic lubrication formulations and multi-axial near-surface crack initiation model was developed. This physics-based model includes actual instantaneous asperity contacts associated with real surface roughness profiles for predicting the onset of the micro-pit formation. The predictions from the theoretical model were compared to the experimental data for validation of the models. The close agreement between the model and measurements was demonstrated. With this, the proposed model can be deemed suitable for identifying the mechanisms leading to micro-pitting of gear and bearing surfaces of wind turbine gear boxes, including all key material, lubricant and surface engineering aspects of the problem, and providing solutions to these micro-pitting problems.

  6. An Experimental Study on the Effects of Base Motion on the Aeromechanic Performance of Floating Wind Turbines

    Science.gov (United States)

    Khosravi, Morteza; Sarkar, Partha; Hu, Hui

    2016-09-01

    An experimental study was conducted to investigate the effects of the wave-induced base motions experienced by floating wind turbines sited in offshore wind farms on their aeromechanic performance and wake characteristics, in comparison with those of a bottom- fixed wind turbine. The experimental study was performed in a large-scale atmospheric boundary layer (ABL) wind tunnel with a scaled wind turbine model placed in a turbulent boundary layer flow with similar mean and turbulence characteristics as those over a typical offshore wind farm. During the experiments, a scaled wind turbine model was mounted on a translational and rotational stage, which can generate translation and/or rotation motions to simulate the dynamic wave-induced motions (i.e., surge, pitch and heave motions) experienced by floating wind turbines in offshore wind farms. In addition to measuring dynamic wind loadings (both forces and moments)acting on the model turbine, a high-resolution Particle Image Velocity (PIV) system was also used to conduct detailed flow field measurements to characterize the turbine wakes with the turbine base in motion. The detailed flow field measurements were correlated with the dynamic wind load data to elucidate underlying physics for higher total power yield and better durability of floating offshore wind turbines.

  7. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

    Science.gov (United States)

    Yi, Pengxing; Huang, Peng; Shi, Tielin

    2016-12-01

    Wind turbine gearbox (WTG), which functions as an accelerator, ensures the performance and service life of wind turbine systems. This paper examines the distinctive modal properties of WTGs through finite element (FE) and experimental modal analyses. The study is performed in two parts. First, a whole system model is developed to investigate the first 10 modal frequencies and mode shapes of WTG using flexible multibody modeling techniques. Given the complex structure and operating conditions of WTG, this study applies spring elements to the model and quantifies how the bearings and gear pair interactions affect the dynamic characteristics of WTGs. Second, the FE modal results are validated through experimental modal analyses of a 1.5 WM WTG using the frequency response function method of single point excitation and multi-point response. The natural frequencies from the FE and experimental modal analyses show favorable agreement and reveal that the characteristic frequency of the studied gearbox avoids its eigenfrequency very well.

  8. Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel

    Science.gov (United States)

    Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya

    2017-04-01

    The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.

  9. Temperature-compensated strain measurement of full-scale small aircraft wing structure using low-cost FBG interrogator

    Science.gov (United States)

    Kim, J. H.; Lee, Y. G.; Park, Y.; Kim, C. G.

    2013-04-01

    Recently, health and usage monitoring systems (HUMS) are being studied to monitor the real-time condition of aircrafts during flight. HUMSs can prevent aircraft accidents and reduce inspection time and cost. Fiber Bragg grating (FBG) sensors are widely used for aircraft HUMSs with many advantages such as light weight, small size, easy-multiplexing, and EMI immunity. However, commercial FBG interrogators are too expensive to apply for small aircrafts. Generally the cost of conventional FBG interrogators is over 20,000. Therefore, cost-effective FBG interrogation systems need to be developed for small aircraft HUMSs. In this study, cost-effective low speed FBG interrogator was applied to full-scale small aircraft wing structure to examine the operational applicability of the low speed FBG interrogator to the monitoring of small aircrafts. The cost of the developed low speed FBG interrogator was about 10,000, which is an affordable price for a small aircraft. 10 FBG strain sensors and 1 FBG temperature sensor were installed on the surface of the full-scale wing structure. Load was applied to the tip of the wing structure, and the low speed interrogator detected the change in the center wavelength of the FBG sensors at the sampling rate of 10Hz. To assess the applicability of the low-cost FBG interrogator to full-scale small aircraft wing structure, a temperature-compensated strain measurement algorithm was verified experimentally under various loading conditions of the wing structure with temperature variations.

  10. Numerical and Experimental Results of a Passive Free Yawing Downwind Wind Turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Van Wingerden, Jan-Willem

    by coning angle, blade sweep, and blade flexibility using both numerical and experimental methods. The wind tunnel tests were organized in the Open Jet Facility of the TU Delft, and the thesis discusses the experiment’s design, construction, operation, and gives an analysis of the results. It provides...... the PhD study is a parametric blade sweep investigation for the NREL 5MW turbine, and a detailed study on load extrapolation methods based on aeroelastic simulations. It is concluded that the 3 bladed, free yawing, and downwind wind turbine can operate in a stable manner. However, numerical studies...... downwind concept is pursued in an attempt to increase the robustness of a wind turbine by eliminating the traditionally actively controlled, and sometimes failure prone yawing mechanism. Under certain conditions, such as for remote (off shore) and off grid applications, a decreased failure rate can...

  11. Towards an Experimental Investigation of Wind Turbine Aerodynamics at Full Dynamic Similarity

    Science.gov (United States)

    Miller, Mark A.; Hultmark, Marcus

    2014-11-01

    As horizontal axis wind turbines continue to increase in size (with the largest approaching 200 meters in diameter) it becomes progressively more difficult to test new designs without high computational power or extensive experimental effort using conventional tools. Therefore, compromises are often made between the important non-dimensional parameters (Reynolds number and Strouhal number, or tip speed ratio) so that reasonable engineering insight can be gained. Using the unique facilities available at Princeton University, we aim to match both non-dimensional parameters and thus achieve full dynamic similarity at realistic conditions. This is accomplished by using the High Reynolds number Test Facility (or HRTF), which is a high pressure (200 atmospheres) wind tunnel. We present the design, manufacture, and testing of an apparatus suited to the unique environment of a high-pressure facility as well as future plans for investigating the underlying aerodynamics of large-scale wind turbines.

  12. Nonlinear dynamic analysis based on experimental data of RC telecommunication towers subjected to wind loading

    Directory of Open Access Journals (Sweden)

    Marcelo A. Silva

    2006-01-01

    Full Text Available The goal of this paper is to propose a nonlinear dynamic model based on experimental data and NBR-6123-87 to accomplish a nonlinear dynamic analysis of slender structures subjected to wind loading. At first we compute the static answer given by the mean wind speed. In this part of the problem we consider the concept of effective stiffness to represent the physical nonlinearity of material and a P-Delta method to represent the geometrical nonlinearity. Considering the final stiffness obtained in that P-Delta method, we compute the dynamic answer given by the floating wind speed, according to the discrete dynamic model given by NBR-6123-87. A 40 m RC telecommunication tower was analyzed, and the results obtained were compared with those given by linear static and dynamic models.

  13. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  14. Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Kyung Chun Kim

    2014-11-01

    Full Text Available A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (Cp of approximately 0.25, which is relatively high compared to other types of urban-usage wind turbines. To validate the CFD results, experimental studies were carried out using a scaled-down model. The instantaneous velocity fields were measured using the two-dimensional particle image velocimetry (PIV method in the near field of the blade. The PIV measurements revealed the presence of dominant vortical structures downstream the hub and near the blade tip. The interaction between the wake flow at the rotor downstream and the induced velocity due to the tip vortices were strongly affected by the wind speed and resulting rotational speed of the blade. The mean velocity profiles were compared with those predicted by the steady state and unsteady state CFD simulations. The unsteady CFD simulation agreed better with those of the PIV experiments than the steady state CFD simulations.

  15. An experimental and numerical study of the gap effect on wind load on heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiyong; Wang, Zhifeng; Zang, Chuncheng [The Key Laboratory of Solar Thermal Energy and Photovoltaic System, IEE-CAS, No. 6 Beiertiao, Zhongguancun, 100190 Beijing (China); Gong, Bo; Li, Zhengnong [College of Civil Engineering, Hunan University, Hunan, 410000 Changsha (China)

    2010-04-15

    The main handicap of the concentrating solar power technology is still the higher cost compared with the conventional coal power plant. Heliostat arrays cause about 40% of the costs of central receiver power plants. The cost reduction of heliostats is of crucial importance to central receiver power plants. The reduction of wind load on heliostats will decrease the structural requirement for heliostats, and then cut the cost of heliostats. In this paper, different gap sizes (0-40 mm) between the facets of the heliostats were studied experimentally and numerically. Both of the results showed that the wind load increases slightly with the increase of gap size (0-40 mm). The result of the numerical simulation shows the flow pattern through the gap resembles a jet flow which does not affect the static pressure on the windward surface but does decrease the static pressure on the leeward surface of the facets. Consequently it increases the total drag force on the heliostat. However, the absolute increment of the wind load is very small compared with the overall wind load on the heliostat structure. It is not necessary to take account of the gap size effects on the wind load during the design process of heliostat. (author)

  16. An experimental study of a plasma actuator in absence of free airflow: Ionic wind velocity profile

    Science.gov (United States)

    Mestiri, R.; Hadaji, R.; Ben Nasrallah, S.

    2010-08-01

    In this study, we are interested in the direct current electrical corona discharge created between two wire electrodes. The experimental results are related to some electroaerodynamic actuators based on the direct current corona discharge at the surface of a dielectric material. Several geometrical forms are selected for the dielectric surface, such as a plate, a cylinder, and a NACA 0015 aircraft wing. The current density-electric field characteristics are presented for different cases in order to determine the discharge regimes. The corona discharge produces nonthermal plasma, so it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. The ionic wind induced by the corona discharge is measured in absence of free external airflow. The ionic wind velocity profiles and the maximum induced tangential force are given for different surface forms, so it is possible to compare the actuators effect based on the span of the ionic wind velocity and thrust values. The higher ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  17. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    Energy Technology Data Exchange (ETDEWEB)

    Halstead, R. J.; Dilger, F.

    2003-02-25

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million.

  18. Full scale test SSP 34m blade, edgewise loading LTT. Extreme load and PoC{sub I}nvE Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Roczek-Sieradzan, A.; Jensen, Find M. (and others)

    2010-09-15

    This report is the second report covering the research and demonstration project 'Experimental blade research: Structural mechanisms in current and future large blades under combined loading', supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risoe load, where 80% Risoe load corresponds to 100% certification load. These pulls at 80% Risoe load were repeated and the results from these pulls were compared. The blade was reinforced according to a Risoe DTU invention, where the trailing edge panels are coupled. The coupling is implemented to prevent the out of plane deformations and to reduce peeling stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risoe load and the results applicable for the investigation of the influence of the invention on the profile deformation. (Author)

  19. Investigation of the gypsum quality at three full-scale wet flue gas desulphurisation plants

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren; Johnsson, Jan Erik

    2011-01-01

    In the present study the gypsum (CaSO4·2H2O) quality at three full-scale wet flue gas desulphurisation (FGD) plants and a pilot plant were examined and compared. Gypsum quality can be expressed in terms of moisture content (particle size and morphology dependent) and the concentration of residual...... or accumulation of fly ash and impurities from the sorbent. The crystal morphology obtained in the pilot plant was columnar with distinct crystal faces as opposed to the rounded shapes found at the full-scale plants. All the investigated full-scale plants consistently produced high quality gypsum (High purity......, low moisture content and low impurity content). An episode concerning a sudden deterioration in the gypsum dewatering properties was furthermore investigated, and a change in crystal morphology, as well as an increased impurity content (aluminium, iron and fluoride), was detected....

  20. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  1. Experimental verification of the new RISOe-A1 airfoil family for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, K.S.; Fuglsang, P.; Antoniou, I. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper concerns the experimental verification of a new airfoil family for wind turbines. The family consist of airfoils in the relative thickness range from 15% to 30%. Three airfoils, Risoe-A1-18, Risoe-A1-21, and Risoe-A1-24 were tested in a wind tunnel. The verification consisted of both static and dynamic measurements. Here, the static results are presented for a Reynolds number of 1.6x10{sup 6} for the following airfoil configurations: smooth surface (all three airfoils) and Risoe-A1-24 mounted with leading edge roughness, vortex generators, and Gurney-flaps, respectively. All three airfoils have constant lift curve slope and almost constant drag coefficient until the maximum lift coefficient of about 1.4 is reached. The experimental results are compared with corresponding computational from the general purpose flow solver, EllipSys2D, showing good agreement. (au)

  2. Full-Scale Accelerated Pavement Testing of Warm-Mix Asphalt (WMA) for Airfield Pavements

    Science.gov (United States)

    2014-01-01

    ER D C/ G SL T R -1 4 -3 Full-Scale Accelerated Pavement Testing of Warm-Mix Asphalt (WMA) for Airfield Pavements G eo te ch n ic al...2014 Full-Scale Accelerated Pavement Testing of Warm-Mix Asphalt (WMA) for Airfield Pavements Mariely Mejías-Santiago, Jesse D. Doyle, and John F... asphalt (WMA) mixtures designed for airfield pavements. Three WMA mixtures were evaluated and compared to a control hot-mix asphalt (HMA) mixture. Data

  3. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-01-01

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  4. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-12-31

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  5. Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model

    Directory of Open Access Journals (Sweden)

    Stanislav Rockel

    2014-03-01

    Full Text Available Wind tunnel experiments were performed, where the development of the wake of a model wind turbine was measured using stereo Particle Image Velocimetry to observe the influence of platform pitch motion. The wakes of a classical bottom fixed turbine and a streamwise oscillating turbine are compared. Results indicate that platform pitch creates an upward shift in all components of the flow and their fluctuations. The vertical flow created by the pitch motion as well as the reduced entrainment of kinetic energy from undisturbed flows above the turbine result in potentially higher loads and less available kinetic energy for a downwind turbine. Experimental results are compared with four wake models. The wake models employed are consistent with experimental results in describing the shapes and magnitudes of the streamwise velocity component of the wake for a fixed turbine. Inconsistencies between the model predictions and experimental results arise in the floating case particularly regarding the vertical displacement of the velocity components of the flow. Furthermore, it is found that the additional degrees of freedom of a floating wind turbine add to the complexity of the wake aerodynamics and improved wake models are needed, considering vertical flows and displacements due to pitch motion.

  6. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.; Zandt, M.H. In 't; Guerrero-Cruz, S.; Dutilh, B.E.; Jetten, M.S.M

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is use

  7. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.; Zandt, M.H. In 't; Guerrero-Cruz, S.; Dutilh, B.E.; Jetten, M.S.M

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  8. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions.

  9. The dimensions of sand ripples in full-scale oscillatory flows

    NARCIS (Netherlands)

    O'Donoghue, T.; Doucette, J.C.; Werf, van der J.J.; Ribberink, J.S.

    2006-01-01

    New large-scale experiments have been carried out in two oscillatory flow tunnels to study ripple regime sand suspension and net sand transport processes in full-scale oscillatory flows. The paper focuses on ripple dimensions and the new data are combined with existing data to make a large dataset o

  10. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters

    NARCIS (Netherlands)

    Regueiro, L.; Veiga, P.; Figueroa, M.; Alonso-Gutierrez, J.; Stams, A.J.M.; Lema, J.M.; Carballa, M.

    2012-01-01

    High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hyd

  11. Predictive Ability of the General Ability Index (GAI) versus the Full Scale IQ among Gifted Referrals

    Science.gov (United States)

    Rowe, Ellen W.; Kingsley, Jessica M.; Thompson, Dawna F.

    2010-01-01

    The General Ability Index (GAI) is a composite ability score for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) that minimizes the impact of tasks involving working memory and processing speed. The goal of the current study was to compare the degree to which the Full Scale IQ (FSIQ) and the GAI predict academic achievement…

  12. A metagenome of a full-scale microbial community carrying out Enhanced Biological Phosphorus Removal

    DEFF Research Database (Denmark)

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence...

  13. Full-Scale Continuous Mini-Reactor Setup for Heterogeneous Grignard Alkylation of a Pharmaceutical Intermediate

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Holm, Thomas; Rahbek, Jesper P.

    2013-01-01

    A reactor setup consisting of two reactors in series has been implemented for a full-scale, heterogeneous Grignard alkylation. Solutions pass from a small filter reactor into a static mixer reactor with multiple side entries, thus combining continuous stirred tank reactor (CSTR) and plug flow rea...

  14. Interpersonal Transport of Droplet Nuclei among Three Manikins in a Full-Scale Test Room

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter Vilhelm; Jensen, Rasmus Lund

    2014-01-01

    This study focuses on occupants’ exposure of droplet nuclei exhaled by one susceptible in a full-scale test room. Three breathing thermal manikins are standing in the middle of room and both the process in the microenvironment and in the macroenvironment are considered. A diffusive ceiling has been...

  15. Interpersonal Transport of Expiratory Aerosols among Three Manikins in a Full-Scale Test Room

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter Vilhelm; Jensen, Rasmus Lund

    2014-01-01

    This study focuses on occupants’ exposure of aerosols exhaled by one susceptible in a full-scale test room. Three breathing thermal manikins are standing in the middle of room and both the process in the microenvironment and in the macroenvironment are considered. A diffusive ceiling has been...

  16. Full-Scale Accelerated Testing of Multi-axial Geogrid Stabilized Flexible Pavements

    Science.gov (United States)

    2017-06-01

    The inclusion of geosynthetics in pavement structures has been utilized as a means of reducing costs and/or extending pavement service life. These... labor and equipment requirements. As new geosynthetic products are developed, full-scale performance data are needed to provide quantifiable benefits to

  17. Mechanical Pretreatment to Increase the Bioenergy Yield for Full-scale Biogas Plants

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Angelidaki, Irini

    % compared to the untreated one. The digestion of meadow grass as an alternative co-substrate had positive impact on the energy yield of full-scale biogas reactors operating with cattle manure, pig manure or mixture of both. A preliminary analysis showed that the addition of meadow grass in a manure based...

  18. Evaluating 5 and 8 pH-point titrations for measuring VFA in full-scale ...

    African Journals Online (AJOL)

    Received 24 February 2012; accepted in revised form 19 November 2012. ... applied to determine VFA in full-scale primary sludge hydrolysate and was shown to be equally efficient to the methods .... To test and measure the recovery of different VFA concentra- ..... bonate and SCFA weak acid bases in anaerobic systems.

  19. Bacterial community structure of a full-scale biofilter treating pig house exhaust air

    DEFF Research Database (Denmark)

    Kristiansen, Anja; Pedersen, Kristina Hadulla; Nielsen, Per Halkjær;

    2011-01-01

    Biological air filters represent a promising tool for treating emissions of ammonia and odor from pig facilities. Quantitative fluorescence in situ hybridization (FISH) and 16S rRNA gene sequencing were used to investigate the bacterial community structure and diversity in a full-scale biofilter...

  20. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...

  1. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    Science.gov (United States)

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  2. Fate of pharmaceuticals in full-scale source separated sanitation system

    NARCIS (Netherlands)

    Butkovskyi, A.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2015-01-01

    Removal of 14 pharmaceuticals and 3 of their transformation products was studied in a full-scale source separated sanitation system with separate collection and treatment of black water and grey water. Black water is treated in an up-flow anaerobic sludge blanket (UASB) reactor followed by

  3. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants.

    Science.gov (United States)

    Zamyadi, Arash; Henderson, Rita; Stuetz, Richard; Hofmann, Ron; Ho, Lionel; Newcombe, Gayle

    2015-10-15

    The increasing frequency and intensity of taste and odour (T&O) producing cyanobacteria in water sources is a growing global issue. Geosmin and 2-methylisoborneol (MIB) are the main cyanobacterial T&O compounds and can cause complaints from consumers at levels as low as 10 ng/L. However, literature concerning the performance of full-scale treatment processes for geosmin and MIB removal is rare. Hence, the objectives of this study were to: 1) estimate the accumulation and breakthrough of geosmin and MIB inside full-scale water treatment plants; 2) verify the potential impact of sludge recycling practice on performance of plants; and, 3) assess the effectiveness of aged GAC for the removal of these compounds. Sampling after full-scale treatment processes and GAC pilot assays were conducted to achieve these goals. Geosmin and MIB monitoring in full-scale plants provided the opportunity to rank the performance of studied treatment processes with filtration and granular activated carbon providing the best barriers for removal of total and extracellular compounds, correspondingly. Geosmin was removed to a greater extent than MIB using GAC. Geosmin and MIB residuals in water post GAC contactors after two years of operation was 20% and 40% of initial concentrations, correspondingly. Biological activity on the GAC surface enhanced the removal of T&O compounds. These observations demonstrated that a multi-barrier treatment approach is required to ensure cyanobacteria and their T&O compounds are effectively removed from drinking water.

  4. Controlling Urban Lighting by Human Motion Patterns results from a full Scale Experiment

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    This paper presents a full-scale experiment investigating the use of human motion intensities as input for interactive illumination of a town square in the city of Aalborg in Denmark. As illuminators sixteen 3.5 meter high RGB LED lamps were used. The activity on the square was monitored by three...

