WorldWideScience

Sample records for full-energy peak gamma-ray

  1. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Yun-A Jo

    2016-12-01

    Full Text Available An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs. We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV. We also found that peak luminosity is positively correlated with peak energy.

  2. Absolute peak detection efficiencies of a Ge(Li) detector for high gamma-ray energies

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1985-11-01

    Absolute peak detection efficiencies of a Ge(Li) detector for gamma-rays of 3.5 MeV to 12 MeV were measured using four (p,γ) reactions and a (n,γ) reaction. Two-line-method was used to obtaine peak detection efficiencies. The efficiencies with the both cases are agreed very well. Utilization of (n,γ) reaction is, therefore, effective for measuring these efficiencies, because high energy gamma-rays can be generated easily by using a neutron source. These results were applied to calibration of a gamma-ray standard source, emitting 6.13 MeV gamma-rays, and of intensities of 56 Co standard gamma-ray source. (author)

  3. Discovery and characterization of the first low-peaked and intermediate-peaked BL Lacertae objects in the very high energy {gamma}-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Karsten

    2009-12-19

    20 years after the discovery of the Crab Nebula as a source of very high energy {gamma}-rays, the number of sources newly discovered above 100 GeV using ground-based Cherenkov telescopes has considerably grown, at the time of writing of this thesis to a total of 81. The sources are of different types, including galactic sources such as supernova remnants, pulsars, binary systems, or so-far unidentified accelerators and extragalactic sources such as blazars and radio galaxies. The goal of this thesis work was to search for {gamma}-ray emission from a particular type of blazars previously undetected at very high {gamma}-ray energies, by using the MAGIC telescope. Those blazars previously detected were all of the same type, the so-called high-peaked BL Lacertae objects. The sources emit purely non-thermal emission, and exhibit a peak in their radio-to-X-ray spectral energy distribution at X-ray energies. The entire blazar population extends from these rare, low-luminosity BL Lacertae objects with peaks at X-ray energies to the much more numerous, high-luminosity infrared-peaked radio quasars. Indeed, the low-peaked sources dominate the source counts obtained from space-borne observations at {gamma}-ray energies up to 10 GeV. Their spectra observed at lower {gamma}-ray energies show power-law extensions to higher energies, although theoretical models suggest them to turn over at energies below 100 GeV. This opened the quest for MAGIC as the Cherenkov telescope with the currently lowest energy threshold. In the framework of this thesis, the search was focused on the prominent sources BL Lac, W Comae and S5 0716+714, respectively. Two of the sources were unambiguously discovered at very high energy {gamma}-rays with the MAGIC telescope, based on the analysis of a total of about 150 hours worth of data collected between 2005 and 2008. The analysis of this very large data set required novel techniques for treating the effects of twilight conditions on the data quality

  4. Full energy peak efficiency of composite detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    Experiments involving radioactive beams demand high detection efficiencies. One of the ways to obtain high detection efficiency without deteriorating the energy resolution or timing characteristics is the use of composite detectors which are composed of standard HPGe crystals arranged in a compact way. Two simplest composite detectors are the clover and cluster detectors. The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) comprises of 16 large volume, 32-fold segmented HPGe clover detectors, where each detector is shielded by a 20-fold segmented escape suppression shield (ESS)

  5. Gamma-ray escape peak characteristics of radiation-damaged reverse-electrode germanium coaxial detectors

    International Nuclear Information System (INIS)

    Pehl, R.H.; Hull, E.L.; Madden, N.W.; Xing Jingshu; Friesel, D.L.

    1996-01-01

    A comparison of the characteristics of full-energy gamma-ray peaks and their corresponding escape peaks when high energy photons interact in radiation damaged reverse-electrode (n-type) germanium coaxial detectors is presented. Coaxial detector geometry is the dominant factor, causing charge collection to be dramatically better for interactions occurring near the outer periphery of the detector as well as increasing of the probability of escape events occurring in this region. It follows that the resolution of escape peaks is better than that of ordinary gamma-ray peaks. This is experimentally verified. A nearly identical but undamaged detector exhibited significant Doppler broadening of single escape peaks. Because double escape events preferentially occur at outer radii, energy shifts of double escape reflect extremely small amounts of charge trapping in undamaged detectors. (orig.)

  6. Characterization of Compton-suppressed TIGRESS detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, R.; Andreoiu, C.; Cross, D.S.; Galinski, N.; Ball, G.C.; Djongolov, M.; Garnsworthy, A.B.; Hackman, G.; Orce, J.N.; Pearson, C.; Triambak, S.; Williams, S.J.; Drake, T.; Smalley, D.; Svensson, C.E.

    2009-01-01

    The TRIUMF-ISAC Gamma-Ray Escape- Suppressed Spectrometer (TIGRESS) will consist of 12 large-volume, 32-fold segmented HPGe clover detectors. Each detector is shielded by a 20-fold segmented Compton suppression shield. For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about full energy peak efficiency, resolution and lineshape of full energy peaks for high energy gamma-rays. However, suitable radioactive sources having decay gamma-rays of energies greater than ∼ 3.5 MeV are not easily available. So the characteristics of gamma spectrometers at energies higher than 3.5 MeV are usually determined from simulation data. Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable for single 10 MeV gamma-rays of absolute detection efficiency of 1.5% for backward configuration of the array. It has been observed experimentally that simulation results work well up to certain energies and might deviate at higher energies. So, it is essential to check the validity of simulation results for energies above 3.3 MeV. We have investigated the high energy performance of seven TIGRESS detectors up to 8 MeV

  7. Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Do-Kun Yoon; Joo-Young Jung; Tae Suk Suh; Seong-Min Han

    2015-01-01

    The purpose of this research is a statistical analysis for discrimination of prompt gamma ray peak induced by the 14.1 MeV neutron particles from spectra using Monte Carlo simulation. For the simulation, the information of 18 detector materials was used to simulate spectra by the neutron capture reaction. The discrimination of nine prompt gamma ray peaks from the simulation of each detector material was performed. We presented the several comparison indexes of energy resolution performance depending on the detector material using the simulation and statistics for the prompt gamma activation analysis. (author)

  8. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    Directory of Open Access Journals (Sweden)

    Meeyoung Jeong

    2014-12-01

    Full Text Available Odyssey, one of the NASA’s Mars exploration program and SELENE (Kaguya, a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  9. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    Science.gov (United States)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  10. Very high-energy gamma rays from gamma-ray bursts.

    Science.gov (United States)

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  11. Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory

    OpenAIRE

    The HAWC collaboration; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Rojas, D. Avila; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.

    2017-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico, which has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index -1.66, the high-energy component is extended to higher energies with no cut-off other than from extragalactic background light attenuation, HAWC would observe gamma rays with a peak ene...

  12. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan [School of Information Science & Technology, Chengdu University of Technology, Chengdu (China); Wu, Qi-fan [Department of Engineering Physics, Tsinghua University, Beijing (China)

    2017-06-21

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  13. Gamma-ray peak shapes from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  14. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Sinha, Mandira [Gurudas College, Narkeldanga, Kolkata-700054 (India); Ray, Maitreyi [Behala College, Parnashree, Kolkata-700060 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Roy, Subinit [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Basu, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Majumder, H. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2006-01-01

    Gamma ray spectra of two (p,{gamma}) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV.

  15. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  16. Gamma-Ray Peak Integration: Accuracy and Precision

    International Nuclear Information System (INIS)

    Richard M. Lindstrom

    2000-01-01

    The accuracy of singlet gamma-ray peak areas obtained by a peak analysis program is immaterial. If the same algorithm is used for sample measurement as for calibration and if the peak shapes are similar, then biases in the integration method cancel. Reproducibility is the only important issue. Even the uncertainty of the areas computed by the program is trivial because the true standard uncertainty can be experimentally assessed by repeated measurements of the same source. Reproducible peak integration was important in a recent standard reference material certification task. The primary tool used for spectrum analysis was SUM, a National Institute of Standards and Technology interactive program to sum peaks and subtract a linear background, using the same channels to integrate all 20 spectra. For comparison, this work examines other peak integration programs. Unlike some published comparisons of peak performance in which synthetic spectra were used, this experiment used spectra collected for a real (though exacting) analytical project, analyzed by conventional software used in routine ways. Because both components of the 559- to 564-keV doublet are from 76 As, they were integrated together with SUM. The other programs, however, deconvoluted the peaks. A sensitive test of the fitting algorithm is the ratio of reported peak areas. In almost all the cases, this ratio was much more variable than expected from the reported uncertainties reported by the program. Other comparisons to be reported indicate that peak integration is still an imperfect tool in the analysis of gamma-ray spectra

  17. Peak-by-peak correction of Ge(Li) gamma-ray spectra for photopeaks from background

    Energy Technology Data Exchange (ETDEWEB)

    Cutshall, N H; Larsen, I L [Oak Ridge National Lab., TN (USA)

    1980-12-01

    Background photopeaks can interfere with accurate measurement of low levels of radionuclides by gamma-ray spectrometry. A flowchart for peak-by-peak correction of sample spectra to produce accurate results is presented.

  18. Peak-by-peak correction of Ge(Li) gamma-ray spectra for photopeaks from background

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Larsen, I.L.

    1980-01-01

    Background photopeaks can interfere with accurate measurement of low levels of radionuclides by gamma-ray spectrometry. A flowchart for peak-by-peak correction of sample spectra to produce accurate results is presented. (orig.)

  19. On response operator in semiconductor gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krnac, S [Slovak Technical Univ., Bratislava (Slovakia); Povinec, P [International Atomic Energy Agency, Monaco (Monaco). MEL; Ragan, R [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    Some results of the scaling confirmation factor analysis (SCFA) application in semiconductor gamma-ray spectrometry presented in this contribution points out to a new ground for evaluation the gamma-ray spectra. This whole-spectrum processing approach considerably increases detection sensitivity, especially, if significant interferences being present in the measured spectrum. Precision of the SCFA method is determined by choice of a sufficient number of suitable calibration gamma-ray sources in the energy region of interest, by setting up an acceptable latent hypothesis and by chosen experimental quantification of spectra. The SCFA method is very advantageous to use, for instance, in ultra low-level gamma-spectrometry where counting rates in full energy peaks are extremely low as compared with background interferences. It enables to increase of the sensitivity by the 5-10 times in comparison with the traditional full energy peak net area method (J.K.). 1 fig., 2 tabs., 6 refs.

  20. On response operator in semiconductor gamma ray spectrometry

    International Nuclear Information System (INIS)

    Krnac, S.; Povinec, P.

    1995-01-01

    Some results of the scaling confirmation factor analysis (SCFA) application in semiconductor gamma-ray spectrometry presented in this contribution points out to a new ground for evaluation the gamma-ray spectra. This whole-spectrum processing approach considerably increases detection sensitivity, especially, if significant interferences being present in the measured spectrum. Precision of the SCFA method is determined by choice of a sufficient number of suitable calibration gamma-ray sources in the energy region of interest, by setting up an acceptable latent hypothesis and by chosen experimental quantification of spectra. The SCFA method is very advantageous to use, for instance, in ultra low-level gamma-spectrometry where counting rates in full energy peaks are extremely low as compared with background interferences. It enables to increase of the sensitivity by the 5-10 times in comparison with the traditional full energy peak net area method (J.K.). 1 fig., 2 tabs., 6 refs

  1. Experimental investigation of the multiple scatter peak of gamma rays in portland cement in the energy range 279-1332 keV

    International Nuclear Information System (INIS)

    Singh, Tejbir; Singh, Parjit S

    2011-01-01

    The pulse height spectra for different thicknesses of portland cement in the reflected geometry has been recorded with the help of a NaI(Tl) scintillator detector and 2 K MCA card using different gamma-ray sources such as Hg 203 (279 keV), Cs 137 (662 keV) and Co 60 (1173 and 1332 keV). It has been observed that the multiple scatter peak for portland cement appears at 110 (±7) keV in all the spectra irrespective of different incident photon energies in the range 279-1332 keV from different gamma-ray sources. Further, the variation in the intensity of the multiple scatter peak with the thickness of portland cement in the backward semi-cylinders has been investigated.

  2. Observational techniques of gamma rays astronomy in low energy

    International Nuclear Information System (INIS)

    Costa, J.M. da.

    1982-02-01

    Due to the absorption of great part of the gamma-ray spectrum of cosmic origin, by the earth's atmosphere at heights above 20Km, gamma-ray astronomy achieved its full development only after the advent of the space age. Ballons and satellites are the space vehicles which have been used to transport gamma-ray telescopes to observational heights in the atmosphere, or out of it. The results of these experiments can determine the sources, the energy spectra and the intensities of the cosmic gamma-rays, and provide other important information of astrophysical interest. The detection of gamma-rays of cosmic origin is very difficult. The observational techniques used in gamma-ray astronomy are dependent on the energy range of the gamma-rays which one desires to detect. The most common telescopes of low energy gamma-ray astronomy (50KeV - 20MeV) use NaI(Tl) scintillators, or germanium diodes, as principal detectors, surrounded by an active shield (anticoincidence) of organic or inorganic scintillators. (Author) [pt

  3. Search for two-{gamma} sum-energy peaks in the decay out of superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, D.; Khoo, T.L.; Lauritsen, T. [and others

    1995-08-01

    The spectrum of {gamma}rays decaying out of the superdeformed (SD) band in {sup 192}Hg has a quasicontinuous distribution. Whereas methods to construct level schemes from discrete lines in coincidence spectra are well established, new techniques must still be developed to extract information from coincidences involving quasicontinuous {gamma}rays. From an experiment using Eurogam, we obtained impressively clean 1- and 2-dimensional {gamma} spectra from pairwise or single gates, respectively, on the transitions of the SD band in {sup 192}Hg. We investigated methods to exploit the 2-dimensional quasicontinuum spectra coincident with the SD band to determine the excitation energy of the SD band above the normal yrast line. No strong peaks were observed in the 2-{gamma} sum spectra; only candidates of peaks at a 2-3 {sigma} level were found. This suggests that 2-{gamma} decay is not the dominant decay branch out of SD bands, consistent with the observed multiplicity of 3.2. We shall next search for peaks in sum-spectra of 3 {gamma}s.

  4. Identification of peaks in multidimensional coincidence {gamma}-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Morhac, Miroslav E-mail: fyzimiro@savba.sk; Kliman, Jan; Matousek, Vladislav; Veselsky, Martin; Turzo, Ivan

    2000-03-21

    In the paper a new algorithm to find peaks in two, three and multidimensional spectra, measured in large multidetector {gamma}-ray arrays, is derived. Given the dimension m, the algorithm is selective to m-fold coincidence peaks. It is insensitive to intersections of lower-fold coincidences, hereinafter called ridges.

  5. Low-energy X-ray and gamma spectrometry using silicon photodiodes

    International Nuclear Information System (INIS)

    Silva, Iran Jose Oliveira da

    2000-08-01

    The use of semiconductor detectors for radiation detection has increased in recent years due to advantages they present in comparison to other types of detectors. As the working principle of commercially available photodiodes is similar to the semiconductor detector, this study was carried out to evaluate the use of Si photodiodes for low energy x-ray and gamma spectrometry. The photodiodes investigated were SFH-205, SFH-206, BPW-34 and XRA-50 which have the following characteristics: active area of 0,07 cm 2 and 0,25 cm 2 , thickness of the depletion ranging from 100 to 200 μm and junction capacitance of 72 pF. The photodiode was polarized with a reverse bias and connected to a charge sensitive pre-amplifier, followed by a amplifier and multichannel pulse analyzer. Standard radiation source used in this experiment were 241 Am, 109 Cd, 57 Co and 133 Ba. The X-ray fluorescence of lead and silver were also measured through K- and L-lines. All the measurements were made with the photodiodes at room temperature.The results show that the responses of the photodiodes very linear by the x-ray energy and that the energy resolution in FWHM varied between 1.9 keV and 4.4 keV for peaks corresponding to 11.9 keV to 59 keV. The BPW-34 showed the best energy resolution and the lower dark current. The full-energy peak efficiency was also determined and it was observed that the peak efficiency decreases rapidly above 50 keV. The resolution and efficiency are similar to the values obtained with other semiconductor detectors, evidencing that the photodiodes used in that study can be used as a good performance detector for low energy X-ray and gamma spectrometry. (author)

  6. The effect of energy peak drift on the calibration of a high resolution gamma-ray soil density gauge

    International Nuclear Information System (INIS)

    Henshall, J.K.

    1994-01-01

    High spatial resolution is obtained from a gamma-ray transmission density gauge by restricting the measured counts to a narrow band of the energy spectrum, close to the emission energy peak. The effect on measurement accuracy of any movement of this measurement window relative to the energy peak was investigated. The findings were related to anticipated energy peak movements in a proposed LED-based gain-stabilization system. Movements of the energy peaks during recording of unstabilized spectra prevented direct comparisons of spectra at different positions. A simulation procedure was, therefore, developed in which movements of the measurement window relative to sets of stable calibration spectra were examined. When analysing spectra, recorded using a gauge with a different gain-stabilization system, accuracy was found to be unaffected by simulated peak movements of up to 0.03 MeV in the direction of increasing energy. However, movements of stabilized spectra in the direction of decreasing energy, and of unstabilized spectra in either direction, increased measurement errors to twice the level of inherent measurement errors within 0.02 MeV, with errors in bulk density of up to 0.7 Mg m −3 for movements of 0.1 MeV. The spectra of the new LED-based stabilization system are expected to behave in a manner similar to the unstabilized system, therefore requiring regular monitoring of the peak position. (author)

  7. Methods for the analysis of overlapped peaks in analytical gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Sterlinski, S.; Wasek, M.

    1989-01-01

    A review of critical evaluation of simple methods for the analysis of overlapped peaks from the point of view of their applicability in activation analysis are described. These methods are adopted from other spectroscopic techniques and gas chromatography. The experimental verification has been carried out for gamma-ray spectra in the energy range 120 KeV - 3 MeV. 28 refs., 8 figs., 3 tabs. (author)

  8. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Sinha, Mandira; Ray, Maitreyi; Goswami, A.; Roy, Subinit; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.

    2006-01-01

    Gamma ray spectra of two (p,γ) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV

  9. A simple method for the deconvolution of 134 Cs/137 Cs peaks in gamma-ray scintillation spectrometry

    International Nuclear Information System (INIS)

    Darko, E.O.; Osae, E.K.; Schandorf, C.

    1998-01-01

    A simple method for the deconvolution of 134 Cs / 137 Cs peaks in a given mixture of 134 Cs and 137 Cs using Nal(TI) gamma-ray scintillation spectrometry is described. In this method the 795 keV energy of 134 Cs is used as a reference peak to calculate the activity of the 137 Cs directly from the measured peaks. Certified reference materials were measured using the method and compared with a high resolution gamma-ray spectrometry measurements. The results showed good agreement with the certified values. The method is very simple and does not need any complicated mathematics and computer programme to de- convolute the overlapping 604.7 keV and 661.6 keV peaks of 134 Cs and 137 Cs respectively. (author). 14 refs.; 1 tab., 2 figs

  10. New stage in high-energy gamma-ray studies with GAMMA-400 after Fermi-LAT

    Directory of Open Access Journals (Sweden)

    Topchiev N.P.

    2017-01-01

    Full Text Available Fermi-LAT has made a significant contribution to the study of high-energy gamma-ray diffuse emission and the observations of 3000 discrete sources. However, one third of all gamma-ray sources (both galactic and extragalactic are unidentified, the data on the diffuse gamma-ray emission should be clarified, and signatures of dark matter particles in the high-energy gamma-ray range are not observed up to now. GAMMA-400, the currently developing gamma-ray telescope, will have angular (∼0.01∘ at 100 GeV and energy (∼1% at 100 GeV resolutions in the energy range of 10–1000 GeV which are better than Fermi-LAT (as well as ground gamma-ray telescopes by a factor of 5–10. It will observe some regions of the Universe (such as the Galactic Center, Fermi Bubbles, Crab, Cygnus, etc. in a highly elliptic orbit (without shading the telescope by the Earth continuously for a long time. It will allow us to identify many discrete sources, to clarify the structure of extended sources, to specify the data on the diffuse emission, and to resolve gamma rays from dark matter particles.

  11. Correlation between X-ray and high energy gamma-ray emission form Cygnus X-3

    International Nuclear Information System (INIS)

    Weekes, T.C.; Danaher, S.; Fegan, D.J.; Porter, N.A.

    1981-01-01

    In May-June 1980, the 4.8 hour modulated X-ray flux from Cygnus X-3 underwent a significant change in the shape of the light curve; this change correlates with the peak in the high-energy (E > 2 x 10 12 eV) gamma ray emission at the same epoch. (orig.)

  12. A Very High Energy Gamma-Ray Spectrum of 1ES 2344+514

    OpenAIRE

    Schroedter, M.; Badran, H. M.; Buckley, J. H.; Gordo, J. Bussons; Carter-Lewis, D. A.; Duke, C.; Fegan, D. J.; Fegan, S. F.; Finley, J. P.; Gillanders, G. H.; Grube, J.; Horan, D.; Kenny, G. E.; Kertzman, M.; Kosack, K.

    2005-01-01

    The BL Lacertae (BL Lac) object 1ES 2344+514 (1ES 2344), at a redshift of 0.044, was discovered as a source of very high energy (VHE) gamma rays by the Whipple Collaboration in 1995 \\citep{2344Catanese98}. This detection was recently confirmed by the HEGRA Collaboration \\citep{2344Hegra03}. As is typical for high-frequency peaked blazars, the VHE gamma-ray emission is highly variable. On the night of 20 December, 1995, a gamma-ray flare of 5.3-sigma significance was detected, the brightest ou...

  13. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  14. An empirical method for peak-to-total ratio computation of a gamma-ray detector

    International Nuclear Information System (INIS)

    Cesana, A.; Terrani, M.

    1989-01-01

    A simple expression for peak-to-total ratio evaluation of gamma-ray detectors in the energy range 0.3-10 MeV is proposed. The quantities one needs to know for the computation are: Detector dimensions and chemical composition, photon corss sections and an empirical energy dependent function which is valid for all the detector materials considered. This procedure seems able to produce peak-to-total values with an accuracy comparable with the most sophisticated Monte Carlo calculations. It has been tested using experimental peak-to-total values of Ge, NaI, CsI and BGO detectors but it is reasonable to suppose that it is valid for any detector material. (orig.)

