WorldWideScience

Sample records for full-length e1-circumflexe4 protein

  1. The full-length E1-circumflexE4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression

    International Nuclear Information System (INIS)

    Wilson, Regina; Ryan, Gordon B.; Knight, Gillian L.; Laimins, Laimonis A.; Roberts, Sally

    2007-01-01

    Activation of the productive phase of the human papillomavirus (HPV) life cycle in differentiated keratinocytes is coincident with high-level expression of E1-circumflexE4 protein. To determine the role of E1-circumflexE4 in the HPV replication cycle, we constructed HPV18 mutant genomes in which expression of the full-length E1-circumflexE4 protein was abrogated. Undifferentiated keratinocytes containing mutant genomes showed enhanced proliferation when compared to cells containing wildtype genomes, but there were no differences in maintenance of viral episomes. Following differentiation, cells with mutant genomes exhibited reduced levels of viral DNA amplification and late gene expression, compared to wildtype genome-containing cells. This indicates that HPV18 E1-circumflexE4 plays an important role in regulating HPV late functions, and it may also function in the early phase of the replication cycle. Our finding that full-length HPV18 E1-circumflexE4 protein plays a significant role in promoting viral genome amplification concurs with a similar report with HPV31, but is in contrast to an HPV11 study where viral DNA amplification was not dependent on full-length E1-circumflexE4 expression, and to HPV16 where only C-terminal truncations in E1-circumflexE4 abrogated vegetative genome replication. This suggests that type-specific differences exist between various E1-circumflexE4 proteins

  2. HPV-18 E2circumflexE4 chimera: 2 new spliced transcripts and proteins induced by keratinocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chye Ling [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Gunaratne, Jayantha [Mass Spectrometry and Systems Biology Laboratory, Institute of Molecular and Cell Biology, A-STAR, Biopolis, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); Lai, Deborah [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Carthagena, Laetitia [UMR-S996, Universite Paris-Sud 11, 32 rue des Carnets, 92140 Clamart (France); Wang, Qian [MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London N10 3UE (United Kingdom); Xue, Yue Zhen; Quek, Ling Shih [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Doorbar, John [MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London N10 3UE (United Kingdom); Bachelerie, Francoise [UMR-S996, Universite Paris-Sud 11, 32 rue des Carnets, 92140 Clamart (France); Thierry, Francoise, E-mail: francoise.thierry@imb.a-star.edu.sg [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Bellanger, Sophie, E-mail: sophie.bellanger@imb.a-star.edu.sg [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore)

    2012-07-20

    The Human Papillomavirus (HPV) E4 is known to be synthesized as an E1circumflexE4 fusion resulting from splice donor and acceptor sites conserved across HPV types. Here we demonstrate the existence of 2 HPV-18 E2circumflexE4 transcripts resulting from 2 splice donor sites in the 5 Prime part of E2, while the splice acceptor site is the one used for E1circumflexE4. Both E2circumflexE4 transcripts are up-regulated by keratinocyte differentiation in vitro and can be detected in clinical samples containing low-grade HPV-18-positive cells from Pap smears. They give rise to two fusion proteins in vitro, E2circumflexE4-S and E2circumflexE4-L. Whereas we could not differentiate E2circumflexE4-S from E1circumflexE4 in vivo, E2circumflexE4-L could be formally identified as a 23 kDa protein in raft cultures in which the corresponding transcript was also found, and in a biopsy from a patient with cervical intraepithelial neoplasia stage I-II (CINI-II) associated with HPV-18, demonstrating the physiological relevance of E2circumflexE4 products.

  3. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  4. A new strategy for full-length Ebola virus glycoprotein expression in E.coli.

    Science.gov (United States)

    Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming

    2016-12-01

    Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.

  5. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.

    Science.gov (United States)

    Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction

  6. Congenital Absence of Left Circumflex Coronary Artery

    Directory of Open Access Journals (Sweden)

    Zahra Ansari

    2009-09-01

    Full Text Available Congenital absence of left circumflex artery is a rare congenitalanomaly of the coronary arteries. The prevalence of theanomaly in different studies ranges from 0.6% to 1.3%. Ofthese, 80% are benign and asymptomatic and 20% are clinicallyimportant. We report a 56-year-old man presented withacute resting chest pain who was diagnosed as having acuteanterolateral infarction accompanied by electrocardiographicchanges and elevated cardiac enzymes. Coronary angiographyin different views was conducted, however, no left circumflexartery was found. The territory supplied by the artery had beenperfused by the super dominant right coronary artery. Therewas no left circumflex coronary artery with anomalous origin.Sever stenosis of left anterior ascending artery superimposedto the absent left circumflex artery was presented as acute anterolateralinfarction. Although absence of the artery is mostlyconsidered as a benign condition, atherosclerotic lesions maybe more important in such cases because of diminished compensatingmechanisms.

  7. q-structure algebra of Uq(g-circumflex) from its adjoint action

    International Nuclear Information System (INIS)

    El Hassouni, A.; Hassouni, Y.; Zakkari, M.

    1994-08-01

    We prove that the adjoint action of the quantum affine Lie algebra U q (g-circumflex), where g is a simple finite dimensional Lie algebra, reproduces the q-commutation relationship of U q (g-circumflex) if and only if g is of type A n , n ≥ 1. (author). 4 refs

  8. Human papillomavirus type 59 immortalized keratinocytes express late viral proteins and infectious virus after calcium stimulation

    International Nuclear Information System (INIS)

    Lehr, Elizabeth E.; Qadadri, Brahim; Brown, Calla R.; Brown, Darron R.

    2003-01-01

    Human papillomavirus type 59 (HPV 59) is an oncogenic type related to HPV 18. HPV 59 was recently propagated in the athymic mouse xenograft system. A continuous keratinocyte cell line infected with HPV 59 was created from a foreskin xenograft grown in an athymic mouse. Cells were cultured beyond passage 50. The cells were highly pleomorphic, containing numerous abnormally shaped nuclei and mitotic figures. HPV 59 sequences were detected in the cells by DNA in situ hybridization in a diffuse nuclear distribution. Southern blots were consistent with an episomal state of HPV 59 DNA at approximately 50 copies per cell. Analysis of the cells using a PCR/reverse blot strip assay, which amplifies a portion of the L1 open reading frame, was strongly positive. Differentiation of cells in monolayers was induced by growth in F medium containing 2 mM calcium chloride for 10 days. Cells were harvested as a single tissue-like sheet, and histologic analysis revealed a four-to-six cell-thick layer. Transcripts encoding involucrin, a cornified envelope protein, and the E1-circumflexE4 and E1-circumflexE4-circumflexL1 viral transcripts were detected after several days of growth in F medium containing 2 mM calcium chloride. The E1-circumflexE4 and L1 proteins were detected by immunohistochemical analysis, and virus particles were seen in electron micrographs in a subset of differentiated cells. An extract of differentiated cells was prepared by vigorous sonication and was used to infect foreskin fragments. These fragments were implanted into athymic mice. HPV 59 was detected in the foreskin xenografts removed 4 months later by DNA in situ hybridization and PCR/reverse blot assay. Thus, the complete viral growth cycle, including production on infectious virus, was demonstrated in the HPV 59 immortalized cells grown in a simple culture system

  9. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs.

    Science.gov (United States)

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D; Pelletier, Jerry; Ferraiuolo, Maria A; Sonenberg, Nahum

    2008-07-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5'-cap-binding protein, mediates the association of eIF4F with the mRNA 5'-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (approximately 30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras-expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization.

  10. RT-PCR and sequence analysis of the full-length fusion protein of Canine Distemper Virus from domestic dogs.

    Science.gov (United States)

    Romanutti, Carina; Gallo Calderón, Marina; Keller, Leticia; Mattion, Nora; La Torre, José

    2016-02-01

    During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    B.M. Ribeiro

    1998-06-01

    Full Text Available The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs. Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV. The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.

  12. Cocrystallization studies of full-length recombinant butyrylcholinesterase (BChE) with cocaine

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin Ajibola; Asojo, Oluyomi Adebola; Ngamelue, Michelle N.; Homma, Kohei; Lockridge, Oksana (Nebraska-Med)

    2011-09-16

    Human butyrylcholinesterase (BChE; EC 3.1.1.8) is a 340 kDa tetrameric glycoprotein that is present in human serum at about 5 mg l{sup -1} and has well documented therapeutic effects on cocaine toxicity. BChE holds promise as a therapeutic that reduces and finally eliminates the rewarding effects of cocaine, thus weaning an addict from the drug. There have been extensive computational studies of cocaine hydrolysis by BChE. Since there are no reported structures of BChE with cocaine or any of the hydrolysis products, full-length monomeric recombinant wild-type BChE was cocrystallized with cocaine. The refined 3 {angstrom} resolution structure appears to retain the hydrolysis product benzoic acid in sufficient proximity to form a hydrogen bond to the active-site Ser198.

  13. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    Science.gov (United States)

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  14. Human microcephaly protein RTTN interacts with STIL and is required to build full-length centrioles.

    Science.gov (United States)

    Chen, Hsin-Yi; Wu, Chien-Ting; Tang, Chieh-Ju C; Lin, Yi-Nan; Wang, Won-Jing; Tang, Tang K

    2017-08-15

    Mutations in many centriolar protein-encoding genes cause primary microcephaly. Using super-resolution and electron microscopy, we find that the human microcephaly protein, RTTN, is recruited to the proximal end of the procentriole at early S phase, and is located at the inner luminal walls of centrioles. Further studies demonstrate that RTTN directly interacts with STIL and acts downstream of STIL-mediated centriole assembly. CRISPR/Cas9-mediated RTTN gene knockout in p53-deficient cells induce amplification of primitive procentriole bodies that lack the distal-half centriolar proteins, POC5 and POC1B. Additional analyses show that RTTN serves as an upstream effector of CEP295, which mediates the loading of POC1B and POC5 to the distal-half centrioles. Interestingly, the naturally occurring microcephaly-associated mutant, RTTN (A578P), shows a low affinity for STIL binding and blocks centriole assembly. These findings reveal that RTTN contributes to building full-length centrioles and illuminate the molecular mechanism through which the RTTN (A578P) mutation causes primary microcephaly.Mutations in many centriolar protein-encoding genes cause primary microcephaly. Here the authors show that human microcephaly protein RTTN directly interacts with STIL and acts downstream of STIL-mediated centriole assembly, contributing to building full-length centrioles.

  15. Centrobin-mediated Regulation of the Centrosomal Protein 4.1-associated Protein (CPAP) Level Limits Centriole Length during Elongation Stage*

    Science.gov (United States)

    Gudi, Radhika; Haycraft, Courtney J.; Bell, P. Darwin; Li, Zihai; Vasu, Chenthamarakshan

    2015-01-01

    Microtubule-based centrioles in the centrosome mediate accurate bipolar cell division, spindle orientation, and primary cilia formation. Cellular checkpoints ensure that the centrioles duplicate only once in every cell cycle and achieve precise dimensions, dysregulation of which results in genetic instability and neuro- and ciliopathies. The normal cellular level of centrosomal protein 4.1-associated protein (CPAP), achieved by its degradation at mitosis, is considered as one of the major mechanisms that limits centriole growth at a predetermined length. Here we show that CPAP levels and centriole elongation are regulated by centrobin. Exogenous expression of centrobin causes abnormal elongation of centrioles due to massive accumulation of CPAP in the cell. Conversely, CPAP was undetectable in centrobin-depleted cells, suggesting that it undergoes degradation in the absence of centrobin. Only the reintroduction of full-length centrobin, but not its mutant form that lacks the CPAP binding site, could restore cellular CPAP levels in centrobin-depleted cells, indicating that persistence of CPAP requires its interaction with centrobin. Interestingly, inhibition of the proteasome in centrobin-depleted cells restored the cellular and centriolar CPAP expression, suggesting its ubiquitination and proteasome-mediated degradation when centrobin is absent. Intriguingly, however, centrobin-overexpressing cells also showed proteasome-independent accumulation of ubiquitinated CPAP and abnormal, ubiquitin-positive, elongated centrioles. Overall, our results show that centrobin interacts with ubiquitinated CPAP and prevents its degradation for normal centriole elongation function. Therefore, it appears that loss of centrobin expression destabilizes CPAP and triggers its degradation to restrict the centriole length during biogenesis. PMID:25616662

  16. Thionin-D4E1 chimeric protein protects plants against bacterial infections

    Science.gov (United States)

    Stover, Eddie W; Gupta, Goutam; Hao, Guixia

    2017-08-08

    The generation of a chimeric protein containing a first domain encoding either a pro-thionon or thionin, a second domain encoding D4E1 or pro-D4E1, and a third domain encoding a peptide linker located between the first domain and second domain is described. Either the first domain or the second domain is located at the amino terminal of the chimeric protein and the other domain (second domain or first domain, respectively) is located at the carboxyl terminal. The chimeric protein has antibacterial activity. Genetically altered plants and their progeny expressing a polynucleotide encoding the chimeric protein resist diseases caused by bacteria.

  17. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs

    OpenAIRE

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D.; Pelletier, Jerry; Ferraiuolo, Maria A.; Sonenberg, Nahum

    2008-01-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5′-cap-binding protein, mediates the association of eIF4F with the mRNA 5′-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported...

  18. Quantum statistical properties of orthonormalized eigenstates of the operator (a-circumflex f (n-circumflex))k

    International Nuclear Information System (INIS)

    Wang Jisuo; Jian Feng; Liu Tangkun

    2002-01-01

    The completeness of the k orthonormalized eigenstates of the operator (a-circumflex f (n-circumflex)) k (k≥3) is investigated. We introduce a new kind of higher-order squeezing and an antibunching. The properties of the Mth-order squeezing and the antibunching effect of the k states are studied. The result shows that these states may form a complete Hilbert space, and the Mth-order (M=(n+1/2)k; n=0,1,...) squeezing effects exist in all of the k states when k is even. There is an antibunching effect in all of the states. An alternative method for constructing the k states is proposed, and the result shows that all of them can be generated by linear superposition of the time-dependent nonlinear coherent states at different instants. (author)

  19. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication.

    Science.gov (United States)

    Hirata, Hisae; Yamaji, Yasuyuki; Komatsu, Ken; Kagiwada, Satoshi; Oshima, Kenro; Okano, Yukari; Takahashi, Shuichiro; Ugaki, Masashi; Namba, Shigetou

    2010-09-01

    The first open-reading frame (ORF) of the genus Capillovirus encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP), while other viruses in the family Flexiviridae have separate ORFs encoding these proteins. To investigate the role of the full-length ORF1 polyprotein of capillovirus, we generated truncation mutants of ORF1 of apple stem grooving virus by inserting a termination codon into the variable region located between the putative Rep- and CP-coding regions. These mutants were capable of systemic infection, although their pathogenicity was attenuated. In vitro translation of ORF1 produced both the full-length polyprotein and the smaller Rep protein. The results of in vivo reporter assays suggested that the mechanism of this early termination is a ribosomal -1 frame-shift occurring downstream from the conserved Rep domains. The mechanism of capillovirus gene expression and the very close evolutionary relationship between the genera Capillovirus and Trichovirus are discussed. Copyright (c) 2010. Published by Elsevier B.V.

  20. Adenovirus E4 open reading frame 4-induced dephosphorylation inhibits E1A activation of the E2 promoter and E2F-1-mediated transactivation independently of the retinoblastoma tumor suppressor protein

    DEFF Research Database (Denmark)

    Mannervik, M; Fan, S; Ström, A C

    1999-01-01

    of the viral E4 open reading frame 4 (E4-ORF4) protein. This effect does not to require the retinoblastoma protein that previously has been shown to regulate E2F activity. The inhibitory activity of E4-ORF4 appears to be specific because E4-ORF4 had little effect on, for example, E4-ORF6/7 transactivation......Previous studies have shown that the cell cycle-regulated E2F transcription factor is subjected to both positive and negative control by phosphorylation. Here we show that in transient transfection experiments, adenovirus E1A activation of the viral E2 promoter is abrogated by coexpression...... of the E2 promoter. We further show that the repressive effect of E4-ORF4 on E2 transcription works mainly through the E2F DNA-binding sites in the E2 promoter. In agreement with this, we find that E4-ORF4 inhibits E2F-1/DP-1-mediated transactivation. We also show that E4-ORF4 inhibits E2 mRNA expression...

  1. Production of full length and splicing form of chymosin using pETexpression system in E-coli and investigation its enzyme activity and preplasmic secretion

    Directory of Open Access Journals (Sweden)

    M. Ahmadi Zeydabadi

    2008-05-01

    Full Text Available Introduction: Chymosin (Rennin EC 3.4.23.4 is an aspartyl proteinas (the major proteolyticenzyme in the fourth stomach of the unweaned calf that is formed by proteolytic activation fromzymogene prochymosin. The aim of his study was to produce the full length and splicing form ofchymosin using pETexpression system in E-coli and to assay the activity of expressed enzyme andpreplasmic secretion.Materials and Methods: The sense primer F-prochy(+ (5´-ggggccatgGCTGAGATCACCAGGAincluding NCOI restriction site. The anti sense R-prochy(- (5´-gggcggccgcGATGGCTTTGGCCAGC -3´ hybridizing to the C-terminal end of calf preprocymosincDNA and contains an additional NotI restriction site at its 5´-end . The cells were disrupted bysonication and proteins were purified by using Ni-NTA beads from Qiagen under native conditional.The preprochymosin and AS6 preprochymosin were activated at pH 4.7. The enzyme solutions werediluted 20-fold with 50 mM phosphate buffer .Results: Sequencing data analysis showed that the exon six has been spliced out and, therefore thegene product is 114 bp shorter in length, both chymosin forms were expressed together in E.coli.Under the same expression conditions, at least AS6 preprochymosin was produced 7-fold highexpression in comparison to a full-length recombinant chymosin. Following acid activation andneutralization, the purified fractions were tested in a qualitative milk clotting assay. The clottingactivity of preprochymosin and exon6-less preprochymosin were comparable.Conclusion: High expression of this alternatively expressed transcript in bacteria, and properfolding of the AS6 chymosin protein molecule in the absence of exon six are the two most importantaspects distinguished in this research.

  2. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  3. Structure and function of the first full-length murein peptide ligase (Mpl cell wall recycling protein.

    Directory of Open Access Journals (Sweden)

    Debanu Das

    2011-03-01

    Full Text Available Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc. MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl, which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl. Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters. Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  4. Computational Insight Into the Structural Organization of Full-Length Toll-Like Receptor 4 Dimer in a Model Phospholipid Bilayer

    Directory of Open Access Journals (Sweden)

    Mahesh Chandra Patra

    2018-03-01

    Full Text Available Toll-like receptors (TLRs are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM, and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structural model of TLR4—a widely studied member of the interleukin-1 receptor/TLR superfamily—using homology modeling, protein–protein docking, and molecular dynamics simulations to understand the differential domain organization of TLR4 in a membrane-aqueous environment. Results showed that each functional domain of the membrane-bound TLR4 displayed several structural transitions that are biophysically essential for plasma membrane integration. Specifically, the extracellular and cytoplasmic domains were partially immersed in the upper and lower leaflets of the membrane bilayer. Meanwhile, TM domains tilted considerably to overcome the hydrophobic mismatch with the bilayer core. Our analysis indicates an alternate dimerization or a potential oligomerization interface of TLR4-TM. Moreover, the helical properties of an isolated TM dimer partly agree with that of the full-length receptor. Furthermore, membrane-absorbed or solvent-exposed surfaces of the toll/interleukin-1 receptor domain are consistent with previous X-ray crystallography and biochemical studies. Collectively, we provided a complete structural model of membrane-bound TLR4 that strengthens our current understanding of the complex mechanism of receptor activation and adaptor recruitment in the innate immune signaling pathway.

  5. The E4 protein; structure, function and patterns of expression

    Energy Technology Data Exchange (ETDEWEB)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup ∧}E

  6. Medial circumflex femoral artery flap for ischial pressure sore

    Directory of Open Access Journals (Sweden)

    Palanivelu S

    2009-01-01

    Full Text Available A new axial pattern flap based on the terminal branches of the medial circumflex femoral artery is described for coverage of ischial pressure sore. Based on the terminal branches of the transverse branch of medial circumflex femoral artery, which exit through the gap between the quadratus femoris muscle above and the upper border of adductor magnus muscle below, this fascio cutaneous flap is much smaller than the posterior thigh flap but extremely useful to cover ischeal pressure sores. The skin redundancy below the gluteal fold allows a primary closure of the donor defect. It can also be used in combination with biceps femoris muscle flap.

  7. Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties.

    Directory of Open Access Journals (Sweden)

    Elodie Beaumont

    Full Text Available Various strategies involving the use of hepatitis C virus (HCV E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system.

  8. Characterization of the Expression of the RNA Binding Protein eIF4G1 and Its Clinicopathological Correlation with Serous Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    Lanfang Li

    Full Text Available Ovarian cancer is the most lethal type of malignant tumor in gynecological cancers and is associated with a high percentage of late diagnosis and chemotherapy resistance. Thus, it is urgent to identify a tumor marker or a molecular target that allows early detection and effective treatment. RNA-binding proteins (RBPs are crucial in various cellular processes at the post-transcriptional level. The eukaryotic translation initiation factor 4 gamma, 1(eIF4G1, an RNA-binding protein, facilitates the recruitment of mRNA to the ribosome, which is a rate-limiting step during the initiation phase of protein synthesis. However, little is known regarding the characteristics of eIF4G1 expression and its clinical significance in ovarian cancer. Therefore, we propose to investigate the expression and clinicopathological significance of eIF4G1 in ovarian cancer patients.We performed Real-time PCR in 40 fresh serous ovarian cancer tissues and 27 normal ovarian surface epithelial cell specimens to assess eIF4G1mRNA expression. Immunohistochemistry (IHC was used to examine the expression of eIF4G1 at the protein level in 134 patients with serous ovarian cancer and 18 normal ovarian tissues. Statistical analysis was conducted to determine the correlation of the eIF4G1 protein levels with the clinicopathological characteristics and prognosis in ovarian cancer.The expression of eIF4G1 was upregulated in serous ovarian cancer tissues at both the mRNA (P = 0.0375 and the protein (P = 0.0007 levels. The eIF4G1 expression was significantly correlated with the clinical tumor stage (P = 0.0004 and omentum metastasis (P = 0.024. Moreover, patients with low eIF4G1 protein expression had a longer overall survival time (P = 0.026.These data revealed that eIF4G1 is markedly expressed in serous ovarian cancer and that upregulation of the eIF4G1 protein expression is significantly associated with an advanced tumor stage. Besides, the patients with lower expression of eIF4G1 tend

  9. Insulin sparing action of adenovirus 36 and its E4orf1 protein.

    Science.gov (United States)

    Dhurandhar, Nikhil V

    2013-01-01

    Additional drugs are required to effectively manage diabetes and its complications. Recent studies have revealed protective effects of Ad36, a human adenovirus, and its E4orf1 protein on glucose disposal, which may be creatively harnessed to develop novel anti-diabetic agents. Experimental Ad36 infection improves hyperglycemia in animal models and natural Ad36 infection in humans is associated with better glycemic control. Available data indicate distinctive advantages for a drug that may mimic the action of Ad36/E4orf1. The key features of such a potential drug include the ability to increase glucose uptake by adipose tissue and skeletal muscle, to reduce hepatic glucose output independent of proximal insulin signaling, and to up-regulate adiponectin and its hepatic action. The effect of Ad36/E4orf1 on hepatocyte metabolism suggests a role for treating hepatic steatosis. Despite these potential advantages, considerable research is required before such a drug is developed. The in vivo efficacy and safety of E4orf1 in improving hyperglycemia remain unknown, and an appropriate drug delivery system is required. Nonetheless, Ad36 E4orf1 offers a research opportunity to develop a new anti-diabetic agent with multiple potential advantages and conceptually advances the use of a rather unconventional source, microbial proteins, for anti-diabetic drug development. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice.

    Directory of Open Access Journals (Sweden)

    Gabor Szalai

    Full Text Available Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1 not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1 develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a in preeclampsia; 2 determine blood pressures in non-stressed conditions; and 3 develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP monitoring.Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11 or green fluorescent protein (GFP; n = 9 on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18. Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3 ± 51.7 μg/mg vs. 19.3 ± 5.6 μg/mg, p = 4.4 x 10(-2; GD18. Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2 x 10(-2. Placental and fetal weights did not differ between the groups

  11. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein.

    Science.gov (United States)

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2011-03-18

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  12. The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase.

    Directory of Open Access Journals (Sweden)

    Kathleen Kong

    2014-05-01

    Full Text Available Adenoviruses infect epithelial cells lining mucous membranes to cause acute diseases in people. They are also utilized as vectors for vaccination and for gene and cancer therapy, as well as tools to discover mechanisms of cancer due to their tumorigenic potential in experimental animals. The adenovirus E4-ORF1 gene encodes an oncoprotein that promotes viral replication, cell survival, and transformation by activating phosphatidylinositol 3-kinase (PI3K. While the mechanism of activation is not understood, this function depends on a complex formed between E4-ORF1 and the membrane-associated cellular PDZ protein Discs Large 1 (Dlg1, a common viral target having both tumor suppressor and oncogenic functions. Here, we report that in human epithelial cells, E4-ORF1 interacts with the regulatory and catalytic subunits of PI3K and elevates their levels. Like PI3K activation, PI3K protein elevation by E4-ORF1 requires Dlg1. We further show that Dlg1, E4-ORF1, and PI3K form a ternary complex at the plasma membrane. At this site, Dlg1 also co-localizes with the activated PI3K effector protein Akt, indicating that the ternary complex mediates PI3K signaling. Signifying the functional importance of the ternary complex, the capacity of E4-ORF1 to induce soft agar growth and focus formation in cells is ablated either by a mutation that prevents E4-ORF1 binding to Dlg1 or by a PI3K inhibitor drug. These results demonstrate that E4-ORF1 interacts with Dlg1 and PI3K to assemble a ternary complex where E4-ORF1 hijacks the Dlg1 oncogenic function to relocate cytoplasmic PI3K to the membrane for constitutive activation. This novel mechanism of Dlg1 subversion by adenovirus to dysregulate PI3K could be used by other pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 and activate PI3K in cells.

  13. A novel copper(II) coordination at His186 in full-length murine prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yasuko [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Hiraoka, Wakako [Laboratory of Biophysics, School of Science and Technology, Meiji University, Kawasaki 214-8571 (Japan); Igarashi, Manabu; Ito, Kimihito [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Shimoyama, Yuhei [Soft-Matter Physics Laboratory, Graduate School of Emergent Science, Muroran Institute of Technology, Muroran 050-8585 (Japan); Horiuchi, Motohiro [Laboratory of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Yamamori, Tohru; Yasui, Hironobu; Kuwabara, Mikinori [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Inagaki, Fuyuhiko [Laboratory of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2010-04-09

    To explore Cu(II) ion coordination by His{sup 186} in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP{sup C}.

  14. A novel copper(II) coordination at His186 in full-length murine prion protein

    International Nuclear Information System (INIS)

    Watanabe, Yasuko; Hiraoka, Wakako; Igarashi, Manabu; Ito, Kimihito; Shimoyama, Yuhei; Horiuchi, Motohiro; Yamamori, Tohru; Yasui, Hironobu; Kuwabara, Mikinori; Inagaki, Fuyuhiko; Inanami, Osamu

    2010-01-01

    To explore Cu(II) ion coordination by His 186 in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP C .

  15. Tula hantavirus isolate with the full-length ORF for nonstructural protein NSs survives for more consequent passages in interferon-competent cells than the isolate having truncated NSs ORF.

    Science.gov (United States)

    Jääskeläinen, Kirsi M; Plyusnina, Angelina; Lundkvist, Ake; Vaheri, Antti; Plyusnin, Alexander

    2008-01-11

    The competitiveness of two Tula hantavirus (TULV) isolates, TULV/Lodz and TULV/Moravia, was evaluated in interferon (IFN) -competent and IFN-deficient cells. The two isolates differ in the length of the open reading frame (ORF) encoding the nonstructural protein NSs, which has previously been shown to inhibit IFN response in infected cells. In IFN-deficient Vero E6 cells both TULV isolates survived equally well. In contrast, in IFN-competent MRC5 cells TULV/Lodz isolate, that possesses the NSs ORF for the full-length protein of 90 aa, survived for more consequent passages than TULV/Moravia isolate, which contains the ORF for truncated NSs protein (66-67 aa). Our data show that expression of a full-length NSs protein is beneficial for the virus survival and competitiveness in IFN-competent cells and not essential in IFN-deficient cells. These results suggest that the N-terminal aa residues are important for the full activity of the NSs protein.

  16. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    Directory of Open Access Journals (Sweden)

    Tania Rivera-Hernandez

    2016-06-01

    Full Text Available Group A Streptococcus (GAS is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i streptolysin O (SLO, interleukin 8 (IL-8 protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP], group A streptococcal C5a peptidase (SCPA, arginine deiminase (ADI, and trigger factor (TF; (ii the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model.

  17. Disruption of genes encoding eIF4E binding proteins-1 and -2 does not alter basal or sepsis-induced changes in skeletal muscle protein synthesis in male or female mice.

    Science.gov (United States)

    Steiner, Jennifer L; Pruznak, Anne M; Deiter, Gina; Navaratnarajah, Maithili; Kutzler, Lydia; Kimball, Scot R; Lang, Charles H

    2014-01-01

    Sepsis decreases skeletal muscle protein synthesis in part by impairing mTOR activity and the subsequent phosphorylation of 4E-BP1 and S6K1 thereby controlling translation initiation; however, the relative importance of changes in these two downstream substrates is unknown. The role of 4E-BP1 (and -BP2) in regulating muscle protein synthesis was assessed in wild-type (WT) and 4E-BP1/BP2 double knockout (DKO) male mice under basal conditions and in response to sepsis. At 12 months of age, body weight, lean body mass and energy expenditure did not differ between WT and DKO mice. Moreover, in vivo rates of protein synthesis in gastrocnemius, heart and liver did not differ between DKO and WT mice. Sepsis decreased skeletal muscle protein synthesis and S6K1 phosphorylation in WT and DKO male mice to a similar extent. Sepsis only decreased 4E-BP1 phosphorylation in WT mice as no 4E-BP1/BP2 protein was detected in muscle from DKO mice. Sepsis decreased the binding of eIF4G to eIF4E in WT mice; however, eIF4E•eIF4G binding was not altered in DKO mice under either basal or septic conditions. A comparable sepsis-induced increase in eIF4B phosphorylation was seen in both WT and DKO mice. eEF2 phosphorylation was similarly increased in muscle from WT septic mice and both control and septic DKO mice, compared to WT control values. The sepsis-induced increase in muscle MuRF1 and atrogin-1 (markers of proteolysis) as well as TNFα and IL-6 (inflammatory cytokines) mRNA was greater in DKO than WT mice. The sepsis-induced decrease in myocardial and hepatic protein synthesis did not differ between WT and DKO mice. These data suggest overall basal protein balance and synthesis is maintained in muscle of mice lacking both 4E-BP1/BP2 and that sepsis-induced changes in mTOR signaling may be mediated by a down-stream mechanism independent of 4E-BP1 phosphorylation and eIF4E•eIF4G binding.

  18. Conformal blocks related to the R-R states in the c-circumflex=1 superconformal field theories

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Suchanek, Paulina; Jaskolski, Zbigniew

    2008-01-01

    We derive an explicit form of the family of four-point Neveu-Schwarz blocks with c-circumflex=1, external weights Δ i =(1/8) and arbitrary intermediate weight Δ. The derivation is based on analytic properties of correlation functions of Ramond fields in the free superscalar theory

  19. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  20. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    Science.gov (United States)

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1. Copyright © 2015 the American Physiological Society.

  1. The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response.

    Science.gov (United States)

    Sukarieh, R; Sonenberg, N; Pelletier, J

    2009-05-01

    Stress granules (SGs) arise as a consequence of cellular stress, contain stalled translation preinitiation complexes, and are associated with cell survival during environmental insults. SGs are dynamic entities with proteins relocating into and out of them during stress. Among the repertoire of proteins present in SGs is eukaryotic initiation factor 4E (eIF4E), a translation factor required for cap-dependent translation and that regulates a rate-limiting step for protein synthesis. Herein, we demonstrate that localization of eIF4E to SGs is dependent on the presence of a family of repressor proteins, eIF4E-binding proteins (4E-BPs). Our results demonstrate that 4E-BPs regulate the SG localization of eIF4E.

  2. Full-Length Human Placental sFlt-1-e15a Isoform Induces Distinct Maternal Phenotypes of Preeclampsia in Mice

    Science.gov (United States)

    Szalai, Gabor; Romero, Roberto; Chaiworapongsa, Tinnakorn; Xu, Yi; Wang, Bing; Ahn, Hyunyoung; Xu, Zhonghui; Chiang, Po Jen; Sundell, Birgitta; Wang, Rona; Jiang, Yang; Plazyo, Olesya; Olive, Mary; Tarca, Adi L.; Dong, Zhong; Qureshi, Faisal; Papp, Zoltan; Hassan, Sonia S.; Hernandez-Andrade, Edgar; Than, Nandor Gabor

    2015-01-01

    Objective Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. Methods Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. Results Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10-2; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10-2). Placental and fetal weights did not differ between the

  3. A Case of Urethral Reconstruction Using a Superficial Circumflex Iliac Artery

    Directory of Open Access Journals (Sweden)

    Kun-Woon Yoo

    2012-05-01

    Full Text Available A radial forearm free flap has been conventionally used for urethral reconstruction. However,aesthetic and functional complications occur frequently at the donor site. The use of asuperficial circumflex iliac artery perforator (SCIP flap can resolve these disadvantages.Here, we report our case with a review of literature. A 69-year-old man visited our hospitalwith multiple contusions of the abdomen and genital amputation. After necrotic tissuedebridement, the length of the residual corpus carvernosum was 1.5 cm and that of thecorpus spongiosum and urethra was 1 cm. For the reconstruction of the penis, a SCIP flap andanterolateral thigh free flap was performed. The primary closure was performed at the donorsite. Three weeks postoperatively, the patient had a urethral foley catheter removed. Theneourethra was functioning well without stricture. Four months postoperatively, the patienthad no complications such as urethral stricture. A good recovery was also achieved withno aesthetic deficits at the donor site. SCIP flap is appropriate for urethral reconstruction.Because of its proximity to the recipient sites, it makes surgical preparation easier and theprimary closure at the donor site available. It is also advantageous in that its location isalmost unnoticeable.

  4. Bentall operation in a patient with an anomalous left circumflex artery: Case report and review

    Directory of Open Access Journals (Sweden)

    Ivo Gasparovic

    2017-10-01

    Full Text Available Anomalous origin of a left circumflex artery from the right coronary sinus represents a technical challenge in patients who require aortic valve/root procedures. This case report describes a patient who presented with bicuspid aortic valve, anomalous origin of the circumflex artery, severe aortic regurgitation, and aneurysm of the ascending aorta as well as aortic root that was safely managed following the Bentall procedure with the combined button technique.

  5. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes

    Directory of Open Access Journals (Sweden)

    Natasha Chaudhary

    2016-12-01

    Full Text Available Insulin activation of phosphatidylinositol 3-kinase (PI3K regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin’s effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types.

  6. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily.

    Directory of Open Access Journals (Sweden)

    Aleksander F Sikorski

    2007-01-01

    Full Text Available The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type, 4.1B (brain type, and 4.1N (neuron type, and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK, non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.

  7. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2010-01-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  8. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity.

    Science.gov (United States)

    Yi, Woelsung; Gupta, Sanjay; Ricker, Edd; Manni, Michela; Jessberger, Rolf; Chinenov, Yurii; Molina, Henrik; Pernis, Alessandra B

    2017-08-15

    Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T H ) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T FH ) cells, is critical as aberrant T FH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant T FH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (T FH ) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of T FH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.

  9. Full-length model of the human galectin-4 and insights into dynamics of inter-domain communication

    Science.gov (United States)

    Rustiguel, Joane K.; Soares, Ricardo O. S.; Meisburger, Steve P.; Davis, Katherine M.; Malzbender, Kristina L.; Ando, Nozomi; Dias-Baruffi, Marcelo; Nonato, Maria Cristina

    2016-09-01

    Galectins are proteins involved in diverse cellular contexts due to their capacity to decipher and respond to the information encoded by β-galactoside sugars. In particular, human galectin-4, normally expressed in the healthy gastrointestinal tract, displays differential expression in cancerous tissues and is considered a potential drug target for liver and lung cancer. Galectin-4 is a tandem-repeat galectin characterized by two carbohydrate recognition domains connected by a linker-peptide. Despite their relevance to cell function and pathogenesis, structural characterization of full-length tandem-repeat galectins has remained elusive. Here, we investigate galectin-4 using X-ray crystallography, small- and wide-angle X-ray scattering, molecular modelling, molecular dynamics simulations, and differential scanning fluorimetry assays and describe for the first time a structural model for human galectin-4. Our results provide insight into the structural role of the linker-peptide and shed light on the dynamic characteristics of the mechanism of carbohydrate recognition among tandem-repeat galectins.

  10. Secretory production of tetrameric native full-length streptavidin with thermostability using Streptomyces lividans as a host.

    Science.gov (United States)

    Noda, Shuhei; Matsumoto, Takuya; Tanaka, Tsutomu; Kondo, Akihiko

    2015-01-13

    Streptavidin is a tetrameric protein derived from Streptomyces avidinii, and has tight and specific biotin binding affinity. Applications of the streptavidin-biotin system have been widely studied. Streptavidin is generally produced using protein expression in Escherichia coli. In the present study, the secretory production of streptavidin was carried out using Streptomyces lividans as a host. In this study, we used the gene encoding native full-length streptavidin, whereas the core region is generally used for streptavidin production in E. coli. Tetrameric streptavidin composed of native full-length streptavidin monomers was successfully secreted in the culture supernatant of S. lividans transformants, and had specific biotin binding affinity as strong as streptavidin produced by E. coli. The amount of Sav using S. lividans was about 9 times higher than using E. coli. Surprisingly, streptavidin produced by S. lividans exhibited affinity to biotin after boiling, despite the fact that tetrameric streptavidin is known to lose its biotin binding ability after brief boiling. We successfully produced a large amount of tetrameric streptavidin as a secretory-form protein with unique thermotolerance.

  11. Modular transformations and invariants in the context of fractional level sl-circumflex(2 vertical bar 1;C)

    International Nuclear Information System (INIS)

    Johnstone, Gavin

    2000-01-01

    The modular transformation properties of admissible characters of the affine superalgebra sl-circumflex(2 vertical bar 1;C) at fractional level k=1/u-1, u is a subset of N/1 are presented. All modular invariants for u=2 and u=3 are calculated explicitly and an A-series and D-series of modular invariants emerge

  12. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones.

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S; Brown, Kevin E

    2008-05-10

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus.

  13. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones✰

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Venermo, Maria S Söderlund; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus. PMID:18252260

  14. Dissociation of eIF4E-binding protein 2 (4E-BP2 from eIF4E independent of Thr37/Thr46 phosphorylation in the ischemic stress response.

    Directory of Open Access Journals (Sweden)

    María I Ayuso

    Full Text Available Eukaryotic initiation factor (eIF 4E-binding proteins (4E-BPs are translational repressors that bind specifically to eIF4E and are critical in the control of protein translation. 4E-BP2 is the predominant 4E-BP expressed in the brain, but their role is not well known. Here, we characterized four forms of 4E-BP2 detected by two-dimensional gel electrophoresis (2-DGE in brain. The form with highest electrophoretic mobility was the main form susceptible to phosphorylation at Thr37/Thr46 sites, phosphorylation that was detected in acidic spots. Cerebral ischemia and subsequent reperfusion induced dephosphorylation and phosphorylation of 4E-BP2 at Thr37/Thr46, respectively. The induced phosphorylation was in parallel with the release of 4E-BP2 from eIF4E, although two of the phosphorylated 4E-BP2 forms were bound to eIF4E. Upon long-term reperfusion, there was a decrease in the binding of 4E-BP2 to eIF4E in cerebral cortex, demonstrated by cap binding assays and 4E-BP2-immunoprecipitation experiments. The release of 4E-BP2 from eIF4E was without changes in 4E-BP2 phosphorylation or other post-translational modification recognized by 2-DGE. These findings demonstrated specific changes in 4E-BP2/eIF4E association dependent and independent of 4E-BP2 phosphorylation. The last result supports the notion that phosphorylation may not be the uniquely regulation for the binding of 4E-BP2 to eIF4E under ischemic stress.

  15. The relationship of protein conservation and sequence length

    Directory of Open Access Journals (Sweden)

    Panchenko Anna R

    2002-11-01

    Full Text Available Abstract Background In general, the length of a protein sequence is determined by its function and the wide variance in the lengths of an organism's proteins reflects the diversity of specific functional roles for these proteins. However, additional evolutionary forces that affect the length of a protein may be revealed by studying the length distributions of proteins evolving under weaker functional constraints. Results We performed sequence comparisons to distinguish highly conserved and poorly conserved proteins from the bacterium Escherichia coli, the archaeon Archaeoglobus fulgidus, and the eukaryotes Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. For all organisms studied, the conserved and nonconserved proteins have strikingly different length distributions. The conserved proteins are, on average, longer than the poorly conserved ones, and the length distributions for the poorly conserved proteins have a relatively narrow peak, in contrast to the conserved proteins whose lengths spread over a wider range of values. For the two prokaryotes studied, the poorly conserved proteins approximate the minimal length distribution expected for a diverse range of structural folds. Conclusions There is a relationship between protein conservation and sequence length. For all the organisms studied, there seems to be a significant evolutionary trend favoring shorter proteins in the absence of other, more specific functional constraints.

  16. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  17. A Case of Urethral Reconstruction Using a Superficial Circumflex Iliac Artery

    Directory of Open Access Journals (Sweden)

    Kun-Woon Yoo

    2012-05-01

    Full Text Available A radial forearm free flap has been conventionally used for urethral reconstruction. However, aesthetic and functional complications occur frequently at the donor site. The use of a superficial circumflex iliac artery perforator (SCIP flap can resolve these disadvantages. Here, we report our case with a review of literature. A 69-year-old man visited our hospital with multiple contusions of the abdomen and genital amputation. After necrotic tissue debridement, the length of the residual corpus carvernosum was 1.5 cm and that of the corpus spongiosum and urethra was 1 cm. For the reconstruction of the penis, a SCIP flap and anterolateral thigh free flap was performed. The primary closure was performed at the donor site. Three weeks postoperatively, the patient had a urethral foley catheter removed. The neourethra was functioning well without stricture. Four months postoperatively, the patient had no complications such as urethral stricture. A good recovery was also achieved with no aesthetic deficits at the donor site. SCIP flap is appropriate for urethral reconstruction. Because of its proximity to the recipient sites, it makes surgical preparation easier and the primary closure at the donor site available. It is also advantageous in that its location is almost unnoticeable.

  18. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Science.gov (United States)

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  19. Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal.

    Directory of Open Access Journals (Sweden)

    Rashmi Krishnapuram

    Full Text Available Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1. Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin.

  20. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a

    International Nuclear Information System (INIS)

    Miranda, Tina Branscombe; Webb, Kristofor J.; Edberg, Dale D.; Reeves, Raymond; Clarke, Steven

    2005-01-01

    The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specifically methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation

  1. Optical conductivity of the triplet superconductor Sr2RuO4

    International Nuclear Information System (INIS)

    Virosztek, Attila; Dora, Balazs; Maki, Kazumi

    2003-10-01

    Now the spin triplet superconductivity in Sr 2 RuO 4 is well established. As to the nodal structures seen in high quality samples, there are two alternative models at present: a. 2D f-wave model with Δ(k) ∼ (k-circumflex x ± ik-circumflex y ) cos(ck z ) and b. the multigap model with Δ 1 (k) ∼ (k-circumflex x ± ik-circumflex y ) and Δ 2 (k) ∼ (k-circumflex x ± ik-circumflex y ) cos(ck z /2). In this paper we calculate the optical conductivity for T e in the 2D f-wave model and show that it differs significantly from those in the multigap model. (author)

  2. Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway.

    Directory of Open Access Journals (Sweden)

    Pierre-Emmanuel Joubert

    2015-08-01

    Full Text Available Chikungunya virus (CHIKV, the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell's cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K and MAP kinase-activated protein kinase (MnKs activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition.

  3. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones

    OpenAIRE

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showe...

  4. Synthesis of (E-2,4-Dinitro-N-((2E,4E-4-phenyl-5-(pyrrolidin-1-ylpenta-2,4-dienylideneaniline

    Directory of Open Access Journals (Sweden)

    Mostafa Fesanghari

    2009-07-01

    Full Text Available (E-2,4-Dinitro-N-((2E,4E-4-phenyl-5-(pyrrolidin-1-ylpenta-2,4-dienylidene aniline dye was prepared in one pot by reaction of premade N-2,4-dinitrophenyl-3-phenylpyridinium chloride (DNPPC and pyrrolidine in absolute MeOH.

  5. EXPRESSION AND CHARACTERIZATION OF FULL-LENGTH HUMAN HEME OXYGENASE-1: PRESENCE OF INTACT MEMBRANE-BINDING REGION LEADS TO INCREASED BINDING AFFINITY FOR NADPH-CYTOCHROME P450 REDUCTASE

    Science.gov (United States)

    Huber, Warren J.; Backes, Wayne L.

    2009-01-01

    Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953

  6. The function analysis of full-length cDNA sequence from IRM-2 mouse cDNA library

    International Nuclear Information System (INIS)

    Wang Qin; Liu Xiaoqiu; Xu Chang; Du Liqing; Sun Zhijuan; Wang Yan; Liu Qiang; Song Li; Li Jin; Fan Feiyue

    2013-01-01

    Objective: To identify the function of full-length cDNA sequence from IRM-2 mouse cDNA library. Methods: Full-length cDNA products were amplified by PCR from IRM-2 mouse cDNA library according to twenty-one pieces of expressed sequence tag. The expression of full-length cDNAs were detected after mouse embryonic fibroblasts were exposed to 6.5 Gy γ-ray radiation. And the effect on the growth of radiosensitivity cells AT5B1VA transfected with full-length cDNAs was investigated. Results: The expression of No.4, 5 and 2 full-length cDNAs from IRM-2 mouse were higher than that of parental ICR and 615 mouse after mouse embryonic fibroblasts irradiated with γ-ray radiation. And the survival rate of AT5B1VA cells transfected with No.4, 5 and 2 full-length cDNAs was high. Conclusion: No.4, 5 and 2 full-length cDNAs of IRM-2 mouse are of high radioresistance. (authors)

  7. The inhibition of cAMP-dependent protein kinase by full-length hepatitis C virus NS3/4A complex is due to ATP hydrolysis.

    Science.gov (United States)

    Aoubala, M; Holt, J; Clegg, R A; Rowlands, D J; Harris, M

    2001-07-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, but the molecular mechanisms of viral pathogenesis remain to be established. The HCV non-structural protein NS3 complexes with NS4A and has three enzymatic activities: a proteinase and a helicase/NTPase. Recently, catalytically inactive NS3 fragments containing an arginine-rich motif have been reported to interact with, and inhibit, the catalytic subunit of cAMP-dependent protein kinase (PKA C-subunit). Here we demonstrate that full-length, catalytically active NS3/4A, purified from recombinant baculovirus-infected insect cells, is also able to inhibit PKA C-subunit in vitro. This inhibition was abrogated by mutation of either the arginine-rich motif or the conserved helicase motif II, both of which also abolished NTPase activity. As PKA C-subunit inhibition was also enhanced by poly(U) (an activator of NS3 NTPase activity), we hypothesized that PKA C-subunit inhibition could be due to NS3/4A-mediated ATP hydrolysis. This was confirmed by experiments in which a constant ATP concentration was maintained by addition of an ATP regeneration system--under these conditions PKA C-subunit inhibition was not observed. Interestingly, the mutations also abrogated the ability of wild-type NS3/4A to inhibit the PKA-regulated transcription factor CREB in transiently transfected hepatoma cells. Our data are thus not consistent with the previously proposed model in which the arginine-rich motif of NS3 was suggested to act as a pseudosubstrate inhibitor of PKA C-subunit. However, in vivo effects of NS3/4A suggest that ATPase activity may play a role in viral pathology in the infected liver.

  8. Conformational change in full-length mouse prion: A site-directed spin-labeling study

    International Nuclear Information System (INIS)

    Inanami, Osamu; Hashida, Shukichi; Iizuka, Daisuke; Horiuchi, Motohiro; Hiraoka, Wakako; Shimoyama, Yuhei; Nakamura, Hideo; Inagaki, Fuyuhiko; Kuwabara, Mikinori

    2005-01-01

    The structure of the mouse prion (moPrP) was studied using site-directed spin-labeling electron spin resonance (SDSL-ESR). Since a previous NMR study by Hornemanna et al., [Hornemanna, Korthb, Oeschb, Rieka, Widera, Wuethricha, Glockshubera, Recombinant full-length murine prion protein, mPrP (23-231): purification and spectroscopic characterization, FEBS Lett. 413 (1997) 277-281] has indicated that N96, D143, and T189 in moPrP are localized in a Cu 2+ binding region, Helix1 and Helix2, respectively, three recombinant moPrP mutations (N96C, D143C, and T189C) were expressed in an Escherichia coli system, and then refolded by dialysis under low pH and purified by reverse-phase HPLC. By using the preparation, we succeeded in preserving a target cystein residue without alteration of the α-helix structure of moPrP and were able to apply SDSL-ESR with a methane thiosulfonate spin label to the full-length prion protein. The rotational correlation times (τ) of 1.1, 3.3, and 4.8 ns were evaluated from the X-band ESR spectra at pH 7.4 and 20 deg C for N96R1, D143R1, and T189R1, respectively. τ reflects the fact that the Cu 2+ binding region is more flexible than Helix1 or Helix2. ESR spectra recorded at various temperatures revealed two phases together with a transition point at around 20 deg C in D143R1 and T189R1, but not in N96R1. With the variation of pH from 4.0 to 7.8, ESR spectra of T189R1 at 20 deg C showed a gradual increase of τ from 2.9 to 4.8 ns. On the other hand, the pH-dependent conformational changes in N96R1 and D143R1 were negligible. These results indicated that T189 located in Helix2 possessed a structure sensitive to physiological pH changes; simultaneously, N96 in the Cu 2+ binding region and D143 in Helix1 were conserved

  9. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  10. The E1A proteins of all six human adenovirus subgroups target the p300/CBP acetyltransferases and the SAGA transcriptional regulatory complex

    International Nuclear Information System (INIS)

    Shuen, Michael; Avvakumov, Nikita; Torchia, Joe; Mymryk, Joe S.

    2003-01-01

    The N-terminal/conserved region 1 (CR1) portion of the human adenovirus (Ad) 5 E1A protein was previously shown to inhibit growth in the simple eukaryote Saccharomyces cerevisiae. We now demonstrate that the corresponding regions of the E1A proteins of Ad3,-4,-9,-12, and -40, which represent the remaining five Ad subgroups, also inhibit yeast growth. These results suggest that the E1A proteins of all six human Ad subgroups share a common cellular target(s) conserved in yeast. Growth inhibition induced by either full-length or the N-terminal/CR1 portion of Ad5 E1A was relieved by coexpression of the E1A binding portions of the mammalian p300, CBP, and pCAF acetyltransferases. Similarly, growth inhibition by the N-terminal/CR1 portions of the other Ad E1A proteins was suppressed by expression of the same regions of CBP or pCAF known to bind Ad5 E1A. The physical interaction of each of the different Ad E1A proteins with CBP, p300, and pCAF was confirmed in vitro. Furthermore, deletion of the gene encoding yGcn5, the yeast homolog of pCAF and a subunit of the SAGA transcriptional regulatory complex, restored growth in yeast expressing each of the different Ad E1A proteins. This indicates that the SAGA complex is a conserved target of all Ad E1A proteins. Our results demonstrate for the first time that the p300, CBP, and pCAF acetyltransferases are common targets for the E1A proteins of all six human Ad subgroups, highlighting the importance of these interactions for E1A function

  11. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  12. E4orf1: a novel ligand that improves glucose disposal in cell culture.

    Directory of Open Access Journals (Sweden)

    Emily J Dhurandhar

    Full Text Available Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR, are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K, and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1 protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes

  13. Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function, and evolutionary relatedness.