  5. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    Science.gov (United States)

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  6. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    Science.gov (United States)

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  7. China's Onshore Oil Industry is in Full Scale Opening to the Outside World

    Institute of Scientific and Technical Information of China (English)

    Zhao Xueming; Wei Fang

    1995-01-01

    @@ In 1994, China's onshore petroleum industry continuously emphasized on making use of domestic and foreign resources and funds as well as opening to the outside world in full scale, so that a great progress has been achieved in the cooperation with foreign companies, contracting overseas projects, introducing advanced technology, importing equipment from abroad etc. CNPC has developed constant ties with the world oil circles.

  8. Anaerobic digestion foaming in full-scale biogas plants: A survey on causes and solutions

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; O-Thong, Sompong;

    2014-01-01

    Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times...

  9. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  10. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    Science.gov (United States)

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  11. CALIBRATION OF FULL-SCALE OZONATION SYSTEMS WITH CONSERVATIVE AND REACTIVE TRACERS

    Science.gov (United States)

    A full-scale ozonation reactor was characterized with respect to the overall oxidation budget by coupling laboratory kinetics with reactor hydraulics. The ozone decomposition kinetics and the ratio of the OH radical to the ozone concentration were determined in laboratory batch ...

  12. Numerical and Experimental Study of Wake Redirection Techniques in a Boundary Layer Wind Tunnel

    Science.gov (United States)

    Wang, J.; Foley, S.; Nanos, E. M.; Yu, T.; Campagnolo, F.; Bottasso, C. L.; Zanotti, A.; Croce, A.

    2017-05-01

    The aim of the present paper is to validate a wind farm LES framework in the context of two distinct wake redirection techniques: yaw misalignment and individual cyclic pitch control. A test campaign was conducted using scaled wind turbine models in a boundary layer wind tunnel, where both particle image velocimetry and hot-wire thermo anemometers were used to obtain high quality measurements of the downstream flow. A LiDAR system was also employed to determine the non-uniformity of the inflow velocity field. A high-fidelity large-eddy simulation lifting-line model was used to simulate the aerodynamic behavior of the system, including the geometry of the wind turbine nacelle and tower. A tuning-free Lagrangian scale-dependent dynamic approach was adopted to improve the sub-grid scale modeling. Comparisons with experimental measurements are used to systematically validate the simulations. The LES results are in good agreement with the PIV and hot-wire data in terms of time-averaged wake profiles, turbulence intensity and Reynolds shear stresses. Discrepancies are also highlighted, to guide future improvements.

  13. An experimental system for release simulation of internal stores in a supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-02-01

    Full Text Available Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments. A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than 0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.

  14. Near-infrared spectroscopy for process and substrate supervision of a full-scale biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Jacobi, Hans Fabian

    2012-07-01

    Aim of this study was to investigate the possible use of near-infrared spectroscopy in the supervision of the biogas production process or parts thereof. It was examined, whether the surveillance of (a) the process and (b) substrate was feasible. The following tasks were accomplished to this end: 1. Development, construction and assembly of suitable NIRS-metrology, development of proper control-software as well as of strategies for data acquisition and data handling, 2. calculation and validation of regression models on the basis of acquired spectra and reference data for (a) suitable parameters of the biogas process, (b) composition and biogas potential of the substrate, 3. calculation of continuous time series of all parameters in order to prove the possibility of continuous surveillance, 4. integrated processing of continuously calculated biogas potentials together with plant data for the prediction of the biogas production behavior of the biogas plant. A near-infrared spectrometer was installed and equipped with NIR-measuring heads of own design and construction on a full-scale agricultural biogas plant. For 500 days spectra were continuously logged at (a) a pipe flowed through by fermenter slurry and (b) the feeding station, where silage passed. Based on regularly withdrawn reference samples and the corresponding spectra regression models were calibrated for the several constituents. Continuously logged spectra were used to calculate time series with the aid of the regression models for each constituent. Models and time series were established for the following parameters: (a) process parameters: volatile fatty acids, acetic acid, propionic acid, dry matter, volatile solids; (b) substrate parameters: dry matter, volatile solids, crude fiber, crude fat, crude protein, nitrogen-free extracts, experimentally assessed biogas potential, theoretically assessed biogas potential. Despite the partially low quality of the models it was possible to follow the course of

  15. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  16. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    Science.gov (United States)

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed.

  17. An experimental and numerical study on the improvement of the performance of Savonius wind rotor

    Energy Technology Data Exchange (ETDEWEB)

    Altan, Burcin Deda; Atilgan, Mehmet [Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Kinikli 20070, Denizli (Turkey)

    2008-12-15

    In the present study, a curtain has been designed to increase the low performance of the Savonius wind rotor, a type of vertical-axis wind rotor, and the effect of this curtain on the static rotor performance has been analyzed both experimentally and numerically. Designed to prevent the torque that occurs on the convex blade of the rotor in the negative direction, this curtain has been placed in front of the rotor. Experimental measurements and numerical analysis have been conducted when the Savonius wind rotor is with and without curtain. The static torque values of the rotor have been measured by experiments and calculated by numerical analysis, and finally they have been compared. The best results have been obtained by means of the rotor with curtain. Low static torque values have been obtained with the short curtain dimensions, while a considerable increase has been acquired in the static torque values with the long curtain dimensions. Fluent 6.0 trade software has been used as the numerical method. (author)

  18. Experimental investigations on the aerodynamics and aeromechanics of wind turbines for floating offshore applications

    Science.gov (United States)

    Khosravi, Morteza

    There are many advantages in floating wind turbines in deep waters, however, there are also significant technological challenges associated with it too. The dynamic excitation of wind and waves can induce excessive motions along each of the 6 degrees of freedom (6-DOF) of the floating platforms. These motions will then be transferred to the turbine, and directly impact the wake characteristics of the floating wind turbines, and consequently the resultant wind loadings and performances of the wind turbines sited in offshore wind farms. In the present study, a comprehensive experimental study was performed to analyze the performance, loading, and the near wake characteristics of a rigid wind turbine model subjected to surge, heave, and pitch motions. The experimental study was performed in a large-scale atmospheric boundary layer wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in a turbulent boundary layer airflow with similar mean and turbulence characteristics as those over a typical offshore wind farm. The base of the 1:300 scaled model wind turbine was mounted on translation and rotation stages. These stages can be controlled to generate surge, pitch and heave motions to simulate the dynamic motions experienced by floating offshore wind turbines. During the experiments, the velocity scaling method was chosen to maintain the similar velocity ratios (i.e., the ratios of the incoming airflow flow to that of turbine base motion) between the model and the prototype. During the experiments, a high resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting ''free run'' PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, ''phase

  19. Improving Wind Turbine Drivetrain Reliability Using a Combined Experimental, Computational, and Analytical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; van Dam, J.; Bergua, R.; Jove, J.; Campbell, J.

    2015-03-01

    Nontorque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling, and experimental data to evaluate a unique drivetrain design that minimizes the effects of nontorque loads on gearbox reliability: the Pure Torque(R) drivetrain developed by Alstom. The drivetrain has a hub-support configuration that transmits nontorque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces, and the resulting drivetrain loads. Main shaft bending loads are orders of magnitude lower than the rated torque and are hardly affected by wind conditions and turbine operations.

  20. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)

    2011-05-15

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  1. Experimental Determination of Whistler Wave Dispersion Relation in the Solar Wind

    Science.gov (United States)

    Stansby, D.; Horbury, T. S.; Chen, C. H. K.; Matteini, L.

    2016-09-01

    The origins and properties of large-amplitude whistler wavepackets in the solar wind are still unclear. In this Letter, we utilize single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wavepackets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarized, travel anti-sunward, and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.

  2. Experimental investigation of the wake behind a model of wind turbine in a water flume

    Science.gov (United States)

    Okulov, V. L.; Naumov, I. N.; Kabardin, I.; Mikkelsen, R.; Sørensen, J. N.

    2014-12-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert's optimization. The transitional regime, generally characterized as in between the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities. The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories.

  3. Experimental determination of whistler wave dispersion relation in the solar wind

    CERN Document Server

    Stansby, D; Chen, C H K; Matteini, L

    2016-01-01

    The origins and properties of large amplitude whistler wave packets in the solar wind are still unclear. In this Letter we utilise single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wave packets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarised, travel anti-sunward and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.

  4. Full-scale performance testing and evaluation of unitized curtain walls

    Directory of Open Access Journals (Sweden)

    E. Ilter

    2015-06-01

    Full Text Available Unitized curtain wall systems have been widely seen on high-rise buildings’ facades by bringing benefits with regard to ease of construction, lightness, etc. However, some design and application problems related to structural and infiltration performance of a facade system might arise during its life cycle, which is difficult for the building to compensate. This paper presents a comparative analysis of the structural and infiltration performance of the two identically detailed and produced unitized curtain wall system mock-ups. In order to understand long-term environmental effects on the curtain wall system, a fatigue process was applied on one system in addition to the standard test procedures, while the standard test procedure was applied on the other reference specimen. The tests on the two identical specimens were conducted in accordance with TS EN 13830 and AAMA 501.4 Standards. As a result of air infiltration and wind load resistance tests, air infiltration and frontal deflection values on the facade surface were obtained. Hence, experimental performance of the systems was compared and the effect of the fatigue procedure on the facade performance was evaluated.  

  5. Evaluation of the Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    Science.gov (United States)

    Jegley, Dawn C.; Bush, Harold G.; Lovejoy, Andrew E.

    2001-01-01

    Analytical and experimental results for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Upbending, down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  6. Self-similar solutions for the Hasselmann equation and experimental scaling of wind-wave spectra

    Science.gov (United States)

    Badulin, S. I.; Pushkarev, A. N.; Resio, D.; Zakharov, V. E.

    2003-04-01

    The solutions for the Hasselmann equation (kinetic equation for wind-driven waves) are studied numerically for the case of duration-limited growth and different conventional parameterizations of wave sources and sinks (Snyderet al. 1981; Plant 1982; Hsiao &Shemdin 1983; Komen, Hasselmann & Hasselmann 1984; Donelan, Pierson 1987). The strong self-similar behavior of the numerical solutions is found for all the parameterizations in a wide range of wind speeds and wave ages. Moreover, the resulting self-similar solutions are found to be surprisingly close to experimentally established approximations in magnitudes and shapes of frequency spectra. The comparison with JONSWAP modified spectra (Donelan et al. 1985) is detailed. It is found that this approximation being obtained for the case of fetch-limited growth fits quite well the corresponding spectra for the numerical duration limited solutions in a wide range of wave ages (C_p/U10 ≈ 0.4div 1.4 ). Theoretical overview of self-similar solutions for the kinetic equation is given in its relation to the experimentally observed dependencies of mean parameters (i.e. mean energy, frequency) of wind-driven waves both in cases of fetch-limited and duration limited growth. Universality features of the dependencies are treated as a result of dominating nonlinear transfer in wind-wave field. The research was conducted under the U.S. Army Corps of Engineers, RDT&E program, grant DACA 42-00-C0044, ONR grant N00014-98-1-0070 and NSF grant NDMS0072803, INTAS grant 01-234 and Russian Foundation for Basic Research 01-05-64603, 01-05-64464, 02-05-65140. This support is gratefully acknowledged.

  7. Modelling and Simulation of Variable Speed Thruster Drives with Full-Scale Verification

    Directory of Open Access Journals (Sweden)

    Jan F. Hansen

    2001-10-01

    Full Text Available In this paper considerations about modelling and simulation of variable speed thruster drives are made with comparison to full scale measurements from Varg FPSO. For special purpose vessels with electric propulsion operating in DP (Dynamic Positioning mode the thruster drives are essential for the vessel operation. Different model strategies of thruster drives are discussed. An advanced thruster drive model with a dynamic motor model and field vector control principle is shown. Simulations are performed with both the advanced model and a simplified model. These are compared with full-scale measurements from Varg FPSO. The simulation results correspond well with the measurements, for both the simplified model and the advanced model.

  8. Performance of the LHC Final Design, Full-Scale Superconducting Dipole Prototypes

    CERN Document Server

    Bottura, L; Siemko, A; Vlogaert, J; Wyss, C

    2001-01-01

    Within the LHC magnet program, a series of six, final design, full-scale superconducting dipole prototypes are presently being built in industry and tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, six-block two layer coils wound from 15.1 mm wide graded NbTi cables, and all-polyimide insulation. This paper reviews the main test results of magnets tested to day at 4.2 K and 1.8 K. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate and field quality are presented and discussed in terms of the design parameters and the aims of the full scale dipole prototype program.

  9. Standard full-scale chamber test conditions for examination of mineral wool products

    Energy Technology Data Exchange (ETDEWEB)

    Juhl, H.D. [Glasuld, Vamdrup (Denmark); Husemoen, T. [Rockwool International A/S, Hedehusene (Denmark); Lindqvist, H. [Gullfiber AB, Billisholm (Sweden); Nordh, I. [Partek Insulation AB, Skoevde (Sweden); Trappmann, J. [Gruenzweig und Hartmann AG, Ladenburg (Germany)

    1998-09-01

    Eurima, the European Insulation Manufacturers` Association, has carried through a project on standardisation of a full-scale chamber method for regulation purposes by simulation of building site fibre emission from mineral wool products during installation. For some years five Eurima member companies have worked with individual full-scale chamber measurements, using different chamber sizes and installation procedures. Due to different test conditions, the previous test results obtained are not comparable and thus form an unreliable basis for determination of a standard method. The chamber size and several other parameters seem to influence the fibre concentration. During the project in question all relevant parameters, which are considered to have a measurable impact on the fibre concentration, have been examined, and suitable standard test conditions have been defined according to the test results. (orig.)

  10. Biogas production from cheese whey wastewater: laboratory- and full-scale studies.

    Science.gov (United States)

    Stamatelatou, K; Giantsiou, N; Diamantis, V; Alexandridis, C; Alexandridis, A; Aivasidis, A

    2014-01-01

    A two-phase system for biogas production from cheese whey wastewater (CWW) was designed, set up and operated at laboratory and full scale for a whole cheese production season (8-9 months). The high efficiency and stability of the laboratory-scale system was demonstrated under various organic loading rates (OLRs) reaching 13 g chemical oxygen demand (COD) L(-1)d(-1) and producing up to 9 L L(-1)d(-1) of biogas (approximately 55% in methane). The COD removal was above 95% and the pH was maintained above 6.3 without any chemical addition. The full-scale system was operated at lower OLRs than its normal capacity, following the good response and high stability in disturbances of the laboratory-scale unit.

  11. Septic tank combined with anaerobic filter and conventional UASB: results from full scale plants

    Directory of Open Access Journals (Sweden)

    F. J. A. da Silva

    2013-03-01

    Full Text Available Anaerobic digestion is an important alternative for domestic wastewater treatment, especially in warm climate regions. Two full-scale anaerobic schemes were investigated: septic tank combined with anaerobic filter (S T A NF and conventional UASB reactors. Treated effluents from these systems were subjected to disinfection by chlorination. The operational performance of 56 full-scale plants (36 S T A NF and 20 UASB provided a realistic view. Findings showed that the plants operated with low OLR (< 2.0 kg COD/m³.day. Despite this, the removal of organic material was below values suggested by the literature (around 60% for COD. A removal of 4.0 Log10 units of total coliform and E. coli can be reached with residual chlorine (R CL of at least 2.0 Cl-Cl2/l. Although UASB plants have performed better, improvement of maintenance is needed in both treatment configurations.

  12. Evaluation of Response Prediction Procedures using Full Scale Measurements for a Container Ship

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher; Nielsen, Ulrik Dam

    2013-01-01

    on superposition of sinus-oidal components. The conditional processes do not need offline training and will be applied to measured time series in order to evaluate the accuracy of response predictions within the next 1-30 seconds. The number of measured points and the time distances between them are varied......This paper deals with the analysis of recent full-scale strain measurements in the hull of a large container carrier covering several months of operation. The focus is on the real-time prediction accuracy of responses 5-15 seconds ahead of the measurements. Such results are less applicable...... to determine the best solutions. A procedure based on 11 measured points spaced 1 sec, covering the last 10 sec of the instantaneous measured signal seems generally able to give fair predictions up to 5-10 sec ahead of the current time. The full-scale data is provided through the EU FP7 project Tools for Ultra...

  13. Evolution of the Total Sulphur Content in Full-Scale Wastewater Sludge Treatment

    OpenAIRE

    Dewil, Raf; Baeyens, Jan; Roels, Joris; Van De Steene, Boudewijn

    2009-01-01

    The present research studies the evolution of sulphur concentrations during wastewater treatment for various full-scale treatment plants and reveals that a significant amount of S is released as highly soluble sulphates with the sludge water during sludge thickening when sludge is still in aerobic conditions. During digestion, sulphur concentrations in the sludge (expressed as mg S/kg of dry solids) generally increased due to destruction of organic material, and relatively low release of H2S....

  14. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  15. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  16. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  17. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR with 50,000 m3 d−1 for treating a town’s wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O reactor and an oxidation ditch (OD being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS. X-ray fluorescence (XRF analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  18. Autonomous smart sensor network for full-scale structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  19. Aerobic sludge granulation in a full-scale sequencing batch reactor.

    Science.gov (United States)

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m(3) d(-1) for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g(-1), diameter of 0.5 mm, and settling velocity of 42 m h(-1) were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  20. Full scale demonstration plant for anaerobic digestion of sorted municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Szikriszt, G.; Koehlin, S.-E.; Kaellersjoe, L. (BIOMET AB, Sundbyberg (SE)); Frostell, B. (Swedish Environmental Research Institute, Stockholm (SE))

    1992-01-01

    A possible future alternative for the treatment of organic material inmunicipal solid waste is anaerobic digestion at a TS concentration of around 10%. The results from a successful pilot plant experiment were reported. An existing 900 m{sup 3} full scale anaerobic digester for municipal sludge was reconstructed for digestion of a mixture of sorted municipal solid waste and municipal sludge. The reconstruction of the anaerobic digester system involved the installation of a novel milling stage for size reduction of incoming waste, removal of unsuitable materials, such as glass, metals etc and preparation of a feedstock with a TS concentration of 10%. The anaerobic digester has been equipped with a mechanical mixing system. The system also comprises an internal water recirculation system, allowing a minimal production of waste water for further treatment. The retrofitted digester was started in September 1991 and the milling station and the separation system in April 1992. During the demonstration operation, the interest is focused on the following key areas: May the succesful results in a 20 m{sup 3} pilot plant be realised also on a full scale Is it possible to solve potential accumulation problems Is the reliability and durability of the milling equipment chosen In the paper, the full scale plant is presented as well as initial results of operation. (au).

  1. Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft

    Science.gov (United States)

    Mason, Brian H.; Warren, Jerry E., Jr.

    2017-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.

  2. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    Science.gov (United States)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  3. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    Science.gov (United States)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  4. Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment.

    Science.gov (United States)

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Yuan, Zhiguo

    2016-05-01

    In some wastewater treatment plants (WWTPs), the ever increasing production of sludge with the expanding population overloaded the anaerobic digestion which compromises the sludge reduction efficiency. Post anaerobic digestion of anaerobically digested sludge (ADS) has been applied to enhance sludge reduction, however, to a very limited extent. This study verified the effectiveness of free nitrous acid (FNA i.e. HNO2) pre-treatment on enhancing full-scale ADS degradation in post anaerobic digestion. The ADS collected from a full-scale WWTP was subject to FNA treatment at concentrations of 0.77, 1.54, 2.31, 3.08, and 3.85 mg N/L for 24 h followed by biochemical methane potential tests. The FNA treatment at all concentrations resulted in an increase (from 1.5-3.1 % compared to the control) in sludge reduction with the highest improvement achieved at 0.77 mg HNO2-N/L. The FNA treatment at this concentration also resulted in the highest increase in methane production (40 %) compared to the control. The economic analysis indicates that FNA treatment is economically attractive for enhancing post anaerobic digestion of full-scale ADS.

  5. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  6. Development and sensitivity study of a simplified and dynamic method for double glazing facade and verified by a full-scale façade element

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    with experimental data collected in a full-scale façade element test facility at Aalborg University (DK). Comparison was conducted between the simplified method and WIS software on the accuracy of calculating internal surface temperature of double glazing facade. The method is based on standards EN410 and EN673...

  7. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various excitation mechanisms have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... rather than reduced velocity, indicating that Reynolds number governs the aeroelastic effects in these conditions. There is a significant drop in the aerodynamic damping in the critical Reynolds number range, which is believed to be related to the large amplitude cable vibrations observed on some bridges...... and excitation from the deck and/or towers. Although there have been many observations of large cable vibrations on bridges, there are relatively few cases of direct full-scale cable vibration and wind measurements, and most research has been based on wind tunnel tests and theoretical modelling.This paper...