  15. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    International Nuclear Information System (INIS)

    Kheymits, M D; Leonov, A A; Zverev, V G; Galper, A M; Arkhangelskaya, I V; Arkhangelskiy, A I; Yurkin, Yu T; Bakaldin, A V; Suchkov, S I; Topchiev, N P; Dalkarov, O D

    2016-01-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work. (paper)

  16. Peak fitting and identification software library for high resolution gamma-ray spectra

    International Nuclear Information System (INIS)

    Uher, Josef; Roach, Greg; Tickner, James

    2010-01-01

    A new gamma-ray spectral analysis software package is under development in our laboratory. It can be operated as a stand-alone program or called as a software library from Java, C, C++ and MATLAB TM environments. It provides an advanced graphical user interface for data acquisition, spectral analysis and radioisotope identification. The code uses a peak-fitting function that includes peak asymmetry, Compton continuum and flexible background terms. Peak fitting function parameters can be calibrated as functions of energy. Each parameter can be constrained to improve fitting of overlapping peaks. All of these features can be adjusted by the user. To assist with peak identification, the code can automatically measure half-lives of single or multiple overlapping peaks from a time series of spectra. It implements library-based peak identification, with options for restricting the search based on radioisotope half-lives and reaction types. The software also improves the reliability of isotope identification by utilizing Monte-Carlo simulation results.

  17. Efficiency curves of NIRR-1 gamma-ray spectrometry system at near ...

    African Journals Online (AJOL)

    The full-energy peak efficiency curves of the gamma-ray spectrometry for use with the Nigeria Research Reactor-1 (NIRR-1) have been determined by both theoretical and experimental at two source-detector positions for routine neutron activation analysis. Standard gamma ray sources were used to determine the efficiency ...

  18. Increase in compton scattering of gamma rays passing along metal surface

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Bilyk, Z.V.; Sakun, A.V.; Marushchenko, V.V.; Chernyavskij, O.Yu.; Litvinov, Yu.V.

    2014-01-01

    The paper considers experimental study of changes in energy of 137 Cs gamma source as gamma rays pass along metal surface. Decrease in gamma energy was examined by reducing the number of gamma rays in the complete absorption peak to the Compton length level and increasing the Compton effect. The number of gamma rays in the complete absorption peak decreases by 3.5 times in the angle range under study

  19. Use of an iterative convolution approach for qualitative and quantitative peak analysis in low resolution gamma-ray spectra

    International Nuclear Information System (INIS)

    Gardner, Robin P.; Ai Xianyun; Peeples, Cody R.; Wang, Jiaxin; Lee, Kyoung; Peeples, Johanna L.; Calderon, Adan

    2011-01-01

    In many applications, low resolution gamma-ray spectrometers, such as sodium iodide scintillation detectors, are widely used primarily due to their relatively low cost and high detection efficiency. There is widespread interest in improved methods for analyzing spectral data acquired with such devices, using inverse analysis. Peak means and peak areas in gamma- and X-ray spectra are needed for both qualitative and quantitative analysis. This paper introduces the PEAKSI code package that was developed at the Center for Engineering Applications of Radioisotopes (CEAR). The basic approach described here is to use accurate forward models and iterative convolution instead of direct deconvolution. Rather than smoothing and differentiation a combination of linear regression and non-linear searching is used to minimize the reduced chi-square, since this approach retains the capability of establishing uncertainties in the estimated peak parameters. The PEAKSI package uses a Levenberg-Marquardt (LM) non-linear search method combined with multiple linear regression (MLR) to minimize the reduced chi-square value for fitting single or multiple overlapping peaks to determine peak parameters, including peak means, peak standard deviations or full width at half maximum (FWHM), net peak counts, and background counts of peaks in experimental gamma-ray spectra. This approach maintains the natural error structure so that parameter uncertainties can be estimated. The plan is to release this code to the public in the near future.

  20. Status of development of the Gamma Ray Energy Tracking Array (GRETA)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.Y.; Schmid, G.J.; Vetter, K. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1996-12-31

    The current generation of large gamma-ray detector arrays, Gammasphere, Eurogam and GASP, are based on modules of Compton suppressed Ge detectors. Due to the solid angle occupied by the Compton shields and to gamma rays escaping the detector, the total peak efficiency of such a design is limited to about 20% for a 1.3 MeV gamma ray. A shell consisting of closely packed Ge detectors has been suggested as the solution to the efficiency limitation. In this case, the entire solid angle is covered by Ge detectors, and by adding the signal from neighboring detectors, the escaped energy is recovered and much higher efficiency can be achieved (e.g. 60% for a 1.3 MeV gamma ray). However, for high multiplicity cascades, the summing of two gamma rays hitting neighboring detectors reduces the efficiency and increases the background. In order to reduce this summing, a large number of detectors is required. For example, with a multiplicity of 25, one needs about 1500 detectors to keep the probability of false summing below 10% and the cost of such a detector array will be prohibitive. Rather than such an approach, the authors are developing a new concept for a gamma-ray array; a shell of closely-packed Ge detectors consisting of 100-200 highly-segmented elements. The high granularity of the segmented Ge detector enables the authors to resolve each of the scattering interactions and determine its position and energy. A tracking algorithm, using the position and energy information, will then identify the interactions belonging to a particular gamma ray and its energy is obtained by summing only these interactions. Such an array can reach a total efficiency about 60%, with a resolving power 1000 times higher than that of current arrays.

  1. Background Reduction around Prompt Gamma-ray Peaks from Korean White Ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. N.; Sun, G. M.; Moon, J. H.; Chung, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Y. E. [Chung-buk National University, Chungju (Korea, Republic of)

    2007-10-15

    Prompt gamma-ray activation analysis (PGAA) is recognized as a very powerful and unique nuclear method in terms of its non-destruction, high precision, and no time-consuming advantages. This method is used for the analysis of trace elements in various types of sample matrix such as metallurgical, environmental, biological samples, etc. When a spectrum is evaluated, background continuum is a major disturbing factor for a precise and accurate analysis. Furthermore, a prompt gamma spectrum is complicate with a wide range. To make the condition free from this limitation, a reduction of the background is important for the PGAA analysis. The background-reducing methods are divided into using the electronic equipment like a suppression mode and principal component analysis (PCA) based on a multivariate statistical method. In PGAA analysis, Lee et al. compared the background reduction methods like PCA and wavelet transform for the prompt gamma-ray spectra. Lim et al. have applied the multivariate statistical method to the identification of the peaks with low-statistics from the explosives. In this paper, effective reduction of background in the prompt gamma spectra using the PCA is applied to the prompt gammaray peaks from Korean Baeksam (Korean white ginseng)

  2. Full energy peak efficiency of NaI(Tl) gamma detectors and its analytical and semi-empirical representations

    International Nuclear Information System (INIS)

    Sudarshan, M.; Joseph, J.; Singh, R.

    1992-01-01

    The validity of various analytical functions and semi-empirical formulae proposed for representing the full energy peak efficiency (FEPE) curves of Ge(Li) and HPGe detectors has been tested for the FEPE of 7.6 cm x 7.6 cm and 5 cm x 5 cm Nal(Tl) detectors in the gamma energy range from 59.5 to 1408.03 keV. The functions proposed by East, and McNelles and Campbell provide by far the best representations of the present data. The semi-empirical formula of Mowatt describes the present data very well. The present investigation shows that some of the analytical functions and semi-empirical formulae, which represent the FEPE of the Ge(Li) and HPGe detectors very well, can be quite fruitfully used for Nal(Tl) detectors. (Author)

  3. An analytical calculation of the peak efficiency for cylindrical sources perpendicular to the detector axis in gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Julio C. [Autoridad Regulatoria Nuclear, Laboratorio de Espectrometria Gamma-CTBTO, Av. Del Libertador 8250, C1429BNP Buenos Aires (Argentina)], E-mail: jaguiar@sede.arn.gov.ar

    2008-08-15

    An analytical expression for the so-called full-energy peak efficiency {epsilon}(E) for cylindrical source with perpendicular axis to an HPGe detector is derived, using point-source measurements. The formula covers different measuring distances, matrix compositions, densities and gamma-ray energies; the only assumption is that the radioactivity is homogeneously distributed within the source. The term for the photon self-attenuation is included in the calculation. Measurements were made using three different sized cylindrical sources of {sup 241}Am, {sup 57}Co, {sup 137}Cs, {sup 54}Mn, and {sup 60}Co with corresponding peaks of 59.5, 122, 662, 835, 1173, and 1332 keV, respectively, and one measurement of radioactive waste drum for 662, 1173, and 1332 keV.

  4. Ultra-high energy cosmic rays and prompt TeV gamma rays from ...

    Indian Academy of Sciences (India)

    physics pp. 789-792. Ultra-high energy cosmic rays and prompt. TeV gamma rays from gamma ray bursts ... The origin of the observed ultra-high energy cosmic ray (UHECR) events with ... are proton and electron rest mass, respectively.

  5. Librarian driven analysis of gamma ray spectra

    International Nuclear Information System (INIS)

    Kondrashov, V.; Petersone, I.

    2002-01-01

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates of their errors to produce a list of possible radionuclides matching gamma ray line(s). The identification of a given radionuclide is obtained by searching for a match with the energy information of a database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma ray data library. This library of experimental data includes approximately 17,000 gamma ray energy lines related to 756 known gamma emitter radionuclides listed by the ICRP. (author)

  6. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  7. Cosmic very high-energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Max-Planck-Institut fur Physik, Muenchen (Germany)

    1998-12-31

    The article gives a brief overview, aimed at nonspecialists, about the goals and selected recent results of the detection of very-high energy {gamma}-rays (energies above 100 GeV) with ground based detectors. The stress is on the physics questions, specially the origin of Galactic Cosmic Rays and the emission of TeV {gamma}-radiation from active galaxies. Moreover some particle-physics questions which are addressed in this area are discussed.

  8. Gamma ray energy tracking in GRETINA

    Science.gov (United States)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  9. GAMMA-RAY LOUDNESS, SYNCHROTRON PEAK FREQUENCY, AND PARSEC-SCALE PROPERTIES OF BLAZARS DETECTED BY THE FERMI LARGE AREA TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Linford, J. D.; Taylor, G. B.; Schinzel, F. K., E-mail: jlinford@unm.edu [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131-0001 (United States)

    2012-09-20

    The parsec-scale radio properties of 232 active galactic nuclei, most of which are blazars, detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed contemporaneously by the Very Long Baseline Array (VLBA) at 5 GHz. Data from both the first 11 months (1FGL) and the first 2 years (2FGL) of the Fermi mission were used to investigate these sources' {gamma}-ray properties. We use the ratio of the {gamma}-ray-to-radio luminosity as a measure of {gamma}-ray loudness. We investigate the relationship of several radio properties to {gamma}-ray loudness and to the synchrotron peak frequency. There is a tentative correlation between {gamma}-ray loudness and synchrotron peak frequency for BL Lac objects in both 1FGL and 2FGL, and for flat-spectrum radio quasars (FSRQs) in 2FGL. We find that the apparent opening angle tentatively correlates with {gamma}-ray loudness for FSRQs, but only when we use the 2FGL data. We also find that the total VLBA flux density correlates with the synchrotron peak frequency for BL Lac objects and FSRQs. The core brightness temperature also correlates with synchrotron peak frequency, but only for the BL Lac objects. The low-synchrotron-peaked (LSP) BL Lac object sample shows indications of contamination by FSRQs which happen to have undetectable emission lines. There is evidence that the LSP BL Lac objects are more strongly beamed than the rest of the BL Lac object population.

  10. Monte Carlo simulation and gaussian broaden techniques for full energy peak of characteristic X-ray in EDXRF

    International Nuclear Information System (INIS)

    Li Zhe; Liu Min; Shi Rui; Wu Xuemei; Tuo Xianguo

    2012-01-01

    Background: Non-standard analysis (NSA) technique is one of the most important development directions of energy dispersive X-ray fluorescence (EDXRF). Purpose: This NSA technique is mainly based on Monte Carlo (MC) simulation and full energy peak broadening, which were studied preliminarily in this paper. Methods: A kind of MC model was established for Si-PIN based EDXRF setup, and the flux spectra were obtained for iron ore sample. Finally, the flux spectra were broadened by Gaussian broaden parameters calculated by a new method proposed in this paper, and the broadened spectra were compared with measured energy spectra. Results: MC method can be used to simulate EDXRF measurement, and can correct the matrix effects among elements automatically. Peak intensities can be obtained accurately by using the proposed Gaussian broaden technique. Conclusions: This study provided a key technique for EDXRF to achieve advanced NSA technology. (authors)

  11. An optimum analysis sequence for environmental gamma-ray spectrometry

    International Nuclear Information System (INIS)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L.

    2010-10-01

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced χ 2 criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  12. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  13. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  14. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  15. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Haas, F.X.; Lemming, J.F.

    1976-01-01

    A nondestructive technique is described for calculating plutonium-238, plutonium-240, plutonium-241 and americium-241 relative to plutonium-239 from measured peak areas in the high resolution gamma-ray spectra of solid plutonium samples. Gamma-ray attenuation effects were minimized by selecting sets of neighboring peaks in the spectrum whose components are due to the different isotopes. Since the detector efficiencies are approximately the same for adjacent peaks, the accuracy of the isotopic ratios is dependent on the half-lives, branching intensities, and measured peak areas. The data presented describe the results obtained by analyzing gamma-ray spectra in the energy region from 120 to 700 keV. Most of the data analyzed were obtained from plutonium material containing 6 percent plutonium-240. Sample weights varied from 0.25 g to approximately 1.2 kg. The methods were also applied to plutonium samples containing up to 23 percent plutonium-240 with weights of 0.25 to 200 g. Results obtained by gamma-ray spectroscopy are compared to chemical analyses of aliquots taken from the bulk samples

  16. Processing of gamma-ray spectrometric logs

    International Nuclear Information System (INIS)

    Umiastowski, K.; Dumesnil, P.

    1984-10-01

    CEA (Commissariat a l'Energie Atomique) has developped a gamma-ray spectrometric tool, containing an analog-to-digital converter. This new tool permits to perform very precise uranium logs (natural gamma-ray spectrometry), neutron activation logs and litho-density logs (gamma-gamma spectrometric logs). Specific processing methods were developped to treate the particular problems of down-hole gamma-ray spectrometry. Extraction of the characteristic gamma-ray peak, even if they are superposed on the background radiation of very high intensity, is possible. This processing methode enables also to obtain geological informations contained in the continuous background of the spectrum. Computer programs are written in high level language for SIRIUS (VICTOR) and APOLLO computers. Exemples of uranium and neutron activation logs treatment are presented [fr

  17. An optimum analysis sequence for environmental gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L., E-mail: fta777@hotmail.co [Universidad Autonoma de Zacatecas, Centro Regional de Estudis Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-10-15

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced {chi}{sup 2} criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  18. Computation of full energy peak efficiency for nuclear power plant radioactive plume using remote scintillation gamma-ray spectrometry.

    Science.gov (United States)

    Grozdov, D S; Kolotov, V P; Lavrukhin, Yu E

    2016-04-01

    A method of full energy peak efficiency estimation in the space around scintillation detector, including the presence of a collimator, has been developed. It is based on a mathematical convolution of the experimental results with the following data extrapolation. The efficiency data showed the average uncertainty less than 10%. Software to calculate integral efficiency for nuclear power plant plume was elaborated. The paper also provides results of nuclear power plant plume height estimation by analysis of the spectral data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  20. Evaluation of peak-fitting software for gamma spectrum analysis

    International Nuclear Information System (INIS)

    Zahn, Guilherme S.; Genezini, Frederico A.; Moralles, Mauricio

    2009-01-01

    In all applications of gamma-ray spectroscopy, one of the most important and delicate parts of the data analysis is the fitting of the gamma-ray spectra, where information as the number of counts, the position of the centroid and the width, for instance, are associated with each peak of each spectrum. There's a huge choice of computer programs that perform this type of analysis, and the most commonly used in routine work are the ones that automatically locate and fit the peaks; this fit can be made in several different ways - the most common ways are to fit a Gaussian function to each peak or simply to integrate the area under the peak, but some software go far beyond and include several small corrections to the simple Gaussian peak function, in order to compensate for secondary effects. In this work several gamma-ray spectroscopy software are compared in the task of finding and fitting the gamma-ray peaks in spectra taken with standard sources of 137 Cs, 60 Co, 133 Ba and 152 Eu. The results show that all of the automatic software can be properly used in the task of finding and fitting peaks, with the exception of GammaVision; also, it was possible to verify that the automatic peak-fitting software did perform as well as - and sometimes even better than - a manual peak-fitting software. (author)

  1. New parameterization of the E1 gamma-ray strength function

    International Nuclear Information System (INIS)

    Gardner, D.G.; Dietrich, F.S.

    1979-01-01

    The giant dipole (GD) parameters of peak energy, width, and cross section were satisfactorily correlated for elements from V to Bi, assuming two overlapping peaks with a separation dependent on deformation. The energy dependence of the GD resonance is assumed to have a Breit-Wigner form, but with an energy-dependent width. The resulting gamma-ray strength function model is used to predict neutron capture cross sections and gamma-ray spectra for isotopes of Ta, Os, and Au. 23 references

  2. Bright x-ray flares in gamma-ray burst afterglows.

    Science.gov (United States)

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  3. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    Science.gov (United States)

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The reference peak areas of the 1995 IAEA test spectra for gamma-ray spectrum analysis programs are absolute and traceable

    CERN Document Server

    Blaauw, M

    1999-01-01

    A previously validated algorithm for absolute peak area determination was used to verify the reference peak areas supplied with the 1995 IAEA test spectra for gamma-ray spectrometry. These reference peak areas turn out to be absolute and traceable to a precision of 0.9%: The reference peak areas are possibly too low by a factor 0.992+-0.009. It is proposed to employ the test spectra and reference areas to validate the peak areas obtained with any algorithm in gamma-ray spectrometry. (author)

  5. A self-sufficient and general method for self-absorption correction in gamma-ray spectrometry using GEANT4

    International Nuclear Information System (INIS)

    Hurtado, S.; Villa, M.; Manjon, G.; Garcia-Tenorio, R.

    2007-01-01

    This paper presents a self-sufficient and general method for measurement of the activity of low-level gamma-emitters in voluminous samples by gamma-ray spectrometry with a coaxial germanium detector. Due to self-absorption within the sample, the full-energy peak efficiency of low-energy emitters in semiconductor gamma-spectrometers depends strongly on a number of factors including sample composition, density, sample size and gamma-ray energy. As long as those commented factors are well characterized, the influence of self-absorption in the full-energy peak efficiency of low-energy emitters can be calculated using Monte Carlo method based on GEANT4 code for each individual sample. However this task is quite tedious and time consuming. In this paper, we propose an alternative method to determine this influence for voluminous samples of unknown composition. Our method combines both transmission measurements and Monte Carlo simulations, avoiding the application of Monte Carlo full-energy peak efficiency determinations for each individual sample. To test the accuracy and precision of the proposed method, we have calculated 210 Pb activity in sediments samples from an estuary located in the vicinity of several phosphates factories with the proposed method, comparing the obtained results with the ones determined in the same samples using two alternative radiometric techniques

  6. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  7. Parametric normalization for full-energy peak efficiency of HPGe γ-ray spectrometers at different counting positions for bulky sources.

    Science.gov (United States)

    Peng, Nie; Bang-Fa, Ni; Wei-Zhi, Tian

    2013-02-01

    Application of effective interaction depth (EID) principle for parametric normalization of full energy peak efficiencies at different counting positions, originally for quasi-point sources, has been extended to bulky sources (within ∅30 mm×40 mm) with arbitrary matrices. It is also proved that the EID function for quasi-point source can be directly used for cylindrical bulky sources (within ∅30 mm×40 mm) with the geometric center as effective point source for low atomic number (Z) and low density (D) media and high energy γ-rays. It is also found that in general EID for bulky sources is dependent upon Z and D of the medium and the energy of the γ-rays in question. In addition, the EID principle was theoretically verified by MCNP calculations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Pulsed neutron logging system for inelastic scattering gamma rays with gain compensation

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D. Jr.

    1976-01-01

    An illustrative embodiment of the invention includes methods for linearizing the gain of borehole gamma ray energy measurement apparatus. A known energy peak (or peaks) which is prominent in the gamma ray energy spectra of borehole measurements is monitored and any drift in its apparent location in the energy spectrum is used to generate an error voltage. The error voltage is applied in an inverse feedback manner to control the gain of system amplifiers to cancel the drift

  9. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo

    2010-01-01

    We compare the redshifts, host galaxy metallicities, and isotropic (E γ,iso ) and beaming-corrected (E γ ) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z γ,iso , or E γ . These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  10. The Radio/Gamma-Ray Connection from 120 MHz to 230 GHz

    Directory of Open Access Journals (Sweden)

    Marcello Giroletti

    2016-09-01

    Full Text Available Radio loud active galactic nuclei are composed of different spatial features, each one characterized by different spectral properties in the radio band. Among them, blazars are the most common class of sources detected at gamma-rays by Fermi, and their radio emission is dominated by the flat spectrum compact core. In this contribution, we explore the connection between emission at high energy revealed by Fermi and at radio frequencies. Taking as a reference the strong and very highly significant correlation found between gamma rays and cm-λ radio emission, we explore the different behaviours found as we change the energy range in gamma rays and in radio, therefore changing the physical parameters of the zones involved in the emitted radiation. We find that the correlation weakens when we consider (1 gamma rays of energy above 10 GeV (except for high synchrotron peaked blazars or (2 low frequency radio data taken by the Murchison Widefield Array; on the other hand, the correlation strengthens when we consider mm-λ data taken by Atacama Large Millimeter Array (ALMA.

  11. The theoretical study of full spectrum analysis method for airborne gamma-ray spectrometric data

    International Nuclear Information System (INIS)

    Ni Weichong

    2011-01-01

    Spectra of airborne gamma-ray spectrometry was found to be the synthesis of spectral components of radioelement sources by analyzing the constitution of radioactive sources for airborne gamma-ray spectrometric survey and establishing the models of gamma-ray measurement. The mathematical equation for analysising airborne gamma-ray full spectrometric data can be expressed into matrix and related expansions were developed for the mineral resources exploration, environmental radiation measurement, nuclear emergency monitoring, and so on. Theoretical study showed that the atmospheric radon could be directly computed by airborne gamma-ray spectrometric data with full spectrum analysis without the use of the accessional upward-looking detectors. (authors)

  12. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1991-01-01

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  13. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    International Nuclear Information System (INIS)

    Baerwald, Philipp

    2014-07-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  14. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    International Nuclear Information System (INIS)

    Hughes, E.B.; Finman, L.C.; Hofstadter, R.; Lepetich, J.E.; Lin, Y.C.; Mattox, J.R.; Nolan, P.L.; Parks, R.; Walker, A.H.