    Directory of Open Access Journals (Sweden)

    Nicole Brimer

    2017-12-01

    Full Text Available Papillomavirus E6 proteins bind to LXXLL peptide motifs displayed on targeted cellular proteins. Alpha genus HPV E6 proteins associate with the cellular ubiquitin ligase E6AP (UBE3A, by binding to an LXXLL peptide (ELTLQELLGEE displayed by E6AP, thereby stimulating E6AP ubiquitin ligase activity. Beta, Gamma, and Delta genera E6 proteins bind a similar LXXLL peptide (WMSDLDDLLGS on the cellular transcriptional co-activator MAML1 and thereby repress Notch signaling. We expressed 45 different animal and human E6 proteins from diverse papillomavirus genera to ascertain the overall preference of E6 proteins for E6AP or MAML1. E6 proteins from all HPV genera except Alpha preferentially interacted with MAML1 over E6AP. Among animal papillomaviruses, E6 proteins from certain ungulate (SsPV1 from pigs and cetacean (porpoises and dolphins hosts functionally resembled Alpha genus HPV by binding and targeting the degradation of E6AP. Beta genus HPV E6 proteins functionally clustered with Delta, Pi, Tau, Gamma, Chi, Mu, Lambda, Iota, Dyokappa, Rho, and Dyolambda E6 proteins to bind and repress MAML1. None of the tested E6 proteins physically and functionally interacted with both MAML1 and E6AP, indicating an evolutionary split. Further, interaction of an E6 protein was insufficient to activate degradation of E6AP, indicating that E6 proteins that target E6AP co-evolved to separately acquire both binding and triggering of ubiquitin ligase activation. E6 proteins with similar biological function clustered together in phylogenetic trees and shared structural features. This suggests that the divergence of E6 proteins from either MAML1 or E6AP binding preference is a major event in papillomavirus evolution.

  14. Expression of tung tree diacylglycerol acyltransferase 1 in E. coli

    Directory of Open Access Journals (Sweden)

    Klasson K Thomas

    2011-07-01

    Full Text Available Abstract Background Diacylglycerol acyltransferases (DGATs catalyze the final and rate-limiting step of triacylglycerol (TAG biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in E. coli had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in E. coli. Results An expression plasmid containing the open reading frame for tung tree (Vernicia fordii DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in E. coli BL21(DE3. Immunoblotting showed that the recombinant DGAT1 (rDGAT1 was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification. Conclusions This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.

  15. Observation of 99Tcm-MIBI uptake of ischemic myocardium in dog models after left circumflex coronary artery constriction

    International Nuclear Information System (INIS)

    Cheng Guanghua; Dai Yunhai; Wu Kefang; Xu Quanfeng

    2008-01-01

    Objective: To observe 99 Tc m -MIBI uptake of ischemic myocardium at different times (1h, 4h) in dog models after left circumflex coronary artery constriction. Methods: 12 dog models of coronary artery stenosis were prepared by left circumflex coronary ligation, and were given injection of 99 Tc m -MIBI at the dosage of 185 MBq (5 mCi). Six models were sacrificed at one hour and four hours after the injection respectively. Radio-uptake in about 100 mg myocardium from both ischemic and non-ischemic sites were measured with r-counter. Results: No significant differences were found between ratios of radioactive count of ischemic over normal myocardial tissues at 1h and 4h after injection of 99 Tc m -MIBI (0.726±0.054 and 0.673±0.080, respective, t=1.3452, P >0.05). Conclusion: The extension of post-injection time would not increase 99 Tc m -MIBI uptake in ischemic myocardium. (authors)

  16. Binding site analysis of full-length α1a adrenergic receptor using homology modeling and molecular docking

    International Nuclear Information System (INIS)

    Pedretti, Alessandro; Elena Silva, Maria; Villa, Luigi; Vistoli, Giulio

    2004-01-01

    The recent availability of crystal structure of bovine rhodopsin offers new opportunities in order to approach the construction of G protein coupled receptors. This study focuses the attention on the modeling of full-length α 1a adrenergic receptor (α 1a -AR) due to its biological role and significant implications in pharmacological treatment of benign prostate hyperplasia. This work could be considered made up by two main steps: (a) the construction of full structure of α 1a -AR, through homology modeling methods; (b) the automated docking of an endogenous agonist, norepinephrine, and of an antagonist, WB-4101, using BioDock program. The obtained results highlight the key residues involved in binding sites of both agonists and antagonists, confirming the mutagenesis data and giving new suggestions for the rational design of selective ligands

  17. A simple strategy for the purification of native recombinant full-length human RPL10 protein from inclusion bodies.

    Science.gov (United States)

    Pereira, Larissa M; Silva, Luana R; Alves, Joseane F; Marin, Nélida; Silva, Flavio Sousa; Morganti, Ligia; Silva, Ismael D C G; Affonso, Regina

    2014-09-01

    The L10 ribosomal protein (RPL10) plays a role in the binding of the 60 S and 40 S ribosomal subunits and in mRNA translation. The evidence indicates that RPL10 also has multiple extra-ribosomal functions, including tumor suppression. Recently, the presence of RPL10 in prostate and ovarian cancers was evaluated, and it was demonstrated to be associated with autistic disorders and premature ovarian failure. In the present work, we successfully cloned and expressed full-length human RPL10 (hRPL10) protein and isolated inclusion bodies containing this protein that had formed under mild growth conditions. The culture produced 376mg of hRPL10 protein per liter of induced bacterial culture, of which 102.4mg was present in the soluble fraction, and 25.6mg was recovered at approximately 94% purity. These results were obtained using a two-step process of non-denaturing protein extraction from pelleted inclusion bodies. We studied the characteristics of this protein using circular dichroism spectroscopy and by monitoring the changes induced by the presence or absence of zinc ions using fluorescence spectrometry. The results demonstrated that the protein obtained using these non-conventional methods retained its secondary and tertiary structure. The conformational changes induced by the incorporation of zinc suggested that this protein could interact with Jun or the SH3 domain of c-yes. The results suggested that the strategy used to obtain hRPL10 is simple and could be applied to obtaining other proteins that are susceptible to degradation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A New Crucial Protein Interaction Element That Targets the Adenovirus E4-ORF1 Oncoprotein to Membrane Vesicles▿

    OpenAIRE

    Chung, Sang-Hyuk; Frese, Kristopher K.; Weiss, Robert S.; Prasad, B. V. Venkataram; Javier, Ronald T.

    2007-01-01

    Human adenovirus type 9 exclusively elicits mammary tumors in experimental animals, and the primary oncogenic determinant of this virus is the E4-ORF1 oncogene, as opposed to the well-known E1A and E1B oncogenes. The tumorigenic potential of E4-ORF1, as well as its ability to oncogenically stimulate phosphatidylinositol 3-kinase (PI3K), depends on a carboxyl-terminal PDZ domain-binding motif (PBM) that mediates interactions with several different membrane-associated cellular PDZ proteins, inc...

  19. The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response

    OpenAIRE

    Sukarieh, R.; Sonenberg, N.; Pelletier, J.

    2009-01-01

    Stress granules (SGs) arise as a consequence of cellular stress, contain stalled translation preinitiation complexes, and are associated with cell survival during environmental insults. SGs are dynamic entities with proteins relocating into and out of them during stress. Among the repertoire of proteins present in SGs is eukaryotic initiation factor 4E (eIF4E), a translation factor required for cap-dependent translation and that regulates a rate-limiting step for protein synthesis. Herein, we...

  20. Crystal Structure of the Full-Length Feline Immunodeficiency Virus Capsid Protein Shows an N-Terminal β-Hairpin in the Absence of N-Terminal Proline

    Directory of Open Access Journals (Sweden)

    Christelle Folio

    2017-11-01

    Full Text Available Feline immunodeficiency virus (FIV is a member of the Retroviridae family. It is the causative agent of an acquired immunodeficiency syndrome (AIDS in cats and wild felines. Its capsid protein (CA drives the assembly of the viral particle, which is a critical step in the viral replication cycle. Here, the first atomic structure of full-length FIV CA to 1.67 Å resolution is determined. The crystallized protein exhibits an original tetrameric assembly, composed of dimers which are stabilized by an intermolecular disulfide bridge induced by the crystallogenesis conditions. The FIV CA displays a standard α-helical CA topology with two domains, separated by a linker shorter than other retroviral CAs. The β-hairpin motif at its amino terminal end, which interacts with nucleotides in HIV-1, is unusually long in FIV CA. Interestingly, this functional β-motif is formed in this construct in the absence of the conserved N-terminal proline. The FIV CA exhibits a cis Arg–Pro bond in the CypA-binding loop, which is absent in known structures of lentiviral CAs. This structure represents the first tri-dimensional structure of a functional, full-length FIV CA.

  1. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.

    Science.gov (United States)

    Huber, Warren J; Backes, Wayne L

    2007-10-30

    Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.

  2. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy

    Directory of Open Access Journals (Sweden)

    Zhang Hui

    2007-02-01

    Full Text Available Abstract Recent investigation of Cullin 4 (CUL4 has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1 to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN that removes this important modification. Recently, multiple WD40-repeat proteins (WDR were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF. Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.

  3. Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal.

    Science.gov (United States)

    Krishnapuram, Rashmi; Dhurandhar, Emily J; Dubuisson, Olga; Hegde, Vijay; Dhurandhar, Nikhil V

    2013-01-01

    Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin.

  4. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins.

    Science.gov (United States)

    Schlatter, Stefan; Senn, Claudia; Fussenegger, Martin

    2003-07-20

    Translation-initiation is a predominant checkpoint in mammalian cells which controls protein synthesis and fine-tunes the flow of information from gene to protein. In eukaryotes, translation-initiation is typically initiated at a 7-methyl-guanylic acid cap posttranscriptionally linked to the 5' end of mRNAs. Alternative cap-independent translation-initiation involves 5' untranslated regions (UTR) known as internal ribosome entry sites, which adopt a particular secondary structure. Translation-initiating ribosome assembly at cap or IRES elements is mediated by a multiprotein complex of which the initiation factor 4F (eIF4F) consisting of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G is a major constituent. eIF4G is a key target of picornaviral protease 2A, which cleaves this initiation factor into eIF4G(Delta) and (Delta)eIF4G to redirect the cellular translation machinery exclusively to its own IRES-containing transcripts. We have designed a novel translation control system (TCS) for conditional as well as adjustable translation of cap- and IRES-dependent transgene mRNAs in mammalian cells. eIF4G(Delta) and (Delta)eIF4G were fused C- and N-terminally to the FK506-binding protein (FKBP) and the FKBP-rapamycin-binding domain (FRB) of the human FKBP-rapamycin-associated protein (FRAP), respectively. Rapamycin-induced heterodimerization of eIF4G(Delta)-FKBP and FRB-(Delta)eIF4G fusion proteins reconstituted a functional chimeric elongation factor 4G in a dose-dependent manner. Rigorous quantitative expression analysis of cap- and IRES-dependent SEAP- (human placental secreted alkaline phosphatase) and luc- (Photinus pyralis luciferase) encoding reporter constructs confirmed adjustable translation control and revealed increased production of desired proteins in response to dimerization-induced heterologous eIF4G in Chinese hamster ovary (CHO-K1) cells. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 210-225, 2003.

  5. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  6. Characterization of the cloned full-length and a truncated human target of rapamycin: Activity, specificity, and enzyme inhibition as studied by a high capacity assay

    International Nuclear Information System (INIS)

    Toral-Barza, Lourdes; Zhang Weiguo; Lamison, Craig; LaRocque, James; Gibbons, James; Yu, Ker

    2005-01-01

    The mammalian target of rapamycin (mTOR/TOR) is implicated in cancer and other human disorders and thus an important target for therapeutic intervention. To study human TOR in vitro, we have produced in large scale both the full-length TOR (289 kDa) and a truncated TOR (132 kDa) from HEK293 cells. Both enzymes demonstrated a robust and specific catalytic activity towards the physiological substrate proteins, p70 S6 ribosomal protein kinase 1 (p70S6K1) and eIF4E binding protein 1 (4EBP1), as measured by phosphor-specific antibodies in Western blotting. We developed a high capacity dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) for analysis of kinetic parameters. The Michaelis constant (K m ) values of TOR for ATP and the His6-S6K substrate were shown to be 50 and 0.8 μM, respectively. Dose-response and inhibition mechanisms of several known inhibitors, the rapamycin-FKBP12 complex, wortmannin and LY294002, were also studied in DELFIA. Our data indicate that TOR exhibits kinetic features of those shared by traditional serine/threonine kinases and demonstrate the feasibility for TOR enzyme screen in searching for new inhibitors

  7. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-12-01

    Full Text Available Abstract Background The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV 229E. The prototype virus has a split gene, encoding the putative ORF4a and ORF4b proteins. To determine whether primary HCoV-229E isolates exhibit this unusual genome organization, we analyzed the ORF4a/b region of five current clinical isolates from The Netherlands and three early isolates collected at the Common Cold Unit (CCU in Salisbury, UK. Results All Dutch isolates were identical in the ORF4a/b region at amino acid level. All CCU isolates are only 98% identical to the Dutch isolates at the nucleotide level, but more closely related to the prototype HCoV-229E (>98%. Remarkably, our analyses revealed that the laboratory adapted, prototype HCoV-229E has a 2-nucleotide deletion in the ORF4a/b region, whereas all clinical isolates carry a single ORF, 660 nt in size, encoding a single protein of 219 amino acids, which is a homologue of the ORF3 proteins encoded by HCoV-NL63 and PEDV. Conclusion Thus, the genome organization of the group 1b coronaviruses HCoV-NL63, PEDV and HCoV-229E is identical. It is possible that extensive culturing of the HCoV-229E laboratory strain resulted in truncation of ORF4. This may indicate that the protein is not essential in cell culture, but the highly conserved amino acid sequence of the ORF4 protein among clinical isolates suggests that the protein plays an important role in vivo.

  8. Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Directory of Open Access Journals (Sweden)

    Tadashi Imanishi

    2004-06-01

    Full Text Available The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/. It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs, identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA

  9. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice.

    Science.gov (United States)

    Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise

    2017-08-22

    Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.

  10. Adenovirus Protein E4-ORF1 activation of PI3 kinase reveals differential regulation of downstream effector pathways in adipocytes

    OpenAIRE

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K.; McGraw, Timothy E.

    2016-01-01

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but...

  11. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2.

    Science.gov (United States)

    Le Bacquer, Olivier; Petroulakis, Emmanuel; Paglialunga, Sabina; Poulin, Francis; Richard, Denis; Cianflone, Katherine; Sonenberg, Nahum

    2007-02-01

    The most common pathology associated with obesity is insulin resistance, which results in the onset of type 2 diabetes mellitus. Several studies have implicated the mammalian target of rapamycin (mTOR) signaling pathway in obesity. Eukaryotic translation initiation factor 4E-binding (eIF4E-binding) proteins (4E-BPs), which repress translation by binding to eIF4E, are downstream effectors of mTOR. We report that the combined disruption of 4E-BP1 and 4E-BP2 in mice increased their sensitivity to diet-induced obesity. Increased adiposity was explained at least in part by accelerated adipogenesis driven by increased expression of CCAAT/enhancer-binding protein delta (C/EBPdelta), C/EBPalpha, and PPARgamma coupled with reduced energy expenditure, reduced lipolysis, and greater fatty acid reesterification in the adipose tissue of 4E-BP1 and 4E-BP2 double KO mice. Increased insulin resistance in 4E-BP1 and 4E-BP2 double KO mice was associated with increased ribosomal protein S6 kinase (S6K) activity and impairment of Akt signaling in muscle, liver, and adipose tissue. These data clearly demonstrate the role of 4E-BPs as a metabolic brake in the development of obesity and reinforce the idea that deregulated mTOR signaling is associated with the development of the metabolic syndrome.

  12. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Suchita

    2011-01-01

    Full Text Available Abstract The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1. However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER, Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP, it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.

  13. XenDB: Full length cDNA prediction and cross species mapping in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Giegerich Robert

    2005-09-01

    Full Text Available Abstract Background Research using the model system Xenopus laevis has provided critical insights into the mechanisms of early vertebrate development and cell biology. Large scale sequencing efforts have provided an increasingly important resource for researchers. To provide full advantage of the available sequence, we have analyzed 350,468 Xenopus laevis Expressed Sequence Tags (ESTs both to identify full length protein encoding sequences and to develop a unique database system to support comparative approaches between X. laevis and other model systems. Description Using a suffix array based clustering approach, we have identified 25,971 clusters and 40,877 singleton sequences. Generation of a consensus sequence for each cluster resulted in 31,353 tentative contig and 4,801 singleton sequences. Using both BLASTX and FASTY comparison to five model organisms and the NR protein database, more than 15,000 sequences are predicted to encode full length proteins and these have been matched to publicly available IMAGE clones when available. Each sequence has been compared to the KOG database and ~67% of the sequences have been assigned a putative functional category. Based on sequence homology to mouse and human, putative GO annotations have been determined. Conclusion The results of the analysis have been stored in a publicly available database XenDB http://bibiserv.techfak.uni-bielefeld.de/xendb/. A unique capability of the database is the ability to batch upload cross species queries to identify potential Xenopus homologues and their associated full length clones. Examples are provided including mapping of microarray results and application of 'in silico' analysis. The ability to quickly translate the results of various species into 'Xenopus-centric' information should greatly enhance comparative embryological approaches. Supplementary material can be found at http://bibiserv.techfak.uni-bielefeld.de/xendb/.

  14. E4orf1 Limits the Oncolytic Potential of the E1B-55K Deletion Mutant Adenovirus▿

    Science.gov (United States)

    Thomas, Michael A.; Broughton, Robin S.; Goodrum, Felicia D.; Ornelles, David A.

    2009-01-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function. PMID:19129452

  15. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    Science.gov (United States)

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  16. Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available Huntingtin (Htt is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington's disease (HD is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q and mutant (46Q and 128Q Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on "gutless" adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.

  17. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein.

    Science.gov (United States)

    Lyabin, D N; Ovchinnikov, L P

    2016-03-02

    The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.

  18. Heterodimerization of the transcription factors E2F-1 and DP-1 is required for binding to the adenovirus E4 (ORF6/7) protein

    DEFF Research Database (Denmark)

    Helin, K; Harlow, E

    1994-01-01

    Adenovirus infection leads to E1A-dependent activation of the transcription factor E2F. E2F has recently been identified in complexes with cellular proteins such as the retinoblastoma protein (pRB) and the two pRB family members p107 and p130. E1A dissociates E2F from these cellular proteins...

  19. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Chen Xianming

    2007-06-01

    Full Text Available Abstract Background Puccinia striiformis is a plant pathogenic fungus causing stripe rust, one of the most important diseases on cereal crops and grasses worldwide. However, little is know about its genome and genes involved in the biology and pathogenicity of the pathogen. We initiated the functional genomic research of the fungus by constructing a full-length cDNA and determined functions of the first group of genes by sequence comparison of cDNA clones to genes reported in other fungi. Results A full-length cDNA library, consisting of 42,240 clones with an average cDNA insert of 1.9 kb, was constructed using urediniospores of race PST-78 of P. striiformis f. sp. tritici. From 196 sequenced cDNA clones, we determined functions of 73 clones (37.2%. In addition, 36 clones (18.4% had significant homology to hypothetical proteins, 37 clones (18.9% had some homology to genes in other fungi, and the remaining 50 clones (25.5% did not produce any hits. From the 73 clones with functions, we identified 51 different genes encoding protein products that are involved in amino acid metabolism, cell defense, cell cycle, cell signaling, cell structure and growth, energy cycle, lipid and nucleotide metabolism, protein modification, ribosomal protein complex, sugar metabolism, transcription factor, transport metabolism, and virulence/infection. Conclusion The full-length cDNA library is useful in identifying functional genes of P. striiformis.

  20. Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2

    OpenAIRE

    Glaunsinger, Britt A.; Weiss, Robert S.; Lee, Siu Sylvia; Javier, Ronald

    2001-01-01

    Adenovirus type 9 (Ad9) is distinct among human adenoviruses because it elicits solely mammary tumors in animals and its primary oncogenic determinant is the E4 region-encoded ORF1 (E4-ORF1) protein. We report here that the PDZ domain-containing protein ZO-2, which is a candidate tumor suppressor protein, is a cellular target for tumorigenic Ad9 E4-ORF1 but not for non-tumorigenic wild-type E4-ORF1 proteins encoded by adenovirus types 5 and 12. Complex formation was mediated by the C-terminal...

  1. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  2. Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs.

    Directory of Open Access Journals (Sweden)

    Carol Soderlund

    2009-11-01

    Full Text Available Full-length cDNA (FLcDNA sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5' and 3' UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs, only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org.

  3. Circumflex coronary artery with aberrant origin and atherosclerosis

    International Nuclear Information System (INIS)

    Ozcan, E.; Bozlar, U.; Celik, T.; Tasar, M.

    2012-01-01

    Full text: Introduction: Circumflex (Cx) coronary artery congenital anomaly is reported to be less than 1% incidence. Coronary arteries with aberrant origin are more likely to have atherosclerosis according to some published literatures. Objectives and tasks: In this study we aim to present computed tomography (CT) angiography findings of a patient, who has Cx artery with aberrant origin and atherosclerotic. Materials and methods: 57-year-old woman without any symptoms who has risk factors to atherosclerosis was referred to our clinic for coronary CT angiography. Results: In CT angiography; we detected Cx coronary artery with aberrant origin (right sinus of valsalva) and retroaortic course. Also we saw intimal irregularities and calcified plaque causing severe narrowing in the proximal segment of artery. Right coronary and left anterior descendant arteries had mild atherosclerosis. Conclusion: Coroner CT angiography, which allows multiplanar imaging with high resolution, is an effective diagnostic tool for coronary artery disease, like not only congenital anomalies but also acquired atherosclerotic disease

  4. Highly efficient full-length hepatitis C virus genotype 1 (strain TN) infectious culture system

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Jensen, Sanne B

    2012-01-01

    Chronic infection with hepatitis C virus (HCV) is an important cause of end stage liver disease worldwide. In the United States, most HCV-related disease is associated with genotype 1 infection, which remains difficult to treat. Drug and vaccine development was hampered by inability to culture...... full-length TN infection dose-dependently. Given the unique importance of genotype 1 for pathogenesis, this infectious 1a culture system represents an important advance in HCV research. The approach used and the mutations identified might permit culture development for other HCV isolates, thus......) culture systems in Huh7.5 cells. Here, we developed a highly efficient genotype 1a (strain TN) full-length culture system. We initially found that the LSG substitutions conferred viability to an intergenotypic recombinant composed of TN 5' untranslated region (5'UTR)-NS5A and JFH1 NS5B-3'UTR; recovered...

  5. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    International Nuclear Information System (INIS)

    Mathew, Shomita S.; Bridge, Eileen

    2007-01-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci

  6. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon

    Directory of Open Access Journals (Sweden)

    Bendahmane Abdelhafid

    2011-05-01

    Full Text Available Abstract Background Melon (Cucumis melo, an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs and 3,073 single nucleotide polymorphisms (SNPs in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but

  7. A anatomic evaluation of the lateral femoral circumflex artery system by using Multi detector-row CT

    International Nuclear Information System (INIS)

    Haraguchi, Kazunari; Kadota, Satoshi; Hosaka, Yoshiaki

    2010-01-01

    Flaps that are pedicled by perforators of the lateral femoral circumflex artery (LFCA) system have many advantages, including the transplantation of large and reliable skin with long pedicles and a large diameter, and little invasion of the donor sites. However, preoperative planning has been difficult because the perforators have many anatomic variations. We used multi detector-row CT for anatomical evaluation of the lateral femoral circumflex artery system. The patterns of LFCA from the main vessels were classified into three types and vessels coursing toward the lateral thigh region were classified into three groups. The distance from the anterior superior iliac spine to the lateral femoral circumflex artery showed no significant difference between men and women. We were able to evaluate vessels with a 2-mm diameter in the lateral femoral circumflex artery system, indicating that accurate evaluation and low invasive examination of the lateral femoral circumflex artery system, including the perforator area, can be achieved by adjusting the image conditions and the injection rate of the contrast dye. (author)

  8. Full-Length Sequence of Mouse Acupuncture-Induced 1-L (Aig1l Gene Including Its Transcriptional Start Site

    Directory of Open Access Journals (Sweden)

    Mika Ohta

    2011-01-01

    Full Text Available We have been investigating the molecular efficacy of electroacupuncture (EA, which is one type of acupuncture therapy. In our previous molecular biological study of acupuncture, we found an EA-induced gene, named acupuncture-induced 1-L (Aig1l, in mouse skeletal muscle. The aims of this study consisted of identification of the full-length cDNA sequence of Aig1l including the transcriptional start site, determination of the tissue distribution of Aig1l and analysis of the effect of EA on Aig1l gene expression. We determined the complete cDNA sequence including the transcriptional start site via cDNA cloning with the cap site hunting method. We then analyzed the tissue distribution of Aig1l by means of northern blot analysis and real-time quantitative polymerase chain reaction. We used the semiquantitative reverse transcriptase-polymerase chain reaction to examine the effect of EA on Aig1l gene expression. Our results showed that the complete cDNA sequence of Aig1l was 6073 bp long, and the putative protein consisted of 962 amino acids. All seven tissues that we analyzed expressed the Aig1l gene. In skeletal muscle, EA induced expression of the Aig1l gene, with high expression observed after 3 hours of EA. Our findings thus suggest that the Aig1l gene may play a key role in the molecular mechanisms of EA efficacy.

  9. Photo-Induced Phase Transitions to Liquid Crystal Phases: Influence of the Chain Length from C8E4 to C14E4

    Directory of Open Access Journals (Sweden)

    Simone Techert

    2009-09-01

    Full Text Available Photo-induced phase transitions are characterized by the transformation from phase A to phase B through the absorption of photons. We have investigated the mechanism of the photo-induced phase transitions of four different ternary systems CiE4/alkane (i with n = 8, 10, 12, 14; cyclohexane/H2O. We were interested in understanding the effect of chain length increase on the dynamics of transformation from the microemulsion phase to the liquid crystal phase. Applying light pump (pulse/x-ray probe (pulse techniques, we could demonstrate that entropy and diffusion control are the driving forces for the kind of phase transition investigated.

  10. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes.

    Science.gov (United States)

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K; McGraw, Timothy E

    2016-12-20

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin's effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Purification and Fibrillation of Full-Length Recombinant PrP

    OpenAIRE

    Makarava, Natallia; Baskakov, Ilia V.

    2012-01-01

    Misfolding and aggregation of prion protein (PrP) is related to several neurodegenerative diseases in humans such as Creutzfeldt–Jacob disease, fatal familial insomnia, and Gerstmann–Straussler–Sheinker disease. Certain applications in prion area require recombinant PrP of high purity and quality. Here, we report an experimental procedure for expression and purification of full-length mammalian PrP. This protocol has been proved to yield PrP of extremely high purity that lac...

  12. Effects of dietary protein levels on length-weight relationships and ...

    African Journals Online (AJOL)

    Feeding trial involving different protein levels on length–weight relationships and condition factor of Clarias gariepinus was conducted in floating hapa system. Fingerlings (average weight, 4.50± 0.01g and average length, 8.0±0.2 cm) were randomly stocked at 20 fish/1m3. Five diets with crude protein: 40.0, 42.5, 45.0, 47.5 ...

  13. Congenital Absence of Left Circumflex Artery Detected by Computed Tomography Coronary Angiography: A Case Report

    Directory of Open Access Journals (Sweden)

    Keerati Hongsakul

    2012-01-01

    Full Text Available The congenital absence of the left circumflex artery (LCx is a very rare congenital anomaly of coronary arteries, but it is benign. Currently, the best modality for the diagnosis of coronary anomalies is computed tomography coronary angiography (CTCA. We report a case of congenitally absent LCx with an atypical chest pain.

  14. Technology development for gene discovery and full-length sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Marcelo Bento Soares

    2004-07-19

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  15. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton; Tripathi, Rakesh; Sun, Chaohong; Kempf, Dale J. (AbbVie)

    2017-02-21

    The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP21212 and containing two protein molecules in the asymmetric unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.

  16. Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Taddei Kevin

    2010-01-01

    Full Text Available Abstract Background The low-density lipoprotein receptor related protein 1 (LRP1 has been implicated in Alzheimer's disease (AD but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1. Results We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP, which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b. Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression. Conclusions These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered

  17. e-Cadherin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Samuela Cataldi

    2016-01-01

    Full Text Available Today a large number of studies are focused on clarifying the complexity and diversity of the pathogenetic mechanisms inducing Parkinson disease. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, a neurotoxin that induces Parkinson disease, to evaluate the change of midbrain structure and the behavior of the anti-inflammatory factor e-cadherin, interleukin-6, tyrosine hydroxylase, phosphatase and tensin homolog, and caveolin-1. The results showed a strong expression of e-cadherin, variation of length and thickness of the heavy neurofilaments, increase of interleukin-6, and reduction of tyrosine hydroxylase known to be expression of dopamine cell loss, reduction of phosphatase and tensin homolog described to impair responses to dopamine, and reduction of caveolin-1 known to be expression of epithelial-mesenchymal transition and fibrosis. The possibility that the overexpression of the e-cadherin might be implicated in the anti-inflammatory reaction to MPTP treatment by influencing the behavior of the other analyzed molecules is discussed.

  18. Construction and characterisation of a full-length infectious molecular clone from a fast replicating, X4-tropic HIV-1 CRF02.AG primary isolate

    International Nuclear Information System (INIS)

    Tebit, Denis M.; Zekeng, Leopold; Kaptue, Lazare; Kraeusslich, Hans-Georg; Herchenroeder, Ottmar

    2003-01-01

    Based on our previous analysis of HIV-1 isolates from Cameroon, we constructed a full-length infectious molecular clone from a primary isolate belonging to the CRF02.AG group of recombinant viruses which dominate the HIV-epidemic in West and Central Africa. The virus derived by transfection of the proviral clone pBD6-15 replicated with similar efficiency compared to its parental isolate and used CXCR4 as coreceptor as well. Furthermore, HIV-1 BD6-15 exhibited similar replication properties and virus yield as the reference B-type HIV-1 strain NL4-3. Sequence analysis revealed open reading frames for all structural and accessory genes apart from vpr. Phylogenetic and bootscanning analyses confirmed that BD6-15 clusters with CRF02.AG recombinant strains from West and Central Africa with similar cross-over points as described for the CRF02.AG prototype strain lbNG. Thus, pBD6-15 represents the first non-subtype B infectious molecular clone of a fast replicating, high producer, X4-tropic primary HIV-1 isolate, which had only been briefly passaged in primary cells

  19. Identification of a secreted casein kinase 1 in Leishmania donovani: effect of protein over expression on parasite growth and virulence.

    Directory of Open Access Journals (Sweden)

    Mary Dan-Goor

    Full Text Available Casein kinase 1 (CK1 plays an important role in eukaryotic signaling pathways, and their substrates include key regulatory proteins involved in cell differentiation, proliferation and chromosome segregation. The Leishmania genome encodes six potential CK1 isoforms, of which five have orthologs in other trypanosomatidae. Leishmania donovani CK1 isoform 4 (Ldck1.4, orthologous to LmjF27.1780 is unique to Leishmania and contains a putative secretion signal peptide. The full-length gene and three shorter constructs were cloned and expressed in E. coli as His-tag proteins. Only the full-length 62.3 kDa protein showed protein kinase activity indicating that the N-terminal and C-terminal domains are essential for protein activity. LdCK1.4-FLAG was stably over expressed in L. donovani, and shown by immunofluorescence to be localized primarily in the cytosol. Western blotting using anti-FLAG and anti-CK1.4 antibodies showed that this CK1 isoform is expressed and secreted by promastigotes. Over expression of LdCK1.4 had a significant effect on promastigote growth in culture with these parasites growing to higher cell densities than the control parasites (wild-type or Ld:luciferase, P<0.001. Analysis by flow cytometry showed a higher percentage, ∼4-5-fold, of virulent metacyclic promastigotes on day 3 among the LdCK1.4 parasites. Finally, parasites over expressing LdCK1.4 gave significantly higher infections of mouse peritoneal macrophages compared to wild-type parasites, 28.6% versus 6.3%, respectively (p = 0.0005. These results suggest that LdCK1.4 plays an important role in parasite survival and virulence. Further studies are needed to validate CK1.4 as a therapeutic target in Leishmania.

  20. mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4

    Directory of Open Access Journals (Sweden)

    Yeonwoo Park

    2017-05-01

    Full Text Available The mammalian target of rapamycin complex 1 (mTORC1 is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4, a key effector of the integrated stress response. ATF4 translation is normally induced by the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α through a mechanism that requires upstream open reading frames (uORFs in the ATF4 5′ UTR. mTORC1 also controls ATF4 translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery.

  1. Fiscal 2000 report on result of the full-length cDNA structure analysis; 2000 nendo kanzen cho cDNA kozo kaiseki seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper explains the results of research on full-length cDNA structure analysis for the period from April, 2000 to March, 2001. The outline of human genome sequence was published in June, 2000. In Japan, human gene analysis was such that, as the basic technology of the bio industry, a millennium project was decided in the budget of fiscal 2000. The full-length cDNA structure analysis is the core of the project. The libraries of cDNA were prepared using full-length and more than 4-5kbp-long cDNAs by oligo-capping method. It began from determining partial sequence data at end cDNA, and then, with new clones selected therefrom, full-length human cDNA sequence data were determined. The partial sequence data determined by fiscal 2000 were 1,035,000 clones while the full-length sequence data were 12,144 clones. The sequence data obtained were analyzed by homology search and translated into amino acid coding sequences, with predictions conducted on protein functions. A clustering method was examined that selects new clones from partial sequences. Database was constructed on gene expression profiles and disease-related gene sequence data. (NEDO)

  2. Nuclear assortment of eIF4E coincides with shut-off of host protein synthesis upon poliovirus infection.

    Science.gov (United States)

    Sukarieh, R; Sonenberg, N; Pelletier, J

    2010-05-01

    Eukaryotic initiation factor (eIF) 4E is a subunit of the cap-binding protein complex, eIF4F, which recognizes the cap structure of cellular mRNAs to facilitate translation initiation. eIF4E is assembled into the eIF4F complex via its interaction with eIF4G, an event that is under Akt/mTOR regulation. The eIF4E-eIF4G interaction is regulated by the eIF4E binding partners, eIF4E-binding proteins and eIF4E-transporter. Cleavage of eIF4G occurs upon poliovirus infection and is responsible for the shut-off of host-cell protein synthesis observed early in infection. Here, we document that relocalization of eIF4E to the nucleus occurs concomitantly with cleavage of eIF4G upon poliovirus infection. This event is not dependent upon virus replication, but is dependent on eIF4G cleavage. We postulate that eIF4E nuclear relocalization may contribute to the shut-off of host protein synthesis that is a hallmark of poliovirus infection by perturbing the circular status of actively translating mRNAs.

  3. Sapovirus translation requires an interaction between VPg and the cap binding protein eIF4E.

    Science.gov (United States)

    Hosmillo, Myra; Chaudhry, Yasmin; Kim, Deok-Song; Goodfellow, Ian; Cho, Kyoung-Oh

    2014-11-01

    Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5' end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and

  4. Construction of a Full-Length Enriched cDNA Library and Preliminary Analysis of Expressed Sequence Tags from Bengal Tiger Panthera tigris tigris

    Directory of Open Access Journals (Sweden)

    Changqing Liu

    2013-05-01

    Full Text Available In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers.

  5. Characterization of near full-length genomes of HIV type 1 strains in Denmark: Basis for a universal therapeutic vaccine

    DEFF Research Database (Denmark)

    Andresen, Betina S.; Vinner, Lasse; Tang, Sheila Tuyet

    2007-01-01

    We report here the near full-length sequence characterization of 17 Danish clinical HIV-1 strains isolated from HLA-A02 patients not in need of ART, with relatively low viral loads and normal CD4 cell counts. Sequencing was performed directly on DNA extracted from short-term cocultures of PBMCs...... of a universal immunotherapeutic vaccine construct based on these epitopes....

  6. E4orf1: a novel ligand that improves glucose disposal in cell culture.

    Science.gov (United States)

    Dhurandhar, Emily J; Dubuisson, Olga; Mashtalir, Nazar; Krishnapuram, Rashmi; Hegde, Vijay; Dhurandhar, Nikhil V

    2011-01-01

    Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or

  7. The Cytoprotective Effects of E-α-(4-Methoxyphenyl-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC--A Novel and Non-Cytotoxic HO-1 Inducer.

    Directory of Open Access Journals (Sweden)

    Kai B Kaufmann

    Full Text Available Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1, is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2'-hydroxychalcone, calythropsin and 2'-hydroxy-3,4,4'-trimethoxychalcone prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264

  8. Dynamic variation of histone H3 trimethyl Lys4 (H3K4me3) and heterochromatin protein 1 (HP1) with employment length in nickel smelting workers.

    Science.gov (United States)

    Zhao, Yanhong; Cheng, Ning; Dai, Min; Pu, Hongquan; Zheng, Tongzhang; Li, Haiyan; He, Jie; Bai, Yana

    2017-07-01

    To investigate the dynamic variation in H3K4me3 and HP1 with employment length in nickel smelting workers. Blood samples were collected from 140 nickel smelting workers and 140 age-matched office workers to test for H3K4me3, and HP1 levels. H3K4me3 was statistically significantly different (p exposure to nickel can induce oxidative damage, and increase H3K4me3 expression and inhibit HP1 expression.

  9. Regulation of protein quality control by UBE4B and LSD1 through p53-mediated transcription.

    Directory of Open Access Journals (Sweden)

    Goran Periz

    2015-04-01

    Full Text Available Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of human orthologs ubiquitination factor E4 B (UBE4B and lysine-specific demethylase 1 (LSD1, respectively encoding a ubiquitin ligase and a lysine-specific demethylase, promotes the clearance of misfolded proteins in mammalian cells by activating both proteasomal and autophagic degradation machineries. An unbiased search in this pathway reveals a downstream effector as the transcription factor p53, a shared substrate of UBE4B and LSD1 that functions as a key regulator of protein quality control to protect against proteotoxicity. These studies identify a new protein quality control pathway via regulation of transcription factors and point to the augmentation of protein quality control as a wide-spectrum antiproteotoxicity strategy.

  10. Pharmacological efficacy of anti-IL-1β scFv, Fab and full-length antibodies in treatment of rheumatoid arthritis.

    Science.gov (United States)

    Qi, Jianying; Ye, Xianlong; Ren, Guiping; Kan, Fangming; Zhang, Yu; Guo, Mo; Zhang, Zhiyi; Li, Deshan

    2014-02-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that mainly causes the synovial joint inflammation and cartilage destruction. Interleukin-1β (IL-1β) is an important proinflammatory cytokine involved in the pathogenesis of RA. In this study, we constructed and expressed anti-IL-1β-full-length antibody in CHO-K1-SV, anti-IL-1β-Fab and anti-IL-1β-scFv in Rosetta. We compared the therapeutic efficacy of three anti-IL-1β antibodies for CIA mice. Mice with CIA were subcutaneously injected with humanized anti-IL-1β-scFv, anti-IL-1β-Fab or anti-IL-1β-full-length antibody. The effects of treatment were determined by arthritis severity score, autoreactive humoral, cellular immune responses, histological lesion and cytokines production. Compared with anti-IL-1β-scFv treatments, anti-IL-1β-Fab and anti-IL-1β-full-length antibody therapy resulted in more significant effect in alleviating the severity of arthritis by preventing bone damage and cartilage destruction, reducing humoral and cellular immune responses, and down-regulating the expression of IL-1β, IL-6, IL-2, IFN-γ, TNF-α and MMP-3 in inflammatory tissue. The therapeutic effects of anti-IL-1β-Fab and anti-IL-1β-full-length antibodies on CIA mice had no significant difference. However, production of anti-IL-1β-full-length antibody in eukaryotic system is, in general, time-consuming and more expensive than that of anti-IL-1β-Fab in prokaryotic systems. In conclusion, as a small molecule antibody, anti-IL-1β-Fab is an ideal candidate for RA therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Crystal structure of an eIF4G-like protein from Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Euiyoung; Bitto, Eduard; Bingman, Craig A.; McCoy, Jason G.; Wesenberg, Gary E.; Phillips, Jr., George N. (UW)

    2012-04-18

    The gene LOC 91917 Danio rerio (zebrafish) encodes a protein annotated in the UniProt knowledgebase as the middle domain of eukaryotic initiation factor 4G domain containing protein b (MIF4Gdb). Its molecular weight is 25.8 kDa, and it comprises 222 amino acid residues. BLAST searches revealed homologues of D. rerio MIF4Gdb in many eukaryotes including humans. The homologue sand MIF4Gdb were identified as members of the Pfam family, MIF4G (PF2854), which is named after the middle domain of eukaryotic initiation factor 4G (eIF4G). eIF4G is a component of eukaryotic translational initiation complex, and contains binding sites for other initiation factors, suggesting its critical role in translational initiation. The MIF4G domain also occurs in several other proteins involved in RNA metabolism, including the Nonsense-mediated mRNA decay 2 protein (NMD2/UPF2), and the nuclear cap-binding protein 80-kDa subunit (CBP80). Sequence and structure analysis of the MIF4G domains in many proteins indicate that the domain assumes an all helical fold and has tandem repeated motifs. The zebrafish protein described here has homology to domains of other proteins variously referred to as NIC-containing proteins (NMD2, eIF4G, CBP80). The biological function of D. rerio MIF4Gdb has not yet been experimentally characterized, and the annotation is based on amino acid sequence comparison. D. rerio MIF4Gdb did not share more than 25% sequence identity with any protein for which the three-dimensional structure is known and was selected as a target for structure determination by the Center for Eukaryotic Structural Genomics (CESG). Here, they report the crystal structure of D. rerio MIF4Gdb (UniGene code Dr.79360, UniProt code Q5EAQ1, CESG target number GO.79294).

  12. Near Full-Length Identification of a Novel HIV-1 CRF01_AE/B/C Recombinant in Northern Myanmar.

    Science.gov (United States)

    Zhou, Yan-Heng; Chen, Xin; Liang, Yue-Bo; Pang, Wei; Qin, Wei-Hong; Zhang, Chiyu; Zheng, Yong-Tang

    2015-08-01

    The Myanmar-China border appears to be the "hot spot" region for the occurrence of HIV-1 recombination. The majority of the previous analyses of HIV-1 recombination were based on partial genomic sequences, which obviously cannot reflect the reality of the genetic diversity of HIV-1 in this area well. Here, we present a near full-length characterization of a novel HIV-1 CRF01_AE/B/C recombinant isolated from a long-distance truck driver in Northern Myanmar. It is the first description of a near full-length genomic sequence in Myanmar since 2003, and might be one of the most complicated HIV-1 chimeras ever detected in Myanmar, containing four CRF01_AE, six B segments, and five C segments separated by 14 breakpoints throughout its genome. The discovery and characterization of this new CRF01_AE/B/C recombinant indicate that intersubtype recombination is ongoing in Myanmar, continuously generating new forms of HIV-1. More work based on near full-length sequence analyses is urgently needed to better understand the genetic diversity of HIV-1 in these regions.

  13. Full-length high-temperature severe fuel damage test No. 2

    International Nuclear Information System (INIS)

    Hesson, G.M.; Lombardo, N.J.; Pilger, J.P.; Rausch, W.N.; King, L.L.; Hurley, D.E.; Parchen, L.J.; Panisko, F.E.

    1993-09-01

    Hazardous conditions associated with performing the Full-Length High- Temperature (FLHT). Severe Fuel Damage Test No. 2 experiment have been analyzed. Major hazards that could cause harm or damage are (1) radioactive fission products, (2) radiation fields, (3) reactivity changes, (4) hydrogen generation, (5) materials at high temperature, (6) steam explosion, and (7) steam pressure pulse. As a result of this analysis, it is concluded that with proper precautions the FLHT- 2 test can be safely conducted

  14. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  15. The eEF1A proteins: at the crossroads of oncogenesis, apoptosis and viral infections.

    Directory of Open Access Journals (Sweden)

    Georges eHerbein

    2015-04-01

    Full Text Available Eukaryotic translation elongation factors 1 alpha, eEF1A1 and eEF1A2, are not only translation factors, but also pleiotropic proteins that are highly expressed in human tumors, including breast cancer, ovarian cancer and lung cancer. eEF1A1 modulates cytoskeleton, exhibits chaperone-like activity and also controls cell proliferation and cell death. By contrast eEF1A2 protein favors oncogenesis as shown by the fact that overexpression of eEF1A2 leads to cellular transformation and gives rise to tumors in nude mice. The eEF1A2 protein stimulates the phospholipid signaling and activates the Akt-dependent cell migration and actin remodeling that ultimately favors tumorigenesis. By contrast, inactivation of eEF1A proteins leads to immunodeficiency, neural and muscular defects, and favors apoptosis. Finally, eEF1A proteins interact with several viral proteins resulting in enhanced viral replication, decreased apoptosis and increased cellular transformation. This review summarizes the recent findings on eEF1A proteins indicating that eEF1A proteins play a critical role in numerous human diseases through enhancement of oncogenesis, blockade of apoptosis and increased viral pathogenesis.

  16. Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway

    Science.gov (United States)

    Joubert, Pierre-Emmanuel; Stapleford, Kenneth; Guivel-Benhassine, Florence; Vignuzzi, Marco; Schwartz, Olivier; Albert, Matthew L.

    2015-01-01

    Chikungunya virus (CHIKV), the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell’s cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K) and MAP kinase-activated protein kinase (MnKs) activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition. PMID:26317997

  17. Purification and Fibrillation of Full-Length Recombinant PrP.

    Science.gov (United States)

    Makarava, Natallia; Savtchenko, Regina; Baskakov, Ilia V

    2017-01-01

    Misfolding and aggregation of prion protein are related to several neurodegenerative diseases in humans such as Creutzfeldt-Jakob disease, fatal familial insomnia, and Gerstmann-Straussler-Scheinker disease. A growing number of applications in the prion field including assays for detection of PrP Sc and methods for production of PrP Sc de novo require recombinant prion protein (PrP) of high purity and quality. Here, we report an experimental procedure for expression and purification of full-length mammalian prion protein. This protocol has been proved to yield PrP of extremely high purity that lacks PrP adducts, oxidative modifications, or truncation, which is typically generated as a result of spontaneous oxidation or degradation. We also describe methods for preparation of amyloid fibrils from recombinant PrP in vitro. Recombinant PrP fibrils can be used as a noninfectious synthetic surrogate of PrP Sc for development of prion diagnostics including generation of PrP Sc -specific antibody.

  18. Synthesis and structural study on (1E,2E,1'E,2'E)-3,3'-bis[(4-bromophenyl)-3,3'-(4-methy-1,2-phenylene diimine)] acetaldehyde dioxime: A combined experimental and theoretical study

    Science.gov (United States)

    Topal, T.; Kart, H. H.; Tunay Taşlı, P.; Karapınar, E.

    2015-06-01

    Tetradentate (1E,2E,1'E,2'E)-3,3'-bis[(4-bromophenyl)-3,3'-(4-methy-1,2-phenylene diimine)] acetaldehyde dioxime which possess N4 donor sets derived from the condensation of isonitroso- p-bromoacetophenone and 3,4-diaminotoluene are synthesized and characterized. The characterization of tetradentate Schiff base ligand has been deduced from LC-MS, FTIR, 13C and 1H NMR spectra and elemental analysis. Furthermore, the molecular geometry, infrared and NMR spectra of the title molecule in the ground state have been calculated by using the quantum chemical computational methods such as density functional theory (DFT) and ab initio Hartree-Fock (HF) methods with the 6-31G(d) and 6-311G(d) basis sets. The computed bond lengths and bond angles by using the both methods show the good agreement with each other. Moreover, the vibrational frequencies have been calculated and the scaled values have been compared with the experimental FTIR spectroscopic data. Assignments of the vibrational modes are made on the basis of potential energy distribution (PED) calculated from by using VEDA program. The correlations between the observed and calculated frequencies are in good agreement with each other as well as the correlation of the NMR data.

  19. Llama immunization with full-length VAR2CSA generates cross-reactive and inhibitory single-domain antibodies against the DBL1X domain.

    Science.gov (United States)

    Nunes-Silva, Sofia; Gangnard, Stéphane; Vidal, Marta; Vuchelen, Anneleen; Dechavanne, Sebastien; Chan, Sherwin; Pardon, Els; Steyaert, Jan; Ramboarina, Stephanie; Chêne, Arnaud; Gamain, Benoît

    2014-12-09

    VAR2CSA stands today as the leading vaccine candidate aiming to protect future pregnant women living in malaria endemic areas against the severe clinical outcomes of pregnancy associated malaria (PAM). The rational design of an efficient VAR2CSA-based vaccine relies on a profound understanding of the molecular interactions associated with P. falciparum infected erythrocyte sequestration in the placenta. Following immunization of a llama with the full-length VAR2CSA recombinant protein, we have expressed and characterized a panel of 19 nanobodies able to recognize the recombinant VAR2CSA as well as the surface of erythrocytes infected with parasites originating from different parts of the world. Domain mapping revealed that a large majority of nanobodies targeted DBL1X whereas a few of them were directed towards DBL4ε, DBL5ε and DBL6ε. One nanobody targeting the DBL1X was able to recognize the native VAR2CSA protein of the three parasite lines tested. Furthermore, four nanobodies targeting DBL1X reproducibly inhibited CSA adhesion of erythrocytes infected with the homologous NF54-CSA parasite strain, providing evidences that DBL1X domain is part or close to the CSA binding site. These nanobodies could serve as useful tools to identify conserved epitopes shared between different variants and to characterize the interactions between VAR2CSA and CSA.

  20. Virtually full-length subtype F and F/D recombinant HIV-1 from Africa and South America

    NARCIS (Netherlands)

    Laukkanen, T.; Carr, J. K.; Janssens, W.; Liitsola, K.; Gotte, D.; McCutchan, F. E.; Op de Coul, E.; Cornelissen, M.; Heyndrickx, L.; van der Groen, G.; Salminen, M. O.

    2000-01-01

    For reliable classification of HIV-1 strains appropriate reference sequences are needed. The HIV-1 genetic subtype F has a wide geographic spread, causing significant epidemics in South America, Africa, and some regions of Europe. Previously only two full-length sequences of each of the HIV-1

  1. Pseudoaneurysm of the posterior circumflex humeral artery diagnosed by sonography

    DEFF Research Database (Denmark)

    Damgaard, Bodil; Court-Payen, Michel; Larsen, Lone

    2009-01-01

    with a painless, nonpulsatile mass in the posterior shoulder region and was suspected of a malignant soft-tissue tumor. Sonography, including power Doppler imaging, demonstrated a pseudoaneurysm, with the intralesional blood-filled cavity developed from the posterior circumflex humeral artery. The diagnosis...

  2. Evaluation of full-length, cleaved and nitrosylated serum surfactant protein D as biomarkers for COPD

    DEFF Research Database (Denmark)

    Duvoix, Annelyse; Miranda, Elena; Perez, Juan

    2011-01-01

    . Serum levels of SP-D are raised in individuals with COPD but there is no correlation between the serum level of SP-D and the severity of airflow obstruction. Serum SP-D is present in different forms that may have more utility as a biomarker for COPD. We report here the development of new monoclonal...... antibodies to full length and cleaved SP-D. We have assessed these and existing antibodies in 98 individuals with COPD recruited to the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) cohort. Our data show that neither monoclonal antibodies to full length nor cleaved SP...

  3. Regulation of HTLV-1 Gag budding by Vps4A, Vps4B, and AIP1/Alix

    Directory of Open Access Journals (Sweden)

    Yokosawa Hideyoshi

    2007-07-01

    Full Text Available Abstract Background HTLV-1 Gag protein is a matrix protein that contains the PTAP and PPPY sequences as L-domain motifs and which can be released from mammalian cells in the form of virus-like particles (VLPs. The cellular factors Tsg101 and Nedd4.1 interact with PTAP and PPPY, respectively, within the HTLV-1 Gag polyprotein. Tsg101 forms a complex with Vps28 and Vps37 (ESCRT-I complex and plays an important role in the class E Vps pathway, which mediates protein sorting and invagination of vesicles into multivesicular bodies. Nedd4.1 is an E3 ubiquitin ligase that binds to the PPPY motif through its WW motif, but its function is still unknown. In the present study, to investigate the mechanism of HTLV-1 budding in detail, we analyzed HTLV-1 budding using dominant negative (DN forms of the class E proteins. Results Here, we report that DN forms of Vps4A, Vps4B, and AIP1 inhibit HTLV-1 budding. Conclusion These findings suggest that HTLV-1 budding utilizes the MVB pathway and that these class E proteins may be targets for prevention of mother-to-infant vertical transmission of the virus.

  4. Insertion of Introns: A Strategy to Facilitate Assembly of Infectious Full Length Clones

    DEFF Research Database (Denmark)

    Johansen, Ida Elisabeth; Lund, Ole Søgaard

    2008-01-01

    Some DNA fragments are difficult to clone in Escherichia coli by standard methods. It has been speculated that unintended transcription and translation result in expression of proteins that are toxic to the bacteria. This problem is frequently observed during assembly of infectious full-length vi...

  5. Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.

    Science.gov (United States)

    Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao

    2005-01-01

    We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.

  6. S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer.

    Directory of Open Access Journals (Sweden)

    Roman Nawroth

    Full Text Available Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K/Akt/mammalian target of rapamycin (mTOR and the mitogen activated protein kinase (MAPK signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC. However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK.