  8. Modeling the early evolution of massive OB stars with an experimental wind routine

    CERN Document Server

    Keszthelyi, Zsolt; Wade, Gregg

    2016-01-01

    Stellar evolution models of massive stars are very sensitive to the adopted mass-loss scheme. The magnitude and evolution of mass-loss rates significantly affect the main sequence evolution, and the properties of post-main sequence objects, including their rotational velocities. Driven by potential discrepancies between theoretically predicted and observationally derived mass-loss rates in the OB star range, we particularly aim to investigate the response to mass-loss rates that are lower than currently adopted, in parallel with the mass-loss behavior at the "first" bi-stability jump. We perform 1D hydrodynamical model calculations of single $20 - 60 \\, M_{\\odot}$ Galactic ($Z = 0.014$) stars where the effects of stellar winds are already significant during the main sequence phase. We develop an experimental wind routine to examine the behavior and response of the models under the influence of different mass-loss rates. This observationally guided, simple and flexible wind routine is not a new mass-loss descr...

  9. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    Science.gov (United States)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  10. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  11. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    Science.gov (United States)

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Introducing sequential managed aquifer recharge technology (SMART) - From laboratory to full-scale application.

    Science.gov (United States)

    Regnery, Julia; Wing, Alexandre D; Kautz, Jessica; Drewes, Jörg E

    2016-07-01

    Previous lab-scale studies demonstrated that stimulating the indigenous soil microbial community of groundwater recharge systems by manipulating the availability of biodegradable organic carbon (BDOC) and establishing sequential redox conditions in the subsurface resulted in enhanced removal of compounds with redox-dependent removal behavior such as trace organic chemicals. The aim of this study is to advance this concept from laboratory to full-scale application by introducing sequential managed aquifer recharge technology (SMART). To validate the concept of SMART, a full-scale managed aquifer recharge (MAR) facility in Colorado was studied for three years that featured the proposed sequential configuration: A short riverbank filtration passage followed by subsequent re-aeration and artificial recharge and recovery. Our findings demonstrate that sequential subsurface treatment zones characterized by carbon-rich (>3 mg/L BDOC) to carbon-depleted (≤1 mg/L BDOC) and predominant oxic redox conditions can be established at full-scale MAR facilities adopting the SMART concept. The sequential configuration resulted in substantially improved trace organic chemical removal (i.e. higher biodegradation rate coefficients) for moderately biodegradable compounds compared to conventional MAR systems with extended travel times in an anoxic aquifer. Furthermore, sorption batch experiments with clay materials dispersed in the subsurface implied that sorptive processes might also play a role in the attenuation and retardation of chlorinated flame retardants during MAR. Hence, understanding key factors controlling trace organic chemical removal performance during SMART allows for systems to be engineered for optimal efficiency, resulting in improved removal of constituents at shorter subsurface travel times and a potentially reduced physical footprint of MAR installations.

  13. Application of a synchronous generator with a boost converter in wind turbines: an experimental overview

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Bogi Bech

    2012-01-01

    An electrical structure of a variable-speed wind turbine based on an externally excited synchronous generator; a passive diode rectifier; and a boost converter is discussed in this study. The clear advantage of such a system is its lower-semi-conductor devices count. A brief theoretical explanati...... in the study that such capacitors can be a major issue when high-frequency switching is applied to the voltage at the generator terminals. Some major results from the experimental work are included. The experimental setup used in this work is a scaled down 7.5=kVA system....... switching frequency of the boost converter (fs=1= kHz), the generator sub-transient inductance (not the synchronous inductance) appears as an equivalent inductance seen by the boost converter. The parasitic capacitors present in the generator terminals are often neglected from design issues. It is presented...

  14. Experimental evaluation of a variable-speed, doubly-fed wind-power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Brune, C.S. (Black Decker Inc., Towson, MD (United States)); Spee, R.; Wallace, A.K. (Oregon State Univ., Corvallis, OR (United States). Dept. of Electrical Computer Engineering)

    The paper evaluates the potential of a brushless doubly-fed generation system for wind power applications. A 1.5 kW proof-of-concept laboratory prototype is used to investigate feasibility of the proposed variable-speed generation principle. Experimental results show that the prototype system can achieve high efficiency over a range of speeds. The system efficiencies achieved at the power levels considered compare favorably with conventional squirrel cage induction machines. It is experimentally demonstrated that the brushless doubly-fed system achieves variable-speed operation with a power converter of reduced rating. For the prototype under consideration, a 2:1 speed range can be covered with a converter rated at approximately 25% of system capacity. While reactive power control can be realized with the proposed system, the magnitude is limited by the desired low converter rating. The prototype system also is shown to exhibit excellent output current waveforms.

  15. Ship manoeuvrability: full scale trials of colombian navy riverine support patrol vessel

    OpenAIRE

    Carreño Moreno, Jorge; Sierra Vanegas, Etty; Jimenez Gonzalez, Victor

    2011-01-01

    Methodology and results of full scale maneuvering trials for Riverine Support Patrol Vessel “RSPV”, built by COTECMAR for the Colombian Navy are presented. !is ship is equipped with a “Pump – Jet” propulsion system and the hull corresponds to a wide-hull with a high Beam – Draft ratio (B/T=9.5). Tests were based on the results of simulation of turning diameters obtained from TRIBON M3© design software, applying techniques of Design of Experiments “DOE”, to rationalize the number of runs...

  16. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    Science.gov (United States)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  17. Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed

    OpenAIRE

    Eleanor S. Lee; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

    2000-01-01

    Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to transform windows and skylights from an energy liability to an energy source for the nation's building stock. Monitored results from a full-scale demonstration of large-area electrochromic windows are given. The test consisted of two side-by-side, 3.7x4.6-m, office-like rooms. In each room, five 62x173-cm lower electrochromic windows and five 62x43-cm upper electrochromic windo...

  18. Full Scale Experiences with Didactic Changes in Distance Education in Master of Industrial Information Technology (MII)

    DEFF Research Database (Denmark)

    Helbo, Jan; Knudsen, Morten Haack; Borch, Ole M.

    2005-01-01

    This paper report the main results of didactic changes in the first year of an experiment in ICT-based distance learning. The results are based on a full scale experiment in the education, Master of Industrial Information Technology (MII). The experiment transforming the well functioning on......-campus engineering program based on project organized collaborative learning to the technology supported distance education program failed. Despite of many miner didactic changes we did not obtain the same self regulating learning effect in the group work among the off-campus students as is the case for oncampus....... Questionnaires, discussions and measurements of the internet activities show results which are contradictory compared to expectations....

  19. Development of a full-scale training simulator for an 800-MW power unit

    Science.gov (United States)

    Zhuravlev, S. K.; Andreev, A. M.

    2013-07-01

    Stages of work involving preparation of requirements specification, development, and subsequent implementation of a project for constructing a full-scale training simulator of an 800-MW power unit are considered. The training simulator is constructed using the Kosmotronika-Venets computerized automation system developed by PIK Progress (Moscow). The entire personnel training system, the arrangement of drills, and the concept of structuring the entire personnel education system at the Surgut GRES-2 district power station, a branch of E.ON Rossiya, had to be touched in drawing up the requirements specification for elaborating the training simulator. The article describes how these problems were solved.

  20. Controlling Urban Lighting by Human Motion Patterns results from a full Scale Experiment

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.;

    2012-01-01

    This paper presents a full-scale experiment investigating the use of human motion intensities as input for interactive illumination of a town square in the city of Aalborg in Denmark. As illuminators sixteen 3.5 meter high RGB LED lamps were used. The activity on the square was monitored by three...... and the immersed persons. The experiment also demonstrated that interactive can give significant power savings. In the current experiment there was a difference of 92% between the most and less energy consuming light scenario...

  1. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...... framework to manage the multi-criteria WWTP design/retrofit problem for domestic wastewater treatment. The design space (i.e. alternative treatment technologies) is represented in a superstructure, which is coupled with a database containing data for both performance and economics of the novel alternative...

  2. Potential of alternative sorbents for desulphurization: from laboratory tests to the full-scale combustion unit

    Energy Technology Data Exchange (ETDEWEB)

    Zbyszek Szeliga; Dagmar Juchelkova; Bohumir Cech; Pavel Kolat; Franz Winter; Adam J. Campen; Tomasz S. Wiltowski [Technical University of Ostrava (VSB), Ostrava (Czech Republic). Department of Energy Engineering

    2008-09-15

    At present, natural limestone is used for the desulphurization of waste gases from the combustion of fossil fuels. However, it is important to save all primary resources, such as limestone, for the future. The researchers focused on finding alternative sorbents for the purpose of desulphurization in a dry additive method, which would become the alternative for natural limestone. This paper is primarily focused on desulphurization tests of selected substances. Tests were initially conducted on the laboratory scale, followed by pilot and full-scale combustion units. 15 refs., 9 figs., 5 tabs.

  3. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  4. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Boe, Kanokwan; Ellegaard, L.

    2005-01-01

    A study on 18 full-scale centralized biogas plants was carried out in order to find significant operational factors influencing productivity and stability of the plants. It was found that the most plants were operating relatively stable with volatile fatty acids (VFA) concentration below 1.5 g....../l. VFA concentration increase was observed in occasions with dramatic overloading or other disturbances such as operational temperature changes. Ammonia was found to be a significant factor for stability. A correlation between increased residual biogas production and high ammonia was found. When ammonia...

  5. Experimental Research on an Active Sting Damper in a Low Speed Acoustic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Jinjin Chen

    2014-01-01

    Full Text Available Wind tunnels usually use long cantilever stings to support aerodynamic models in order to reduce support system flow interference on experimental data. However, such support systems are a potential source of vibration problems which limit the test envelope and affect data quality due to the inherently low structural damping of the systems. When exposed to tunnel flow, turbulence and model flow separation excite resonant Eigenmodes of a sting structure causing large vibrations due to low damping. This paper details the development and experimental evaluation of an active damping system using piezoelectric devices with balance signal feedback both in a lab and a low speed acoustic wind tunnel and presents the control algorithm verification tests with a simple cantilever beam. It is shown that the active damper, controlled separately by both PID and BP neural network, has effectively attenuated the vibration. For sting mode only, 95% reduction of displacement response under exciter stimulation and 98% energy elimination of sting mode frequency have been achieved.

  6. Experimental evaluation of the wind effects on an operating power transmission tower

    Directory of Open Access Journals (Sweden)

    Hermes Carvalho

    Full Text Available Abstract Static and dynamic effects on power transmission towers can be evaluated by methodologies available in codes, which suggest the use of linear static analysis. By using numerical simulations, it is possible to observe the strong influence of the geometric nonlinear behavior of transmission cables. Dynamic effects also strongly influence this behavior, with the possibility of resonance between the cables and the structure, but up to the moment, the existent analysis procedures have not been completely validated on an experimental basis. In order to validate a complete analysis methodology, experimental procedures are proposed for a suspension tower of a 138kV transmission line in use. A tridimensional anemometer was installed on this structure in order to measure the values and directions of wind speeds. Simultaneous strain values were collected on the main elements of the tower through optical extensometers. Optical sensor technology with Fiber Bragg Gratings was used, due to the characteristic of immunity to the electromagnetic field occasioned by high electric currents. The string swing angle was evaluated through a high-resolution camera and a tridimensional accelerometer. With this instrumentation, it is possible to create a complete database that correlates wind speeds with the responses of the structural set. At the moment, 5 months of data have been collected and the instrumentation is in the final testing phase and synchronized. After this step, real-time measurements will be performed.

  7. Performance and Loads Data from a Wind Tunnel Test of a Full-Scale, Coaxial, Hingeless Rotor Helicopter.

    Science.gov (United States)

    1981-10-01

    m N"-40 Uf ’tJ mI -4U~r LA P nN-.-V ( n14P - M-i N I CO 0 I.Ul -0 La 0~’ - . 0 0~~~f 0 Zn Mo. . 4.* ~ . . . p-’ -4- ’o N () tLc .QQ t n %0 4- af r...O - NI Io I-0a0L U%-1 4 r 5 It V 0NI %I z I I P- INk c - ( CNf~ 󈨋 LUC Nv’’ Z C Z .0 c eeec 9 Ii 5 e e S ’> >4~ O 4 ~ t - 2210N u O~ Pr -4

  8. The Effect of the Wings of Single Engine Airplanes on Propulsive Efficiency as Shown by Full Scale Wind Tunnel Tests

    Science.gov (United States)

    Weick, Fred E; Wood, Donald H

    1929-01-01

    An investigation was conducted to determine the effect of the wings on propulsive efficiency. The wings are shown to cause a reduction of 1 percent to 3 percent in propulsive efficiency, which is about the same for monoplane as well as biplane wings.

  9. The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas

    2009-11-01

    HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)

  10. Full-scale monitoring system for structural prestress loss based on distributed brillouin sensing technique

    Science.gov (United States)

    Chunguang, Lan; Liguang, Zhou; Zhiyu, Huo

    2017-08-01

    Prestress loss is critical to impact the safety of prestressed structures. Unfortunately, up to date, there are no qualified techniques to handle this issue due to the fact that it is too hard for sensors to survive the harsh construction environments and the time-dependent service life of the large-span prestressed structures. This paper proposes a novel technique to monitor prestress loss in prestressed beams using Brillouin optical fiber sensors. A novel smart steel strand based on the sensing technique of full-scale Brillouin optical fiber sensors was introduced. Two kinds of prestressed structure were used to verify the concept of monitoring prestress loss using smart steel strands. The prestress loss data have been taken by Brillouin optical fiber sensors. And the monitoring results agree well with those from the conventional sensors. The monitoring data can reveal both the full-scale distribution and the time history of prestress loss during the construction stage and also in-service phrase.

  11. Full-scale crash test and FEM simulation of a crashworthy helicopter seat

    Institute of Scientific and Technical Information of China (English)

    HU Da-yong; ZHANG Xiang

    2012-01-01

    Crashworthy seat structure with considerable energy absorption capacity is a key component for aircraft to improve its crashworthiness and occupant survivability in emergencies. According to Federal Aviation Administration(FAA) regulations, seat performance must be certified by dynamic crash test which is quite expensive and time-consuming. For this reason, numerical simulation is a more efficient and economical approach to provide the possibility to assess seat performances and predict occupant responses. A numerical simulation of the crashworthy seat structure was presented and the results were also compared with the full-scale crash test data. In the numerical simulation, a full-scale three-dimensional finite element model of the seat/occupant structure was developed using a nonlinear and explicit dynamic finite element code LS-DYNA3D. Emphasis of the numerical simulation was on predicting the dynamic response of seat/occupant system,including the occupant motion which may lead to injuries,the occupant acceleration-time histories, and the energy absorbing behavior of the energy absorbers. The agreement between the simulation and the physical test suggestes that the developed numerical simulation can be a feasible substitute for the dynamic crash test.

  12. Destruction and formation of dioxin-like PCBs in dedicated full scale waste incinerators.

    Science.gov (United States)

    Van Caneghem, Jo; Block, Chantal; Vandecasteele, Carlo

    2014-01-01

    Destruction and formation of dioxin-like PCBs in full scale waste incinerators is studied by analysing input waste streams and boiler and fly ash of a grate furnace incinerator (GFI) incinerating MSW, of a Fluidised Bed Combustor (FBC) incinerating a mix of 50% sludge, 25% refuse derived fuel (RDF) and 25% automotive shredder residue (ASR) and of a rotary kiln incinerator (RKI) incinerating hazardous waste. The dioxin-like PCB fingerprints of the waste inputs show that PCB oils Aroclor 1242 and Aroclor 1254 late are the major dioxin-like PCB contamination source of sludge, RDF and ASR. The dioxin-like PCB fingerprints of the waste inputs are clearly different from the fingerprints of the outputs, i.e. boiler and fly ash, indicating that in full scale waste incinerators dioxin-like PCBs in the input waste are destroyed and other dioxin-like PCBs are newly formed in the post combustion zone. The dioxin-like PCB fingerprint of boiler and fly ash of all three incinerators corresponds well to the fly ash fingerprint obtained in lab scale de novo synthesis experiments, indicating that dioxin-like PCBs are mainly formed through this mechanism. The high PCB concentration in the input waste mix of the RKI does not promote the formation of dioxin-like PCBs through precursor condensation.

  13. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W. [and others

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the {open_quote}normal{close_quote} configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge.

  14. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

    KAUST Repository

    Gonzalez-Gil, Graciela

    2014-12-11

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32 %), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18 %) and Anaerolinea (7 %) along with heterotrophic denitrifiers Rhodocyclacea (9 %), Comamonadacea (3 %), and Shewanellacea (3 %) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  15. Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.

    2017-01-01

    During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.

  16. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal.

    Science.gov (United States)

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2013-12-01

    This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems.

  17. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    Science.gov (United States)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  18. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    Science.gov (United States)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  19. Optimization of a full-scale Unitank wastewater treatment plant for biological phosphorus removal.

    Science.gov (United States)

    Zhou, Zhen; Xing, Can; Wu, Zhichao; Tong, Fei; Wang, Junru

    2014-01-01

    The Unitank process combines the advantages of traditional continuous-flow activated sludge processes and sequencing batch reactors, and has been extensively employed in many wastewater treatment plants (WWTPs) in China. Biological phosphorus removal (BPR) of a full-scale Unitank WWTP was optimized by increasing anaerobic time from 80 to 120 min in an operation cycle of 360 min and reducing solid retention time (SRT) from 21.3 to 13.1 d. The BPR efficiency of the full-scale Unitank system increased from 63.8% (SRT of 21.3 d) to 83.2% for a SRT of 13.1 d. When the anaerobic time increased from 80 to 120 min, the net anaerobic phosphorus release amount increased from 0.25 to 1.06 mg L(-1), and sludge phosphorus content rose from 13.8 to 15.0 mgP x (gSS)(-1). During half an operation cycle, the average specific phosphorus release rate increased from 0.097mgP x (gVSS x h)(-1) in 0-40 min to 0.825 mgP x (gVSS x h)(-1) in 40-60 min. Reducing SRT and increasing anaerobic time account for 84.6% and 15.4% in the total increment of phosphorus removal of 1.15 mgL(-1).

  20. Optimizing the configuration of a clearwell by integrating pilot and full-scale tracer testing

    Institute of Scientific and Technical Information of China (English)

    LIU Wenjun; DU Zhipeng; JIN Junwei

    2007-01-01

    In this paper,the main factors impacting the plug flow pattern of a clearwell were investigated by integrating pilot-scale,full-scale clearwell tracer testing and computational fluid dynamics (CFD) simulation.It was found that pilot tracer testing,full-scale tracer testing and CFD simulation all demonstrated that the correlation between the ratio of t10/T and L/W can be approximately expressed by:t10/T= 0.189 41n(L/W)-0.049 4.This study confirmed that the installation of baffles within clearwells is an efficient way to optimize their configuration.In addition,the inlet velocity has a minimal contribution to the ratio of t10/T.However,the ratio of turning channel width to charmel width (d/W)significantly contributes to the ratio of t10/T.The optimal ratio of d/W is 0.8-1.2 for maintaining better plug flow pattern.The number of turning channels is one of the main factors that impact the ratio of t10/T.When increasing the number of turning channels,a lower ratio of t10/T is obtained.

  1. Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications.

    Science.gov (United States)

    Brepols, Ch; Schäfer, H; Engelhardt, N

    2010-01-01

    Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed.

  2. Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain

    Directory of Open Access Journals (Sweden)

    Kritana Prueksakorn

    2015-08-01

    Full Text Available With an increased awareness of sustainability issues, natural ventilation has become an elegant method for reducing the costs and environmental effects of the energy that is used to maintain comfortable indoor air quality rather than using mechanical ventilation. The windows in many industrial buildings are continuously open to exhaust pollutants and intake fresh air. Though windows are functional and efficient for natural ventilation, rainwater is able to penetrate through the windows during wind-driven rain. For industries in which the moisture content affects the quality of the product, the intrusion of a large amount of rainwater through windows must be prevented without compromising the effective ventilation. The aim of this research is to determine an innovative design for windows to accomplish the optimum of high ventilation and low rain penetration. For this purpose, windows are variously innovated and tested in full-scale measurements, reduced-scale wind-tunnel measurements and computational fluid dynamics (CFD. An artificial rain and wind velocity to mimic the average of the maximum values in Korea are created. The maximum reduction in rain penetration of over 98% compared to basic 90° open windows is attained with only a 4%–9% decrement of ventilation efficiency in the two recommended designs.

  3. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  4. Smouldering Remediation (STAR) Technology: Field Pilot Tests and First Full Scale Application

    Science.gov (United States)

    Gerhard, J.; Kinsman, L.; Torero, J. L.