    1986-01-01

    A large NaI(T1) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described

  15. Characteristics of the telescope for high energy gamma-ray astronomy selected for definition studies on the Gamma Ray Observatory

    Science.gov (United States)

    Hughes, E. B.; Hofstadter, R.; Rolfe, J.; Johansson, A.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1980-01-01

    The high energy gamma-ray telescope selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  16. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.

    2007-01-01

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511 * MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.

  17. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  18. Proximal gamma-ray spectroscopy to predict soil properties using windows and full-spectrum analysis methods.

    Science.gov (United States)

    Mahmood, Hafiz Sultan; Hoogmoed, Willem B; van Henten, Eldert J

    2013-11-27

    Fine-scale spatial information on soil properties is needed to successfully implement precision agriculture. Proximal gamma-ray spectroscopy has recently emerged as a promising tool to collect fine-scale soil information. The objective of this study was to evaluate a proximal gamma-ray spectrometer to predict several soil properties using energy-windows and full-spectrum analysis methods in two differently managed sandy loam fields: conventional and organic. In the conventional field, both methods predicted clay, pH and total nitrogen with a good accuracy (R2 ≥ 0.56) in the top 0-15 cm soil depth, whereas in the organic field, only clay content was predicted with such accuracy. The highest prediction accuracy was found for total nitrogen (R2 = 0.75) in the conventional field in the energy-windows method. Predictions were better in the top 0-15 cm soil depths than in the 15-30 cm soil depths for individual and combined fields. This implies that gamma-ray spectroscopy can generally benefit soil characterisation for annual crops where the condition of the seedbed is important. Small differences in soil structure (conventional vs. organic) cannot be determined. As for the methodology, we conclude that the energy-windows method can establish relations between radionuclide data and soil properties as accurate as the full-spectrum analysis method.

  19. A dual energy gamma-ray transmission technique for gold alloy identification

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Shingu, Hiroyasu; Iwase, Hirotoshi

    1991-01-01

    An application of the dual energy gamma-ray transmission techniques to gold alloy identification is presented. The measurement by dual energy gamma-ray transmission is independent of thickness and density of a sample. Due to this advantage, golden accessories such as necklaces, earrings and rings can be assayed in spite of their various thicknesses and irregular sectional shapes. Choice of a gamma-ray energy pair suitable for the object is important. The authors chose 511 keV and 1275 keV gamma-rays from 22 Na. With this energy pair, R value (a ratio of mass attenuation coefficients for low and high energy gamma-rays) is predominantly related to the weight fraction of gold of the sample. Using a 370 kBq 22 Na small source and a 50 mm dia.x 50 mm thick NaI(Tl) scintillator for 1200 seconds, a resolution of 2% for the R value was obtained. This corresponds to approximately 5% of the weight fraction of gold. A better resolution can be obtained by increasing the source activity or measurement time. (author)

  20. Energy spectrum of extragalactic gamma-ray sources

    Science.gov (United States)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  1. High energy photons and neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble space telescope has recently discovered thousands of gigantic comet-like objects in a ring around the central star in the nearest planetary nebula. It is suggested that such circumstellar rings exist around most of stars. Collisions of the relativistic debris from gamma ray bursts in dense stellar regions with such gigantic comet-like objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy gamma-rays and neutrinos from gamma ray bursts

  2. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    Directory of Open Access Journals (Sweden)

    Lidvansky A.S.

    2017-01-01

    Full Text Available Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes and 100 TeV (EAS arrays are different, their time structures seem to be similar. Moreover, maybe the difference between “flares” and “waves” recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  3. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  4. An apparently normal gamma-ray burst with an unusually low luminosity.

    Science.gov (United States)

    Sazonov, S Yu; Lutovinov, A A; Sunyaev, R A

    2004-08-05

    Much of the progress in understanding gamma-ray bursts (GRBs) has come from studies of distant events (redshift z approximately 1). In the brightest GRBs, the gamma-rays are so highly collimated that the events can be seen across the Universe. It has long been suspected that the nearest and most common events have been missed because they are not as collimated or they are under-energetic (or both). Here we report soft gamma-ray observations of GRB 031203, the nearest event to date (z = 0.106; ref. 2). It had a duration of 40 s and peak energy of >190 keV, and therefore appears to be a typical long-duration GRB. The isotropic gamma-ray energy of < or =10(50) erg, however, is about three orders of magnitude smaller than that of the cosmological population. This event--as well as the other nearby but somewhat controversial GRB 980425--is a clear outlier from the isotropic-energy/peak-energy relation and luminosity/spectral-lag relations that describe the majority of GRBs. Radio calorimetry shows that both of these events are under-energetic explosions. We conclude that there does indeed exist a large population of under-energetic events.

  5. High energy particles from {gamma}-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Waxman, E [Weizmann Institute of Science, Rehovot (Israel)

    2001-11-15

    A review is presented of the fireball model of {gamma}-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed. (author)

  6. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  7. Very high energy gamma ray astronomy from Hanle

    International Nuclear Information System (INIS)

    Chitnis, Varsha R.

    2015-01-01

    Over a past decade very high energy (VHE) gamma ray astronomy has emerged as a major astronomical discipline. In India, we have a long tradition of experiments in this field. Few years ago, multi-institutional Himalayan Gamma Ray Observatory (HiGRO) collaboration was formed to set up VHE gamma rays experiments at Hanle, a high altitude location in Himalayas. HAGAR, the first phase of this collaboration is operational since 2008. HAGAR has successfully detected VHE gamma ray emission from some of the extragalactic objects like Mrk 421, Mrk 501 as well as galactic sources including Crab nebula/pulsar. Details of HAGAR telescope system and results obtained will be discussed. HiGRO is now gearing up for the next phase, i.e. 21 m diameter MACE telescope, which is being installed at Hanle at present. Details of MACE telescope system and future plans will be discussed. (author)

  8. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  9. Calibration of nuclides by gamma-gamma sum peak coincidence counting

    International Nuclear Information System (INIS)

    Guevara, E.A.

    1986-01-01

    The feasibility of extending sum peak coincidence counting to the direct calibration of gamma-ray emitters having particular decay schemes was investigated, also checkings of the measurement accuracy, by comparing with more precise beta-gamma coincidence counting have been performed. New theoretical studies and experiments were developed, demonstrating the reliability of the procedure. Uncertainties of less than one percent were obtained when certain radioactive sources were measured. The application of the procedure to 60 Co, 22 Na, 47 Ca and 148 Pm was studied. Theoretical bases of sum peak coincidence counting were set in order to extend it as an alternative method for absolute activity determination. In this respect, theoretical studies were performed for positive and negative beta decay, and electron capture, either accompanied or unaccompanied by coincident gamma rays. They include decay schemes containing up to three daughter nuclide excited levels, for different geometrical configurations. Equations are proposed for a possible generalization of the procedure. (M.E.L.) [es

  10. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    Science.gov (United States)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,I of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,I-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,I-α anti-correlation can hardly be reconciled with the predicted Ep,I ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,I are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,I. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  11. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  12. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  13. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  14. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    the new detector system has an ambient background count rate in the 30- to 600-keV region that is only 1/20 that of an earlier large area, low-energy photon spectrometer. For low-activity samples, whose counting backgrounds are dominated by natural background, minimum detectable activities are improved by a factor of ∼4. This improvement is attributable to a combination of factors including fabrication from low-background materials, cryostat geometry, passive and active shielding, and a lower ambient background location. Measurements using the newer system with and without gating reveal that most of this background reduction can be credited to active vetoing provided by guard detectors. Further improvements are anticipated as a nitrogen purge capability (to exclude radon from the shield) is implemented. An earlier paper (Ref. 2) described radiochemical separations and counting for 129 I, a long-lived fission product of interest at SRS because of the site's processing of spent nuclear fuels. While such radiochemical separations are necessary for many low-level analyses of 129 I, some low-density samples contain sufficient activity to allow 129 I analysis without chemistry if Compton-scattered interferences from other radionuclides are removed electronically. Tests on such a sample show that the sodium iodide and rear germanium anti-coincident guard detectors suppress the Compton continuum in the region near 129 I's 39-keV peak by a factor of ∼4. Interfering activities in the sample included 60 Co, 152 Eu, 154 Eu, and 241 Am. The Compton-suppression ratio is a function of gamma-ray energy; it improves as gamma ray energy increases until the best suppression (a factor of ∼10 for the sample discussed) is achieved at ∼1 MeV. (authors)

  15. Orbital Normalization of MESSENGER Gamma-Ray Spectrometer Data

    Science.gov (United States)

    Rhodes, E. A.; Peplowski, P. N.; Evans, L. G.; Hamara, D. K.; Boynton, W. V.; Solomon, S. C.

    2011-12-01

    The MESSENGER Gamma-Ray Spectrometer (GRS) measures energy spectra of gamma rays emanating from the surface of Mercury. Analysis of these spectra provides elemental abundances of surface material. The MESSENGER mission necessarily provides some data normalization challenges for GRS analysis. So as to keep the spacecraft cool while orbiting the dayside of the planet, the orbits are highly eccentric, with altitudes varying from 200-500 km to ~ 15,000 km. A small fraction of time is spent at the low altitudes where gamma-ray signals are largest, requiring a large number of orbits to yield sufficient counting statistics for elemental analysis. Also, the sunshade must always shield the spacecraft from the Sun, which causes the orientation of the GRS often to be far from nadir-pointing, so the detector efficiency and attenuation of gamma rays from the planet must be known for a wide range of off-nadir orientations. An efficiency/attenuation map for the expected ranges of orientations and energies was constructed in a ground calibration experiment for a limited range of orientations using a nuclear reactor and radioisotope sources, and those results were extended to other orientations by radiation transport computations using as input a computer-aided design model of the spacecraft and its composition. This normalization has allowed abundance determinations of elements K, Th, and U from radioisotopes of these elements in the Mercury regolith during the first quarter of the year-long mission. These results provide constraints on models of Mercury's chemical and thermal evolution. The normalization of gamma-ray spectra for surface elements not having radioisotopes is considerably more complex; these gamma rays come from neutron inelastic-scatter and capture reactions in the regolith, where the neutrons are generated by cosmic ray impact onto the planet. A radiation transport computation was performed to generate the expected count rates in the neutron-generated gamma-ray

  16. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  17. Calculation of the correlation coefficients between the numbers of counts (peak areas and backgrounds) obtained from gamma-ray spectra

    International Nuclear Information System (INIS)

    Korun, M.; Vodenik, B.; Zorko, B.

    2016-01-01

    Two simple methods for calculating the correlations between peaks appearing in gamma-ray spectra are described. We show how the areas are correlated when the peaks do not overlap, but the spectral regions used for the calculation of the background below the peaks do. When the peaks overlap, the correlation can be stronger than in the case of the non-overlapping peaks. The methods presented are simplified to the extent of allowing their implementation with manual calculations. They are intended for practitioners as additional tools to be used when the correlations between the areas of the peaks in the gamma-ray spectra are to be calculated. Also, the correlation coefficient between the number of counts in the peak and the number of counts in the continuous background below the peak is derived. - Highlights: • The correlation coefficients between areas of closely spaced peaks are assessed. • For isolated peaks the correlation arises from the common continuous background. • If peaks overlap the correlation coefficient depends on how much they overlap. • If peaks overlap also the background height affects the correlation coefficient. • The correlation coefficient between the peak area and its background is −1.

  18. Simultaneous Planck, Swift, and Fermi Observations of X-ray and Gamma-ray Selected Blazars

    Science.gov (United States)

    Giommi, P.; Polenta, G.; Laehteenmaeki, A.; Thompson, D. J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; Gonzalez, Nuevo, J.; Leon-Tavares, J.; Lopez-Caniego, M.; hide

    2012-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands, with additional 5 GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large Area Telescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with (alpha) approx 0 up to about 70GHz, above which it steepens to (alpha) approx -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (nu(sup s)(sub peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with (nu(sup s)(sub peak)) = 10(exp 13.1 +/- 0.1) Hz, while the mean inverse Compton peak frequency, (nu(sup IC)(sub peak)), ranges from 10(exp 21) to 10(exp 22) Hz. The distributions of nu(sup s)(sub peak) and nu(sup IC)(sub peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars. defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends

  19. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M. /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  20. COS-B observation of the milky way in high-energy gamma rays

    International Nuclear Information System (INIS)

    Mayer-Hasselwander, H.A.; Lebrun, F.; Masnou, J.L.

    1978-01-01

    The Caravane Collaboration's gamma-ray astronomy experiment aboard ESA's satellite COS-B has been recording celestial gamma rays in the energy range from about 50 MeV to several GeV since August 1975. These observations covers the whole range of galactic longitude, thus making it possible to present here the first complete detailed gamma-ray survey of the Milky Way with greatly improved statistical accuracy and significantly better energy measurement than in the previous survey. The present work concentrates on the spatial aspects of the gamma radiation, including localised sources

  1. Gamma ray energy spectrum of a buried radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Massey, N B

    1957-07-01

    Because of current attempts to utilize airborne gamma-ray scintillation spectrometers as a means of detecting and identifying buried radioactive mineral deposits, it has become important to study the effects of multiple scattering on the gamma-ray energy spectrum of a source buried in a semi-infinite medium. A series of ten experiments was made. First a scintillation detector was located in air at a fixed distance above a 250 microcurie cobalt-60 source suspended in a large tank. The level of water was raised from 25 cm below the source to 50 cm above, and the gamma-ray energy spectrum was observed. It was found that the high energy portion of the cobalt-60 spectrum remained identifiable even when the source was submerged more than five half-lengths. Further, the ratio of the counting rate of the total incident gamma radiation to the counting rate of the primary 1.33 MeV radiation was found to be very nearly linearly proportional to the depth of water cover. This leads to an empirical method for determining the depth of burial of a cobalt-60 point source. (author)

  2. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  3. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  4. GRAP, Gamma-Ray Level-Scheme Assignment

    International Nuclear Information System (INIS)

    Franklyn, C.B.

    2002-01-01

    1 - Description of program or function: An interactive program for allocating gamma-rays to an energy level scheme. Procedure allows for searching for new candidate levels of the form: 1) L1 + G(A) + G(B) = L2; 2) G(A) + G(B) = G(C); 3) G(A) + G(B) = C (C is a user defined number); 4) L1 + G(A) + G(B) + G(C) = L2. Procedure indicates intensity balance of feed and decay of each energy level. Provides for optimization of a level energy (and associated error). Overall procedure allows for pre-defining of certain gamma-rays as belonging to particular regions of the level scheme, for example, high energy transition levels, or due to beta- decay. 2 - Method of solution: Search for cases in which the energy difference between two energy levels is equal to a gamma-ray energy within user-defined limits. 3 - Restrictions on the complexity of the problem: Maximum number of gamma-rays: 999; Maximum gamma ray energy: 32000 units; Minimum gamma ray energy: 10 units; Maximum gamma-ray intensity: 32000 units; Minimum gamma-ray intensity: 0.001 units; Maximum number of levels: 255; Maximum level energy: 32000 units; Minimum level energy: 10 units; Maximum error on energy, intensity: 32 units; Minimum error on energy, intensity: 0.001 units; Maximum number of combinations: 6400 (ca); Maximum number of gamma-ray types : 127

  5. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, M.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.

    2009-01-01

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power (dot E) = 3.5 x 10 33 ergs s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 ± 0.01 and 0.08 ± 0.02 wide, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10 -8 cm -2 s -1 with cut-off energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ /(dot E) ≅ 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  6. PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Battelino, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.; Bruel, P.

    2009-01-01

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power E-dot=3.5x10 33 erg s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 and 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10 -8 cm -2 s -1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ /E-dot≅15 percent for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  7. Janus probe, a detection system for high energy reactor gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1980-03-01

    In reactor environments, gamma-ray spectra are continuous and the absolute magnitude as well as the general shape of the gamma continuum are of paramount importance. Consequently, conventional methods of gamma-ray detection are not suitable for in-core gamma-ray spectrometry. To meet these specific needs, a method of continuous gamma-ray spectrometry, namely Compton Recoil Gamma-Ray Spectrometry, was developed for in-situ observations of reactor environments. A new gamma-ray detection system has been developed which extends the applicability of Compton Recoil Gamma-Ray Spectrometry up to roughly 7 MeV. This detection system is comprised of two separate Si(Li) detectors placed face-to-face. Hence this new detection system is called the Janus probe. Also shown is the block diagram of pulse processing instrumentation for the Janus probe. This new gamma probe not only extends the upper energy limit of in-core gamma-ray spectrometry, but in addition possesses other fundamental advantages

  8. Automatic processing of gamma ray spectra employing classical and modified Fourier transform approach

    International Nuclear Information System (INIS)

    Rattan, S.S.; Madan, V.K.

    1994-01-01

    This report describes methods for automatic processing of gamma ray spectra acquired with HPGe detectors. The processing incorporated both classical and signal processing approach. The classical method was used for smoothing, detecting significant peaks, finding peak envelope limits and a proposed method of finding peak limits, peak significance index, full width at half maximum, detecting doublets for further analysis. To facilitate application of signal processing to nuclear spectra, Madan et al. gave a new classification of signals and identified nuclear spectra as Type II signals, mathematically formalized modified Fourier transform and pioneered its application to process doublet envelopes acquired with modern spectrometers. It was extended to facilitate routine analysis of the spectra. A facility for energy and efficiency calibration was also included. The results obtained by analyzing observed gamma-ray spectra using the above approach compared favourably with those obtained with SAMPO and also those derived from table of radioisotopes. (author). 15 refs., 3 figs., 3 tabs

  9. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    Science.gov (United States)

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  10. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  11. Modeling high-energy gamma-rays from the Fermi Bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Megan

    2015-09-17

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 55° in galactic latitude and 20°-30° in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration requires charged particles and irregular magnetic fields- both of which are present in the disk of the Milky Way galaxy. By solving the steady-state case of the transport equation, I compute the proton spectrum due to second order Fermi acceleration. I compare the analytical solutions of the proton spectrum to a numerical solution. I find that the numerical solution to the transport equation converges to the analytical solution in all cases. The gamma-ray spectrum due to proton-proton interaction is compared to Fermi Bubble data (from Ackermann et al. 2014), and I find that second order Fermi acceleration is a good fit for the gamma-ray spectrum of the Fermi Bubbles at low energies with an injection source term of S = 1.5 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹. I find that a non-steady-state solution to the gamma-ray spectrum with an injection source term of S = 2 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹ matches the bubble data at high energies.

  12. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

  13. Contraband detection using high-energy gamma rays from 16O*

    International Nuclear Information System (INIS)

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.; Smith, D.L.

    1996-01-01

    High-energy monoenergetic gamma rays (6.13 and 7.12 MeV) from the decay of excited states of the 16 O* nucleus are highly penetrating and thus offer potential for non-intrusive inspection of loaded containers for narcotics, explosives, and other contraband items. These excited states can be produced by irradiation of water with 14-MeV neutrons from a DT neutron generator or through the 19 F(p,α) 16 O* reaction. Resonances in 19 F(p,α) 16 O* at proton energies between 340 keV and 2 MeV allow use of a low-energy accelerator to provide a compact, portable gamma source of reasonable intensity. The present work provides estimates of gamma source parameters and suggests how various types of contraband could be detected. Gamma rays can be used to perform transmission or emission radiography of containers or other objects. Through the use of (γ, n) and (γ, fission) reactions, this technique is also capable of detecting special nuclear materials such as deuterium, lithium, beryllium, uranium, and plutonium. Analytic and Monte Carlo techniques are used to model empty and loaded container inspection for accelerator-produced gamma, radioisotope, and x-ray sources

  14. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  15. Gamma-ray energy absorption in absorbing homogeneous medium. Applications to Oceanography and Geophysics (Gamma-ray spectroscopy from 500 to 1500 keV)

    International Nuclear Information System (INIS)

    Lapicque, G.

    1980-01-01

    The aim of this study is to establish a general algebrical approach for the calculation, without any program, of the full energy peak efficiency of a detecting probe designed to measure the gamma activity of a radio-element in a (semi) infinite homogeneous absorbing medium such as the Sea. The radio-active source may be punctual or, most often, constitute an integral part of the medium. The proposed theory is valid for any purely absorptive process of particles moving along straight trajectories, diffusion effects being allowed for separately. The formulation assumes a spherical detector and calculations are made for models having the same volume as two standard phosphors (10 cm x8 cm and 5 cm x 4.5 cm) in the energy band 0.5 to 1.5 MeV. The parameters are the detector radius and, at energy E 0 , the absorption coefficients in the various media for gamma rays together with the 'peak/total' ratio in the detector. The fact that this latter factor, which varies with each trajectory, cannot be obtained with accuracy, constitutes the main limitation of the formulation. The comparison with experimental results obtained with a 10 cm x 8 cm phosphor at the C.F.R. (Centre des Faibles Radioactivites, Gif-sur-Yvette) and with various data indicates an error of about +-5% for a point source at contact and -30% for a homogeneously distributed source in an infinite medium. This latter value may be interpreted as a superiority of the spherical shape over the cylinder (used in practice), for detectors operating in infinite media. Calculations are made without allowing for the Compton effect, which is found to give an approximate correction of +5% in water for a band width of 10 keV in the MeV region. Finally, the shape of the detecting probe around the detector is shown to be indifferent in the assumption of a constant peak/total ratio [fr

  16. Detection Techniques of Microsecond Gamma-Ray Bursts Using Ground-based Telescopes

    International Nuclear Information System (INIS)

    Krennrich, F.; Le Bohec, S.; Weekes, T. C.