  7. Construction of a Full-Length Enriched cDNA Library and Preliminary Analysis of Expressed Sequence Tags from Bengal Tiger Panthera tigris tigris

    Science.gov (United States)

    Liu, Changqing; Liu, Dan; Guo, Yu; Lu, Taofeng; Li, Xiangchen; Zhang, Minghai; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2013-01-01

    In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers. PMID:23708105

  8. Structural and electrochemical studies of TiO2 complexes with (4,4'-((1E,1'E)-(2,5-bis(octyloxy)-1,4-phenylene)bis(ethene-2,1-diyl))bis-(E)-N-(2,5-bis(octyloxy)benzylidene)) imine derivative bases towards organic devices.

    Science.gov (United States)

    Rozycka, Anna; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Hreniak, Agnieszka; Marzec, Monika

    2018-06-12

    Three (4,4'-((1E,1'E)-(2,5-bis(octyloxy)-1,4-phenylene)bis(ethene-2,1-diyl))bis-(E)-N-(2,5-bis(octyloxy)benzylidene)) imine derivatives were synthesized via a condensation reaction with p-toluenesulfonic acid as a catalyst. The effects of the end groups and vinylene (-HC[double bond, length as m-dash]CH-) moieties on the structural, thermal, optical, electrochemical and photovoltaic properties of imines were investigated to check the influence of TiO2 on the imine properties. The thermal behavior of imines and their complexes with TiO2 was widely investigated using FT-IR, XRD, DSC and POM methods in order to determine the order type in the imine structure. All imines present the highest occupied molecular orbital (HOMO) levels of about -5.39 eV (SAI1 and SAI2) and -5.27 eV (SAI3) and the lowest unoccupied molecular orbital (LUMO) levels at about -3.17 eV. The difference of the end groups in the imines in each case did not affect redox properties. Generally, both oxidation and reduction are easier after TiO2 addition and it also changes the HOMO-LUMO levels of imines. Moreover, changes in the characteristic bands for imines in the region 1500-1700 cm-1 observed as a drastic decrease of intensity or even disappearance of bands in the imine : TiO2 mixture suggest the formation of a complex (C[double bond, length as m-dash]N)-TiO2. Organic devices with the configuration of ITO/TiO2/SAIx (or SAIx : TiO2)/Au were fabricated and investigated in the presence and absence of visible light irradiation with an intensity of 93 mW cm-2. In all imines and complexes with TiO2, the generation of the photocurrent indicates their use as photodiodes and the best result was observed for SAI3 : TiO2 complexes.

  9. Structural model of the hUbA1-UbcH10 quaternary complex: in silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin.

    Directory of Open Access Journals (Sweden)

    Stefania Correale

    Full Text Available UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2 involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1, two ubiquitin molecules and UbcH10 (E2, leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.

  10. Barley yellow mosaic virus VPg is the determinant protein for breaking eIF4E-mediated recessive resistance in barley plants

    Directory of Open Access Journals (Sweden)

    Huangai Li

    2016-09-01

    Full Text Available In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus factor(s responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6 in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10 and rym5-non-breaking (JK05 isolates indicated that genome-linked viral protein (VPg is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120 and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants.

  11. Evidence supporting a role for TopBP1 and Brd4 in the initiation but not continuation of human papillomavirus 16 E1/E2-mediated DNA replication.

    Science.gov (United States)

    Gauson, Elaine J; Donaldson, Mary M; Dornan, Edward S; Wang, Xu; Bristol, Molly; Bodily, Jason M; Morgan, Iain M

    2015-05-01

    To replicate the double-stranded human papillomavirus 16 (HPV16) DNA genome, viral proteins E1 and E2 associate with the viral origin of replication, and E2 can also regulate transcription from adjacent promoters. E2 interacts with host proteins in order to regulate both transcription and replication; TopBP1 and Brd4 are cellular proteins that interact with HPV16 E2. Previous work with E2 mutants demonstrated the Brd4 requirement for the transactivation properties of E2, while TopBP1 is required for DNA replication induced by E2 from the viral origin of replication in association with E1. More-recent studies have also implicated Brd4 in the regulation of DNA replication by E2 and E1. Here, we demonstrate that both TopBP1 and Brd4 are present at the viral origin of replication and that interaction with E2 is required for optimal initiation of DNA replication. Both cellular proteins are present in E1-E2-containing nuclear foci, and the viral origin of replication is required for the efficient formation of these foci. Short hairpin RNA (shRNA) against either TopBP1 or Brd4 destroys the E1-E2 nuclear bodies but has no effect on E1-E2-mediated levels of DNA replication. An E2 mutation in the context of the complete HPV16 genome that compromises Brd4 interaction fails to efficiently establish episomes in primary human keratinocytes. Overall, the results suggest that interactions between TopBP1 and E2 and between Brd4 and E2 are required to correctly initiate DNA replication but are not required for continuing DNA replication, which may be mediated by alternative processes such as rolling circle amplification and/or homologous recombination. Human papillomavirus 16 (HPV16) is causative in many human cancers, including cervical and head and neck cancers, and is responsible for the annual deaths of hundreds of thousands of people worldwide. The current vaccine will save lives in future generations, but antivirals targeting HPV16 are required for the alleviation of disease

  12. Identification of Dw1, a Regulator of Sorghum Stem Internode Length.

    Directory of Open Access Journals (Sweden)

    Josie Hilley

    Full Text Available Sorghum is an important C4 grain and grass crop used for food, feed, forage, sugar, and biofuels. In its native Africa, sorghum landraces often grow to approximately 3-4 meters in height. Following introduction into the U.S., shorter, early flowering varieties were identified and used for production of grain. Quinby and Karper identified allelic variation at four loci designated Dw1-Dw4 that regulated plant height by altering the length of stem internodes. The current study used a map-based cloning strategy to identify the gene corresponding to Dw1. Hegari (Dw1dw2Dw3dw4 and 80M (dw1dw2Dw3dw4 were crossed and F2 and HIF derived populations used for QTL mapping. Genetic analysis identified four QTL for internode length in this population, Dw1 on SBI-09, Dw2 on SBI-06, and QTL located on SBI-01 and SBI-07. The QTL on SBI-07 was ~3 Mbp upstream of Dw3 and interacted with Dw1. Dw1 was also found to contribute to the variation in stem weight in the population. Dw1 was fine mapped to an interval of ~33 kbp using HIFs segregating only for Dw1. A polymorphism in an exon of Sobic.009G229800 created a stop codon that truncated the encoded protein in 80M (dw1. This polymorphism was not present in Hegari (Dw1 and no other polymorphisms in the delimited Dw1 locus altered coding regions. The recessive dw1 allele found in 80M was traced to Dwarf Yellow Milo, the progenitor of grain sorghum genotypes identified as dw1. Dw1 encodes a putative membrane protein of unknown function that is highly conserved in plants.

  13. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  14. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression

    Directory of Open Access Journals (Sweden)

    Katherine D. Shives

    2016-10-01

    Full Text Available West Nile virus (WNV is a (+ sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1 for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K and eukaryotic translation initiation factor 4E-binding protein (4EBP pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E interaction and eukaryotic initiation factor 4F (eIF4F complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6 and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  15. Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B.

    Science.gov (United States)

    Huang, Qiwei; Li, Qingxin; Joy, Joma; Chen, Angela Shuyi; Ruiz-Carrillo, David; Hill, Jeffrey; Lescar, Julien; Kang, Congbao

    2013-12-01

    Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer.

    Science.gov (United States)

    Castellvi, Josep; Garcia, Angel; Rojo, Federico; Ruiz-Marcellan, Carmen; Gil, Antonio; Baselga, Jose; Ramon y Cajal, Santiago

    2006-10-15

    Growth factor receptors and cell signaling factors play a crucial role in human carcinomas and have been studied in ovarian tumors with varying results. Cell signaling involves multiple pathways and a myriad of factors that can be mutated or amplified. Cell signaling is driven through the mammalian target of rapamycin (mTOR) and extracellular regulated kinase (ERK) pathways and by some downstream molecules, such as 4E binding protein 1 (4EBP1), eukaryotic initiation factor 4E, and p70 ribosomal protein S6 kinase (p70S6K). The objectives of this study were to analyze the real role that these pathways play in ovarian cancer, to correlate them with clinicopathologic characteristics, and to identify the factors that transmit individual proliferation signals and are associated with pathologic grade and prognosis, regardless specific oncogenic alterations upstream. One hundred twenty-nine ovarian epithelial tumors were studied, including 20 serous cystadenomas, 7 mucinous cystadenomas, 11 serous borderline tumors, 16 mucinous borderline tumors, 29 serous carcinomas, 16 endometrioid carcinomas, 15 clear cell carcinomas, and 15 mucinous carcinomas. Tissue microarrays were constructed, and immunohistochemistry for the receptors epidermal growth factor receptor (EGFR) and c-erb-B2 was performed and with phosphorylated antibodies for protein kinase B (AKT), 4EBP1, p70S6K, S6, and ERK. Among 129 ovarian neoplasms, 17.8% were positive for c-erb-B2, 9.3% were positive for EGFR, 47.3% were positive for phosphorylated AKT (p-AKT), 58.9% were positive for p-ERK, 41.1% were positive for p-4EBP1, 26.4% were positive for p70S6K, and 15.5% were positive for p-S6. Although EGFR, p-AKT, and p-ERK expression did not differ between benign, borderline, or malignant tumors, c-erb-B2, p-4EBP1, p-p70S6K, and p-S6 were expressed significantly more often in malignant tumors. Only p-4EBP1 expression demonstrated prognostic significance (P = .005), and only surgical stage and p-4EBP1 expression

  17. Full-length Dysferlin Transfer by the Hyperactive Sleeping Beauty Transposase Restores Dysferlin-deficient Muscle

    Directory of Open Access Journals (Sweden)

    Helena Escobar

    2016-01-01

    Full Text Available Dysferlin-deficient muscular dystrophy is a progressive disease characterized by muscle weakness and wasting for which there is no treatment. It is caused by mutations in DYSF, a large, multiexonic gene that forms a coding sequence of 6.2 kb. Sleeping Beauty (SB transposon is a nonviral gene transfer vector, already used in clinical trials. The hyperactive SB system consists of a transposon DNA sequence and a transposase protein, SB100X, that can integrate DNA over 10 kb into the target genome. We constructed an SB transposon-based vector to deliver full-length human DYSF cDNA into dysferlin-deficient H2K A/J myoblasts. We demonstrate proper dysferlin expression as well as highly efficient engraftment (>1,100 donor-derived fibers of the engineered myoblasts in the skeletal muscle of dysferlin- and immunodeficient B6. Cg-Dysfprmd Prkdcscid/J (Scid/BLA/J mice. Nonviral gene delivery of full-length human dysferlin into muscle cells, along with a successful and efficient transplantation into skeletal muscle are important advances towards successful gene therapy of dysferlin-deficient muscular dystrophy.

  18. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice

    Directory of Open Access Journals (Sweden)

    Shih-Yin Tsai

    2016-08-01

    Full Text Available Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism.

  19. An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library

    Directory of Open Access Journals (Sweden)

    Wallis James G

    2007-07-01

    Full Text Available Abstract Background Castor seeds are a major source for ricinoleate, an important industrial raw material. Genomics studies of castor plant will provide critical information for understanding seed metabolism, for effectively engineering ricinoleate production in transgenic oilseeds, or for genetically improving castor plants by eliminating toxic and allergic proteins in seeds. Results Full-length cDNAs are useful resources in annotating genes and in providing functional analysis of genes and their products. We constructed a full-length cDNA library from developing castor endosperm, and obtained 4,720 ESTs from 5'-ends of the cDNA clones representing 1,908 unique sequences. The most abundant transcripts are genes encoding storage proteins, ricin, agglutinin and oleosins. Several other sequences are also very numerous, including two acidic triacylglycerol lipases, and the oleate hydroxylase (FAH12 gene that is responsible for ricinoleate biosynthesis. The role(s of the lipases in developing castor seeds are not clear, and co-expressing of a lipase and the FAH12 did not result in significant changes in hydroxy fatty acid accumulation in transgenic Arabidopsis seeds. Only one oleate desaturase (FAD2 gene was identified in our cDNA sequences. Sequence and functional analyses of the castor FAD2 were carried out since it had not been characterized previously. Overexpression of castor FAD2 in a FAH12-expressing Arabidopsis line resulted in decreased accumulation of hydroxy fatty acids in transgenic seeds. Conclusion Our results suggest that transcriptional regulation of FAD2 and FAH12 genes maybe one of the mechanisms that contribute to a high level of ricinoleate accumulation in castor endosperm. The full-length cDNA library will be used to search for additional genes that affect ricinoleate accumulation in seed oils. Our EST sequences will also be useful to annotate the castor genome, which whole sequence is being generated by shotgun sequencing at

  20. GAMBARAN IgG4 dan IgE TERHADAP PROTEIN MIKROFILARIA PADA SERA PENDUDUK ENDEMIS FILARIASIS DI KECAMATAN PASIR PENYU, RIAU

    Directory of Open Access Journals (Sweden)

    Basundari SU

    2012-09-01

    Full Text Available Western blot test to detect specific IgG4 and IgE was performed to 12 microfilaraemic and 13 amicrofilaraemic individuals from malayan filariasis endemic area, Pasir Penyu, Riau. No differences in binding patterns of IgG4 and IgE antibodies to microfUarial protein components was shown. There was a parallel protein components recognition by IgG4 and IgE of molecular weight ranging from 158 kd to 14 kd. Protein component of 125 kd was only recognized by IgG4 and of 112 kd only by IgE. These findings suggest that in filarial infection IgG4 antibodies play a role as a blocking antibodies to inhibit the spesific reaction of IgE that is usually expressed as an allergic reaction.

  1. Characterization of the ectodomain of the envelope protein of dengue virus type 4: expression, membrane association, secretion and particle formation in the absence of precursor membrane protein.

    Directory of Open Access Journals (Sweden)

    Szu-Chia Hsieh

    Full Text Available The envelope (E of dengue virus (DENV is the major target of neutralizing antibodies and vaccine development. After biosynthesis E protein forms a heterodimer with precursor membrane (prM protein. Recent reports of infection enhancement by anti-prM monoclonal antibodies (mAbs suggest anti-prM responses could be potentially harmful. Previously, we studied a series of C-terminal truncation constructs expressing DENV type 4 prM/E or E proteins and found the ectodomain of E protein alone could be recognized by all 12 mAbs tested, suggesting E protein ectodomain as a potential subunit immunogen without inducing anti-prM response. The characteristics of DENV E protein ectodomain in the absence of prM protein remains largely unknown.In this study, we investigated the expression, membrane association, glycosylation pattern, secretion and particle formation of E protein ectodomain of DENV4 in the presence or absence of prM protein. E protein ectodomain associated with membrane in or beyond trans-Golgi and contained primarily complex glycans, whereas full-length E protein associated with ER membrane and contained high mannose glycans. In the absence of prM protein, E protein ectodomain can secrete as well as form particles of approximately 49 nm in diameter, as revealed by sucrose gradient ultracentrifugation with or without detergent and electron microscopy. Mutational analysis revealed that the secretion of E protein ectodomain was affected by N-linked glycosylation and could be restored by treatment with ammonia chloride.Considering the enhancement of DENV infectivity by anti-prM antibodies, our findings provide new insights into the expression and secretion of E protein ectodomain in the absence of prM protein and contribute to future subunit vaccine design.

  2. A Novel Apoptosis Correlated Molecule: Expression and Characterization of Protein Latcripin-1 from Lentinula edodes C91–3

    Directory of Open Access Journals (Sweden)

    Min Huang

    2012-05-01

    Full Text Available An apoptosis correlated molecule—protein Latcripin-1 of Lentinula edodes C91-3—was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C91–3. According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3'-Full Rapid Amplification of cDNA Ends (RACE and 5'-Full RACE methods. The full-length gene was inserted into the secretory expression vector pPIC9K. The protein Latcripin-1 was expressed in Pichia pastoris GS115 and analyzed by Sodium Dodecylsulfonate Polyacrylate Gel Electrophoresis (SDS-PAGE and Western blot. The Western blot showed that the protein was expressed successfully. The biological function of protein Latcripin-1 on A549 cells was studied with flow cytometry and the 3-(4,5-Dimethylthiazol-2-yl-2,5-Diphenyl-tetrazolium Bromide (MTT method. The toxic effect of protein Latcripin-1 was detected with the MTT method by co-culturing the characterized protein with chick embryo fibroblasts. The MTT assay results showed that there was a great difference between protein Latcripin-1 groups and the control group (p < 0.05. There was no toxic effect of the characterized protein on chick embryo fibroblasts. The flow cytometry showed that there was a significant difference between the protein groups of interest and the control group according to apoptosis function (p < 0.05. At the same time, cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. The work demonstrates that protein Latcripin-1 can induce apoptosis of human lung cancer cells A549 and brings new insights into and advantages to finding anti-tumor proteins.

  3. The N-Myc down regulated Gene1 (NDRG1 Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    Directory of Open Access Journals (Sweden)

    Sushant K Kachhap

    2007-09-01

    Full Text Available Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1 increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  4. Comparison of exercise radionuclide angiography with thallium SPECT imaging for detection of significant narrowing of the left circumflex coronary artery

    International Nuclear Information System (INIS)

    Dilsizian, V.; Perrone-Filardi, P.; Cannon, R.O. III; Freedman, N.M.; Bacharach, S.L.; Bonow, R.O.

    1991-01-01

    Although quantitation of exercise thallium tomograms has enhanced the noninvasive diagnosis and localization of coronary artery disease, the detection of stenosis of the left circumflex coronary artery remains suboptimal. Because posterolateral regional wall motion during exercise is well assessed by radionuclide angiography, this study determined whether regional dysfunction of the posterolateral wall during exercise radionuclide angiography is more sensitive in identifying left circumflex disease than thallium perfusion abnormalities assessed by single-photon emission computed tomography (SPECT). One hundred ten consecutive patients with CAD were studied, of whom 70 had a significant stenosis of the left circumflex coronary artery or a major obtuse marginal branch. Both regional function and segmental thallium activity of the posterolateral wall were assessed using visual and quantitative analysis. Left ventricular regional function was assessed objectively by dividing the left ventricular region of interest into 20 sectors; the 8 sectors corresponding to the posterolateral free wall were used to assess function in the left circumflex artery distribution. Similarly, using circumferential profile analysis of short-axis thallium tomograms, left ventricular myocardial activity was subdivided into 64 sectors; the 16 sectors corresponding to the posterolateral region were used to assess thallium perfusion abnormalities in the left circumflex artery territory. Qualitative posterolateral wall motion analysis detected 76% of patients with left circumflex coronary artery stenosis, with a specificity of 83%, compared with only 44% by qualitative thallium tomography (p less than 0.001) and a specificity of 92%

  5. Angiographic analysis of avascular necrosis of a femoral head -selective angiography of medial femoral circumflex artery-

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Kyung Nam; Yoon, Yup; Lee, Sun Wha; Lim, Jae Hoon [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1991-07-15

    The degree of anatomical revascularization of a necrotic femoral head and traumatic hip would provide information about treatment and prognosis. The authors analyzed the vascular changes of femoral head among unilateral avascular necrosis, bilateral avascular necrosis, and traumatic hips. Forty - four patients with avascular necrosis and 19 patients with traumatic hips were examined by selective angiography of the medial femoral circumflex artery. In the traumatic hip cases, 12 (63%) showed occlusion, 2 (11%) hypertrophy of the capsular branches, and 5 ( 26 % ) were normal . In the avascular necrosis cases, 15 (25%) showed occlusion, 39 (67%) had hypertrophy of the capsular branches, and 4 (7%) had normal findings. Hypertrophy of the superior capsular branch of the medial femoral circumflex artery is more frequently observed in avascular necrosis than in traumatic hip. Bilateral avascular necrosis reveals more frequent incidences than unilateral cases. Selective angiography could help in the therapy plan and also provide information about the contralateral side.

  6. Angiographic analysis of avascular necrosis of a femoral head -selective angiography of medial femoral circumflex artery-

    International Nuclear Information System (INIS)

    Ryu, Kyung Nam; Yoon, Yup; Lee, Sun Wha; Lim, Jae Hoon

    1991-01-01

    The degree of anatomical revascularization of a necrotic femoral head and traumatic hip would provide information about treatment and prognosis. The authors analyzed the vascular changes of femoral head among unilateral avascular necrosis, bilateral avascular necrosis, and traumatic hips. Forty - four patients with avascular necrosis and 19 patients with traumatic hips were examined by selective angiography of the medial femoral circumflex artery. In the traumatic hip cases, 12 (63%) showed occlusion, 2 (11%) hypertrophy of the capsular branches, and 5 ( 26 % ) were normal . In the avascular necrosis cases, 15 (25%) showed occlusion, 39 (67%) had hypertrophy of the capsular branches, and 4 (7%) had normal findings. Hypertrophy of the superior capsular branch of the medial femoral circumflex artery is more frequently observed in avascular necrosis than in traumatic hip. Bilateral avascular necrosis reveals more frequent incidences than unilateral cases. Selective angiography could help in the therapy plan and also provide information about the contralateral side

  7. The structure of an LIM-only protein 4 (LMO4 and Deformed epidermal autoregulatory factor-1 (DEAF1 complex reveals a common mode of binding to LMO4.

    Directory of Open Access Journals (Sweden)

    Soumya Joseph

    Full Text Available LIM-domain only protein 4 (LMO4 is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1, with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1 and C-terminal binding protein interacting protein (CtIP/RBBP8. Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.

  8. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  9. An isoform of eukaryotic initiation factor 4E from Chrysanthemum morifolium interacts with Chrysanthemum virus B coat protein.

    Directory of Open Access Journals (Sweden)

    Aiping Song

    Full Text Available BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E plays an important role in plant virus infection as well as the regulation of gene translation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe the isolation of a cDNA encoding CmeIF(iso4E (GenBank accession no. JQ904592, an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso4E and the Chrysanthemum virus B coat protein (CVBCP. Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso4E with other reported plant eIF(iso4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso4E belongs to the eIF(iso4E subfamily of the eIF4E family. CmeIF(iso4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. CONCLUSIONS/SIGNIFICANCE: These results inferred that CmeIF(iso4E as the cap-binding subunit eIF(iso4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.

  10. eIF4A inhibition allows translational regulation of mRNAs encoding proteins involved in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Andrew Bottley

    2010-09-01

    Full Text Available Alzheimer's disease (AD is the main cause of dementia in our increasingly aging population. The debilitating cognitive and behavioral symptoms characteristic of AD make it an extremely distressing illness for patients and carers. Although drugs have been developed to treat AD symptoms and to slow disease progression, there is currently no cure. The incidence of AD is predicted to increase to over one hundred million by 2050, placing a heavy burden on communities and economies, and making the development of effective therapies an urgent priority. Two proteins are thought to have major contributory roles in AD: the microtubule associated protein tau, also known as MAPT; and the amyloid-beta peptide (A-beta, a cleavage product of amyloid precursor protein (APP. Oxidative stress is also implicated in AD pathology from an early stage. By targeting eIF4A, an RNA helicase involved in translation initiation, the synthesis of APP and tau, but not neuroprotective proteins, can be simultaneously and specifically reduced, representing a novel avenue for AD intervention. We also show that protection from oxidative stress is increased upon eIF4A inhibition. We demonstrate that the reduction of these proteins is not due to changes in mRNA levels or increased protein degradation, but is a consequence of translational repression conferred by inhibition of the helicase activity of eIF4A. Inhibition of eIF4A selectively and simultaneously modulates the synthesis of proteins involved in Alzheimer's disease: reducing A-beta and tau synthesis, while increasing proteins predicted to be neuroprotective.

  11. Negative remodeling at the ostium of the left circumflex artery.

    Science.gov (United States)

    Kobayashi, Y; Mehran, R; Moussa, I; Reyes, A; Moses, J W

    2001-12-01

    We report an ostial lesion with negative remodeling. Coronary angiography revealed a 60% stenosis at the ostium of the left circumflex artery (LCX). Intravascular ultrasound (IVUS)-guided directional atherectomy followed by stenting was planned. However, IVUS images revealed no significant stenosis and negative remodeling at the ostium of the LCX. The lesion did not undergo intervention.

  12. Simultaneous Cocirculation of Both European Varicella-Zoster Virus Genotypes (E1 and E2) in Mexico City▿

    OpenAIRE

    Rodríguez-Castillo, Araceli; Vaughan, Gilberto; Ramírez-González, José Ernesto; Escobar-Gutiérrez, Alejandro

    2010-01-01

    Full-length genome analysis of varicella-zoster virus (VZV) has shown that viral strains can be classified into seven different genotypes: European (E), Mosaic (M), and Japanese (J), and the E and M genotypes can be further subclassified into E1, E2, and M1 through 4, respectively. The distribution of the main VZV genotypes in Mexico was described earlier, demonstrating the predominance of E genotype, although other genotypes (M1 and M4) were also identified. However, no information regarding...

  13. Urinary leukotriene E(4), eosinophil protein X, and nasal eosinophil cationic protein are not associated with respiratory symptoms in 1-year-old children.

    Science.gov (United States)

    Wojnarowski, C; Halmerbauer, G; Mayatepek, E; Gartner, C; Frischer, T; Forster, J; Kuehr, J

    2001-09-01

    Eosinophilic airways inflammation forms the pathophysiologic basis for a proportion of children at risk of developing recurrent wheezing. Early preventive measures and/or anti-inflammatory treatment may be guided by the identification of such children. We aimed to study the relationship between respiratory symptoms and indirect markers of airway inflammation. We measured eosinophil protein X (EPX) and leukotriene E(4) (LTE(4)) in urine, as well as eosinophil cationic protein (ECP) in nasal lavages, in a random sample of 1-year-old children with a family history of atopy who participated in an international multicenter study on the prevention of allergy in Europe. For urine analyses, 10 children with upper respiratory illness and 19 healthy children without a family history of atopy were also enrolled. Endogenous urinary LTE(4) was separated by HPLC and determined by enzyme immunoassay with a specific antibody. The concentrations of nasal ECP and urinary EPX were determined by RIA analysis. One hundred and ten children (mean age: 1.05+/-0.1 years) were enrolled. Prolonged coughing during the first year of life was reported in 29 children, wheezy breathing in 17 children, and dry skin in 33 children. A doctor's diagnosis of wheezy bronchitis was given to 17 children. Sensitization to dust mites (specific IgE > or =1.43 ML/units) was detected in two children. Children with a doctor's diagnosis of atopic dermatitis within the first 12 months of life (n=6) had significantly higher urinary EPX than children without this (66.7 vs 30.1 microg/mmol creatinine, P=0.01). Urinary excretion of EPX and LTE4 showed a weak correlation (r=0.22, P=0.02). There were no significant differences in urinary excretion of EPX and LTE(4) or nasal ECP between children with and without respiratory symptoms (P>0.1). At the age of 1 year, urinary EPX is increased in children with atopic dermatitis. With regard to respiratory symptoms, urinary and nasal inflammatory parameters are not helpful in

  14. Temporal expression of HIV-1 envelope proteins in baculovirus-infected insect cells: Implications for glycosylation and CD4 binding

    International Nuclear Information System (INIS)

    Murphy, C.I.; Lennick, M.; Lehar, S.M.; Beltz, G.A.; Young, E.

    1990-01-01

    Three different human immunodeficiency virus type I (HIV-1) envelope derived recombinant proteins and the full length human CD4 polypeptide were expressed in Spodoptera frugiperda (Sf9) cells. DNA constructs encoding CD4, gp120, gp160, and gp160 delta were cloned into the baculovirus expression vector pVL941 or a derivative and used to generate recombinant viruses in a cotransfection with DNA from Autographa californica nuclear polyhedrosis virus (AcMNPV). Western blotting of cell extracts of the recombinant HIV-1 proteins showed that for each construct two major bands specifically reacted with anti-HIV-1 envelope antiserum. These bands corresponded to glycosylated and nonglycosylated versions of the HIV proteins as determined by 3H-mannose labeling and tunicamycin treatment of infected cells. A time course of HIV envelope expression revealed that at early times post-infection (24 hours) the proteins were fully glycosylated and soluble in nonionic detergents. However, at later times postinfection (48 hours), expression levels of recombinant protein reached a maximum but most of the increase was due to a rise in the level of the nonglycosylated species, which was largely insoluble in nonionic detergents. Thus, it appears that Sf9 cells cannot process large amounts of glycosylated recombinant proteins efficiently. As a measure of biological activity, the CD4 binding ability of both glycosylated and nonglycosylated recombinant HIV envelope proteins was tested in a coimmunoprecipitation assay. The results showed that CD4 and the glycosylated versions of recombinant gp120 or gp160 delta specifically associated with one another in this analysis. Nonglycosylated gp120 or gp160 delta proteins from tunicamycin-treated cultures did immunoprecipitate with anti-HIV-1 antiserum but did not interact with CD4

  15. Intramedullary fixation of proximal humerus fractures: do locking bolts endanger the axillary nerve or the ascending branch of the anterior circumflex artery? A cadaveric study

    Directory of Open Access Journals (Sweden)

    Sermon An

    2008-12-01

    Full Text Available Abstract Background Proximal humerus fractures are one of the most common fractures. Intramedullary locked nailing is becoming a popular alternative treatment, especially for easier fracture patterns. Although axillary nerve injury has been reported, no study has compared the safety of the proximal locking options relative to the axillary nerve and the ascending branch of the anterior circumflex artery. Method Six different commercially available proximal humeral nails were implanted in 30 shoulders of 18 cadavers. After fluoroscopically guided implantation the shoulders were carefully dissected and the distance between the locking screws, the axillary nerve and the ascending branch of the anterior circumflex artery was measured. Results The course of the axillary nerve varies. A mean distance of 55.8 mm (SD = 5.3 between the lateral edge of the acromions and the axillary nerve at the middle of the humerus in a neutrally rotated position was observed. The minimum distance was 43.4 mm, the maximum 63.9 mm. Bent nails with oblique head interlocking bolts appeared to be the most dangerous in relation to the axillary nerve. The two designs featuring such a bend and oblique bolt showed a mean distance of the locking screw to the axillary nerve of 1 mm and 2.7 mm respectively Sirus (Zimmer® and (Stryker® T2 PHN (Proximal Humeral Nail. Regarding the ascending branch of the anterior circumflex artery, there was no difference between the nails which have an anteroposterior locking option. Conclusion It is of great importance for surgeons treating proximal humerus fractures to understand the relative risk of any procedure they perform. Since the designs of different nailing systems risk damaging the axillary nerve and ascending branch, blunt dissection, the use of protection sleeves during drilling and screw insertion, and individual risk evaluation prior to the use of a proximal humeral nail are advocated.

  16. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Emily J Dhurandhar

    Full Text Available Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure. Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (p<0.0001, and apoB secretion 1.5 fold(p<0.003. Response of key signaling molecules to E4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD.

  17. Galectin-1 as a fusion partner for the production of soluble and folded human {beta}-1,4-galactosyltransferase-T7 in E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Pasek, Marta [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Boeggeman, Elizabeth; Ramakrishnan, Boopathy [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Qasba, Pradman K., E-mail: qasba@helix.nih.gov [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States)

    2010-04-09

    The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of a large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, {beta}-1,4-galactosyltransferase-7 ({beta}4Gal-T7), in E. coli. The enzyme {beta}4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, {beta}4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-{beta}4Gal-T7 fusion protein, the unique protease cleavage site allows the protein {beta}4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded {beta}4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.

  18. Appearance of a Minimal Length in $e^+ e^-$ Annihilation

    CERN Document Server

    Dymnikova, Irina; Ulbricht, Jürgen

    2014-01-01

    Experimental data reveal with a 5$\\sigma$ significance the existence of a characteristic minimal length $l_e$= 1.57 × 10$^{−17}$ cm at the scale E = 1.253 TeV in the annihilation reaction $e^+e^- \\to \\gamma\\gamma(\\gamma)$ . Nonlinear electrodynamics coupled to gravity and satisfying the weak energy condition predicts, for an arbitrary gauge invariant Lagrangian, the existence of spinning charged electromagnetic soliton asymptotically Kerr-Newman for a distant observer with the gyromagnetic ratio g=2 . Its internal structure includes a rotating equatorial disk of de Sitter vacuum which has properties of a perfect conductor and ideal diamagnetic, displays superconducting behavior, supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry, and gives some idea about the physical origin of a minimal length in annihilation.

  19. Full-length enriched multistage cDNA library construction covering ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2012-04-10

    Apr 10, 2012 ... Full Length Research Paper. Full-length enriched ... complementary DNA; pfu, plaque-forming unit. ... Chinese-native tree species in Populus section Leuce ... the infected bacteria, 2 ml melted top agar was added, and the.

  20. (E-3-(4-Bromophenyl-1-(3,4-dichlorophenylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Rajni Kant

    2009-04-01

    Full Text Available The molecule of the title compound, C15H9BrCl2O, is shown to be the E isomer, with the 3,4-dichlorobenzoyl and p-bromophenyl substituents in trans positions with respect to the chalcone olefin bond. The molecule is non-planar, the two aromatic rings forming a dihedral angle of 49.58 (1°.

  1. Acute myocardial infarction and lesion location in the left circumflex artery

    DEFF Research Database (Denmark)

    Waziri, Homa; Jørgensen, Erik; Kelbæk, Henning

    2016-01-01

    AIMS: Due to the limitations of 12-lead ECG, occlusions of the left circumflex artery (LCX) are more likely to present as non-ST-elevation acute coronary syndrome (NSTEACS) compared with other coronary arteries. We aimed to study mortality in patients with LCX lesions and to assess the importance...

  2. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  3. [Construction and expression of fusion protein TRX-hJagged1 in E.coli BL21].

    Science.gov (United States)

    Li, Guo-Hui; Fan, Yu-Zhen; Huang, Si-Yong; Liu, Qiang; Yin, Dan-Dan; Liu, Li; Chen, Ren-An; Hao, Miao-Wang; Liang, Ying-Min

    2014-06-01

    This study was purposed to construct prokaryotic expression vector and to investigate the expression of Notch ligand Jagged1 in E.coli. An expression vector pET-hJagged1 was constructed, which can be inserted in Jagged1 with different lengths, but the DSL domain of human Jagged1 should be contained. Then the recombinant plasmids were transformed into the competent cell of E.coli BL21, and the expression of the fusion protein was induced by IPTG. Fusion protein was purified from the supernatant of cell lysates via the Nickel affinity chromatography. The results showed that prokaryotic expression vectors pET-hJagged1 (Bgl II), pET-hJagged1 (Hind I) and pET-hJagged1 (Stu I) were successfully constructed, but only pET-hJagged1 (Stu I) could express the soluble TRX-hJagged1. The purified TRX-Jagged1 protein could be obtained via the Nickel affinity chromatography, and then confirmed by Western Blot. It is concluded that prokaryotic expression vector pET-hJagged1 is successfully constructed, but only pET-hJagged1 (Stu I) can express the soluble TRX-hJagged1 and the TRX-Jagged1 fusion protein is obtained through the prokaryotic expression system, which laid a solid foundation for further to explore the effects of Jagged1 in hematopoietic and lymphoid system.

  4. Immediate Bilateral Breast Reconstruction with Unilateral Deep Superior Epigastric Artery and Superficial Circumflex Iliac Artery Flaps

    Directory of Open Access Journals (Sweden)

    Keith S. Hansen

    2016-09-01

    Full Text Available Autologous breast reconstruction utilizing a perforator flap is an increasingly popular method for reducing donor site morbidity and implant-related complications. However, aberrant anatomy not readily visible on computed tomography angiography is a rare albeit real risk when undergoing perforator flap reconstruction. We present an operative case of a patient who successfully underwent a bilateral breast reconstruction sourced from a unilateral abdominal flap divided into deep superior epigastric artery and superficial circumflex iliac artery flap segments.

  5. Fluorescent IgG fusion proteins made in E. coli

    Science.gov (United States)

    Luria, Yael; Raichlin, Dina; Benhar, Itai

    2012-01-01

    Antibodies are among the most powerful tools in biological and biomedical research and are presently the fastest growing category of new bio-pharmaceutics. The most common format of antibody applied for therapeutic, diagnostic and analytical purposes is the IgG format. For medical applications, recombinant IgGs are made in cultured mammalian cells in a process that is too expensive to be considered for producing antibodies for diagnostic and analytical purposes. Therefore, for such purposes, mouse monoclonal antibodies or polyclonal sera from immunized animals are used. While looking for an easier and more rapid way to prepare full-length IgGs for therapeutic purposes, we recently developed and reported an expression and purification protocol for full-length IgGs, and IgG-based fusion proteins in E. coli, called “Inclonals.” By applying the Inclonals technology, we could generate full-length IgGs that are genetically fused to toxins. The aim of the study described herein was to evaluate the possibility of applying the “Inclonals” technology for preparing IgG-fluorophore fusion proteins. We found that IgG fused to the green fluorescent proteins enhanced GFP (EGFP) while maintaining functionality in binding, lost most of its fluorescence during the refolding process. In contrast, we found that green fluorescent Superfolder GFP (SFGFP)-fused IgG and red fluorescent mCherry-fused IgG were functional in antigen binding and maintained fluorescence intensity. In addition, we found that we can link several SFGFPs in tandem to each IgG, with fluorescence intensity increasing accordingly. Fluorescent IgGs made in E. coli may become attractive alternatives to monoclonal or polyclonal fluorescent antibodies derived from animals. PMID:22531449

  6. Lysosomal-associated transmembrane protein 5 (LAPTM5 is a molecular partner of CD1e.

    Directory of Open Access Journals (Sweden)

    Catherine Angénieux

    Full Text Available The CD1e protein participates in the presentation of lipid antigens in dendritic cells. Its transmembrane precursor is transported to lysosomes where it is cleaved into an active soluble form. In the presence of bafilomycin, which inhibits vacuolar ATPase and consequently the acidification of endosomal compartments, CD1e associates with a 27 kD protein. In this work, we identified this molecular partner as LAPTM5. The latter protein and CD1e colocalize in trans-Golgi and late endosomal compartments. The quantity of LAPTM5/CD1e complexes increases when the cells are treated with bafilomycin, probably due to the protection of LAPTM5 from lysosomal proteases. Moreover, we could demonstrate that LAPTM5/CD1e association occurs under physiological conditions. Although LAPTM5 was previously shown to act as a platform recruiting ubiquitin ligases and facilitating the transport of receptors to lysosomes, we found no evidence that LATPM5 controls either CD1e ubiquitination or the generation of soluble lysosomal CD1e proteins. Notwithstanding these last observations, the interaction of LAPTM5 with CD1e and their colocalization in antigen processing compartments both suggest that LAPTM5 might influence the role of CD1e in the presentation of lipid antigens.

  7. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    International Nuclear Information System (INIS)

    Small, Evan; Eggler, Aimee; Mesecar, Andrew D.

    2010-01-01

    Research highlights: → A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. → The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. → Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  8. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    Energy Technology Data Exchange (ETDEWEB)

    Small, Evan [Department of Biochemistry, University of Illinois at Chicago, Chicago, IL 60607 (United States); Eggler, Aimee [Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-1971 (United States); Mesecar, Andrew D., E-mail: amesecar@purdue.edu [Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-1971 (United States)

    2010-10-01

    Research highlights: {yields} A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. {yields} The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. {yields} Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  9. Expression of full-length and splice forms of FoxP3 in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ryder, L R; Woetmann, A; Madsen, H O

    2010-01-01

    OBJECTIVE: The aim of our study was to compare the presence of full-length and alternative splice forms of FoxP3 mRNA in CD4 cells from rheumatoid arthritis (RA) patients and healthy controls. METHODS: A quantitative real-time polymerase chain reaction (QRT-PCR) method was used to measure...... the amount of FoxP3 mRNA full-length and splice forms. CD4-positive T cells were isolated from peripheral blood from 50 RA patients by immunomagnetic separation, and the FoxP3 mRNA expression was compared with the results from 10 healthy controls. RESULTS: We observed an increased expression of full......-length FoxP3 mRNA in RA patients when compared to healthy controls, as well as an increase in CD25 mRNA expression, but no corresponding increase in CTLA-4 mRNA expression. The presence of an alternative splice form of FoxP3 lacking exon 2 was confirmed in both RA patients and healthy controls...

  10. The Distribution of eIF4E-Family Members across Insecta

    Directory of Open Access Journals (Sweden)

    Gritta Tettweiler

    2012-01-01

    Full Text Available Insects are part of the earliest faunas that invaded terrestrial environments and are the first organisms that evolved controlled flight. Nowadays, insects are the most diverse animal group on the planet and comprise the majority of extant animal species described. Moreover, they have a huge impact in the biosphere as well as in all aspects of human life and economy; therefore understanding all aspects of insect biology is of great importance. In insects, as in all cells, translation is a fundamental process for gene expression. However, translation in insects has been mostly studied only in the model organism Drosophila melanogaster. We used all publicly available genomic sequences to investigate in insects the distribution of the genes encoding the cap-binding protein eIF4E, a protein that plays a crucial role in eukaryotic translation. We found that there is a diversity of multiple ortholog genes encoding eIF4E isoforms within the genus Drosophila. In striking contrast, insects outside this genus contain only a single eIF4E gene, related to D. melanogaster eIF4E-1. We also found that all insect species here analyzed contain only one Class II gene, termed 4E-HP. We discuss the possible evolutionary causes originating the multiplicity of eIF4E genes within the genus Drosophila.

  11. Loss of PINK1 attenuates HIF-1α induction by preventing 4E-BP1-dependent switch in protein translation under hypoxia.

    Science.gov (United States)

    Lin, William; Wadlington, Natasha L; Chen, Linan; Zhuang, Xiaoxi; Brorson, James R; Kang, Un Jung

    2014-02-19

    Parkinson's disease (PD) has multiple proposed etiologies with implication of abnormalities in cellular homeostasis ranging from proteostasis to mitochondrial dynamics to energy metabolism. PINK1 mutations are associated with familial PD and here we discover a novel PINK1 mechanism in cellular stress response. Using hypoxia as a physiological trigger of oxidative stress and disruption in energy metabolism, we demonstrate that PINK1(-/-) mouse cells exhibited significantly reduced induction of HIF-1α protein, HIF-1α transcriptional activity, and hypoxia-responsive gene upregulation. Loss of PINK1 impairs both hypoxia-induced 4E-BP1 dephosphorylation and increase in the ratio of internal ribosomal entry site (IRES)-dependent to cap-dependent translation. These data suggest that PINK1 mediates adaptive responses by activating IRES-dependent translation, and the impairments in translation and the HIF-1α pathway may contribute to PINK1-associated PD pathogenesis that manifests under cellular stress.

  12. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  13. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.

    Science.gov (United States)

    Carotenuto, Rosa; Petrucci, Tamara C; Correas, Isabel; Vaccaro, Maria C; De Marco, Nadia; Dale, Brian; Wilding, Martin

    2009-06-01

    In human red blood cells, protein 4.1 (4.1R) is an 80-kDa polypeptide that stabilizes the spectrin-actin network and anchors it to the plasma membrane. In non-erythroid cells there is a great variety of 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, which localize at various intracellular sites, including the nucleus. We studied protein 4.1R distribution in relation to beta-spectrin, actin and cytokeratin during Xenopus oogenesis. Immunoprecipitation experiments indicate that at least two isoforms of protein 4.1R are present in Xenopus laevis oocytes: a 56-kDa form in the cytoplasm and a 37-kDa form in the germinal vesicle (GV). Antibodies to beta-spectrin reveal two bands of 239 and 100 kDa in the cytoplasm. Coimmunoprecipitation experiments indicate that both the 37- and 56-kDa isoforms of protein 4.1R associate with the 100-kDa isoform of beta-spectrin. Moreover, the 56-kDa form coimmunoprecipitates with a cytokeratin of the same molecular weight. Confocal immunolocalization shows that protein 4.1R distribution is in the peripheral cytoplasm, in the mitochondrial cloud (MC) and in the GV of previtellogenic oocytes. In the cytoplasm of vitellogenic oocytes, a loose network of fibers stained by the anti-protein 4.1R antibody spreads across the cytoplasm. beta-Spectrin has a similar distribution. Protein 4.1R was found to colocalize with actin in the cortex of oocytes in the form of fluorescent dots. Double immunolocalization of protein 4.1R and cytokeratin depicts two separate networks that overlap throughout the whole cytoplasm. Protein 4.1R filaments partially colocalize with cytokeratin in both the animal and vegetal hemispheres. We hypothesize that protein 4.1R could function as a linker protein between cytokeratin and the actin-based cytoskeleton.

  14. New noninvasive diagnosis of myocardial ischemia of the left circumflex coronary artery using coronary flow reserve measurement by transthoracic Doppler echocardiography. Comparison with thallium-201 single photon emission computed tomography

    International Nuclear Information System (INIS)

    Fujimoto, Kohei; Watanabe, Hiroyuki; Hozumi, Takeshi; Otsuka, Ryo; Hirata, Kumiko; Yamagishi, Hiroyuki; Yoshiyama, Minoru; Yoshikawa, Junichi

    2004-01-01

    The usefulness of coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography to detect myocardial ischemia was compared with exercise thallium-201 single photon emission computed tomography (SPECT). Transthoracic Doppler echocardiography was performed in 110 patients with suspected coronary artery disease. Color Doppler signals of the left circumflex coronary artery flow in the apical four-chamber view were identified, and the velocities at rest and during hyperemia recorded for calculation of coronary flow reserve by the pulsed Doppler method. All patients underwent SPECT within 1 week of the transthoracic Doppler echocardiographic study. Coronary flow reserve in the left circumflex coronary artery was measured in 79 (72%) of 110 patients. SPECT revealed reversible perfusion defect in the left circumflex coronary artery territories in 12 of 69 patients excluding those with multivessel disease. Coronary flow reserve <2.0 had a sensitivity of 92% and specificity of 96% for reversible perfusion defect detected by SPECT. Noninvasive coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography can estimate myocardial ischemia in the left ventricular lateral regions. (author)

  15. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles.

    Science.gov (United States)

    Azimzadeh, Juliette; Hergert, Polla; Delouvée, Annie; Euteneuer, Ursula; Formstecher, Etienne; Khodjakov, Alexey; Bornens, Michel

    2009-04-06

    Centrin has been shown to be involved in centrosome biogenesis in a variety of eukaryotes. In this study, we characterize hPOC5, a conserved centrin-binding protein that contains Sfi1p-like repeats. hPOC5 is localized, like centrin, in the distal portion of human centrioles. hPOC5 recruitment to procentrioles occurs during G2/M, a process that continues up to the full maturation of the centriole during the next cell cycle and is correlated with hyperphosphorylation of the protein. In the absence of hPOC5, RPE1 cells arrest in G1 phase, whereas HeLa cells show an extended S phase followed by cell death. We show that hPOC5 is not required for the initiation of procentriole assembly but is essential for building the distal half of centrioles. Interestingly, the hPOC5 family reveals an evolutionary divergence between vertebrates and organisms like Drosophila melanogaster or Caenorhabditis elegans, in which the loss of hPOC5 may correlate with the conspicuous differences in centriolar structure.

  16. Overexpression and purification of U24 from human herpesvirus type-6 in E. coli: unconventional use of oxidizing environments with a maltose binding protein-hexahistine dual tag to enhance membrane protein yield

    Directory of Open Access Journals (Sweden)

    Straus Suzana K

    2011-06-01

    Full Text Available Abstract Background Obtaining membrane proteins in sufficient quantity for biophysical study and biotechnological applications has been a difficult task. Use of the maltose binding protein/hexahistidine dual tag system with E.coli as an expression host is emerging as a high throughput method to enhance membrane protein yield, solubility, and purity, but fails to be effective for certain proteins. Optimizing the variables in this system to fine-tune for efficiency can ultimately be a daunting task. To identify factors critical to success in this expression system, we have selected to study U24, a novel membrane protein from Human Herpesvirus type-6 with potent immunosuppressive ability and a possible role in the pathogenesis of the disease multiple sclerosis. Results We expressed full-length U24 as a C-terminal fusion to a maltose binding protein/hexahistidine tag and examined the effects of temperature, growth medium type, cell strain type, oxidizing vs. reducing conditions and periplasmic vs. cytoplasmic expression location. Temperature appeared to have the greatest effect on yield; at 37°C full-length protein was either poorly expressed (periplasm or degraded (cytoplasm whereas at 18°C, expression was improved especially in the periplasm of C41(DE3 cells and in the cytoplasm of oxidizing Δtrx/Δgor mutant strains, Origami 2 and SHuffle. Expression of the fusion protein in these strains were estimated to be 3.2, 5.3 and 4.3 times greater, respectively, compared to commonly-used BL21(DE3 cells. We found that U24 is isolated with an intramolecular disulfide bond under these conditions, and we probed whether this disulfide bond was critical to high yield expression of full-length protein. Expression analysis of a C21SC37S cysteine-free mutant U24 demonstrated that this disulfide was not critical for full-length protein expression, but it is more likely that strained metabolic conditions favour factors which promote protein expression. This

  17. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone.

    Science.gov (United States)

    Gao, Ruimin; Niu, Shengniao; Dai, Weifang; Kitajima, Elliot; Wong, Sek-Man

    2016-10-01

    A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone.

  18. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling

    OpenAIRE

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V.

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a ...

  19. The full-length form of the Drosophila amyloid precursor protein is involved in memory formation.

    Science.gov (United States)

    Bourdet, Isabelle; Preat, Thomas; Goguel, Valérie

    2015-01-21

    The APP plays a central role in AD, a pathology that first manifests as a memory decline. Understanding the role of APP in normal cognition is fundamental in understanding the progression of AD, and mammalian studies have pointed to a role of secreted APPα in memory. In Drosophila, we recently showed that APPL, the fly APP ortholog, is required for associative memory. In the present study, we aimed to characterize which form of APPL is involved in this process. We show that expression of a secreted-APPL form in the mushroom bodies, the center for olfactory memory, is able to rescue the memory deficit caused by APPL partial loss of function. We next assessed the impact on memory of the Drosophila α-secretase kuzbanian (KUZ), the enzyme initiating the nonamyloidogenic pathway that produces secreted APPLα. Strikingly, KUZ overexpression not only failed to rescue the memory deficit caused by APPL loss of function, it exacerbated this deficit. We further show that in addition to an increase in secreted-APPL forms, KUZ overexpression caused a decrease of membrane-bound full-length species that could explain the memory deficit. Indeed, we observed that transient expression of a constitutive membrane-bound mutant APPL form is sufficient to rescue the memory deficit caused by APPL reduction, revealing for the first time a role of full-length APPL in memory formation. Our data demonstrate that, in addition to secreted APPL, the noncleaved form is involved in memory, raising the possibility that secreted and full-length APPL act together in memory processes. Copyright © 2015 the authors 0270-6474/15/351043-09$15.00/0.

  20. (E-2-((4R,5R-5-((Benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-ylbut-2-ene-1,4-diol

    Directory of Open Access Journals (Sweden)

    Carlos R. Carreras

    2010-04-01

    Full Text Available The synthesis of (E-2-((4R,5R-5-((benzyloxymethyl-2,2-dimethyl-1,3-dioxolan-4-ylbut-2-ene-1,4-diol by a one-step reduction of the appropriate 2-substituted butenolide is reported. Product characterization was carried out by IR, 1H NMR, 13C NMR, MS, elemental analysis and optical rotation.

  1. E1B-55K mediated regulation of RNF4 STUbL promotes HAdV gene expression.

    Science.gov (United States)

    Müncheberg, Sarah; Hay, Ron T; Ip, Wing H; Meyer, Tina; Weiß, Christina; Brenke, Jara; Masser, Sawinee; Hadian, Kamyar; Dobner, Thomas; Schreiner, Sabrina

    2018-04-25

    HAdV E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in non-permissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 Ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established.RNF4, a cellular SUMO-targeted Ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM, and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNAi resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies. IMPORTANCE Daxx is a PML-NB-associated transcription factor, which was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 Ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain productive viral life

  2. Full length prototype SSC dipole test results

    International Nuclear Information System (INIS)

    Strait, J.; Brown, B.C.; Carson, J.

    1987-01-01

    Results are presented from tests of the first full length prototype SSC dipole magnet. The cryogenic behavior of the magnet during a slow cooldown to 4.5K and a slow warmup to room temperature has been measured. Magnetic field quality was measured at currents up to 2000 A. Averaged over the body field all harmonics with the exception of b 2 and b 8 are at or within the tolerances specified by the SSC Central Design Group. (The values of b 2 and b 8 result from known design and construction defects which will be be corrected in later magnets.) Using an NMR probe the average body field strength is measured to be 10.283 G/A with point to point variations on the order of one part in 1000. Data are presented on quench behavior of the magnet up to 3500 A (approximately 55% of full field) including longitudinal and transverse velocities for the first 250 msec of the quench

  3. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    International Nuclear Information System (INIS)

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-01-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is ∼9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged

  4. Evidence for a Complex Mosaic Genome Pattern in a Full-length Hepatitis C Virus Sequence

    Directory of Open Access Journals (Sweden)

    R.S. Ross

    2008-01-01

    Full Text Available The genome of the hepatitis C virus (HCV exhibits a high genetic variability. This remarkable heterogeneity is mainly attributed to the gradual accumulation of mutational changes, whereas the contribution of recombination events to the evolution of HCV remains controversial so far. While performing phylogenetic analyses including a large number of sequences deposited in the GenBank, we encountered a full-length HCV sequence (AY651061 that showed evidence for inter-subtype recombination and was, therefore, subjected to a detailed analysis of its molecular structure. The obtained results indicated that AY651061 does not represent a “simple” HCV 1c isolate, but a complex 1a/1c mosaic genome, showing five putative breakpoints in the core to NS3 regions. To our knowledge, this is the first report on a mosaic HCV full- length sequence with multiple breakpoints. The molecular structure of AY651061 is reminiscent of complex homologous recombinant variants occurring among other members of the flaviviridae family, e.g. GB virus C, dengue virus, and Japanese encephalitis virus. Our finding of a mosaic HCV sequence may have important implications for many fields of current HCV research which merit careful consideration.