    2015-12-01

    STAR (Self-sustaining Treatment for Active Remediation) is an innovative remediation technology based on the principles of smoldering combustion where the contaminants are the fuel. The self-sustaining aspect means that a single, local ignition event can result in many days of contaminant destruction in situ. Presented research to date has focused on bench scale experiments, numerical modelling and process understanding. Presented here is the maturation of the in situ technology, including three field pilot tests and a full-scale implementation to treat coal tar-impacted soils. The first pilot determined a Radius of Influence (ROI) for a single ignition of approximately eight feet with an average propagation rate of the reaction of approximately one foot per day. TPH concentrations in soils were reduced from 10,000 milligrams per kilogram to a few hundred milligrams per kilogram. The second pilot was conducted in an area of significant void spaces created through the anthropogenic deposition of clay bricks and tiles. The void spaces led to pre-mature termination of the combustion reaction, limiting ROI and the effectiveness of the technology in this setting. The third case study involved the pilot testing, design, and full-scale implementation of STAR at a 37-acre former chemical manufacturing facility. Three phases of pilot testing were conducted within two hydrogeologic units at the site (i.e., surficial fill and deep alluvial sand units). Pilot testing within the fill demonstrated self-sustained coal tar destruction rates in excess of 800 kg/day supported through air injection at a single well. Deep sand unit testing (twenty-five feet below the water table) resulted in the treatment of a targeted six-foot layer of impacted fine sands to a radial distance of approximately twelve feet. These results (and additional parameters) were used to develop a full-scale STAR design consisting of approximately 1500 surficial fill ignition points and 500 deep sand ignition

  5. Identification of aeroelastic forces on bridge cables from full-scale measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Macdonald, J.H.G.; Georgakis, Christos

    2011-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various mechanisms have been suggested for their excitation, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... Bridge. The system records wind conditions and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using state-of-the-art methods of output-only system identification, the vibration modes of the cables have been identified. From these modes...

  6. Identification of aeroelastic forces on bridge cables from full-scale measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Macdonald, J.H.G.; Georgakis, Christos

    2011-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various mechanisms have been suggested for their excitation, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... Bridge. The system records wind conditions and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using state-of-the-art methods of output-only system identification, the vibration modes of the cables have been identified. From these modes...

  7. Experimental testing of axial induction based control strategies for wake control and wind farm optimization

    Science.gov (United States)

    Bartl, J.; Sætran, L.

    2016-09-01

    In state-of-the-art wind farms each turbine is controlled individually aiming for optimum turbine power not considering wake effects on downstream turbines. Wind farm control concepts aim for optimizing the overall power output of the farm taking wake interactions between the individual turbines into account. This experimental wind tunnel study investigates axial induction based control concepts. It is examined how the total array efficiency of two in-line model turbines is affected when the upstream turbine's tip speed ratio (λcontrol) or blade pitch angle (β-control) is modified. The focus is particularly directed on how the wake flow behind the upstream rotor is affected when its axial induction is reduced in order to leave more kinetic energy in the wake to be recovered by a downstream turbine. It is shown that the radial distribution of kinetic energy in the wake area can be controlled by modifying the upstream turbine's tip speed ratio. By pitching out the upstream turbine's blades, however, the available kinetic energy in the wake is increased at an equal rate over the entire blade span. Furthermore, the total array efficiency of the two turbine setup is mapped depending on the upstream turbines tip speed ratio and pitch angle. For a small turbine separation distance of x/D=3 the downstream turbine is able to recover the major part of the power lost on the upstream turbine. However, no significant increase in the two-turbine array efficiency is achieved by altering the upstream turbine's operation point away from its optimum.

  8. A computational fluid dynamics model for wind simulation:model implementation and experimental validation

    Institute of Scientific and Technical Information of China (English)

    Zhuo-dong ZHANG; Ralf WIELAND; Matthias REICHE; Roger FUNK; Carsten HOFFMANN; Yong LI; Michael SOMMER

    2012-01-01

    To provide physically based wind modelling for wind erosion research at regional scale,a 3D computational fluid dynamics (CFD) wind model was developed.The model was programmed in C language based on the Navier-Stokes equations,and it is freely available as open source.Integrated with the spatial analysis and modelling tool (SAMT),the wind model has convenient input preparation and powerful output visualization.To validate the wind model,a series of experiments was conducted in a wind tunnel.A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes.A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field.Results show that measured and simulated wind fields have high correlations,and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field.These results show the high reliability of the wind model.A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region,China) was applied to the model,and a 3D wind field has been successfully generated.The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale.

  9. Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2012-01-01

    The objectives of the present work were to investigate the aerosol formation mechanisms during full-scale suspension firing of wood, and, to evaluate the effect of coal fly ash addition on the formation of aerosols under different ash load conditions. Tests with suspension firing of 100 % wood...... pellets, with and without injection of coal fly ash as additive, were carried out at the 800 MWth multifuel boiler at Avedøre Power Plant. An extractive sampling system consisting of a gas ejector-diluter connected to a 10-stage Berner type low pressure cascade impactor (aerodynamic diameter range of 0...... for the experiments with coal fly ash addition. This indicates that the coal fly ash is effective in capturing volatile alkalis released from the wood during combustion, thus suppressing the homogeneous nucleation of alkali-salts. SEM/EDS and TEM/EDS analysis revealed that the large condensation peak from pure wood...

  10. Instrumentation and data acquisition for full-scale aircraft crash testing

    Science.gov (United States)

    Jones, Lisa E.; Fasanella, Edwin L.

    1993-01-01

    The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.

  11. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    -commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis...

  12. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  13. Properties important to mixing and simulant recommendations for WTP full-scale vessel testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-01

    Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assigned to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.

  14. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Jennifer Paradis

    2010-06-30

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the

  15. Quantifying measurement uncertainty in full-scale compost piles using organic micro-pollutant concentrations.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe G; Bester, Kai

    2014-05-01

    Reductions in measurement uncertainty for organic micro-pollutant concentrations in full scale compost piles using comprehensive sampling and allowing equilibration time before sampling were quantified. Results showed that both application of a comprehensive sampling procedure (involving sample crushing) and allowing one week of equilibration time before sampling reduces measurement uncertainty by about 50%. Results further showed that for measurements carried out on samples collected using a comprehensive procedure, measurement uncertainty was associated exclusively with the analytic methods applied. Application of statistical analyses confirmed that these results were significant at the 95% confidence level. Overall implications of these results are (1) that it is possible to eliminate uncertainty associated with material inhomogeneity and (2) that in order to reduce uncertainty, sampling procedure is very important early in the composting process but less so later in the process.

  16. Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions.

    Science.gov (United States)

    Kougias, P G; Boe, K; O-Thong, S; Kristensen, L A; Angelidaki, I

    2014-01-01

    Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times per year. Foaming incidents often lasted from one day to three weeks, causing 20-50% biogas production loss. One foaming case at Lemvig biogas plant has been investigated and the results indicated that the combination of feedstock composition and mixing pattern of the reactor was the main cause of foaming in this case. Moreover, no difference in bacterial communities between the foaming and non-foaming reactors was observed, showing that filamentous bacteria were not the main reason for foaming in this case.

  17. Aging biofilm from a full-scale moving bed biofilm reactor: characterization and enzymatic treatment study.

    Science.gov (United States)

    Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju; Xu, Ke; Zhang, Yan

    2014-02-01

    Effective removal of aging biofilm deserves to receive more attention. This study aimed to characterized aging biofilm from a full-scale moving bed biofilm reactor treating pharmaceutical wastewater and evaluate the hydrolysis effects of biofilm by different enzymatic treatments. Results from FTIR and biochemical composition analyses showed that it was a predominately organic-based biofilm with the ratio of total protein (PN) to polysaccharide (PS) of 20.17. A reticular structure of extracellular polymeric matrix (EPM) with filamentous bacteria as the skeleton was observed on the basal layer through SEM-EDS test. Among the four commercial proteases and amylases from Genencor®, proteases were shown to have better performances than amylases either on the removal of MLSS and PN/MLSS or on DOC (i.e., dissolved organic carbon)/MLSS raising of biofilm pellets. Difference of dynamic fluorescence characteristics of dissolved organic matters after treated by the two proteases indicated distinguishing mechanisms of the treating process.

  18. Development of an in-line process viscometer for the full-scale biogas process.

    Science.gov (United States)

    Mönch-Tegeder, Matthias; Lemmer, Andreas; Hinrichs, Jörg; Oechsner, Hans

    2015-02-01

    An in-line viscometer was developed to determine the rheological properties of biogas slurries at a full-scale biogas plant. This type of viscometer allows the investigation of flow characteristics without additional pretreatment and has many advantageous aspects in contrast to the rotational viscometer. Various effects were studied: alterations in the feedstock structure, increasing total solid (TS) of the slurry and the disintegration of the feedstock on the rheological properties. The results indicate that the Power-Law model is sufficient for the description of the flow curve of biogas slurries. Furthermore, the use of more fibrous materials increases in viscosity. The increase in TS of 10.1-15.1% resulted in a sharp increase of the viscosity. The mechanical disintegration of the feedstock positively influenced the rheological properties, but the effects were more apparent at higher TS.

  19. Overview of the Full-scale Radiological Dispersal Device Field Trials.

    Science.gov (United States)

    Green, Anna Rae; Erhardt, Lorne; Lebel, Luke; Duke, M John M; Jones, Trevor; White, Dan; Quayle, Debora

    2016-05-01

    In 2012, Defence Research and Development Canada, in partnership with a number of other Canadian and International organizations, led a series of three field trials designed to simulate a Radiological Dispersal Device (RDD). These trials, known as the Full-Scale RDD (FSRDD) Field Trials, involved the explosive dispersal of a short-lived radioactive tracer ((140)La, t1/2 = 40.293 h). The FSRDD Field Trials required a significant effort in their planning, preparation, and execution to ensure that they were carried out in a safe, efficient manner and that the scientific goals of the trials were met. The discussion presented here details the planning and execution of the trials, outlines the relevant radiation safety aspects, provides a summary of the source term and atmospheric conditions for the three dispersal events, and provides an overview of the measurements that were made to track the plumes and deposition patterns.

  20. Interpersonal Transport of Expiratory Aerosols among Three Manikins in a Full-Scale Test Room

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter Vilhelm; Jensen, Rasmus Lund

    2014-01-01

    the average exposure is low. Two symmetrically located target manikins have different exposures of droplet nuclei exhaled by one susceptible manikin. CFD simulations were also conducted to predict the aerosols deposited on the targets’ body surfaces. 3 droplet nuclei were predicted to land on the left target......This study focuses on occupants’ exposure of aerosols exhaled by one susceptible in a full-scale test room. Three breathing thermal manikins are standing in the middle of room and both the process in the microenvironment and in the macroenvironment are considered. A diffusive ceiling has been...... installed to induce fresh air without generating sensible drafts in an occupied zone with fully mixing flow. The exposures of two target manikins to aerosols exhaled by one susceptible manikin were measured. Tracer gas N2O was used to simulate droplet nuclei. Comparisons on different mutual distances were...

  1. Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management.

    Science.gov (United States)

    Williams, Julie; Williams, Haydn; Dinsdale, Richard; Guwy, Alan; Esteves, Sandra

    2013-07-01

    Microbial populations in a full-scale anaerobic digester fed on food waste were monitored over an 18-month period using qPCR. The digester exhibited a highly dynamic environment in which methanogenic populations changed constantly in response to availability of substrates and inhibitors. The methanogenic population in the digester was dominated by Methanosaetaceae, suggesting that aceticlastic methanogenesis was the main route for the production of methane. Sudden losses (69%) in Methanosaetaceae were followed by a build-up of VFAs which were subsequently consumed when populations recovered. A build up of ammonium inhibited Methanosaetaceae and resulted in shifts from acetate to hydrogen utilization. Addition of trace elements and alkalinity when propionate levels were high stimulated microbial growth. Routine monitoring of microbial populations and VFAs provided valuable insights into the complex processes occurring within the digester and could be used to predict digester stability and facilitate digester optimization.

  2. Molecular analysis of methanogens involved in methanogenic degradation of tetramethylammonium hydroxide in full-scale bioreactors.

    Science.gov (United States)

    Whang, Liang-Ming; Hu, Tai-Ho; Liu, Pao-Wen Grace; Hung, Yu-Ching; Fukushima, Toshikazu; Wu, Yi-Ju; Chang, Shao-Hsiung

    2015-02-01

    This study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH. These results suggest that Methansarcina is responsible for methanogenic TMAH degradation at higher TMAH concentrations, while Methanomethylovorans may be important at a lower TMAH condition.

  3. Parallel Computing of the Underwater Explosion Cavitation Effects on Full-scale Ship Structures

    Institute of Scientific and Technical Information of China (English)

    Zhi Zong; Yanjie Zhao; Fan Ye; Haitao Li; Gang Chen

    2012-01-01

    Abstract:As well as shock wave and bubble pulse loading,cavitation also has very significant influences on the dynamic response of surface ships and other near-surface marine structures to underwater explosive loadings.In this paper,the acoustic-structure coupling method embedded in ABAQUS is adopted to do numerical analysis of underwater explosion considering cavitation.Both the shape of bulk cavitation region and local cavitation region are obtained,and they are in good agreement with analytical results.The duration of reloading is several times longer than that of a shock wave.In the end,both the single computation and parallel computation of the cavitation effect on the dynamic responses of a full-scale ship are presented,which proved that reloading caused by cavitation is non-ignorable.All these results are helpful in understanding underwater explosion cavitation effects.

  4. Troubleshooting a Full-scale Wastewater Treatment Plant for Biological Nutrient Removal

    Directory of Open Access Journals (Sweden)

    Oleyiblo Oloche James

    2014-01-01

    Full Text Available The International Association of Water Quality (IAWQ Activated Sludge Model No.2 (ASM2 was applied to troubleshoot an existing underperforming full-scale wastewater treatment plant (WWTP built for biological nutrient removal. The WWTP is operated in a 3-stage pho-redox process configuration (A2O. This study was undertaken with the aim of finding optimal operating conditions that will meet TP and TN concentration requirements in the effluent of the WWTP under study without the use of either chemical or external carbon sources and also to verify the applicability, capability and predictability of ASM2 as implemented in STOAT software. ASM2 was successfully used to troubleshoot bottle neck areas and to define the operational schedule for optimal performance of the wastewater treatment plant. Consequently, the costs of chemical and external carbon sources were eliminated and the effect of residual chemicals on the environment reduced.

  5. Study on the Contra-Rotating Propeller system design and full-scale performance prediction method

    Directory of Open Access Journals (Sweden)

    Keh-Sik Min

    2009-09-01

    Full Text Available A ship's screw-propeller produces thrust by rotation and, at the same time, generates rotational flow behind the propeller. This rotational flow has no contribution to the generation of thrust, but instead produces energy loss. By recovering part of the lost energy in the rotational flow, therefore, it is possible to improve the propulsion efficiency. The contra-rotating propeller (CRP system is the representing example of such devices. Unfortunately, however, neither a design method nor a full-scale performance prediction procedure for the CRP system has been well established yet. The authors have long performed studies on the CRP system, and some of the results from the authors’ studies shall be presented and discussed.

  6. Full scale validation of helminth ova (Ascaris suum) inactivation by different sludge treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulsrud, B.; Gjerde, B.; Lundar, A.

    2003-07-01

    The Norwegian sewage sludge regulation requires disinfection (hygienisation) of all sludges for land application, and one of the criteria is that disinfected sludge should not contain viable helminth ova. All disinfection processes have to be designed and operated in order to comply with this criteria, and four processes employed in Norway (thermophilic aerobic pre-treatment, pre-pasteurisation, thermal vacuum drying in membrane filter presses and lime treatment) have been tested in full scale by inserting semipermeable bags of Ascaris suum eggs into the processes for certain limes. For lime treatment supplementary laboratory tests have been conducted. The paper presents the results of the experiments, and it could be concluded that all processes, except lime treatment, could be operated at less stringent time-temperature regimes than commonly experienced at Norwegian plants today. (author)

  7. Full scale amendment of a contaminated wood impregnation site with iron water treatment residues

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Kjeldsen, Peter; Jakobsen, Rasmus

    2016-01-01

    the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by common contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale...... amendment a 100 m2 test site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr...

  8. Calibration and validation of a phenomenological influent pollutant disturbance scenario generator using full-scale data

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Saagi, Ramesh; Lindblom, Erik Ulfson

    2014-01-01

    The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM...... rate; 2) pollutants (carbon, nitrogen); 3) temperature; and, 4) transport. Simulation results show that the model successfully describes daily/weekly and seasonal variations and the effect of rainfall and snow melting on the influent flow rate, pollutant concentrations and temperature profiles...... rainfall patterns (climate change) or influent biodegradability (process uncertainty) on the generated time series; 2) a demonstration of how to reduce the cost/workload of measuring campaigns by filling the gaps due to missing data in the influent profiles; and, 3) a critical discussion of the presented...

  9. Putting in operation a full-scale ultracold-neutron source model with superfluid helium

    Science.gov (United States)

    Serebrov, A. P.; Lyamkin, V. A.; Prudnikov, D. V.; Keshishev, K. O.; Boldarev, S. T.; Vasil'ev, A. V.

    2017-02-01

    A project of the source of ultracold neutrons for the WWR-M reactor based on superfluid helium for ultracold-neutron production has been developed. The full-scale source model, including all required cryogenic and vacuum equipment, the cryostat, and the ultracold-neutron source model has been created. The superfluid helium temperature T = 1.08 K without a heat load and T = 1.371 K with a heat load on the simulator of P = 60 W has been achieved in experiments at a technological complex of the ultracold-neutron source. The result proves the feasibility of implementing the ultracold-neutron source at the WWR-M reactor and the possibility of applying superfluid helium in nuclear engineering.

  10. Bench and Full Scale Study of Removal Effect and Mutagenicity on Mesocyclops Leukarti with Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZUO Jin-long; YANG Wei; LIU Yan-an; LIN Tao

    2006-01-01

    Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In this paper, a study of removal efficiency on Mesocyclops Leukarti with chlorine dioxide in a drinking waterworks was performed.Bench scale results showed that chlorine dioxide is more effective against Mesocyclops Leukarti. And Mesocyclops Leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation cooperated with the conventional process during the full scale study. The chlorite, by-preduct of prechlorine dioxide, was constant at 0.45 mg/L after filtration, which was lower than the critical value of the USEPA. GC-MS examination and Ames test showed that the quantity of organics and the mutagenicity in the water treated by chlorine dioxide is obviously less than that of prechlorination.

  11. TESTING OF A FULL-SCALE ROTARY MICROFILTER FOR THE ENHANCED PROCESS FOR RADIONUCLIDES REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D; David Stefanko, D; Michael Poirier, M; Samuel Fink, S

    2009-01-01

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary microfilter for solid-liquid separation applications in the Department of Energy (DOE) complex. One application involves use in the Enhanced Processes for Radionuclide Removal (EPRR) at the Savannah River Site (SRS). To assess this application, the authors performed rotary filter testing with a full-scale, 25-disk unit manufactured by SpinTek Filtration with 0.5 micron filter media manufactured by Pall Corporation. The filter includes proprietary enhancements by SRNL. The most recent enhancement is replacement of the filter's main shaft seal with a John Crane Type 28LD gas-cooled seal. The feed material was SRS Tank 8F simulated sludge blended with monosodium titanate (MST). Testing examined total insoluble solids concentrations of 0.06 wt % (126 hours of testing) and 5 wt % (82 hours of testing). The following are conclusions from this testing.

  12. Full-Scale Approximations of Spatio-Temporal Covariance Models for Large Datasets

    KAUST Repository

    Zhang, Bohai

    2014-01-01

    Various continuously-indexed spatio-temporal process models have been constructed to characterize spatio-temporal dependence structures, but the computational complexity for model fitting and predictions grows in a cubic order with the size of dataset and application of such models is not feasible for large datasets. This article extends the full-scale approximation (FSA) approach by Sang and Huang (2012) to the spatio-temporal context to reduce computational complexity. A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is proposed to select knots automatically from a discrete set of spatio-temporal points. Our approach is applicable to nonseparable and nonstationary spatio-temporal covariance models. We illustrate the effectiveness of our method through simulation experiments and application to an ozone measurement dataset.

  13. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    Science.gov (United States)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  14. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-05-01

    Full Text Available Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  15. Identifying the abundant and active microorganisms common to full scale anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Kristensen, Jannie Munk

    2017-01-01

    two full scale digesters over a six year period using 16S rRNA gene amplicon sequencing. Sampling of the sludge fed into these systems revealed that several of the most abundant populations were likely inactive and immigrating with the influent. This observation indicates that a failure to consider...... in anaerobic digestion, this study paves the way for targeted characterisation of the process important organisms towards an in depth understanding of the microbial ecology of these biotechnologically important systems.......Anaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. To this end, we investigated the microbial community composition of thirty...