    2000-01-01

    Gamma-ray observations above 200 MeV are conventionally made by satellite-based detectors. The EGRET detector on the Compton Gamma Ray Observatory has provided good sensitivity for the detection of bursts lasting for more than 200 ms. Theoretical predictions of high-energy gamma-ray bursts produced by quantum mechanical decay of primordial black holes (Hawking) suggest the emission of bursts on shorter timescales. The final stage of a primordial black hole results in a burst of gamma rays, peaking around 250 MeV and lasting for 1/10 of a microsecond or longer depending on particle physics. In this work we show that there is an observational window using ground-based imaging Cerenkov detectors to measure gamma-ray burst emission at energies E>200 MeV. This technique, with a sensitivity for bursts lasting nanoseconds to several microseconds, is based on the detection of multiphoton-initiated air showers. (c) (c) 2000. The American Astronomical Society

  17. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    Science.gov (United States)

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  18. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  19. Extragalactic Gamma-Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  20. Multiwavelength Study of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  1. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  2. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  3. Gamma-ray relative energy response of Ce: YAG crystal

    International Nuclear Information System (INIS)

    Zhang Jianhua; Zhang Chuanfei; Hu Mengchun; Peng Taiping; Wang Zhentong; Tang Dengpan; Zhao Guangjun

    2010-01-01

    Gamma-ray relative energy response of Ce: YAG crystal, which is important for pulsed γ-ray measurement, was studied in this work.The Ce: YAG crystal, which was developed at Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, was aligned point by point with γ-rays scattered from an industrial 60 Co line source. The γ-ray relative energy response was calculated using the mass attenuation coefficient. The results show that the numerical calculation method of γ-ray relative energy response is reliable, and the experimental method with multi-energy point γ-ray by Compton scattering is also feasible, that can be used for checking up correctness of the numerical calculation results. (authors)

  4. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  5. Low-energy X-ray and gamma spectrometry using silicon photodiodes; Espectrometria de raios X e gama de baixa energia utilizando fotodiodos de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Iran Jose Oliveira da

    2000-08-01

    The use of semiconductor detectors for radiation detection has increased in recent years due to advantages they present in comparison to other types of detectors. As the working principle of commercially available photodiodes is similar to the semiconductor detector, this study was carried out to evaluate the use of Si photodiodes for low energy x-ray and gamma spectrometry. The photodiodes investigated were SFH-205, SFH-206, BPW-34 and XRA-50 which have the following characteristics: active area of 0,07 cm{sup 2} and 0,25 cm{sup 2}, thickness of the depletion ranging from 100 to 200 {mu}m and junction capacitance of 72 pF. The photodiode was polarized with a reverse bias and connected to a charge sensitive pre-amplifier, followed by a amplifier and multichannel pulse analyzer. Standard radiation source used in this experiment were {sup 241} Am, {sup 109} Cd, {sup 57} Co and {sup 133} Ba. The X-ray fluorescence of lead and silver were also measured through K- and L-lines. All the measurements were made with the photodiodes at room temperature.The results show that the responses of the photodiodes very linear by the x-ray energy and that the energy resolution in FWHM varied between 1.9 keV and 4.4 keV for peaks corresponding to 11.9 keV to 59 keV. The BPW-34 showed the best energy resolution and the lower dark current. The full-energy peak efficiency was also determined and it was observed that the peak efficiency decreases rapidly above 50 keV. The resolution and efficiency are similar to the values obtained with other semiconductor detectors, evidencing that the photodiodes used in that study can be used as a good performance detector for low energy X-ray and gamma spectrometry. (author)

  6. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  7. Evaluation and measurement of prompt k0-factors to use in prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Goswami, A.; Nair, A.G.C.; Acharya, R.N.; Sudarshan, K.; Scindia, Y.M.; Reddy, A.V.R.; Manohar, S.B.

    2000-01-01

    The determination of experimental k 0 -factors is important due to uncertainties on absolute values of cross sections and prompt gamma-ray intensities. Determination of absolute full-energy peak detection efficiency and elemental sensitivity are required to obtain experimental k 0 -factor

  8. Specialised software utilities for gamma-ray spectrometry. Computer codes to IAEA-TECDOC-1275

    International Nuclear Information System (INIS)

    2002-03-01

    A Co-ordinated Research Project (CRP) on 'Software Utilities for Gamma-Ray Spectrometry' was initiated by the International Atomic Energy Agency in 1996. In the CRP several basic applications of nuclear data handling were assayed which also dealt with the development of PC computer codes for various spectrometric purposes. This CD-ROM contains the following computer codes, produced under the CRP: ANGES, a program for the user controlled analysis of gamma-ray spectra from HPGe detectors; NUCL M AN, a program for the generation of gamma-ray libraries (using new, evaluated data) for specific applications; TRUE C OINC, a program to calculate true coincidence corrections; VOLUME, a program to calculate the full-energy peak efficiency calibration curve for homogeneous cylindrical sample geometries including self-attenuation correction; WINDIMEN, a program for the library driven analysis of gamma-ray spectra and for the quantification of radionuclide contents in the sample. RESFIT and DPPUNFOL, a set of programs for the definition of the detector resolution function and for unfolding of experimental annihilation spectra; MLMTEST, a program for the analysis of low-level NaI-spectra together with an extensive library of example reference spectra as well as a spectrum synthesizer

  9. Effect of Co-60 single escape peak on detection of Cs-137 in analysis of radionuclide from research reactor

    International Nuclear Information System (INIS)

    Kim, M. S.; Park, S. J.

    2006-01-01

    The effect of the single escape peak of 1173 keV gamma-rays from Co-60 on the detection of Cs-137 activity is analyzed. The single escape peak of 1173 keV gamma-rays from Co-60 is located at the 662 keV, which is very close to the energy of gamma-rays from Cs-137. This single escape peak may be mistaken for the gamma-ray peak from Cs-137 activity in the case of large area of 1173 keV peak. The detection of Cs-137 is very important to the judgment of the contamination or the leakage of the material containing the fission product like reactor pool water and in the several experiments for reactor physics such as burn-up estimation. In this work, the areas of the single escape peak of the 1173 keV gamma-rays from Co-60 are measured with several full energy peak areas by using the HPGe detector. The critical limit by which we can decide whether the net count of 662 keV peak due to Co-60 would be significant or not is deduced. For this detection system, when the area of full energy peak is larger than 4.5 million, the single escape peak of 1173 keV gamma-rays from Co-60 can be regarded as the single significant peak. Therefore, it is confirmed that the detection of the Cs-137 activity is affected by the Co-60 in this case. Conservatively, for this detection system, it is recommended that the area of 1173 keV peak of Co-60 would be less than 2 million for neglecting the effect of Co-60. (authors)

  10. gamma. -ray. Present status and problems

    Energy Technology Data Exchange (ETDEWEB)

    Okudaira, K [Rikkyo Univ., Tokyo (Japan). Faculty of Science

    1975-01-01

    As ..gamma..-ray advances straightly through space, the study on cosmic ..gamma..-ray will give the information concerning the origin directly. However, the intensity is weak, and the avoidance of background is a serious problem. The wide-spread components were studied by OSO-3. The intensity of the galactic disc component around 100 MeV was reported as (3.4+-1.0)x10/sup -5/ photons (cm/sup 2/, radian, sec)/sup -1/ by OSO-3 and 0.2x10/sup -4/ photons (cm/sup 2/, radian sec)/sup -1/ by SAS-2, and corresponds to the calculated ..gamma.. yield from ..pi../sup 0/. The strong disc component, so-called galactic center region, has been observed, and is due to the mixture of ..gamma..-ray from ..pi../sup 0/ and inverse Compton ..gamma..-ray. A peak at 476+-24 KeV was found as well as the continuous component. Special care must be taken for the observation of isotropic component, since it is hardly distinguished from the background. It is considered that the isotropic component is due to the inverse Compton scattering of 3/sup 0/K radiation in super-galactic space and the contribution from outer galaxy. The nearest point source of ..gamma..-ray is the sun. Among the other point sources, the crab nebula is the most reliable one. The energy flux of pulse component showed the spectrum of E/sup -1/. ..gamma..-ray bursts were observed by man-made satellites Vela-5 and 6. Theoretical explanation is still incomplete regarding the bursts. (Kato, T.).

  11. Study on effects of gamma-ray irradiation on TlBr semiconductor detectors

    International Nuclear Information System (INIS)

    Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro

    2016-01-01

    Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60 Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137 Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy. (author)

  12. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  13. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    Science.gov (United States)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  14. The future of high energy gamma ray astronomy and its potential astrophysical implications

    Science.gov (United States)

    Fichtel, C. E.

    1982-01-01

    Future satellites should carry instruments having over an order of magnitude greater sensitivity than those flown thus far as well as improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance knowledge of: the very energetic and nuclear processes associated with compact objects; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies; and the degree of matter-antimatter symmetry of the universe. The relevant aspects of extragalactic gamma ray phenomena are emphasized along with the instruments planned. The high energy gamma ray results of forthcoming programs such as GAMMA-1 and the Gamma Ray Observatory should justify even more sophisticated telescopes. These advanced instruments might be placed on the space station currently being considered by NASA.

  15. Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Ajello, Marco; Atwood, William B.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, Milan; Baughman, B.M.; Bechtol, K.; Bellazzini, Ronaldo; Berenji, Bijan; Bloom, Elliott D.; Bogaert, G.; Borgland, Anders W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.

    2009-01-01

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 ± 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 ± 0.004 ± 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 ± 3 ± 11) x 10 -8 cm -2 s -1 . The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE -# Gamma#e (-E/E c ) where the energy E is expressed in GeV. The photon index is Γ = 1.5 ± 0.1 ± 0.1 and the exponential cut-off is E c = 2.4 ± 0.3 ± 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is -2 but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  16. Detection limits should be a thing of the past in gamma-ray spectrometry in general as well as in neutron activation analysis

    NARCIS (Netherlands)

    Blaauw, Menno

    2016-01-01

    In gamma-ray spectrometry with high-resolution detectors, full-energy peaks are often to be detected by a peak-search algorithm, with a threshold for detection. Detection limits can be derived from this. Detection limits are often computed along with measured activities or concentrations. When an

  17. High energy radiation from black holes gamma rays, cosmic rays, and neutrinos

    CERN Document Server

    Dermer, Charles D

    2009-01-01

    Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systemat

  18. VERY HIGH ENERGY OBSERVATIONS OF GAMMA-RAY BURSTS WITH STACEE

    International Nuclear Information System (INIS)

    Jarvis, A.; Ong, R. A.; Ball, J.; Carson, J. E.; Zweerink, J.; Williams, D. A.; Aune, T.; Covault, C. E.; Driscoll, D. D.; Fortin, P.; Mukherjee, R.; Gingrich, D. M.; Hanna, D. S.; Kildea, J.; Lindner, T.; Mueller, C.; Ragan, K.

    2010-01-01

    Gamma-ray bursts (GRBs) are the most powerful explosions known in the universe. Sensitive measurements of the high-energy spectra of GRBs can place important constraints on the burst environments and radiation processes. Until recently, there were no observations during the first few minutes of GRB afterglows in the energy range between 30 GeV and ∼1 TeV. With the launch of the Swift GRB Explorer in late 2004, GRB alerts and localizations within seconds of the bursts became available. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) was a ground-based, gamma-ray telescope with an energy threshold of ∼150 GeV for sources at zenith. At the time of Swift's launch, STACEE was in a rare position to provide >150 GeV follow-up observations of GRBs as fast as three minutes after the burst alert. In addition, STACEE performed follow-up observations of several GRBs that were localized by the HETE-2 and INTEGRAL satellites. Between 2002 June and 2007 July, STACEE made follow-up observations of 23 GRBs. Upper limits are placed on the high-energy gamma-ray fluxes from 21 of these bursts.

  19. High-energy gamma-ray astronomy and the COS-B mission

    International Nuclear Information System (INIS)

    Wills, R.D.

    1977-01-01

    The most significant results in gamma-ray astronomy have been produced by satellite- and balloon-borne instruments sensitive in the range 30 MeV to approximately 10 GeV. The COS-B instrument which is described is typical of this type of detector. For this reason the review of gamma-ray production mechanisms gives greater attention to those processes which are specifically important in that energy range. (orig.) [de

  20. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    Science.gov (United States)

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  1. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  2. Development of a Telescope for Medium-Energy Gamma-ray Astronomy

    Science.gov (United States)

    Sunter, Stan

    2012-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (Eg greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cm3 3-DTI detector prototype of a medium-energy gamma-ray telescope.

  3. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    Science.gov (United States)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  4. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1975-01-01

    The first certain detection of celestial high energy gamma rays came from a satellite experiment flown on the third Orbiting Solar Observatory (OSO-111). A Gamma ray spark chamber telescope with substantively greater sensitivity and angular resolution (a few degrees) flown on the second Small Astronomy Satellite (SAS-II) has now provided a better picture of the gamma ray sky, and particularly the galactic plane and pulsars. This paper will summarize the present picture of gamma ray astronomy as it has developed at this conference from measurements made with experiments carried out on balloons, those remaining on the ground, and ones flown on satellites. (orig.) [de

  5. Approach of the estimation for the highest energy of the gamma rays

    International Nuclear Information System (INIS)

    Dumitrescu, Gheorghe

    2004-01-01

    In the last decade there was under debate the issue concerning the composition of the ultra high energy cosmic rays and some authors suggested that the light composition seems to be a relating issue. There was another debate concerning the limit of the energy of gamma rays. The bottom-up approaches suggest a limit at 10 15 eV. Some top-down approaches rise this limit at about 10 20 eV or above. The present paper provides an approach to estimate the limit of the energy of gamma rays using the recent paper of Claus W. Turtur. (author)

  6. Observation of gamma-ray bursts with GINGA

    International Nuclear Information System (INIS)

    Murakami, Toshio; Fujii, Masami; Nishimura, Jun

    1989-01-01

    Gamma-ray Burst Detector System (GBD) on board the scientific satellite 'GINGA' which was launched on Feb. 5, 1987, was realized as an international cooperation between ISAS and LANL. It has recorded more than 40 Gamma-Ray Burst candidates during 20 months observation. Although many observational evidences were accumulated in past 20 years after the discovery of gamma-ray burst by LANL scientists, there are not enough evidence to determine the origin and the production mechanism of the gamma-ray burst. GBD consists of a proportional counter and a NaI scintillation counter so that it became possible to observe energy spectrum of the gamma-ray burst with high energy resolution over wide range of energy (1.5-380 keV) together with high time resolution. As the result of observation, the following facts are obtained: (1) A large fraction of observed gamma-ray bursts has a long X-ray tail after the harder part of gamma-ray emission has terminated. (2) Clear spectral absorption features with harmonic in energy was observed in some of the energy spectrum of gamma-ray bursts. These evidences support the hypothesis that the strongly magnetized neutron star is the origin of gamma-ray burst. (author)

  7. Gamma-ray Output Spectra from 239 Pu Fission

    International Nuclear Information System (INIS)

    Ullmann, John

    2015-01-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239 Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution

  8. CAN ULTRAHIGH-ENERGY COSMIC RAYS COME FROM GAMMA-RAY BURSTS? COSMIC RAYS BELOW THE ANKLE AND GALACTIC GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Eichler, David; Pohl, Martin

    2011-01-01

    The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10 18 eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10 -3 of the average. Difficulties with these avoidance scenarios are noted.

  9. NEUTRINO EMISSION FROM HIGH-ENERGY COMPONENT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Becker, Julia K.; Olivo, Martino; Halzen, Francis; O Murchadha, Aongus

    2010-01-01

    Gamma-ray bursts (GRBs) have the potential to produce the particle energies (up to 10 21 eV) and energy budget (10 44 erg yr -1 Mpc -3 ) to accommodate the spectrum of the highest energy cosmic rays; on the other hand, there is no observational evidence that they accelerate hadrons. The Fermi Gamma-ray Space Telescope recently observed two bursts that exhibit a power-law high-energy extension of a typical (Band) photon spectrum that extends to ∼30 GeV. On the basis of fireball phenomenology we argue that these two bursts, along with GRB941017 observed by EGRET in 1994, show indirect evidence for considerable baryon loading. Since the detection of neutrinos is the only unambiguous way to establish that GRBs accelerate protons, we use two methods to estimate the neutrino flux produced when they interact with fireball photons to produce charged pions and neutrinos. While the number of events expected from the two Fermi bursts discussed is small, should GRBs be the sources of the observed cosmic rays, a GRB941017-like event that has a hadronic power-law tail extending to several tens of GeV will be detected by the IceCube neutrino telescope.

  10. Gamma-ray sources

    International Nuclear Information System (INIS)

    Hermsen, W.

    1980-01-01

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  11. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  12. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  13. Future prospects for. gamma. -ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Fichtel, C [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1981-06-30

    As ..gamma..-ray astronomy moves from the discovery to the exploratory phase, the promise of ..gamma..-ray astrophysics noted by theorists in the late 1940s and 1950s is beginning to be realized. In the future, satellites should carry instruments that will have over an order of magnitude greater sensitivity than those flown thus far, and, for at least some portions of the ..gamma..-ray energy range, these detectors will also have substantially improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance our knowledge of several astrophysical phenomena including the very energetic and nuclear processes associated with compact objects, astrophysical nucleosynthesis, solar particle acceleration, the chemical composition of the planets and other bodies of the Solar System, the structure of our Galaxy, the origin and dynamic pressure effects of the cosmic rays, high energy particles and energetic processes in other galaxies especially active ones, and the degree of matter-antimatter symmetry of the Universe. The ..gamma..-ray results of the forthcoming programs such as Gamma-I, the Gamma Ray Observatory, the ..gamma..-ray burst network, Solar Polar, and very high energy ..gamma..-ray telescopes on the ground will almost certainly provide justification for more sophisticated telescopes. These advanced instruments might be placed on the Space Platform currently under study by N.A.S.A.

  14. Discovery and characterization of the first low-peaked and intermediate-peaked BL Lacertae objects in the very high energy γ-ray regime

    International Nuclear Information System (INIS)

    Berger, Karsten

    2009-01-01

    20 years after the discovery of the Crab Nebula as a source of very high energy γ-rays, the number of sources newly discovered above 100 GeV using ground-based Cherenkov telescopes has considerably grown, at the time of writing of this thesis to a total of 81. The sources are of different types, including galactic sources such as supernova remnants, pulsars, binary systems, or so-far unidentified accelerators and extragalactic sources such as blazars and radio galaxies. The goal of this thesis work was to search for γ-ray emission from a particular type of blazars previously undetected at very high γ-ray energies, by using the MAGIC telescope. Those blazars previously detected were all of the same type, the so-called high-peaked BL Lacertae objects. The sources emit purely non-thermal emission, and exhibit a peak in their radio-to-X-ray spectral energy distribution at X-ray energies. The entire blazar population extends from these rare, low-luminosity BL Lacertae objects with peaks at X-ray energies to the much more numerous, high-luminosity infrared-peaked radio quasars. Indeed, the low-peaked sources dominate the source counts obtained from space-borne observations at γ-ray energies up to 10 GeV. Their spectra observed at lower γ-ray energies show power-law extensions to higher energies, although theoretical models suggest them to turn over at energies below 100 GeV. This opened the quest for MAGIC as the Cherenkov telescope with the currently lowest energy threshold. In the framework of this thesis, the search was focused on the prominent sources BL Lac, W Comae and S5 0716+714, respectively. Two of the sources were unambiguously discovered at very high energy γ-rays with the MAGIC telescope, based on the analysis of a total of about 150 hours worth of data collected between 2005 and 2008. The analysis of this very large data set required novel techniques for treating the effects of twilight conditions on the data quality. This was successfully achieved

  15. Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, Marco; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, William B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, Milan; /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, Ronaldo; /INFN, Pisa; Berenji, Bijan; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bogaert, G.; /Ecole Polytechnique; Borgland, Anders W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Columbia U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /IASF, Milan /IASF, Milan /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Royal Inst. Tech., Stockholm /Stockholm U. /ASI, Rome /NRAO, Charlottesville /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Manchester U. /Montpellier U. /Bari U. /INFN, Bari; /more authors..

    2011-11-30

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 {+-} 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 {+-} 0.004 {+-} 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 {+-} 3 {+-} 11) x 10{sup -8} cm{sup -2} s{sup -1}. The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE{sup -{Gamma}}e{sup (-E/E{sub c})} where the energy E is expressed in GeV. The photon index is {Gamma} = 1.5 {+-} 0.1 {+-} 0.1 and the exponential cut-off is E{sub c} = 2.4 {+-} 0.3 {+-} 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 {+-} 4 rad m{sup -2} but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  16. High-energy neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dermer, Charles D.; Atoyan, Armen

    2003-01-01

    We treat high-energy neutrino production in gamma ray bursts (GRBs). Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > or approx. 10 TeV neutrinos from GRBs with Doppler factors > or approx. 200, inferred from γ-ray observations, would support the supranova model. Detection of or approx. 3x10 -4 erg cm -2 offer a realistic prospect for detection of ν μ

  17. Modulated High-Energy Gamma-Ray Emission from the Micro-quasar Cygnus X-3

    International Nuclear Information System (INIS)

    Abdo, A.A.; Cheung, C.C.; Dermer, C.D.; Grove, J.E.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wood, K.S.; Abdo, A.A.; Cheung, C.C.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Focke, W.B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tanaka, T.; Thayer, J.B.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Waite, A.P.; Wang, P.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Focke, W.B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tanaka, T.; Thayer, J.B.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Waite, A.P.; Wang, P.; Axelsson, M.; Hjalmarsdotter, L.; Axelsson, M.; Conrad, J.; Hjalmarsdotter, L.; Jackson, M.S.; Meurer, C.; Ryde, F.; Ylinen, T.; Baldini, L.; Bellazzini, R.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Ballet, J.; Casandjian, J.M.; Chaty, S.; Corbel, S.; Grenier, I.A.; Koerding, E.; Rodriguez, J.; Starck, J.L.; Tibaldo, L.

    2009-01-01

    Micro-quasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and micro-quasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets. (authors)

  18. The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010

    Science.gov (United States)

    2012-01-01

    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated. by approx. 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from approx. 1 pc to approx. 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.

  19. Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak

    Science.gov (United States)

    Pellish, Jonathan A.; Xapsos, M. A.; LaBel, K. A.; Marshall, P. W.; Heidel, D. F.; Rodbell, K. P.; Hakey, M. C.; Dodd, P. E.; Shaneyfelt, M. R.; Schwank, J. R.; hide

    2009-01-01

    A 1 GeV/u Fe-56 Ion beam allows for true 90 deg. tilt irradiations of various microelectronic components and reveals relevant upset trends for an abundant element at the galactic cosmic ray (GCR) flux-energy peak.