  5. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  6. Comprehensive analysis of myocardial infarction due to left circumflex artery occlusion: comparison with infarction due to right coronary artery and left anterior descending artery occlusion

    International Nuclear Information System (INIS)

    Huey, B.L.; Beller, G.A.; Kaiser, D.L.; Gibson, R.S.

    1988-01-01

    Forty consecutive patients with creatine kinase-MB confirmed myocardial infarction due to circumflex artery occlusion (Group 1) were prospectively evaluated and compared with 107 patients with infarction due to right coronary artery occlusion (Group 2) and 94 with left anterior descending artery occlusion (Group 3). All 241 patients underwent exercise thallium-201 scintigraphy, radionuclide ventriculography, 24 h Holter electrocardiographic (ECG) monitoring and coronary arteriography before hospital discharge and were followed up for 39 +/- 18 months. There were no significant differences among the three infarct groups in age, gender, number of risk factors, prevalence and type of prior infarction, Norris index, Killip class and frequency of in-hospital complications. Acute ST segment elevation was present in only 48% of patients in Group 1 versus 71 and 72% in Groups 2 and 3, respectively (p = 0.012), and 38% of patients with a circumflex artery-related infarct had no significant ST changes (that is, elevation or depression) on admission (versus 21 and 20% for patients in Groups 2 and 3, respectively) (p = 0.001). Abnormal R waves in lead V1 were more common in Group 1 than in Group 2 (p less than 0.003) as was ST elevation in leads I, aVL and V4 to V6 (p less than or equal to 0.048). These differences in ECG findings between Group 1 and 2 patients correlated with a significantly higher prevalence of posterior and lateral wall asynergy in the group with a circumflex artery-related infarct. Infarct size based on peak creatine kinase levels and multiple radionuclide variables was intermediate in Group 1 compared with that in Group 2 (smallest) and Group 3 (largest). During long-term follow-up, the probability of recurrent cardiac events was similar in the three infarct groups

  7. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    Energy Technology Data Exchange (ETDEWEB)

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  8. Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression

    NARCIS (Netherlands)

    Zhou, Tian; Wang, Shanshan; Ren, Haigang; Qi, Xin-Rui; Luchetti, Sabina; Kamphuis, Willem; Zhou, Jiang-Ning; Wang, Guanghui; Swaab, Dick F.

    2010-01-01

    The recently discovered dendritic cell nuclear protein-1 is the product of a novel candidate gene for major depression. The A allele encodes full-length dendritic cell nuclear protein-1, while the T allele encodes a premature termination of translation at codon number 117 on chromosome 5. In the

  9. Genetic characterization of human herpesvirus type 1: Full-length genome sequence of strain obtained from an encephalitis case from India

    Directory of Open Access Journals (Sweden)

    Vijay P Bondre

    2016-01-01

    Interpretation & conclusions: Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close genetic relationship with the American KOS and Chinese CR38 strains which belonged to the Asian genetic lineage. Recombination analysis of Indian isolate demonstrated multiple recombination crossover points throughout the genome. This full-length genome sequence amplified from the Indian isolate would be helpful to study HSV evolution, genetic basis of differential pathogenesis, host-virus interactions and viral factors contributing towards differential clinical outcome in human infections.

  10. Surface Immobilization of Human Arginase-1 with an Engineered Ice Nucleation Protein Display System in E. coli.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available Ice nucleation protein (INP is frequently used as a surface anchor for protein display in gram-negative bacteria. Here, MalE and TorA signal peptides, and three charged polypeptides, 6×Lys, 6×Glu and 6×Asp, were anchored to the N-terminus of truncated INP (InaK-N to improve its surface display efficiency for human Arginase1 (ARG1. Our results indicated that the TorA signal peptide increased the surface translocation of non-protein fused InaK-N and human ARG1 fused InaK-N (InaK-N/ARG1 by 80.7% and 122.4%, respectively. Comparably, the MalE signal peptide decreased the display efficiencies of both the non-protein fused InaK-N and InaK-N/ARG1. Our results also suggested that the 6×Lys polypeptide significantly increased the surface display efficiency of K6-InaK-N/ARG1 by almost 2-fold, while also practically abolishing the surface translocation of non-protein fused InaK-N, indicating the interesting roles of charged polypeptides in bacteria surface display systems. Cell surface-immobilized K6-InaK-N/ARG1 presented an arginase activity of 10.7 U/OD600 under the optimized conditions of 40°C, pH 10.0 and 1 mM Mn2+, which could convert more than 95% of L-Arginine (L-Arg to L-Ornithine (L-Orn in 16 hours. The engineered InaK-Ns expanded the INP surface display system, which aided in the surface immobilization of human ARG1 in E. coli cells.

  11. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    Science.gov (United States)

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  12. Functional characterization of a full length pregnane X receptor, expression in vivo, and identification of PXR alleles, in Zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 (Brazil); Kubota, Akira; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Lille-Langøy, Roger [Department of Biology, University of Bergen, N-5020 Bergen (Norway); Karchner, Sibel I. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Celander, Malin C. [Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30 Göteborg (Sweden); Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Goksøyr, Anders [Department of Biology, University of Bergen, N-5020 Bergen (Norway); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-15

    Highlights: •Full-length pxr has been cloned from zebrafish. •Alleles of pxr were identified in zebrafish. •Full length Pxr was activated less strongly than ligand binding domain in cell-based reporter assays. •High levels of pxr expression were found in eye and brain as well as in liver. •TCPOBOP and PB did not significantly alter expression of pxr in liver. -- Abstract: The pregnane X receptor (PXR) (nuclear receptor NR1I2) is a ligand activated transcription factor, mediating responses to diverse xenobiotic and endogenous chemicals. The properties of PXR in fish are not fully understood. Here we report on cloning and characterization of full-length PXR of zebrafish, Danio rerio, and pxr expression in vivo. Initial efforts gave a cDNA encoding a 430 amino acid protein identified as zebrafish pxr by phylogenetic and synteny analysis. The sequence of the cloned Pxr DNA binding domain (DBD) was highly conserved, with 74% identity to human PXR-DBD, while the ligand-binding domain (LBD) of the cloned sequence was only 44% identical to human PXR-LBD. Sequence variation among clones in the initial effort prompted sequencing of multiple clones from a single fish. There were two prominent variants, one sequence with S183, Y218 and H383 and the other with I183, C218 and N383, which we designate as alleles pxr*1 (nr1i2*1) and pxr*2 (nr1i2*2), respectively. In COS-7 cells co-transfected with a PXR-responsive reporter gene, the full-length Pxr*1 (the more common variant) was activated by known PXR agonists clotrimazole and pregnenolone 16α-carbonitrile but to a lesser extent than the full-length human PXR. Activation of full-length Pxr*1 was only 10% of that with the Pxr*1 LBD. Quantitative real time PCR analysis showed prominent expression of pxr in liver and eye, as well as brain and intestine of adult zebrafish. The pxr was expressed in heart and kidney at levels similar to that in intestine. The expression of pxr in liver was weakly induced by ligands for

  13. Defect in the GTPase activating protein (GAP) function of eIF5 causes repression of GCN4 translation.

    Science.gov (United States)

    Antony A, Charles; Alone, Pankaj V

    2017-05-13

    In eukaryotes, the eIF5 protein plays an important role in translation start site selection by providing the GAP (GTPase activating protein) function. However, in yeast translation initiation fidelity defective eIF5 G31R mutant causes preferential utilization of UUG as initiation codon and is termed as Suppressor of initiation codon (Sui - ) phenotype due to its hyper GTPase activity. The eIF5 G31R mutant dominantly represses GCN4 expression and confers sensitivity to 3-Amino-1,2,4-Trizole (3AT) induced starvation. The down-regulation of the GCN4 expression (Gcn - phenotype) in the eIF5 G31R mutant was not because of leaky scanning defects; rather was due to the utilization of upUUG initiation codons at the 5' regulatory region present between uORF1 and the main GCN4 ORF. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Seismic inference of 57 stars using full-length Kepler data sets

    Directory of Open Access Journals (Sweden)

    Creevey Orlagh

    2017-01-01

    Full Text Available We present stellar properties of 57 stars from a seismic inference using full-length data sets from Kepler (mass, age, radius, distances. These stars comprise active stars, planet-hosts, solar-analogs, and binary systems. We validate the distances derived from the astrometric Gaia-Tycho solution. Ensemble analysis of the stellar properties reveals a trend of mixing-length parameter with the surface gravity and effective temperature. We derive a linear relationship with the seismic quantity ‹r02› to estimate the stellar age. Finally, we define the stellar regimes where the Kjeldsen et al (2008 empirical surface correction for 1D model frequencies is valid.

  15. Production of recombinant proteins GST L1, E6 and E7 tag HPV 16 ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-04

    Feb 4, 2009 ... targeting the viral oncoproteins E6 and E7 are markers for HPV-associated ... Luminex XYP plate handler, Luminex SD sheath fluid delivery system, a Pentium 4 .... expression mediated by a potato virus X derived vector of the E7 protein .... inflammation, and antioxidant nutrients – assessing their roles as.

  16. Increased Body Mass Index, Elevated C-reactive Protein, and Short Telomere Length

    DEFF Research Database (Denmark)

    Rode, Line; Nordestgaard, Børge G; Weischer, Maren

    2014-01-01

    -reactive protein. SETTING AND DESIGN: We studied 45,069 individuals from the Copenhagen General Population Study with measurements of leukocyte telomere length, BMI, and C-reactive protein in a Mendelian randomization study. Using the three obesity-associated polymorphisms FTO rs9939609, MC4R rs17782313, and TMEM...

  17. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  18. Increased circulating full-length betatrophin levels in drug-naïve metabolic syndrome.

    Science.gov (United States)

    Liu, Dan; Li, Sheyu; He, He; Yu, Chuan; Li, Xiaodan; Liang, Libo; Chen, Yi; Li, Jianwei; Li, Jianshu; Sun, Xin; Tian, Haoming; An, Zhenmei

    2017-03-14

    Betatrophin is a newly identified circulating adipokine playing a role in the regulation of glucose homeostasis and lipid metabolism. But its role in metabolic syndrome (MetS) remains unknown. Therefore, we aimed to compare the circulating betatrophin concentrations between patients with MetS and healthy controls. We recruited 47 patients with MetS and 47 age and sex matched healthy controls. Anthropometric and biochemical measurements were performed, and serum betatrophin levels were detected by ELISA. Full-length betatrophin levels in patients with MetS were significantly higher than those in controls (694.84 ± 365.51 pg/ml versus 356.64 ± 287.92 pg/ml; P <0.001). While no significant difference of total betatrophin levels was found between the two groups (1.20 ± 0.79 ng/ml versus 1.31 ± 1.08 ng/ml; P = 0.524). Full-length betatrophin level was positively correlated with fasting plasma glucose (FPG) (r = 0.357, P = 0.014) and 2-hour plasma glucose (2hPG) (r = 0.38, P <0.01). Binary logistic regression models indicated that subjects in the tertile of the highest full-length betatrophin level experienced higher odds of having MetS (OR, 8.6; 95% CI 2.8-26.8; P <0.001). Our study showed that full-length betatrophin concentrations were increased in drug-naïve MetS patients.

  19. Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Celestino; Cheng, Erdong; Shuda, Masahiro; Lee-Oesterreich, Paula J.; Pogge von Strandmann, Lisa; Gritsenko, Marina A.; Jacobs, Jon M.; Moore, Patrick S.; Chang, Yuan

    2016-07-11

    mTOR-directed 4E-BP1 phosphorylation promotes cap-dependent translation and tumorigen-esis. During mitosis, CDK1 substitutes for mTOR and fully phosphorylates 4E-BP1 at canoni-cal as well a non-canonical S83 site resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. While S83 phosphorylation of 4E-BP1 does not affect in vitro cap-dependent translation, nor eIF4G/4E-BP1 cap-binding, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus (MCV) small T (sT) antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain-of-function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.

  20. Full length channel Pressure Tube sagging under completely voided full length pressure tube of an Indian PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Sujay, E-mail: negi.sujay@gmail.com [Indian Institute of Technology, Roorkee 247667 (India); Kumar, Ravi, E-mail: ravikfme@gmail.com [Indian Institute of Technology, Roorkee 247667 (India); Majumdar, P., E-mail: pmajum@barc.gov.in [Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukopadhyay, D., E-mail: dmukho@barc.gov.in [Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-03-15

    Highlights: • At 16 kW/m input, thermal stability was attained at 595 °C, without PT-CT contact. • At 20 kW/m step input, PT-CT contact occurred at 637 °C near bottom-center of the tube. • PT integrity was maintained throughout the experiment. - Abstract: An experimental investigation was conducted to simulate the sagging behavior of a full length Pressure Tube of a channel of 220 MWe Indian PHWR. The investigation aimed to recreate a condition resembling Loss of Coolant Accident (LOCA) with Emergency Core Cooling System (ECCS) failure in a nuclear power plant. A full length channel assembly immersed in moderator was subjected to electrical resistance heating of Pressure Tube (PT) to simulate the residual heat after shutting down of reactor. The temperature of PT started rising and the contact between PT and CT was established at the center of the tube where average bottom temperature was 637 °C. The integrity of PT was maintained throughout the experiment and the PT heat up was arrested on contact with the CT due to transfer of heat to the moderator.

  1. Nonoperative Management and Novel Imaging for Posterior Circumflex Humeral Artery Injury in Volleyball

    NARCIS (Netherlands)

    van de Pol, Daan; Planken, R. Nils; Terpstra, Aart; Pannekoek-Hekman, Marja; Kuijer, P. Paul F. M.; Maas, Mario

    2017-01-01

    We report on a 34-yr-old male elite volleyball player with symptomatic emboli in the spiking hand from a partially thrombosed aneurysm of the posterior circumflex humeral artery (PCHA) in his dominant shoulder. At initial diagnosis and follow-up, a combination of time-resolved and high-resolution

  2. Mimicking protein-protein interactions through peptide-peptide interactions: HIV-1 gp120 and CXCR4

    Directory of Open Access Journals (Sweden)

    Andrea eGross

    2013-09-01

    Full Text Available We have recently designed a soluble synthetic peptide that functionally mimics the HIV-1 coreceptor CXCR4, which is a chemokine receptor that belongs to the family of seven-transmembrane GPCRs. This CXCR4 mimetic peptide, termed CX4-M1, presents the three extracellular loops (ECLs of the receptor. In binding assays involving recombinant proteins, as well as in cellular infection assays, CX4-M1 was found to selectively recognize gp120 from HIV-1 strains that use CXCR4 for cell entry (X4 tropic HIV-1. Furthermore, anti-HIV-1 antibodies modulate this interaction in a molecular mechanism related to that of their impact on the gp120-CXCR4 interaction. We could now show that the selectivity of CX4-M1 pertains not only to gp120 from X4 tropic HIV-1, but also to synthetic peptides presenting the V3 loops of these gp120 proteins. The V3 loop is thought to be an essential part of the coreceptor binding site of gp120 that contacts the second ECL of the coreceptor. We were able to experimentally confirm this notion in binding assays using substitution analogs of CX4-M1 and the V3 loop peptides, respectively, as well as in cellular infection assays. These results indicate that interactions of the HIV-1 Env with coreceptors can be mimicked by synthetic peptides, which may be useful to explore these interactions at the molecular level in more detail.

  3. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    Science.gov (United States)

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  4. Telomeric repeat factor 1 protein levels correlates with telomere length in colorectal cancer Los niveles proteicos del factor de repetición telomérico 1 se correlacionan con la longitud del telómero en el cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    Cristina Valls-Bautista

    2012-11-01

    Full Text Available Background: colorectal cancer is the third cancer cause of death in Spain. It is important to investigate new tumoral markers for early diagnosis, disease monitoring and prevention strategies. Telomeres protect the chromosome from degradation by nucleases and end-to-end fusion. The progressive loss of the telomeric ends of chromosomes is an important mechanism in the timing of human cellular aging. Telomeric Repeat Factor 1 (TRF1 is a protein that binds at telomere ends. Purpose: to measure the concentrations of TRF1 and the relationships among telomere length, telomerase activity, and TRF1 levels in tumor and normal colorectal mucosa. Method: from normal and tumoral samples of 83 patients who underwent surgery for colorectal cancer we analyzed TRF1 protein concentration by Western Blot, telomerase activity, by the fluorescent-telomeric repeat amplification protocol assay and telomere length by Southern Blot. Results: high levels of TRF1 were observed in 68.7% of tumor samples, while the majority of normal samples (59% showed negative or weak TRF1 concentrations. Among the tumor samples, telomere length was significantly associated with TRF1 protein levels (p = 0.023. Conclusions: a relationship was found between telomere length and TRF1 abundance protein in tumor samples, which means that TRF1 is an important factor in the tumor progression and maybe a diagnostic factor.

  5. Heterologous Acidothermus cellulolyticus 1,4-β-Endoglucanase E1 Produced Within the Corn Biomass Converts Corn Stover Into Glucose

    Science.gov (United States)

    Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam

    Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.

  6. Low-Resolution Structure of the Full-Length Barley (Hordeum vulgare) SGT1 Protein in Solution, Obtained Using Small-Angle X-Ray Scattering

    Science.gov (United States)

    Taube, Michał; Pieńkowska, Joanna R.; Jarmołowski, Artur; Kozak, Maciej

    2014-01-01

    SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed. PMID:24714665

  7. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    Science.gov (United States)

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  8. Overexpression of eIF5 or its protein mimic 5MP perturbs eIF2 function and induces ATF4 translation through delayed re-initiation.

    Science.gov (United States)

    Kozel, Caitlin; Thompson, Brytteny; Hustak, Samantha; Moore, Chelsea; Nakashima, Akio; Singh, Chingakham Ranjit; Reid, Megan; Cox, Christian; Papadopoulos, Evangelos; Luna, Rafael E; Anderson, Abbey; Tagami, Hideaki; Hiraishi, Hiroyuki; Slone, Emily Archer; Yoshino, Ken-Ichi; Asano, Masayo; Gillaspie, Sarah; Nietfeld, Jerome; Perchellet, Jean-Pierre; Rothenburg, Stefan; Masai, Hisao; Wagner, Gerhard; Beeser, Alexander; Kikkawa, Ushio; Fleming, Sherry D; Asano, Katsura

    2016-10-14

    ATF4 is a pro-oncogenic transcription factor whose translation is activated by eIF2 phosphorylation through delayed re-initiation involving two uORFs in the mRNA leader. However, in yeast, the effect of eIF2 phosphorylation can be mimicked by eIF5 overexpression, which turns eIF5 into translational inhibitor, thereby promoting translation of GCN4, the yeast ATF4 equivalent. Furthermore, regulatory protein termed eIF5-mimic protein (5MP) can bind eIF2 and inhibit general translation. Here, we show that 5MP1 overexpression in human cells leads to strong formation of 5MP1:eIF2 complex, nearly comparable to that of eIF5:eIF2 complex produced by eIF5 overexpression. Overexpression of eIF5, 5MP1 and 5MP2, the second human paralog, promotes ATF4 expression in certain types of human cells including fibrosarcoma. 5MP overexpression also induces ATF4 expression in Drosophila The knockdown of 5MP1 in fibrosarcoma attenuates ATF4 expression and its tumor formation on nude mice. Since 5MP2 is overproduced in salivary mucoepidermoid carcinoma, we propose that overexpression of eIF5 and 5MP induces translation of ATF4 and potentially other genes with uORFs in their mRNA leaders through delayed re-initiation, thereby enhancing the survival of normal and cancer cells under stress conditions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. G2E3 is a nucleo-cytoplasmic shuttling protein with DNA damage responsive localization

    International Nuclear Information System (INIS)

    Brooks, William S.; Banerjee, Sami; Crawford, David F.

    2007-01-01

    G2E3 was originally described as a G2/M-specific gene with DNA damage responsive expression. The presence of a conserved HECT domain within the carboxy-terminus of the protein indicated that it likely functions as a ubiquitin ligase or E3. Although HECT domains are known to function in this capacity for many proteins, we demonstrate that a portion of the HECT domain from G2E3 plays an important role in the dynamic subcellular localization of the protein. We have shown that G2E3 is a nucleo-cytoplasmic shuttling protein with nuclear export mediated by a novel nuclear export domain that functions independently of CRM1. In full-length G2E3, a separate region of the HECT domain suppresses the function of the NES. Additionally, G2E3 contains a nucleolar localization signal (NoLS) in its amino terminus. Localization of G2E3 to the nucleolus is a dynamic process, and the protein delocalizes from the nucleolus rapidly after DNA damage. Cell cycle phase-specific expression and highly regulated subcellular localization of G2E3 suggest a possible role in cell cycle regulation and the cellular response to DNA damage

  10. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor

    International Nuclear Information System (INIS)

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-01-01

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (- 40 to - 47), DRE2 (- 48 to - 55), and DRE3 (- 267 to - 274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis

  11. Spike the PCHA! Overuse injury of the Posterior Circumflex Humeral Artery in elite volleyball

    NARCIS (Netherlands)

    van de Pol, D.

    2016-01-01

    In 1993, professor Reekers of the Academic Medical Center (AMC) Radiology department was the first to describe a traumatic aneurysm of the posterior circumflex humeral artery (PCHA) in a volleyball player, suggesting a causal relationship. Fifteen years later, between 2008 and 2010, several elite

  12. Full cyclic coordinate descent: solving the protein loop closure problem in Cα space

    Directory of Open Access Journals (Sweden)

    Hamelryck Thomas

    2005-06-01

    Full Text Available Abstract Background Various forms of the so-called loop closure problem are crucial to protein structure prediction methods. Given an N- and a C-terminal end, the problem consists of finding a suitable segment of a certain length that bridges the ends seamlessly. In homology modelling, the problem arises in predicting loop regions. In de novo protein structure prediction, the problem is encountered when implementing local moves for Markov Chain Monte Carlo simulations. Most loop closure algorithms keep the bond angles fixed or semi-fixed, and only vary the dihedral angles. This is appropriate for a full-atom protein backbone, since the bond angles can be considered as fixed, while the (φ, ψ dihedral angles are variable. However, many de novo structure prediction methods use protein models that only consist of Cα atoms, or otherwise do not make use of all backbone atoms. These methods require a method that alters both bond and dihedral angles, since the pseudo bond angle between three consecutive Cα atoms also varies considerably. Results Here we present a method that solves the loop closure problem for Cα only protein models. We developed a variant of Cyclic Coordinate Descent (CCD, an inverse kinematics method from the field of robotics, which was recently applied to the loop closure problem. Since the method alters both bond and dihedral angles, which is equivalent to applying a full rotation matrix, we call our method Full CCD (FCDD. FCCD replaces CCD's vector-based optimization of a rotation around an axis with a singular value decomposition-based optimization of a general rotation matrix. The method is easy to implement and numerically stable. Conclusion We tested the method's performance on sets of random protein Cα segments between 5 and 30 amino acids long, and a number of loops of length 4, 8 and 12. FCCD is fast, has a high success rate and readily generates conformations close to those of real loops. The presence of constraints

  13. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues.

    Science.gov (United States)

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter

    2015-05-01

    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Human uroporphyrinogen III synthase: Molecular cloning, nucleotide sequence, and expression of a full-length cDNA

    International Nuclear Information System (INIS)

    Tsai, Shihfeng; Bishop, D.F.; Desnick, R.J.

    1988-01-01

    Uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for conversion of the linear tetrapyrrole, hydroxymethylbilane, to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-synthase is the enzymatic defect in the autosomal recessive disorder congenital erythropoietic porphyria. To facilitate the isolation of a full-length cDNA for human URO-synthase, the human erythrocyte enzyme was purified to homogeneity and 81 nonoverlapping amino acids were determined by microsequencing the N terminus and four tryptic peptides. Two synthetic oligonucleotide mixtures were used to screen 1.2 x 10 6 recombinants from a human adult liver cDNA library. Eight clones were positive with both oligonucleotide mixtures. Of these, dideoxy sequencing of the 1.3 kilobase insert from clone pUROS-2 revealed 5' and 3' untranslated sequences of 196 and 284 base pairs, respectively, and an open reading frame of 798 base pairs encoding a protein of 265 amino acids with a predicted molecular mass of 28,607 Da. The isolation and expression of this full-length cDNA for human URO-synthase should facilitate studies of the structure, organization, and chromosomal localization of this heme biosynthetic gene as well as the characterization of the molecular lesions causing congenital erythropoietic porphyria

  15. Full-length fuel rod behavior under severe accident conditions

    International Nuclear Information System (INIS)

    Lombardo, N.J.; Lanning, D.D.; Panisko, F.E.

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors

  16. dsRNA binding characterization of full length recombinant wild type and mutants Zaire ebolavirus VP35.

    Science.gov (United States)

    Zinzula, Luca; Esposito, Francesca; Pala, Daniela; Tramontano, Enzo

    2012-03-01

    The Ebola viruses (EBOVs) VP35 protein is a multifunctional major virulence factor involved in EBOVs replication and evasion of the host immune system. EBOV VP35 is an essential component of the viral RNA polymerase, it is a key participant of the nucleocapsid assembly and it inhibits the innate immune response by antagonizing RIG-I like receptors through its dsRNA binding function and, hence, by suppressing the host type I interferon (IFN) production. Insights into the VP35 dsRNA recognition have been recently revealed by structural and functional analysis performed on its C-terminus protein. We report the biochemical characterization of the Zaire ebolavirus (ZEBOV) full-length recombinant VP35 (rVP35)-dsRNA binding function. We established a novel in vitro magnetic dsRNA binding pull down assay, determined the rVP35 optimal dsRNA binding parameters, measured the rVP35 equilibrium dissociation constant for heterologous in vitro transcribed dsRNA of different length and short synthetic dsRNA of 8bp, and validated the assay for compound screening by assessing the inhibitory ability of auryntricarboxylic acid (IC(50) value of 50μg/mL). Furthermore, we compared the dsRNA binding properties of full length wt rVP35 with those of R305A, K309A and R312A rVP35 mutants, which were previously reported to be defective in dsRNA binding-mediated IFN inhibition, showing that the latter have measurably increased K(d) values for dsRNA binding and modified migration patterns in mobility shift assays with respect to wt rVP35. Overall, these results provide the first characterization of the full-length wt and mutants VP35-dsRNA binding functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Human papillomavirus E5 oncoproteins bind the A4 endoplasmic reticulum protein to regulate proliferative ability upon differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kotnik Halavaty, Katarina; Regan, Jennifer; Mehta, Kavi; Laimins, Laimonis, E-mail: l-laimins@northwestern.edu

    2014-03-15

    Human papillomaviruses (HPV) infect stratified epithelia and link their life cycles to epithelial differentiation. The HPV E5 protein plays a role in the productive phase of the HPV life cycle but its mechanism of action is still unclear. We identify a new binding partner of E5, A4, using a membrane-associated yeast-two hybrid system. The A4 protein co-localizes with HPV 31 E5 in perinuclear regions and forms complexes with E5 and Bap31. In normal keratinocytes, A4 is found primarily in basal cells while in HPV positive cells high levels of A4 are seen in both undifferentiated and differentiated cells. Reduction of A4 expression by shRNAs, enhanced HPV genome amplification and increased cell proliferation ability following differentiation but this was not seen in cells lacking E5. Our studies suggest that the A4 protein is an important E5 binding partner that plays a role in regulating cell proliferation ability upon differentiation. - Highlights: • A4 associates with HPV 31 E5 proteins. • A4 is localized to endoplasmic reticulum. • HPV proteins induce A4 expression in suprabasal layers of stratified epithelium. • E5 is important for proliferation ability of differentiating HPV positive cells.

  18. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori.

    Science.gov (United States)

    Deng, Hui-Min; Li, Yong; Zhang, Jia-Ling; Liu, Lin; Feng, Qi-Li

    2016-12-01

    The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin-binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic "R&R" chitin-binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc-containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full-length BmWCP4 protein, "R&R" CBD peptide (CBD), non-CBD peptide (BmWCP4-CBD - ), four single site-directed mutated peptides (M 1 , M 2 , M 3 and M 4 ) and four-sites-mutated peptide (M F ) were generated and purified, respectively, for in vitro chitin-binding assay. The results indicated that both the full-length protein and the "R&R" CBD peptide could bind with chitin, whereas the BmWCP4-CBD - could not bind with chitin. The single residue mutants M 1 , M 2 , M 3 and M 4 reduced but did not completely abolish the chitin-binding activity, while four-sites-mutated protein M F completely lost the chitin-binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva-to-pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  19. The biological activity of ABA-1-like protein from Ascaris lumbricoides.

    Science.gov (United States)

    Muto, R; Imai, S; Tezuka, H; Furuhashi, Y; Fujita, K

    2001-09-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, that is an ABA-1-like protein from Toxocara canis. The clone was sequenced, we constructed the recombinant polyprotein of ALB (rALB14 and rALB7) based on the ALB sequence, and rALB was administrated to BALB/c mice. Fourteen days after inoculation with rALB14 which is the full length of ALB, the elevation of total IgE which we supposed to contain non-specific IgE was observed, and the results were as we expected. Furthermore, in an in-vitro experiment, we confirmed that the spleen cells proliferated when stimulated by rALB14 and concanavalin A. Therefore, the whole conformation of ALB is considered to be involved in the elevation of non-specific IgE, and is involved in the activation of T cells.

  20. Direct recovery of infectious Pestivirus from a full-length RT-PCR amplicon

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, Ilona; Hoffmann, Bernd

    2008-01-01

    This study describes the use of a novel and rapid long reverse transcription (RT)-PCR for the generation of infectious full-length cDNA of pestiviruses. To produce rescued viruses, full-length RT-PCR amplicons of 12.3 kb, including a T7-promotor, were transcribed directly in vitro, and the result......This study describes the use of a novel and rapid long reverse transcription (RT)-PCR for the generation of infectious full-length cDNA of pestiviruses. To produce rescued viruses, full-length RT-PCR amplicons of 12.3 kb, including a T7-promotor, were transcribed directly in vitro......, and the resulting RNA transcripts were electroporated into ovine cells. Infectious virus was obtained after one cell culture passage. The rescued viruses had a phenotype similar to the parental Border Disease virus strain. Therefore, direct generation of infectious pestiviruses from full-length RT-PCR cDNA products...

  1. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation.

    Science.gov (United States)

    Carcagno, Abel L; Giono, Luciana E; Marazita, Mariela C; Castillo, Daniela S; Pregi, Nicolás; Cánepa, Eduardo T

    2012-07-01

    Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.

  2. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  3. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C

    1998-01-01

    to demonstrate the expression of ns4b in HCV-229E-infected cells using flow cytometry. Given a previously reported contiguous five amino acid shared region between ns4b and myelin basic protein, a purified recombinant histidine-tagged ns4b protein and (or) human myelin basic protein were injected into mice......Sequencing of complementary DNAs prepared from various coronaviruses has revealed open reading frames encoding putative proteins that are yet to be characterized and are so far only described as nonstructural (ns). As a first step in the elucidation of its function, we characterized the expression...... and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...

  4. Blue light-excited LOV1 and LOV2 domains cooperatively regulate the kinase activity of full-length phototropin2 from Arabidopsis.

    Science.gov (United States)

    Oide, Mao; Okajima, Koji; Nakagami, Hirofumi; Kato, Takayuki; Sekiguchi, Yuki; Oroguchi, Tomotaka; Hikima, Takaaki; Yamamoto, Masaki; Nakasako, Masayoshi

    2018-01-19

    Phototropin2 (phot2) is a blue-light (BL) receptor that regulates BL-dependent activities for efficient photosynthesis in plants. phot2 comprises two BL-receiving light-oxygen-voltage-sensing domains (LOV1 and LOV2) and a kinase domain. BL-excited LOV2 is thought to be primarily responsible for the BL-dependent activation of the kinase. However, the molecular mechanisms by which small BL-induced conformational changes in the LOV2 domain are transmitted to the kinase remain unclear. Here, we used full-length wild-type and mutant phot2 proteins from Arabidopsis to study their molecular properties in the dark and under BL irradiation. Phosphorylation assays and absorption measurements indicated that the LOV1 domain assists the thermal relaxation of BL-excited LOV2 and vice versa. Using small-angle X-ray scattering and electron microscopy, we observed that phot2 forms a dimer and has a rod shape with a maximum length of 188 Å and a radius of gyration of 44 Å. Under BL, phot2 displayed large conformational changes that bent the rod shape. By superimposing the crystal structures of the LOV1 dimer, LOV2, and a homology model of the kinase to the observed changes, we inferred that the BL-dependent change consisted of positional shifts of both LOV2 and the kinase relative to LOV1. Furthermore, phot2 mutants lacking the photocycle in LOV1 or LOV2 still exhibited conformational changes under BL, suggesting that LOV1 and LOV2 cooperatively contribute to the conformational changes that activate the kinase. These results suggest that BL-activated LOV1 contributes to the kinase activity of phot2. We discuss the possible intramolecular interactions and signaling mechanisms in phot2. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Unremitting embolus from cardiac myxoma at circumflex artery trifurcation.

    Science.gov (United States)

    Milicevic, Goran; Gavranovic, Zeljka; Cupic, Hrvoje; Cerovec, Dusko; Stipic, Hrvoje; Jukic, Mladen; Letica, Dalibor; Predrijevac, Mladen

    2008-06-06

    Embolisation of coronary artery from cardiac myxoma is very rare and it is not clear what happens with embolic material inside coronary artery after myocardial infarction. The natural course of myxomatous embolus is important because it determines the mode of surgical intervention. Different options of the course of embolus have been speculated, from spontaneous resorption to growth at artery wall. We report a case of embolisation of the circumflex artery trifurcation from a villous left atrial myxoma. The course of the embolus was displayed by coronary angiography repeated 6 months after myocardial infarction. Unlike the previously published case report, we found the embolus to be unremitting.

  6. Expression of human bone morphogenetic protein (BMP-2 and BMP-4 genes in transgenic bovine fibroblasts Expressão dos genes bone morphogenetic protein (BMP-2 e BMP-4 em fibroblastos bovinos transgênicos

    Directory of Open Access Journals (Sweden)

    C. Oleskovicz

    2004-08-01

    Full Text Available cDNAs dos genes bone morphogenetic protein-2 (BMP-2 e bone morphogenetic protein-4 (BMP-4 foram sintetizados a partir de RNA total extraído de tecidos ósseos de pacientes que apresentavam trauma facial (fraturas do maxilar entre o 7º e o 10º dia pós-trauma e clonados num vetor para expressão em células mamíferas, sob controle do promotor de citomegalovírus (CMV. Os vetores contendo os genes BMP-2 e o BMP-4 foram utilizados para a transfecção de fibroblastos bovinos. mRNAs foram indiretamente detectados por RT-PCR nas células transfectadas. As proteínas BMP-2 e BMP-4 foram detectadas mediante análises de Western blot. Os resultados demonstram a possibilidade de produção desses fatores de crescimento celular em fibroblastos bovinos. Essas células poderão ser utilizadas como fontes doadoras de material genético para a técnica de transferência nuclear na geração de animais transgênicos.

  7. Normal telomere lengths in naive and memory CD4+ T cells in HIV type 1 infection: a mathematical interpretation

    NARCIS (Netherlands)

    Wolthers, K. C.; Noest, A. J.; Otto, S. A.; Miedema, F.; de Boer, R. J.

    1999-01-01

    To study CD4+ T cell productivity during HIV-1 infection, CD4+ T cell telomere lengths were measured. Cross-sectional and longitudinal analysis of HIV-1-infected individuals with CD4+ T cells counts >300 cells/mm3 showed normal average telomeric restriction fragment (TRF) length and normal

  8. Normal telomere lengths in naive and memory CD4 T cells in HIV type 1 infection : a mathematical interpretation

    NARCIS (Netherlands)

    Wolthers, K.C.; Noest, A.J.; Otto, S.A.; Miedema, F.; Boer, R.J. de

    1999-01-01

    To study CD4+ T cell productivity during HIV-1 infection, CD4+ T cell telomere lengths were measured. Cross-sectional and longitudinal analysis of HIV-1-infected individuals with CD4+ T cells counts >300 cells/mm3 showed normal average telomeric restriction fragment (TRF) length and normal

  9. Communication between the right and circumflex coronary arteries discovered incidentally by multidetector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Se Hwan; Kim, Eui Jong; Woo, Jong Shin; Kim, Soo Joong; Youn, Hyo Chul; Oh, Joo Hyeong [College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2016-09-15

    Intercoronary communication is a rare congenital coronary anomaly. We present a case of a 48-year-old man with an incidentally discovered communication between the right and circumflex coronary arteries, who was admitted with chest tightness and exertional dyspnea. The initial diagnosis was made using electrocardiogram-gated multidetector computed tomography.

  10. The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Ann R Hunt

    2010-07-01

    Full Text Available Venezuelan equine encephalitis virus (VEEV is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion and E2 (binds receptor and elicits virus neutralizing antibodies. Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs. Six E2 epitopes (E2(c,d,e,f,g,h bound VEEV-neutralizing antibody and mapped to amino acids (aa 182-207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE.We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants.Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115-119. Using a 9 A resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope.The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration

  11. Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome.

    Science.gov (United States)

    Chen, Meili; Hu, Yibo; Liu, Jingxing; Wu, Qi; Zhang, Chenglin; Yu, Jun; Xiao, Jingfa; Wei, Fuwen; Wu, Jiayan

    2015-12-11

    High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.

  12. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression.

    Science.gov (United States)

    Shives, Katherine D; Massey, Aaron R; May, Nicholas A; Morrison, Thomas E; Beckham, J David

    2016-10-18

    West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7 GpppN m 5' cap with 2'- O -methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  13. Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm.

    Science.gov (United States)

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4E(A-B-C-S) variants, whose distribution was geographically structured. The eIF4E(A) variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4E(B), was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4E(C) variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4E(S) variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4E(A-1-2-3-4-5-6-7), eIF4E(B-1), eIF4E(C-2)) conferred resistance to the P1 PSbMV pathotype. This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4E(S1) allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the

  14. MiR-30e suppresses proliferation of hepatoma cells via targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Guoxing [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Shi, Hui [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Li, Jiong; Yang, Zhe [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Fang, Runping; Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Zhang, Weiying, E-mail: zhwybao@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China)

    2016-04-08

    Aberrant microRNA expression has been shown to be characteristic of many cancers. It has been reported that the expression levels of miR-30e are decreased in liver cancer tissues. However, the role of miR-30e in hepatocellular carcinoma remains poorly understood. In the present study, we investigated the significance of miR-30e in hepatocarcinogenesis. Bioinformatics analysis reveals a putative target site of miR-30e in the 3′-untranslated region (3′UTR) of prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA. Moreover, luciferase reporter gene assays verified that miR-30e directly targeted 3′UTR of P4HA1 mRNA. Then, we demonstrated that miR-30e was able to reduce the expression of P4HA1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis. Enforced expression of miR-30e suppressed proliferation of HepG2 cells by 5-ethynyl-2-deoxyuridine (EdU) assay and reduced colony formation of these cells by colony formation analysis. Conversely, anti-miR-30e enhanced the proliferation of hepatoma cells in vitro. Interestingly, the ectopic expression of P4HA1 could efficiently rescue the inhibition of cell proliferation mediated by miR-30e in HepG2 cells. Meanwhile, silencing of P4HA1 abolished the anti-miR-30e-induced proliferation of cells. Clinically, quantitative real-time PCR showed that miR-30e was down-regulated in liver tumor tissues relative to their peritumor tissues. The expression levels of miR-30e were negatively correlated to those of P4HA1 mRNA in clinical liver tumor tissues. Thus, we conclude that miR-30e suppresses proliferation of hepatoma cells through targeting P4HA1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • P4HA1 is a novel target gene of miR-30e. • P4HA1 is increased in clinical HCC tissues. • MiR-30e is negatively correlated with P4HA1 in clinical HCC tissues. • MiR-30e suppresses the proliferation of HCC cells through

  15. Dysregulation of gene expression in the striatum of BACHD rats expressing full-length mutant huntingtin and associated abnormalities on molecular and protein levels.

    Science.gov (United States)

    Yu-Taeger, Libo; Bonin, Michael; Stricker-Shaver, Janice; Riess, Olaf; Nguyen, Hoa Huu Phuc

    2017-05-01

    Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the huntingtin protein (HTT). Mutant HTT (mHTT) has been proposed to cause neuronal dysfunction and neuronal loss through multiple mechanisms. Transcriptional changes may be a core pathogenic feature of HD. Utilizing the Affymetrix platform we performed a genome-wide RNA expression analysis in two BACHD transgenic rat lines (TG5 and TG9) at 12 months of age, both of which carry full-length human mHTT but with different expression levels. By defining the threshold of significance at p < 0.01, we found 1608 genes and 871 genes differentially expressed in both TG5 and TG9 rats when compared to the wild type littermates, respectively. We only chose the highly up-/down-regulated genes for further analysis by setting an additional threshold of 1.5 fold change. Comparing gene expression profiles of human HD brains and BACHD rats revealed a high concordance in both functional and IPA (Ingenuity Pathway Analysis) canonical pathways relevant to HD. In addition, we investigated the causes leading to gene expression changes at molecular and protein levels in BACHD rats including the involvement of polyQ-containing transcription factors TATA box-binding protein (TBP), Sp1 and CBP as well as the chromatin structure. We demonstrate that the BACHD rat model recapitulates the gene expression changes of the human disease supporting its role as a preclinical research animal model. We also show for the first time that TFIID complex formation is reduced, while soluble TBP is increased in an HD model. This finding suggests that mHTT is a competitor instead of a recruiter of polyQ-containing transcription factors in the transcription process in HD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Patricia L Graham

    2011-07-01

    Full Text Available In female fruit flies, Sex-lethal (Sxl turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2 mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors--the U1/U2 snRNP protein Sans-fils (Snf, the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2d--that have been directly implicated in Sxl splicing regulation.

  17. 6,6'-(1E,1'E-((1R,2R-1,2-Diphenylethane-1,2-diylbis(azan-1-yl-1-ylidenebis(methan-1-yl-1-ylidenebis(2-tert-butyl-4-((trimethylsilylethynylphenol

    Directory of Open Access Journals (Sweden)

    David Díaz Díaz

    2013-03-01

    Full Text Available Functionalizable salen derivative, 6,6'-(1E,1'E-((1R,2R-1,2-diphenylethane-1,2-diylbis(azan-1-yl-1-ylidenebis(methan-1-yl-1-ylidenebis(2-tert-butyl-4-((trimethylsilyl ethyn-ylphenol (3, was synthesized by condensation between (1R,2R-1,2-diphenylethane-1,2-diamine (2 and 3-tert-butyl-2-hydroxy-5-((trimethylsilylethynyl benzaldehyde (1 under refluxing conditions. The title compound was characterized by 1H-NMR, 13C-NMR, FT-IR, high-resolution mass spectrometry, optical rotation and melting point determination.

  18. Regulator of G protein signaling 2 (RGS2 and RGS4 form distinct G protein-dependent complexes with protease activated-receptor 1 (PAR1 in live cells.

    Directory of Open Access Journals (Sweden)

    Sungho Ghil

    Full Text Available Protease-activated receptor 1 (PAR1 is a G-protein coupled receptor (GPCR that is activated by natural proteases to regulate many physiological actions. We previously reported that PAR1 couples to Gi, Gq and G12 to activate linked signaling pathways. Regulators of G protein signaling (RGS proteins serve as GTPase activating proteins to inhibit GPCR/G protein signaling. Some RGS proteins interact directly with certain GPCRs to modulate their signals, though cellular mechanisms dictating selective RGS/GPCR coupling are poorly understood. Here, using bioluminescence resonance energy transfer (BRET, we tested whether RGS2 and RGS4 bind to PAR1 in live COS-7 cells to regulate PAR1/Gα-mediated signaling. We report that PAR1 selectively interacts with either RGS2 or RGS4 in a G protein-dependent manner. Very little BRET activity is observed between PAR1-Venus (PAR1-Ven and either RGS2-Luciferase (RGS2-Luc or RGS4-Luc in the absence of Gα. However, in the presence of specific Gα subunits, BRET activity was markedly enhanced between PAR1-RGS2 by Gαq/11, and PAR1-RGS4 by Gαo, but not by other Gα subunits. Gαq/11-YFP/RGS2-Luc BRET activity is promoted by PAR1 and is markedly enhanced by agonist (TFLLR stimulation. However, PAR1-Ven/RGS-Luc BRET activity was blocked by a PAR1 mutant (R205A that eliminates PAR1-Gq/11 coupling. The purified intracellular third loop of PAR1 binds directly to purified His-RGS2 or His-RGS4. In cells, RGS2 and RGS4 inhibited PAR1/Gα-mediated calcium and MAPK/ERK signaling, respectively, but not RhoA signaling. Our findings indicate that RGS2 and RGS4 interact directly with PAR1 in Gα-dependent manner to modulate PAR1/Gα-mediated signaling, and highlight a cellular mechanism for selective GPCR/G protein/RGS coupling.

  19. Use of Dried Blood Spots to Elucidate Full-Length Transmitted/Founder HIV-1 Genomes

    Directory of Open Access Journals (Sweden)

    Jesus F. Salazar-Gonzalez

    2016-07-01

    Full Text Available Background: Identification of HIV-1 genomes responsible for establishing clinical infection in newly infected individuals is fundamental to prevention and pathogenesis research. Processing, storage, and transportation of the clinical samples required to perform these virologic assays in resource-limited settings requires challenging venipuncture and cold chain logistics. Here, we validate the use of dried-blood spots (DBS as a simple and convenient alternative to collecting and storing frozen plasma. Methods: We performed parallel nucleic acid extraction, single genome amplification (SGA, next generation sequencing (NGS, and phylogenetic analyses on plasma and DBS. Results: We demonstrated the capacity to extract viral RNA from DBS and perform SGA to infer the complete nucleotide sequence of the transmitted/founder (TF HIV-1 envelope gene and full-length genome in two acutely infected individuals. Using both SGA and NGS methodologies, we showed that sequences generated from DBS and plasma display comparable phylogenetic patterns in both acute and chronic infection. SGA was successful on samples with a range of plasma viremia, including samples as low as 1,700 copies/ml and an estimated ~50 viral copies per blood spot. Further, we demonstrated reproducible efficiency in gp160 env sequencing in DBS stored at ambient temperature for up to three weeks or at -20ºC for up to five months. Conclusions: These findings support the use of DBS as a practical and cost-effective alternative to frozen plasma for clinical trials and translational research conducted in resource-limited settings.

  20. Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes

    Directory of Open Access Journals (Sweden)

    Christos G. Gkogkas

    2014-12-01

    Full Text Available Summary: Fragile X syndrome (FXS is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS phenotypes. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1−/y, we show that phosphorylation of the mRNA 5′ cap binding protein, eukaryotic initiation factor 4E (eIF4E, is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9 protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1−/y mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS. : Fragile X syndrome (FXS is caused by dysregulation of translation in the brain. Gkogkas et al. show that phosphorylation of eukaryotic translation initiation factor 4E (eIF4E is increased in FXS postmortem brains and Fmr1−/y mice. Downregulation of eIF4E phosphorylation in Fmr1−/y mice rescues defects in dendritic spine morphology, synaptic plasticity, and social interaction via normalization of MMP-9 expression.

  1. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  2. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    International Nuclear Information System (INIS)

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Allen, Susan; Hunter, Eric

    2014-01-01

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor

  3. Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells.

    Science.gov (United States)

    Wu, Liang; Zhang, Xiaolong; Zhao, Zhikun; Wang, Ling; Li, Bo; Li, Guibo; Dean, Michael; Yu, Qichao; Wang, Yanhui; Lin, Xinxin; Rao, Weijian; Mei, Zhanlong; Li, Yang; Jiang, Runze; Yang, Huan; Li, Fuqiang; Xie, Guoyun; Xu, Liqin; Wu, Kui; Zhang, Jie; Chen, Jianghao; Wang, Ting; Kristiansen, Karsten; Zhang, Xiuqing; Li, Yingrui; Yang, Huanming; Wang, Jian; Hou, Yong; Xu, Xun

    2015-01-01

    Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line. We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins. Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.

  4. 3-[(E-(4-Chlorobenzylideneamino]-1-phenylthiourea

    Directory of Open Access Journals (Sweden)

    Nur Nadia Dzulkifli

    2011-04-01

    Full Text Available In the title compound, C14H12ClN3S, the dihedral angle between the terminal benzene rings is 56.6 (2°; the benzene rings lie to the same side of the molecule. The major twist in the molecule occurs around the Car—N bond (ar is aromatic [C—N—C—C = 49.9 (5°]. The configuration about the N=C bond [1.271 (4 Å] is E. The amine H atoms lie on opposite sides of the molecule with one forming an intramolecular N—H...N(imine hydrogen bond and an S(5 ring. In the crystal, centrosymmetric dimers are formed via {...HNC=S}2 synthons.

  5. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    Science.gov (United States)

    Dhurandhar, Emily J; Krishnapuram, Rashmi; Hegde, Vijay; Dubuisson, Olga; Tao, Rongya; Dong, X Charlie; Ye, Jianping; Dhurandhar, Nikhil V

    2012-01-01

    Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure). Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (pE4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD).

  6. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation.

    Directory of Open Access Journals (Sweden)

    René Huber

    Full Text Available The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (premonocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (posttranslational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.

  7. Systematic Protein-Protein Docking and Molecular Dynamics Studies of HIV-1 gp120 and CD4: Insights for New Drug Development

    Directory of Open Access Journals (Sweden)

    M. Rizman-Idid

    2011-12-01

    Full Text Available Background and the purpose of the study: The interactions between HIV-1 gp120 and mutated CD4 proteins were investigated in order to identify a lead structure for therapy based on competitive blocking of the HIV binding receptor for human T-cells. Crystal structures of HIV gp120-CD4 complexes reveal a close interaction of the virus receptor with CD4 Phe43, which is embedded in a pocket of the virus protein.Methods: This study applies computer simulations to determine the best binding of amino acid 43 CD4 mutants to HIV gp120. Besides natural CD4, three mutants carrying alternate aromatic residues His, Trp and Tyr at position 43 were investigated. Several docking programs were applied on isolated proteins based on selected crystal structures of gp120-CD4 complexes, as well as a 5 ns molecular dynamics study on the protein complexes. The initial structures were minimized in Gromacs to avoid crystal packing effects, and then subjected to docking experiments using AutoDock4, FireDock, ClusPro and ZDock. In molecular dynamics, the Gibbs free binding energy was calculated for the gp120-CD4 complexes. The docking outputs were analyzed on energy within the respective docking software.Results and conclusion: Visualization and hydrogen bonding analysis were performed using the Swiss-PdbViewer. Strong binding to HIV gp120 can be achieved with an extended aromatic group (Trp. However, the sterical demand of the interaction affects the binding kinetics. In conclusion, a ligand for an efficient blocking of HIV gp120 should involve an extended but conformational flexible aromatic group, i.e. a biphenyl. A docking study on biphenylalanine-43 confirms this expectation

  8. The electrically charged BTZ black hole with self (anti-self) dual Maxwell field

    International Nuclear Information System (INIS)

    Kamata, M.; Koikawa, T.

    1995-04-01

    The Einstein-Maxwell equations with a negative cosmological constant Λ in 2 + 1 spacetime dimensions discussed by Banados, Teitelboim and Zanelli are solved by assuming a self (anti-self) dual equation E r-circumflex = ± B -circumflex , which is imposed on the orthonormal basis components of the electric field E r-circumflex and the magnetic field B -circumflex . This solution describes an electrically charged extra black hole with mass M=8πGQ 2 e , angular momentum J = ±8πGQ 2 e / modul Λ 1/2 and electric charge Q e . Although the coordinate components of the electric field E r and the magnetic field B have singularities on the horizon at r (4πGQ 2 e / modul Λ) 1/2 , the spacetime has the same value of constant negative curvature R = 6Λ as that of Banados et al. (author). 5 refs

  9. Interactions between the Hepatitis C Virus Nonstructural 2 Protein and Host Adaptor Proteins 1 and 4 Orchestrate Virus Release

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    2018-03-01

    Full Text Available Hepatitis C virus (HCV spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the μ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2 protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread.