  16. N-nitrosamine rejection by reverse osmosis membranes: a full-scale study.

    Science.gov (United States)

    Fujioka, Takahiro; Khan, Stuart J; McDonald, James A; Roux, Annalie; Poussade, Yvan; Drewes, Jörg E; Nghiem, Long D

    2013-10-15

    This study aims to provide longitudinal and spatial insights to the rejection of N-nitrosamines by reverse osmosis (RO) membranes during sampling campaigns at three full-scale water recycling plants. Samples were collected at all individual filtration stages as well as at a cool and a warm weather period to elucidate the impact of recovery and feed temperature on the rejection of N-nitrosamines. N-nitrosodimethylamine (NDMA) was detected in all RO feed samples varying between 7 and 32 ng/L. Concentrations of most other N-nitrosamines in the feed solutions were determined to be lower than their detection limits (3-5 ng/L) but higher concentrations were detected in the feed after each filtration stage. As a notable exception, in one plant, N-nitrosomorpholine (NMOR) was observed at high concentrations in RO feed (177-475 ng/L) and permeate (34-76 ng/L). Overall rejection of NDMA among the three RO systems varied widely from 4 to 47%. Data presented here suggest that the feed temperature can influence rejection of NDMA. A considerable variation in NDMA rejection across the three RO stages (14-78%) was also observed. Overall NMOR rejections were consistently high ranging from 81 to 84%. On the other hand, overall rejection of N-nitrosodiethylamine (NDEA) varied from negligible to 53%, which was considerably lower than values reported in previous laboratory-scale studies. A comparison between results reported here and the literature indicates that there can be some discrepancy in N-nitrosamine rejection data between laboratory- and full-scale studies probably due to differences in water recoveries and operating conditions (e.g. temperature, membrane fouling, and hydraulic conditions). Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. CLOSURE OF HLW TANKS PHASE 2 FULL SCALE COOLING COILS GROUT FILL DEMONSTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Alex Cozzi, A

    2008-06-19

    This report documents the Savannah River National Laboratory (SRNL) support for the Tank Closure and Technology Development (TCTD) group's strategy for closing high level radioactive waste (HLW) tanks at the Savannah River Site (SRS). Specifically, this task addresses the ability to successfully fill intact cooling coils, presently within the HLW tanks, with grout that satisfies the fresh and cured grout requirements [1] under simulated field conditions. The overall task was divided into two phases. The first phase was the development of a grout formulation that satisfies the processing requirements for filling the HLW tank cooling coils [5]. The second phase of the task, which is documented in this report, was the filling of full scale cooling coils under simulated field conditions using the grout formulation developed in the first phase. SRS Type I tank cooling coil assembly design drawings and pressure drop calculations were provided by the Liquid Waste (LW) customer to be used as the basis for configuring the test assemblies. The current concept for closing tanks equipped with internal cooling coils is to pump grout into the coils to inhibit pathways for infiltrating water. Access to the cooling coil assemblies is through the existing supply/return manifold headers located on top of the Type I tanks. The objectives for the second phase of the testing, as stated in the Task Technical and Quality Assurance plan (TTQAP) [2], were to: (1) Perform a demonstration test to assess cooling coil grout performance in simulated field conditions, and (2) Measure relevant properties of samples prepared under simulated field conditions. SRNL led the actual work of designing, fabricating and filling two full-scale cooling coil assemblies which were performed at Clemson Engineering Technologies Laboratory (CETL) using the South Carolina University Research and Education Foundation (SCUREF) program. A statement of work (SOW) was issued to CETL [6] to perform this work.

  18. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

    Science.gov (United States)

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity. PMID:22170425

  19. Fine water spray system: Extinguishing tests in medium and full-scale turbine hood

    Science.gov (United States)

    Wighus, R.; Aune, P.; Drangsholt, G.; Stensaas, J. P.

    1994-12-01

    The report is based on the results from two test series, called Phase 1 and Phase 2 of the project 'Halon Replacement by Fine Water Spray Technology - Turbine Hood application'. Detailed results are presented in technical reports from Phase 1 and Phase 2. The tests were carried out in two different scales, one 30 cu m test enclosure formerly used to characterize different water spray nozzles, and a full scale 70 cu m model of a turbine hood. The scope of work in Phase 1 was to identify the extinguishing characteristics of various nozzles developed by BP Sunbury Research Center, UK, and to verify the efficiency of a total fire suppression system developed by Ginge-Kerr Offshore. The fire suppression system uses a twin-fluid nozzles using air and water at pressures about 5 bar. The nozzles produce a water spray with small droplets and high velocity. The scope of work of Phase 2 was to verify the efficiency of the Fine Water Spray nozzles fighting a variety of fire scenarios which may occur in a real turbine hood. A full scale test enclosure containing a mock-up of a turbine heated internally to simulate hot metal surfaces, with insulation mats and piping as in a real turbine hood was constructed in the large test hall of SINTEF NBL. The turbine hood model was built by elements of a Multipurpose Fire Test Rig. Realistic fires with Diesel pool- and spray fires, fires in insulation mats soaked with Diesel oil under different ventilation conditions were ignited in the turbine hood model. Number of Fine Water Spray nozzles, nozzle position and spraying sequences were varied. A base for design of a Fine Water Spray system for a turbine hood is developed, and several unique features of the performance of a Fine Water Spray fire suppression system have been documented.

  20. Calibration of Airframe and Occupant Models for Two Full-Scale Rotorcraft Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta, Lucas G.; Polanco, Michael A.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. Accelerations and kinematic data collected from the crash tests were compared to a system integrated finite element model of the test article. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the second full-scale crash test. This combination of heuristic and quantitative methods was used to identify modeling deficiencies, evaluate parameter importance, and propose required model changes. It is shown that the multi-dimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and co-pilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. This approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and test planning guidance. Complete crash simulations with validated finite element models can be used

  1. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal.

    Science.gov (United States)

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-06-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of 'Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.

  2. Full scale measurements of pressure equalization on air permeable facade elements

    NARCIS (Netherlands)

    Bentum, C.A. van; Geurts, C.P.W.

    2015-01-01

    Wind-induced pressure differences over rain screens are determined by the external pressures and the pressures inside the cavity. Minimizing this pressure difference decreases the risk of water leakage and also helps to minimize the local loads on the façade elements. Current rules to determine the

  3. Full Scale Test SSP 34m blade, Combined load. Data report

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Nielsen, Magda; Jensen, Find Mølholt;

    This report is part of the research project entitled “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of...

  4. Full Scale Test on a 100km, 150kV AC Cable

    DEFF Research Database (Denmark)

    Faria da Silva, Filipe Farria; Wiechowski, W.; Bak, Claus Leth

    2010-01-01

    This paper presents some of the results obtained from the electrical measurements on a 99.7 km, 150 kV three-phase AC cable, connecting 215 MW offshore wind farm Horns Rev 2, located in Denmark west coast, to Denmark's 400 kV transmission network. The measurements were performed at nominal voltag...

  5. Plans and Specifications for a Full-Scale Towing Model Validation Experiment

    Science.gov (United States)

    1989-05-01

    extreme tension statistics of towing hawsers. Doctoral dissertation, Massachusetts Institute of Technology, Department of Ocean Engineering, Cambridge...ship’s speed, as read from the installed speed log, every ten minutes 135 TESI PLAN - NAVSEA TWO BODY TOWING EXPERIMENT 3. Environmental Data a. Log wind

  6. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

    Directory of Open Access Journals (Sweden)

    Ch. Suryanarayana

    2010-03-01

    Full Text Available Design of a Pump Jet Propulsor (PJP was undertaken for an underwater body with axisymmetric configuration using axial flow compressor design techniques supported by Computational Fluid Dynamics (CFD analysis for performance prediction. Experimental evaluation of the PJP was carried out through experiments in a Wind Tunnel Facility (WTF using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP, residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle in water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

  7. Dynamic investigation of twist-bend coupling in a wind turbine blade

    DEFF Research Database (Denmark)

    Luczak, M.; Manzato, S.; Peeters, B.;

    2011-01-01

    This paper presents some results and aspects of the multidisciplinary and interdisciplinary research oriented for the experimental and numerical study in static and dynamic domains on the bend-twist coupling in the full scale section of a wind turbine blade structure. The main goal of the conducted...... research is to confirm experimentally the numerical prediction of modification of the dynamic and static properties of a wind turbine blade. The bend-twist coupling was implemented by adding angled UD (UniDirectional) layers on the suction and pressure side of the blade. Static and dynamic tests were...... performed on a section of the full scale wind turbine blade provided by VestasWind Systems A/S. The results are presented and compared with the measurements of the original and modified blade. Comparison analysis confirmed that UD layers introduce measurable bend-twist couplings, which was not present...

  8. Dynamic investigation of twist-bend coupling in a wind turbine blade

    DEFF Research Database (Denmark)

    Luczak, M.; Manzato, S.; Peeters, B.

    2011-01-01

    This paper presents some results and aspects of the multidisciplinary and interdisciplinary research oriented for the experimental and numerical study in static and dynamic domains on the bend-twist coupling in the full scale section of a wind turbine blade structure. The main goal of the conducted...... research is to confirm experimentally the numerical prediction of modification of the dynamic and static properties of a wind turbine blade. The bend-twist coupling was implemented by adding angled UD (UniDirectional) layers on the suction and pressure side of the blade. Static and dynamic tests were...... performed on a section of the full scale wind turbine blade provided by VestasWind Systems A/S. The results are presented and compared with the measurements of the original and modified blade. Comparison analysis confirmed that UD layers introduce measurable bend-twist couplings, which was not present...

  9. Detecting delaminations and disbondings on full-scale wing composite panel by guided waves based SHM system

    Science.gov (United States)

    Monaco, E.; Boffa, N. D.; Memmolo, V.; Ricci, F.; Maio, L.

    2016-04-01

    A full-scale lower wing panel made of composite material has been designed, manufactured and sensorised within the European Funded research project named SARISTU. The authors contributed to the whole development of the system, from design to implementation as well as to the impacts campaign phase where Barely Visible and Visible Damages (BVID and VID) are to be artificially induced on the panel by a pneumatic impact machine. This work summarise part of the experimental results related to damages production, their assessment by C-SCAN as reference NDT method as well as damage detection of delimitations by a guided waves based SHM. The SHM system is made by customized piezoelectric patches secondary bonded on the wing plate acting both as guided waves sources and receivers. The paper will deal mostly with the experimental impact campaign and the signal analyses carried out to extract the metrics more sensitive to damages induced. Image reconstruction of the damages dimensions and shapes will be also described based mostly on the combination of metrics maps over the plate partial surfaces. Finally a comparison of damages maps obtained by the SHM approach and those obtained by "classic" C-SCAN will be presented analyzing briefly pros and cons of the two different approached as a combination to the most effective structural maintenance scenario of a commercial aircraft.

  10. [Full-scale simulation in German medical schools and anesthesia residency programs : Status quo].

    Science.gov (United States)

    Baschnegger, H; Meyer, O; Zech, A; Urban, B; Rall, M; Breuer, G; Prückner, S

    2017-01-01

    Simulation has been increasingly used in medicine. In 2003 German university departments of anesthesiology were provided with a full-scale patient simulator, designated for use with medical students. Meanwhile simulation courses are also offered to physicians and nurses. Currently, the national model curriculum for residency programs in anesthesiology is being revised, possibly to include mandatory simulation training. To assess the status quo of full-scale simulation training for medical school, residency and continuing medical education in German anesthesiology. All 38 German university chairs for anesthesiology as well as five arbitrarily chosen non-university facilities were invited to complete an online questionnaire regarding their centers' infrastructure and courses held between 2010 and 2012. The overall return rate was 86 %. In university simulation centers seven non-student staff members, mainly physicians, were involved, adding up to a full-time equivalent of 1.2. All hours of work were paid by 61 % of the centers. The median center size was 100 m(2) (range 20-500 m(2)), equipped with three patient simulators (1-32). Simulators of high or very high fidelity are available at 80 % of the centers. Scripted scenarios were used by 91 %, video debriefing by 69 %. Of the participating university centers, 97 % offered courses for medical students, 81 % for the department's employees, 43 % for other departments of their hospital, and 61 % for external participants. In 2012 the median center reached 46 % of eligible students (0-100), 39 % of the department's physicians (8-96) and 16 % of its nurses (0-56) once. For physicians and nurses from these departments that equals one simulation-based training every 2.6 and 6 years, respectively. 31 % made simulation training mandatory for their residents, 29 % for their nurses and 24 % for their attending physicians. The overall rates of staff ever exposed to simulation were 45 % of

  11. Linear and Non-linear Numerical Sea-keeping Evaluation of a Fast Monohull Ferry Compared to Full Scale Measurements

    DEFF Research Database (Denmark)

    Wang, Zhaohui; Folsø, Rasmus; Bondini, Francesca

    1999-01-01

    , full-scale measurements have been performed on board a 128 m monohull fast ferry. This paper deals with the results from these full-scale measurements. The primary results considered are pitch motion, midship vertical bending moment and vertical acceleration at the bow. Previous comparisons between...

  12. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, Mathilde J., E-mail: mjhe@env.dtu.dk; Arvin, Erik; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2014-11-15

    Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08 μg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters — removal was the greatest in the sand filters in the filter line with the highest contact time (63 min). In these secondary sand filters, MCPP concentration decreased from 0.037 μg/L to below the detection limit of 0.01 μg/L. MCPP was removed continuously at different filter depths (0.80 m). Additionally, biodegradation, mineralisation and adsorption were investigated in the laboratory in order to elucidate removal mechanisms in the full-scale system. Therefore, microcosms were set up with filter sand, water and {sup 14}C-labelled MCPP at an initial concentration of 0.2 μg/L. After 24 h, 79–86% of the initial concentration of MCPP was removed. Sorption removed 11–15%, while the remaining part was removed by microbial processes, leading to a complete mineralisation of 13–18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48 h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer. It was concluded that MCPP was removed in secondary rapid sand filters at Kerteminde Waterworks, to which both adsorption and microbial degradation contributed. - Highlights: • A full-scale groundwater based waterworks was able to remove MCPP. • In the secondary rapid sand filters, MCPP decreased from 0.037 μg/L to < 0.010 μg/L. • The filter sand removed MCPP both by sorption and by microbial degradation. • Microbial removal was unchanged while

  13. Instrumentation, control and automation for biogas plants - a full-scale example

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, J. [EnerCess GmbH, Bad Oeynhausen (Germany)

    2007-07-01

    Biogas plants win more and more importance, because of numerous ecological advantages. That means, the biogas production cycle is an integrated system of resources utilization, organic waste treatment, nutrient recycling and redistribution, and renewable energy production, which creates numerous energetic, environmental and agricultural benefits. In these plants biogas can be produced by using numerous different input substrates: Farm products: cattle and pork liquid manure, wheat, poultry excrements, maize etc.; Organic waste (primarily from food industries): canteen kitchens, food markets, viniculture, brewery, distillery etc.; Sewage sludge from wastewater treatment plants. The processes in biogas plants are similar to processes, which are well known for many decades in anaerobic wastewater/sludge treatment. But up to now, the level of instrumentation, control and automation (ICA) of full-scale biogas systems is still low. I.e. most plants are black box systems which can be analyzed and/or optimized only difficultly. Consequently, the practice shows that many biogas plants are operated suboptimal. Furthermore, for economic reasons more and more plants are operated in a critical (load) range. I.e. there is a high danger of a plant breakdown, which can cause high financial deficits. This situation is mainly caused by the fact, that most of biogas plants are still rather small plants. E.g., the average electricity production capacity of approx. 2,000 biogas plants in Germany is only approx. 125 kWel. But, as a result of technical progress and permanently rising prices for non-renewable energy, biogas plants become more and more economic reasonable. Furthermore, because of the economies of scale law more and more larger plants are built (250 - 2,000 kWel). In case of larger plants, the costs for ICA are only a small part of the total investment costs (5 - 10 %). On larger plants the operators are also usually full-time workers, which can fully concentrate upon the

  14. Prototype bucket foundation for wind turbines - natural frequency estimation

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models capable of simulating dynamic frequency dependent behaviour of the structure-foundation system. (au)

  15. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors

    Science.gov (United States)

    Xu, Jinlong; Dong, Yongkang; Zhang, Zhaohui; Li, Shunlong; He, Shaoyang; Li, Hui

    2016-12-01

    This paper investigated field monitoring of a 1108 m suspension bridge during an assessment load test, using integrated distributed fibre-optic sensors (DFOSs). In addition to the conventional Brillouin time domain analysis system, a high spatial resolution Brillouin system using the differential pulse-width pair (DPP) technique was adopted. Temperature compensation was achieved using a Raman distributed temperature sensing system. This is the first full scale field application of DFOSs using the Brillouin time domain analysis technique in a thousand-meter-scale suspension bridge. Measured strain distributions along the whole length of the bridge were presented. The interaction between the main cables and the steel-box-girder was highlighted. The Brillouin fibre-optic monitoring systems exhibited great facility for the purposes of long distance distributed strain monitoring, with up to 0.05 m spatial resolution, and 0.01 m/point sampling interval. The performance of the Brillouin system using DPP technique was discussed. The measured data was also employed for assessing bridge design and for the assessment of structural condition. The results show that the symmetrical design assumptions were consistent with the actual bridge, and that the strain values along the whole bridge were within the safety range. This trial field study serves as an example, demonstrating the feasibility of highly dense strain and temperature measurement for large scale civil infrastructures using integrated DFOSs.

  16. Dynamic bacterial communities on reverse-osmosis membranes in a full-scale desalination plant.

    Science.gov (United States)

    Manes, C-L de O; West, N; Rapenne, S; Lebaron, P

    2011-01-01

    To better understand biofouling of seawater reverse osmosis (SWRO) membranes, bacterial diversity was characterized in the intake water, in subsequently pretreated water and on SWRO membranes from a full-scale desalination plant (FSDP) during a 9 month period. 16S rRNA gene fingerprinting and sequencing revealed that bacterial communities in the water samples and on the SWRO membranes were very different. For the different sampling dates, the bacterial diversity of the active and the total bacterial fractions of the water samples remained relatively stable over the sampling period whereas the bacterial community structure on the four SWRO membrane samples was significantly different. The richness and evenness of the SWRO membrane bacterial communities increased with usage time with an increase in the Shannon diversity index of 2.2 to 3.7. In the oldest SWRO membrane (330 days), no single operational taxonomic unit (OTU) dominated and the majority of the OTUs fell into the Alphaproteobacteria or the Planctomycetes. In striking contrast, a Betaproteobacteria OTU affiliated to the genus Ideonella was dominant and exclusively found in the membrane used for the shortest time (10 days). This suggests that bacteria belonging to this genus could be one of the primary colonizers of the SWRO membrane. Knowledge of the dominant bacterial species on SWRO membranes and their dynamics should help guide culture studies for physiological characterization of biofilm forming species.

  17. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park.

    Science.gov (United States)

    Lei, Ge; Ren, Hongqiang; Ding, Lili; Wang, Feifei; Zhang, Xingsong

    2010-08-01

    A full-scale combined biological system is used for the treatment of treated wastewater discharged from a pharmaceutical industrial park. This treated water is rich in NH(4)(+)-N (average in 86.4 mg/L), low in COD/NH(4)(+)-N (average in 3.4) and low in BOD(5)/COD ratio (average in 0.24) with pH varying from 7.16 to 7.78. The final effluent of the combined treatment process was stably below 100mg/L COD and 20mg/L NH(4)(+)-N, separately, with organic loading rate of 4954 kg COD/d and 92.5 kg NH(4)(+)-N/d. It is found that the BOD(5)/COD ratio could be raised from 0.24 to 0.35, and the production of total VFAs account for 9.57% of the total COD via the treatment of hydrolysis/acidification. MBBR and oxidation ditch represent 35.4% and 60.7% of NH(4)(+)-N removal, 30.2% and 61.5% of COD removal, separately, of the total treatment process. PCR-DGGE is used for microbial community analysis of MBBR and oxidation ditch.

  18. Identifying N2O formation and emissions from a full-scale partial nitritation reactor.

    Science.gov (United States)

    Mampaey, Kris E; De Kreuk, Merle K; van Dongen, Udo G J M; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2016-01-01

    In this study, N2O formation and emissions from a full-scale partial nitritation (SHARON) reactor were identified through a three-weeks monitoring campaign during which the off-gas was analysed for N2O, O2, CO2 and NO. The overall N2O emission was 3.7% of the incoming ammonium load. By fitting the N2O emission to a theoretical gas stripping profile, the N2O emissions could be assigned to aerobically formed N2O and N2O formed under anoxic conditions. This was further substantiated by liquid N2O measurements. Under standard operation, 70% of the N2O emission was attributed to anoxic N2O formation. Dedicated experiments revealed that low dissolved oxygen concentrations (<1.0 gO2·m(-3)) and longer anoxic periods resulted in an increased N2O emission. Minimising or avoiding anoxic conditions has the highest effect in lowering the N2O emissions. As an additional result, the use of the off-gas N2O concentration measurements to monitor the gas-liquid mass transfer rate coefficient (kLa) during dynamic reactor operation was demonstrated.

  19. Patient Litter System Response in a Full-Scale CH-46 Crash Test.

    Science.gov (United States)

    Weisenbach, Charles A; Rooks, Tyler; Bowman, Troy; Fralish, Vince; McEntire, B Joseph

    2017-03-01

    U.S. Military aeromedical patient litter systems are currently required to meet minimal static strength performance requirements at the component level. Operationally, these components must function as a system and are subjected to the dynamics of turbulent flight and potentially crash events. The first of two full-scale CH-46 crash tests was conducted at NASA's Langley Research Center and included an experiment to assess patient and litter system response during a severe but survivable crash event. A three-tiered strap and pole litter system was mounted into the airframe and occupied by three anthropomorphic test devices (ATDs). During the crash event, the litter system failed to maintain structural integrity and collapsed. Component structural failures were recorded from the litter support system and the litters. The upper ATD was displaced laterally into the cabin, while the middle ATD was displaced longitudinally into the cabin. Acceleration, force, and bending moment data from the instrumented middle ATD were analyzed using available injury criteria. Results indicated that a patient might sustain a neck injury. The current test illustrates that a litter system, with components designed and tested to static requirements only, experiences multiple component structural failures during a dynamic crash event and does not maintain restraint control of its patients. It is unknown if a modern litter system, with components tested to the same static criteria, would perform differently. A systems level dynamic performance requirement needs to be developed so that patients can be provided with protection levels equivalent to that provided to seated aircraft occupants.