  20. Observation of solar gamma-ray by Hinotori

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Okudaira, Kiyoaki; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma-ray emitted by solar flare was observed. The gamma-ray is the electromagnetic radiation with the energy more than 300 keV. The line gamma-ray intensity and the time profile were observed. The gamma-ray detector CsI (Tl) was loaded on Hinotori, and the observed gamma-ray was analyzed by a multi-channel analyzer. The observed line gamma-ray was the radiation from Fe-56 and Ne-20. The line gamma-ray from C-12 and O-16 was also seen. These gamma-ray is the direct evidence of the nuclear reaction on the sun. The observed spectrum suggested the existence of the lines from Mg-24 and Si-28. The intensity of the 2.22 MeV gamma-line was small. This fact showed that the origin of this line was different from other nuclear gamma-ray. Two kinds of hard X-ray bursts were detected. The one was impulsive burst, and the other was gradual burst. There was no time difference between the hard X-ray and the gamma-ray of the impulsive burst. The impulsive burst may be explained by the beam model. The delay of time profile in the high energy gamma-ray of the gradual burst was observed. This means that the time when accelerated electrons cause bremsstrahlung depends on the electron energy. The long trapping of electrons at the top of magnetic loop is suggested. (Kato, T.)

  1. Simultaneous determination of exponential background and Gaussian peak functions in gamma ray scintillation spectrometers by maximum likelihood technique

    International Nuclear Information System (INIS)

    Eisler, P.; Youl, S.; Lwin, T.; Nelson, G.

    1983-01-01

    Simultaneous fitting of peaks and background functions from gamma-ray spectrometry using multichannel pulse height analysis is considered. The specific case of Gaussian peak and exponential background is treated in detail with respect to simultaneous estimation of both functions by using a technique which incorporates maximum likelihood method as well as a graphical method. Theoretical expressions for the standard errors of the estimates are also obtained. The technique is demonstrated for two experimental data sets. (orig.)

  2. Methods for the analysis of the overlapped peaks in analytical gamma-spectrometry

    International Nuclear Information System (INIS)

    Sterlinski, S.; Wasek, M.

    1989-01-01

    A new simple method for the quantitative analysis of the doublet peaks in Ge(Li) or HPGe gamma-spectrometry is presented. No assumptions on the shape of the peaks in gamma-ray spectra being measured are required. Special feature of the method proposed is its usefulness for the analysis of closed doublets. 7 refs., 6 figs. (author)

  3. THE HIGH-ENERGY, ARCMINUTE-SCALE GALACTIC CENTER GAMMA-RAY SOURCE

    International Nuclear Information System (INIS)

    Chernyakova, M.; Malyshev, D.; Aharonian, F. A.; Crocker, R. M.; Jones, D. I.

    2011-01-01

    Employing data collected during the first 25 months of observations by the Fermi-LAT, we describe and subsequently seek to model the very high energy (>300 MeV) emission from the central few parsecs of our Galaxy. We analyze the morphological, spectral, and temporal characteristics of the central source, 1FGL J1745.6-2900. The data show a clear, statistically significant signal at energies above 10 GeV, where the Fermi-LAT has angular resolution comparable to that of HESS at TeV energies. This makes a meaningful joint analysis of the data possible. Our analysis of the Fermi data (alone) does not uncover any statistically significant variability of 1FGL J1745.6-2900 at GeV energies on the month timescale. Using the combination of Fermi data on 1FGL J1745.6-2900 and HESS data on the coincident, TeV source HESS J1745-290, we show that the spectrum of the central gamma-ray source is inflected with a relatively steep spectral region matching between the flatter spectrum found at both low and high energies. We model the gamma-ray production in the inner 10 pc of the Galaxy and examine cosmic ray (CR) proton propagation scenarios that reproduce the observed spectrum of the central source. We show that a model that instantiates a transition from diffusive propagation of the CR protons at low energy to almost rectilinear propagation at high energies can explain well the spectral phenomenology. We find considerable degeneracy between different parameter choices which will only be broken with the addition of morphological information that gamma-ray telescopes cannot deliver given current angular resolution limits. We argue that a future analysis performed in combination with higher-resolution radio continuum data holds out the promise of breaking this degeneracy.

  4. The Gamma-Ray Imager GRI

    Science.gov (United States)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  5. Comparisons of peak-search and photopeak-integration methods in the computer analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Baedecker, P.A.

    1980-01-01

    Myriad methods have been devised for extracting quantitative information from gamma-ray spectra by means of a computer, and a critical evaluation of the relative merits of the various programs that have been written would represent a Herculean, if not an impossible, task. The results from the International Atomic Energy Agency (IAEA) intercomparison, which may represent the most straightforward approach to making such an evaluation, showed a wide range in the quality of the results - even among laboratories where similar methods were used. The most clear-cut way of differentiating between programs is by the method used to evaluate peak areas: by the iterative fitting of the spectral features to an often complex model, or by a simple summation procedure. Previous comparisons have shown that relatively simple algorithms can compete favorably with fitting procedures, although fitting holds the greatest promise for the detection and measurement of complex peaks. However, fitting algorithms, which are generally complex and time consuming, are often ruled out by practical limitations based on the type of computing equipment available, cost limitations, the number of spectra to be processed in a given time period, and the ultimate goal of the analysis. Comparisons of methods can be useful, however, in helping to illustrate the limitations of the various algorithms that have been devised. This paper presents a limited review of some of the more common peak-search and peak-integration methods, along with Peak-search procedures

  6. The high intensity {gamma}-ray source (HI{gamma}S) and recent results

    Energy Technology Data Exchange (ETDEWEB)

    Tonchev, A.P. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States)]. E-mail: tonchev@tunl.duke.edu; Boswell, M. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Howell, C.R. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Karwowski, H.J. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Kelley, J.H. [North Carolina State University and TUNL, Raleigh, NC 27695 (United States); Tornow, W. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Wu, Y.K. [Duke University and Duke Free Electron Laser Laboratory, Durham, NC 27708-0319 (United States)

    2005-12-15

    The high intensity {gamma}-ray source (HI{gamma}S) utilizes intra-cavity backscattering of free electron laser photons from the Duke electron storage ring to produce a unique monoenergetic beam of high-flux {gamma}-rays with high polarization and selectable energy resolution. At present, {gamma}-ray beams with energies from 2 to 58 MeV are available with intensities as high as 10{sup 5}-5 x 10{sup 6} {gamma}/s, energy spreads of 3% or better, and nearly 100% linear polarization. The quality and intensity of the {gamma}-ray beams at HI{gamma}S are responsible for the unprecedented performance of this facility in a broad range of research programs in nuclear structure, nuclear astrophysics and nuclear applications. Recent results from excitation of isomeric states in ({gamma}, n) reactions and parity assignments of dipole states determined via the ({gamma}, {gamma}') reaction are presented.

  7. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    CERN Document Server

    Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P.A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costanza, F.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S.W.; Di Venere, L.; Drell, P.S.; Favuzzi, C.; Fegan, S.J.; Focke, W.B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J.E.; Guiriec, S.; Harding, A. K.; Hewitt, J. W.; Horan, D.; Hou, X.; Iafrate, G.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M.N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M.N.; Michelson, P.F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M.E.; Morselli, A.; Murgia, S.; Nuss, E.; Omodei, N.; Orlando, E.; Ormes, J.F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Sgrò, C.; Reposeur, T.; Siskind, E.J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J.B.; Thompson, D.J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Winer, B. L.; Wood, K. S.; Yassine, M.; Cerutti, F.; Ferrari, A.; Sala, P.R.

    2016-01-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first 7 years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  8. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    Science.gov (United States)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  9. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  10. A SEARCH FOR SPECTRAL HYSTERESIS AND ENERGY-DEPENDENT TIME LAGS FROM X-RAY AND TeV GAMMA-RAY OBSERVATIONS OF Mrk 421

    International Nuclear Information System (INIS)

    Abeysekara, A. U.; Flinders, A.; Archambault, S.; Feng, Q.; Archer, A.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Bird, R.; Buchovecky, M.; Cardenzana, J. V; Eisch, J. D.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Finley, J. P.; Falcone, A.; Fleischhack, H.

    2017-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi -Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10 −4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

  11. A SEARCH FOR SPECTRAL HYSTERESIS AND ENERGY-DEPENDENT TIME LAGS FROM X-RAY AND TeV GAMMA-RAY OBSERVATIONS OF Mrk 421

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U.; Flinders, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Archambault, S.; Feng, Q. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Cardenzana, J. V; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Fleischhack, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Collaboration: VERITAS Collaboration; MAGIC Collaboration; and others

    2017-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi -Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10{sup −4} Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

  12. Solar Coronal Events with Extended Hard X-ray and Gamma-ray Emission

    Science.gov (United States)

    Hudson, H. S.

    2017-12-01

    A characteristic pattern of solar hard X-ray emission, first identified in SOL1969-03-31 by Frost & Dennis (1971) now has been linked to prolonged high-energy gamma-ray emission detected by the Fermi/LAT experiment, for example in SOL2014-09-01. The distinctive features of these events include flat hard X-ray spectra extending well above 100 keV, a characteristic pattern of time development, low-frequency gyrosynchrotron peaks, CME association, and gamma-rays identifiable with pion decay originating in GeV ions. The identification of these events with otherwise known solar structures nevertheless remains elusive, in spite of the wealth of imagery available from AIA. The quandary is that these events have a clear association with CMEs in the high corona, and yet the gamma-ray production implicates the photosphere itself. The vanishingly small loss cone in the nominal acceleration region makes this extremely difficult. I propose direct inward advection of a part of the SEP particle population, as created on closed field structures, as a possible resolution of this puzzle, and note that this requires retracting magnetic structures on long time scales following the flare itself.

  13. Lunar occultations for gamma-ray source measurements

    Science.gov (United States)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  14. High Energy Gamma-rays from FR I Jets

    CERN Document Server

    Sikora, M

    2003-01-01

    Thanks to Hubble and Chandra telescopes, some of the large scale jets in extragalactic radio sources are now being observed at optical and X-ray frequencies. For the FR I objects the synchrotron nature of this emission is surely established, although a lot of uncertainties--connected for example with the particle acceleration processes involved--remain. In this paper we study production of high energy gamma-rays in FR I kiloparsec-scale jets by inverse-Compton emission of the synchrotron-emitting electrons. We consider different origin of seed photons contributing to the inverse-Compton scattering, including nuclear jet radiation as well as ambient, stellar and circumstellar emission of the host galaxies. We discuss how future detections or non-detections of the evaluated gamma-ray fluxes can provide constraints on the unknown large scale jet parameters, i.e. the magnetic field intensity and the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find measurable fluxes of TeV photons resulting...

  15. Examining the nature of very-high-energy gamma-ray emission from the AGN PKS 1222+216 and 3C 279

    Science.gov (United States)

    Price, Sharleen; Brill, Ari; Mukherjee, Reshmi; VERITAS

    2018-01-01

    Blazars are a type of active galactic nuclei (AGN) that emit jets of ionized matter which move towards the Earth at relativistic speeds. In this research we carried out a study of two objects, 3C 279 and PKS 1222+216, which belong to the subset of blazars known as FSRQs (flat spectrum radio quasars), the most powerful TeV-detected sources at gamma-ray energies with bolometric luminosities exceeding 1048 erg/s. The high-energy emission of quasars peaks in the MeV-GeV band, making these sources very rarely detectable in the TeV energy range. In fact, only six FSRQs have ever been detected in this range by very-high-energy gamma-ray telescopes. We will present results from observing campaigns on 3C 279 in 2014 and 2016, when the object was detected in high flux states by Fermi-LAT. Observations include simultaneous coverage with the Fermi-LAT satellite and the VERITAS ground-based array spanning four decades in energy from 100 MeV to 1 TeV. We will also report VERITAS observations of PKS 1222+216 between 2008 and 2017. The detection/non-detection of TeV emission during flaring episodes at MeV energies will further contribute to our understanding of particle acceleration and gamma-ray emission mechanisms in blazar jets.

  16. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1990-02-01

    Our scientific goal is to discover and study by means of gamma-ray astronomy those regions of the universe where particles are accelerated to extreme energies. The atmospheric Cherenkov technique provides a unique and potentially sensitive window in the region of 10 11 to approximately 10 14 eV for this purpose. The Whipple Observatory Collaboration is currently engaged in the development of a Cherenkov camera which has the ultimate capability of distinguishing gamma-ray showers from the numerous cosmic-ray background showers by imaging the Cherenkov light from each shower. We have recently demonstrated the potential of the imaging technique with our 18 sigma detection of TeV photons from the Crab Nebula using a camera of 10 elements, pixel spacing 0.25 degrees. This detection represents a factor of 10 improvement in sensitivity compared to a non-imaging detector. The next step in the development of the detector is to obtain a second large reflector, similar to the present 10 meter instrument, for stereoscopic viewing of showers. This project, named GRANITE, is now approved by DOE. With GRANITE it should be possible to probe more deeply in space by a factor of 7, and to fully investigate the possibility of new physics which has been suggested by reports of anomalous radiation from Hercules X-1. 18 refs

  17. The Average Temporal and Spectral Evolution of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Fenimore, E.E.

    1999-01-01

    We have averaged bright BATSE bursts to uncover the average overall temporal and spectral evolution of gamma-ray bursts (GRBs). We align the temporal structure of each burst by setting its duration to a standard duration, which we call T left-angleDurright-angle . The observed average open-quotes aligned T left-angleDurright-angle close quotes profile for 32 bright bursts with intermediate durations (16 - 40 s) has a sharp rise (within the first 20% of T left-angleDurright-angle ) and then a linear decay. Exponentials and power laws do not fit this decay. In particular, the power law seen in the X-ray afterglow (∝T -1.4 ) is not observed during the bursts, implying that the X-ray afterglow is not just an extension of the average temporal evolution seen during the gamma-ray phase. The average burst spectrum has a low-energy slope of -1.03, a high-energy slope of -3.31, and a peak in the νF ν distribution at 390 keV. We determine the average spectral evolution. Remarkably, it is also a linear function, with the peak of the νF ν distribution given by ∼680-600(T/T left-angleDurright-angle ) keV. Since both the temporal profile and the peak energy are linear functions, on average, the peak energy is linearly proportional to the intensity. This behavior is inconsistent with the external shock model. The observed temporal and spectral evolution is also inconsistent with that expected from variations in just a Lorentz factor. Previously, trends have been reported for GRB evolution, but our results are quantitative relationships that models should attempt to explain. copyright copyright 1999. The American Astronomical Society

  18. Gamma ray spectrum analysis code: sigmas 1.0

    International Nuclear Information System (INIS)

    Siangsanan, P.; Dharmavanij, W.; Chongkum, S.

    1996-01-01

    We have developed Sigmas 1.0 a software package for data reduction and gamma ray spectra evaluation. It is capable of analysing the gamma-ray spectrum in the range of 0-3 MeV by semiconductor detector, i.e. Ge(Li) or HPGe, peak searching, net area determining, plotting and spectrum displaying. There are two methods for calculating the net area under peaks; the Covell method and non-linear fitting by the method of Levenberg and Marquardt which can fit any multiplet peak in the spectrum. The graphic display was rather fast and user friendly

  19. VHE Gamma-ray Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  20. The Multi-Messenger Approach to High-Energy Gamma-Ray Sources

    CERN Document Server

    Paredes, Josep M; Torres, Diego F

    2008-01-01

    This book provides a theoretical and observational overview of the state of the art of gamma-ray astrophysics, and their impact and connection with the physics of cosmic rays and neutrinos. With the aim of shedding new and fresh light on the problem of the nature of the gamma-ray sources, particularly those yet unidentified, this book summarizes contributions to a workshop that continues with the series initiated by the meeting held at Tonantzintla in October 2000, and Hong-Kong in May 2004. This books will be of interest for all active researchers in the field of high energy astrophysics and astroparticle physics, as well as for graduate students entering into the subject.

  1. Refinement of the AdEPT Medium-Energy Gamma-Ray Science

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to explore the theoretical framework for the relatively unexplored field of medium energy (5--200 MeV) gamma-ray astronomy for a mission concept...

  2. Microwave-gamma ray water in crude monitor

    International Nuclear Information System (INIS)

    Paap, H.J.

    1984-01-01

    A microwave-gamma ray water-in-crude monitoring system measures the percent quantity of fresh water or salt water in crude oil flowing in a pipe line. The system includes a measuring cell arranged with the pipe line so that the crude oil flows through the measuring cell. A microwave transmitter subsystem and a gamma ray source are arranged with the measuring cell so that microwave energy and gamma rays are transmitted through the measuring cell. A microwave receiving subsystem and a gamma ray detector provide signals corresponding to received microwave energy and to the received gamma rays, respectively. Apparatus connected to the microwave receiver and to the gamma ray detector provides an indication of the percentage of water in the crude oil

  3. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  4. The analysis of hydrocarbons by dual-energy gamma-ray densitometry

    International Nuclear Information System (INIS)

    Taylor, T.; Reynolds, P.W.; Lipsett, J.J.

    1985-11-01

    Various hydrocarbons have been analyzed noninvasively by dual-energy gamma-ray densitometry. The hydrogen/carbon atomic ratio was deduced for pure hydrocarbons while for heavy oil process samples, the ash content was inferred

  5. 1012 - 1015 eV interaction deduced from energy spectra of gamma-ray and hadrons at airplane altitude

    International Nuclear Information System (INIS)

    Takahashi, Yoshiyuki

    1978-01-01

    The present paper deals with the latest results of the spectral measurements of high energy cosmic ray performed on an airplane with an emulsion chamber. The hadronic component together with the gamma-ray component were observed in the region of gamma energy not smaller than 30 GeV and gamma energy sum not larger than 40 TeV. It was observed that the integral spectra of hadronic showers showed less steep power than those obtained at mountain stations. On the other hand, the integral spectra of gamma-ray in the energy region from 40 GeV to 40 TeV showed steeper power than those of hadronic component. The zenith angle distributions of hadrons and gamma-ray were inspected, and it was confirmed that the observed distributions were well reproduced by the theoretical curves with the appropriate attenuation length. (Yoshimori, M.)

  6. Bulk density calculations from prompt gamma ray yield

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Maslehuddin, M.

    2006-01-01

    Full text: The gamma ray yield from a Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup is a linear function of element concentration and neutron flux in a the sample with constant bulk density. If the sample bulk density varies as well, then the element concentration and the neutron flux has a nonlinear correlation with the gamma ray yield [1]. The measurement of gamma ray yield non-linearity from samples and a standard can be used to estimate the bulk density of the samples. In this study the prompt gamma ray yield from Blast Furnace Slag, Fly Ash, Silica Fumes and Superpozz cements samples have been measured as a function of their calcium and silicon concentration using KFUPM accelerator-based PGNAA setup [2]. Due to different bulk densities of the blended cement samples, the measured gamma ray yields have nonlinear correlation with calcium and silicon concentration of the samples. The non-linearity in the yield was observed to increase with gamma rays energy and element concentration. The bulk densities of the cement samples were calculated from ratio of gamma ray yield from blended cement and that from a Portland cement standard. The calculated bulk densities have good agreement with the published data. The result of this study will be presented

  7. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  8. Specialized software utilities for gamma ray spectrometry. Final report of a co-ordinated research project 1996-2000

    International Nuclear Information System (INIS)

    2002-03-01

    A Co-ordinated Research Project (CRP) on Software Utilities for Gamma Ray Spectrometry was initiated by the International Atomic Energy Agency in 1996 for a three year period. In the CRP several basic applications of nuclear data handling were assayed which also dealt with the development of PC computer codes for various spectrometric purposes. The CRP produced several software packages: for the analysis of low level NaI spectra; user controlled analysis of gamma ray spectra from HPGe detectors; a set of routines for the definition of the detector resolution function and for the unfolding of experimental annihilation spectra; a program for the generation of gamma ray libraries for specific applications; a program to calculate true coincidence corrections; a program to calculate full-energy peak efficiency calibration curve for homogenous cylindrical sample geometries including self-attenuation correction; and a program for the library driven analysis of gamma ray spectra and for the quantification of radionuclide content in samples. In addition, the CRP addressed problems of the analysis of naturally occurring radioactive soil material gamma ray spectra, questions of quality assurance and quality control in gamma ray spectrometry, and verification of the expert system SHAMAN for the analysis of air filter spectra obtained within the framework of the Comprehensive Nuclear Test Ban Treaty. This TECDOC contains 10 presentations delivered at the meeting with the description of the software developed. Each of the papers has been indexed separately

  9. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    Science.gov (United States)

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  10. The Dawn of Nuclear Photonics with Laser-based Gamma-rays

    International Nuclear Information System (INIS)

    Barty, C.J.

    2011-01-01

    A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-ray sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects

  11. Remote planetary geochemical exploration with the NEAR X-ray/gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Trombka, J.I.; Boynton, W.V.; Brueckner, J.; Squyres, S.; Clark, P.E.; Starr, R.; Evans, L.G.; Floyd, S.R.; McClanahan, T.P.; Goldsten, J.; Mcnutt, R.; Schweitzer, J.S.

    1999-01-01

    The X-ray/gamma-ray spectrometer (XGRS) instrument onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft will map asteroid 433 Eros in the 0.2 keV to 10 MeV energy region. Measurements of the discrete line X-ray and gamma-ray emissions in this energy domain can be used to obtain both qualitative and quantitative elemental composition maps of the asteroid surface. The NEAR X-ray/gamma-ray spectrometer (XGRS) was turned on for the first time during the week of 7 April 1996. Rendezvous with Eros 433 is expected during December 1998. Observations of solar X-ray spectra during both quiescent and active periods have been made. A gamma-ray transient detection system has been implemented and about three gamma-ray transient events a week have been observed which are associated with either gamma-ray bursts or solar flares

  12. Ultra high energy gamma rays and observations with CYGNUS/MILAGRO

    International Nuclear Information System (INIS)

    Weeks, D.D.; Yodh, G.B.