  10. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs.

    Directory of Open Access Journals (Sweden)

    Ru Huang

    Full Text Available Imprinted macro non-protein-coding (nc RNAs are cis-repressor transcripts that silence multiple genes in at least three imprinted gene clusters in the mouse genome. Similar macro or long ncRNAs are abundant in the mammalian genome. Here we present the full coding and non-coding transcriptome of two mouse tissues: differentiated ES cells and fetal head using an optimized RNA-Seq strategy. The data produced is highly reproducible in different sequencing locations and is able to detect the full length of imprinted macro ncRNAs such as Airn and Kcnq1ot1, whose length ranges between 80-118 kb. Transcripts show a more uniform read coverage when RNA is fragmented with RNA hydrolysis compared with cDNA fragmentation by shearing. Irrespective of the fragmentation method, all coding and non-coding transcripts longer than 8 kb show a gradual loss of sequencing tags towards the 3' end. Comparisons to published RNA-Seq datasets show that the strategy presented here is more efficient in detecting known functional imprinted macro ncRNAs and also indicate that standardization of RNA preparation protocols would increase the comparability of the transcriptome between different RNA-Seq datasets.

  11. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection.

    Directory of Open Access Journals (Sweden)

    Smita Srivastava

    2008-05-01

    Full Text Available Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4-based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism.

  12. Thioredoxin 1 regulation of protein S-desulfhydration

    Directory of Open Access Journals (Sweden)

    Youngjun Ju

    2016-03-01

    Full Text Available The importance of H2S in biology and medicine has been widely recognized in recent years, and protein S-sulfhydration is proposed to mediate the direct actions of H2S bioactivity in the body. Thioredoxin 1 (Trx1 is an important reducing enzyme that cleaves disulfides in proteins and acts as an S-denitrosylase. The regulation of Trx1 on protein S-sulfhydration is unclear. Here we showed that Trx1 facilitates protein S-desulfhydration. Overexpression of Trx1 attenuated the basal level and H2S-induced protein S-sulfhydration by direct interaction with S-sulfhydrated proteins, i.e., glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase. In contrast, knockdown of Trx1 mRNA expression by short interfering RNA or blockage of Trx1 redox activity with PX12 or 2,4-dinitrochlorobenzene enhanced protein S-sulfhydration. Mutation of cysteine-32 but not cysteine-35 in the Trp–Cys32–Gly–Pro–Cys35 motif eliminated the binding of Trx1 with S-sulfhydrated proteins and abolished the S-desulfhydrating effect of Trx1. All these data suggest that Trx1 acts as an S-desulfhydrase.

  13. Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions.

    Science.gov (United States)

    Khan, Mateen A; Ma, Jia; Walden, William E; Merrick, William C; Theil, Elizabeth C; Goss, Dixie J

    2014-06-01

    Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn(2+) decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn(2+) increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn(2+) eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Performance of initial full-length RHIC [Relativistic Heavy Ion Collider] dipoles

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1987-01-01

    The first four full-length (9.7 m) R and D dipoles for the proposed Relativistic Heavy Ion Collider (RHIC) have been successfully tested. The magnets reached a quench plateau of approximately 4.5 T with very reasonable training - a field level comfortably above the design field of 3.45 T required for operation with beams of 100 GeV/amu gold nuclei. Measured field multipoles are considered to be quite acceptable for this series of R and D magnets

  15. Single-molecule study of full-length NaChBac by planar lipid bilayer recording.

    Directory of Open Access Journals (Sweden)

    Andrew Jo

    Full Text Available Planar lipid bilayer device, alternatively known as BLM, is a powerful tool to study functional properties of conducting membrane proteins such as ion channels and porins. In this work, we used BLM to study the prokaryotic voltage-gated sodium channel (Nav NaChBac in a well-defined membrane environment. Navs are an essential component for the generation and propagation of electric signals in excitable cells. The successes in the biochemical, biophysical and crystallographic studies on prokaryotic Navs in recent years has greatly promoted the understanding of the molecular mechanism that underlies these proteins and their eukaryotic counterparts. In this work, we investigated the single-molecule conductance and ionic selectivity behavior of NaChBac. Purified NaChBac protein was first reconstituted into lipid vesicles, which is subsequently incorporated into planar lipid bilayer by fusion. At single-molecule level, we were able to observe three distinct long-lived conductance sub-states of NaChBac. Change in the membrane potential switches on the channel mainly by increasing its opening probability. In addition, we found that individual NaChBac has similar permeability for Na+, K+, and Ca2+. The single-molecule behavior of the full-length protein is essentially highly stochastic. Our results show that planar lipid bilayer device can be used to study purified ion channels at single-molecule level in an artificial environment, and such studies can reveal new protein properties that are otherwise not observable in in vivo ensemble studies.

  16. Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4DCAF5 ubiquitin ligase.

    Science.gov (United States)

    Leng, Feng; Yu, Jiekai; Zhang, Chunxiao; Alejo, Salvador; Hoang, Nam; Sun, Hong; Lu, Fei; Zhang, Hui

    2018-04-24

    Many non-histone proteins are lysine methylated and a novel function of this modification is to trigger the proteolysis of methylated proteins. Here, we report that the methylated lysine 142 of DNMT1, a major DNA methyltransferase that preserves epigenetic inheritance of DNA methylation patterns during DNA replication, is demethylated by LSD1. A novel methyl-binding protein, L3MBTL3, binds the K142-methylated DNMT1 and recruits a novel CRL4 DCAF5 ubiquitin ligase to degrade DNMT1. Both LSD1 and PHF20L1 act primarily in S phase to prevent DNMT1 degradation by L3MBTL3-CRL4 DCAF5 . Mouse L3MBTL3/MBT-1 deletion causes accumulation of DNMT1 protein, increased genomic DNA methylation, and late embryonic lethality. DNMT1 contains a consensus methylation motif shared by many non-histone proteins including E2F1, a key transcription factor for S phase. We show that the methylation-dependent E2F1 degradation is also controlled by L3MBTL3-CRL4 DCAF5 . Our studies elucidate for the first time a novel mechanism by which the stability of many methylated non-histone proteins are regulated.

  17. Comparative modeling and docking studies of p16ink4/Cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1

    Directory of Open Access Journals (Sweden)

    e Zahra Syeda Naqsh

    2013-01-01

    Full Text Available Abstract Background Lung cancer is the major cause of mortality worldwide. Major signalling pathways that could play significant role in lung cancer therapy include (1 Growth promoting pathways (Epidermal Growth Factor Receptor/Ras/ PhosphatidylInositol 3-Kinase (2 Growth inhibitory pathways (p53/Rb/P14ARF, STK11 (3 Apoptotic pathways (Bcl-2/Bax/Fas/FasL. Insilico strategy was implemented to solve the mystery behind selected lung cancer pathway by applying comparative modeling and molecular docking studies. Results YASARA [v 12.4.1] was utilized to predict structural models of P16-INK4 and RB1 genes using template 4ELJ-A and 1MX6-B respectively. WHAT CHECK evaluation tool demonstrated overall quality of predicted P16-INK4 and RB1 with Z-score of −0.132 and −0.007 respectively which showed a strong indication of reliable structure prediction. Protein-protein interactions were explored by utilizing STRING server, illustrated that CDK4 and E2F1 showed strong interaction with P16-INK4 and RB1 based on confidence score of 0.999 and 0.999 respectively. In order to facilitate a comprehensive understanding of the complex interactions between candidate genes with their functional interactors, GRAMM-X server was used. Protein-protein docking investigation of P16-INK4 revealed four ionic bonds illustrating Arg47, Arg80,Cys72 and Met1 residues as actively participating in interactions with CDK4 while docking results of RB1 showed four hydrogen bonds involving Glu864, Ser567, Asp36 and Arg861 residues which interact strongly with its respective functional interactor E2F1. Conclusion This research may provide a basis for understanding biological insights of P16-INK4 and RB1 proteins which will be helpful in future to design a suitable drug to inhibit the disease pathogenesis as we have determined the interacting amino acids which can be targeted in order to design a ligand in-vitro to propose a drug for clinical trials. Protein -protein docking of

  18. Construction of Lactococcus lactis expressing secreted and anchored Eimeria tenella 3-1E protein and comparison of protective immunity against homologous challenge.

    Science.gov (United States)

    Ma, Chunli; Zhang, Lili; Gao, Mingyang; Ma, Dexing

    2017-07-01

    Two novel plasmids pTX8048-SP-Δ3-1E and pTX8048-SP-NAΔ3-1E-CWA were constructed. The plasmids were respectively electrotransformed into L. lactis NZ9000 to generate strain of L. lactis/pTX8048-SP-Δ3-1E in which 3-1E protein was expressed in secretion, and L. lactis/pTX8048-SP-NAΔ3-1E-CWA on which 3-1E protein was covalently anchored to the surface of bacteria cells. The expression of target proteins were examined by Western blot. The live lactococci expressing secreted 3-1E protein, anchored 3-1E protein, and cytoplasmic 3-1E protein was administered orally to chickens respectively, and the protective immunity and efficacy were compared by animal experiment. The results showed oral immunization to chickens with recombinant lactococci expressing anchored 3-1E protein elicited high 3-1E-specific serum IgG, increased high proportion of CD4 + and CD8α + cells in spleen, alleviated average lesion score in cecum, decreased the oocyst output per chicken compared to lactococci expressing cytoplasmic or secreted 3-1E protein. Taken together, these findings indicated the surface anchored Eimeria protein displayed by L. lacits can induce protective immunity and partial protection against homologous infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification of Plasmodium falciparum Translation Initiation eIF2β Subunit: Direct Interaction with Protein Phosphatase Type 1

    Czech Academy of Sciences Publication Activity Database

    Tellier, G.; Lenne, A.; Cailliau-Maggio, K.; Cabezas-Cruz, A.; Valdés, James J.; Martoriati, A.; Aliouat, El M.; Gosset, P.; Delaire, B.; Fréville, A.; Pierrot, C.; Khalife, J.

    2016-01-01

    Roč. 7, MAY 26 (2016), č. článku 777. ISSN 1664-302X Institutional support: RVO:60077344 Keywords : Plasmodium falciparum * Protein Phosphatase type1 * eIF2b * protein-protein interaction * translation complex Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  20. Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures.

    Directory of Open Access Journals (Sweden)

    Asma Rehman

    Full Text Available Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4 vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1-2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies.

  1. “Inclonals”: IgGs and IgG-enzyme fusion proteins produced in an E. coli expression-refolding system

    OpenAIRE

    Hakim, Rahely; Benhar, Itai

    2009-01-01

    Full-length antibodies and antibodies that ferry a cargo to target cells are desired biopharmaceuticals. We describe the production of full-length IgGs and IgG-toxin fusion proteins in E. coli. In the presented examples of anti CD30 and anti EGF-receptor antibodies, the antibody heavy and light chains or toxin fusions thereof were expressed in separate bacterial cultures, where they accumulated as insoluble inclusion bodies. Following refolding and purification, high yields (up to 50 mg/L of ...

  2. HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines

    International Nuclear Information System (INIS)

    Calmon, Marilia Freitas; Sichero, Laura; Boccardo, Enrique; Villa, Luisa Lina; Rahal, Paula

    2016-01-01

    Annexin 1 (ANXA1) is a substrate for E6AP mediated ubiquitylation. It has been hypothesized that HPV 16 E6 protein redirects E6AP away from ANXA1, increasing its stability and possibly contributing to viral pathogenesis. We analyzed ANXA1 expression in HPV-positive and negative cervical carcinoma-derived cells, in cells expressing HPV-16 oncogenes and in cells transduced with shRNA targeting E6AP. We observed that ANXA1 protein expression increased in HPV-16-positive tumor cells, in keratinocytes expressing HPV-16 E6wt (wild-type) or E6/E7 and C33 cells expressing HPV-16 E6wt. ANXA1 protein expression decreased in cells transfected with E6 Dicer-substrate RNAs (DsiRNA) and C33 cells cotransduced with HPV-16 E6wt and E6AP shRNA. Moreover, colony number and proliferation rate decreased in HPV16-positive cells transduced with ANXA1 shRNA. We observed that in cells infected with HPV16, the E6 binds to E6AP to degrade p53 and upregulate ANXA1. We suggest that ANXA1 may play a role in HPV-mediated carcinogenesis. - Highlights: • ANXA1 upregulation requires the presence of E6 and E6AP and is dependent on E6 integrity. • E6 binds to E6AP to degrade p53 and upregulate ANXA1 in cells infected with HPV16. • ANXA1 plays a role in cell proliferation in HPV-positive cervical cells.

  3. HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, Marilia Freitas [Department of Biology, Institute of Bioscience, Language and Exact Science, São Paulo State University, São Jose do Rio Preto (Brazil); Sichero, Laura [Molecular Biology Laboratory, Centre for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo (Brazil); Boccardo, Enrique [Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo., São Paulo (Brazil); Villa, Luisa Lina [Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (Brazil); Rahal, Paula, E-mail: rahalp@yahoo.com.br [Department of Biology, Institute of Bioscience, Language and Exact Science, São Paulo State University, São Jose do Rio Preto (Brazil)

    2016-09-15

    Annexin 1 (ANXA1) is a substrate for E6AP mediated ubiquitylation. It has been hypothesized that HPV 16 E6 protein redirects E6AP away from ANXA1, increasing its stability and possibly contributing to viral pathogenesis. We analyzed ANXA1 expression in HPV-positive and negative cervical carcinoma-derived cells, in cells expressing HPV-16 oncogenes and in cells transduced with shRNA targeting E6AP. We observed that ANXA1 protein expression increased in HPV-16-positive tumor cells, in keratinocytes expressing HPV-16 E6wt (wild-type) or E6/E7 and C33 cells expressing HPV-16 E6wt. ANXA1 protein expression decreased in cells transfected with E6 Dicer-substrate RNAs (DsiRNA) and C33 cells cotransduced with HPV-16 E6wt and E6AP shRNA. Moreover, colony number and proliferation rate decreased in HPV16-positive cells transduced with ANXA1 shRNA. We observed that in cells infected with HPV16, the E6 binds to E6AP to degrade p53 and upregulate ANXA1. We suggest that ANXA1 may play a role in HPV-mediated carcinogenesis. - Highlights: • ANXA1 upregulation requires the presence of E6 and E6AP and is dependent on E6 integrity. • E6 binds to E6AP to degrade p53 and upregulate ANXA1 in cells infected with HPV16. • ANXA1 plays a role in cell proliferation in HPV-positive cervical cells.

  4. The F-box Protein FBXO44 Mediates BRCA1 Ubiquitination and Degradation*

    Science.gov (United States)

    Lu, Yunzhe; Li, Jiezhi; Cheng, Dongmei; Parameswaran, Balaji; Zhang, Shaohua; Jiang, Zefei; Yew, P. Renee; Peng, Junmin; Ye, Qinong; Hu, Yanfen

    2012-01-01

    BRCA1 mutations account for a significant proportion of familial breast and ovarian cancers. In addition, reduced BRCA1 protein is associated with sporadic cancer cases in these tissues. At the cellular level, BRCA1 plays a critical role in multiple cellular functions such as DNA repair and cell cycle checkpoint control. Its protein level is regulated in a cell cycle-dependent manner. However, regulation of BRCA1 protein stability is not fully understood. Our earlier study showed that the amino terminus of BRCA1 harbors a degron sequence that is sufficient and necessary for conferring BRCA1 degradation. In the current study, we used mass spectrometry to identify Skp1 that regulates BRCA1 protein stability. Small interfering RNA screening that targets all human F-box proteins uncovered FBXO44 as an important protein that influences BRCA1 protein level. The Skp1-Cul1-F-box-protein44 (SCFFBXO44) complex ubiquitinates full-length BRCA1 in vitro. Furthermore, the N terminus of BRCA1 mediates the interaction between BRCA1 and FBXO44. Overexpression of SCFFBXO44 reduces BRCA1 protein level. Taken together, our work strongly suggests that SCFFBXO44 is an E3 ubiquitin ligase responsible for BRCA1 degradation. In addition, FBXO44 expression pattern in breast carcinomas suggests that SCFFBXO44-mediated BRCA1 degradation might contribute to sporadic breast tumor development. PMID:23086937

  5. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells.

    Science.gov (United States)

    van Keimpema, Martine; Grüneberg, Leonie J; Schilder-Tol, Esther J M; Oud, Monique E C M; Beuling, Esther A; Hensbergen, Paul J; de Jong, Johann; Pals, Steven T; Spaargaren, Marcel

    2017-03-01

    The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5'-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients. Copyright© Ferrata Storti Foundation.

  6. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  7. Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2.

    Science.gov (United States)

    Aguilar-Valles, Argel; Matta-Camacho, Edna; Khoutorsky, Arkady; Gkogkas, Christos; Nader, Karim; Lacaille, Jean-Claude; Sonenberg, Nahum

    2015-08-05

    Exacerbated mRNA translation during brain development has been linked to autism spectrum disorders (ASDs). Deletion of the eukaryotic initiation factor 4E (eIF4E)-binding protein 2 gene (Eif4ebp2), encoding the suppressor of mRNA translation initiation 4E-BP2, leads to an imbalance in excitatory-to-inhibitory neurotransmission and ASD-like behaviors. Inhibition of group I metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5 reverses the autistic phenotypes in several ASD mouse models. Importantly, these receptors control synaptic physiology via activation of mRNA translation. We investigated the potential reversal of autistic-like phenotypes in Eif4ebp2(-/-) mice by using antagonists of mGluR1 (JNJ16259685) or mGluR5 (fenobam). Augmented hippocampal mGluR-induced long-term depression (LTD; or chemically induced mGluR-LTD) in Eif4ebp2(-/-) mice was rescued by mGluR1 or mGluR5 antagonists. While rescue by mGluR5 inhibition occurs through the blockade of a protein synthesis-dependent component of LTD, normalization by mGluR1 antagonists requires the activation of protein synthesis. Synaptically induced LTD was deficient in Eif4ebp2(-/-) mice, and this deficit was not rescued by group I mGluR antagonists. Furthermore, a single dose of mGluR1 (0.3 mg/kg) or mGluR5 (3 mg/kg) antagonists in vivo reversed the deficits in social interaction and repetitive behaviors (marble burying) in Eif4ebp2(-/-) mice. Our results demonstrate that Eif4ebp2(-/-) mice serve as a relevant model to test potential therapies for ASD symptoms. In addition, we provide substantive evidence that the inhibition of mGluR1/mGluR5 is an effective treatment for physiological and behavioral alterations caused by exacerbated mRNA translation initiation. Exacerbated mRNA translation during brain development is associated with several autism spectrum disorders (ASDs). We recently demonstrated that the deletion of a negative regulator of mRNA translation initiation, the eukaryotic initiation factor 4E

  8. Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif.

    Science.gov (United States)

    Ala-Poikela, Marjo; Goytia, Elisa; Haikonen, Tuuli; Rajamäki, Minna-Liisa; Valkonen, Jari P T

    2011-07-01

    The multifunctional helper component proteinase (HCpro) of potyviruses (genus Potyvirus; Potyviridae) shows self-interaction and interacts with other potyviral and host plant proteins. Host proteins that are pivotal to potyvirus infection include the eukaryotic translation initiation factor eIF4E and the isoform eIF(iso)4E, which interact with viral genome-linked protein (VPg). Here we show that HCpro of Potato virus A (PVA) interacts with both eIF4E and eIF(iso)4E, with interactions with eIF(iso)4E being stronger, as judged by the data of a yeast two-hybrid system assay. A bimolecular fluorescence complementation assay on leaves of Nicotiana benthamiana showed that HCpro from three potyviruses (PVA, Potato virus Y, and Tobacco etch virus) interacted with the eIF(iso)4E and eIF4E of tobacco (Nicotiana tabacum); interactions with eIF(iso)4E and eIF4E of potato (Solanum tuberosum) were weaker. In PVA-infected cells, interactions between HCpro and tobacco eIF(iso)4E were confined to round structures that colocalized with 6K2-induced vesicles. Point mutations introduced to a 4E binding motif identified in the C-terminal region of HCpro debilitated interactions of HCpro with translation initiation factors and were detrimental to the virulence of PVA in plants. The 4E binding motif conserved in HCpro of potyviruses and HCpro-initiation factor interactions suggest new roles for HCpro and/or translation factors in the potyvirus infection cycle.

  9. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion.

    Science.gov (United States)

    Kacprzak, Sylwia; Njimona, Ibrahim; Renz, Anja; Feng, Juan; Reijerse, Edward; Lubitz, Wolfgang; Krauss, Norbert; Scheerer, Patrick; Nagano, Soshichiro; Lamparter, Tilman; Weber, Stefan

    2017-05-05

    Bacterial phytochromes are dimeric light-regulated histidine kinases that convert red light into signaling events. Light absorption by the N-terminal photosensory core module (PCM) causes the proteins to switch between two spectrally distinct forms, Pr and Pfr, thus resulting in a conformational change that modulates the C-terminal histidine kinase region. To provide further insights into structural details of photoactivation, we investigated the full-length Agp1 bacteriophytochrome from the soil bacterium Agrobacterium fabrum using a combined spectroscopic and modeling approach. We generated seven mutants suitable for spin labeling to enable application of pulsed EPR techniques. The distances between attached spin labels were measured using pulsed electron-electron double resonance spectroscopy to probe the arrangement of the subunits within the dimer. We found very good agreement of experimental and calculated distances for the histidine-kinase region when both subunits are in a parallel orientation. However, experimental distance distributions surprisingly showed only limited agreement with either parallel- or antiparallel-arranged dimer structures when spin labels were placed into the PCM region. This observation indicates that the arrangements of the PCM subunits in the full-length protein dimer in solution differ significantly from that in the PCM crystals. The pulsed electron-electron double resonance data presented here revealed either no or only minor changes of distance distributions upon Pr-to-Pfr photoconversion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Characterization of partial and near full-length genomes of HIV-1 strains sampled from recently infected individuals in São Paulo, Brazil.

    Directory of Open Access Journals (Sweden)

    Sabri Saeed Sanabani

    Full Text Available BACKGROUND: Genetic variability is a major feature of human immunodeficiency virus type 1 (HIV-1 and is considered the key factor frustrating efforts to halt the HIV epidemic. A proper understanding of HIV-1 genomic diversity is a fundamental prerequisite for proper epidemiology, genetic diagnosis, and successful drugs and vaccines design. Here, we report on the partial and near full-length genomic (NFLG variability of HIV-1 isolates from a well-characterized cohort of recently infected patients in São Paul, Brazil. METHODOLOGY: HIV-1 proviral DNA was extracted from the peripheral blood mononuclear cells of 113 participants. The NFLG and partial fragments were determined by overlapping nested PCR and direct sequencing. The data were phylogenetically analyzed. RESULTS: Of the 113 samples (90.3% male; median age 31 years; 79.6% homosexual men studied, 77 (68.1% NFLGs and 32 (29.3% partial fragments were successfully subtyped. Of the successfully subtyped sequences, 88 (80.7% were subtype B sequences, 12 (11% BF1 recombinants, 3 (2.8% subtype C sequences, 2 (1.8% BC recombinants and subclade F1 each, 1 (0.9% CRF02 AG, and 1 (0.9% CRF31 BC. Primary drug resistance mutations were observed in 14/101 (13.9% of samples, with 5.9% being resistant to protease inhibitors and nucleoside reverse transcriptase inhibitors (NRTI and 4.9% resistant to non-NRTIs. Predictions of viral tropism were determined for 86 individuals. X4 or X4 dual or mixed-tropic viruses (X4/DM were seen in 26 (30.2% of subjects. The proportion of X4 viruses in homosexuals was detected in 19/69 (27.5%. CONCLUSIONS: Our results confirm the existence of various HIV-1 subtypes circulating in São Paulo, and indicate that subtype B account for the majority of infections. Antiretroviral (ARV drug resistance is relatively common among recently infected patients. The proportion of X4 viruses in homosexuals was significantly higher than the proportion seen in other study populations.

  11. Syntaxin binding protein 1 is not required for allergic inflammation via IgE-mediated mast cell activation.

    Directory of Open Access Journals (Sweden)

    Zhengli Wu

    Full Text Available Mast cells play a central role in both innate and acquired immunity. When activated by IgE-dependent FcεRI cross-linking, mast cells rapidly initiate a signaling cascade and undergo an extensive release of their granule contents, including inflammatory mediators. Some SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor proteins and SM (Sec1/Munc18 family proteins are involved in mast cell degranulation. However, the function of syntaxin binding protein 1 (STXBP1, a member of SM family, in mast cell degranulation is currently unknown. In this study, we examined the role of STXBP1 in IgE-dependent mast cell activation. Liver-derived mast cells (LMCs from wild-type and STXBP1-deficient mice were cultured in vitro for the study of mast cell maturation, degranulation, cytokine and chemokine production, as well as MAPK, IκB-NFκB, and NFAT signaling pathways. In addition, in vivo models of passive cutaneous anaphylaxis and late-phase IgE-dependent inflammation were conducted in mast cell deficient W(sh mice that had been reconstituted with wild-type or STXBP1-deficient mast cells. Our findings indicate that STXBP1 is not required for any of these important functional mechanisms in mast cells both in vitro and in vivo. Our results demonstrate that STXBP1 is dispensable during IgE-mediated mast cell activation and in IgE-dependent allergic inflammatory reactions.

  12. Congenital Left Circumflex Coronary Artery Atresia Detected by 64-Slice Computed Tomography: A Case Report

    Directory of Open Access Journals (Sweden)

    Chen-Yuan Liu

    2007-06-01

    Full Text Available A variety of coronary artery disorders, including intramyocardial coronary segments and coronary artery anomalies, can result in sudden cardiac death, especially in young adults. The detection of structural coronary artery abnormalities is important in the management of patients at risk of sudden cardiac death. Coronary artery anomalies occur in about 1% of the population. Congenital absence of left circumflex coronary artery (LCX is a very rare vascular anomaly, and few cases have been reported in the literature, with a frequency of only 0.003% in all patients who underwent coronary angiography. Although coronary catheterization is the gold standard for the evaluation of coronary arterial patency disease, noninvasive computed tomography (CT is considered the diagnostic method of choice for the detection and evaluation of coronary artery anomaly. Herein, we report the case of a 17-year-old girl who presented with exertional dyspnea and chest pain and who was studied at our emergency department with the final diagnosis of LCX atresia detected by 64-slice CT. She may be the first case of congenital LCX atresia proved by multislice CT.

  13. Structural and functional analysis of the kid toxin protein from E. coli Plasmid R1

    NARCIS (Netherlands)

    Hargreaves, D.; Santos-Sierra, S.; Giraldo, R.; Sabariegos-Jareño, R.; de la Cueva-Méndez, G.; Boelens, R.|info:eu-repo/dai/nl/070151407; Díaz-Orejas, R.; Rafferty, J.B.

    2002-01-01

    We have determined the structure of Kid toxin protein from E. coli plasmid R1 involved in stable plasmid inheritance by postsegregational killing of plasmid-less daughter cells. Kid forms a two-component system with its antagonist, Kis antitoxin. Our 1.4 Å crystal structure of Kid reveals a 2-fold

  14. Crystal structure of bis(bis{(E-[(6-{(E-[(4-fluorobenzylimino]methyl}pyridin-2-ylmethylidene](4-fluorophenylamine}nickel(II tetrabromide nonahydrate

    Directory of Open Access Journals (Sweden)

    Ismet Basaran

    2015-12-01

    Full Text Available In the title complex, [Ni(C21H17F2N32]2Br4·9H2O, there are two independent metal complexes per asymmetric unit and two ligands per metal complex. The structural features (bond lengths and angles of the two complexes are almost identical. In each complex, the nickel(II ion is coordinated in an octahedral environment by six N atoms from two chelating (9E-N-({6-[(E-(4-fluorobenzyliminomethyl]pyridin-2-yl}methylene(4-fluorophenylmethanammine ligands. The Ni—N bond lengths range from 1.973 (2 to 2.169 (2 Å, while the chelate N—Ni—N angles range from 77.01 (10 to 105.89 (9°. Additionally, there are four bromide anions and nine solvent water molecules within the asymmetric unit. The water molecules form a hydrogen-bonded network, displaying C—H...O, C—H...Br, O—H...Br, O—H...O and O—H...F interactions into layers parallel to (111. In each unit, the fluorophenyl rings of one ligand are stacked with the central ring of the other ligand via π–π interactions, with the closest centroid-to-plane distances being 3.445 (5, 3.636 (5, 3.397 (5 and 3.396 (5 Å.

  15. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    Science.gov (United States)

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  16. The Role of E27-K31 and E56-K10 Salt-Bridge Pairs in the Unfolding Mechanism of the B1 Domain of Protein G

    Directory of Open Access Journals (Sweden)

    Tony Ibnu Sumaryada

    2018-02-01

    Full Text Available Molecular dynamics simulations of the B1 fragment of protein G (56 residues have been performed at 325, 350, 375, 400, 450 and 500 K for 10 ns. An analysis of its structural and energetic parameters has indicated that the unfolding process of the GB1 protein begins at 900 ps of a 500-K simulation. The unfolding process is initiated when hydrogen bonds in the hydrophobic core region are broken; it continues with the α-helix transformation into coils and turns and ends with the destruction of the β-hairpins. These unfolding events are consistent with the hybrid model of the protein folding/unfolding mechanism, which is a compromise between the hydrophobic core collapse model and the zipper model. Salt-bridge pairs were found to play an important role in the unfolding process by maintaining the integrity of the tertiary structure of the protein. The breaking (or disappearance of the salt-bridge pairs E27–K31 (in the α-helix and E56–K10 (connecting β4 and β1 has resulted in the destruction of secondary structures and indicates the beginning of the unfolding process. Our results also suggest that the unfolding process in this simulation was not a complete denaturation of the protein because some β-hairpins remained

  17. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2016-09-01

    Full Text Available Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3 as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance.

  18. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    Directory of Open Access Journals (Sweden)

    Tatiana Tatarinova

    2015-01-01

    Full Text Available Proteins of the same functional family (for example, kinases may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content tend to have longer genes than species with low GC3 content.

  19. The E1 proteins

    International Nuclear Information System (INIS)

    Bergvall, Monika; Melendy, Thomas; Archambault, Jacques

    2013-01-01

    E1, an ATP-dependent DNA helicase, is the only enzyme encoded by papillomaviruses (PVs). It is essential for replication and amplification of the viral episome in the nucleus of infected cells. To do so, E1 assembles into a double-hexamer at the viral origin, unwinds DNA at the origin and ahead of the replication fork and interacts with cellular DNA replication factors. Biochemical and structural studies have revealed the assembly pathway of E1 at the origin and how the enzyme unwinds DNA using a spiral escalator mechanism. E1 is tightly regulated in vivo, in particular by post-translational modifications that restrict its accumulation in the nucleus. Here we review how different functional domains of E1 orchestrate viral DNA replication, with an emphasis on their interactions with substrate DNA, host DNA replication factors and modifying enzymes. These studies have made E1 one of the best characterized helicases and provided unique insights on how PVs usurp different host-cell machineries to replicate and amplify their genome in a tightly controlled manner. - Highlights: • The papillomavirus E1 helicase orchestrates replication of the viral DNA genome. • E1 assembles into a double-hexamer at the viral origin with the help of E2. • E1 interacts with cellular DNA replication factors. • E1 unwinds DNA using a spiral escalator mechanism. • Nuclear accumulation of E1 is regulated by post-translational modifications

  20. Translation initiation factor AteIF(iso4E is involved in selective mRNA translation in Arabidopsis thaliana seedlings.

    Directory of Open Access Journals (Sweden)

    Ana Valeria Martínez-Silva

    Full Text Available One of the most regulated steps of translation initiation is the recruitment of mRNA by the translation machinery. In eukaryotes, this step is mediated by the 5'end cap-binding factor eIF4E bound to the bridge protein eIF4G and forming the eIF4F complex. In plants, different isoforms of eIF4E and eIF4G form the antigenically distinct eIF4F and eIF(iso4F complexes proposed to mediate selective translation. Using a microarray analysis of polyribosome- and non-polyribosome-purified mRNAs from 15 day-old Arabidopsis thaliana wild type [WT] and eIF(iso4E knockout mutant [(iso4E-1] seedlings we found 79 transcripts shifted from polyribosomes toward non-polyribosomes, and 47 mRNAs with the opposite behavior in the knockout mutant. The translationally decreased mRNAs were overrepresented in root-preferentially expressed genes and proteins from the endomembrane system, including several transporters such as the phosphate transporter PHOSPHATE1 (PHO1, Sucrose transporter 3 (SUC3, ABC transporter-like with ATPase activity (MRP11 and five electron transporters, as well as signal transduction-, protein modification- and transcription-related proteins. Under normal growth conditions, eIF(iso4E expression under the constitutive promoter 35 S enhanced the polyribosomal recruitment of PHO1 supporting its translational preference for eIF(iso4E. Furthermore, under phosphate deficiency, the PHO1 protein increased in the eIF(iso4E overexpressing plants and decreased in the knockout mutant as compared to wild type. In addition, the knockout mutant had larger root, whereas the 35 S directed expression of eIF(iso4E caused shorter root under normal growth conditions, but not under phosphate deficiency. These results indicate that selective translation mediated by eIF(iso4E is relevant for Arabidopsis root development under normal growth conditions.

  1. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.

    Science.gov (United States)

    Wu, Meng-Ying; Sung, Li-Yu; Li, Hung; Huang, Chun-Hung; Hu, Yu-Chen

    2017-12-15

    Biosynthesis of 1,4-butanediol (1,4-BDO) in E. coli requires an artificial pathway that involves six genes and time-consuming, iterative genome engineering. CRISPR is an effective gene editing tool, while CRISPR interference (CRISPRi) is repurposed for programmable gene suppression. This study aimed to combine both CRISPR and CRISPRi for metabolic engineering of E. coli and 1,4-BDO production. We first exploited CRISPR to perform point mutation of gltA, replacement of native lpdA with heterologous lpdA, knockout of sad and knock-in of two large (6.0 and 6.3 kb in length) gene cassettes encoding the six genes (cat1, sucD, 4hbd, cat2, bld, bdh) in the 1,4-BDO biosynthesis pathway. The successive E. coli engineering enabled production of 1,4-BDO to a titer of 0.9 g/L in 48 h. By combining the CRISPRi system to simultaneously suppress competing genes that divert the flux from the 1,4-BDO biosynthesis pathway (gabD, ybgC and tesB) for >85%, we further enhanced the 1,4-BDO titer for 100% to 1.8 g/L while reducing the titers of byproducts gamma-butyrolactone and succinate for 55% and 83%, respectively. These data demonstrate the potential of combining CRISPR and CRISPRi for genome engineering and metabolic flux regulation in microorganisms such as E. coli and production of chemicals (e.g., 1,4-BDO).

  2. Analysis of Immunogenicity of Intracellular CTAR Fragments of Epstein-Barr Virus Latent Phase Protein LMP1.

    Science.gov (United States)

    Lomakin, Ya A; Shmidt, A A; Bobik, T V; Chernov, A S; Pyrkov, A Yu; Aleksandrova, N M; Okunola, D O; Vaskina, M I; Ponomarenko, N A; Telegin, G B; Dubina, M V; Belogurov, A A

    2017-10-01

    Intracellular fragments of latent phase protein LMP1 of Epstein-Barr virus, denoted as CTAR1/2/3, can trigger a variety of cell cascades and contribute to the transforming potential of the virus. Generation of recombinant proteins CTAR1/2/3 is expected to yield more ample data on functional and immunogenic characteristics of LMP1. We created genetic constructs for prokaryotic expression of LMP1 CTAR fragments and selected optimal conditions for their production and purification. Using a new library of LMP1 CTAR fragments, we carried out epitope mapping of a diagnostic anti-LMP1 antibody S12. Analysis of polyclonal serum antibodies from mice immunized with full-length LMP1 confirmed immunogenicity of CTAR elements comparable with that of full-length protein.

  3. SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level.

    Directory of Open Access Journals (Sweden)

    Evgeny Kuznetsov

    Full Text Available The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.

  4. Novel (1E,3E,5E-1,6-bis(Substituted phenylhexa-1,3,5-triene Analogs Inhibit Melanogenesis in B16F10 Cells and Zebrafish

    Directory of Open Access Journals (Sweden)

    Jisun Oh

    2018-04-01

    Full Text Available The present study aimed to evaluate the anti-melanogenic activity of 1,6-diphenyl-1,3,5-hexatriene and its derivatives in B16F10 murine melanoma cells and zebrafish embryos. Twenty five (1E,3E,5E-1,6-bis(substituted phenylhexa-1,3,5-triene analogs were synthesized and their non-cytotoxic effects were predictively analyzed using three-dimensional quantitative structure-activity relationship approach. Inhibitory activities of these synthetic compounds against melanin synthesis were determined by evaluating melanin content and melanogenic regulatory enzyme expression in B16F10 cells. The anti-melanogenic activity was verified by observing body pigmentation in zebrafishes treated with these compounds. Compound #2, #4, and #6 effectively decreased melanogenesis induced by α-melanocyte-stimulating hormone. In particular, compound #2 remarkably lowered the mRNA and protein expression levels of microphthalmia-associated transcription factor (MITF, tyrosinase (TYR, tyrosinase-related protein 1 (TYRP1, and TYRP2 in B16F10 cells and substantially reduced skin pigmentation in the developed larvae of zebrafish. These findings suggest that compound #2 may be used as an anti-melanogenic agent for cosmetic purpose.

  5. The development of the conditionally replication-competent adenovirus: replacement of E4 orf1-4 region by exogenous gene.

    Science.gov (United States)

    Nam, Jae-Kook; Lee, Mi-Hyang; Seo, Hae-Hyun; Kim, Seok-Ki; Lee, Kang-Huyn; Kim, In-Hoo; Lee, Sang-Jin

    2010-05-01

    Tumor or tissue specific replicative adenovirus armed with a therapeutic gene has shown a promising anti-cancer therapeutic modality. However, because the genomic packaging capacity is constrained, only a few places inside it are available for transgene insertion. In the present study, we introduce a novel strategy utilizing the early E4 region for the insertion of therapeutic gene(s). We constructed the conditionally replication-competent adenovirus (CRAd), Ad5E4(mRFP) by: (i) replacing the E4/E1a promoter by the prostate-specific enhancer element; (ii) inserting mRFP inside the E4orf1-4 deletion region; and (iii) sub-cloning enhanced green fluorescent protein controlled by cytomegalovirus promoter in the left end of the viral genome. Subsequently, we evaluated its replication abilities and killing activities in vitro, as well as its in vivo anti-tumor efficacy in CWR22rv xenografts. When infected with Ad5E4(mRFP), the number and intensity of the mRFP gene products increased in a prostate cancer cell-specific manner as designed, suggesting that the mRFP gene and E4orfs other than E4orf1-4 were well synthesized from one transcript via alternative splicing as the recombinant adenovirus replicated. As expected from the confirmed virus replication capability, Ad5E4(mRFP) induced cell lysis as potent as the wild-type adenovirus and effectively suppressed tumor growth when tested in the CWR22rv xenografts in nude mice. Furthermore, Ad5E4(endo/angio) harboring an endostatin-angiostatin gene in E4orf1-4 was able to enhance CRAd by replacing mRFP with a therapeutic gene. The approach employed in the present study for the insertion of a therapeutic transgene in CRAd should facilitate the construction of CRAd containing multiple therapeutic genes in the viral genome that may have the potential to serve as highly potent cancer therapeutic reagents. Copyright (c) 2010 John Wiley & Sons, Ltd.

  6. Full-length cloning and phylogenetic analyses of translationally controlled tumour protein and ferritin genes from the Indian white prawn, Fenneropenaeus indicus (H. Milne Edwards)

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, S.; Ramaiah, N.; Meena, R.M.; Sreepada, R.A.

    -length sequences of these immune-relevant genes, this study highlighted their conserved natures, which perhaps make them important defence-related proteins in the innate immune system of F. indicus....

  7. Two-parameter quantum affine algebra Ur,s(sln-circumflex), Drinfeld realization and quantum affine Lyndon basis

    International Nuclear Information System (INIS)

    Hu Naihong; Rosso, M.; Zhang Honglian

    2006-12-01

    We further find the defining structure of a two-parameter quantum affine algebra U r,s (sl n -circumflex) (n > 2) in the sense of Benkart-Witherspoon [BW1] after the work of [BGH1], [HS] and [BH], which turns out to be a Drinfeld double. Of more importance for the 'affine' cases is that we work out the compatible two-parameter version of the Drinfeld realization as a quantum affinization of U r,s (sl n ) and establish the Drinfeld isomorphism Theorem in the two-parameter setting via developing a new remarkable combinatorial approach - quantum 'affine' Lyndon basis with an explicit valid algorithm, based on the Drinfeld realization. (author)

  8. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells.

    Directory of Open Access Journals (Sweden)

    Jasdave S Chahal

    Full Text Available Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication.

  9. Sequencing and analysis of full-length cDNAs, 5'-ESTs and 3'-ESTs from a cartilaginous fish, the elephant shark (Callorhinchus milii).

    KAUST Repository

    Brenner, Sydney

    2012-10-08

    Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initiated to obtain its whole genome sequence. In this study, we have generated and sequenced full-length enriched cDNA libraries of the elephant shark using the \\'oligo-capping\\' method and Sanger sequencing. A total of 6,778 full-length protein-coding cDNA and 10,701 full-length noncoding cDNA were sequenced from six tissues (gills, intestine, kidney, liver, spleen, and testis) of the elephant shark. Analysis of their polyadenylation signals showed that polyadenylation usage in elephant shark is similar to that in mammals. Furthermore, both coding and noncoding transcripts of the elephant shark use the same proportion of canonical polyadenylation sites. Besides BLASTX searches, protein-coding transcripts were annotated by Gene Ontology, InterPro domain, and KEGG pathway analyses. By comparing elephant shark genes to bony vertebrate genes, we identified several ancient genes present in elephant shark but differentially lost in tetrapods or teleosts. Only ∼6% of elephant shark noncoding cDNA showed similarity to known noncoding RNAs (ncRNAs). The rest are either highly divergent ncRNAs or novel ncRNAs. In addition to full-length transcripts, 30,375 5\\'-ESTs and 41,317 3\\'-ESTs were sequenced and annotated. The clones and transcripts generated in this study are valuable resources for annotating transcription start sites, exon-intron boundaries, and UTRs of genes in the elephant shark genome, and for the functional characterization of protein sequences. These resources will also be useful for annotating genes in other cartilaginous fishes whose genomes have been targeted for

  10. Sequencing and analysis of full-length cDNAs, 5'-ESTs and 3'-ESTs from a cartilaginous fish, the elephant shark (Callorhinchus milii).

    KAUST Repository

    Brenner, Sydney; Kodzius, Rimantas; Tan, Yue Ying; Tay, Alice; Tay, Boon-Hui; Venkatesh, Byrappa

    2012-01-01

    Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initiated to obtain its whole genome sequence. In this study, we have generated and sequenced full-length enriched cDNA libraries of the elephant shark using the 'oligo-capping' method and Sanger sequencing. A total of 6,778 full-length protein-coding cDNA and 10,701 full-length noncoding cDNA were sequenced from six tissues (gills, intestine, kidney, liver, spleen, and testis) of the elephant shark. Analysis of their polyadenylation signals showed that polyadenylation usage in elephant shark is similar to that in mammals. Furthermore, both coding and noncoding transcripts of the elephant shark use the same proportion of canonical polyadenylation sites. Besides BLASTX searches, protein-coding transcripts were annotated by Gene Ontology, InterPro domain, and KEGG pathway analyses. By comparing elephant shark genes to bony vertebrate genes, we identified several ancient genes present in elephant shark but differentially lost in tetrapods or teleosts. Only ∼6% of elephant shark noncoding cDNA showed similarity to known noncoding RNAs (ncRNAs). The rest are either highly divergent ncRNAs or novel ncRNAs. In addition to full-length transcripts, 30,375 5'-ESTs and 41,317 3'-ESTs were sequenced and annotated. The clones and transcripts generated in this study are valuable resources for annotating transcription start sites, exon-intron boundaries, and UTRs of genes in the elephant shark genome, and for the functional characterization of protein sequences. These resources will also be useful for annotating genes in other cartilaginous fishes whose genomes have been targeted for whole

  11. The F-box protein FBXO44 mediates BRCA1 ubiquitination and degradation.

    Science.gov (United States)

    Lu, Yunzhe; Li, Jiezhi; Cheng, Dongmei; Parameswaran, Balaji; Zhang, Shaohua; Jiang, Zefei; Yew, P Renee; Peng, Junmin; Ye, Qinong; Hu, Yanfen

    2012-11-30

    BRCA1 mutations account for a significant proportion of familial breast and ovarian cancers. In addition, reduced BRCA1 protein is associated with sporadic cancer cases in these tissues. At the cellular level, BRCA1 plays a critical role in multiple cellular functions such as DNA repair and cell cycle checkpoint control. Its protein level is regulated in a cell cycle-dependent manner. However, regulation of BRCA1 protein stability is not fully understood. Our earlier study showed that the amino terminus of BRCA1 harbors a degron sequence that is sufficient and necessary for conferring BRCA1 degradation. In the current study, we used mass spectrometry to identify Skp1 that regulates BRCA1 protein stability. Small interfering RNA screening that targets all human F-box proteins uncovered FBXO44 as an important protein that influences BRCA1 protein level. The Skp1-Cul1-F-box-protein44 (SCF(FBXO44)) complex ubiquitinates full-length BRCA1 in vitro. Furthermore, the N terminus of BRCA1 mediates the interaction between BRCA1 and FBXO44. Overexpression of SCF(FBXO44) reduces BRCA1 protein level. Taken together, our work strongly suggests that SCF(FBXO44) is an E3 ubiquitin ligase responsible for BRCA1 degradation. In addition, FBXO44 expression pattern in breast carcinomas suggests that SCF(FBXO44)-mediated BRCA1 degradation might contribute to sporadic breast tumor development.

  12. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin.

    Directory of Open Access Journals (Sweden)

    Sidhartha M Chafekar

    Full Text Available The molecular mechanisms by which polyglutamine (polyQ-expanded huntingtin (Htt causes neurodegeneration in Huntington's disease (HD remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1 are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis.

  13. Full-length high-temperature severe fuel damage test No. 5

    International Nuclear Information System (INIS)

    Lanning, D.D.; Lombardo, N.J.; Hensley, W.K.; Fitzsimmons, D.E.; Panisko, F.E.; Hartwell, J.K.

    1993-09-01

    This report describes and presents data from a severe fuel damage test that was conducted in the National Research Universal (NRU) reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test, designated FLHT-5, was the fourth in a series of full-length high-temperature (FLHT) tests on light-water reactor fuel. The tests were designed and performed by staff from the US Department of Energy's Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute. The test operation and test results are described in this report. The fuel bundle in the FLHT-5 experiment included 10 unirradiated full-length pressurized-water reactor (PWR) rods, 1 irradiated PWR rod and 1 dummy gamma thermometer. The fuel rods were subjected to a very low coolant flow while operating at low fission power. This caused coolant boilaway, rod dryout and overheating to temperatures above 2600 K, severe fuel rod damage, hydrogen generation, and fission product release. The test assembly and its effluent path were extensively instrumented to record temperatures, pressures, flow rates, hydrogen evolution, and fission product release during the boilaway/heatup transient. Post-test gamma scanning of the upper plenum indicated significant iodine and cesium release and deposition. Both stack gas activity and on-line gamma spectrometer data indicated significant (∼50%) release of noble fission gases. Post-test visual examination of one side of the fuel bundle revealed no massive relocation and flow blockage; however, rundown of molten cladding was evident

  14. Synthesis of N-(5-(Substitutedphenyl-4,5-dihydro-1H-pyrazol-3-yl-4H-1,2,4-triazol-4-amine from 4-Amino-4H-1,2,4-triazole

    Directory of Open Access Journals (Sweden)

    Ashvin D. Panchal

    2011-01-01

    Full Text Available N-(4H-1,2,4-Triazol-4-ylacetamide (2 were prepared by reaction of 4-amino-4H-1,2,4-triazole (1 with acetyl chloride in dry benzene. It has been reacted with various aromatic aldehyde to afford 3-(substitutedphenyl-N-(4H-1,2,4-triazol-4-ylacrylamide (3a-e. The synthesis of N-(5-substitutedphenyl-4,5-dihydro-1H-pyrazol-3-yl-4H-1,2,4-triazol-4-amine (4a-e is achieved by the cyclisation of 3a-e with hydrazine hydrate in ethanol. The structures of synthesized compounds were characterized by 1H NMR and IR spectroscopic studies. The purity of the compounds was checked by thin layer chromatography.

  15. Cloning and sequencing of full-length cDNAs of RNA1 and RNA2 of a Tomato black ring virus isolate from Poland.

    Science.gov (United States)

    Jończyk, M; Le Gall, O; Pałucha, A; Borodynko, N; Pospieszny, H

    2004-04-01

    Full-length cDNA clones corresponding to the RNA1 and RNA2 of the Polish isolate MJ of Tomato black ring virus (TBRV, genus Nepovirus) were obtained using a direct recombination strategy in yeast, and their complete nucleotide sequences were established. RNA1 is 7358 nucleotides and RNA2 is 4633 nucleotides in length, excluding the poly(A) tails. Both RNAs contain a single open reading frame encoding polyproteins of 254 kDa and 149 kDa for RNA1 and RNA2 respectively. Putative cleavage sites were identified, and the relationships between TBRV and related nepoviruses were studied by sequence comparison.

  16. Mutational analysis of the EMCV 2A protein identifies a nuclear localization signal and an eIF4E binding site

    International Nuclear Information System (INIS)

    Groppo, Rachel; Brown, Bradley A.; Palmenberg, Ann C.

    2011-01-01

    Cardioviruses have a unique 2A protein (143 aa). During genome translation, the encephalomyocarditis virus (EMCV) 2A is released through a ribosome skipping event mitigated through C-terminal 2A sequences and by subsequent N-terminal reaction with viral 3C pro . Although viral replication is cytoplasmic, mature 2A accumulates in nucleoli shortly after infection. Some protein also transiently associates with cytoplasmic 40S ribosomal subunits, an activity contributing to inhibition of cellular cap-dependent translation. Cardiovirus sequences predict an eIF4E binding site (aa 126-134) and a nuclear localization signal (NLS, aa 91-102), within 2A, both of which are functional during EMCV infection. Point mutations preventing eIF4E:2A interactions gave small-plaque phenotype viruses, but still inhibited cellular cap-dependent translation. Deletions within the NLS motif relocalized 2A to the cytoplasm and abrogated the inhibition of cap-dependent translation. A fusion protein linking the 2A NLS to eGFP was sufficient to redirect the reporter to the nucleus but not into nucleoli.

  17. Evolution and Virulence of Influenza A Virus Protein PB1-F2

    Directory of Open Access Journals (Sweden)

    Ram P. Kamal

    2017-12-01

    Full Text Available PB1-F2 is an accessory protein of most human, avian, swine, equine, and canine influenza A viruses (IAVs. Although it is dispensable for virus replication and growth, it plays significant roles in pathogenesis by interfering with the host innate immune response, inducing death in immune and epithelial cells, altering inflammatory responses, and promoting secondary bacterial pneumonia. The effects of PB1-F2 differ between virus strains and host species. This can at least partially be explained by the presence of multiple PB1-F2 sequence variants, including premature stop codons that lead to the expression of truncated PB1-F2 proteins of different lengths and specific virulence-associated residues that enhance susceptibility to bacterial superinfection. Although there has been a tendency for human seasonal IAV to gradually reduce the number of virulence-associated residues, zoonotic IAVs contain a reservoir of PB1-F2 proteins with full length, virulence-associated sequences. Here, we review the molecular mechanisms by which PB1-F2 may affect influenza virulence, and factors associated with the evolution and selection of this protein.

  18. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Directory of Open Access Journals (Sweden)

    Goldbach Rob W

    2011-07-01

    Full Text Available Abstract Background Chikungunya virus (CHIKV is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections.

  19. Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E

    DEFF Research Database (Denmark)

    Fierro-Monti, Ivo; Mohammed, Shabaz; Matthiesen, Rune

    2006-01-01

    Protein complexes are dynamic entities; identification and quantitation of their components is critical in elucidating functional roles under specific cellular conditions. We report the first quantitative proteomic analysis of the human cap-binding protein complex. Components and proteins......-starved tumorigenic human mesenchymal stromal cells, attested to their activated translational states. The WD-repeat, scaffolding-protein Gemin5 was identified as a novel eIF4E binding partner, which interacted directly with eIF4E through a motif (YXXXXLPhi) present in a number of eIF4E-interacting partners. Elevated...... levels of Gemin5:eIF4E complexes were found in phorbol ester treated HEK293 cells. Gemin5 and eIF4E co-localized to cytoplasmic P-bodies in human osteosarcoma U2OS cells. Interaction between eIF4E and Gemin5 and their co-localization to the P-bodies, may serve to recruit capped mRNAs to these RNP...