  20. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    Science.gov (United States)

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation.

  1. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  2. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    Science.gov (United States)

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  3. Full-scale simulation and reduced-order modeling of a thermoacoustic engine

    Science.gov (United States)

    Scalo, Carlo; Lin, Jeff; Lele, Sanjiva; Hesselink, Lambertus

    2013-11-01

    We have carried out the first three-dimensional numerical simulation of a thermoacoustic Stirling heat-engine. The goal is to lay the groundwork for full-scale Navier-Stokes simulations to advance the state-of-the-art low-order modeling and design of such devices. The model adopted is a long resonator with a heat-exchanger/regenerator (HX/REG) unit on one end - the only component not directly resolved. A temperature difference across the HX/REG unit of 200 K is sufficient to initiate the thermoacoustic instability. The latter is a Lagrangian process that only intensifies acoustic waves traveling in the direction of the imposed temperature gradient. An acoustic network of traveling waves is thus obtained and compared against low-order prediction tools such as DeltaEC. Non-linear effects such as system-wide streaming flow patterns are rapidly established. These are responsible for the mean advection of hot fluid away from the HX/REG (i.e. thermal leakage). This unwanted effect is contained by the introduction of a second ambient heat-exchanger allowing for the establishment of a dynamical thermal equilibrium in the system. A limit cycle is obtained at +178 dB.

  4. End-effects-regime in full scale and lab scale rocket nozzles

    Science.gov (United States)

    Rojo, Raymundo; Tinney, Charles; Baars, Woutijn; Ruf, Joseph

    2014-11-01

    Modern rockets utilize a thrust-optimized parabolic-contour design for their nozzles for its high performance and reliability. However, the evolving internal flow structures within these high area ratio rocket nozzles during start up generate a powerful amount of vibro-acoustic loads that act on the launch vehicle. Modern rockets must be designed to accommodate for these heavy loads or else risk a catastrophic failure. This study quantifies a particular moment referred to as the ``end-effects regime,'' or the largest source of vibro-acoustic loading during start-up [Nave & Coffey, AIAA Paper 1973-1284]. Measurements from full scale ignitions are compared with aerodynamically scaled representations in a fully anechoic chamber. Laboratory scale data is then matched with both static and dynamic wall pressure measurements to capture the associating shock structures within the nozzle. The event generated during the ``end-effects regime'' was successfully reproduced in the both the lab-scale models, and was characterized in terms of its mean, variance and skewness, as well as the spectral properties of the signal obtained by way of time-frequency analyses.

  5. Full-scale field measurements of wave kinematics and vortex shedding induced vibrations in slender structures

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, J.R.; Pedersen, B. [LIC Engineering (Denmark); Nielsen, K.G.; Bryndum, M.B. [Dansk Hydraulisk Inst., (Denmark)

    1999-07-01

    Vortex induced vibrations of pipes generated by high and steep waves in the crest zone have been investigated by full-scale field testing, An instrumented cylinder has been suspended from a platform bridge in the North Sea. Adjacent to it a newly developed acoustic system capable of measuring the three dimensional wave kinematics was placed. The kinematics were measured all the way up to the instantaneous water surface elevation, i.e. it included the wave crest. The paper presents time series of measured water surface elevations and orbital velocities at the instantaneous water surface together with the response of the instrumented pipe in a storm. The sea state was measured to H{sub s} {approx_equal} 6.4 m and T{sub z} = 8.4 sec. It was clearly seen that vortex shedding locking-on takes place in some of the rather high modes at the passage of large waves. Intermittent cross flow vortex induced vibrations of between 0.3 diameters up to 0.8 diameters were found in the 8th and the 4th mode respectively. The Reynolds numbers and KC numbers were up to 5 . 10{sup 5} and KC {approx} 250 respectively. (au)

  6. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    Science.gov (United States)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  7. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  8. Blade Deflection Measurements of a Full-Scale UH-60A Rotor System

    Science.gov (United States)

    Olson, Lawrence E.; Abrego, Anita; Barrows, Danny A.; Burner, Alpheus W.

    2010-01-01

    Blade deflection (BD) measurements using stereo photogrammetry have been made during the individual blade control (IBC) testing of a UH-60A 4-bladed rotor system in the 40 by 80-foot test section of the National Full-Scale Aerodynamic Complex (NFAC). Measurements were made in quadrants one and two, encompassing advance ratios from 0.15 to 0.40, thrust coefficient/solidities from 0.05 to 0.12 and rotor-system drive shaft angles from 0.0 to -9.6 deg. The experiment represents a significant step toward providing benchmark databases to be utilized by theoreticians in the development and validation of rotorcraft prediction techniques. In addition to describing the stereo measurement technique and reporting on preliminary measurements made to date, the intent of this paper is to encourage feedback from the rotorcraft community concerning continued analysis of acquired data and to solicit suggestions for improved test technique and areas of emphasis for measurements in the upcoming UH-60A Airloads test at the NFAC.

  9. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-01-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report.

  10. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  11. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-02-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report.

  12. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  13. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-04-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5 acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

  14. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  15. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

  16. Full Scale 3D Preoperative Planning System of the Ankle Joint Replacement Surgery with Multimedia System

    Directory of Open Access Journals (Sweden)

    Shuh-Ping Sun

    2014-05-01

    Full Text Available This study is intended to develop a computer-aided pre-surgical planning and simulating system in a multimedia environment for ankle joint replacement surgery. This system uses full-scale 3D reverse engineering techniques in design and development of the pre-surgical planning modules for ankle joint replacement surgery. This planning system not only develops the real-scale 3D image of the artificial ankle joint but also provides a detailed interior measurement of the ankle joint from various cutting planes. In this study, we apply the multimedia user interface to integrate different software functions into a surgical planning system with integrated functions. The functions include 3D model image acquisition, cutting, horizontal shifting and rotation of related bones (tibia and talus of the ankle joint in the predetermined time. For related bones of the ankle joint, it can also be used to design artificial ankle joints for adults in Taiwan. Those planning procedures can be recorded in this system for further research and investigation. Furthermore, since this system is a multimedia user interface, surgeons can use this system to plan and find a better and more efficient surgical approach before surgery. A database is available for this system to update and expand, which can provide different users with clinical cases as per their experience and learning.

  17. Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests

    Science.gov (United States)

    Annett, Martin; Littell, Justin

    2015-01-01

    The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  18. Advanced data management for optimising the operation of a full-scale WWTP.

    Science.gov (United States)

    Beltrán, Sergio; Maiza, Mikel; de la Sota, Alejandro; Villanueva, José María; Ayesa, Eduardo

    2012-01-01

    The lack of appropriate data management tools is presently a limiting factor for a broader implementation and a more efficient use of sensors and analysers, monitoring systems and process controllers in wastewater treatment plants (WWTPs). This paper presents a technical solution for advanced data management of a full-scale WWTP. The solution is based on an efficient and intelligent use of the plant data by a standard centralisation of the heterogeneous data acquired from different sources, effective data processing to extract adequate information, and a straightforward connection to other emerging tools focused on the operational optimisation of the plant such as advanced monitoring and control or dynamic simulators. A pilot study of the advanced data manager tool was designed and implemented in the Galindo-Bilbao WWTP. The results of the pilot study showed its potential for agile and intelligent plant data management by generating new enriched information combining data from different plant sources, facilitating the connection of operational support systems, and developing automatic plots and trends of simulated results and actual data for plant performance and diagnosis.

  19. Full-scale post denitrifying biofilters: sinks of dissolved N2O?

    Science.gov (United States)

    Bollon, Julien; Filali, Ahlem; Fayolle, Yannick; Guerin, Sabrina; Rocher, Vincent; Gillot, Sylvie

    2016-09-01

    In this study, nitrous oxide (N2O) emissions from a full-scale denitrifying biofilter plant were continuously monitored over two periods (summer campaign in September 2014 and winter campaign in February 2015). Results of the summer campaign showed that the major part (>99%) of N2O flux was found in the liquid phase and was discharged with the effluent. N2O emissions were highly variable and represented in average 1.28±1.99% and 0.22±0.31% of the nitrate uptake rate during summer and winter campaigns, respectively. Denitrification was able to consume a large amount of dissolved N2O coming from the upstream nitrification stage. In the absence of methanol injection failure and with an influent BOD/NO3-N ratio higher than 3, average reduction of N2O was estimated to be of 93%. The control of exogenous carbon dosage is essential to minimize N2O production from denitrifying biofilters, in correlation to NO2-N concentrations in the filter.

  20. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  1. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  2. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    Science.gov (United States)

    Laberge, Kelsen E.; Handschuh, Robert F.; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program, allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite) configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp (2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Further studies are planned to determine the cause of this behavior.

  3. Performance of Four Full-Scale Artificially Aerated Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Eleanor Butterworth

    2016-08-01

    Full Text Available A comparison of the performance of four full-scale aerated horizontal flow constructed wetlands was conducted to determine the efficacy of the technology on sites receiving high and variable ammonia loading rates not yet reported in the literature. Performance was assessed in terms of ammonia and solids removal, hydraulic conductivity and mixing patterns. The capability of systems to produce ammonium effluent concentrations <3 mgNH4+-N/L was observed across all sites in systems receiving variable loadings between 0.1 and 13.0 gNH4+-N/m2/d. Potential resilience issues were observed in relation to response to spike loadings posited to be due to an insufficient nitrifying population within the beds. Hydraulic conductivity and flow mixing patterns observed suggested deterioration of the reactor effective volume over time. Overall, the study demonstrates the efficacy of the technology where ammonium removal is required on small sites receiving high and variable flow rates, with adequate removal of organics and solids, but no significant benefit to the long term hydraulics of the system.

  4. Full Scale Component Test Facility KOPRA - Qualification Test of EPR Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Alexander; Herr, Wolfgang [AREVA NP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Champomier, Francois [AREVA NP SAS, Tour AREVA - Cedex 16, 92084 Paris-La Defense (France)

    2008-07-01

    The test facility KOPRA is designed for full scale-tests on nuclear components under operational conditions. One part of it is the component test loop for developing and qualifying nuclear core components respecting temperature, pressure and mass flow of pressurized water reactor conditions. The KOPRA test facility and its measuring equipment is presented through qualification tests for the control rod drive mechanism and the control rod drive line of the new European Pressurized Water Reactor (EPR). The control rod drive mechanism qualification test program is split into three different test phases. At first, performance tests are conducted to verify the adequate performance of the new equipment, e.g. measurement of rod cluster control assembly drop time under different thermal hydraulic conditions, impact velocity of drive rod on CRDM latch tips and drive rod acceleration during stepping operation by means of strain gauges or through direct measurement. After these functional tests follow the stability tests to ensure that proper functioning is reliably achieved over an appreciable amount of time and the endurance tests to quantify the amount of time and/or the number of steps during which no appreciable wear, that could possibly alter the correct behaviour, is to be expected. (authors)

  5. Heavy metals mobility in full-scale bioreactor landfill: initial stage.

    Science.gov (United States)

    Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Lee, Duu-Jong

    2008-01-01

    Selected heavy metals (HMs) including Cd, Cr, Cu, Ni, Pb and Zn initially released from a full-scale bioreactor landfill were monitored over the first 20 months of operation. At the initial landfill stage, the leachate exhibited high HMs release, high organic matter content (27000-43000gl(-1) of TOC) and low pH (5-6). By the fifth month of landfilling, the methanogenic stage had been established, and HMs release was reduced below the Chinese National Standards. Total released HMs accounted for less than 1% of landfill deposited during the investigated period. Most landfill HMs were inorganic. Fourier-transform infrared (FT-IR) spectra data and model calculations using Visual MINTEQ indicated that humic substances strongly affected the mobility of organic fractions of HMs in the methanogenic landfill. The initial rates of HMs release could be enhanced by recycling the leachate back to bioreactor landfill, but the total quantity released may be reduced by early establishment of methanogenic stage in bioreactor landfill.

  6. Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production.

    Science.gov (United States)

    Passos, Fabiana; Felix, Leonardo; Rocha, Hemyle; Pereira, Jackson de Oliveira; de Aquino, Sérgio

    2016-06-01

    This study assessed thermochemical pretreatment of microalgae harvested from a full-scale wastewater treatment pond prior to its anaerobic digestion using acid and alkaline chemical doses combined with thermal pretreatment at 80°C. Results indicated that alkaline and thermal pretreatment contributed mostly to glycoprotein and pectin solubilisation; whilst acid pretreatment solubilised mostly hemicellulose, with lower effectiveness for proteins. Regarding the anaerobic biodegradability, biochemical methane potential (BMP) tests showed that final methane yield was enhanced after almost all pretreatment conditions when compared to non-pretreated microalgae, with the highest increase for thermochemical pretreatment at the lowest dose (0.5%), i.e. 82% and 86% increase for alkaline and acid, respectively. At higher doses, salt toxicity was revealed by K(+) concentrations over 5000mg/L. All BMP data from pretreated biomass was successfully described by the modified Gompertz model and optimal condition (thermochemical 0.5% HCl) showed an increase in final methane yield and the process kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds.

    Science.gov (United States)

    Powell, N; Shilton, A; Pratt, S; Chisti, Y

    2011-01-01

    Biological phosphorus removal was studied in two full-scale waste stabilisation ponds (WSP). Luxury uptake by microalgae was confirmed to occur and in one pond the biomass contained almost four times the phosphorus required by microalgae for normal metabolism. However, the phosphorus content within the biomass was variable. This finding means that assumptions made in prior publications on modelling of phosphorus removal in WSP are questionable. While fluctuations in microalgal growth causes variation in many water quality parameters, this further variation in luxury uptake explains the high degree of variability in phosphorus removal commonly reported in the literature. To achieve effective biological phosphorus removal high levels of both luxury uptake and microalgal concentration are needed. The findings of this work show that while high levels of these parameters did occur at times in the WSP monitored, they did not occur simultaneously. This is explained because accumulated phosphorus is subsequently consumed during rapid growth of biomass resulting in a high biomass concentration with a low phosphorus content. Previous laboratory research has allowed a number of key considerations to be proposed to optimise both luxury uptake and biomass concentration. Now that is has been shown that high levels of biomass concentration and luxury uptake can occur in the field it may be possible to redesign WSP to optimise these parameters.

  8. A full-scale prototype multisensor system for fire detection and situational awareness

    Science.gov (United States)

    Minor, Christian P.; Johnson, Kevin J.; Rose-Pehrsson, Susan L.; Owrutsky, Jeffrey C.; Wales, Stephen C.; Steinhurst, Daniel A.; Gottuk, Daniel T.

    2007-04-01

    A data fusion-based, multisensory detection system, called "Volume Sensor", was developed under the Advanced Damage Countermeasures (ADC) portion of the US Navy's Future Naval Capabilities program (FNC) to meet reduced manning goals. A diverse group of sensing modalities was chosen to provide an automated damage control monitoring capability that could be constructed at a relatively low cost and also easily integrated into existing ship infrastructure. Volume Sensor employs an efficient, scalable, and adaptable design framework that can serve as a template for heterogeneous sensor network integration for situational awareness. In the development of Volume Sensor, a number of challenges were addressed and met with solutions that are applicable to heterogeneous sensor networks of any type. These solutions include: 1) a uniform, but general format for encapsulating sensor data, 2) a communications protocol for the transfer of sensor data and command and control of networked sensor systems, 3) the development of event specific data fusion algorithms, and 4) the design and implementation of modular and scalable system architecture. In full-scale testing on a shipboard environment, two prototype Volume Sensor systems demonstrated the capability to provide highly accurate and timely situational awareness regarding damage control events while simultaneously imparting a negligible footprint on the ship's 100 Mbps Ethernet network and maintaining smooth and reliable operation in a real-time fashion.

  9. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.

    Science.gov (United States)

    Papageorgiou, A; Papadakis, N; Voutsa, D

    2016-01-01

    The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.

  10. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters

    Science.gov (United States)

    Jesussek, Mathias; Ellermann, Katrin

    2014-12-01

    Reliability and dependability in complex mechanical systems can be improved by fault detection and isolation (FDI) methods. These techniques are key elements for maintenance on demand, which could decrease service cost and time significantly. This paper addresses FDI for a railway vehicle: the mechanical model is described as a multibody system, which is excited randomly due to track irregularities. Various parameters, like masses, spring- and damper-characteristics, influence the dynamics of the vehicle. Often, the exact values of the parameters are unknown and might even change over time. Some of these changes are considered critical with respect to the operation of the system and they require immediate maintenance. The aim of this work is to detect faults in the suspension system of the vehicle. A Kalman filter is used in order to estimate the states. To detect and isolate faults the detection error is minimised with multiple Kalman filters. A full-scale train model with nonlinear wheel/rail contact serves as an example for the described techniques. Numerical results for different test cases are presented. The analysis shows that for the given system it is possible not only to detect a failure of the suspension system from the system's dynamic response, but also to distinguish clearly between different possible causes for the changes in the dynamical behaviour.

  11. Development of a full-scale laboratory testing facility for soil-pipeline interaction research

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.; Wijewickreme, D. [British Columbia Univ., Vancouver, BC (Canada)

    2003-07-01

    This paper describes the capabilities of a new full-scale testing facility at the University of British Columbia to investigate soil-pipe interactions of common utility pipeline installations. The range of applications was also presented. The capacity to displace pipeline segments up to one meter in order to study the highly flexible behaviour of polyethylene pipelines was incorporated into the modular construction of the soil box. This system can study the response of a wide range of typical buried pipe configurations subjected to axial and transverse soil loadings corresponding to multiple applications. This test facility was used to study the performance of buried polyethylene (PE) gas distribution pipelines subjected to slow, axial permanent ground displacements. Axial load test results showed that mobilized axial soil resistance on the piping depends on the interface friction angle and the potential reduction of stress levels due to arching of the soil outside the interface shear zone. For polyethylene pipes, the axial soil resistance is affected by the associated reduction of the diameter of the pipeline due to tensile straining. Much more deformation occurred in polyethylene pipelines from direct strain measurements, compared to what might be expected in steel pipelines for a given level of loading. 15 refs., 6 figs.

  12. Performance evaluation of a full-scale innovative swine waste-to-energy system.

    Science.gov (United States)

    Xu, Jiele; Adair, Charles W; Deshusses, Marc A

    2016-09-01

    Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quick-start of full-scale anaerobic digestion (AD) using aeration

    Energy Technology Data Exchange (ETDEWEB)

    Lagerkvist, Anders, E-mail: al@ltu.se; Pelkonen, Markku; Wikström, Tommy

    2015-04-15

    Highlights: • A fast, and original, start up procedure for anaerobic digestors has been applied at full scale. • The development of a methanogenic culture has been documented using fluorescent in situ hybridization. • The technique can be widely applied. - Abstract: A conventional 1300 m{sup 3} continuously stirred anaerobic tank reactor at the city of Boden, north Sweden, which was receiving a feed of both sewage sludge and food waste, was put out of operation due to the build-up of a float phase. The reactor was emptied and cleaned. At start-up there was no methanogenic sludge available, so an unconventional start-up procedure was applied: The reactor was rapidly (8 days with 1200 kg of total solids (TS) added daily) filled with thickened, and slightly acidic sewage sludge, showing only slight methane generation, which was subsequently heated to 55 °C. Then compressed air was blown into the digester and within a month a fully functional methanogenic culture was established. The transfer from acidogenic to methanogenic conditions happened in about one week. As a start-up technique this is fast and cost efficient, it only requires the access of a compressor, electricity and a source of air. In total, about 16 tonnes of oxygen were used. It is proposed that this method may also be used as an operational amendment technique, should a reactor tend to acidify.

  14. Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Full-Scale Pressure Test

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Warren, Jerry E.; Watson, Judith J.; Shariff, Khadijah; Makino, Alberto; Yount, Bryan C.

    2017-01-01

    Inflatable space structures have the potential to significantly reduce the required launch volume for large pressure vessels required for exploration applications including habitats, airlocks and tankage. In addition, mass savings can be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Large inclusions however, such as hatches, induce a high mass penalty at the interfaces with the softgoods and in the added rigid structure while reducing the packaging efficiency. A novel, Non-Axisymmetric Inflatable Pressure Structure (NAIPS) was designed and recently tested at NASA Langley Research Center to demonstrate an elongated inflatable architecture that could provide areas of low stress along a principal axis in the surface. These low stress zones will allow the integration of a flexible linear seal that substantially reduces the added mass and volume of a heritage rigid hatch structure. This paper describes the test of the first full-scale engineering demonstration unit (EDU) of the NAIPS geometry and a comparison of the results to finite element analysis.

  15. Human factors evaluation of the HL-20 full-scale model

    Science.gov (United States)

    Willshire, Kelli F.; Simonsen, Lisa C.; Willshire, William L., Jr.