    1992-01-01

    This talk discusses high-energy observations of the Crab pulsar/nebula and the pulsar in the X-ray binary, Hercules X-1, and makes the case for continued observations with ground-based γ-ray detectors. The CYGNUS Air Shower Array has a wide field of view on monitors several astrophysical γ-ray sources at the same time, many of which are prime objects observed by the Compton Gamma Ray Observatory (GRO) and air Cerenkov telescopes. This array and the future MILAGRO Water Cerenkov Detector can perform observations that are simultaneous with similar experiments to provide confirmation of emission, and can measure source spectra at a range of high energies previously unexplored

  13. Terrestrial gamma-ray flashes

    Science.gov (United States)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  14. Terrestrial gamma-ray flashes

    International Nuclear Information System (INIS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-01-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models

  15. Fermi LAT Observations of LS I +61 303: First Detection of an Orbital Modulation in GeV Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Federal City Coll. /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /DAPNIA, Saclay /NASA, Goddard /CSST, Baltimore /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Grenoble, CEN; /more authors..

    2012-04-02

    This Letter presents the first results from the observations of LS I +61{sup o}303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 {+-} 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 {+-} 0.03(stat) {+-} 0.07(syst) 10{sup -6} ph cm{sup -2} s{sup -1}, with a cutoff at 6.3 {+-} 1.1(stat) {+-} 0.4(syst) GeV and photon index {Gamma} = 2.21 {+-} 0.04(stat) {+-} 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest that the link between HE and VHE gamma rays is nontrivial.

  16. Gamma-ray Emission from Globular Clusters

    Directory of Open Access Journals (Sweden)

    Pak-Hin T. Tam

    2016-03-01

    Full Text Available Over the last few years, the data obtained using the Large Area Telescope (LAT aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs. Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  17. Lunar based gamma ray astronomy

    International Nuclear Information System (INIS)

    Haymes, R.C.

    1985-01-01

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed. 5 references

  18. Computer code for qualitative analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Yule, H.P.

    1979-01-01

    Computer code QLN1 provides complete analysis of gamma-ray spectra observed with Ge(Li) detectors and is used at both the National Bureau of Standards and the Environmental Protection Agency. It locates peaks, resolves multiplets, identifies component radioisotopes, and computes quantitative results. The qualitative-analysis (or component identification) algorithms feature thorough, self-correcting steps which provide accurate isotope identification in spite of errors in peak centroids, energy calibration, and other typical problems. The qualitative-analysis algorithm is described in this paper

  19. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Grenier, Isabelle

    2009-01-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  20. A high energy gamma ray astronomy experiment

    International Nuclear Information System (INIS)

    Hofstadter, R.

    1988-01-01

    The author describes work involving NASA's Gamma Ray Observatory (GRO). GRO exemplifies the near zero principle because it investigates new gamma ray phenomena by relying on the space program to take us into the region of zero interference above the earth's atmosphere. In its present form GRO has four experiments

  1. A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. A.; Horansky, R. D. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Denver, Denver, Colorado 80208 (United States); Schmidt, D. R.; Doriese, W. B.; Fowler, J. W.; Kotsubo, V.; Mates, J. A. B. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Colorado, Boulder, Colorado 80309 (United States); Hoover, A. S.; Winkler, R.; Rabin, M. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Alpert, B. K.; Beall, J. A.; Fitzgerald, C. P.; Hilton, G. C.; Irwin, K. D.; O' Neil, G. C.; Reintsema, C. D.; Schima, F. J.; Swetz, D. S.; Vale, L. R. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); and others

    2012-09-15

    Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm{sup 2}. We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

  2. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    Science.gov (United States)

    Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.

    2017-01-01

    Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.

  3. THE HIGH ENERGY BUDGET ALLOCATIONS IN SHOCKS AND GAMMA RAY BURSTS

    International Nuclear Information System (INIS)

    Eichler, David; Guetta, Dafne; Pohl, Martin

    2010-01-01

    The statistical distribution of energies among particles responsible for long gamma-ray burst (GRB) emission is analyzed in light of recent results of the Fermi Observatory. The all-sky flux, F γ , recorded by the Gamma-Ray Burst Monitor (GBM) is shown, despite its larger energy range, to be not significantly larger than that reported by the Burst and Transient Explorer, suggesting a relatively small flux in the 3-30 MeV energy range. The present-day energy input rate in γ-rays recorded by the GBM from long GRBs is found, assuming star formation rates in the literature, to be W-dot(0)=0.5 F γ H/c=5x10 42 erg Mpc -3 yr -1 . The Large Area Telescope fluence, when observed, is about 5%-10% per decade of the total, in good agreement with the predictions of saturated, nonlinear shock acceleration. The high-energy component of long GRBs, as measured by Fermi, is found to contain only ∼10 -2.5 of the energy needed to produce ultrahigh-energy cosmic rays (UHECRs) above 4 EeV, assuming the latter to be extragalactic, when various numerical factors are carefully included, if the cosmic-ray source spectrum has a spectral index of -2. The observed γ-ray fraction of the required UHECR energy is even smaller if the source spectrum is softer than E -2 . The AMANDA II limits rule out such a GRB origin for UHECRs if much more than 10 -2 of the cosmic-ray energy goes into neutrinos that are within, and simultaneous with, the γ-ray beam. It is suggested that 'orphan' neutrinos out of the γ-ray beam might be identifiable via orphan afterglow or other wide angle signatures of GRBs in lieu of coincidence with prompt γ-rays, and it is recommended that feasible single neutrino trigger criteria be established to search for such coincidences.

  4. Soft x-ray emission from gamma-ray bursts observed with ginga

    International Nuclear Information System (INIS)

    Yoshida, Atsumasa; Murakami, Toshio; Itoh, Masayuki

    1989-01-01

    The soft X-ray emission of gamma-ray bursts below 10 keV provides information about size, location, and emission mechanism. The Gamma-ray Burst Detector (GBD) on board Ginga, which consists of a proportional counter and a scintillation detector, covers an energy range down to 1.5 keV with 63 cm 2 effective area. In several of the observed gamma-ray bursts, the intensity of the soft X-ray emission showed a longer decay time of 50 to 100s after the higher energy gamma-ray emission had ended. Although we cannot rule out other models, such as bremsstrahlung and thermal cyclotron types, due to poor statistics, the soft X-ray spectra are consistent with a blackbody of 1 to 2 keV in the late phase of the gamma-ray bursts. This enables us to estimate the size of the blackbody responsible for the X-ray emission. (author)

  5. Currie detection limits in gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Geer, L.-E. de

    2004-01-01

    Currie Hypothesis testing is applied to gamma-ray spectral data, where an optimum part of the peak is used and the background is considered well known from nearby channels. With this, the risk of making Type I errors is about 100 times lower than commonly assumed. A programme, PeakMaker, produces random peaks with given characteristics on the screen and calculations are done to facilitate a full use of Poisson statistics in spectrum analyses. Short technical note summary: The Currie decision limit concept applied to spectral data is reinterpreted, which gives better consistency between the selected error risk and the observed error rates. A PeakMaker program is described and the few count problem is analyzed

  6. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 080825C

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.

    2009-01-01

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.

  7. Determination of gaussian peaks in gamma spectra by iterative regression

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.

    1987-05-01

    The parameters of the peaks in gamma-ray spectra are determined by a simple iterative regression method. For each peak, the parameters are associated with a gaussian curve (3 parameters) located above a linear continuum (2 parameters). This method may produces the complete result of the calculation of statistical uncertainties and an accuracy higher than others methods. (author) [pt

  8. Thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,α), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,#betta#) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide

  9. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    Directory of Open Access Journals (Sweden)

    Bidzina Kapanadze

    2018-03-01

    Full Text Available The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-energy peaked BL Lacertae sources (HBLs that are bright at X-rays and provide us with an effective tool to study the details related to the physics of the emitting particles. The X-ray emission of these sources is widely accepted to be a synchrotron radiation from the highest-energy electrons, and the complex spectral variability observed in this band reflects the injection and radiative evolution of freshly-accelerated particles. The detection of sub-hour X-ray flux variability is very important since it can be related to the small-scale jet turbulent structures or triggered by unstable processes occurring in the vicinity of a central supermassive black hole. We summarize the fastest X-ray variability instances detected in bright HBLs and discuss their physical implications.

  10. X-Ray-Driven Gamma Emission

    International Nuclear Information System (INIS)

    Carroll, J. J.; Karamian, S. A.; Rivlin, L. A.; Zadernovsky, A. A.

    2001-01-01

    X-ray-driven gamma emission describes processes that may release nuclear energy in a 'clean' way, as bursts of incoherent or coherent gamma rays without the production of radioactive by-products. Over the past decade, studies in this area, as a part of the larger field of quantum nucleonics, have gained tremendous momentum. Since 1987 it has been established that photons could trigger gamma emission from a long-lived metastable nuclear excited state of one nuclide and it appears likely that triggering in other isotopes will be demonstrated conclusively in the near future. With these experimental results have come new proposals for the creation of collective and avalanche-like incoherent gamma-ray bursts and even for the ultimate light source, a gamma-ray laser. Obviously, many applications would benefit from controlled bursts of gamma radiation, whether coherent or not. This paper reviews the experimental results and concepts for the production of gamma rays, driven by externally produced X-rays

  11. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  12. Gamma-Ray Loudness, Synchrotron Peak Frequency, and Parsec-scale Properties of Blazars Detected by the Fermi Large Area Telescope

    Science.gov (United States)

    Linford, J. D.; Taylor, G. B.; Schinzel, F. K.

    2012-09-01

    The parsec-scale radio properties of 232 active galactic nuclei, most of which are blazars, detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed contemporaneously by the Very Long Baseline Array (VLBA) at 5 GHz. Data from both the first 11 months (1FGL) and the first 2 years (2FGL) of the Fermi mission were used to investigate these sources' γ-ray properties. We use the ratio of the γ-ray-to-radio luminosity as a measure of γ-ray loudness. We investigate the relationship of several radio properties to γ-ray loudness and to the synchrotron peak frequency. There is a tentative correlation between γ-ray loudness and synchrotron peak frequency for BL Lac objects in both 1FGL and 2FGL, and for flat-spectrum radio quasars (FSRQs) in 2FGL. We find that the apparent opening angle tentatively correlates with γ-ray loudness for FSRQs, but only when we use the 2FGL data. We also find that the total VLBA flux density correlates with the synchrotron peak frequency for BL Lac objects and FSRQs. The core brightness temperature also correlates with synchrotron peak frequency, but only for the BL Lac objects. The low-synchrotron-peaked (LSP) BL Lac object sample shows indications of contamination by FSRQs which happen to have undetectable emission lines. There is evidence that the LSP BL Lac objects are more strongly beamed than the rest of the BL Lac object population.

  13. GAMMA-RAY LOUDNESS, SYNCHROTRON PEAK FREQUENCY, AND PARSEC-SCALE PROPERTIES OF BLAZARS DETECTED BY THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Linford, J. D.; Taylor, G. B.; Schinzel, F. K.

    2012-01-01

    The parsec-scale radio properties of 232 active galactic nuclei, most of which are blazars, detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed contemporaneously by the Very Long Baseline Array (VLBA) at 5 GHz. Data from both the first 11 months (1FGL) and the first 2 years (2FGL) of the Fermi mission were used to investigate these sources' γ-ray properties. We use the ratio of the γ-ray-to-radio luminosity as a measure of γ-ray loudness. We investigate the relationship of several radio properties to γ-ray loudness and to the synchrotron peak frequency. There is a tentative correlation between γ-ray loudness and synchrotron peak frequency for BL Lac objects in both 1FGL and 2FGL, and for flat-spectrum radio quasars (FSRQs) in 2FGL. We find that the apparent opening angle tentatively correlates with γ-ray loudness for FSRQs, but only when we use the 2FGL data. We also find that the total VLBA flux density correlates with the synchrotron peak frequency for BL Lac objects and FSRQs. The core brightness temperature also correlates with synchrotron peak frequency, but only for the BL Lac objects. The low-synchrotron-peaked (LSP) BL Lac object sample shows indications of contamination by FSRQs which happen to have undetectable emission lines. There is evidence that the LSP BL Lac objects are more strongly beamed than the rest of the BL Lac object population.

  14. A New Redshift Indicator of Gamma-Ray Bursts to Measure the Cosmos

    Directory of Open Access Journals (Sweden)

    Zhibin Zhang

    2007-06-01

    Full Text Available Using 64 ms count data of long gamma-ray bursts (LBs, T90 > 2.6 s, we analyze the quantity named relative spectral lag (RSL, τ31/FWHM (1 =τrel, 31. We investigate in detail the properties of the RSL for a sample of nine LBs, using the general cross-correlation technique that includes the lag between two different energy bands. We find that the distribution of RSLs is normal and has a mean value of 0.1. Our important discovery is that redshift (z and peak luminosity (Lp are strongly correlated with the RSL, which can be measured easily and directly, making the RSL a good redshift and peak luminosity indicator. In addition, we find that the redshift and luminosity estimator can also hold for short gamma-ray bursts (SBs, T90 < 2.6 s. With it, we estimate the median of redshift and peak luminosity of SBs to be about z≤0.06 and Lp ∼1.68×1048 erg/s, which are in excellent agreement with the results suggested by some previous authors. We thus argue that the sources including SBs and LBs with positive spectral lags might be one united category with the same physical process.

  15. Production of low energy gamma rays by neutron interactions with fluorine for incident neutron energies between 0.1 and 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.; Dickens, J.K.

    1975-06-01

    Differential cross sections for the production of low-energy gamma rays (less than 240 keV) by neutron interactions in fluorine have been measured for neutron energies between 0.1 and 20 MeV. The Oak Ridge Electron Linear Accelerator was used as the neutron source. Gamma rays were detected at 92 0 using an intrinsic germanium detector. Incident neutron energies were determined by time-of-flight techniques. Tables are presented for the production cross sections of three gamma rays having energies of 96, 110, and 197 keV. (14 figures, 3 tables) (U.S.)

  16. SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Alfaro, R. [Instituto de Física, Universidad Nacional Autónoma de México, México D. F. (Mexico); Alvarez, C.; Arceo, R. [CEFyMAP, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas (Mexico); Álvarez, J. D.; Arteaga-Velázquez, J. C.; Cotti, U.; De León, C. [Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán (Mexico); Solares, H. A. Ayala [Department of Physics, Michigan Technological University, Houghton, MI (United States); Barber, A. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Baughman, B. M.; Braun, J. [Department of Physics, University of Maryland, College Park, MD (United States); Bautista-Elivar, N. [Universidad Politécnica de Pachuca, Municipio de Zempoala, Hidalgo (Mexico); BenZvi, S. Y. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Rosales, M. Bonilla; Carramiñana, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla (Mexico); Caballero-Mora, K. S. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F. (Mexico); Castillo, M.; Cotzomi, J. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla (Mexico); De la Fuente, E., E-mail: dirk.lennarz@gatech.edu [Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara (Mexico); Collaboration: HAWC collaboration; and others

    2015-02-20

    The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the >100 GeV energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift z ≲ 0.5 and featured the longest lasting emission above 100 MeV. The energy spectrum extends at least up to 95 GeV, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavorable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the Fermi Large Area Telescope energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.

  17. Discovery of a Nonblazar Gamma-Ray Transient Source Near the Galactic Plane: GRO J1838-04

    Science.gov (United States)

    Tavani, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We report the discovery of a remarkable gamma-ray transient source near the Galactic plane, GRO J1838-04. This source was serendipitously discovered by EGRET in 1995 June with a peak intensity of approx. (4 +/- 1) x 10(exp -6) photons/sq cm s (for photon energies larger than 100 MeV) and a 5.9 sigma significance. At that time, GRO J1838-04 was the second brightest gamma-ray source in the sky. A subsequent EGRET pointing in 1995 late September detected the source at a flux smaller than its peak value by a factor of approx. 7. We determine that no radio-loud spectrally flat blazar is within the error box of GRO J1838-04. We discuss the origin of the gamma-ray transient source and show that interpretations in terms of active galactic nuclei or isolated pulsars are highly problematic. GRO J1838-04 provides strong evidence for the existence of a new class of variable gamma-ray sources.

  18. X-ray and. gamma. -ray sources: a comparison of their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Freund, A K [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1979-11-01

    A comparison of the various source characteristics, in particular the available fluxes of radiation in the X-ray/..gamma..-ray region from (1) high power rotary anode X-ray generators, (2) radioactive ..gamma..-ray sources and (3) high energy electron storage rings is presented. Some of the specific characteristics and possible applications of synchrotron radiation as a source are discussed in detail, together with problems associated with the monochromatization of the continuous radiation in the X-ray/..gamma..-ray region. The new high energy machines PEP at Stanford, the 8 GeV storage ring CESR at Cornell and the PETRA storage ring in Hamburg, which will soon come into operation provide a spectrum of high intensity radiation reaching well above h..gamma..sub(photon)=100 keV. The possibilities of using ondulators (wigglers), and laser-electron scattering for constructing high repetition rate tunable ..gamma..-ray sources are also discussed. Finally the potentials of using the powerful spontaneous emission of ..gamma..-quanta by relativistic channeled particles are mentioned.

  19. Spectrum analysis with indoor multi-channels gamma-rays spectrometer (NaI(Tl))

    International Nuclear Information System (INIS)

    Hou Shengli; Fan Weihua

    2005-01-01

    Two calculational methods for analyzing the spectrum which measured by indoor low background multi-channels gamma-rays spectrometer (Na(Tl)) to get the specific activity of 226 Ra, 232 Th and 40 K of the sample are discussed, they are the spectrum analysis method and the characteristic energy peak method (inverse matrix method) respectively. The sample spectrum are analyzed with the program designed according to the two methods, and compared with the results by HPGe gamma-rays spectrometer, showing that the relative deviation is ≤10% with the two methods. (authors)

  20. Reference peak method for analysis of doublets in gamma-ray spectrometry used in neutron activation analysis

    International Nuclear Information System (INIS)

    Wasek, M.; Cichowlas, A.; Sterlinski, S.; Dybczynski, R.

    2000-01-01

    A simple algebraic method for the quantitative analysis of doublets in gamma-ray spectra from HPGe detectors is presented. The calculation algorithm is accomplished using the Microsoft Excel program. The method does not require any assumptions regarding the shape of the peaks in the spectrum. The possibilities of quantitative analysis of doublets of various intensity ration and separation of ots components are discussed in detail. The practical examples proved the usefulness the method also for the analysis of the closed doublets. (author)

  1. Catalog of gamma-rays unplaced in radioactive decay schemes

    International Nuclear Information System (INIS)

    Narita, Tsutomu; Kitao, Kensuke.

    1991-03-01

    A catalog is made for gamma-rays emitted in decay of radioactive nuclides but not placed in their decay schemes. It consists of two tables. In Table 1, the number of these unplaced gamma-ray components by a nuclide is given together with the fraction of total intensity of these gamma-rays to that of all observed gamma-rays. In Table 2, the unplaced gamma-rays are arranged in order of increasing energy. Each line of this table contains the gamma-ray energy, intensity, nuclide identification, and energies and intensities of the most prominent gamma-rays from the decay of the radionuclides. This catalog is a compilation from Evaluated Nuclear Structure Data File (ENSDF) maintained by National Nuclear Data Center at Brookhaven National Laboratory, of at February 1990. (author)

  2. Neutron-capture gamma-ray analysis of coal for sulfur, iron, silicon and moisture

    International Nuclear Information System (INIS)

    Fay, D.A.

    1979-05-01

    Samples of coal weighing approximately 200 grams placed in a collimated beam of neutrons from the thermal column of the Ames Laboratory Research Reactor produced capture gamma-rays which could be used for the simultaneous determination of sulfur and iron. Spectra from NaI(Tl) and Ge(Li) detectors were used and interferences were located by examining spectra of the major elemental components of coal. In determining sulfur, iron is a potential source of interference when gamma-ray spectra are collected with a NaI(Tl) detector. Corrections for iron interference were made by use of a higher energy iron peak. The possibility of determining silicon in coal was investigated but this element determination was unsuccessful since capture gamma-ray spectrometry lacked the necessary sensitivity for silicon. A linear relation was found between the area of the hydrogen capture peak at 2.23 MeV and the amount of water added to coal

  3. ON ULTRA-HIGH-ENERGY COSMIC RAYS AND THEIR RESULTANT GAMMA-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Gavish, Eyal; Eichler, David [Physics Department, Ben-Gurion University, Be’er-Sheva 84105 (Israel)

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 ( L = 10{sup 43.5} erg s{sup −1} in the [0.5–2] KeV band), and BL Lacertae objects (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ -radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ -rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ -radiation and would remain a viable source of UHECRs, provided that they dominate.

  4. GAMMA-RAY ACTIVITY IN THE CRAB NEBULA: THE EXCEPTIONAL FLARE OF 2011 APRIL

    International Nuclear Information System (INIS)

    Buehler, R.; Blandford, R. D.; Charles, E.; Chiang, J.; Funk, S.; Kerr, M.; Massaro, F.; Romani, R. W.; Scargle, J. D.; Baldini, L.; Baring, M. G.; Belfiore, A.; Saz Parkinson, P. M.; D'Ammando, F.; Dermer, C. D.; Grove, J. E.; Harding, A. K.; Hays, E.; Mazziotta, M. N.; Tennant, A. F.

    2012-01-01

    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab Nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of ≈11 lt-yr across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 ± 6) × 10 –7 cm –2 s –1 above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 ± 26) MeV at flare maximum. The observations imply that the emission region was likely relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

  5. Determination of the full energy peak efficiency of NaI(Tl) detectors

    International Nuclear Information System (INIS)

    Cesana, A.; Terrani, M.

    1978-01-01

    A simple procedure for the accurate evaluation of the full energy peak efficiency of NaI(Tl) crystals is described. Particular attention is given to the peak to total ratio determination for which a new method is proposed. (author)

  6. Uranium isotopic analysis of depleted uranium in presence of other radioactive materials by using nondestructive gamma-ray measurements in coaxial and planar Ge detectors

    International Nuclear Information System (INIS)

    Yucel, H.; Yeltepe, E.; Dikmen, H.; Turhan, Sh.; Vural, M.