  20. Distinct distribution of specific members of protein 4.1 genefamily in the mouse nephron

    Energy Technology Data Exchange (ETDEWEB)

    Ramez, Mohamed; Blot-Chabaud, Marcel; Cluzeaud, Francoise; Chanan, Sumita; Patterson, Michael; Walensky, Loren D.; Marfatia, Shirin; Baines, Anthony J.; Chasis, Joel A.; Conboy, John G.; Mohandas, Narla; Gascard, Philippe

    2002-12-11

    Background: Protein 4.1 is an adapter protein which linksthe actin cytoskeleton to various transmembrane proteins. 4.1 proteinsare encoded by four homologous genes, 4.1R, 4.1G, 4.1N, and 4.1B, whichundergo complex alternative splicing. Here we performed a detailedcharacterization of the expression of specific 4.1 proteins in the mousenephron. Methods: Distribution of renal 4.1 proteins was investigated bystaining of paraformaldehyde fixed mouse kidney sections with antibodieshighly specific for each 4.1 protein. Major 4.1 splice forms, amplifiedfrom mouse kidney marathon cDNA, were expressed in transfected COS-7cells in order to assign species of known exon composition to proteinsdetected in kidney. Results: A 105kDa4.1R splice form, initiating atATG-2 translation initiation site and lacking exon 16, but including exon17B, was restricted to thick ascending limb of Henle's loop. A 95kDa 4.1Nspliceform,lacking exons 15 and 17D, was expressed in either descendingor ascending thin limb of Henle'sloop, distal convoluted tubule and allregions of the collecting duct system. A major 108kDa 4.1B spliceform,initiating at a newly characterized ATG translation initiation site, andlacking exons 15, 17B, and 21, was present only in Bowman's capsule andproximal convoluted tubule (PCT). There was no expression of 4.1G inkidney. Conclusion: Distinct distribution of 4.1 proteins along thenephron suggests their involvement in targeting of selected transmembraneproteins in kidney epithelium andtherefore in regulation of specifickidney functions.

  1. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4 in the suprachiasmatic nucleus circadian clock.

    Directory of Open Access Journals (Sweden)

    Harrod H Ling

    Full Text Available Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN, which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4, a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.

  2. Effect of baculovirus infection on the mRNA and protein levels of the Spodoptera frugiperda eukaryotic initiation factor 4E

    NARCIS (Netherlands)

    Oers, van M.M.; Veken, van der L.T.J.N.; Vlak, J.M.; Thomas, A.A.M.

    2001-01-01

    The cDNA sequence of eukaryotic translation initiation factor eIF4E was derived from a Spodoptera frugiperda cDNA library. Eight tryptophan residues, typical for eIF4E, are strictly conserved in the encoded 210 amino acid protein. A polyclonal antiserum detected a 26 kDa protein in lepidopteran cell

  3. A comparative phylogenetic analysis of full-length mariner elements

    Indian Academy of Sciences (India)

    Mariner like elements (MLEs) are widely distributed type II transposons with an open reading frame (ORF) for transposase. We studied comparative phylogenetic evolution and inverted terminal repeat (ITR) conservation of MLEs from Indian saturniid silkmoth, Antheraea mylitta with other full length MLEs submitted in the ...

  4. Decreased calorie and protein intake is a risk factor for infection and prolonged length of stay in surgical patients: A prospective cohort study

    Directory of Open Access Journals (Sweden)

    Michelli Cristina Silva de ASSIS

    2016-06-01

    Full Text Available ABSTRACT Objective The aim was to assess whether postoperative calorie and protein intakes increase the risk of infection and prolonged length of stay in a tertiary care university hospital in Southern Brazil. Methods This is a prospective cohort study approved by the hospital's Research Ethics Committee. The sample consisted of adult patients undergoing elective surgery. The exclusion criteria included patients who could not undergo nutritional assessment and those with a planned hospital stay of fewer than 72 hours. Nutritional status was assessed on admission and every seven days thereafter until hospital discharge or death. Demographic and clinical data, as well as information regarding independent and outcome variables, were collected from the patient's records. Food intake assessment was conducted by researchers six times a week. Calorie and protein intakes were considered adequate if equal to or greater than 75% of the prescribed amount, and length of stay was considered prolonged when above the average for specialty and type of surgery. Data was analyzed using Poisson regression. Results Of the 519 study patients, 16.2% had adequate nutritional therapy. Most of these patients were men with ischemic heart disease and acquired immunodeficiency syndrome. After adjusting for confounders, inadequate nutritional therapy increased risk of infection by 121.0% (RR=2.21; 95%CI=1.01-4.86 and risk of prolonged length of stay by 89.0% (RR=1.89; 95%CI=1.01-3.53. Conclusion Most patients did not have adequate nutritional therapy. Those with inadequate nutritional therapy had a higher risk of infection and longer length of stay.

  5. (S-2-(4-Chlorobenzoyl-1,2,3,4-tetrahydrobenzo[e]pyrazino[1,2-a][1,4]diazepine-6,12(11H,12aH-dione—Synthesis and Crystallographic Studies

    Directory of Open Access Journals (Sweden)

    Adam Mieczkowski

    2017-10-01

    Full Text Available (S-2-(4-Chlorobenzoyl-1,2,3,4-tetrahydrobenzo[e]pyrazino[1,2-a][1,4]diazepine-6,12(11H,12aH-dione was obtained in a three-step, one-pot synthesis, starting from optically pure (S-2-piperazine carboxylic acid dihydrochloride. Selective acylation of the β-nitrogen atom followed by condensation with isatoic anhydride and cyclization with HATU/DIPEA to a seven-member benzodiazepine ring, led to the tricyclic benzodiazepine derivative. Crystallographic studies and initial biological screening were performed for the title compound.

  6. Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide

    Directory of Open Access Journals (Sweden)

    Hinnebusch Alan G

    2011-01-01

    Full Text Available Abstract Background Eukaryotic translation initiation factor 4G (eIF4G is thought to influence the translational efficiencies of cellular mRNAs by its roles in forming an eIF4F-mRNA-PABP mRNP that is competent for attachment of the 43S preinitiation complex, and in scanning through structured 5' UTR sequences. We have tested this hypothesis by determining the effects of genetically depleting eIF4G from yeast cells on global translational efficiencies (TEs, using gene expression microarrays to measure the abundance of mRNA in polysomes relative to total mRNA for ~5900 genes. Results Although depletion of eIF4G is lethal and reduces protein synthesis by ~75%, it had small effects (less than a factor of 1.5 on the relative TE of most genes. Within these limits, however, depleting eIF4G narrowed the range of translational efficiencies genome-wide, with mRNAs of better than average TE being translated relatively worse, and mRNAs with lower than average TE being translated relatively better. Surprisingly, the fraction of mRNAs most dependent on eIF4G display an average 5' UTR length at or below the mean for all yeast genes. Conclusions This finding suggests that eIF4G is more critical for ribosome attachment to mRNAs than for scanning long, structured 5' UTRs. Our results also indicate that eIF4G, and the closed-loop mRNP it assembles with the m7 G cap- and poly(A-binding factors (eIF4E and PABP, is not essential for translation of most (if not all mRNAs but enhances the differentiation of translational efficiencies genome-wide.

  7. Bioinorganic Chemistry of Parkinson's Disease: Affinity and Structural Features of Cu(I) Binding to the Full-Length β-Synuclein Protein.

    Science.gov (United States)

    Miotto, Marco C; Pavese, Mayra D; Quintanar, Liliana; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O

    2017-09-05

    Alterations in the levels of copper in brain tissue and formation of α-synuclein (αS)-copper complexes might play a key role in the amyloid aggregation of αS and the onset of Parkinson's disease (PD). Recently, we demonstrated that formation of the high-affinity Cu(I) complex with the N-terminally acetylated form of the protein αS substantially increases and stabilizes local conformations with α-helical secondary structure and restricted motility. In this work, we performed a detailed NMR-based structural characterization of the Cu(I) complexes with the full-length acetylated form of its homologue β-synuclein (βS), which is colocalized with αS in vivo and can bind copper ions. Our results show that, similarly to αS, the N-terminal region of βS constitutes the preferential binding interface for Cu(I) ions, encompassing two independent and noninteractive Cu(I) binding sites. According to these results, βS binds the metal ion with higher affinity than αS, in a coordination environment that involves the participation of Met-1, Met-5, and Met-10 residues (site 1). Compared to αS, the shift of His from position 50 to 65 in the N-terminal region of βS does not change the Cu(I) affinity features at that site (site 2). Interestingly, the formation of the high-affinity βS-Cu(I) complex at site 1 in the N-terminus promotes a short α-helix conformation that is restricted to the 1-5 segment of the AcβS sequence, which differs with the substantial increase in α-helix conformations seen for N-terminally acetylated αS upon Cu(I) complexation. Our NMR data demonstrate conclusively that the differences observed in the conformational transitions triggered by Cu(I) binding to AcαS and AcβS find a correlation at the level of their backbone dynamic properties; added to the potential biological implications of these findings, this fact opens new avenues of investigations into the bioinorganic chemistry of PD.

  8. Molecular characterisation of the full-length genome of olive latent virus 1 isolated from tomato.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Borodynko, Natasza; Pospieszny, Henryk

    2011-05-01

    Olive latent virus 1 (OLV-1) is a species of the Necrovirus genus. So far, it has been reported to infect olive, citrus tree and tulip. Here, we determined and analysed the complete genomic sequence of an isolate designated as CM1, which was collected from tomato plant in the Wielkopolska region of Poland and represents the prevalent isolate of OLV-1. The CM1 genome consists of monopartite single-stranded positive-sense RNA genome sized 3,699 nt with five open reading frames (ORFs) and small inter-cistronic regions. ORF1 encodes a polypeptide with a molecular weight of 23 kDa and the read-through (RT) of its amber stop codon results in ORF1 RT that encodes the virus RNA-dependent RNA polymerase. ORF2 and ORF3 encode two peptides, with 8 kDa and 6 kDa, respectively, which appear to be involved in cell-to-cell movement. ORF4 is located in the 3' terminal and encodes a protein with 30 kDa identified as the viral coat protein (CP). The differences in CP region of four OLV-1 isolates whose sequences have been deposited in GenBank were observed. Nucleotide sequence identities of the CP of tomato CM1 isolate with those of olive, citrus and tulip isolates were 91.8%, 89.5% and 92.5%, respectively. In contrast to other OLV-1 isolates, CM1 induced necrotic spots on tomato plants and elicited necrotic local lesions on Nicotiana benthamiana, followed by systemic infection. This is the third complete genomic sequence of OLV-1 reported and the first one from tomato.

  9. Crystal structure of a minimal eIF4E–Cup complex reveals a general mechanism of eIF4E regulation in translational repression

    Science.gov (United States)

    Kinkelin, Kerstin; Veith, Katharina; Grünwald, Marlene; Bono, Fulvia

    2012-01-01

    Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation. PMID:22832024

  10. Targeting the middle region of CP4-EPSPS protein for its traceability in highly processed soy-related products.

    Science.gov (United States)

    Wu, Honghong; Wang, Xiaofu; Zhou, Xinghu; Zhang, Yihua; Huang, Ming; He, Jian; Shen, Wenbiao

    2017-09-01

    Transgenic components in genetically modified organisms consist not only of the transgenic genes, but also the transgenic protein. However, compared with transgenic DNA, less attention has been paid to the detection of expressed protein, especially those degraded from genetically modified soybean after food processing. In this study, the full length 5-enolpyruvyl-shikimate-3-phosphate synthase (CP4-EPSPS, 47.6 kD) protein was probed with the SC-16 (S19-R33) and the DC-16 (D219-K233) polyclonal antibodies in immunoblots. Both antibodies were able to detect the full length CP4-EPSPS and its residues in soy powder made from Roundup-Ready soybeans after heating and microwaving treatments which also reduced the molecular weight of the protein to 45.8 and 38.7 kD, respectively. Taken together the immunoblot results suggest that the middle region of the CP4-EPSPS protein possessed better stability than its N-terminal during thermal processing. This deduction was further validated by autoclave treatment, where a 37.4 kD residue of the protein was recognized by DC-16. A similar result was obtained in processed smoked sausage containing Roundup Ready soybean protein isolate (as an extender). The additional use of a further polyclonal antibody CK-17 (C372-K388), showed that compared with only the one signal for CP4-EPSPS detected by the SC-16 and CK-17 antibodies, the DC-16 middle region antibody detected four signals for CP4-EPSPS from five market sourced soy protein concentrates. Taken together, the study suggested that the middle region of CP4-EPSPS was more useful than the N- and C-terminal for tracing transgenic CP4-EPSPS protein and its remnants in highly processed soy-related products.

  11. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.

    Science.gov (United States)

    Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted

    2016-04-26

    Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.

  12. Adenovirus type 5 E1A and E6 proteins of low-risk cutaneous beta-human papillomaviruses suppress cell transformation through interaction with FOXK1/K2 transcription factors.

    Science.gov (United States)

    Komorek, Jessica; Kuppuswamy, Mohan; Subramanian, T; Vijayalingam, S; Lomonosova, Elena; Zhao, Ling-Jun; Mymryk, Joe S; Schmitt, Kimberly; Chinnadurai, G

    2010-03-01

    The adenovirus (Adv) oncoprotein E1A stimulates cell proliferation and inhibits differentiation. These activities are primarily linked to the N-terminal region (exon 1) of E1A, which interacts with multiple cellular protein complexes. The C terminus (exon 2) of E1A antagonizes these processes, mediated in part through interaction with C-terminal binding proteins 1 and 2 (CtBP1/2). To identify additional cellular E1A targets that are involved in the modulation of E1A C-terminus-mediated activities, we undertook tandem affinity purification of E1A-associated proteins. Through mass spectrometric analysis, we identified several known E1A-interacting proteins as well as novel E1A targets, such as the forkhead transcription factors, FOXK1/K2. We identified a Ser/Thr-containing sequence motif in E1A that mediated interaction with FOXK1/K2. We demonstrated that the E6 proteins of two beta-human papillomaviruses (HPV14 and HPV21) associated with epidermodysplasia verruciformis also interacted with FOXK1/K2 through a motif similar to that of E1A. The E1A mutants deficient in interaction with FOXK1/K2 induced enhanced cell proliferation and oncogenic transformation. The hypertransforming activity of the mutant E1A was suppressed by HPV21 E6. An E1A-E6 chimeric protein containing the Ser/Thr domain of the E6 protein in E1A interacted efficiently with FOXK1/K2 and inhibited cell transformation. Our results suggest that targeting FOXK1/K2 may be a common mechanism for certain beta-HPVs and Adv5. E1A exon 2 mutants deficient in interaction with the dual-specificity kinases DYRK1A/1B and their cofactor HAN11 also induced increased cell proliferation and transformation. Our results suggest that the E1A C-terminal region may suppress cell proliferation and oncogenic transformation through interaction with three different cellular protein complexes: FOXK1/K2, DYRK(1A/1B)/HAN11, and CtBP1/2.

  13. Peptide-Based Membrane Fusion Inhibitors Targeting HCoV-229E Spike Protein HR1 and HR2 Domains

    Directory of Open Access Journals (Sweden)

    Shuai Xia

    2018-02-01

    Full Text Available Human coronavirus 229E (HCoV-229E infection in infants, elderly people, and immunocompromised patients can cause severe disease, thus calling for the development of effective and safe therapeutics to treat it. Here we reported the design, synthesis and characterization of two peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein heptad repeat 1 (HR1 and heptad repeat 2 (HR2 domains, 229E-HR1P and 229E-HR2P, respectively. We found that 229E-HR1P and 229E-HR2P could interact to form a stable six-helix bundle and inhibit HCoV-229E spike protein-mediated cell-cell fusion with IC50 of 5.7 and 0.3 µM, respectively. 229E-HR2P effectively inhibited pseudotyped and live HCoV-229E infection with IC50 of 0.5 and 1.7 µM, respectively. In a mouse model, 229E-HR2P administered intranasally could widely distribute in the upper and lower respiratory tracts and maintain its fusion-inhibitory activity. Therefore, 229E-HR2P is a promising candidate for further development as an antiviral agent for the treatment and prevention of HCoV-229E infection.

  14. Ectopic expression of eIF4E-transporter triggers the movement of eIF4E into P-bodies, inhibiting steady-state translation but not the pioneer round of translation

    International Nuclear Information System (INIS)

    Lee, Hyung Chul; Cho, Hana; Kim, Yoon Ki

    2008-01-01

    Nonsense-mediated mRNA decay (NMD) is the best-characterized mRNA surveillance mechanism; this process removes faulty mRNAs harboring premature termination codons (PTCs). NMD targets newly synthesized mRNAs bound by nuclear cap-binding proteins 80/20 (CBP80/20) and exon junction complex (EJC), the former of which is thought to recruit the ribosome to initiate the pioneer round of translation. After completion of the pioneer round of translation, CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E, which mediates steady-state translation in the cytoplasm. Here, we show that overexpression of eIF4E-T preferentially inhibits cap-dependent steady-state translation, but not the pioneer round of translation. We also demonstrate that overexpression of eIF4E-T or Dcp1a triggers the movement of eIF4E into the processing bodies. These results suggest that the pioneer round of translation differs from steady-state translation in terms of ribosome recruitment

  15. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1.

    Directory of Open Access Journals (Sweden)

    Richard J Giannone

    2010-08-01

    Full Text Available Telomere integrity (including telomere length and capping is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography--tandem mass spectrometry (MudPIT LC-MS/MS. After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.

  16. Yeast expressed recombinant Hemagglutinin protein of Novel H1N1 elicits neutralising antibodies in rabbits and mice

    Directory of Open Access Journals (Sweden)

    Athmaram TN

    2011-11-01

    Full Text Available Abstract Currently available vaccines for the pandemic Influenza A (H1N1 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.

  17. Analysis of the selective advantage conferred by a C-E1 fusion protein synthesized by rubella virus DI RNAs

    International Nuclear Information System (INIS)

    Claus, Claudia; Tzeng, W.-P.; Liebert, Uwe Gerd; Frey, Teryl K.

    2007-01-01

    During serial passaging of rubella virus (RUB) in cell culture, the dominant species of defective-interfering RNA (DI) generated contains an in-frame deletion between the capsid protein (C) gene and E1 glycoprotein gene resulting in production of a C-E1 fusion protein that is necessary for the maintenance of the DI [Tzeng, W.P., Frey, T.K. (2006). C-E1 fusion protein synthesized by rubella virus DI RNAs maintained during serial passage. Virology 356 198-207.]. A BHK cell line stably expressing the RUB structural proteins was established which was used to package DIs into virus particles following transfection with in vitro transcripts from DI infectious cDNA constructs. Packaging of a DI encoding an in-frame C-GFP-E1 reporter fusion protein corresponding to the C-E1 fusion protein expressed in a native DI was only marginally more efficient than packaging of a DI encoding GFP, indicating that the C-E1 fusion protein did not function by enhancing packaging. However, infection with the DI encoding the C-GFP-E1 fusion protein (in the absence of wt RUB helper virus) resulted in formation of clusters of GFP-positive cells and the percentage of GFP-positive cells in the culture following infection remained relatively constant. In contrast, a DI encoding GFP did not form GFP-positive clusters and the percentage of GFP-positive cells declined by roughly half from 2 to 4 days post-infection. Cluster formation and sustaining the percentage of infected (GFP-positive) cells required the C part of the fusion protein, including the downstream but not the upstream of two arginine clusters (both of which are associated with RNA binding and association with mitochondrial p32 protein) and the E1 part through the transmembrane sequence, but not the C-terminal cytoplasmic tail. Among a collection of mutant DI constructs, cluster formation and sustaining infected cell percentage correlated with maintenance during serial passage with wt RUB. We hypothesize that cluster formation and

  18. Challenges in biotechnology at LLNL: from genes to proteins; TOPICAL

    International Nuclear Information System (INIS)

    Albala, J S

    1999-01-01

    This effort has undertaken the task of developing a link between the genomics, DNA repair and structural biology efforts within the Biology and Biotechnology Research Program at LLNL. Through the advent of the I.M.A.G.E. (Integrated Molecular Analysis of Genomes and their Expression) Consortium, a world-wide effort to catalog the largest public collection of genes, accepted and maintained within BBRP, it is now possible to systematically express the protein complement of these to further elucidate novel gene function and structure. The work has ensued in four phases, outlined as follows: (1) Gene and System selection; (2) Protein expression and purification; (3) Structural analysis; and (4) biological integration. Proteins to be expressed have been those of high programmatic interest. This includes, in particular, proteins involved in the maintenance of genome integrity, particularly those involved in the repair of DNA damage, including ERCC1, ERCC4, XRCC2, XRCC3, XRCC9, HEX1, APN1, p53, RAD51B, RAD51C, and RAD51. Full-length cDNA cognates of selected genes were isolated, and cloned into baculovirus-based expression vectors. The baculoviral expression system for protein over-expression is now well-established in the Albala laboratory. Procedures have been successfully optimized for full-length cDNA clining into expression vectors for protein expression from recombinant constructs. This includes the reagents, cell lines, techniques necessary for expression of recombinant baculoviral constructs in Spodoptera frugiperda (Sf9) cells. The laboratory has also generated a high-throughput baculoviral expression paradigm for large scale expression and purification of human recombinant proteins amenable to automation

  19. Simulations of The Dalles Dam Proposed Full Length Spillwall

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.

    2008-02-25

    This report presents results of a computational fluid dynamics (CFD) modeling study to evaluatethe impacts of a full-length spillwall at The Dalles Dam. The full-length spillwall is being designed and evaluated as a structural means to improve tailrace egress and thus survival of juvenile fish passing through the spillway. During the course of this study, a full-length spillwall at Bays 6/7 and 8/9 were considered. The U.S. Army Corps of Engineers (USACE) has proposed extending the spillwall constructed in the stilling basin between spillway Bays 6 and 7 about 590 ft farther downstream. It is believed that the extension of the spillwall will improve egress conditions for downstream juvenile salmonids by moving them more rapidly into the thalweg of the river hence reducing their exposure to predators. A numerical model was created, validated, and applied the The Dalles Dam tailrace. The models were designed to assess impacts to flow, tailrace egress, navigation, and adult salmon passage of a proposed spill wall extension. The more extensive model validation undertaken in this study greatly improved our confidence in the numerical model to represent the flow conditions in The Dalles tailrace. This study used these validated CFD models to simulate the potential impacts of a spillwall extension for The Dalles Dam tailrace for two locations. We determined the following: (1)The construction of an extended wall (between Bays 6/7) will not adversely impact entering or exiting the navigation lock. Impact should be less if a wall were constructed between Bays 8/9. (2)The construction of a wall between Bays 6/7 will increase the water surface elevation between the wall and the Washington shore. Although the increased water surface elevation would be beneficial to adult upstream migrants in that it decreases velocities on the approach to the adult ladder, the increased flow depth would enhance dissolved gas production, impacting potential operations of the project because of

  20. Características de carcaça e da carne de novilhas Charolês e 3/4 Charolês 1/4 Nelore, terminadas em confinamento Carcass and meat characteristics of Charolais and 3/4 Charolais 1/4 Nellore cull heifers, finished in feedlot

    Directory of Open Access Journals (Sweden)

    João Restle

    2001-06-01

    Full Text Available O objetivo deste trabalho foi estudar os aspectos quantitativos e qualitativos da carcaça e da carne de novilhas de descarte dos genótipos Charolês (C e 3/4 C 1/4 Nelore (N. Foram usadas 25 novilhas de três anos, terminadas em confinamento por 80 dias. Não se verificou diferença para peso de abate (473,6 vs. 468,8 kg, peso de carcaça fria (241,8 vs. 241,8 kg, rendimento de carcaça fria (51,09 vs. 51,61%, espessura de gordura (4,13 vs. 4,78 mm, porcentagem de dianteiro (35,52 vs. 36,01% e de costilhar (15,03 vs. 15,42%, conformação (10,75 vs. 10,56 pontos e comprimento de carcaça (127,4 vs. 129,9 cm. As novilhas C apresentaram maior porcentagem do corte serrote (49,95 vs. 48,57% e perímetro de braço (36,73 vs. 35,00 cm que as ¾ C ¼ N. Não houve diferença significativa para a composição física da carcaça, cor (3,46 vs. 3,11 pontos, textura (3,67 vs. 3,33 pontos, marmoreio (6,40 vs. 5,00 pontos, maciez (6,48 vs. 6,19 pontos, palatabilidade (6,33 vs. 6,33 pontos e força para corte das fibras da carne, por meio do aparelho WB-Shear (5,99 vs. 6,24 pontos. A suculência da carne foi melhor nas novilhas C (6,18 vs. 5,67 pontos. A partir desses resultados, pode-se concluir que, para novilhas abatidas aos três anos, não existem diferenças expressivas nos aspectos quantitativos e qualitativos da carcaça e da carne entre os dois genótipos.The objective of this work was to study the quantitative and qualitative carcass and meat characteristics of Charolais (C and 3/4 C 1/4 Nellore (N cull heifers. Twenty-five culled heifers, three years old, were feedlot finished per 80 days period. No significant difference was observed for slaughter weight (473.6 vs. 468.8 kg, cold carcass weight (241.8 vs. 241.8 kg, dressing percentage (51.09 vs. 51.61%, fat thickness (4.13 vs. 4.78 mm, forequarter percentage (35.52 vs. 36.01%, sidecut percentage (15.03 vs. 15.42%, conformation (10.75 vs. 10.56 points and carcass length (127.4 vs. 129.9 cm. The

  1. Irradiation performance of full-length metallic IFR fuels

    International Nuclear Information System (INIS)

    Tsai, H.; Neimark, L.A.

    1992-07-01

    An assembly irradiation of 169 full-length U-Pu-Zr metallic fuel pins was successfully completed in FFTF to a goal burnup of 10 at.%. All test fuel pins maintained their cladding integrity during the irradiation. Postirradiation examination showed minimal fuel/cladding mechanical interaction and excellent stability of the fuel column. Fission-gas release was normal and consistent with the existing data base from irradiation testing of shorter metallic fuel pins in EBR-II

  2. Isolation of Flavonoids from Deguelia duckeana and Their Effect on Cellular Viability, AMPK, eEF2, eIF2 and eIF4E

    Directory of Open Access Journals (Sweden)

    Lorena M. C. Cursino

    2016-02-01

    Full Text Available Preparations of Deguelia duckeana, known in Brazil as timbó, are used by indigenous people to kill fish. Reinvestigation of its extracts resulted in the isolation and identification of 11 known flavonoids identified as 3,5,4’-trimethoxy-4-prenylstilbene (1, 4-methoxyderricidine (2, lonchocarpine (3, 4-hydroxylonchocarpine (4, 4-methoxylonchocarpine (5, 5-hydroxy-4’,7-dimethoxy-6-prenylflavanone (6, 4’-hydroxyisolonchocarpine (7, 4’-methoxyisolonchocarpine (8, 3’,4’,7-trimethoxyflavone (9, 3’,4’-methylenedioxy-7-methoxyflavone (10, and 2,2-dimethyl-chromone-5,4’-hydroxy-5’-methoxyflavone (11. Except for 1, 3, and 4 all of these flavonoids have been described for the first time in D. duckeana and the flavanone 6 for the first time in nature. Compounds 2, 3, 4, 7, 9, and 10 were studied for their potential to induce cell death in neuronal SK-N-SH cells. Only the chalcone 4 and the flavanone 7 significantly induced lactate dehydrogenase (LDH release, which was accompanied by activation of caspase-3 and impairment of energy homeostasis in the MTT assay and may explain the killing effect on fish. Interestingly, the flavone 10 reduced cell metabolism in the MTT assay without inducing cytotoxicity in the LDH assay. Furthermore, the flavonoids 2, 3, 4, 7, and 10 induced phosphorylation of the AMP-activated protein kinase (AMPK and the eukaryotic elongation factor 2 (eEF2. The initiation factor eIF4E was dephosphorylated in the presence of these compounds. The initiation factor eIF2alpha was not affected. Further studies are needed to elucidate the importance of the observed effects on protein synthesis and potential therapeutic perspectives.

  3. Synthesis of 11-(Piperazin-1-yl-5H-dibenzo[b,e] [1,4]diazepine on Kilo Scale

    Directory of Open Access Journals (Sweden)

    Rahul S. Kalhapure

    2011-01-01

    Full Text Available A synthesis of 11-(piperazin-1yl-5 H-dibenzo[b,e][1,4]diazepine on kilo scale without any chromatographic purification step is reported. Key steps involved are Ullmann condensation, catalytic hydrogenation, and catalyzed cyclization.

  4. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  5. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells

    International Nuclear Information System (INIS)

    Cardoso, F.M.; Kato, Sayuri E.M.; Huang Wenying; Flint, S. Jane; Gonzalez, Ramon A.

    2008-01-01

    It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells

  6. Establishment of a Wheat Cell-Free Synthesized Protein Array Containing 250 Human and Mouse E3 Ubiquitin Ligases to Identify Novel Interaction between E3 Ligases and Substrate Proteins.

    Directory of Open Access Journals (Sweden)

    Hirotaka Takahashi

    Full Text Available Ubiquitination is a key post-translational modification in the regulation of numerous biological processes in eukaryotes. The primary roles of ubiquitination are thought to be the triggering of protein degradation and the regulation of signal transduction. During protein ubiquitination, substrate specificity is mainly determined by E3 ubiquitin ligase (E3. Although more than 600 genes in the human genome encode E3, the E3s of many target proteins remain unidentified owing to E3 diversity and the instability of ubiquitinated proteins in cell. We demonstrate herein a novel biochemical analysis for the identification of E3s targeting specific proteins. Using wheat cell-free protein synthesis system, a protein array containing 227 human and 23 mouse recombinant E3s was synthesized. To establish the high-throughput binding assay using AlphaScreen technology, we selected MDM2 and p53 as the model combination of E3 and its target protein. The AlphaScreen assay specifically detected the binding of p53 and MDM2 in a crude translation mixture. Then, a comprehensive binding assay using the E3 protein array was performed. Eleven of the E3s showed high binding activity, including four previously reported E3s (e.g., MDM2, MDM4, and WWP1 targeting p53. This result demonstrated the reliability of the assay. Another interactors, RNF6 and DZIP3-which there have been no report to bind p53-were found to ubiquitinate p53 in vitro. Further analysis showed that RNF6 decreased the amount of p53 in H1299 cells in E3 activity-dependent manner. These results suggest the possibility that the RNF6 ubiquitinates and degrades p53 in cells. The novel in vitro screening system established herein is a powerful tool for finding novel E3s of a target protein.

  7. Effect of the π-conjugation length on the properties and photovoltaic performance of A–π–D–π–A type oligothiophenes with a 4,8-bis(thienylbenzo[1,2-b:4,5-b′]dithiophene core

    Directory of Open Access Journals (Sweden)

    Ni Yin

    2016-08-01

    Full Text Available Benzo[1,2-b:4,5-b′]dithiophene (BDT is an excellent building block for constructing π-conjugated molecules for the use in organic solar cells. In this paper, four 4,8-bis(5-alkyl-2-thienylbenzo[1,2-b:4,5-b′]dithiophene (TBDT-containing A–π–D–π–A-type small molecules (COOP-nHT-TBDT, n = 1, 2, 3, 4, having 2-cyano-3-octyloxy-3-oxo-1-propenyl (COOP as terminal group and regioregular oligo(3-hexylthiophene (nHT as the π-conjugated bridge unit were synthesized. The optical and electrochemical properties of these compounds were systematically investigated. All these four compounds displayed broad absorption bands over 350–600 nm. The optical band gap becomes narrower (from 1.94 to 1.82 eV and the HOMO energy levels increased (from −5.68 to −5.34 eV with the increase of the length of the π-conjugated bridge. Organic solar cells using the synthesized compounds as the electron donor and PC61BM as the electron acceptor were fabricated and tested. Results showed that compounds with longer oligothiophene π-bridges have better power conversion efficiency and higher device stability. The device based on the quaterthiophene-bridged compound 4 gave a highest power conversion efficiency of 5.62% with a VOC of 0.93 V, JSC of 9.60 mA·cm−2, and a FF of 0.63.

  8. The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIP-Br1

    International Nuclear Information System (INIS)

    Gupta, Sanjay; Takhar, Param Parkash S; Degenkolbe, Roland; Heng Koh, Choon; Zimmermann, Holger; Maolin Yang, Christopher; Guan Sim, Khe; I-Hong Hsu, Stephen; Bernard, Hans-Ulrich

    2003-01-01

    The genital human papillomaviruses (HPVs) are a taxonomic group including HPV types that preferentially cause genital and laryngeal warts ('low-risk types'), such as HPV-6 and HPV-11, or cancer of the cervix and its precursor lesions ('high-risk types'), such as HPV-16. The transforming processes induced by these viruses depend on the proteins E5, E6, and E7. Among these oncoproteins, the E6 protein stands out because it supports a particularly large number of functions and interactions with cellular proteins, some of which are specific for the carcinogenic HPVs, while others are shared among low- and high-risk HPVs. Here we report yeast two-hybrid screens with HPV-6 and -11 E6 proteins that identified TRIP-Br1 as a novel cellular target. TRIP-Br1 was recently detected by two research groups, which described two separate functions, namely that of a transcriptional integrator of the E2F1/DP1/RB cell-cycle regulatory pathway (and then named TRIP-Br1), and that of an antagonist of the cyclin-dependent kinase suppression of p16INK4a (and then named p34SEI-1). We observed that TRIP-Br1 interacts with low- and high-risk HPV E6 proteins in yeast, in vitro and in mammalian cell cultures. Transcription activation of a complex consisting of E2F1, DP1, and TRIP-Br1 was efficiently stimulated by both E6 proteins. TRIP-Br1 has an LLG E6 interaction motif, which contributed to the binding of E6 proteins. Apparently, E6 does not promote degradation of TRIP-Br1. Our observations imply that the cell-cycle promoting transcription factor E2F1/DP1 is dually targeted by HPV oncoproteins, namely (i) by interference of the E7 protein with repression by RB, and (ii) by the transcriptional cofactor function of the E6 protein. Our data reveal the natural context of the transcription activator function of E6, which has been predicted without knowledge of the E2F1/DP1/TRIP-Br/E6 complex by studying chimeric constructs, and add a function to the limited number of transforming properties shared

  9. Revised genomic consensus for the hypermethylated CpG island region of the human L1 transposon and integration sites of full length L1 elements from recombinant clones made using methylation-tolerant host strains

    DEFF Research Database (Denmark)

    Crowther, P J; Doherty, J P; Linsenmeyer, M E

    1991-01-01

    preferentially from L1 members which have accumulated mutations that have removed sites of methylation. We present a revised consensus from the 5' presumptive control region of these elements. This revised consensus contains a consensus RNA polymerase III promoter which would permit the synthesis of transcripts......Efficient recovery of clones from the 5' end of the human L1 dispersed repetitive elements necessitates the use of deletion mcr- host strains since this region contains a CpG island which is hypermethylated in vivo. Clones recovered with conventional mcr+ hosts seem to have been derived...... from the 5' end of full length L1 elements. Such potential transcripts are likely to exhibit a high degree of secondary structure. In addition, we have determined the flanking sequences for 6 full length L1 elements. The majority of full length L1 clones show no convincing evidence for target site...

  10. Species-Specific Expression of Full-Length and Alternatively Spliced Variant Forms of CDK5RAP2.

    Directory of Open Access Journals (Sweden)

    John S Y Park

    Full Text Available CDK5RAP2 is one of the primary microcephaly genes that are associated with reduced brain size and mental retardation. We have previously shown that human CDK5RAP2 exists as a full-length form (hCDK5RAP2 or an alternatively spliced variant form (hCDK5RAP2-V1 that is lacking exon 32. The equivalent of hCDK5RAP2-V1 has been reported in rat and mouse but the presence of full-length equivalent hCDK5RAP2 in rat and mouse has not been examined. Here, we demonstrate that rat expresses both a full length and an alternatively spliced variant form of CDK5RAP2 that are equivalent to our previously reported hCDK5RAP2 and hCDK5RAP2-V1, repectively. However, mouse expresses only one form of CDK5RAP2 that is equivalent to the human and rat alternatively spliced variant forms. Knowledge of this expression of different forms of CDK5RAP2 in human, rat and mouse is essential in selecting the appropriate model for studies of CDK5RAP2 and primary microcephaly but our findings further indicate the evolutionary divergence of mouse from the human and rat species.

  11. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling

    International Nuclear Information System (INIS)

    Siyam, Arwa; Wang, Suzhen; Qin, Chunlin; Mues, Gabriele; Stevens, Roy; D’Souza, Rena N.; Lu, Yongbo

    2012-01-01

    Highlights: ► Nuclear localization of DMP1 in various cell lines. ► Non-synchronized cells show either nuclear or cytoplasmic localization of DMP1. ► Nuclear DMP1 is restricted to the nucleoplasm but absent in the nucleolus. -- Abstract: Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.

  12. Biochemical characterization and structural modeling of human cathepsin E variant 2 in comparison to the wild-type protein

    Science.gov (United States)

    Puizdar, Vida; Zajc, Tajana; Žerovnik, Eva; Renko, Miha; Pieper, Ursula; Eswar, Narayanan; Šali, Andrej; Dolenc, Iztok; Turk, Vito

    2014-01-01

    Cathepsin E splice variant 2 appears in a number of gastric carcinoma. Here, we report detecting this variant in HeLa cells using polyclonal antibodies and biotinylated inhibitor pepstatin A. An overexpression of GFP fusion proteins of cathepsin E and its splice variant within HEK-293T cells was performed to show their localization. Their distribution under a fluorescence microscope showed that they are colocalized. We also expressed variant 1 and variant 2 of cathepsins E, with propeptide and without it, in Echerichia coli. After refolding from the inclusion bodies, the enzymatic activity and circular dichroism spectra of the splice variant 2 were compared to those of the wild-type mature active cathepsins E. While full-length cathepsin E variant1 is activated at acid pH, the splice variant remains inactive. In contrast to the active cathepsin E, the splice variant 2 predominantly assumes β-sheet structure, prone to oligomerization, at least under in vitro conditions, as shown by Atomic Force Microscopy as shallow disk-like particles. A comparative structure model of splice variant 2 was computed based on its alignment to the known structure of cathepsin E intermediate (Protein Data Bank code 1TZS), and used to rationalize its conformational properties and loss of activity. PMID:22718633

  13. eEF1A Mediates the Nuclear Export of SNAG-Containing Proteins via the Exportin5-Aminoacyl-tRNA Complex

    Directory of Open Access Journals (Sweden)

    José Manuel Mingot

    2013-11-01

    Full Text Available Exportin5 mediates the nuclear export of double-stranded RNAs, including pre-microRNAs, adenoviral RNAs, and tRNAs. When tRNAs are aminoacylated, the Exportin5-aminoacyl (aa-tRNA complex recruits and coexports the translation elongation factor eEF1A. Here, we show that eEF1A binds to Snail transcription factors when bound to their main target, the E-cadherin promoter, facilitating their export to the cytoplasm in association with the aa-tRNA-Exportin5 complex. Snail binds to eEF1A through the SNAG domain, a protein nuclear export signal present in several transcription factor families, and this binding is regulated by phosphorylation. Thus, we describe a nuclear role for eEF1A and provide a mechanism for protein nuclear export that attenuates the activity of SNAG-containing transcription factors.

  14. Characterization of a Full-Length Endogenous Beta-Retrovirus, EqERV-Beta1, in the Genome of the Horse (Equus caballus

    Directory of Open Access Journals (Sweden)

    Antoinette C. van der Kuyl

    2011-06-01

    Full Text Available Information on endogenous retroviruses fixed in the horse (Equus caballus genome is scarce. The recent availability of a draft sequence of the horse genome enables the detection of such integrated viruses by similarity search. Using translated nucleotide fragments from gamma-, beta-, and delta-retroviral genera for initial searches, a full-length beta-retrovirus genome was retrieved from a horse chromosome 5 contig. The provirus, tentatively named EqERV-beta1 (for the first equine endogenous beta-retrovirus, was 10434 nucleotide (nt in length with the usual retroviral genome structure of 5’LTR-gag-pro-pol-env-3’LTR. The LTRs were 1361 nt long, and differed approximately 1% from each other, suggestive of a relatively recent integration. Coding sequences for gag, pro and pol were present in three different reading-frames, as common for beta-retroviruses, and the reading frames were completely open, except that the env gene was interrupted by a single stopcodon. No reading frame was apparent downstream of the env gene, suggesting that EqERV-beta1 does not encode a superantigen like mouse mammary tumor virus (MMTV. A second proviral genome of EqERV-beta1, with no stopcodon in env, is additionally integrated on chromosome 5 downstream of the first virus. Single EqERV-beta1 LTRs were abundantly present on all chromosomes except chromosome 24. Phylogenetically, EqERV-beta1 most closely resembles an unclassified retroviral sequence from cattle (Bos taurus, and the murine beta-retrovirus MMTV.

  15. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance.

    Science.gov (United States)

    Minami, Anzu; Tominaga, Yoko; Furuto, Akari; Kondo, Mariko; Kawamura, Yukio; Uemura, Matsuo

    2015-08-01

    The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. Oligomer formation and G-quadruplex binding by purified murine Rif1 protein, a key organizer of higher-order chromatin architecture.

    Science.gov (United States)

    Moriyama, Kenji; Yoshizawa-Sugata, Naoko; Masai, Hisao

    2018-03-09

    Rap1-interacting protein 1 (Rif1) regulates telomere length in budding yeast. We previously reported that, in metazoans and fission yeast, Rif1 also plays pivotal roles in controlling genome-wide DNA replication timing. We proposed that Rif1 may assemble chromatin compartments that contain specific replication-timing domains by promoting chromatin loop formation. Rif1 also is involved in DNA lesion repair, restart after replication fork collapse, anti-apoptosis activities, replicative senescence, and transcriptional regulation. Although multiple physiological functions of Rif1 have been characterized, biochemical and structural information on mammalian Rif1 is limited, mainly because of difficulties in purifying the full-length protein. Here, we expressed and purified the 2418-amino-acid-long, full-length murine Rif1 as well as its partially truncated variants in human 293T cells. Hydrodynamic analyses indicated that Rif1 forms elongated or extended homo-oligomers in solution, consistent with the presence of a HEAT-type helical repeat segment known to adopt an elongated shape. We also observed that the purified murine Rif1 bound G-quadruplex (G4) DNA with high specificity and affinity, as was previously shown for Rif1 from fission yeast. Both the N-terminal (HEAT-repeat) and C-terminal segments were involved in oligomer formation and specifically bound G4 DNA, and the central intrinsically disordered polypeptide segment increased the affinity for G4. Of note, pulldown assays revealed that Rif1 simultaneously binds multiple G4 molecules. Our findings support a model in which Rif1 modulates chromatin loop structures through binding to multiple G4 assemblies and by holding chromatin fibers together. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Flavonoid 4′-O-Methylkuwanon E from Morus alba Induces the Differentiation of THP-1 Human Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Peter Kollar

    2015-01-01

    Full Text Available Aims. In this work we studied cytodifferentiation effects of newly characterized prenyl flavonoid 4′-O-methylkuwanon E (4ME isolated from white mulberry (Morus alba L.. Main Methods. Cell growth and viability were measured by dye exclusion assay; cell cycle and surface antigen CD11b were monitored by flow cytometry. For the cytodifferentiation of cells the NBT reduction assay was employed. Regulatory proteins were assessed by western blotting. Key Findings. 4ME induced dose-dependent growth inhibition of THP-1 cells, which was not accompanied by toxic effect. Inhibition of cells proliferation caused by 4ME was associated with the accumulation in G1 phase and with downregulation of hyperphosphorylated pRb. Treatment with 4ME led to significant induction of NBT-reducing activity of PMA stimulated THP-1 cells and upregulation expression of differentiation-associated surface antigen CD11b. Our results suggest that monocytic differentiation induced by 4ME is connected with up-regulation of p38 kinase activity. Significance. Our study provides the first evidence that 4ME induces the differentiation of THP-1 human monocytic leukemia cells and thus is a potential cytodifferentiating anticancer agent.

  18. eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jamie K. Moy

    2018-02-01

    Full Text Available Plasticity in dorsal root ganglion (DRG neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5′ cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.

  19. Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

    Science.gov (United States)

    Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.

    2013-01-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

  20. Full-length characterization of A1/D intersubtype recombinant genomes from a therapy-induced HIV type 1 controller during acute infection and his noncontrolling partner

    DEFF Research Database (Denmark)

    Fomsgaard, A.; Vinner, L.; Therrien, D.

    2008-01-01

    To increase the understanding of mechanisms of HIV control we have genetically and immunologically characterized a full-length HIV-1 isolated from an acute infection in a rare case of undetectable viremia. The subject, a 43-year-old Danish white male (DK1), was diagnosed with acute HIV-1 infection...... and phylogenic trees were constructed and diversity and evolutionary distances were calculated. Intracellular IFN-gamma in CD8(+)CD3(+) T-lymphocyte reactions was investigated by intracellular flow cytometry (IC-FACS). Virus isolates from both patients were A1D intersubtype recombinants showing 98% sequence...

  1. EFP1 is an ER stress-induced glycoprotein which interacts with the pro-apoptotic protein Par-4

    Directory of Open Access Journals (Sweden)

    Sarah Appel

    2009-05-01

    Full Text Available Sarah Appel1,2,6, Susanne Vetterkind1,2,6, Ansgar Koplin1,3, Barbara Maertens1,4, Meike Boosen1,5, Ute Preuss11The Institute of Genetics, University of Bonn, Bonn, Germany; 2Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA; 3Center for Molecular Biology Heidelberg (ZMBH, Heidelberg, Germany; 4Institute of Biochemistry II, University of Cologne, Cologne, Germany; 5Institute of Pharmacology and Toxicology, University Hospital of Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany; 6These authors contributed equally to this work.Abstract: We have isolated the rat ortholog of EFP1 (EF-hand binding protein 1 as a novel interaction partner of the pro-apoptotic protein Par-4 (prostate apoptosis response-4. Rat EFP1 contains two thioredoxin domains, the COOH-terminal one harboring a CGFC motif, and has a similar protein domain structure as members of the protein disulfide isomerase (PDI family. In REF52.2 and CHO cells, EFP1 colocalized with the endoplasmic reticulum (ER marker PDI. Furthermore, EFP1 possesses catalytic activity as demonstrated by an insulin disulfide reduction assay. Western blot analysis revealed two EFP1 protein bands of approximately 136 and 155 kDa, representing different glycosylation states of the protein. Complex formation between EFP1 and Par-4 was confirmed in vitro and in vivo by co-immunoprecipitation, dot blot overlay and pull-down experiments. In CHO cells, coexpression of EFP1 and Par-4 resulted in enhanced Par-4-mediated apoptosis, which required the catalytic activity of EFP1. Interestingly, EFP1 was specifically upregulated in NIH3T3 cells after induction of ER stress by thapsigargin, tunicamycin, and brefeldin A, but not by agents that induce oxidative stress or ER-independent apoptosis. Furthermore, we could show that the induction of apoptosis by Ca2+ stress-inducing agents was significantly decreased after si

  2. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4 includes the regulatory PSTAIRE helix

    Directory of Open Access Journals (Sweden)

    Grassmann Ralph

    2005-09-01

    Full Text Available Abstract Background The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1 is leukemogenic in transgenic mice and induces permanent T-cell growth in vitro. It is found in active CDK holoenzyme complexes from adult T-cell leukemia-derived cultures and stimulates the G1- to-S phase transition by activating the cyclin-dependent kinase (CDK CDK4. The Tax protein directly and specifically interacts with CDK4 and cyclin D2 and binding is required for enhanced CDK4 kinase activity. The protein-protein contact between Tax and the components of the cyclin D/CDK complexes increases the association of CDK4 and its positive regulatory subunit cyclin D and renders the complex resistant to p21CIP inhibition. Tax mutants affecting the N-terminus cannot bind cyclin D and CDK4. Results To analyze, whether the N-terminus of Tax is capable of CDK4-binding, in vitro binding -, pull down -, and mammalian two-hybrid analyses were performed. These experiments revealed that a segment of 40 amino acids is sufficient to interact with CDK4 and cyclin D2. To define a Tax-binding domain and analyze how Tax influences the kinase activity, a series of CDK4 deletion mutants was tested. Different assays revealed two regions which upon deletion consistently result in reduced binding activity. These were isolated and subjected to mammalian two-hybrid analysis to test their potential to interact with the Tax N-terminus. These experiments concurrently revealed binding at the N- and C-terminus of CDK4. The N-terminal segment contains the PSTAIRE helix, which is known to control the access of substrate to the active cleft of CDK4 and thus the kinase activity. Conclusion Since the N- and C-terminus of CDK4 are neighboring in the predicted three-dimensional protein structure, it is conceivable that they comprise a single binding domain, which interacts with the Tax N-terminus.

  3. Modulation of thyroid hormone receptor transactivation by the early region 1A (E1A-like inhibitor of differentiation 1 (EID1

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2008-01-01

    Full Text Available Transcriptional activation (TA mediated by the effect of thyroid hormones on target genes requires co-activator proteins such as the early region 1A (E1A associated 300 kDa binding protein (p300 and the cAMP response element binding protein (CREB binding protein (CBP, known as the p300/CBP complex, which acetylate histones 3 and 4 to allow transcriptional machinery access to the target gene promoter. Little is known on the role of p300 in thyroid hormone receptor (TR mediated TA but the E1A-like inhibitor of differentiation 1 (EID1, an inhibitor of p300 histone acetyltransferase (HAT, is a functional homolog of E1A and may inhibit myogenic differentiation factor D (MyoD transcriptional activity and reduces muscle cell differentiation. We evaluated the influence of EID1 on TR-mediated transcriptional activity using transfection and mammalian two-hybrid studies to show that EID1 may partially reduces TA activity of the TR receptor, probably due to p300 blockage since EID1 mutants cannot reduce TR-mediated TA. The EID1 does not affect the function of p160 co-activator proteins (160 kDa proteins of steroid receptor co-activators and is functionally independent of co-repressor proteins or TR binding. Summarizing, EID1 reduces TR-mediated transcriptional activity by blocking p300 and may play an important role in thyroid receptor activity in muscle and other tissues.

  4. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Blake A Jacobson

    Full Text Available BACKGROUND: Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO is assessed as a therapy for mesothelioma. METHODS: Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS: eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION: 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.

  5. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    Science.gov (United States)

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  6. Synthesis and Antibacterial Activities of Novel 2,5-Diphenylindolo[2,3-e] Pyrazolo[1',5':3",4"]pyrimido[2",1"-c] [1,2,4]triazines

    Directory of Open Access Journals (Sweden)

    Mohamed G. Marei

    2011-12-01

    Full Text Available The formation of (E-3-{2-(2,5-diphenylpyrazolo[1,5-c]pyrimidin-7-ylhydrazono}indolin-2-ones 3 has been achieved by condensation of equimolar amounts of 7-hydrazino-2,5-diphenylpyrazolo[1,5-c]pyrimidine (1 and isatin (or isatin derivatives 2 at room temperature. The (E-products could be isomerized into corresponding the (Z-3 isomers. Reactions of the latter fused heterocyclic hydrazones towards different electro-philic reagents yielded the corresponding 3-substituted derivatives 4–7. Dehydrative cyclisation of the hydrazones 3 using phosphorus oxychloride afforded the 2,5-diphenyl- indolo[2,3-e]pyrazolo[1',5':3",4"]pyrimido[2",1"-c][1,2,4] triazines 13. The polyfused heterocyclic ring system 13 underwent electrophilic substitution reactions at position 4 rather than at position 3. The 3-bromo isomer of 17 was prepared by a sequence of reactions starting from 2,5-diphenylpyrazolo[1,5-c]pyrimidine-7(6H-thione (11. The orientation of the electrophilic attack was supported by spectroscopic and chemical evidence. Some of the synthesized compounds were found to possess slight to moderate activity against the microorganisms Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa.

  7. Expression of the Transcription Factor E4BP4 in Human Basophils

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Gohr, Maria; Poulsen, Lars Kærgaard

    2014-01-01

    Rationale The cytokine IL-3 plays an important role for human basophil development, function and survival. IL-3 is also reported to induce the expression of the transcription factor E4BP4, but it is not known whether E4BP4 is expressed in basophils and influences basophil responsiveness. The aim...... by Alcian blue. RNA was extracted (0.005-0.02 µg RNA from 0.5 - 1 x 106 cells), and the corresponding cDNA analyzed by real-time PCR where E4BP4 expression was calculated as 2-(CT(E4BP4) - CT(β-actin)). E4BP4 protein expression was visualized in basophil lysates (107 cells/ml) by Western blot followed...... the transcription factor E4BP4 which might have an impact on basophil histamine release....

  8. eCD4-Ig promotes ADCC activity of sera from HIV-1-infected patients.