    1993-01-01

    The human factors testing of the HL-20 personnel launch system full-scale model was conducted in both the vertical and horizontal positions at NASA Langley Research Center. Three main areas of testing were considered: an anthropometric fit evaluation, the ingress and egress of a 10-person crew, and pilot viewing. The subjects, ranging from the 5th to 95th percentile size, had sufficient clearance in the model, with the exception of the last two rows of seats and the cockpit area. Adjustable seat heights and/or placement of the seats farther forward would provide more headroom. In the horizontal position, the model's seat placement and aisle width allowed a quick and orderly 10-person egress for the no-keel (a structural support running the length on the aisle), 6-in.-high keel, and 12-in.-high keel conditions. Egress times were less than 20 s. For the vertical position, the model's long cylindrical shape with the ladder in the ceiling allowed a quick and orderly egress with average times less than 30 s. Ingress and egress procedures were demonstrated using Shuttle partial-pressure suits. The reduced mobility experienced while wearing the suits did increase egress times, although they still remained acceptable. The window arrangement for pilot viewing was found to be reasonably acceptable, although slight modifications, such as an increased downward view, is desirable.

  16. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    Science.gov (United States)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  17. Evaluation of FRP Confinement Models for Substandard Rectangular RC Columns Based on Full-Scale Reversed Cyclic Lateral Loading Tests in Strong and Weak Directions

    Directory of Open Access Journals (Sweden)

    Hamid Farrokh Ghatte

    2016-09-01

    Full Text Available Although many theoretical and experimental studies are available on external confinement of columns using fiber-reinforced polymer (FRP jackets, as well as numerous models proposed for the axial stress-axial strain relation of concrete confined with FRP jackets, they have not been validated with a sufficient amount and variety of experimental data obtained through full-scale tests of reinforced concrete (RC columns with different geometrical and mechanical characteristics. Particularly, no systematical experimental data have been presented on full-scale rectangular substandard RC columns subjected to reversed cyclic lateral loads along either their strong or weak axes. In this study, firstly, test results of five full-scale rectangular substandard RC columns with a cross-sectional aspect ratio of two (300 mm × 600 mm are briefly summarized. The columns were tested under constant axial load and reversed cyclic lateral loads along their strong or weak axes before and after retrofitting with external FRP jackets. In the second stage, inelastic lateral force-displacement relationships of the columns are obtained analytically, making use of the plastic hinge assumption and different FRP confinement models available in the literature. Finally, the analytical findings are compared with the test results for both strong and weak directions of the columns. Comparisons showed that use of different models for the stress-strain relationship of FRP-confined concrete can yield significantly non-conservative or too conservative retrofit designs, particularly in terms of deformation capacity.

  18. Turbulent wind field characterization and re-generation based on pitot tube measurements mounted on a wind turbine

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge;

    2015-01-01

    This paper describes a new method to estimate the undisturbed inflow field of a wind turbine based on measurements obtained from one or more five-hole pitot tubes mounted directly on the blades. Based on the measurements, the disturbance caused by the wind turbine is estimated using aerodymanic...... the measured wind speeds at the recording position. In the theoretical part of this study a quite good agreement is seen between load sensors on a turbine model exposed to the reference and the re-generated turbulence field. Finally the method is applied to full scale measurements and reasonable wind shear...... profiles are derived. It is expected that this method will lead to a new and effective experimental method to characterize the incoming flow field to a wind turbine and thus contribute to the understanding of wind turbine loads....

  19. Volumetric characterization of the flow over miniature wind farms: An experimental study

    Science.gov (United States)

    Wing, Lai; Troolin, Dan; Hyun, Jin Kim; Tobin, Nicolas; Zuniga Zamalloa, Carlo; Chamorro, Leonardo P.

    2014-11-01

    An internal boundary layer is known to develop from the interaction between wind farms and the atmospheric boundary layer. It possesses characteristic features able to modulate the turbulence dynamics over large regions and eventually modify the micro climate in the vicinity of the wind farm. In this study, we examine the structure of the turbulence above various miniature wind farm configurations using 3D Particle Image velocimetry (PIV). Each miniature wind farm is placed in the boundary-layer wind tunnel at the Mechanical Science Engineering, UIUC. The turbines are fabricated using 3D printing and have a loading system that controls their tip-speed ratio and allows for characterizing the loads. Volumetric PIV is performed at various locations over and downstream a series of wind farm layouts. High-order turbulence statistics, turbulence structure and characteristic coherent motions are obtained and discussed in terms of the wind farm layout.

  20. Advanced topics on rotor blade full-scale structural fatigue testing and requirements

    DEFF Research Database (Denmark)

    Berring, Peter; Fedorov, Vladimir; Belloni, Federico

    further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. Those methods are presented in [1]. This report deals with more advanced topics...... for fatigue testing of wind turbine blades. One challenge is how to fatigue test blades under realistic conditions. In order to study this topic a finite element based multibody formulation using the floating frame of reference approach is used to study fatigue loading under different external conditions...

  1. The fence experiment – full-scale lidar-based shelter observations

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Bechmann, Andreas; Conti, Davide

    2016-01-01

    We present shelter measurements of a fence from a field experiment in Denmark. The measurements were performed with three lidars scanning on a vertical plane downwind of the fence. Inflow conditions are based on sonic anemometer observations of a nearby mast. For fence-undisturbed conditions......, the lidars’ measurements agree well with those from the sonic anemometers and, at the mast position, the average inflow conditions are well described by the logarithmic profile. Seven cases are defined based on the relative wind direction to the fence, the fence porosity, and the inflow conditions...

  2. The fence experiment – full-scale lidar-based shelter observations

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Bechmann, Andreas; Conti, Davide

    2016-01-01

    We present shelter measurements of a fence from a field experiment in Denmark. The measurements were performed with three lidars scanning on a vertical plane downwind of the fence. Inflow conditions are based on sonic observations of a nearby mast. For fence-undisturbed conditions, the lidars......’ measurements agree well with those from the sonics and, at the mast position, the average inflow conditions are well described by the logarithmic profile. Seven cases are defined based on the 5 relative wind direction to the fence, the fence porosity, and the inflow conditions. The larger the relative...

  3. Converter Structure-Based Power Loss and Static Thermal Modeling of The Press-Pack IGBT Three-Level ANPC VSC Applied to Multi-MW Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2011-01-01

    MW wind turbine to a MV grid. The switching power loss models are built using the experimental switching power loss data acquired via the double-pulse tests conducted on a full-scale 3L-ANPC-VSC prototype. The converter static thermal model is developed based on the double-sided water-cooled press......-pack switches. Via a single-phase test setup with two full-scale 3L-ANPC-VSC legs, the developed power loss and thermal models are validated experimentally. Employing the validated models, the 3L-ANPC-VSC's thermal performance is demonstrated on simulation for a 6 MW wind turbine grid interface. Hence...

  4. Optimization of Preprocessing and Densification of Sorghum Stover at Full-scale Operation

    Energy Technology Data Exchange (ETDEWEB)

    Neal A. Yancey; Jaya Shankar Tumuluru; Craig C. Conner; Christopher T. Wright

    2011-08-01

    Transportation costs can be a prohibitive step in bringing biomass to a preprocessing location or biofuel refinery. One alternative to transporting biomass in baled or loose format to a preprocessing location, is to utilize a mobile preprocessing system that can be relocated to various locations where biomass is stored, preprocess and densify the biomass, then ship it to the refinery as needed. The Idaho National Laboratory has a full scale 'Process Demonstration Unit' PDU which includes a stage 1 grinder, hammer mill, drier, pellet mill, and cooler with the associated conveyance system components. Testing at bench and pilot scale has been conducted to determine effects of moisture on preprocessing, crop varieties on preprocessing efficiency and product quality. The INLs PDU provides an opportunity to test the conclusions made at the bench and pilot scale on full industrial scale systems. Each component of the PDU is operated from a central operating station where data is collected to determine power consumption rates for each step in the process. The power for each electrical motor in the system is monitored from the control station to monitor for problems and determine optimal conditions for the system performance. The data can then be viewed to observe how changes in biomass input parameters (moisture and crop type for example), mechanical changes (screen size, biomass drying, pellet size, grinding speed, etc.,), or other variations effect the power consumption of the system. Sorgum in four foot round bales was tested in the system using a series of 6 different screen sizes including: 3/16 in., 1 in., 2 in., 3 in., 4 in., and 6 in. The effect on power consumption, product quality, and production rate were measured to determine optimal conditions.

  5. FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

    2003-05-07

    Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

  6. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.

    Science.gov (United States)

    Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun

    2017-01-01

    Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.

  7. VOC and air toxics control using biofiltration: 2 full-scale system case studies

    Energy Technology Data Exchange (ETDEWEB)

    Fucich, W.J.; Togna, A.P.; Loudon, R.E. [Envirogen, Inc., Lawrenceville, NJ (United States)] [and others

    1997-12-31

    Industry continuous to search for innovative air treatment technologies to cost effectively meet the stringent requirements of the CAAA. High volume process exhaust streams contaminated with dilute concentrations of VOCs and HAPs are an especially challenging problem. Biological treatment is an option that must be evaluated with the traditional control technologies (chemical scrubbing, condensation, adsorption, thermal oxidation, etc.) because of the low operating costs and the system is environmentally friendly. In the United States, biofiltration is considered an emerging technology, however, full-scale biofiltration systems are now successfully operating in two rigorous services. At Nylonge Corporation, a biofilter is safely and efficiently degrading CS{sub 2} and H{sub 2}S vapor emissions. The ABTco system is successfully treating the target compounds, methanol and formaldehyde, in a press exhaust containing inert particulate and semi-volatiles. These systems are both based on a unique, patented modular design. The modular concept allows the system to be easily installed resulting in construction cost minimization and maintaining critical project schedules. The modular system offers flexibility because the biofilter is easily expanded to accommodate future plant growth. The modular design benefits the end user because individual modules or biofilter sections can be isolated for service and inspection while the biofilter system stays on-line. An up-flow configuration and the patented irrigation system allow biofilters to be used on the most difficult services. In the case of Nylonge, the biofilter is handling the sulfuric acid generated during the degradation of CS{sub 2} and H{sub 2}S vapors. At ABTco, stable operation is achieved in a stream containing particulates and semi-volatiles.

  8. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  9. Manufacturing and testing of full scale prototype for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Duck-Hoi; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Sung-Ki [WONIL Co., Ltd., Haman (Korea, Republic of); Kang, Sung-Chan [POSCO Specialty Steel Co., Ltd., Changwon (Korea, Republic of); Zhang, Fu; Kim, Byoung-Yoon [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ahn, Hee-Jae; Lee, Hyeon-Gon; Jung, Ki-Jung [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-04-15

    Highlights: • 316L(N)-IG forged steel was successfully fabricated and qualified. • Related R&D activities were implemented to resolve the fabrication issues. • SB #8 FSP was successfully manufactured with conventional fabrication techniques. • All of the validation tests were carried out and met the acceptance criteria. - Abstract: Based on the preliminary design of the ITER blanket shield block (SB) #8, the full scale prototype (FSP) has been manufactured and tested in accordance with pre-qualification program, and related R&D was performed to resolve the technical issues of fabrication. The objective of the SB pre-qualification program is to demonstrate the acceptable manufacturing quality by successfully passing the formal test program. 316L(N)-IG stainless steel forging blocks with 1.80L × 1.12W × 0.43t (m) were developed by using an electric arc furnace, and as a result, the material properties were satisfied with technical specification. In the course of applying conventional fabrication techniques such as cutting, milling, drilling and welding of the forged stainless steel block for the manufacturing of the SB #8 FSP, several technical problems have been addressed. And also, the hydraulic connector of cross-forged material re-melted by electro slag or vacuum arc requires the application of advanced joining techniques such as automatic bore TIG and friction welding. Many technical issues – drilling, welding, slitting, non-destructive test and so on – have been raised during manufacturing. Associated R&D including the computational simulation and coupon testing has been done in collaboration with relevant industries in order to resolve these engineering issues. This paper provides technical key issues and their possible resolutions addressed during the manufacture and formal test of the SB #8 FSP, and related R&D.

  10. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  11. Full-scale anaerobic co-digestion of organic waste and municipal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Zupancic, Gregor D.; Ros, Milenko [National Institute of Chemistry, Hajdrihova 19, PO Box 660, SI-1001 Ljubljana (Slovenia); Uranjek-Zevart, Natasa [Municipality of Velenje, Koroska 37/b, 3320 Velenje (Slovenia)

    2008-02-15

    A full-scale experiment on the anaerobic co-digestion of organic waste from domestic refuse (swill) and municipal sludge is described. In a wastewater treatment plant of 50,000 population equivalents, two conventional mesophilic digesters with a combined volume of 2000 m{sup 3} and 20 days hydraulic retention time were used. The digesters' usual influent is waste sludge from wastewater treatment plants (a mixture of primary sludge and waste activated sludge) with an average organic loading rate of 0.8 kg m{sup -3} d{sup -1} of volatile suspended solids. In the experiment, organic waste was added to the digester influent to increase the organic loading rate by 25% to 1.0 kg m{sup 3} d{sup -1} of volatile suspended solids. Biogas quantity increased by 80% and specific biogas production increased from 0.39 m{sup 3} kg{sup -1} volatile suspended solids inserted prior to the experiment to over 0.60 m{sup 3} kg{sup -1} volatile suspended solids' inserted, peaking at 0.89 m{sup 3} kg{sup -1} volatile suspended solids inserted. The excess biogas was used in a boiler and a 50 kW combined heat and power engine. Electrical energy production increased by 130% and heat production increased by 55%. Volatile suspended solids degradation efficiency increased from 71% to 81% with no increase of volatile suspended solids in the digester effluent. Virtually all of the organic waste was degraded. (author)

  12. Combustion performance of flame-ignited high-speed train seats via full-scale tests

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2015-10-01

    Full Text Available Determining the combustion characteristics of combustibles in high-speed trains is the foundation of evaluating the fire hazard on high-speed trains scientifically, and establishing effective active and passive fire precautions. In this study, the double seats in the compartments of CRH1 high-speed trains were used as the main research object. Under different test conditions, including the power of ignition sources and ventilation rates, full-scale furniture calorimeter tests were conducted to study important fire combustion characteristics such as the ignition characteristics of seats, heat release rate, mass loss rate, total heat release, temperature variation, and smoke release rate. The relationships among these parameters were analyzed and summarized into combustion behavior and characteristics, thus providing fundamental data and reference for the development of fire precautions and safety design of high-speed trains. The results in this test are as follows: (i The double seats of high-speed trains are relatively easy to ignite and susceptible to the fire ground environment. (ii The combustion temperature in the test apparatus exceeded 600 °C in only 2 min for the larger ignition source. (iii The heat release rate exceeded 800 kW. (iv The total heat release resulted mainly from flame combustion. (v The final mass loss rate was ∼30%. (vi The lowest light transmittance was <25%. (vii The change process of temperature with time has the same trend as the change process of heat release rate. (viii Suppressing flame combustion and controlling the smoke generated from the seat materials themselves played key roles in retarding the combustion of high-speed train seats.

  13. Hydrodynamic parameters estimation from self-potential data in a controlled full scale site

    Science.gov (United States)

    Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore

    2015-03-01

    A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.

  14. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.; Birkholzer, J.T.; Mehnert, E.; Lin, Y.-F.; Zhang, K.

    2009-08-15

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.

  15. Full-scale regional exercises: closing the gaps in disaster preparedness.

    Science.gov (United States)

    Klima, David A; Seiler, Sarah H; Peterson, Jeff B; Christmas, A Britton; Green, John M; Fleming, Greg; Thomason, Michael H; Sing, Ronald F

    2012-09-01

    Man-made (9/11) and natural (Hurricane Katrina) disasters have enlightened the medical community regarding the importance of disaster preparedness. In response to Joint Commission requirements, medical centers should have established protocols in place to respond to such events. We examined a full-scale regional exercise (FSRE) to identify gaps in logistics and operations during a simulated mass casualty incident. A multiagency, multijurisdictional, multidisciplinary exercise (FSRE) included 16 area hospitals and one American College of Surgeons-verified Level I trauma center (TC). The scenario simulated a train derailment and chemical spill 20 miles from the TC using 281 moulaged volunteers. Third-party contracted evaluators assessed each hospital in five areas: communications, command structure, decontamination, staffing, and patient tracking. Further analysis examined logistic and operational deficiencies. None of the 16 hospitals were compliant in all five areas. Mean hospital compliance was 1.9 (± 0.9 SD) areas. One hospital, unable to participate because of an air conditioner outage, was deemed 0% compliant. The most common deficiency was communications (15 of 16 hospitals [94%]; State Medical Asset Resource Tracking Tool system deficiencies, lack of working knowledge of Voice Interoperability Plan for Emergency Responders radio system) followed by deficient decontamination in 12 (75%). Other deficiencies included inadequate staffing based on predetermined protocols in 10 hospitals (63%), suboptimal command structure in 9 (56%), and patient tracking deficiencies in 5 (31%). An additional 11 operational and 5 logistic failures were identified. The TC showed an appropriate command structure but was deficient in four of five categories, with understaffing and a decontamination leak into the emergency department, which required diversion of 70 patients. Communication remains a significant gap in the mass casualty scenario 10 years after 9/11. Our findings

  16. Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors.

    Science.gov (United States)

    Gabarrón, S; Ferrero, G; Dalmau, M; Comas, J; Rodriguez-Roda, I

    2014-02-15

    The energy-saving strategies and operational costs of stand-alone, hybrid, and dual stream full-scale membrane bioreactors (MBRs) with capacities ranging from 1100 to 35,000 m(3) day(-1) have been assessed for seven municipal facilities located in Northeast Spain. Although hydraulic load was found to be the main determinant factor for the energy consumption rates, several optimisation strategies have shown to be effective in terms of energy reduction as well as fouling phenomenon minimization or preservation. Specifically, modifications of the biological process (installation of control systems for biological aeration) and of the filtration process (reduction of the flux or mixed liquor suspended solids concentration and installation of control systems for membrane air scouring) were applied in two stand-alone MBRs. After implementing these strategies, the yearly specific energy demand (SED) in flat-sheet (FS) and hollow-fibre (HF) stand-alone MBRs was reduced from 1.12 to 0.71 and from 1.54 to 1.12 kW h(-1) m(-3), respectively, regardless of their similar yearly averaged hydraulic loads. The strategies applied in the hybrid MBR, namely, buffering the influent flow and optimisation of both biological aeration and membrane air-scouring, reduced the SED values by 14%. These results illustrate that it is possible to apply energy-saving strategies to significantly reduce MBR operational costs, highlighting the need to optimise MBR facilities to reconsider them as an energy-competitive option.

  17. Emergency Locator Transmitter System Performance During Three Full-Scale General Aviation Crash Tests

    Science.gov (United States)

    Littell, Justin D.; Stimson, Chad M.

    2016-01-01

    Full-scale crash tests were conducted on three Cessna 172 aircraft at NASA Langley Research Center's Landing and Impact Research facility during the summer of 2015. The purpose of the three tests was to evaluate the performance of commercially available Emergency Locator Transmitter (ELT) systems and support development of enhanced installation guidance. ELTs are used to provide location information to Search and Rescue (SAR) organizations in the event of an aviation distress situation, such as a crash. The crash tests simulated three differing severe but survivable crash conditions, in which it is expected that the onboard occupants have a reasonable chance of surviving the accident and would require assistance from SAR personnel. The first simulated an emergency landing onto a rigid surface, while the second and third simulated controlled flight into terrain. Multiple ELT systems were installed on each airplane according to federal regulations. The majority of the ELT systems performed nominally. In the systems which did not activate, post-test disassembly and inspection offered guidance for non-activation cause in some cases, while in others, no specific cause could be found. In a subset of installations purposely disregarding best practice guidelines, failure of the ELT-to-antenna cabling connections were found. Recommendations for enhanced installation guidance of ELT systems will be made to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 229 for consideration for adoption in a future release of ELT minimum operational performance specifications. These recommendations will be based on the data gathered during this test series as well as a larger series of crash simulations using computer models that will be calibrated based on these data

  18. Organics Characteristics of Sludge from a Full-Scale Anaerobic Digester Treating Domestic Mixed Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Seswoya Roslinda

    2017-01-01

    Full Text Available Sewage sludge, normally in form of mixed sewage sludge is treated using anaerobic digester worldwide. In Malaysia, sewage sludge was categorized as domestic sewage sludge since sewage treatment plant treats only domestic sewage. The complex organic compounds in form of carbohydrates and proteins are transformed to methane during anaerobic digestion. The characteristics of complex organic compounds in domestic mixed sewage sludge are needed to assess the energy recovery form digesting domestic mixed sewage sludge. Besides that, it is common to use anaerobic biomass from existing anaerobic digester for the new setup of the anaerobic reactor. Therefore, this study was outlined to study the characteristics of domestic mixed sewage sludge and anaerobic biomass, particularly on the complex organic compounds. The complex organic compounds measured were carbohydrates and proteins. The higher complex organic solubilisation as a result of thermal pre-treatment was proven to improve the methane production. Therefore, in this study, the impact of low thermal pre-treatment in improving the organics solubilisation was assessed too. Low thermal pre-treatment at 70°C and 90°C at various treatment time were applied to the domestic mixed sewage sludge. The results indicated that the domestic sewage sludge and anaerobic biomass from a full-scale anaerobic digester contained complex organic compounds; existed mostly in form of particulate as shown by the low value of soluble to total ratio. Besides that, the low thermal treatment at 70°C and 90°C increased the organics solubilisation. Protein solubilisation was observed exceeded 8% after being treated for 20 min at both thermal treatments. However, the impact of low thermal treatment was better at 90°C, in which higher solubilisation was observed at longer treatment time.