    2006-01-01

    Full text: The isotopic abundance of depleted uranium samples in the presence of other radioactive materials, especially actinide isotopes such as Th 232, Np 237-Pa 233 and Am 241 can be determined from two gamma-ray spectrometric methods. One is the absolute method which employs non-destructive gamma-ray spectrometry for energies below 1001 keV using a coaxial Ge detector calibrated with a set of standards. The other is the multi-group analysis (MGA) method using the low energy region (< 300 keV) with a planar Ge detector intrinsically calibrated with gamma and X-rays of uranium without use of standards. At present absolute method, less intense but cleaner gamma peaks at 163.33 keV (5.08 percent) and 205 keV(5.01 percent) of U 235 are preferred over more intense peaks at 143.76 keV(10.76 percent), possible interference with 143.25 keV(0.44 percent) of Np 237 and 185.705 keV(57.2 percent), possible interference with 186.21 keV(3.51 percent) of Ra 226. In the high energy region the 1001.03 keV(0.837 percent) peak of Pa 234 m is used for the isotopic abundance analysis because the more intense 63.3 keV peak of Th 234 daughter of U 238 parent has a fully multiplet(62.86 keV+63.29 keV) and include the interferences of the 62.70 keV(1.5 percent) peak of Pa 234, the 63.81 keV(0.263 percent) peak of Th 232 and the 63.90 keV(0.011 percent) peak of Np 237. Although the MGA method is quicker and more practical, the more laborious absolute gamma spectrometric method can give more accurate results for the isotopic determination of depleted uranium samples. The relative uranium abundances obtained with the second method (i,e., MGA) are in general inconsistent with the declared values for the uranium samples in the presence of the above mentioned actinides. The reason for these erroneous results is proposed to be the interference of the gamma and X-rays of uranium in the 80-130 keV region used in MGA with those emissions from other radioactive materials present

  7. High-energy photons and neutrinos from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble Space Telescope has recently discovered thousands of gigantic cometlike objects in a ring around the central star in the nearest planetary nebula. It is assumed that such circumstellar rings exist around the majority of stars. Collisions of relativistic debris from gamma-ray bursts (GRB) in dense stellar regions with such gigantic cometlike objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy γ rays and neutrinos from GRBs

  8. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  9. The analysis of the gamma-ray pulseheight spectra resulting from the NaI detector

    International Nuclear Information System (INIS)

    Huang Zhengde; Zhang Guishan; Chen Qun; Cao Zhong

    1990-01-01

    The analysis of the Gamma-ray pulse-height spectra resulting from NaI detector is described by using weighted least square iteration. The computer program has the function of searching for Gamma-ray peak automatically. It can be used in the analysis of continuous, discrete or their superposition spectra. Besides, there are some function of the spectrum smooth,the correction of the shift in gain and zero energy channel intercept. Some results of the computer program are presented

  10. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)

    2016-07-15

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  11. The bright optical flash and afterglow from the gamma-ray burst GRB 130427A.

    Science.gov (United States)

    Vestrand, W T; Wren, J A; Panaitescu, A; Wozniak, P R; Davis, H; Palmer, D M; Vianello, G; Omodei, N; Xiong, S; Briggs, M S; Elphick, M; Paciesas, W; Rosing, W

    2014-01-03

    The optical light generated simultaneously with x-rays and gamma rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading afterglow from powerful burst GRB 130427A. The optical and >100-megaelectron volt (MeV) gamma-ray flux show a close correlation during the first 7000 seconds, which is best explained by reverse shock emission cogenerated in the relativistic burst ejecta as it collides with surrounding material. At later times, optical observations show the emergence of emission generated by a forward shock traversing the circumburst environment. The link between optical afterglow and >100-MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying gamma-ray emission at energies ranging from gigaelectron volts to teraelectron volts.

  12. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  13. Plutonium characterisation with prompt high energy gamma-rays from (n,gamma) reactions for nuclear warhead dismantlement verification

    Energy Technology Data Exchange (ETDEWEB)

    Postelt, Frederik; Gerald, Kirchner [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Measurements of neutron induced gammas allow the characterisation of fissile material (i.e. plutonium and uranium), despite self- and additional shielding. Most prompt gamma-rays from radiative neutron capture reactions in fissile material have energies between 3 and 6.5 MeV. Such high energy photons have a high penetrability and therefore minimise shielding and self-absorption effects. They are also isotope specific and therefore well suited to determine the isotopic composition of fissile material. As they are non-destructive, their application in dismantlement verification is desirable. Disadvantages are low detector efficiencies at high gamma energies, as well as a high background of gammas which result from induced fission reactions in the fissile material, as well as delayed gammas from both, (n,f) and(n,gamma) reactions. In this talk, simulations of (n,gamma) measurements and their implications are presented. Their potential for characterising fissile material is assessed and open questions are addressed.

  14. A search for high energy gamma rays from a quiet sun

    International Nuclear Information System (INIS)

    Kim, C.Y.

    1975-01-01

    A search for solar gamma-rays in the energy range 10 MeV and greater was made by measuring the angular distribution of the flux from the direction of the sun using a stack of oriented nuclear emulsions flown by balloon on July 21, 1974, from Fort Churchill, Manitoba, Canada. The emulsion plates were scanned for the electron-positron pairs. An upper limit to the flux of solar gamma-rays, for a 90% statistical confidence level, was estimated to be 3.1 x 10 -4 photons cm -2 s -1 in the energy region above 10 MeV. On the day of the flight the sun spot number (Rsub(z)) was 55, and no major solar flares were reported. (orig.) [de

  15. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  16. Gamma ray astronomy with COS-B

    International Nuclear Information System (INIS)

    Swanenburg, B.N.

    1981-01-01

    Observational results in the field of gamma-ray astronomy that have been obtained to date with the COS-B satellite are discussed and questions raised by these observations are summarized. Following a brief review of the instrumental characteristics of COS-B and the extent of COS-B gamma-ray coverage of the sky, particular attention is given to the questions raised by the discovery of many unidentified gamma-ray sources with no apparent optical, X-ray or radio counterparts and the detection of high-energy gamma radiation from the quasar 3C 273, which suggests the role of gamma-ray emission in the creation of other radiation

  17. Application of direct peak analysis to energy dispersive x-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Nielson, K.K.

    1977-07-01

    A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies

  18. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    Science.gov (United States)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  19. High-speed Light Peak optical link for high energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.X. [Academia Sinica, Taipei, Taiwan (China); Chiang, F. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Deng, B. [Hubei Polytechnic University, Huangshi, Hubei (China); Southern Methodist University, Dallas, TX (United States); Hou, J. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Hou, S., E-mail: suen@gate.sinica.edu.tw [Academia Sinica, Taipei, Taiwan (China); Liu, C.; Liu, T. [Southern Methodist University, Dallas, TX (United States); Teng, P.K. [Academia Sinica, Taipei, Taiwan (China); Wang, C.H. [National United University, Miaoli, Taiwan (China); Xu, T. [Shandong University, Ji' nan (China); Southern Methodist University, Dallas, TX (United States); Ye, J. [Southern Methodist University, Dallas, TX (United States)

    2014-11-21

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with {sup 60}Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  20. Found: A Galaxy's Missing Gamma Rays

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  1. On the high energy gamma ray spectrum and the particle production model

    International Nuclear Information System (INIS)

    Ohta, Itaru; Tezuka, Ikuo.

    1979-01-01

    A small emulsion chamber, 25 cm x 20 cm in area and 12 radiation lengths in thick, was exposed with JAL jet-cargo at an atmospheric depth of 260 g/cm 2 during 150 hrs. The gamma ray spectrum derived by combining data from X-ray films and nuclear emulsions is well represented by I sub(r) (>=Er) = (3.65 +- 0.30) x 10 -8 [E sub(r)/TeV]sup(-1.89+0.06-0.09)/cm 2 sr sec in the energy range 200 - 3,000 GeV. This result is in good agreement with those of several other groups. We discuss our data in terms of Feynman's and Koba-Nielsen-Olesen's scaling law of high energy particle production model. Interpreted in terms of an assumption of mild violation of the scaling law as x.d delta-s / delta-s indx = AE sup(2a)exp (-BE sup(a)x), our gamma ray spectrum results suggest an existence of a violation parameter of a = 0.18, which is consistent with results from gamma ray spectrum observations at great depth such as the mountain elevations. (author)

  2. Gamma rays in L-B coordinates at CORONAS-I altitude

    Directory of Open Access Journals (Sweden)

    I. N. Myagkova

    2005-09-01

    Full Text Available We present here observations of gamma rays in the energy range between 3.0 and 8.3 MeV gathered by the SONG instrument aboard low-altitude polar-orbiting satellite CORONAS-I throughout the period March-June 1994. We concentrate on the emissions related to the trapped particles and organize CORONAS-I measurements in the magnetic L–B coordinate system. The spatial distribution of the average gamma-ray counts reveals that the most intense fluxes were observed under the inner radiation belt, at L<2, and that they are exclusively confined into the region of stably trapped particles, where daughter gamma rays could result from the interactions within the spacecraft and instrumental matter. In the outer radiation zone (L~4, the enhanced gamma radiation, also detected outside the stably trapping region, shows pronounced longitudinal variations. The observed eastward increase in the gamma-ray count rate suggests quasi-traped energetic (megavolt electrons as a source of the gamma rays both in the upper atmosphere and in the satellite matter, most likely, through the bremsstrahlung process in the studied energy domain. Keywords. Magnetospheric physics (Energetic particles, precipitating; Energetic particles, trapped; Magnetosphereionosphere interactions

  3. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: from Theory to Fermi Observations

    Science.gov (United States)

    Kalapotharakos, Konstantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-01-01

    We compute the patterns of gamma-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed gamma-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model gamma-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and gamma-ray emission on the gamma-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the gamma-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  4. Numerical simulations on efficiency and measurement of capabilities of BGO detectors for high energy gamma ray

    CERN Document Server

    Wen Wan Xin

    2002-01-01

    The energy resolution and time resolution of two phi 75 x 100 BGO detectors for high energy gamma ray newly made were measured with sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co resources. The two characteristic gamma rays of high energy emitted from the thermal neutron capture of germanium in BGO crystal were used for the energy calibration of gamma spectra. The intrinsic photopeak efficiency, single escape probability and double escape probabilities of BGO detectors in photon energy range of 4-30 MeV are numerically calculated with GEANT code. The real count response and count ratio of the uniformly distributed incident photons in energy range of 0-30 MeV are also calculated. The distortion of gamma spectra caused by the photon energy loss extension to lower energy in detection medium is discussed

  5. Hard x-ray to low energy gamma ray spectrum of the Crab Nebula

    International Nuclear Information System (INIS)

    Jung, G.V.

    1986-01-01

    The spectrum of the Crab Nebula has been determined in the energy range 10 keV to 5 MeV from the data of the UCSD/MIT Hard-X-ray and Low Energy Gamma Ray Experiment on the first High Energy Astronomy Observatory, HEAO-1. The x-ray to γ-ray portion of the continuous emission from the Crab is indicative of the electron spectrum, its transport through the nebula, and the physical conditions near the shocked interface between the nebular region and the wind which is the physical link between the nebula and the pulsar, NP0532. The power-law dependence of the spectrum found in the lower-energy decade of this observation (10 to 100 keV) is not continued without modification to higher energies. Evidence for this has been accumulating from previous observations in the γ-ray ranges of 1-10 MeV and above 35 MeV. The observations on which this dissertation is based further characterize the spectral change in the 100 keV to 1 MeV region. These observations provide a crucial connection between the x-ray and γ-ray spectrum of the non-pulsed emission of the Crab Nebula. The continuity of this spectrum suggests that the emission mechanism responsible for the non-pulsed γ-rays observed above 35 MeV is of the same origin as the emission at lower energies, i.e. that of synchrotron radiation in the magnetic field of the nebula

  6. A practical method for determining γ-ray full-energy peak efficiency considering coincidence-summing and self-absorption corrections for the measurement of environmental samples after the Fukushima reactor accident

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi, E-mail: shizuma@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Oba, Yurika; Takada, Momo [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan)

    2016-09-15

    A method for determining the γ-ray full-energy peak efficiency at positions close to three Ge detectors and at the well port of a well-type detector was developed for measuring environmental volume samples containing {sup 137}Cs, {sup 134}Cs and {sup 40}K. The efficiency was estimated by considering two correction factors: coincidence-summing and self-absorption corrections. The coincidence-summing correction for a cascade transition nuclide was estimated by an experimental method involving measuring a sample at the far and close positions of a detector. The derived coincidence-summing correction factors were compared with those of analytical and Monte Carlo simulation methods and good agreements were obtained. Differences in the matrix of the calibration source and the environmental sample resulted in an increase or decrease of the full-energy peak counts due to the self-absorption of γ-rays in the sample. The correction factor was derived as a function of the densities of several matrix materials. The present method was applied to the measurement of environmental samples and also low-level radioactivity measurements of water samples using the well-type detector.

  7. Diffraction peaks in x-ray spectroscopy: Friend or foe?

    International Nuclear Information System (INIS)

    Tissot, R.G.; Goehner, R.P.

    1992-01-01

    Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample

  8. Application of full spectrum analysis technique for NaI(TI) based gamma ray spectral monitoring system

    International Nuclear Information System (INIS)

    Pant, Amar D.; Verma, Amit K.; Narayani, K.; Anilkumar, S.; Singh, Rajvir

    2016-01-01

    NaI(Tl) is commonly used for the gamma spectrometry analysis in laboratories. It continues to be the first choice for gamma spectrometry in many applications even today. Many gamma spectrometric methods are developed to experimentally determine activity of radionuclides in samples. Detectors used worldwide for gamma radiation monitoring are either GM based or scintillator based detector based on count rate. For radiation early warning systems radionuclide specific radiation monitoring methodology is required i.e. gamma ray spectrometry based environmental monitoring system. A computer program has been developed for gamma spectral monitoring by the use of full spectrum analysis (FSA). In this measured spectra are fitted using individual spectral components by least square fitting (LSF). The method is found very useful in situations, where radionuclide specific environmental radiation monitoring is required. The paper describes the details of the FSA procedure for the on line acquisition and analysis of gamma ray spectra from Nal(Tl) detectors

  9. Real-time image parameterization in high energy gamma-ray astronomy using transputers

    International Nuclear Information System (INIS)

    Punch, M.; Fegan, D.J.

    1991-01-01

    Recently, significant advances in Very-High-Energy gamma-ray astronomy have been made by parameterization of the Cherenkov images arising from gamma-ray initiated showers in the Earth's atmosphere. A prototype system to evaluate the use of Transputers as a parallel-processing elements for real-time analysis of data from a Cherenkov imaging camera is described in this paper. The operation of and benefits resulting from such a system are described, and the viability of an applicaiton of the prototype system is discussed

  10. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  11. GRB 090727 AND GAMMA-RAY BURSTS WITH EARLY-TIME OPTICAL EMISSION

    International Nuclear Information System (INIS)

    Kopač, D.; Gomboc, A.; Japelj, J.; Kobayashi, S.; Mundell, C. G.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.; Guidorzi, C.; Melandri, A.

    2013-01-01

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks (Δt/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission

  12. Gamma-ray spectroscopy measurements and simulations for uranium mining

    Science.gov (United States)

    Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

  13. Utilization of concurrently gathered pulser data for complete spectral validation of gamma-ray spectra from germanium detectors

    International Nuclear Information System (INIS)

    Johnson, L.O.; Killian, E.W.; Helmer, R.G.; Coates, R.A.

    1980-01-01

    Some of the capabilities and limitations of using concurrently gathered pulser data for energy calibration, dead time correction, and pile-up loss correction of gamma ray spectra from germanium detectors have been investigated. This report deals with the pulser, charge injection into the charge sensitive preamplifier, hardware separation of gamma and pulser events, and analysis techniques to improve the accuracy of gamma peak area corrections from pulser data. Data are presented indicating achievable short and long term energy calibration stability of better than .01% and accuracy and rate dependent peak area loss corrections of +-1% up to 50,000 pulses per second (pps) and +-2.5% up to 100,000 pps, energy independent

  14. Boxes, Boosts, and Energy Duality: Understanding the Galactic-Center Gamma-Ray Excess through Dynamical Dark Matter

    CERN Document Server

    Boddy, Kimberly K.

    2017-03-28

    Many models currently exist which attempt to interpret the excess of gamma rays emanating from the Galactic Center in terms of annihilating or decaying dark matter. These models typically exhibit a variety of complicated cascade mechanisms for photon production, leading to a non-trivial kinematics which obscures the physics of the underlying dark sector. In this paper, by contrast, we observe that the spectrum of the gamma-ray excess may actually exhibit an intriguing "energy-duality" invariance under $E_\\gamma \\rightarrow E_\\ast^2/E_\\gamma$ for some $E_\\ast$. As we shall discuss, such an energy duality points back to a remarkably simple alternative kinematics which in turn is realized naturally within the Dynamical Dark Matter framework. Observation of this energy duality could therefore provide considerable information about the properties of the dark sector from which the Galactic-Center gamma-ray excess might arise, and highlights the importance of acquiring more complete data for the Galactic-Center exce...

  15. FERMI LAT OBSERVATIONS OF LS I +610303: FIRST DETECTION OF AN ORBITAL MODULATION IN GeV GAMMA RAYS

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.

    2009-01-01

    This Letter presents the first results from the observations of LS I +61 0 303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 ± 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 ± 0.03(stat) ± 0.07(syst) 10 -6 ph cm -2 s -1 , with a cutoff at 6.3 ± 1.1(stat) ± 0.4(syst) GeV and photon index Γ = 2.21 ± 0.04(stat) ± 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest that the link between HE and VHE gamma rays is nontrivial.

  16. Interpretation of the peak areas in gamma-ray spectra that have a large relative uncertainty

    International Nuclear Information System (INIS)

    Korun, M.; Maver Modec, P.; Vodenik, B.

    2012-01-01

    Empirical evidence is provided that the areas of peaks having a relative uncertainty in excess of 30% are overestimated. This systematic influence is of a statistical nature and originates in way the peak-analyzing routine recognizes the small peaks. It is not easy to detect this influence since it is smaller than the peak-area uncertainty. However, the systematic influence can be revealed in repeated measurements under the same experimental conditions, e.g., in background measurements. To evaluate the systematic influence, background measurements were analyzed with the peak-analyzing procedure described by Korun et al. (2008). The magnitude of the influence depends on the relative uncertainty of the peak area and may amount, in the conditions used in the peak analysis, to a factor of 5 at relative uncertainties exceeding 60%. From the measurements, the probability for type-II errors, as a function of the relative uncertainty of the peak area, was extracted. This probability is near zero below an uncertainty of 30% and rises to 90% at uncertainties exceeding 50%. - Highlights: ► A systematic influence affecting small peak areas in gamma-ray spectra is described. ► The influence originates in the peak locating procedure, using a pre-determined sensitivity. ► The predetermined sensitivity makes peak areas with large uncertainties to be overestimated. ► The influence depends on the relative uncertainty of the number of counts in the peak. ► Corrections exceeding a factor of 3 are attained at peak area uncertainties exceeding 60%.

  17. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand and Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000 (Thailand)

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  18. A BaF2-BGO detector for high-energy gamma rays

    International Nuclear Information System (INIS)

    Bargholtz, C.; Ritzen, B.; Tegner, P.E.

    1989-01-01

    A scintillation detector has been developed for gamma rays with energy between a few hundred keV and approximately 100 MeV. The detector comprises a BaF 2 and a BGO crystal giving it good timing properties and a reasonably good energy resolution in combination with compact size. (orig.)

  19. Gamma rays made on Earth have unexpectedly high energies

    International Nuclear Information System (INIS)

    Miller, Johanna

    2011-01-01

    Terrestrial gamma-ray flashes (TGFs) are the source of the highest-energy nonanthropogenic photons produced on Earth. Associated with thunder-storms - and in fact, with individual lightning discharges - they are presumed to be the bremsstrahlung produced when relativistic electrons, accelerated by the storms' strong electric fields, collide with air molecules some 10-20 km above sea level. The TGFs last up to a few milliseconds and contain photons with energies on the order of MeV.

  20. TPASS: a gamma-ray spectrum analysis and isotope identification computer code

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1981-03-01

    The gamma-ray spectral data-reduction and analysis computer code TPASS is described. This computer code is used to analyze complex Ge(Li) gamma-ray spectra to obtain peak areas corrected for detector efficiencies, from which are determined gamma-ray yields. These yields are compared with an isotope gamma-ray data file to determine the contributions to the observed spectrum from decay of specific radionuclides. A complete FORTRAN listing of the code and a complex test case are given

  1. Design and expected performance of a novel hybrid detector for very-high-energy gamma-ray astrophysics

    Science.gov (United States)

    Assis, P.; Barres de Almeida, U.; Blanco, A.; Conceição, R.; D'Ettorre Piazzoli, B.; De Angelis, A.; Doro, M.; Fonte, P.; Lopes, L.; Matthiae, G.; Pimenta, M.; Shellard, R.; Tomé, B.

    2018-05-01

    Current detectors for Very-High-Energy γ-ray astrophysics are either pointing instruments with a small field of view (Cherenkov telescopes), or large field-of-view instruments with relatively large energy thresholds (extensive air shower detectors). In this article, we propose a new hybrid extensive air shower detector sensitive in an energy region starting from about 100 GeV. The detector combines a small water-Cherenkov detector, able to provide a calorimetric measurement of shower particles at ground, with resistive plate chambers which contribute significantly to the accurate shower geometry reconstruction. A full simulation of this detector concept shows that it is able to reach better sensitivity than any previous gamma-ray wide field-of-view experiment in the sub-TeV energy region. It is expected to detect with a 5σ significance a source fainter than the Crab Nebula in one year at 100 GeV and, above 1 TeV a source as faint as 10% of it. As such, this instrument is suited to detect transient phenomena making it a very powerful tool to trigger observations of variable sources and to detect transients coupled to gravitational waves and gamma-ray bursts.

  2. Gamma-ray pulsars: Emission zones and viewing geometries

    Science.gov (United States)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  3. THE PEAK ENERGY-DURATION CORRELATION AND POSSIBLE IMPLICATIONS ON GAMMA RAY BURST PROGENITOR

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2006-09-01

    Full Text Available We investigate the correlation between the peak energy and the burst duration using available long GRB data with known redshift, whose circumburst medium type has been suggested via afterglow light curve modeling. We find that the peak energy and the burst duration of the observed GRBs are correlated both in the observer frame and in the GRB rest frame. For our total sample we obtain, for instance, the Spearman rank-order correlation values sim 0.75 and sim 0.65 with the chance probabilities P=1.0 times 10^{-3} and P=6.0 times 10^{-3} in the observer frame and in the GRB rest frame, respectively. We note that taking the effects of the expanding universe into account reduces the value a bit. We further attempt to separate our GRB sample into the ``ISM'' GRBs and the ``WIND'' GRBs according to environment models inferred from the afterglow light curves and apply statistical tests, as one may expect that clues on the progenitor of GRBs can be deduced directly from prompt emission properties other than from the ambient environment surrounding GRBs. We find that two subsamples of GRBs show different correlation coefficients. That is, the Spearman rank-order correlation are sim 0.65 and sim 0.57 for the ``ISM'' GRBs and ``WIND'' GRBs, respectively, after taking the effects of the expanding universe into account. It is not yet, however, statistically very much significant that the GRBS in two types of circumburst media show statistically characteristic behaviors, from which one may conclude that all the long bursts are not originated from a single progenitor population. A larger size of data is required to increase the statistical significance.