    Directory of Open Access Journals (Sweden)

    Meredith E Davis-Gardner

    2017-12-01

    Full Text Available Antibody-dependent cell-mediated cytotoxity (ADCC can eliminate HIV-1 infected cells, and may help reduce the reservoir of latent virus in infected patients. Sera of HIV-1 positive individuals include a number of antibodies that recognize epitopes usually occluded on HIV-1 envelope glycoprotein (Env trimers. We have recently described eCD4-Ig, a potent and exceptionally broad inhibitor of HIV-1 entry that can be used to protect rhesus macaques from multiple high-dose challenges with simian-human immunodeficiency virus AD8 (SHIV-AD8. Here we show that eCD4-Ig bearing an IgG1 Fc domain (eCD4-IgG1 can mediate efficient ADCC activity against HIV-1 isolates with differing tropisms, and that it does so at least 10-fold more efficiently than CD4-Ig, even when more CD4-Ig molecules bound cell surface-expressed Env. An ADCC-inactive IgG2 form of eCD4-Ig (eCD4-IgG2 exposes V3-loop and CD4-induced epitopes on cell-expressed trimers, and renders HIV-1-infected cells susceptible to ADCC mediated by antibodies of these classes. Moreover, eCD4-IgG2, but not IgG2 forms of the broadly neutralizing antibodies VRC01 and 10-1074, enhances the ADCC activities of serum antibodies from patients by 100-fold, and significantly enhanced killing of two latently infected T-cell lines reactivated by vorinostat or TNFα. Thus eCD4-Ig is qualitatively different from CD4-Ig or neutralizing antibodies in its ability to mediate ADCC, and it may be uniquely useful in treating HIV-1 infection or reducing the reservoir of latently infected cells.

  9. A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Merrill

    2010-01-01

    Full Text Available Modification of proteins by the small ubiquitin like modifier (SUMO is an essential process in mammalian cells. SUMO is covalently attached to lysines in target proteins via an enzymatic cascade which consists of E1 and E2, SUMO activating and conjugating enzymes. There is also a variable requirement for non-enzymatic E3 adapter like proteins, which can increase the efficiency and specificity of the sumoylation process. In addition to covalent attachment of SUMO to target proteins, specific non-covalent SUMO interaction motifs (SIMs that are generally short hydrophobic peptide motifs have been identified.Intriguingly, consensus SIMs are present in most SUMO E3s, including the polycomb protein, Pc2/Cbx4. However, a role for SIMs in SUMO E3 activity remains to be shown. We show that Pc2 contains two functional SIMs, both of which contribute to full E3 activity in mammalian cells, and are also required for sumoylation of Pc2 itself. Pc2 forms distinct sub-nuclear foci, termed polycomb bodies, and can recruit partner proteins, such as the corepressor CtBP. We demonstrate that mutation of the SIMs in Pc2 prevents Pc2-dependent CtBP sumoylation, and decreases enrichment of SUMO1 and SUMO2 at polycomb foci. Furthermore, mutational analysis of both SUMO1 and SUMO2 reveals that the SIM-interacting residues of both SUMO isoforms are required for Pc2-mediated sumoylation and localization to polycomb foci.This work provides the first clear evidence for a role for SIMs in SUMO E3 activity.

  10. The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation

    Directory of Open Access Journals (Sweden)

    Litscher Eveline S

    2006-04-01

    Full Text Available Abstract Background Hundreds of extracellular proteins polymerise into filaments and matrices by using zona pellucida (ZP domains. ZP domain proteins perform highly diverse functions, ranging from structural to receptorial, and mutations in their genes are responsible for a number of severe human diseases. Recently, PLAC1, Oosp1-3, Papillote and CG16798 proteins were identified that share sequence homology with the N-terminal half of the ZP domain (ZP-N, but not with its C-terminal half (ZP-C. The functional significance of this partial conservation is unknown. Results By exploiting a highly engineered bacterial strain, we expressed in soluble form the PLAC1-homology region of mammalian sperm receptor ZP3 as a fusion to maltose binding protein. Mass spectrometry showed that the 4 conserved Cys residues within the ZP-N moiety of the fusion protein adopt the same disulfide bond connectivity as in full-length native ZP3, indicating that it is correctly folded, and electron microscopy and biochemical analyses revealed that it assembles into filaments. Conclusion These findings provide a function for PLAC1-like proteins and, by showing that ZP-N is a biologically active folding unit, prompt a re-evaluation of the architecture of the ZP domain and its polymers. Furthermore, they suggest that ZP-C might play a regulatory role in the assembly of ZP domain protein complexes.

  11. eCD4-Ig variants that more potently neutralize HIV-1.

    Science.gov (United States)

    Fetzer, Ina; Gardner, Matthew R; Davis-Gardner, Meredith E; Prasad, Neha R; Alfant, Barnett; Weber, Jesse A; Farzan, Michael

    2018-03-28

    The HIV-1 entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralizes all HIV-1, HIV-2 and SIV isolates that it has been tested against, suggesting that it may be useful in clinical settings where antibody escape is a concern. Here we characterize three new eCD4-Ig variants, each with different architectures and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig, and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications. IMPORTANCE HIV-1 bNAbs have properties different from antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral lifecycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the

  12. THE E1 PROTEINS

    OpenAIRE

    Bergvall, Monika; Melendy, Thomas; Archambault, Jacques

    2013-01-01

    E1, an ATP-dependent DNA helicase, is the only enzyme encoded by papillomaviruses (PVs). It is essential for replication and amplification of the viral episome in the nucleus of infected cells. To do so, E1 assembles into a double-hexamer at the viral origin, unwinds DNA at the origin and ahead of the replication fork and interacts with cellular DNA replication factors. Biochemical and structural studies have revealed the assembly pathway of E1 at the origin and how the enzyme unwinds DNA usi...

  13. The effect of two different renal denervation strategies on blood pressure in resistant hypertension: Comparison of full-length versus proximal renal artery ablation.

    Science.gov (United States)

    Chen, Weijie; Ling, Zhiyu; Du, Huaan; Song, Wenxin; Xu, Yanping; Liu, Zengzhang; Su, Li; Xiao, Peilin; Yuan, Yuelong; Lu, Jiayi; Zhang, Jianhong; Li, Zhifeng; Shao, Jiang; Zhong, Bin; Zhou, Bei; Woo, Kamsang; Yin, Yuehui

    2016-11-01

    Renal denervation (RDN) is used to manage blood pressure (BP) in patients with resistant hypertension (rHT), but effectiveness is still a concern, and key arterial portion for successful RDN is not clear. The aim of this study was to investigate the efficacy and safety of proximal versus full-length renal artery ablation in patients with resistant hypertension (rHT). Forty-seven patients with rHT were randomly assigned to receive full-length ablation (n = 23) or proximal ablation (n = 24) of the renal arteries. All lesions were treated with radiofrequency energy via a saline-irrigated catheter. Office BP was measured during 12 months of follow-up and ambulatory BP at baseline and 6 months (n = 15 in each group). Compared with full-length ablation, proximal ablation reduced the number of ablation points in both the right (6.1 ± 0.7 vs. 3.3 ± 0.6, P renal arteries (6.2 ± 0.7 vs. 3.3 ± 0.8, P  0.5). Similar office BPs was reduced by -39.4 ± 11.5/-20.9 ± 7.1 mm Hg at 6 months and -38.2 ± 10.3/-21.5 ± 5.8 mm Hg at 12 months in the full-length group (P efficacy and safety profile compared with full-length RDN, and propose the proximal artery as the key portion for RDN. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    Science.gov (United States)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  15. Structure-guided investigation of lipopolysaccharide O-antigen chain length regulators reveals regions critical for modal length control.

    Science.gov (United States)

    Kalynych, Sergei; Ruan, Xiang; Valvano, Miguel A; Cygler, Miroslaw

    2011-08-01

    The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.

  16. Effects of Acupuncture on 1-Chloro-2,4-dinitrochlorobenzene-Induced Atopic Dermatitis

    Directory of Open Access Journals (Sweden)

    Ji-Yeun Park

    2013-01-01

    Full Text Available Though the effects of acupuncture in atopic dermatitis have been proven in clinical studies, its mechanism remains unclear. In this study, we investigate the effectiveness and mechanism of action for acupuncture treatment on the LI11 meridian point for treatment of allergic contact dermatitis. BALB/c mice received 1-chloro-2,4-dinitrobenzene (DNCB application to induce skin inflammation. Acupuncture treatment on LI11 significantly inhibited cutaneous hyperplasia, serum IgE levels, and expression of proinflammatory cytokine (IL-4, IL-8, and TNF-α mRNA and NF-κB, ERK1/2, JNK, and p38 proteins. Acupuncture treatment of local points also inhibited cutaneous hyperplasia and serum IgE levels; however, it was not effective in regulating proinflammatory cytokines and proteins. In addition, LI11 treatment is more effective at reducing serum IgE levels and pro-inflammatory cytokines and proteins than local point treatment. These results suggest that acupuncture treatment is effective in alleviating allergic contact dermatitis by reducing pro-inflammatory cytokines and proteins.

  17. Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2

    Science.gov (United States)

    Rallabhandi, Prasad; Phillips, Rachel L.; Boukhvalova, Marina S.; Pletneva, Lioubov M.; Shirey, Kari Ann; Gioannini, Theresa L.; Weiss, Jerrold P.; Chow, Jesse C.; Hawkins, Lynn D.; Vogel, Stefanie N.; Blanco, Jorge C. G.

    2012-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. PMID:22872782

  18. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins.

    Science.gov (United States)

    Bu, Qixin; Li, Zhiqiang; Zhang, Junying; Xu, Fei; Liu, Jianmei; Liu, Heli

    2017-09-29

    The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis , the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    Science.gov (United States)

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  20. Engineering of an E. coli outer membrane protein FhuA with increased channel diameter

    Directory of Open Access Journals (Sweden)

    Dworeck Tamara

    2011-08-01

    Full Text Available Abstract Background Channel proteins like FhuA can be an alternative to artificial chemically synthesized nanopores. To reach such goals, channel proteins must be flexible enough to be modified in their geometry, i.e. length and diameter. As continuation of a previous study in which we addressed the lengthening of the channel, here we report the increasing of the channel diameter by genetic engineering. Results The FhuA Δ1-159 diameter increase has been obtained by doubling the amino acid sequence of the first two N-terminal β-strands, resulting in variant FhuA Δ1-159 Exp. The total number of β-strands increased from 22 to 24 and the channel surface area is expected to increase by ~16%. The secondary structure analysis by circular dichroism (CD spectroscopy shows a high β-sheet content, suggesting the correct folding of FhuA Δ1-159 Exp. To further prove the FhuA Δ1-159 Exp channel functionality, kinetic measurement using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine were conducted. The results indicated a 17% faster diffusion kinetic for FhuA Δ1-159 Exp as compared to FhuA Δ1-159, well correlated to the expected channel surface area increase of ~16%. Conclusion In this study using a simple "semi rational" approach the FhuA Δ1-159 diameter was enlarged. By combining the actual results with the previous ones on the FhuA Δ1-159 lengthening a new set of synthetic nanochannels with desired lengths and diameters can be produced, broadening the FhuA Δ1-159 applications. As large scale protein production is possible our approach can give a contribution to nanochannel industrial applications.

  1. Simultaneous Cocirculation of Both European Varicella-Zoster Virus Genotypes (E1 and E2) in Mexico City▿

    Science.gov (United States)

    Rodríguez-Castillo, Araceli; Vaughan, Gilberto; Ramírez-González, José Ernesto; Escobar-Gutiérrez, Alejandro

    2010-01-01

    Full-length genome analysis of varicella-zoster virus (VZV) has shown that viral strains can be classified into seven different genotypes: European (E), Mosaic (M), and Japanese (J), and the E and M genotypes can be further subclassified into E1, E2, and M1 through 4, respectively. The distribution of the main VZV genotypes in Mexico was described earlier, demonstrating the predominance of E genotype, although other genotypes (M1 and M4) were also identified. However, no information regarding the circulation of either E genotype in the country is available. In the present study, we confirm the presence of both E1 and E2 genotypes in the country and explore the possibility of coinfection as the triggering factor for increased virulence among severe cases. A total of 61 different European VZV isolates collected in the Mexico City metropolitan area from 2005 to 2006 were typed by using a PCR method based on genotype-specific primer amplification. Fifty isolates belonged to the E1 genotype, and the eleven remaining samples were classified as E2 genotypes. No coinfection with both E genotypes was identified among these specimens. We provide here new information on the distribution of VZV genotypes circulating in Mexico City. PMID:20220168

  2. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling

    Energy Technology Data Exchange (ETDEWEB)

    Siyam, Arwa [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States); Wang, Suzhen; Qin, Chunlin; Mues, Gabriele [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Stevens, Roy [Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States); D' Souza, Rena N. [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Lu, Yongbo, E-mail: ylu@bcd.tamhsc.edu [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nuclear localization of DMP1 in various cell lines. Black-Right-Pointing-Pointer Non-synchronized cells show either nuclear or cytoplasmic localization of DMP1. Black-Right-Pointing-Pointer Nuclear DMP1 is restricted to the nucleoplasm but absent in the nucleolus. -- Abstract: Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.

  3. 1,1′-{1,4-Phenylene bis[3-(6-chloro-2-methyl-4-phenylquinolin-3-yl-4,5-dihydro-1H-pyrazole-5,1-diyl]}dibutan-1-one

    Directory of Open Access Journals (Sweden)

    Allaoua Kedjadja

    2015-10-01

    Full Text Available A new polycyclic compound, 1,1′-{1,4-phenylene bis[3-(6-chloro-2-methyl-4-phenylquinolin-3-yl-4,5-dihydro-1H-pyrazole-5,1-diyl]}dibutan-1-one (3 has been synthesized by cyclocondensation of (2E,2′E-1,1′-bis(6-chloro-2-methyl-4-phenylquinolin-3-yl-3,3′-(1,4-phenylenediprop-2-en-1-one (2 and hydrazine hydrate in butanoic acid. The structure of this compound was established by elemental analysis, 1H-NMR, 13C-NMR, mass and IR spectroscopy.

  4. The mAb against adipocyte fatty acid-binding protein 2E4 attenuates the inflammation in the mouse model of high-fat diet-induced obesity via toll-like receptor 4 pathway.

    Science.gov (United States)

    Miao, Xiaoliang; Wang, Ying; Wang, Wang; Lv, Xiaobo; Wang, Min; Yin, Hongping

    2015-03-05

    Adipocyte fatty acid-binding protein (A-FABP) plays an important role in fatty acid-mediated processes and related metabolic and inflammatory responses. In this study, we prepared a novel monoclonal antibody against A-FABP, designated 2E4. Our data showed that 2E4 specifically binded to the recombinant A-FABP and native A-FABP of mice adipose tissue. Furthermore, we investigated the effect of 2E4 on metabolic and inflammatory responses in C57BL/6J obese mice fed on a high fat diet. 2E4 administration improved glucose response in high-fat-diet induced obese mice. The 2E4 treated groups exhibited lower free fatty acids, cholesterol, and triglycerides in a concentration-dependent manner. These changes were accompanied by down-regulated expression of pro-inflammatory cytokines in adipose tissue, including tumor necrosis factor α, monocyte chemotactic protein-1, and interleukin-6. Meanwhile, our data demonstrated that 2E4 significantly decreased the mRNA and protein levels of A-FABP in adipose tissue of mice. Further experiments showed that 2E4 notably suppressed the phosphorylation of IκBα and jun-N-terminal kinase through toll-like receptor 4 signaling pathway. Taken together, 2E4 is an effective monoclonal antibody against A-FABP, which attenuated the inflammatory responses induced in the high-fat-diet mice. These findings may provide scientific insight into the treatment of chronic low-grade inflammation in obesity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants.

    Science.gov (United States)

    Morozov, Sergey Y; Milyutina, Irina A; Bobrova, Vera K; Ryazantsev, Dmitry Y; Erokhina, Tatiana N; Zavriev, Sergey K; Agranovsky, Alexey A; Solovyev, Andrey G; Troitsky, Alexey V

    2015-12-01

    The 4/1 protein of unknown function is encoded by a single-copy gene in most higher plants. The 4/1 protein of Nicotiana tabacum (Nt-4/1 protein) has been shown to be alpha-helical and predominantly expressed in conductive tissues. Here, we report the analysis of 4/1 genes and the encoded proteins of lower land plants. Sequences of a number of 4/1 genes from liverworts, lycophytes, ferns and gymnosperms were determined and analyzed together with sequences available in databases. Most of the vascular plants were found to encode Magnoliophyta-like 4/1 proteins exhibiting previously described gene structure and protein properties. Identification of the 4/1-like proteins in hornworts, liverworts and charophyte algae (sister lineage to all land plants) but not in mosses suggests that 4/1 proteins are likely important for plant development but not required for a primary metabolic function of plant cell. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas

    Science.gov (United States)

    Tam, Lai-Wa; Ranum, Paul T.; Lefebvre, Paul A.

    2013-01-01

    The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes—LF1, LF2, LF3, and LF4—cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)—LF1, LF2, and LF3—are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC. PMID:23283985

  7. In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Seyyed Mahmoud, E-mail: smebrahimi@shirazu.ac.ir [Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 14155-3651,Tehran (Iran, Islamic Republic of); Research Center of Virus and Vaccine, Baqiyatallah University of Medical Science, P.O.Box 14155-3651, Tehran (Iran, Islamic Republic of); Dabaghian, Mehran [Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, P.O. Box 14155-6453, Tehran (Iran, Islamic Republic of); Tebianian, Majid [Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), P.O. Box 31975/148, Karaj, Tehran (Iran, Islamic Republic of); Zabeh Jazi, Mohammad Hossein [Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, P.O. Box 14155-6453, Tehran (Iran, Islamic Republic of)

    2012-08-15

    Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS-PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0-33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.

  8. In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran

    International Nuclear Information System (INIS)

    Ebrahimi, Seyyed Mahmoud; Dabaghian, Mehran; Tebianian, Majid; Zabeh Jazi, Mohammad Hossein

    2012-01-01

    Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS–PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0–33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.

  9. Bone morphogenetic protein-2 (BMP-2 and transforming growth factor-β1 (TGF-β1 alter connexin 43 phosphorylation in MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Rudkin George H

    2001-07-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs and transforming growth factor-βs (TGF-βs are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC in MC3T3-E1 cells. Connexin 43 (Cx43 has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC. Results Northern blot analysis revealed no detectable change in the expression of Cx43 mRNA. Western blot analysis demonstrated no significant change in the expression of total Cx43 protein. However, significantly higher ratios of unphosphorylated vs. phosphorylated forms of Cx43 were detected after BMP-2 or TGF-β1 treatment. Immunofluorescence and cell protein fractionation revealed no detectable change in the localization of Cx43 between the cytosol and plasma membrane. Conclusions BMP-2 and TGF-β1 do not alter expression of Cx43 at the mRNA or protein level. BMP-2 and TGF-β1 may inhibit GJIC by decreasing the phosphorylated form of Cx43 in MC3T3-E1 cells.

  10. Production of recombinant proteins GST L1, E6 and E7 tag HPV 16 ...

    African Journals Online (AJOL)

    In the present work recombinant proteins were produced for used in LUMINEX in order to undergo serological study of Tunisian female population. HPV types 16 L1, E6 and E7 sequences fused to their 3'-end to a sequence encoding the terminal undecapeptide of the SV40 large T-antigen (tag) were isolated from plasmids ...

  11. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    International Nuclear Information System (INIS)

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.

    1991-01-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells

  12. Generation and analysis of a large-scale expressed sequence Tag database from a full-length enriched cDNA library of developing leaves of Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Min Lin

    Full Text Available BACKGROUND: Cotton (Gossypium hirsutum L. is one of the world's most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR, which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. CONCLUSIONS/SIGNIFICANCE: These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence

  13. High avidity antibodies to full-length VAR2CSA correlate with absence of placental malaria.

    Directory of Open Access Journals (Sweden)

    Yeung Lo Tutterrow

    Full Text Available VAR2CSA mediates sequestration of Plasmodium falciparum-infected erythrocytes in the placenta, increasing the risk of poor pregnancy outcomes. Naturally acquired antibodies (Ab to placental parasites at delivery have been associated with improved pregnancy outcomes, but Ab levels and how early in pregnancy Ab must be present in order to eliminate placental parasites before delivery remains unknown. Antibodies to individual Duffy-binding like domains of VAR2CSA have been studied, but the domains lack many of the conformational epitopes present in full-length VAR2CSA (FV2. Thus, the purpose of this study was to describe the acquisition of Ab to FV2 in women residing in high and low transmission areas and determine how Ab levels during pregnancy correlate with clearance of placental parasites. Plasma samples collected monthly throughout pregnancy from pregnant women living in high and low transmission areas in Cameroon were evaluated for Ab to FV2 and the proportion of high avidity Ab (i.e., Ab that remain bound in the presence of 3M NH(4SCN was assessed. Ab levels and proportion of high avidity Ab were compared between women with placental malaria (PM(+ and those without (PM(- at delivery. Results showed that PM(- women had significantly higher Ab levels (p = 0.0047 and proportion of high avidity Ab (p = 0.0009 than PM(+ women throughout pregnancy. Specifically, women with moderate to high Ab levels (>5,000 MFI and those with ≥ 35% high avidity Ab at 5-6 months were found to have 2.3 (95% CI, 1.0-4.9 and 7.6-fold (p = 0.0013, 95% CI: 1.2-50.0 reduced risk of placental malaria, respectively. These data show that high levels of Ab to FV2, particularly those with high avidity for FV2, produced by mid-pregnancy are important in clearing parasites from the placenta. Both high Ab levels and proportion of high avidity Ab to FV2 may serve as correlates of protection for assessing immunity against placental malaria.

  14. 3-Ethyl-4-[(E-(4-fluorobenzylideneamino]-1H-1,2,4-triazole-5(4H-thione

    Directory of Open Access Journals (Sweden)

    Alphonsus D'souza

    2012-05-01

    Full Text Available In the title compound, C11H11FN4S, the dihedral angle between the 1,2,4-triazole ring and the benzene ring is 25.04 (12° and an intramoleuclar C—H...S interaction leads to an S(6 ring. In the crystal, inversion dimers linked by pairs of N—H...S hydrogen bonds generate R22(8 loops.

  15. Rotational excitation of N2 by electron impact: 1-4 eV

    International Nuclear Information System (INIS)

    Wong, S.F.; Dube, L.

    1978-01-01

    Rotational and rotational-vibrational (v = 0 → 1) excitation in N 2 have been studied with a crossed-beam electron-impact apparatus. In the energy range 1-4 eV, the elastic and vibrational energy-loss peaks show large rotational broadening compared with the apparatus profile (full width at half-maximum, 18 meV). The branching ratios for rotational transitions with Δj = 0, +- 2, +- 4 are obtained with a line-shape analysis applied to the energy-loss profiles. The results for rotational-vibrational excitation at 2.27 eV and scattering angles 30-90 0 are in good agreement with the calculations using the resonant dπ waves and the rotational impulse approximation. The corresponding results for pure rotational excitation show that the branches with Δj = +- 2 and +- 4 are predominantly excited via resonances, while the branch with Δj = 0 contains a large contribution from direct scattering. The absolute rotational cross sections for Δj = +- 4 are measured; they exhibit a large magnitude (10 -16 cm 2 ) and peak and valley structures in the 1-4 eV range, reminiscent of well-known resonant vibrational excitation. The energy dependence and the absolute magnitude of the rotational cross sections for Δj = +- 4 can be understood in terms of a ''boomerang'' calculation. A comparison of the experiment with the relevant theoretical calculations is made

  16. (2E-3-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl-1-(2,5-dimethyl-3-thienylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-04-01

    Full Text Available The title compound, (2E-3-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl-1-(2,5-dimethyl-3-thienylprop-2-en-1-one (3 was synthesized in high yield by aldol condensation of 3-acetyl-2,5-dimethylthiophene and 3,5-dimethyl-1-phenylpyrazole-4-carboxaldehyde in ethanolic NaOH at room temperature. Its structure was fully characterized by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  17. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes

    Directory of Open Access Journals (Sweden)

    Arnouk Hilal

    2009-08-01

    Full Text Available Abstract Background Infection with high-risk type human papilloma viruses (HPVs is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features. Results Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE. The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23% of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2% were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16INK4a; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1; and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27. Conclusion This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.

  18. Synthesis and functioning of the colicin E1 lysis protein: Comparison with the colicin A lysis protein

    International Nuclear Information System (INIS)

    Cavard, D.

    1991-01-01

    The colicin E1 lysis protein, CelA, was identified as a 3-kDa protein in induced cells of Escherichia coli K-12 carrying pColE1 by pulse-chase labeling with either [ 35 S]cysteine or [ 3 H]lysine. This 3-kDa protein was acylated, as shown by [2- 3 H]glycerol labeling, and seemed to correspond to the mature CelA protein. The rate of modification and processing of CelA was different from that observed for Cal, the colicin A lysis protein. In contrast to Cal, no intermediate form was detected for CelA, no signal peptide accumulated, and no modified precursor form was observed after globomycin treatment. Thus, the rate of synthesis would not be specific to lysis proteins. Solubilization in sodium dodecyl sulfate of the mature forms of both CelA and Cal varied similarly at the time of colicin release, indicating a change in lysis protein structure. This particular property would play a role in the mechanism of colicin export. The accumulation of the signal peptide seems to be a factor determining the toxicity of the lysis proteins since CelA provoked less cell damage than Cal. Quasi-lysis and killing due to CelA were higher in degP mutants than in wild-type cells. They were minimal in pldA mutants

  19. Rac1 controls epithelial tube length through the apical secretion and polarity pathways

    Directory of Open Access Journals (Sweden)

    Kévin Sollier

    2016-01-01

    Full Text Available The morphometric parameters of epithelial tubes are critical to the physiology and homeostasis of most organs. In addition, many human diseases are associated with tube-size defects. Here, we show that Rac1 limits epithelial tube elongation in the developing fly trachea by promoting Rab5-dependent endocytosis of the apical determinant Crumbs. Rac1 is also involved in a positive feedback loop with the septate junction protein Coracle. Thereby, Rac1 precludes paracellular diffusion and contributes to the septate junction-dependent secretion of the chitin-modifying enzymes Vermiform and Serpentine, which restrict epithelial tube length independently of Crumbs. Thus, Rac1 is a critical component of two important pathways controlling epithelial tube morphogenesis.

  20. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases WWP1 WWP1 NEDD4-like E3 ubiquitin-protein ligase WWP1 Atrophin-1-interacting pr...otein 5, WW domain-containing protein 1 9606 Homo sapiens Q9H0M0 11059 2OP7, 1ND7 11059 ...

  1. The C-terminal domain of Nrf1 negatively regulates the full-length CNC-bZIP factor and its shorter isoform LCR-F1/Nrf1β; both are also inhibited by the small dominant-negative Nrf1γ/δ isoforms that down-regulate ARE-battery gene expression.

    Science.gov (United States)

    Zhang, Yiguo; Qiu, Lu; Li, Shaojun; Xiang, Yuancai; Chen, Jiayu; Ren, Yonggang

    2014-01-01

    The C-terminal domain (CTD, aa 686-741) of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1) shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L) CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein) and its shorter isoform LCR-F1/Nrf1β (55-kDa). Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER) membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE)-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST) domain and acidic domain 2 (AD2). Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ.

  2. CPB1 of Aedes aegypti Interacts with DENV2 E Protein and Regulates Intracellular Viral Accumulation and Release from Midgut Cells

    Directory of Open Access Journals (Sweden)

    Hong-Wai Tham

    2014-12-01

    Full Text Available Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV. To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H screenings against DENV2 envelope (E protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1 was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.

  3. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Shwu-Yuan Wu

    2016-08-01

    Full Text Available Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4, a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV to viral early gene and cellular matrix metalloproteinase-9 (MMP-9 promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.

  4. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    Energy Technology Data Exchange (ETDEWEB)

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  5. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  6. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Hutchens, Heather M.; Howard Berg, R.; Sue Loesch-Fries, L.

    2012-01-01

    To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.

  7. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619 (Egypt); Hutchens, Heather M. [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Howard Berg, R. [Integrated Microscopy Facility, Donald Danforth Plant Science Center, Saint Louis, MO 63132 (United States); Sue Loesch-Fries, L., E-mail: loeschfr@purdue.edu [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States)

    2012-11-25

    To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.

  8. Effect of Full-Length Carbon Fiber Insoles on Lower Limb Kinetics in Patients With Midfoot Osteoarthritis: A Pilot Study.

    Science.gov (United States)

    Yi, Taeim; Kim, Jung Hyun; Oh-Park, Mooyeon; Hwang, Ji Hye

    2018-03-01

    We investigated the effects of full-length carbon fiber (FCF) insoles on gait, muscle activity, kinetics, and pain in patients with midfoot osteoarthritis (OA). We enrolled 13 patients with unilateral midfoot OA (mild: Visual Analog Scale [VAS] range, 1-3; moderate, VAS range, 4-7) and healthy controls. All participants were asked to walk under two conditions: with and without FCF insole. The outcome measures were ground reaction force, quantitative gait parameters, electromyography activities and pain severity (VAS). In the patients with moderate midfoot OA, significantly longer gait cycle and higher muscle activity of lower limb during loading-response phase were observed while walking without FCF insoles. In the mild midfoot OA group, there was no significant difference in VAS score (without, 2.0 ± 1.0 vs. with, 2.0 ± 0.5) with FCF insole use. However, significantly reduced VAS score (without, 5.5 ± 1.4 vs. with, 2.0 ± 0.5) and muscle activity of the tibialis anterior and increased muscle activity of gastrocnemius were observed in the moderate midfoot OA group by using an FCF insole (P < 0.05). Full-length carbon fiber insoles can improve pain in individuals with moderate midfoot OA, which might be associated with changes in the kinetics and muscle activities of the lower limb. Taken together, the results of the present study suggest that FCF insoles may be used as a helpful option for midfoot OA.

  9. Use of Saccharomyces cerevisiae yeasts in the chemo selective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)-1,4-pentadien-3-one in biphasic system

    International Nuclear Information System (INIS)

    Schaefer, Cesar A.; Silva, Vanessa D.; Nascimento, Maria da G.; Stambuk, Boris U.

    2013-01-01

    This work describes the chemoselective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)- 1,4-pentadien-3-one (1) mediated by baker’s yeast (BY, Saccharomyces cerevisiae cells) in an aqueous/organic solvent biphasic system. The biotransformation of this compound was chemoselective and formed only the corresponding saturated ketone 1,5-bis(4-methoxyphenyl)- 3-pentanone (2). The influence of various factors which may alter the bioreduction of 1, such as the type and percentage of co-solvents, use of six different S. cerevisiae yeast samples (four commercial and two industrial), variations in the substrate and yeast concentrations, temperature, pH and volume of aqueous and organic phases, was investigated. The best reaction conditions were 66.7 g L −1 of Fleischmann BY, 8.3 × 10 −3 mol L −1 of substrate, pH 6.5 at 35 deg C in the presence of 2.5% (v/v) of N,N-dimethyl sulfoxide (DMSO) as an additive and a V aq /V org ratio of 70/30. Under these conditions, the product 2 was recovered in conversions of 82% in 5 h reaction. (author)

  10. Use of Saccharomyces cerevisiae yeasts in the chemo selective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)-1,4-pentadien-3-one in biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Cesar A.; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: maria.nascimento@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil); Stambuk, Boris U. [Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil)

    2013-07-15

    This work describes the chemoselective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)- 1,4-pentadien-3-one (1) mediated by baker's yeast (BY, Saccharomyces cerevisiae cells) in an aqueous/organic solvent biphasic system. The biotransformation of this compound was chemoselective and formed only the corresponding saturated ketone 1,5-bis(4-methoxyphenyl)- 3-pentanone (2). The influence of various factors which may alter the bioreduction of 1, such as the type and percentage of co-solvents, use of six different S. cerevisiae yeast samples (four commercial and two industrial), variations in the substrate and yeast concentrations, temperature, pH and volume of aqueous and organic phases, was investigated. The best reaction conditions were 66.7 g L{sup -1} of Fleischmann BY, 8.3 Multiplication-Sign 10{sup -3} mol L{sup -1} of substrate, pH 6.5 at 35 deg C in the presence of 2.5% (v/v) of N,N-dimethyl sulfoxide (DMSO) as an additive and a V{sub aq}/V{sub org} ratio of 70/30. Under these conditions, the product 2 was recovered in conversions of 82% in 5 h reaction. (author)

  11. Inhibitor discovery of full-length New Delhi metallo-β-lactamase-1 (NDM-1.

    Directory of Open Access Journals (Sweden)

    Bingzheng Shen

    Full Text Available New Delhi metallo-β-lactmase-1 (NDM-1 has recently attracted extensive attention for its biological activities to catalyze the hydrolysis of almost all of β-lactam antibiotics. To study the catalytic property of NDM-1, the steady-kinetic parameters of NDM-1 toward several kinds of β-lactam antibiotics have been detected. It could effectively hydrolyze most β-lactams (k cat/K m ratios between 0.03 to 1.28 µmol⁻¹.s⁻¹, except aztreonam. We also found that thiophene-carboxylic acid derivatives could inhibit NDM-1 and have shown synergistic antibacterial activity in combination with meropenem. Flexible docking and quantum mechanics (QM study revealed electrostatic interactions between the sulfur atom of thiophene-carboxylic acid derivatives and the zinc ion of NDM-1, along with hydrogen bond between inhibitor and His189 of NDM-1. The interaction models proposed here can be used in rational design of NDM-1 inhibitors.

  12. EXPRESSION OF E-CADHERIN AND WNT PATHWAY PROTEINS BETACATENIN, APC, TCF-4 AND SURVIVIN IN GASTRIC ADENOCARCINOMA: CLINICAL AND PATHOLOGICAL IMPLICATION.

    Science.gov (United States)

    Lins, Rodrigo Rego; Oshima, Celina Tizuko Fujiyama; Oliveira, Levindo Alves de; Silva, Marcelo Souza; Mader, Ana Maria Amaral Antonio; Waisberg, Jaques

    2016-01-01

    Gastric cancer is the fifth most frequent cancer and the third most common cause of cancer-related deaths worldwide.It has been reported that Wnt/ betacatenin pathway is activated in 30-50% of these tumors. However,the deregulation of this pathway has not been fully elucidated. To determine the expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins in gastric adenocarcinoma tissues and correlate with clinical and pathological parameters. Seventy-one patients with gastric adenocarcinoma undergoing gastrectomy were enrolled. The expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins was detected by immunohistochemistryand related to the clinical and pathological parameters. The expression rates of E-cadherin in the membrane was 3%; betacatenin in the cytoplasm and nucleus were 23,4% and 3,1% respectively; APC in the cytoplasm was 94,6%; TCF-4 in the nucleus was 19,4%; and survivin in the nucleus 93,9%. The expression rate of E-cadherin was correlated with older patients (p=0,007), while betacatenin with tumors citoplasma e 3,1% no núcleo; APC em 94,6% no citoplasma; TCF-4 em19,4% no núcleo; e survivina em 93,9% no núcleo. Houve relação entre expressão da proteína E-caderina com a idade mais avançada (p=0,007); betacatenina com tumores <5 cm de diâmetro (p=0,041);APC com tumores proximais (p=0,047); e TCF-4 com tipo difuso da classificação de Lauren (p=0,017) e com o grau de penetração tumoral (p=0,002). A via Wnt/betacatenina não está envolvida na carcinogênese gástrica. Porém, a frequência elevada de survivina permite sugerir que outras vias sinalizadoras devam estar envolvidas na transformação do tecido gástrico.

  13. Serum Interleukin-4 and Total Immunoglobulin E in Nonatopic Alopecia Areata Patients and HLA-DRB1 Typing

    Directory of Open Access Journals (Sweden)

    Enas A. S. Attia

    2010-01-01

    Full Text Available Background. Interleukin-4 (IL-4, a Th2 cytokine, can stimulate immunoglobulin E (IgE transcription. No previous studies evaluated the genetic mechanisms in nonatopic AA patients with elevated serum IgE. Objective. To compare serum IL-4 and total IgE levels between Egyptian nonatopic AA patients and healthy subjects and to investigate a possible relation to HLA-DRB1 alleles. Results. Serum IL-4 and total IgE were measured by ELISA in 40 controls and 54 nonatopic AA patients. Patients' HLA-DRB1 typing by sequence specific oligonucleotide probe technique was compared to normal Egyptian population. We found significantly elevated serum IL-4 and total IgE in AA patients (particularly alopecia universalis, AU, and chronic patients (P<.01. HLA-DRB1*11 is a general susceptibility/chronicity allele. DRB1*13 is a protective allele. DRB1*01 and DRB1*07 are linked to chronicity. Localized AA showed decreased DRB1*03 and DRB1*07. Extensive forms showed increased DRB1*08 and decreased DRB1*04. Elevated IL4 and IgE were observed in patients with DRB1*07 and DRB1*11 not DRB1*04. Conclusion. Serum IL-4 and IgE are elevated in nonatopic AA patients, particularly AU and chronic disease. Relevant susceptibility, chronicity, and severity HLADRB1 alleles may have a role in determining type, magnitude, and duration of immune response in AA favouring increased IL4 and IgE.

  14. Expression and purification of PprI protein from D.radiodurans R1 in escherichia coli

    International Nuclear Information System (INIS)

    Zhang Yongqin; Zhou Hui; Chen Jie; Yang Zhanshan

    2011-01-01

    In order to express and purify PprI protein from D.radiodurans R1 in E. coli, the full length of pprI gene was gained by PCR amplification using pCMV-HA-pprI as a template. The gene segment was inserted into vector pET-28a after digested by two restriction endonucleases Nco I and EcoR I. Then the recombinant vector pET-28a-His-pprI was transfected into E. coli BL21(DE3) RP. The PprI protein expression was induced by IPTG and the fusion protein was confirmed by SDS-PAGE and Western blotting. The expressive conditions of the protein such as E. coli' A 600 , concentration of IPTG, time and temperature of culture, were optimized. Finally the fusion protein was purified by Ni-NTA His Bind Resins and molecule boult. The experimental results show the fusion protein confirmed by Western blotting is 6 x His-PprI and its molecular weight is 37 kDa. The ladders of PprI protein at molecular weight 37 kDa were different due to difference of the PprI protein expression conditions if E. coli. The PprI protein exists both in supernatant and precipitation. The concentration of purified protein is about 0.15 mg/mL which was measured by BCA method. It is concluded that the recombinant plasmid pET-28a-His-pprI is constructed and the PprI fusion protein is expressed and purified. The results lay a solid foundation for studying the radio-resistance and immunity of PprI protein. (authors)

  15. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael

    2014-01-01

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  16. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    Science.gov (United States)

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  17. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Sugiyama, Hayami; Takahashi, Kazutoshi; Yamamoto, Takuya; Iwasaki, Mio; Narita, Megumi; Nakamura, Masahiro; Rand, Tim A; Nakagawa, Masato; Watanabe, Akira; Yamanaka, Shinya

    2017-01-10

    Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil-containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1 Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation.

  18. ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response

    International Nuclear Information System (INIS)

    Icli, Basak; Bharti, Ajit; Pentassuglia, Laura; Peng, Xuyang; Sawyer, Douglas B.

    2012-01-01

    Highlights: ► ErbB4 localizes to cardiac myocyte nuclei as a full-length receptor. ► Cardiac myocytes express predominantly JM-a/CYT-1 ErbB4. ► Myocyte p53 activation in response to doxorubicin requires ErbB4 activity. -- Abstract: The intracellular domain of ErbB4 receptor tyrosine kinase is known to translocate to the nucleus of cells where it can regulate p53 transcriptional activity. The purpose of this study was to examine whether ErbB4 can localize to the nucleus of adult rat ventricular myocytes (ARVM), and regulate p53 in these cells. We demonstrate that ErbB4 does locate to the nucleus of cardiac myocytes as a full-length protein, although nuclear location occurs as a full-length protein that does not require Protein Kinase C or γ-secretase activity. Consistent with this we found that only the non-cleavable JM-b isoform of ErbB4 is expressed in ARVM. Doxorubicin was used to examine ErbB4 role in regulation of a DNA damage response in ARVM. Doxorubicin induced p53 and p21 was suppressed by treatment with AG1478, an EGFR and ErbB4 kinase inhibitor, or suppression of ErbB4 expression with small interfering RNA. Thus ErbB4 localizes to the nucleus as a full-length protein, and plays a role in the DNA damage response induced by doxorubicin in cardiac myocytes.

  19. Three closely related (2E,2′E-3,3′-(1,4-phenylenebis[1-(methoxyphenylprop-2-en-1-ones]: supramolecular assemblies in one dimension mediated by hydrogen bonding and C—H...π interactions

    Directory of Open Access Journals (Sweden)

    Aijia Sim

    2017-06-01

    Full Text Available In the title compounds, (2E,2′E-3,3′-(1,4-phenylenebis[1-(2-methoxyphenylprop-2-en-1-one], C26H22O4 (I, (2E,2′E-3,3′-(1,4-phenylenebis[1-(3-methoxyphenylprop-2-en-1-one], C26H22O4 (II and (2E,2′E-3,3′-(1,4-phenylenebis[1-(3,4-dimethoxyphenylprop-2-en-1-one], C28H26O6 (III, the asymmetric unit consists of a half-molecule, completed by crystallographic inversion symmetry. The dihedral angles between the central and terminal benzene rings are 56.98 (8, 7.74 (7 and 7.73 (7° for (I, (II and (III, respectively. In the crystal of (I, molecules are linked by pairs of C—H...π interactions into chains running parallel to [101]. The packing for (II and (III, features inversion dimers linked by pairs of C—H...O hydrogen bonds, forming R22(16 and R22(14 ring motifs, respectively, as parts of [201] and [101] chains, respectively.

  20. Full Length Research Article

    African Journals Online (AJOL)

    Dr Ahmed

    Mbah & Amao (SWJ):11-14. Natural Foods and Feeding Habits Of The African Honey bee ... Keywords: natural food, nectar, pollen, african honeybee, Apis mellifera adansonii ..... Crailsheim, K. (1990). The Protein balance of the honeybee.

  1. Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ikumi Fujita

    Full Text Available The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1(+ have revealed that the long N-terminal region (1-456 a.a. [amino acids] of Rap1 (full length: 693 a.a. is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457-693 a.a. containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.

  2. Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats.

    OpenAIRE

    Javier, R T

    1994-01-01

    The E4 region of human adenovirus type 9 (Ad9) transforms established rat embryo fibroblasts and encodes an essential determinant for the production of estrogen-dependent mammary tumors in rats. Testing of the seven Ad9 E4 open reading frames (ORFs) individually for transformation of the established rat embryo fibroblast cell line CREF indicated that only Ad9 E4 ORF1 possessed a significant ability to generate transformed foci on these cells. In contrast, the E4 ORF1 sequences from human Ad5 ...

  3. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus.

    Science.gov (United States)

    Urayama, Syun-Ichi; Kimura, Yuri; Katoh, Yu; Ohta, Tomoko; Onozuka, Nobuya; Fukuhara, Toshiyuki; Arie, Tsutomu; Teraoka, Tohru; Komatsu, Ken; Moriyama, Hiromitsu

    2016-09-02

    Magnaporthe oryzae chrysovirus 1 strain A (MoCV1-A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, Magnaporthe oryzae. We previously revealed that heterologous expression of the MoCV1-A ORF4 protein resulted in cytological damage to the yeasts Saccharomyces cerevisiae and Cryptococcus neoformans. Since the ORF4 protein is one of the components of viral particles, we evaluated the inhibitory effects of the purified virus particle against the conidial germination of M. oryzae, and confirmed its suppressive effects. Recombinant MoCV1-A ORF4 protein produced in Pichia pastoris was also effective for suppression of conidial germination of M. oryzae. MoCV1-A ORF4 protein sequence showed significant similarity to 6 related mycoviral proteins; Botrysphaeria dothidea chrysovirus 1, two Fusarium graminearum viruses, Fusarium oxysporum f. sp. dianthi mycovirus 1, Penicillium janczewski chrysovirus and Agaricus bisporus virus 1 in the Chrysoviridae family. Multiple alignments of the ORF4-related protein sequences showed that their central regions (210-591 aa in MoCV1-A ORF4) are relatively conserved. Indeed, yeast transformants expressing the conserved central region of MoCV1-A ORF4 protein (325-575 aa) showed similar impaired growth phenotypes as those observed in yeasts expressing the full-length MoCV1-A ORF4 protein. These data suggest that the mycovirus itself and its encoded viral protein can be useful as anti-fungal proteins to control rice blast disease caused by M. oryzae and other pathogenic fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Simulation of Different Truncated p16INK4a Forms and In Silico Study of Interaction with Cdk4

    Directory of Open Access Journals (Sweden)

    Najmeh Fahham

    2009-01-01

    Full Text Available Protein-protein interactions studies can greatly increase the amount of structural and functional information pertaining to biologically active molecules and processes. The information obtained from such studies can lead to design and application of new modification in order to obtain a desired bioactivity. Many application packages and servers performing docking, such as HEX, DOT, AUTODOCK, and ZDOCK are now available for predicting the lowest free energy state of a protein complex. In this study, we have focused on cyclin-dependent kinase 4 (Cdk4, a key molecule in the regulation of cell cycle progression at the G1-S phase restriction point and p16INK4a, a tumor suppressor which inhibits Cdk4 activity. Truncated structures were created to find the more critical regions of p16 for interaction. The tertiary structures were determined by ProSAL, GENO3D Web Server. We evaluated their interactions with Cdk4 using two docking systems, HEX 4.5 and DOT 1. Calculations were performed on a high-speed computer. Minimizations and visualizations were carried out by PdbViewer 3.7. Considering shape and shape/electrostatic total energy, structures containing ANK II, III and IV motifs that lack the N-terminal region of the full length p16 molecule showed the best fi t complexes among the p16 truncated forms. The free energies were compatible with that of p16 full length original form, the full length. It seems that the N-terminal of the molecule is not crucial for the interaction since the truncated structure containing only this region did not show a good total energy.

  5. Thermal decomposition of vinyl- and allylsilane platinum(II complexes and platinum(II catalysed synthesis of (E,(E-1,4-diphenyl-1,3-butadiene

    Directory of Open Access Journals (Sweden)

    Paul P. Mebe

    2008-12-01

    Full Text Available Thermal stabilities of Pt(II complexes: K[PtCl3(CH2=CHSiMe3], K[PtCl3(CH2=CHCH2SiMe3], K[(acacPtCl(CH2=CHSiMe3] and [PtCl(CH2=CHCH2SiMe3]2, were examined. All complexes were found to be stable at room temperature but they decomposed without melting above about 90 oC. The allylsilane complex decomposed above about 125 oE,(E-1,4-diphenyl-1,3-butadiene was stereoselectively synthesised in good yield from (E-β-styrylsilane in the presence of Zeise’s salt.

  6. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  7. Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression

    Science.gov (United States)

    Translational control of ATF4 through upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While ATF4 translation is typically induced by inhibitory phosphorylation of eIF2, ATF4 translation can be also induced by expression of a new translational inhibitor protein, eIF5-mimi...

  8. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  9. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Seungtaik Hwang

    2018-03-01

    Full Text Available Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n-alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n-butane was observed, followed by an increase for n-pentane, and another decrease for n-hexane. This observation was confirmed by uptake measurements with n-butane/n-pentane mixtures, which yield faster uptake of n-pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n-pentane concentrations exceeding the (eventually attained equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n-alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  10. NMR characterisation of the minimal interacting regions of centrosomal proteins 4.1R and NuMA1: effect of phosphorylation

    Directory of Open Access Journals (Sweden)

    Bruix Marta

    2010-01-01

    Full Text Available Abstract Background Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R is located in the nucleus and only partially co-localizes with NuMA1. Results We have characterized by NMR the structural features of the C-terminal domain of 4.1R and those of the minimal region (the last 64 residues involved in the interaction with NuMA1. This subdomain behaves as an intrinsically unfolded protein containing a central region with helical tendency. The specific residues implicated in the interaction with NuMA1 have been mapped by NMR titrations and involve the N-terminal and central helical regions. The segment of NuMA1 that interacts with 4.1R is phosphorylated during mitosis. Interestingly, NMR data indicates that the phosphorylation of NuMA1 interacting peptide provokes a change in the interaction mechanism. In this case, the recognition occurs through the central helical region as well as through the C-terminal region of the subdomain meanwhile the N-terminal region do not interact. Conclusions These changes in the interaction derived from the phosphorylation state of NuMA1 suggest that phosphorylation can act as subtle mechanism of temporal and spatial regulation of the complex 4.1R-NuMA1 and therefore of the processes where both proteins play a role.

  11. Direct and indirect targets of the E2A-PBX1 leukemia-specific fusion protein.

    Directory of Open Access Journals (Sweden)

    Christofer Diakos

    Full Text Available E2A-PBX1 is expressed as a result of the t(1;19 chromosomal translocation in nearly 5% of cases of childhood acute lymphoblastic leukemia. The E2A-PBX1 chimeric transcription factor contains the N-terminal transactivation domain of E2A (TCF3 fused to the C-terminal DNA-binding homeodomain of PBX1. While there is no doubt of its oncogenic potential, the mechanisms of E2A-PBX1-mediated pre-B cell transformation and the nature of direct E2A-PBX1 target genes and pathways remain largely unknown. Herein we used chromatin immunoprecipitation assays (ChIP-chip to identify direct targets of E2A-PBX1, and we used gene expression arrays of siRNA E2A-PBX1-silenced cells to evaluate changes in expression induced by the fusion protein. Combined ChIP-chip and expression data analysis gave rise to direct and functional targets of E2A-PBX1. Further we observe that the set of ChIP-chip identified E2A-PBX1 targets show a collective down-regulation trend in the E2A-PBX1 silenced samples compared to controls suggesting an activating role of this fusion transcription factor. Our data suggest that the expression of the E2A-PBX1 fusion gene interferes with key regulatory pathways and functions of hematopoietic biology. Among these are members of the WNT and apoptosis/cell cycle control pathways, and thus may comprise an essential driving force for the propagation and maintenance of the leukemic phenotype. These findings may also provide evidence of potentially attractive therapeutic targets.

  12. Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system.

    Directory of Open Access Journals (Sweden)

    Cândida F Pereira

    Full Text Available Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1 structural proteins (matrix, capsid and nucleocapsid, enzymes (protease, reverse transcriptase, RNAse H and integrase and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.

  13. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    International Nuclear Information System (INIS)

    Lee, Changhee; Yoo, Dongwan

    2006-01-01

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-ΔE-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-ΔE virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-ΔE virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm

  14. (E-3-Methyl-6-(3-oxo-3-(3,4,5-trimethoxyphenylprop-1-en-1-yl-2(3H-benzothiazolone

    Directory of Open Access Journals (Sweden)

    Yordanka Ivanova

    2016-09-01

    Full Text Available The title compound, (E-3-methyl-6-(3-oxo-3-(3,4,5-trimethoxyphenylprop-1-en-1-yl-2(3H-benzothiazolone, was synthesized by both an acid- and base-catalyzed aldol condensation of 3-methyl-6-acetyl-2(3H-benzothiazolone and 3,4,5-trimethoxyacetophenone. The structure of the target compound was confirmed using 1H-NMR, 13C-NMR, IR, MS, and elemental analysis.

  15. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis.

    Science.gov (United States)

    Spangle, Jennifer M; Münger, Karl

    2010-09-01

    The mammalian target of rapamycin (mTOR) kinase acts as a cellular rheostat that integrates signals from a variety of cellular signal transduction pathways that sense growth factor and nutrient availability as well as intracellular energy status. It was previously reported that the human papillomavirus type 16 (HPV16) E6 oncoprotein may activate the S6 protein kinase (S6K) through binding and E6AP-mediated degradation of the mTOR inhibitor tuberous sclerosis complex 2 (TSC2) (Z. Lu, X. Hu, Y. Li, L. Zheng, Y. Zhou, H. Jiang, T. Ning, Z. Basang, C. Zhang, and Y. Ke, J. Biol. Chem. 279:35664-35670, 2004; L. Zheng, H. Ding, Z. Lu, Y. Li, Y. Pan, T. Ning, and Y. Ke, Genes Cells 13:285-294, 2008). Our results confirmed that HPV16 E6 expression causes an increase in mTORC1 activity through enhanced phosphorylation of mTOR and activation of downstream signaling pathways S6K and eukaryotic initiation factor binding protein 1 (4E-BP1). However, we did not detect a decrease in TSC2 levels in HPV16 E6-expressing cells. We discovered, however, that HPV16 E6 expression causes AKT activation through the upstream kinases PDK1 and mTORC2 under conditions of nutrient deprivation. We show that HPV16 E6 expression causes an increase in protein synthesis by enhancing translation initiation complex assembly at the 5' mRNA cap and an increase in cap-dependent translation. The increase in cap-dependent translation likely results from HPV16 E6-induced AKT/mTORC1 activation, as the assembly of the translation initiation complex and cap-dependent translation are rapamycin sensitive. Lastly, coexpression of the HPV16 E6 and E7 oncoproteins does not affect HPV16 E6-induced activation of mTORC1 and cap-dependent translation. HPV16 E6-mediated activation of mTORC1 signaling and cap-dependent translation may be a mechanism to promote viral replication under conditions of limited nutrient supply in differentiated, HPV oncoprotein-expressing proliferating cells.