  19. Prototype repository: A full scale experiment at Äspö HRL

    Science.gov (United States)

    Johannesson, Lars-Erik; Börgesson, Lennart; Goudarzi, Reza; Sandén, Torbjörn; Gunnarsson, David; Svemar, Christer

    At Äspö Hard Rock Laboratory a full scale test of the Swedish concept for disposal of nuclear waste (KBS-3V) is in progress. The Prototype Repository project consists of two sections. The installation of the first section was made during summer and autumn 2001 and the second section during spring and summer 2003. Section 1 consists of four full-scale deposition holes, copper canisters equipped with electrical heaters, bentonite buffer consisting of blocks and pellets and a deposition tunnel backfilled with a mixture of bentonite and crushed rock, ending with a concrete plug. Section 2 consists of two full-scale deposition holes with a backfilled tunnel section and ends also with a concrete plug. Altogether 84 large bentonite blocks, with a total weight of about 130 tons, were installed and more than 2000 tons of backfill material were mixed and compacted in situ. Earlier developed techniques for both manufacturing and installing the buffer and the backfill were used in the project. Measurements and data from the installation allow calculations of the expected density in the buffer and in different parts of the backfill. The bentonite buffer in deposition holes 1, 3, 5 and 6, the backfill and the surrounding rock are instrumented with gauges for measuring temperature, water pressure, total pressure, relative humidity, resistivity, canister displacement and rock stresses. The instruments are connected to data acquisition systems by cables protected by tubes. These tubes are led through the rock in watertight lead-throughs to a nearby tunnel where the data acquisition systems are situated. More than 1100 transducers have been installed in the rock, buffer and the backfill. The technique for protecting the transducers from high water and swelling pressure was developed in this and preceding projects and furthermore different designs of transducers are used for the same type of measurement in order to compare their behaviour. The deposition holes have different water

  20. Analysis of a bending test on a full-scale PWR hot leg elbow containing a surface crack

    Energy Technology Data Exchange (ETDEWEB)

    Delliou, P. le [Electricite de France, EDF, 77 - Moret-sur-Loing (France). Dept. MTC; Julisch, P.; Hippelein, K. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Bezdikian, G. [Electricite de France, EDF, 92 - Paris la Defense (France). Direction Production Transport

    1998-11-01

    EDF, in co-operation with Framatome, has conducted a large research programme on the mechanical behaviour of thermally aged cast duplex stainless steel elbows, which are part of the main primary circuit of French PWR. One important task of this programme consisted of testing a full-scale PWR hot leg elbow. The elbow contained a semi-elliptical circumferential notch machined on the outer surface of the intrados as well as casting defects located on the flanks. To simulate the end-of-life condition of the component regarding material toughness, it had undergone a 2400 hours ageing heat treatment at 400 C. The test preparation and execution, as well as the material characterization programme, were committed to MPA. The test was conducted under constant internal pressure and in-plane bending (opening mode) at 200 C. For safety reasons, it took place on an open air-site: the Meppen military test ground. At the maximum applied moment (6000 kN.m), the notch did not initiate. This paper presents the experimental results and the fracture mechanics analysis of the test, based on finite element calculations. (orig.)

  1. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    Science.gov (United States)

    Codina, R.; Ambrosini, D.

    2017-06-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  2. Evaluating hydraulic and disinfection efficiencies of a full-scale ozone contactor using a RANS-based modeling framework.

    Science.gov (United States)

    Zhang, Jie; Tejada-Martínez, Andrés E; Zhang, Qiong; Lei, Hongxia

    2014-04-01

    The capability of predicting hydraulic and disinfection efficiencies of ozone disinfection contactors is essential for evaluating existing contactors and improving future designs. Previous attempts based on ideal and non-ideal models for the hydraulics and simplified mechanisms for chemical reaction modeling have resulted in low accuracy and are restricted to contactors with simple geometries. This manuscript develops a modeling framework for the ozonation process by combining computational fluid dynamics (CFD) with a kinetics-based reaction modeling for the first time. This computational framework has been applied to the full-scale ozone contactor operated by the City of Tampa Water Department. Flow fields, residence time distribution, ozone concentration distribution, and concentration-contact time (CT) distribution within the contactor have been predicted via the computational framework. The predictions of ozone and bromate concentrations at sample points agree well with physical experimental data measured in the contactor. The predicted CT values at the contactor outlet demonstrate that the disinfection performance of the ozone contactor operated by the City of Tampa Water Department is sufficient to meet regulation requirements. The impact of seasonal flow rate change on disinfection performance is found to be significant and deserves attention during the management and operation of a water treatment plant.

  3. Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber

    Science.gov (United States)

    Liu, Xiaoyu; Mason, Mark A.; Guo, Zhishi; Krebs, Kenneth A.; Roache, Nancy F.

    2015-12-01

    This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber at different ventilation rates for up to 4000 h using ASTM D 6670-01 (2007). Tests were performed on four types of furniture constructed of different materials and from different manufacturers. The data were used to evaluate two empirical emission models, i.e., a first-order and power-law decay model. The experimental results showed that some furniture tested in this study, made only of solid wood and with less surface area, had low formaldehyde source emissions. The effect of ventilation rate on formaldehyde emissions was also examined. Model simulation results indicated that the power-law decay model showed better agreement than the first-order decay model for the data collected from the tests, especially for long-term emissions. This research was limited to a laboratory study with only four types of furniture products tested. It was not intended to comprehensively test or compare the large number of furniture products available in the market place. Therefore, care should be taken when applying the test results to real-world scenarios. Also, it was beyond the scope of this study to link the emissions to human exposure and potential health risks.

  4. An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant.

    Science.gov (United States)

    Hiegemann, Heinz; Herzer, Daniel; Nettmann, Edith; Lübken, Manfred; Schulte, Patrick; Schmelz, Karl-Georg; Gredigk-Hoffmann, Sylvia; Wichern, Marc

    2016-10-01

    A 45-L pilot MFC system, consisting of four single-chamber membraneless MFCs, was integrated into a full-scale wastewater treatment plant (WWTP) and operated under practical conditions with the effluent of the primary clarifier for nine months to identify an optimal operational strategy for stable power output and maximum substrate based energy recovery (Normalized Energy Recovery, NER). Best results with the MFC were obtained at a hydraulic retention time of 22h with COD, TSS and nitrogen removal of 24%, 40% and 28%, respectively. Mean NER of 0.36kWhel/kgCOD,deg and coulombic efficiency of 24.8% were reached. Experimental results were used to set up the first described energy balance for a whole WWTP with an integrated MFC system. Energetic calculations of the model WWTP showed that energy savings due to reduced excess sludge production and energy gain of the MFC are significantly higher than the loss of energy due to reduced biogas production.

  5. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...... operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used...

  6. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan

    2009-01-01

    of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood......This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...

  7. Full scale test SSP 34m blade, combined load. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Nielsen, Magda; Jensen, Find M. (and others)

    2010-11-15

    This report is part of the research project where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of an imaginary extreme event based on the certification load of the blade. This report describes the reason for choosing the loads and the load direction and the method of applying the loads to the blade. A novel load introduction allows the blade to deform in a more realistic manner, allowing the observation of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades' respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed. (Author)

  8. Influence of SO{sub 3} on mercury removal with activated carbon: Full-scale results

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon; Dillon, Martin; Donnelly, Brian; Bustard, Jean [ADA-ES, Inc., 8100 SouthPark Way, Unit B, Littleton, CO 80120-4525 (United States); Filippelli, Greg; Glesmann, Rob [ADA-ES, Inc., Emission Strategies, 10480 Little Patuxent Parkway, Suite 400, Baltimore, MD 21044 (United States); Orscheln, Tom [Ameren, 3700 South Lindbergh Blvd., St. Louis, MO 63127 (United States); Wahlert, Steve [Sargent and Lundy (Retired), 55 E. Monroe Street, Chicago, IL 60603 (United States); Chang, Ramsay [EPRI, P.O. Box 10412, Palo Alto, CA 94304-1395 (United States); O' Palko, Andrew [U.S. DOE/NETL, P.O. Box 880, Morgantown, WV 26507-0880 (United States)

    2009-11-15

    Activated carbon injection is considered one of the most cost-effective options for mercury control at PRB-fired power plants. However, roughly 30% of sites firing PRB coal use SO{sub 3} for flue gas conditioning. The presence of SO{sub 3} in flue gas can decrease mercury capture by activated carbon, sometimes dramatically. Overcoming activated carbon performance limitations caused by SO{sub 3} conditioning for units with this configuration is essential to enable these plants to cost-effectively meet pending mercury emission regulations. Ameren's Labadie Unit 2 fires PRB coal and uses SO{sub 3} to enhance particulate capture in the electrostatic precipitator (ESP). Full-scale sorbent injection tests at Labadie were conducted from 2005-2007. Six sorbents were tested at SO{sub 3} injection concentrations ranging from 0 to 10.7 ppm. Sorbent performance was evaluated at two injection locations (the air preheater (APH) inlet and outlet). Native mercury capture on fly ash was typically less than 15%. When the mercury sorbents were injected downstream of the air preheater, the SO{sub 3} concentration resulted in a decrease in mercury capture from 85% (no SO{sub 3} injection) to 17% (SO{sub 3} injection set at 10.7 ppm). Mercury sorbents were more effective when injected upstream of the air preheater. With the SO{sub 3} system off, mercury removal increased from 75% when injecting 5.1 lb/MMacf of brominated carbon at the APH outlet, compared to 95% when injecting at the inlet. With the SO{sub 3} system on, test results indicated an increase from about 30% injecting at the outlet to 58% injecting at the inlet. Tests evaluating the ADA-ES patented onsite milling process showed that 85% mercury capture was achieved injecting 4 lb/MMacf of milled activated carbon compared to a requirement of 10 lb/MMacf to achieve the same removal using as-received carbon, representing a 60% reduction in activated carbon consumption. No changes in opacity, APH and ESP performance, or

  9. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.

    2016-10-28

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  10. Full-scale testing of pipework systems and flexible risers subject to noise and vibration

    Energy Technology Data Exchange (ETDEWEB)

    Every, M.J.; Goyder, G.D.; Jee, T.; Swindell, R.

    2005-07-01

    The occurrence of potentially damaging noise and vibration levels in pipework has required the development of a full-scale testing facility. This facility can expose pipework to high static pressures and flow and can generate the large dynamic pressures that constitute noise. A consortium was formed that assembled the various specialist knowledge needed for the test facility. The outcome of the test work enables production flow through a flexible riser system throughout a range of flow rates and most significantly to be substantially increased. The benefits are an increased profitability of the asset, greater confidence in fatigue life prediction and an improved understanding for use in design. Flexible risers are increasingly being used offshore and most recently for the export of dry gas. This has given rise to the phenomenon of the 'singing riser', which generates sufficiently large noise levels to cause fatigue damage to the riser system. This phenomenon is currently limiting production rates offshore. As gas flows within the riser it passes over internal corrugation, which gives rise to vortex shedding from corrugated edges. The frequency of the vortex shedding is described by the Strouhal relationship so that it depends upon the flow velocity and the riser geometry. It appears from measurements on several offshore risers that this is fairly constant for a range of export pressures and flow rates. The shedding of the vortices is not necessarily correlated along the length of the riser. However, if there is small-bore pipework attached to the riser system which has a similar acoustic frequency to the Strouhal frequency then 'lock-on' can occur which may cause full correlation of vortex shedding. The lock-on mechanism is not totally understood but when the small-bore pipework's acoustic frequency is excited it provides a positive feed back to enhance the vortex shedding within the riser. The consequence is that the shedding within the

  11. Full-scale flight tests of aircraft morphing structures using SMA actuators

    Science.gov (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  12. Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water.

    Science.gov (United States)

    Hernandez, Rafael J; Hernandez, Yasiel; Jimenez, Nasly H; Piggot, Alan M; Klaus, James S; Feng, Zhixuan; Reniers, Ad; Solo-Gabriele, Helena M

    2014-01-01

    Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3-72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8-12 CFU/g) (P < 0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 10(11) CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 10(11) CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in biofilm

  13. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution

  14. Evaluation of the First Transport Rotorcraft Airframe Crash Testbed (TRACT 1) Full-Scale Crash Test

    Science.gov (United States)

    Annett, Martin S.; Littell, Justin D.; Jackson, Karen E.; Bark, Lindley W.; DeWeese, Rick L.; McEntire, B. Joseph

    2014-01-01

    In 2012, the NASA Rotary Wing Crashworthiness Program initiated the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program by obtaining two CH-46E helicopters from the Navy CH-46E Program Office (PMA-226) at the Navy Flight Readiness Center in Cherry Point, North Carolina. Full-scale crash tests were planned to assess dynamic responses of transport-category rotorcraft under combined horizontal and vertical impact loading. The first crash test (TRACT 1) was performed at NASA Langley Research Center's Landing and Impact Research Facility (LandIR), which enables the study of critical interactions between the airframe, seat, and occupant during a controlled crash environment. The CH-46E fuselage is categorized as a medium-lift rotorcraft with fuselage dimensions comparable to a regional jet or business jet. The first TRACT test (TRACT 1) was conducted in August 2013. The primary objectives for TRACT 1 were to: (1) assess improvements to occupant loads and displacement with the use of crashworthy features such as pre-tensioning active restraints and energy absorbing seats, (2) develop novel techniques for photogrammetric data acquisition to measure occupant and airframe kinematics, and (3) provide baseline data for future comparison with a retrofitted airframe configuration. Crash test conditions for TRACT 1 were 33-ft/s forward and 25-ft/s vertical combined velocity onto soft soil, which represent a severe, but potentially survivable impact scenario. The extraordinary value of the TRACT 1 test was reflected by the breadth of meaningful experiments. A total of 8 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and photogrammetric techniques. A combination of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. Loads from ATDs in energy

  15. A concept for major incident triage: full-scaled simulation feasibility study

    Directory of Open Access Journals (Sweden)

    Rehn Marius

    2010-08-01

    Full Text Available Abstract Background Efficient management of major incidents involves triage, treatment and transport. In the absence of a standardised interdisciplinary major incident management approach, the Norwegian Air Ambulance Foundation developed Interdisciplinary Emergency Service Cooperation Course (TAS. The TAS-program was established in 1998 and by 2009, approximately 15 500 emergency service professionals have participated in one of more than 500 no-cost courses. The TAS-triage concept is based on the established triage Sieve and Paediatric Triage Tape models but modified with slap-wrap reflective triage tags and paediatric triage stretchers. We evaluated the feasibility and accuracy of the TAS-triage concept in full-scale simulated major incidents. Methods The learners participated in two standardised bus crash simulations: without and with competence of TAS-triage and access to TAS-triage equipment. The instructors calculated triage accuracy and measured time consumption while the learners participated in a self-reported before-after study. Each question was scored on a 7-point Likert scale with points labelled "Did not work" (1 through "Worked excellent" (7. Results Among the 93 (85% participating emergency service professionals, 48% confirmed the existence of a major incident triage system in their service, whereas 27% had access to triage tags. The simulations without TAS-triage resulted in a mean over- and undertriage of 12%. When TAS-Triage was used, no mistriage was found. The average time from "scene secured to all patients triaged" was 22 minutes (range 15-32 without TAS-triage vs. 10 minutes (range 5-21 with TAS-triage. The participants replied to "How did interdisciplinary cooperation of triage work?" with mean 4,9 (95% CI 4,7-5,2 before the course vs. mean 5,8 (95% CI 5,6-6,0 after the course, p Conclusions Our modified triage Sieve tool is feasible, time-efficient and accurate in allocating priority during simulated bus accidents and

  16. Experimental and Numerical Analysis of Wind Driven Natural Ventilation in a Building Scale Model

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; True, Jan Per Jensen; Sandberg, Mats;

    2004-01-01

    Airflow through openings in a cross ventilated building scale model was investigated in a wind tunnel and by numerical predictions. Predictions for a wind direction perpendicular to the building showed an airflow pattern consisting of streamlines entering the room, that originated from approximat......Airflow through openings in a cross ventilated building scale model was investigated in a wind tunnel and by numerical predictions. Predictions for a wind direction perpendicular to the building showed an airflow pattern consisting of streamlines entering the room, that originated from...

  17. Experimental Measurement and CFD Model Development of Thick Wind Turbine Airfoils with Leading Edge Erosion

    Science.gov (United States)

    Maniaci, David C.; White, Edward B.; Wilcox, Benjamin; Langel, Christopher M.; van Dam, C. P.; Paquette, Joshua A.

    2016-09-01

    Leading edge erosion and roughness accumulation is an issue observed with great variability by wind plant operators, but with little understanding of the effect on wind turbine performance. In wind tunnels, airfoil models are typically tested with standard grit roughness and trip tape to simulate the effects of roughness and erosion observed in field operation, but there is a lack of established relation between field measurements and wind tunnel test conditions. A research collaboration between lab, academic, and industry partners has sought to establish a method to estimate the effect of erosion in wind turbine blades that correlates to roughness and erosion measured in the field. Measurements of roughness and erosion were taken off of operational utility wind turbine blades using a profilometer. The field measurements were statistically reproduced in the wind tunnel on representative tip and midspan airfoils. Simultaneously, a computational model was developed and calibrated to capture the effect of roughness and erosion on airfoil transition and performance characteristics. The results indicate that the effects of field roughness fall between clean airfoil performance and the effects of transition tape. Severe leading edge erosion can cause detrimental performance effects beyond standard roughness. The results also indicate that a heavily eroded wind turbine blade can reduce annual energy production by over 5% for a utility scale wind turbine.

  18. Experimental validation of a Fluid-Structure interaction model for simulating offshore floating wind turbines

    Science.gov (United States)

    Calderer, Antoni; Feist, Christ; Ruehl, Kelley; Guala, Michele; Sotiropoulos, Fotis

    2014-11-01

    A series of experiments reproducing a floating wind turbine in operational sea conditions, conducted in the St. Anthony Falls Lab. wave facility, are employed to validate the capabilities of the recently developed FSI-Levelset-CURVIB method of Calderer, Kang and Sotiropoulos (JCP 2014) to accurately predict turbine-wave interactions. The numerical approach is based on solving the Navier-Stokes equations coupled with the level set method, which is capable of carrying out LES of two-phase flows (air and water) with complex floating structures and waves. The investigated floating turbine is a 1:100 Froude scaled version of the 13.2 MW prototype designed by Sandia National Lab; it is installed on a cylindrical barge style platform which is restricted to move with two degrees of freedom, heave and pitch in the vertical plane defined by the direction of the propagating 2D waves. The computed turbine kinematics as well as the free surface elevation results are compared with the experimental data for different free decay tests and wave conditions representative of the Maine and the Pacific North West coasts. The comparison shows promising results indicating the validity of the model for simulating operational floating turbines. This work is supported by the US Department of Energy (DE-EE0005482), the University of Minnesota IREE program, and the Minnesota Supercomputing Institute.

  19. Wind Tunnel Experimental Investigation on the Aerodynamic Characteristics of the Multifin Rockets and Missiles

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The transonic-supersonic wind tunnel experiment on the aerodynamics of the rockets and missiles that have four, six, eight flat or wrap-around fins is introduced. The experimental results show, while M∞<2.0, with the increase of the fins' number, the derivative of lift coefficient is increasing, the pressure center is shifting backwards, and the longitudinal static stability is augmenting. On the contrary, while the Mach number exceeds a certain supersonic value, the aerodynamic effectiveness of the eight-fin missiles would be lower than that of the six-fin missiles. For the low speed short-range missiles, by adopting six, eight or ten flat fins configuration, the lift effectiveness can be greatly increased, the pressure center can be shifted backwards, the static and dynamic stability can be obviously enhanced. For the high speed long-range large rockets and missiles launched from multi-tube launcher, the configuration adopting more than six fins can not be useful for increasing the stability but would make the rolling rate instable during the flight.

  20. Experimental investigation of the turbulent axisymmetric wake with rotation generated by a wind turbine

    Science.gov (United States)

    Dufresne, Nathaniel P.

    An experimental investigation of the axial and azimuthal (swirl) velocity field in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted, up to 20 diameters downstream. The turbine was positioned in the free stream, near the entrance of the 6m x 2.7m cross section of the University of New Hampshire (UNH) Flow Physics Facility. Velocity measurements were conducted at different rotor loading conditions with blade tip-speed ratios from 2.0 to 2.8. A Pitot-static tube and constant temperature hot-wire anemometer with a multi-wire sensor were used to measure velocity fields. An equilibrium similarity theory for the turbulent axisymmetric wake with rotation was outlined, and first evidence for a new scaling function for the mean swirling velocity component, Wmax ∝ x-1 ∝ U3/2o a was found; where W represents swirl, x represents downstream distance, and Uo, represents the centerline velocity deficit in the wake.