  16. Comparison of Newly Assembled Full Length HIV-1 Integrase With Prototype Foamy Virus Integrase: Structure-Function Prospective.

    Science.gov (United States)

    Dayer, Mohammad Reza

    2016-05-01

    Drug design against human immunodeficiency virus type 1 (HIV-1) integrase through its mechanistic study is of great interest in the area in biological research. The main obstacle in this area is the absence of the full-length crystal structure for HIV-1 integrase to be used as a model. A complete structure, similar to HIV-1 of a prototype foamy virus integrase in complex with DNA, including all conservative residues, is available and has been extensively used in recent investigations. The aim of this study was to determine whether the above model is precisely representative of HIV-1 integrase. This would critically determine the success of any designed drug using the model in deactivation of integrase and AIDS treatment. Primarily, a new structure for HIV-1 was constructed, using a crystal structure of prototype foamy virus as the starting structure. The constructed structure of HIV-1 integrase was simultaneously simulated with a prototype foamy virus integrase on a separate occasion. Our results indicate that the HIV-1 system behaves differently from the prototype foamy virus in terms of folding, hydration, hydrophobicity of binding site and stability. Based on our findings, we can conclude that HIV-1 integrase is vastly different from the prototype foamy virus integrase and does not resemble it, and the modeling output of the prototype foamy virus simulations could not be simply generalized to HIV-1 integrase. Therefore, our HIV-1 model seems to be more representative and more useful for future research.

  17. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants.

    Science.gov (United States)

    Brummell, D A; Catala, C; Lashbrook, C C; Bennett, A B

    1997-04-29

    Endo-1,4-beta-D-glucanases (EGases, EC 3.2.1.4) are enzymes produced in bacteria, fungi, and plants that hydrolyze polysaccharides possessing a 1,4-beta-D-glucan backbone. All previously identified plant EGases are E-type endoglucanases that possess signal sequences for endoplasmic reticulum entry and are secreted to the cell wall. Here we report the characterization of a novel E-type plant EGase (tomato Cel3) with a hydrophobic transmembrane domain and structure typical of type II integral membrane proteins. The predicted protein is composed of 617 amino acids and possesses seven potential sites for N-glycosylation. Cel3 mRNA accumulates in young vegetative tissues with highest abundance during periods of rapid cell expansion, but is not hormonally regulated. Antibodies raised to a recombinant Cel3 protein specifically recognized three proteins, with apparent molecular masses of 93, 88, and 53 kDa, in tomato root microsomal membranes separated by sucrose density centrifugation. The 53-kDa protein comigrated in the gradient with plasma membrane markers, the 88-kDa protein with Golgi membrane markers, and the 93-kDa protein with markers for both Golgi and plasma membranes. EGase enzyme activity was also found in regions of the density gradient corresponding to both Golgi and plasma membranes, suggesting that Cel3 EGase resides in both membrane systems, the sites of cell wall polymer biosynthesis. The in vivo function of Cel3 is not known, but the only other known membrane-anchored EGase is present in Agrobacterium tumefaciens where it is required for cellulose biosynthesis.

  18. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    Science.gov (United States)

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  19. Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins.

    Science.gov (United States)

    Pan, Xia; Yang, Xiaoyan; Zang, Jinglei; Zhang, Si; Huang, Nan; Guan, Xinxin; Zhang, Jianhua; Wang, Zhihui; Li, Xi; Lei, Xiaoyong

    2017-06-01

    Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3'-untranslated region of eukaryotic translation initiation factor 41 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.

  20. Crystallization and preliminary X-ray crystallographic analysis of EstE1, a new and thermostable esterase cloned from a metagenomic library

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jung-Sue [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Protein Network Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of); Rhee, Jin-Kyu [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Dong-Uk [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Oh, Jong-Won [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Cho, Hyun-Soo, E-mail: hscho8@yonsei.ac.kr [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Protein Network Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2006-02-01

    Recombinant EstE1 protein with a histidine tag at the C-terminus was overexpressed in Escherichia coli strain BL21(DE3) and then purified by affinity chromatography. The protein was then crystallized at 290 K by the hanging-drop vapour-diffusion method. EstE1, a new thermostable esterase, was isolated by functional screening of a metagenomic DNA library from thermal environment samples. This enzyme showed activity towards short-chain acyl derivatives of length C4–C6 at a temperature of 303–363 K and displayed a high thermostability above 353 K. EstE1 has 64 and 57% amino-acid sequence similarity to est{sub pc}-encoded carboxylesterase from Pyrobaculum calidifontis and AFEST from Archaeoglobus fulgidus, respectively. The recombinant protein with a histidine tag at the C-terminus was overexpressed in Escherichia coli strain BL21(DE3) and then purified by affinity chromatography. The protein was crystallized at 290 K by the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 2.3 Å resolution from an EstE1 crystal; the crystal belongs to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 73.71, c = 234.23 Å. Assuming the presence of four molecules in the asymmetric unit, the Matthews coefficient V{sub M} is calculated to be 2.2 Å{sup 3} Da{sup −1} and the solvent content is 44.1%.

  1. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  2. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    International Nuclear Information System (INIS)

    Tan, Yongsheng; Li, Yan

    2015-01-01

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 "l"o"w and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96"®Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 "l"o"w, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1

  3. Papillomavirus E6 proteins

    International Nuclear Information System (INIS)

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-01-01

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition

  4. A systems biology analysis of the changes in gene expression via silencing of HPV-18 E1 expression in HeLa cells.

    Science.gov (United States)

    Castillo, Andres; Wang, Lu; Koriyama, Chihaya; Eizuru, Yoshito; Jordan, King; Akiba, Suminori

    2014-10-01

    Previous studies have reported the detection of a truncated E1 mRNA generated from HPV-18 in HeLa cells. Although it is unclear whether a truncated E1 protein could function as a replicative helicase for viral replication, it would still retain binding sites for potential interactions with different host cell proteins. Furthermore, in this study, we found evidence in support of expression of full-length HPV-18 E1 mRNA in HeLa cells. To determine whether interactions between E1 and cellular proteins play an important role in cellular processes other than viral replication, genome-wide expression profiles of HPV-18 positive HeLa cells were compared before and after the siRNA knockdown of E1 expression. Differential expression and gene set enrichment analysis uncovered four functionally related sets of genes implicated in host defence mechanisms against viral infection. These included the toll-like receptor, interferon and apoptosis pathways, along with the antiviral interferon-stimulated gene set. In addition, we found that the transcriptional coactivator E1A-binding protein p300 (EP300) was downregulated, which is interesting given that EP300 is thought to be required for the transcription of HPV-18 genes in HeLa cells. The observed changes in gene expression produced via the silencing of HPV-18 E1 expression in HeLa cells indicate that in addition to its well-known role in viral replication, the E1 protein may also play an important role in mitigating the host's ability to defend against viral infection.

  5. Evidence for protein 4.1B acting as a metastasis suppressor

    Czech Academy of Sciences Publication Activity Database

    Cavanna, T.; Pokorná, Eva; Veselý, Pavel; Gray, C.; Zicha, D.

    2007-01-01

    Roč. 120, č. 4 (2007), s. 606-616 ISSN 0021-9533 Institutional research plan: CEZ:AV0Z50520514 Keywords : 4.1B protein * metastasis * migration Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.383, year: 2007

  6. Synthesis, spectral and antimicrobial activity of [3-(4-chloro-phenoxy-2,4-diisopropyl-2,3,4,5-tetrahydro-1H-3l5-benzo[e][1,3,2]diazaphosphepin-3-ylidene]-alkyl-amine

    Directory of Open Access Journals (Sweden)

    R. Usha Nagalakshmi

    2009-11-01

    Full Text Available 3-(4-chlorophenoxy-2,4-diisopropyl-2,3,4,5-tetrahydro-1H-benzo[e][1,3,2]diaza-phosphepine was synthesized starting from 1,2-bis(bromomethylbenzene by reacting with 2 equimolar isopropyl amine, one equimolar PBr3 and then one equimolar 4-chlorophenol, respectively. The Staudinger reaction of the diazaphphosphine with a series of alkyl azides gave the corresponding iminophosphoranes. Antibacterial activities of the synthesized iminophosphoranes were screened

  7. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain

    Science.gov (United States)

    2013-01-01

    Background Duck enteritis virus (DEV) is the causative agent of duck viral enteritis, which causes an acute, contagious and lethal disease of many species of waterfowl within the order Anseriformes. In recent years, two laboratories have reported on the successful construction of DEV infectious clones in viral vectors to express exogenous genes. The clones obtained were either created with deletion of viral genes and based on highly virulent strains or were constructed using a traditional overlapping fosmid DNA system. Here, we report the construction of a full-length infectious clone of DEV vaccine strain that was cloned into a bacterial artificial chromosome (BAC). Methods A mini-F vector as a BAC that allows the maintenance of large circular DNA in E. coli was introduced into the intergenic region between UL15B and UL18 of a DEV vaccine strain by homologous recombination in chicken embryoblasts (CEFs). Then, the full-length DEV clone pDEV-vac was obtained by electroporating circular viral replication intermediates containing the mini-F sequence into E. coli DH10B and identified by enzyme digestion and sequencing. The infectivity of the pDEV-vac was validated by DEV reconstitution from CEFs transfected with pDEV-vac. The reconstructed virus without mini-F vector sequence was also rescued by co-transfecting the Cre recombinase expression plasmid pCAGGS-NLS/Cre and pDEV-vac into CEF cultures. Finally, the in vitro growth properties and immunoprotection capacity in ducks of the reconstructed viruses were also determined and compared with the parental virus. Results The full genome of the DEV vaccine strain was successfully cloned into the BAC, and this BAC clone was infectious. The in vitro growth properties of these reconstructions were very similar to parental DEV, and ducks immunized with these viruses acquired protection against virulent DEV challenge. Conclusions DEV vaccine virus was cloned as an infectious bacterial artificial chromosome maintaining full-length

  8. Protein-bound homocyst(e)ine. A possible risk factor for coronary artery disease.

    Science.gov (United States)

    Kang, S S; Wong, P W; Cook, H Y; Norusis, M; Messer, J V

    1986-01-01

    The development of atherosclerotic changes and thromboembolism are common features in homocystinurics. Hence, we postulate a positive correlation between the level of homocyst(e)ine in the blood and the occurrence of coronary artery disease. Homocysteine is found either as free homocystine, cysteine-homocysteine mixed disulfide, or protein-bound homocyst(e)ine. In nonhomocystinuric subjects, most homocysteine molecules are detectable in the protein-bound form. Thus, protein-bound homocyst(e)ine in stored plasma which reflected total plasma homocyst(e)ine was determined in 241 patients with coronary artery disease (173 males and 68 females). The mean +/- SD total plasma homocyst(e)ine was 5.41 +/- 1.62 nmol/ml in male patients, 4.37 +/- 1.09 nmol/ml in male controls, 5.66 +/- 1.93 nmol/ml in female patients, and 4.16 +/- 1.62 nmol/ml in female controls. The differences between the patients with coronary artery disease and the controls were statistically significant (P less than 0.0005). PMID:3700650

  9. Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in tumor-bearing mice.

    Science.gov (United States)

    Li, Yan-Li; Ma, Zhong-Liang; Zhao, Yue; Zhang, Jing

    2015-04-01

    Two human papillomavirus (HPV) 16 oncogenic proteins, E6 and E7, are co-expressed in the majority of HPV16-induced cervical cancer cells. Thus, the E6 and E7 proteins are good targets for developing therapeutic vaccines for cervical cancer. In the present study, immunization with the mutant non-transforming HPV16 E7 (mE7) protein was demonstrated to inhibit the growth of TC-1 cells in the TC-1 mouse model. The HPV16 mE7 gene was amplified by splicing overlap extension polymerase chain reaction using pET-28a(+)-E7 as a template, and the gene was cloned into pET-28a(+) to form pET-28a(+)-mE7. Compared with the E7 protein, mE7 lacks amino acid residues 94-98, and at residue 24, there is a Cys to Gly substitution. pET-28a(+)-mE7 was then introduced into Escherichia coli Rosetta. The expression of mE7 was induced by isopropyl β-D-1-thiogalactopyranoside. The mE7 protein was purified using Ni-NTA agarose and detected by SDS-PAGE and western blot analysis. In the tumor prevention model, no tumor was detected in the mice vaccinated with the mE7 protein. After 40 days, the tumor-free mice and control mice were challenged with 2×10 5 TC-1 cells. All control mice developed tumors six days later, but mE7 immunized mice were tumor free until 90 days. In the tumor therapy model, the TC-1 cells were initially injected subcutaneously, and the mice were subsequently vaccinated. Vaccination against the mE7 protein may significantly inhibit TC-1 cell growth compared to the control. These results demonstrated that immunization with the HPV16 mE7 protein elicited a long-term protective immunity against TC-1 tumor growth and generated a significant inhibition of TC-1 growth in a TC-1 mouse model.

  10. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    Science.gov (United States)

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-06-01

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Crystallization and preliminary X-ray characterization of full-length Chlamydomonas reinhardtii centrin

    International Nuclear Information System (INIS)

    Alfaro, Elisa; Valle Sosa, Liliana del; Sanoguet, Zuleika; Pastrana-Ríos, Belinda; Schreiter, Eric R.

    2008-01-01

    C. reinhardtii centrin, an EF-hand calcium-binding protein localized to the microtubule-organizing center of eukaryotic organisms, has been crystallized in the presence of the model peptide melittin. X-ray diffraction data were collected to 2.2 Å resolution. Chlamydomonas reinhardtii centrin is a member of the EF-hand calcium-binding superfamily. It is found in the basal body complex and is important for flagellar motility. Like other members of the EF-hand family, centrin interacts with and modulates the function of other proteins in a calcium-dependent manner. To understand how C. reinhardtii centrin interacts with its protein targets, it has been crystallized in the presence of the model peptide melittin and X-ray diffraction data have been collected to 2.2 Å resolution. The crystals are orthorhombic, with unit-cell parameters a = 52.1, b = 114.4, c = 34.8 Å, and are likely to belong to space group P2 1 2 1 2

  12. Expression of ErbB3-binding protein-1 (EBP1 during primordial follicle formation: role of estradiol-17ß.

    Directory of Open Access Journals (Sweden)

    Anindit Mukherjee

    Full Text Available The formation of primordial follicles involves the interaction between the oocytes and surrounding somatic cells, which differentiate into granulosa cells. Estradiol-17ß (E promotes primordial follicle formation in vivo and in vitro; however, the underlying mechanisms are poorly understood. The expression of an ERBB3-binding protein 1 (EBP1 is downregulated in 8-day old hamster ovaries concurrent with the increase in serum estradiol levels and the formation of primordial follicles. The objectives of the present study were to determine the spatio-temporal expression and putative E regulation of EBP1 in ovarian cells during perinatal development with respect to primordial follicle formation. Hamster EBP1 nucleic acid and amino acid sequences were more than 93% and 98% similar, respectively, to those of mouse and human, and contained nucleolar localization signal, RNA-binding domain and several phosphorylation sites. EBP1 protein was present in somatic cells and oocytes from E15, and declined in oocytes by P1 and in somatic cells by P5. Thereafter, EBP1 expression increased through P7 with a transient decline on P8 primarily in interstitial cells. EBP1 mRNA levels mirrored protein expression pattern. E treatment on P1 and P4 upregulated EBP1 expression by P8 whereas E treatment on P4 downregulated it by 72 h suggesting a compensatory upregulation due to E pretreatment. Treatment with an FSH-antiserum, which suppressed primordial follicle formation, prevented the decline in EBP1 levels, and the effect was reversed by E treatment. Therefore, the results provide the first evidence that EBP1 may play an important role in mediating the effect of E in the differentiation of somatic cells into granulosa cells during primordial follicle formation.

  13. Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance.

    Science.gov (United States)

    Kim, Jinhee; Kang, Won-Hee; Hwang, Jeena; Yang, Hee-Bum; Dosun, Kim; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2014-08-01

    The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap-binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap-binding pockets, and mutated. Yeast two-hybrid assay and co-immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E-knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild-type were over-expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over-expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge-based approaches for the engineering of broad-spectrum resistance in Chinese cabbage. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  14. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  15. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    Science.gov (United States)

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The adenovirus E4 11 k protein binds and relocalizes the cytoplasmic P-body component Ddx6 to aggresomes

    International Nuclear Information System (INIS)

    Greer, Amy E.; Hearing, Patrick; Ketner, Gary

    2011-01-01

    The adenovirus E4 11 k protein, product of E4 ORF3, is required in infection for processes including normal accumulation of viral late mRNAs. 11 k restructures both the nucleus and cytoplasm of infected cells by relocalizing specific host cell target proteins, most strikingly components of nuclear PML oncogenic domains. It is likely that in many cases relocalization inactivates target proteins to produce 11 k's effects, although the mechanism and targets for stimulation of late mRNA accumulation is unknown. We have identified a new set of proteins relocalized by 11 k: at least five protein components of cytoplasmic mRNA processing bodies (p-bodies) are found in 11 k-induced cytoplasmic aggresomes, sites where proteins are inactivated or destroyed. One of these p-body proteins, RNA helicase Ddx6, binds 11 k, suggesting a mechanism for relocalization. Because p-bodies are sites for mRNA degradation, their modification by 11 k may provide an explanation for the role of 11 k in viral late mRNA accumulation.

  17. Estimation of Relationship Between In Situ and In Vitro Rumen Protein Degradability of Extruded Full Fat Soybean

    Directory of Open Access Journals (Sweden)

    Arzu Erol Tunç

    2017-10-01

    Full Text Available The objectives of this study were to estimate the protein degradability of extruded full fat soybean (ESB by in situ (nylon bag and in vitro enzymatic method and to develop an equation in order predict in situ degradability from in vitro values. In the study enzymatic technique; hydrolysis after 1 h (INV1 and after 24 h (INV24 by a purified protease extracted from Streptomyces griseus in a borate-phosphate buffer at pH 8 was used as in vitro method. Relationship between in situ effective protein degradability (INSE and in vitro degradability after 1 and 24 hours incubations (INV1 and INV24 were determined. In situ protein degradability was measured at 0, 2, 4, 8, 16, 24, and 48 and at 72 h incubations in the rumen of 3 Holstein cows. In the study INSE, INV1 and INV24 were determined as 58.05, 20.24 and 41.46% respectively. Despite there were differences between in situ and in vitro protein degradability values, correlation coefficients between in situ and in vitro protein degradability of ESB were high and regression equations for estimation of in situ from in vitro were found significant. As conclusion in vitro enzymatic protein degradability (INV1 and INV24 can be used for estimation of in situ effective protein degradability of extruded full fat soybean.

  18. N-linked glycans do not affect plasma membrane localization of multidrug resistance protein 4 (MRP4) but selectively alter its prostaglandin E2 transport activity.

    Science.gov (United States)

    Miah, M Fahad; Conseil, Gwenaëlle; Cole, Susan P C

    2016-01-22

    Multidrug resistance protein 4 (MRP4) is a member of subfamily C of the ATP-binding cassette superfamily of membrane transport proteins. MRP4 mediates the ATP-dependent efflux of many endogenous and exogenous solutes across the plasma membrane, and in polarized cells, it localizes to the apical or basolateral plasma membrane depending on the tissue type. MRP4 is a 170 kDa glycoprotein and here we show that MRP4 is simultaneously N-glycosylated at Asn746 and Asn754. Furthermore, confocal immunofluorescence studies showed that N-glycans do not affect MRP4's apical membrane localization in polarized LLC-PK1 cells or basolateral membrane localization in polarized MDCKI cells. However, vesicular transport assays showed that N-glycans differentially affect MRP4's ability to transport prostaglandin E2, but not estradiol glucuronide. Together these data indicate that N-glycosylation at Asn746 and Asn754 is not essential for plasma membrane localization of MRP4 but cause substrate-selective effects on its transport activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The MX/G/1 queue with queue length dependent service times

    Directory of Open Access Journals (Sweden)

    Bong Dae Choi

    2001-01-01

    Full Text Available We deal with the MX/G/1 queue where service times depend on the queue length at the service initiation. By using Markov renewal theory, we derive the queue length distribution at departure epochs. We also obtain the transient queue length distribution at time t and its limiting distribution and the virtual waiting time distribution. The numerical results for transient mean queue length and queue length distributions are given.

  20. Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type

    DEFF Research Database (Denmark)

    Rose, Adam John; Bisiani, Bruno; Vistisen, Bodil

    2009-01-01

    that the increase in skeletal muscle eEF2 Thr(56) phosphorylation was restricted to type I myofibers. Taken together, these data suggest that the depression of skeletal muscle protein synthesis with endurance-type exercise may be regulated at both initiation (i.e. 4EBP1) and elongation (i.e. eEF2) steps, with eEF2......Protein synthesis in skeletal muscle is known to decrease during exercise and it has been suggested that this may depend on the magnitude of the relative metabolic stress within the contracting muscle. To examine the mechanisms behind this, the effect of exercise intensity on skeletal muscle......) increased during exercise but was not influenced by exercise intensity, and was lower than rest 30min after exercise. On the other hand, 4EBP1 phosphorylation at Thr(37/46) decreased during exercise and this decrease was greater at higher exercise intensities, and was similar to rest 30min after exercise...

  1. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.

    Science.gov (United States)

    Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A

    2008-10-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.

  2. (E-2-[4-(Diethylaminostyryl]-1-methylquinolin-1-ium 4-chlorobenzenesulfonate monohydrate

    Directory of Open Access Journals (Sweden)

    Suchada Chantrapromma

    2014-04-01

    Full Text Available The asymmetric unit of the title hydrated salt, C22H25N2+·C6H4ClO3S−·H2O, comprises two 2-[4-(diethylaminostyryl]-1-methylquinolin-1-ium cations, two 4-chlorobenzenesulfonate anions and two solvent water molecules. One ethyl group of both cations displays disorder over two positions in a 0.659 (2:0.341 (2 ratio in one molecule and in a 0.501 (2:0.499 (2 ratio in the other. The sulfonate group of one anion is also disordered over two positions in a 0.893 (7:0.107 (7 ratio. The dihedral angle between the mean plane of the quinolinium ring system and that of benzene ring is 10.57 (18° in one cation and 14.4 (2° in the other. In the crystal, cations, anions and water molecules are linked into chains along the [010] direction by O—H...Osulfonate hydrogen bonds, together with weak C—H...Osulfonate and C—H...Cl interactions. The cations are stacked by π–π interactions, with centroid–centroid distances in the range 3.675 (2–4.162 (3 Å.

  3. FULL LENGTH RESEARCH ARTICLE Osue et al. (2008) SWJ:1-4 ...

    African Journals Online (AJOL)

    Dr. Ahmed

    Current mass distribution of ivermectin to the ... antibodies, and the hazard of working with radioactive substances. .... using a modified protocol (Engelbrecht et al. .... in assumed endemic normal individuals show they have been exposed.

  4. Effect of complete protein 4.1R deficiency on ion transport properties of murine erythrocytes

    International Nuclear Information System (INIS)

    Rivera, Alicia; De Franceschi, Lucia; Peters, Luanne L.; Gascard, Philippe; Mohandas, Narla; Brugnara, Carlo

    2006-01-01

    Moderate hemolytic anemia, abnormal erythrocyte morphology (spherocytosis), and decreased membrane stability are observed in mice with complete deficiency of all erythroid protein 4.1 protein isoforms (4.1-/-; Shi TS et al., J. Clin. Invest. 103:331,1999). We have examined the effects of erythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transport and volume regulation. 4.1-/- mice exhibited erythrocyte dehydration that was associated with reduced cellular K and increased Na content. Increased Na permeability was observed in these mice, mostly mediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities. The Na/H exchange of 4.1-/- erythrocytes was markedly activated by exposure to hypertonic conditions (18.2+- 3.2 in 4.1 -/- vs.9.8 +- 1.3 mmol/1013 cell x h in control mice), with an abnormal dependence on osmolarity, (K0.5=417 +- 42 in 4.1 -/- vs. 460 +- 35 mOsmin control mice) suggestive of an up-regulated functional state. While the affinity for internal protons was not altered (K0.5= 489.7 +- 0.7 vs.537.0 +- 0.56 nM in control mice), the Vmax of the H-induced Na/H exchange activity was markedly elevated in 4.1-/- erythrocytes Vmax 91.47 Moderate hemolytic anemia, abnormal erythrocyte morphology (spherocytosis), and decreased membrane stability are observed in mice with complete deficiency of all erythroid protein 4.1 protein isoforms (4.1-/-; Shi TSet al., J. Clin. Invest. 103:331,1999). We have examined the effects of erythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transport and volume regulation. 4.1-/- mice exhibited erythrocyte dehydration that was associated with reduced cellular K and increased Na content. Increased Na permeability was observed in these mice, mostly mediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities. The Na/H exchange of 4.1-/- erythrocytes was markedly activated by exposure to hypertonic conditions (18.2 +- 3.2 in 4.1 -/- vs. 9.8 +- 1.3mmol/1013 cell x h in

  5. (E-1-(2-Aminophenyl-3-(4-chlorophenylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Rodrigo Abonia

    2016-10-01

    Full Text Available The title chalcone (E-1-(2-aminophenyl-3-(4-chlorophenylprop-2-en-1-one was prepared with an excellent yield from a Claisen–Schmidt condensation reaction between o-aminoacetophenone and p-chlorobenzaldehyde. This product will be used as a key precursor for the development of an alternative route for the total synthesis of dubamine and graveoline alkaloids. Single crystals of the title compound suitable for X-ray diffraction were grown via slow evaporation in ethanol at room temperature. A complete crystallographic study was performed in depth to unequivocally confirm its structure and determine some interesting supramolecular properties. The crystal structure of the title o-aminochalcone, C15H12ClNO, shows two molecules per asymmetric unit (Z′ = 2 and adopts an E configuration about the C=C double bond. In the title compound, the mean plane of the non-H atoms of the central chalcone fragment C—C(O—C—C—C is as follows: [r.m.s. deviation = 0.0130 Å for A-B and 0.0043 for C-D molecules]. In the crystal, molecules are linked by N—H...N and C—H...O, hydrogen bonds forming edge-fused R66(46 rings parallel to (100. Additionally, N—H...O hydrogen bonds generate a three-dimensional network.

  6. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis

    KAUST Repository

    Cui, Peng; Chen, Tao; Qin, Tao; Ding, Feng; Wang, Zhenyu; Chen, Hao; Xiong, Liming

    2016-01-01

    © 2016 American Society of Plant Biologists. All rights reserved. Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana. Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 59-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximidetreated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.

  7. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis

    KAUST Repository

    Cui, Peng

    2016-02-18

    © 2016 American Society of Plant Biologists. All rights reserved. Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana. Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 59-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximidetreated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.

  8. The Triticum Mosaic Virus 5' Leader Binds to Both eIF4G and eIFiso4G for Translation.

    Directory of Open Access Journals (Sweden)

    Robyn Roberts

    Full Text Available We recently identified a remarkably strong (739 nt-long IRES-like element in the 5' untranslated region (UTR of Triticum mosaic virus (TriMV, Potyviridae. Here, we define the components of the cap-binding translation initiation complex that are required for TriMV translation. Using bio-layer interferometry and affinity capture of the native translation apparatus, we reveal that the viral translation element has a ten-fold greater affinity for the large subunit eIF4G/eIFiso4G than to the cap binding protein eIF4E/eIFiso4E. This data supports a translation mechanism that is largely dependent on eIF4G and its isoform. The binding of both scaffold isoforms requires an eight base-pair-long hairpin structure located 270 nucleotides upstream of the translation initiation site, which we have previously shown to be crucial for IRES activity. Despite a weak binding affinity to the mRNA, eIFiso4G alone or in combination with eIFiso4E supports TriMV translation in a cap-binding factor-depleted wheat germ extract. Notably, TriMV 5' UTR-mediated translation is dependent upon eIF4A helicase activity, as the addition of the eIF4A inhibitor hippuristanol inhibits 5' UTR-mediated translation. This inhibition is reversible with the addition of recombinant wheat eIF4A. These results and previous observations demonstrate a key role of eIF4G and eIF4A in this unique mechanism of cap-independent-translation. This work provides new insights into the lesser studied translation mechanisms of plant virus-mediated internal translation initiation.

  9. Suppression of Translation During in vitro Maturation of Pig Oocytes Despite Enhanced Formation of Cap-binding Protein Complex eIF4F and 4E-BP1 hyperphosphorylation.

    Czech Academy of Sciences Publication Activity Database

    Ellederová, Zdeňka; Kovářová, Hana; Melo Sterza, F.; Livingstone, M.; Tomek, W.; Kubelka, Michal

    2006-01-01

    Roč. 73, 1 (2006), s. 68-76 ISSN 1040-452X R&D Projects: GA ČR GA301/00/0781; GA ČR GA524/04/0104 Grant - others:Deutche Forschungsgemeinschaft(DE) 463TSE113/28 Institutional research plan: CEZ:AV0Z50450515 Keywords : meiosis * translation initiation * eIF-4E Subject RIV: ED - Physiology Impact factor: 2.379, year: 2006

  10. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Abel L Carcagno

    Full Text Available BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell

  11. The BPS spectrum of the 4d {N}=2 SCFT's H 1, H 2, D 4, E 6, E 7, E 8

    Science.gov (United States)

    Cecotti, Sergio; Del Zotto, Michele

    2013-06-01

    Extending results of 1112.3984, we show that all rank 1 {N}=2 SCFT's in the sequence H 1, H 2, D 4 E 6, E 7, E 8 have canonical finite BPS chambers containing precisely 2 h(F) = 12(∆ - 1) hypermultiplets. The BPS spectrum of the canonical BPS chambers saturates the conformal central charge c, and satisfies some intriguing numerology.

  12. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    International Nuclear Information System (INIS)

    Kanginakudru, Sriramana; DeSmet, Marsha; Thomas, Yanique; Morgan, Iain M.; Androphy, Elliot J.

    2015-01-01

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication

  13. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    Energy Technology Data Exchange (ETDEWEB)

    Kanginakudru, Sriramana, E-mail: skangina@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); DeSmet, Marsha, E-mail: mdesmet@iupui.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Thomas, Yanique, E-mail: ysthomas@umail.iu.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States); Morgan, Iain M., E-mail: immorgan@vcu.edu [VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia (United States); Androphy, Elliot J., E-mail: eandro@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2015-04-15

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication.

  14. Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia

    Directory of Open Access Journals (Sweden)

    Ruoting Ding

    2016-12-01

    Full Text Available Oxidative stress is a possible pathogenesis of hyperalgesia. Advanced oxidation protein products (AOPPs, a new family of oxidized protein compounds, have been considered as a novel marker of oxidative stress. However, the role of AOPPs in the mechanism of hyperalgesia remains unknown. Our study aims to investigate whether AOPPs have an effect on hyperalgesia and the possible underlying mechanisms. To identify the AOPPs involved, we induced hyperalgesia in rats by injecting complete Freund’s adjuvant (CFA in hindpaw. The level of plasma AOPPs in CFA-induced rats was 1.6-fold in comparison with what in normal rats (P<0.05. After intravenous injection of AOPPs-modified rat serum albumin (AOPPs-RSA in Sprague-Dawley rats, the paw mechanical thresholds, measured by the electronic von Frey system, significantly declined. Immunofluorescence staining indicated that AOPPs increased expressions of NADPH oxidase 1 (Nox1, NADPH oxidase 4 (Nox4, transient receptor potential vanilloid 1 (TRPV1 and calcitonin gene-related peptide (CGRP in the dorsal root ganglia (DRG tissues. In-vitro studies were performed on primary DRG neurons which were obtained from both thoracic and lumbar DRG of rats. Results indicated that AOPPs triggered reactive oxygen species (ROS production in DRG neurons, which were significantly abolished by ROS scavenger N-acetyl-l-cysteine (NAC and small-interfering RNA (siRNA silencing of Nox1 or Nox4. The expressions of Nox1, Nox4, TRPV1 and CGRP were significantly increased in AOPPs-induced DRG neurons. And relevant siRNA or inhibitors notably suppressed the expressions of these proteins and the calcium influxes in AOPPs-induced DRG neurons. In conclusion, AOPPs increased significantly in CFA-induced hyperalgesia rats and they activated Nox1/Nox4-ROS to sensitize TRPV1-dependent Ca2+ influx and CGRP release which led to inducing mechanical hyperalgesia.

  15. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Directory of Open Access Journals (Sweden)

    Alamar Santiago

    2009-09-01

    Full Text Available Abstract Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new

  16. Consumo energético-protéico e estado nutricional de crianças menores de cinco anos, no estado de Pernambuco, Brasil Energy and protein intake and nutritional status of children under five years of age in Pernambuco state, Brazil

    Directory of Open Access Journals (Sweden)

    Risia Cristina Egito de Menezes

    2007-08-01

    Full Text Available OBJETIVO: Avaliar o consumo de energia e proteínas e associá-lo ao estado nutricional de crianças menores de 5 anos. MÉTODOS: Estudo transversal com 948 crianças menores de cinco anos, no Estado de Pernambuco. O consumo alimentar foi registrado utilizando o método recordatório de 24 horas. Para análise de energia e proteína foram utilizadas as Dietary Reference Intakes como referência, verificando-se o consumo mediano e a prevalência de inadequação. O estado nutricional foi avaliado utilizando a referência do National Center for Health Statistics (índices peso/idade, peso/estatura e estatura/idade. O estado nutricional das crianças com consumo abaixo e maior ou igual à referência de energia e proteína foi comparado, utilizando-se o teste "t" de Student. RESULTADOS: O consumo mediano de energia e proteína esteve acima das ingestões dietéticas de referência, na maioria das faixas etárias. No entanto, foram encontradas prevalências de inadequação do consumo de energia (42,4% e de proteína (5,0%. O percentual de desnutrição (escore-Z OBJECTIVE: This study aims to evaluate energy and protein intake and associate it with the nutritional status of children under five years of age. METHODS: This is a cross-sectional study with 948 children under five years of age, in the State of Pernambuco. Dietary intake was recorded using 24-hour recalls. Dietary Reference Intakes were used as reference to analyze energy and protein intake values by verifying the median intake and the prevalence of inadequacy. Nutritional status was assessed using the National Center for Health Statistics as reference (weight-for-age, weight-for-length and length-for-age indices. The Student's t-test was used to compare the nutritional status of children with intake values below, above or equal to the energy and protein reference standards. RESULTS: The median energy and protein intake exceeded the dietary reference intakes in most age groups. However, a

  17. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    International Nuclear Information System (INIS)

    Shimada, Koichi; Ikeda, Kyoko; Ito, Koichi

    2009-01-01

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1. To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-α stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-α-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-α and BMP signaling pathways.

  18. ApoE4-specific Misfolded Intermediate Identified by Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Benfeard Williams

    2015-10-01

    Full Text Available The increased risk of developing Alzheimer's disease (AD is associated with the APOE gene, which encodes for three variants of Apolipoprotein E, namely E2, E3, E4, differing only by two amino acids at positions 112 and 158. ApoE4 is known to be the strongest risk factor for AD onset, while ApoE3 and ApoE2 are considered to be the AD-neutral and AD-protective isoforms, respectively. It has been hypothesized that the ApoE isoforms may contribute to the development of AD by modifying the homeostasis of ApoE physiological partners and AD-related proteins in an isoform-specific fashion. Here we find that, despite the high sequence similarity among the three ApoE variants, only ApoE4 exhibits a misfolded intermediate state characterized by isoform-specific domain-domain interactions in molecular dynamics simulations. The existence of an ApoE4-specific intermediate state can contribute to the onset of AD by altering multiple cellular pathways involved in ApoE-dependent lipid transport efficiency or in AD-related protein aggregation and clearance. We present what we believe to be the first structural model of an ApoE4 misfolded intermediate state, which may serve to elucidate the molecular mechanism underlying the role of ApoE4 in AD pathogenesis. The knowledge of the structure for the ApoE4 folding intermediate provides a new platform for the rational design of alternative therapeutic strategies to fight AD.

  19. Prophylaxis vs. on-demand treatment with BAY 81-8973, a full-length plasma protein-free recombinant factor VIII product: results from a randomized trial (LEOPOLD II).

    Science.gov (United States)

    Kavakli, K; Yang, R; Rusen, L; Beckmann, H; Tseneklidou-Stoeter, D; Maas Enriquez, M

    2015-03-01

    BAY 81-8973 is a new full-length human recombinant factor VIII product manufactured with technologies to improve consistency in glycosylation and expression to optimize clinical performance. To demonstrate superiority of prophylaxis vs. on demand therapy with BAY 81-8973 in patients with severe hemophilia A. In this multinational,randomized, open-label crossover study (LEOPOLD II;ClinicalTrials.gov identifier: NCT01233258), males aged 12–65 years with severe hemophilia A were randomized to twice-weekly prophylaxis (20-30 IU kg(-1)), 3-times-weekly prophylaxis (30-40 IU kg(-1)), or on-demand treatment with BAY 81-8973. Potency labeling for BAY 81-8973 was based on the chromogenic substrate assay or adjusted to the one-stage assay. Primary efficacy endpoint was annualized number of all bleeds (ABR). Adverse events (AEs)and immunogenicity were also assessed. Eighty patients (on demand, n = 21; twice-weekly prophylaxis, n = 28; 3-times-weekly prophylaxis, n = 31) were treated and analyzed. Mean ± SD ABR was significantly lower with prophylaxis (twice-weekly, 5.7 ± 7.2; 3-times-weekly, 4.3 ± 6.5; combined, 4.9 ± 6.8) vs. on-demand treatment (57.7 ± 24.6; P demand treatment (60.0). Median ABR was higher with twice-weekly vs. 3-times-weekly prophylaxis during the first 6-month treatment period (4.1 vs. 2.0) but was comparable in the second 6-month period (1.1 vs. 2.0). Few patients reported treatment-related AEs (4%); no treatment-related serious AEs or inhibitors were reported. Twice weekly or 3-times-weekly prophylaxis with BAY 81-8973 reduced median ABR by 97% compared with on-demand therapy, confirming the superiority of prophylaxis. Treatment with BAY 81-8973 was well tolerated.

  20. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    Directory of Open Access Journals (Sweden)

    Tuan Anh Pham

    2016-03-01

    Full Text Available Hybrid nanoparticle (NP structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1 from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3. We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP, magnetite (Fe3O4 NP, and cobalt ferrite nanoparticles (CoFe2O4 NP. Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the

  1. E/Z-Photoisomerization of N,N'-Bis(4-dimethylaminobenzylidene1,2-diaminoethane and N,N'-Bis(4-dimethylaminobenzylidene1,3-diaminopropane in Chloroform

    Directory of Open Access Journals (Sweden)

    Asghar Samimi

    2011-01-01

    Full Text Available The E/Z-Photoisomerization of Schiff bases N,N'-bis(4-dimethylamino benzylidene1,2-diaminoethane (BDAE and N,N'-bis(4-dimethylaminobenzyli-dene1,3-diaminopropane (BDAP were studied by UV-Vis absorption spectroscopy and theoretical chemistry calculations. Photochemical investigations in solution depict the time resolved spectral changes, recorded before and after irradiation. The shift indicates the transformation from E to Z configuration of the C=N bond in solution for BDAE and BDAP. Spectra profiles and kinetic constants were evaluated using multivariate curve resolution and non-linear least squares curve fitting by toolbox of MATLAB program using the corresponding absorption spectra-time data. The experimental results show that BDAP can perform the photochromism easier than BDAE, may be due to the molecular topology difference.

  2. Curcumin Protects against 1-Methyl-4-phenylpyridinium Ion- and Lipopolysaccharide-Induced Cytotoxicities in the Mouse Mesencephalic Astrocyte via Inhibiting the Cytochrome P450 2E1

    Directory of Open Access Journals (Sweden)

    Hai-Yan Gui

    2013-01-01

    Full Text Available Curcumin is extracted from the rhizomes of the ginger family plant Curcuma longa L., which has a good protection for liver, kidney, and immune system. However, there is little information about its contribution in protection of astrocytes recently. The present study was undertaken to elucidate the protective effect of curcumin, an herbal antioxidant, on 1-methyl-4-phenylpyridinium ion- (MPP+- and lipopolysaccharide- (LPS- induced cytotoxicities, as well as the underlying mechanisms by using primary mouse mesencephalic astrocytes. The results showed that curcumin protected the mesencephalic astrocytes from MPP+- and LPS-induced toxicities along with reducing reactive oxygen species (P<0.05 and maleic dialdehyde (P<0.05 sufficiently. Moreover, curcumin significantly inhibited the cytochrome P450 2E1 (CYP2E1 expression (P<0.01 at mRNA level, P<0.05 at protein level and its activity (P<0.05 sufficiently induced by MPP+ and LPS in the mouse mesencephalic astrocytes. And curcumin as well as diallyl sulphide, a CYP2E1 positive inhibitor, ameliorated MPP+- and LPS-induced mouse mesencephalic astrocytes damage. Accordingly, curcumin protects against MPP+- and LPS-induced cytotoxicities in the mouse mesencephalic astrocyte via inhibiting the CYP2E1 expression and activity.

  3. IgE and allergen-specific immunotherapy-induced IgG4 recognize similar epitopes of Bet v 1, the major allergen of birch pollen.

    Science.gov (United States)

    Groh, N; von Loetzen, C S; Subbarayal, B; Möbs, C; Vogel, L; Hoffmann, A; Fötisch, K; Koutsouridou, A; Randow, S; Völker, E; Seutter von Loetzen, A; Rösch, P; Vieths, S; Pfützner, W; Bohle, B; Schiller, D

    2017-05-01

    Allergen-specific immunotherapy (AIT) with birch pollen generates Bet v 1-specific immunoglobulin (Ig)G 4 which blocks IgE-mediated hypersensitivity mechanisms. Whether IgG 4 specific for Bet v 1a competes with IgE for identical epitopes or whether novel epitope specificities of IgG 4 antibodies are developed is under debate. We sought to analyze the epitope specificities of IgE and IgG 4 antibodies from sera of patients who received AIT. 15 sera of patients (13/15 received AIT) with Bet v 1a-specific IgE and IgG 4 were analyzed. The structural arrangements of recombinant (r)Bet v 1a and rBet v 1a _11x , modified in five potential epitopes, were analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. IgE binding to Bet v 1 was assessed by ELISA and mediator release assays. Competitive binding of monoclonal antibodies specific for Bet v 1a and serum IgE/IgG 4 to rBet v 1a and serum antibody binding to a non-allergenic Bet v 1-type model protein presenting an individual epitope for IgE was analyzed in ELISA and western blot. rBet v 1a _11x had a Bet v 1a - similar secondary and tertiary structure. Monomeric dispersion of rBet v 1a _11x was concentration and buffer-dependent. Up to 1500-fold increase in the EC 50 for IgE-mediated mediator release induced by rBet v 1a _11x was determined. The reduction of IgE and IgG 4 binding to rBet v 1a _11x was comparable in 67% (10/15) of sera. Bet v 1a-specific monoclonal antibodies inhibited binding of serum IgE and IgG 4 to 66.1% and 64.9%, respectively. Serum IgE and IgG 4 bound specifically to an individual epitope presented by our model protein in 33% (5/15) of sera. Patients receiving AIT develop Bet v 1a-specific IgG 4 which competes with IgE for partly identical or largely overlapping epitopes. The similarities of epitopes for IgE and IgG 4 might stimulate the development of epitope-specific diagnostics and therapeutics. © 2016 John Wiley & Sons Ltd.

  4. Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization.

    Science.gov (United States)

    Liebsch, Filip; Aurousseau, Mark R P; Bethge, Tobias; McGuire, Hugo; Scolari, Silvia; Herrmann, Andreas; Blunck, Rikard; Bowie, Derek; Multhaup, Gerd

    2017-08-11

    The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala 463 and Cys 466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Kazuaki Kajimoto

    2014-01-01

    Full Text Available The fatty acid binding protein 4 (FABP4, one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6 and vascular endothelial growth factor (VEGF production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH, superoxide dismutase (SOD and glutathione S-transferase A4 (GSTA4 were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2. FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1, the signal sequence receptor α (Ssr1, the ORM1-like 3 (Ormdl3, and the spliced X-box binding protein 1 (Xbp1s, were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.

  6. 4-Hydroxyhexenal- and 4-Hydroxynonenal-Modified Proteins in Pterygia

    Directory of Open Access Journals (Sweden)

    Ichiya Sano

    2013-01-01

    Full Text Available Oxidative stress has been suspected of contributing to the pathogenesis of pterygia. We evaluated the immunohistochemical localization of the markers of oxidative stress, that is, the proteins modified by 4-hydroxyhexenal (4-HHE and 4-hydroxynonenal (4-HNE, which are reactive aldehydes derived from nonenzymatic oxidation of n-3 and n-6 polyunsaturated fatty acids, respectively. In the pterygial head, labeling of 4-HHE- and 4-HNE-modified proteins was prominent in the nuclei and cytosol of the epithelium. In the pterygial body, strong labeling was observed in the nuclei and cytosol of the epithelium and proliferating subepithelial connective tissue. In normal conjunctival specimens, only trace immunoreactivity of both proteins was observed in the epithelial and stromal layers. Exposures of ultraviolet (330 nm, 48.32 ± 0.55 J/cm2 or blue light (400 nm, 293.0 ± 2.0 J/cm2 to rat eyes enhanced labeling of 4-HHE- and 4-HNE-modified proteins in the nuclei of conjunctival epithelium. Protein modifications by biologically active aldehydes are a molecular event involved in the development of pterygia.

  7. Protein: MPB4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB4 Sema3A signaling molecules DPYSL2 CRMP2, ULIP2 DPYSL2 Dihydropyrimidinase-related pr...otein 2 Collapsin response mediator protein 2, N2A3, Unc-33-like phosphoprotein 2 9606 Homo sapiens Q16555 1808 2VM8, 2GSE 1808 Q16555 ...

  8. Radiosensitization of head/neck sqaumous cell carcinoma by adenovirus-mediated expression of the Nbs1 protein

    International Nuclear Information System (INIS)

    Rhee, Juong G.; Li, Daqing; Suntharalingam, Mohan; Guo Chuanfa; O'Malley, Bert W.; Carney, James P.

    2007-01-01

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome, show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. Experimental Procedures: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1 into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line JHU011. These cells were evaluated for expression of the viral based constructs and assayed for clonogenic survival following radiation exposure. Results: Exposure of cells expressing Nbs1-300 to ionizing radiation resulted in a small reduction in survival relative to cells infected with control virus. Surprisingly, expression of full-length Nbs1 protein resulted in markedly enhanced sensitivity to ionizing radiation. Furthermore, the use of a fractionated radiation scheme following virus infection demonstrates that expression of full-length Nbs1 protein results in significant reduction in cell survival. Conclusions: These results provide a proof of principle that disruption of Nbs1 function may provide a means of enhancing the radiosensitivity of head and neck tumors. Additionally, this work highlights the Mre11 complex as an attractive target for development of radiation sensitizers

  9. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222.

    Science.gov (United States)

    Orecchini, Elisa; Doria, Margherita; Michienzi, Alessandro; Giuliani, Erica; Vassena, Lia; Ciafrè, Silvia Anna; Farace, Maria Giulia; Galardi, Silvia

    2014-01-01

    Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells.

  10. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  11. Deep Circumflex Iliac Artery-Related Hemoperitoneum Formation After Surgical Drain Placement: Successful Transcatheter Embolization

    International Nuclear Information System (INIS)

    Park, Sang Woo; Chang, Seong-Hwan; Yun, Ik Jin; Lee, Hae Won

    2010-01-01

    A 53-year-old woman with liver cirrhosis and hepatocellular carcinoma underwent living donor liver transplantation. After transplantation, her hemoglobin and hematocrit levels decreased to 6.3 g/dl and 18.5%, respectively, during the course of 3 days. A contrast-enhanced abdominal computed axial tomography (CAT) scan showed a hemoperitoneum in the right perihepatic space with no evidence of abdominal wall hematoma or pseudoaneurysm formation. An angiogram of the deep circumflex iliac artery (DCIA) showed extravasation of contrast media along the surgical drain, which had been inserted during the transplantation procedure. Transcatheter embolization of the branches of the DCIA was successfully performed using N-butyl cyanoacrylate.

  12. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  13. Complete genomic sequences for hepatitis C virus subtypes 4b, 4c, 4d, 4g, 4k, 4l, 4m, 4n, 4o, 4p, 4q, 4r and 4t.

    Science.gov (United States)

    Li, Chunhua; Lu, Ling; Wu, Xianghong; Wang, Chuanxi; Bennett, Phil; Lu, Teng; Murphy, Donald

    2009-08-01

    In this study, we characterized the full-length genomic sequences of 13 distinct hepatitis C virus (HCV) genotype 4 isolates/subtypes: QC264/4b, QC381/4c, QC382/4d, QC193/4g, QC383/4k, QC274/4l, QC249/4m, QC97/4n, QC93/4o, QC139/4p, QC262/4q, QC384/4r and QC155/4t. These were amplified, using RT-PCR, from the sera of patients now residing in Canada, 11 of which were African immigrants. The resulting genomes varied between 9421 and 9475 nt in length and each contains a single ORF of 9018-9069 nt. The sequences showed nucleotide similarities of 77.3-84.3 % in comparison with subtypes 4a (GenBank accession no. Y11604) and 4f (EF589160) and 70.6-72.8 % in comparison with genotype 1 (M62321/1a, M58335/1b, D14853/1c, and 1?/AJ851228) reference sequences. These similarities were often higher than those currently defined by HCV classification criteria for subtype (75.0-80.0 %) and genotype (67.0-70.0 %) division, respectively. Further analyses of the complete and partial E1 and partial NS5B sequences confirmed these 13 'provisionally assigned subtypes'.

  14. RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function.

    Science.gov (United States)

    Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami

    2011-02-01

    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named 'RiceFOX'. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/.

  15. Nonoperative Management and Novel Imaging for Posterior Circumflex Humeral Artery Injury in Volleyball.

    Science.gov (United States)

    van de Pol, Daan; Planken, R Nils; Terpstra, Aart; Pannekoek-Hekman, Marja; Kuijer, P Paul F M; Maas, Mario

    We report on a 34-yr-old male elite volleyball player with symptomatic emboli in the spiking hand from a partially thrombosed aneurysm of the posterior circumflex humeral artery (PCHA) in his dominant shoulder. At initial diagnosis and follow-up, a combination of time-resolved and high-resolution steady state contrast-enhanced magnetic resonance angiography (CE-MRA) enabled detailed visualization of: (1) emboli that were not detectable by vascular ultrasound; and (2) the PCHA aneurysm, including compression during abduction and external rotation (ABER provocation). At 15-month follow-up, including forced cessation of volleyball activities over the preceding 9 months, the PCHA aneurysm remained unchanged. Central filling defects in the palmar arch and digital arteries resolved over time and affected arterial vessel segments showed postthrombotic changes. Digital blood pressure values improved substantially and almost normalized during follow-up. In conclusion, this case report is the first to show promising results of nonoperative management for a vascular shoulder overuse injury in a professional volleyball player as an alternative to invasive therapeutic options.

  16. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    Directory of Open Access Journals (Sweden)

    Lijuan Chen

    Full Text Available Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.

  17. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  18. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  19. Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    Directory of Open Access Journals (Sweden)

    Zipfel Peter F

    2010-02-01

    Full Text Available Abstract Background B. burgdorferi sensu lato (sl is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH or Factor H-like protein1 (FHL-1 to Complement Regulator-Acquiring Surface Proteins (CRASPs. Results We demonstrate that B. garinii OspA serotype 4 (ST4 PBi resist complement-mediated killing by binding of FHL-1. To identify the primary ligands of FHL-1 four CspA orthologs from B. garinii ST4 PBi were cloned and tested for binding to human CFH and FHL-1. Orthologs BGA66 and BGA71 were found to be able to bind both complement regulators but with different intensities. In addition, all CspA orthologs were tested for binding to mammalian and avian CFH. Distinct orthologs were able to bind to CFH of different animal origins. Conclusions B. garinii ST4 PBi is able to evade complement killing and it can bind FHL-1 to membrane expressed proteins. Recombinant proteins BGA66 can bind FHL-1 and human CFH, while BGA71 can bind only FHL-1. All recombinant CspA orthologs from B. garinii ST4 PBi can bind CFH from different animal origins. This partly explains the wide variety of animals that can be infected by B. garinii.

  20. AcEST: DK950959 [AcEST

    Lifescience Database Archive (English)

    Full Text Available XENLA RNA-binding protein with multiple splicing OS=Xenopus laevis GN=rbpms PE=2 SV=1 Length = 196 Score = 4...iple splicing OS=Mus musculus GN=Rbpms PE=2 SV=1 Length = 197 Score = 47.8 bits (112), Expect = 6e-05 Identi...nding protein with multiple splicing 2 OS=Mus musculus GN=Rbpms2 PE=1 SV=1 Length = 206 Score = 46.2 bits (1