  4. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  5. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    Science.gov (United States)

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  6. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  7. Analysis of coincidence {gamma}-ray spectra using advanced background elimination, unfolding and fitting algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Morhac, M. E-mail: fyzimiro@savba.skfyzimiro@flnr.jinr.ru; Matousek, V. E-mail: matousek@savba.sk; Kliman, J.; Krupa, L.L.; Jandel, M

    2003-04-21

    The efficient algorithms to analyze multiparameter {gamma}-ray spectra are presented. They allow to search for peaks, to separate peaks from background, to improve the resolution and to fit 1-, 2-, 3-parameter {gamma}-ray spectra.

  8. TLD gamma-ray energy deposition measurements in the zero energy fast reactor ZEBRA

    International Nuclear Information System (INIS)

    Knipe, A.D.

    1977-01-01

    A recent study of gamma-ray energy deposition was carried out in the Zebra reactor at AEE Winfrith during a collaborative programme between the UKAEA and PNC of Japan. The programme was given the title MOZART. This paper describes the TLD experiments in the MOZART MZB assembly and discusses the technique and various corrections necessary to relate the measured quantity to the calculated energy deposition

  9. On self-attenuation corrections in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Bolivar, J.P.; Garcia-Leon, M.; Garcia-Tenorio, R.

    1997-01-01

    In this paper we discuss and justify the dependence on the sample density and gamma energy of the self-attenuation correction factor, f, in the transmission method for the full energy peak efficiency calibration of Ge detectors. It is suggested as a method for the direct computing of f in the case that the sample composition is known. (Author)

  10. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  11. Highly accurate determination of relative gamma-ray detection efficiency for Ge detector and its application

    International Nuclear Information System (INIS)

    Miyahara, H.; Mori, C.; Fleming, R.F.; Dewaraja, Y.K.

    1997-01-01

    When quantitative measurements of γ-rays using High-Purity Ge (HPGe) detectors are made for a variety of applications, accurate knowledge of oy-ray detection efficiency is required. The emission rates of γ-rays from sources can be determined quickly in the case that the absolute peak efficiency is calibrated. On the other hand, the relative peak efficiencies can be used for determination of intensity ratios for plural samples and for comparison to the standard source. Thus, both absolute and relative detection efficiencies are important in use of γ-ray detector. The objective of this work is to determine the relative gamma-ray peak detection efficiency for an HPGe detector with the uncertainty approaching 0.1% . We used some nuclides which emit at least two gamma-rays with energies from 700 to 2400 keV for which the relative emission probabilities are known with uncertainties much smaller than 0.1%. The relative peak detection efficiencies were calculated from the measurements of the nuclides, 46 Sc, 48 Sc, 60 Co and 94 Nb, emitting two γ- rays with the emission probabilities of almost unity. It is important that various corrections for the emission probabilities, the cascade summing effect, and the self-absorption are small. A third order polynomial function on both logarithmic scales of energy and efficiency was fitted to the data, and the peak efficiency predicted at certain energy from covariance matrix showed the uncertainty less than 0.5% except for near 700 keV. As an application, the emission probabilities of the 1037.5 and 1212.9 keV γ-rays for 48 Sc were determined using the function of the highly precise relative peak efficiency. Those were 0.9777+0,.00079 and 0.02345+0.00017 for the 1037.5 and 1212.9 keV γ-rays, respectively. The sum of these probabilities is close to unity within the uncertainty which means that the certainties of the results are high and the accuracy has been improved considerably

  12. A study of gamma-ray bursts and a new detector for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Carter, J.N.

    1979-09-01

    Three gamma-ray experiments flown on balloons between August 1975 and August 1976 are described in detail. The successful Transatlantic balloon flight enabled a rate of 3 bursts year -1 with energies > 7 x 10 -7 ergs cm -2 to be established. This result is discussed in the light of other work. The choice of γ-ray detector for optimum sensitivity is presented. In addition various techniques for determining the arrival direction of gamma-ray bursts are compared. A new balloon borne γ-ray burst telescope is proposed. The design, testing and results of the beam calibration of a new drift chamber detector system for high energy (> 50 MeV) γ-rays are presented. A projected angular resolution of 0.8 0 was obtained at 300 MeV. Techniques for the measurement of γ-ray energies are discussed in relation to this instrument. Finally the use of drift chambers in an integrated free flying satellite is illustrated, and the expected performance is presented. (author)

  13. Discoveries by the Fermi Gamma Ray Space Telescope

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  14. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; hide

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  15. Electron-positron pair production by gamma-rays in an anisotropic flux of soft photons, and application to pulsar polar caps

    Science.gov (United States)

    Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano

    2018-02-01

    Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.

  16. High-energy emissions from the gamma-ray binary LS 5039

    Energy Technology Data Exchange (ETDEWEB)

    Takata, J.; Leung, Gene C. K.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Tam, P. H. T.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: takata@hku.hk, E-mail: gene930@connect.hku.hk, E-mail: hrspksc@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1 GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.

  17. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  18. Factors influencing in situ gamma-ray measurements

    Science.gov (United States)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  19. Dual-modality and dual-energy gamma ray densitometry of petroleum products using an artificial neural network

    International Nuclear Information System (INIS)

    Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.

    2015-01-01

    The prediction of volume fractions in order to measure the multiphase flow rate is a very important issue and is the key parameter of multi-phase flow meters (MPFMs). Currently, the gamma ray attenuation technique is known as one of the most precise methods for obtaining volume fractions. The gamma ray attenuation technique is based on the mass attenuation coefficient, which is sensitive to density changes; density is sensitive in turn to temperature and pressure fluctuations. Therefore, MPFM efficiency depends strongly on environmental conditions. The conventional solution to this problem is the periodical recalibration of MPFMs, which is a demanding task. In this study, a method based on dual-modality densitometry and artificial intelligence (AI) is presented, which offers the advantage of the measurement of the oil–gas–water volume fractions independent of density changes. For this purpose, several experiments were carried out and used to validate simulated dual modality densitometry results. The reference density point was established at a temperature of 20 °C and pressure of 1 bar. To cover the full range of likely density fluctuations, four additional density sets were defined (at changes of ±4% and ±8% from the reference point). An annular regime with different percentages of oil, gas and water at different densities was simulated. Four features were extracted from the transmission and scattered detectors and were applied to the artificial neural network (ANN) as inputs. The input parameters included the "2"4"1Am full energy peak, "1"3"7Cs Compton edge, "1"3"7Cs full energy peak and total scattered count, and the outputs were the oil and air percentages. A multi-layer perceptron (MLP) neural network was used to predict the volume fraction independent of the oil and water density changes. The obtained results show that the proposed ANN model achieved good agreement with the real data, with an estimated root mean square error (RMSE) of less than 3

  20. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions wi...

  1. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts ( 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  2. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  3. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1989-01-01

    It is apparent that very high gamma-ray astronomy, at the very end of the electromagnetic spectrum, is just at the threshold of becoming an important channel of astronomical information. The author discusses how, to fully develop, it requires telescopes with improved minimum flux sensitivity; development of techniques that characterize the nature of the primary; more overlapping observations to remove any question of the reality of the detected phenomenon; more consistency in the application of statistics among experimenters and more openness about methods used; development of models that will predict the phenomenon to be expected rather than explain what has been observed; and more accurate calibrations to determine absolute fluxes and energies

  4. Measurement of 235U Enrichment Using the Semi-Peak-Ratio Technique with CdZnTe Gamma-Ray Detector

    International Nuclear Information System (INIS)

    Ha, J. H.; Ko, W. I.; Lee, S. Y.; Song, D. Y.; Kim, H. D.; Yang, M. S.

    2001-01-01

    In uranium enrichment plants and nuclear fuel fabrication facilities, exact measurement of fissile isotope enrichment of Uranium is required for material accounting in international safeguards inspection as well as process quality control. The purpose of this study was to develop a simple measurement system which can portably be used at nuclear fuel fabrication plants especially dealing with low enriched uranium. For this purpose, a small size CZT (CdZnTe) detector was used, and the detector performance in low uranium gamma/X-rays energy range was investigated by use of various enriched uranium oxide samples. New enrichment measurement technique and analysis method for low enriched uranium oxide, so-called, 'semi-peak ratio technique' was developed. The newly developed method was considered as an alternative technique for the low enrichment and would be useful to account nuclear material in safeguarding activity at nuclear fuel fabrication facility

  5. A comparison of semiconductor gamma spectrometric analysis using the peak net area calculations and the whole spectrum processing

    International Nuclear Information System (INIS)

    Krnac, S.; Koskelo, M.; Venkatamaran, R.

    1998-01-01

    This study was conducted to compare the results of gamma spectrometric analysis using the Scaling Confirmatory Factor Analysis (SCFA) method to that of Genie2K, which uses a more traditional method. Gamma ray spectra had had been acquired for several gamma standard sources, all of which except Co-57 and Eu-152 being single gamma ray emitting nuclides. These standard sources spanned the energy range from 60 keV (Am-241) to 1116 keV (Zn-65). The standard sources were counted at 3 different geometries at 3 different geometries, with source-detector distances of 0, 5, and 15 cm. Using single gamma ray spectra collected at a given counting geometry, and the certificate file, an efficiency calibration was created for that geometry. Three different test spectra, one for each counting geometry, had been created by combining several of the standard source spectra. The efficiency calibrations created for the 3 geometries were loaded into the respective spectrum files. Each test spectrum was analyzed using the standard Genie2K engines; Peak locate, Peak search, Interactive peak fit, Background subs-traction, Efficiency correction, and Nuclide Identification with interference analysis. The results of the various calculation steps were reported. In all 3 test cases, the SCFA method identified all the nuclides correctly. The K-40 activities calculated by the SCFA method were reasonably close to that from Genie2K analysis. In general, the quantitative results of the SCFA method were impressive in all 3 cases. On a positive note, the SCFA method did identify low yield gamma lines in Eu-152, which were not identified by the Genie2K analysis. This substantiates claim that the SCFA is more sensitive than the traditional method of spectrum analysis. (authors)

  6. The escape of > MeV photons from cosmological gamma-ray bursts

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Epstein, R.I.; Ho, C.

    1992-01-01

    The recent BATSE result indicates that gamma-ray bursts may be at cosmological distances. AS such one must reconcile the high photon densities with the observations of spectra to energies well above the pair production threshold. We have investigated two models of relativistic flows that could provide the requiste beaming to allow the escape of 100 MeV photons: a stationary relativistic wind with a photosphere and a relativistic expanding shell. For typical cosmological gamma-ray burst parameters, the expanding shell model requires a Lorentz factor (γ) of only 10 2 compared with 3 x 10 2 to 10 3 for the relativistic wind. For the expanding shell model, events separated in time at the central source produce peaks observed to be separated by the same time. However, the shape and duration of the peaks are determined by the expansion. The expansion can occur over a much longer time (by γ 2 ) then the duration that the observer sees so gamma-ray burst could be larger than 10 2 light-seconds. We have made two crucial assumptions need require further study. The spectrum has been assumed to a be a power law and a two component power law or a power law with a high-energy cut-off would decrease the required γ. The expanding shell model uses a infinitely thin emitting surface and one with a finite thickness could increase the required γ

  7. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  8. Study of X-rays and nuclear gamma -rays in muonic thallium

    CERN Document Server

    Backe, H; Jahnke, U; Kankeleit, E; Pearce, R M; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Energies and intensities of muonic X-rays, nuclear gamma -rays and mu -capture gamma -rays were measured in natural muonic thallium with Ge (Li) detectors. The absolute intensities of higher mu X-rays were reproduced by a cascade calculation starting with a statistical population at n=20 including K-, L- and M-conversion. The electron screening effect was deduced from energies of higher mu X-rays. Eight prompt nuclear gamma -rays were found. This excitation explains the anomalous intensity ratios of the 2p-1s and 3d-2p fine structure components. From the nuclear gamma -rays of the first excited states were deduced: the magnetic h.f. splittings, muonic isomer shifts E2/M1 mixing ratios and the half-life in the presence of the muon in /sup 205/Tl. Evidence for a magnetic nuclear polarization was found. An isotope shift of Delta E=10.35+or-0.25 keV was measured for the 1s/sub 1/2/ state which is compared with data from optical spectroscopy. From an analysis of the time distribution of delayed gamma -rays from mu...

  9. Gamma-ray astronomy in the medium energy (10-50 MeV) range

    International Nuclear Information System (INIS)

    Kniffen, D.A.; Bertsch, D.L.; Palmeira, R.A.R.; Rao, K.R.

    1977-01-01

    Gamma-ray astronomy in the medium energy (10-50 MeV) range can provide unique information with which to study many astrophysical problems. Observations in the 10-50 MeV range provide the cleanest window with which to view the isotropic diffuse component of the radiation and to study the possible cosmological implications of the spectrum. For the study of compact sources, this is the important region between the X-ray sky and the vastly different γ-ray sky seen by SAS-2 and COS-B. To understand the implications of medium energy γ-ray astronomy to the study of the galactic diffuse γ-radiation, the model developed to explain the high energy γ-ray observations of SAS-2 is extended to the medium energy range. This work illustrates the importance of medium energy γ-ray astronomy for studying the electromagnetic component of the galactic cosmic rays. To observe the medium energy component of the intense galactic center γ-ray emission, two balloon flights of a medium energy γ-ray spark chamber telescope were flown in Brazil in 1975. These results indicate the emission is higher than previously thought and above the predictions of the theoretical model

  10. On Some Statistical Properties of GRBs with Measured Redshifts Having Peaks in Optical Light Curves

    Directory of Open Access Journals (Sweden)

    Grigorii Beskin

    2013-01-01

    Full Text Available We studied the subset of optical light curves of gamma-ray bursts with measured redshifts and well-sampled R band data that have clearly detected peaks. Among 43 such events, 11 are promptoptical peaks (P, coincident with gamma-ray activity, 22 are purely afterglows (A, and 10 more carrythe signatures of an underlying activity (A(U. We studied pair correlations of their gamma-ray andoptical parameters, e.g. total energetics, peak optical luminosities, and durations. The main outcomeof our study is the detection of source frame correlations between both optical peak luminosity and total energy and the redshift for classes A and A(U, and the absence of such a correlation for class Pevents. This result seems to provide evidence of the cosmological evolution of a medium around the burst defining class A and A(U energetics, and the absence of cosmological evolution of the internal properties of GRB engines. We also discuss some other prominent correlations.

  11. Very high-energy gamma-ray signature of ultrahigh-energy cosmic-ray acceleration in Centaurus A

    Science.gov (United States)

    Joshi, Jagdish C.; Miranda, Luis Salvador; Razzaque, Soebur; Yang, Lili

    2018-04-01

    The association of at least a dozen ultrahigh-energy cosmic-ray (UHECR) events with energy ≳ 55 EeV detected by the Pierre Auger Observatory (PAO) from the direction of Centaurus-A, the nearest radio galaxy, supports the scenario of UHECR acceleration in the jets of radio galaxies. In this work, we model radio to very high energy (VHE,≳ 100 GeV) γ-ray emission from Cen A, including GeV hardness detected by Fermi-LAT and TeV emission detected by HESS. We consider two scenarios: (i) Two zone synchrotron self-Compton (SSC) and external-Compton (EC) models, (ii) Two zone SSC, EC and photo-hadronic emission from cosmic ray interactions. The GeV hardness observed by Fermi-LAT can be explained using these two scenarios, where zone 2 EC emission is very important. Hadronic emission in scenario (ii) can explain VHE data with the same spectral slope as obtained through fitting UHECRs from Cen A. The peak luminosity in cosmic ray proton at 1 TeV, to explain the VHE γ-ray data is ≈2.5 × 1046 erg/s. The bolometric luminosity in cosmic ray protons is consistent with the luminosity required to explain the origin of 13 UHECR signal events that are correlated with Cen A.

  12. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  13. Measurements of the low-energy gamma-ray continuum emission from the Galactic Center direction

    International Nuclear Information System (INIS)

    Jardim, M.V.A.; Martin, I.M.; Jardim, J.O.D.

    1982-07-01

    The measurement of the gamma-ray continuum emission from the Galactic Center (GC) can provide us information about the physical processes taking place there at the site of emission. Using the data obtained with a balloon-borne gamma-ray telescope to measure gamma-rays in the energy interval between 0,3 and 3 MeV, which was launched on March 28, 1980 from Cachoeira Paulista (SP), we calculeted two points for the continuum spectrum in the range between 0,34 and 0,67 MeV. The points are related to the GC emission radiated in the longitude interval - 31 0 0 . The measurements are compatible with the observations in 1969 and 1972 by Haymes et alii and Johnson, respectively. The power law spectrum suggests that the main component for the gamma-ray continuum emission below 10 MeV is dominated by the bremsstrahlung due to relativistic electrons. (Author) [pt

  14. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  15. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    Science.gov (United States)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  16. The opacity of the universe for high and very high energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Manuel

    2013-08-15

    The flux of high energy (HE, energy 100 MeVenergy (VHE, E>or similar 100 GeV) {gamma}-rays originating from cosmological sources is attenuated due to pair production in interactions with photons at ultraviolet to infrared wavelengths of the extragalactic background light (EBL). The main components contributing to the EBL photon density are the starlight integrated over cosmic time and the starlight reprocessed by dust in galaxies. Consequently, the EBL is an integral measure of the cosmic star formation history. Depending on the source distance, the Universe should be opaque to {gamma}-rays above a certain energy. Nevertheless, the number of detected {gamma}-ray sources has increased continuously in recent years. VHE emitting objects beyond redshifts of z>0.5 have been detected with imaging air Cherenkov telescopes (IACTs), while HE {gamma}-rays from active galactic nuclei (AGN) above redshifts z>or similar 3 have been observed with the Large Area Telescope (LAT) on board the Fermi satellite. In this work, a large sample of VHE {gamma}-ray spectra will be combined with data of the Fermi-LAT to derive upper limits on the EBL photon density at z = 0. Generic EBL realizations are used to correct AGN spectra for absorption, which are subsequently tested against model assumptions. The evolution of the EBL with redshift is accounted for, and a possible formation of electromagnetic cascades is considered. As a result, the EBL density is constrained over almost three orders of magnitude in wavelength, between 0.4 {mu}m and 100 {mu}m. At optical wavelengths, an EBL intensity above 24 nW m{sup -2}sr{sup -1} is ruled out, and between 8 {mu}m and 31 {mu}m it is limited to be below 5 nW m{sup -2}sr{sup -1}. In the infrared, the constraints are within a factor {proportional_to} 2 of lower limits derived from galaxy number counts. Additionally,the behavior of VHE spectra in the transition from the optical depth regimes {tau

  17. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Hui, C. Y.; Kong, A. K. H.

    2010-01-01

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays

  18. Development of a Gamma-Ray Detector for Z-Selective Radiographic Imaging

    International Nuclear Information System (INIS)

    Brandis, Michal

    2013-11-01

    Dual-Discrete Energy Gamma-Radiography (DDEGR) is a method for Special Nuclear Materials (SNM) detection. DDEGR utilizes 15.11 and 4.43 MeV gamma-rays produced in the 11B(d,n)12C reaction, in contrast to the conventional use of continuous Bremsstrahlung radiation. The clean and well separated gamma-rays result in high contrast sensitivity, enabling detection of small quantities of SNM. The most important aspects of a DDEGR system were discussed, simulated, measured and demonstrated. An experimental measurement of gamma-ray yields from the 11B(d,n)12C reaction showed that the yields from deuterons with 3{12 MeV energy are 2{201010 N/sr/mC 4.4 MeV gamma- rays and 2{5109 N/sr/mC 15.1 MeV gamma-rays. The measured neutron yields show that the neutron energies extend to 15-23 MeV for the same deuteron energy range. A simplied inspection system was simulated with GEANT4, showing that the ect of scattering on the signal measured in the detector is acceptable. Considering the reaction gamma yields, 1.8 mA deuteron current is required for separation of high-Z materials from medium- and low-Z materials and a 4.5 mA current is required for the additional capability of separating benign high-Z materials from SNM. The main part of the work was development of a detector suitable for a DDEGR system | Time Resolved Event Counting Optical Radiation (TRECOR) detector. TRECOR detector is a novel spectroscopic imaging detector for gamma-rays within the MeV energy range that uses an event counting image intensier with gamma-rays for the rst time. Neutrons that accompany the gamma radiation enable to implement, in parallel, Fast Neutron Resonance Radiography (FNRR), a method for explosives detection. A second generation detector, TRECOR-II, is capable of detecting gamma-rays and neutrons in parallel, separating them to create particle-specic images and energy-specic images for each particle, thus enabling simultaneous implementation of the two detection methods. A full DDEGR laboratory

  19. Gamma-rays attenuation of zircons from Cambodia and South Africa at different energies: A new technique for identifying the origin of gemstone

    International Nuclear Information System (INIS)

    Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African’s zircons are 4.6716±0.0040 g/cm 3 and 4.5505±0.0018 g/cm 3 , respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223–662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing. - Highlights: • Gamma-rays interaction of zircons from Cambodia and South Africa studied. • Measured energy is during 223–662 keV. • Different μ m between the two zircons observed at gamma-ray energies below 400 keV. • The origins the two zircons could be successfully identified

  20. Experimental techniques for the detection of the high energy gamma rays of cosmic origin

    International Nuclear Information System (INIS)

    Dumitrescu, Gh.; Angelescu, T.; Radu, A.A.

    2002-01-01

    The observation of high energy gamma rays of cosmic origin in the early 90 by Volcano Ranch experiment opened a new direction of study in astrophysics. The very high energy and the very low flux of these gamma rays, posed numerous detection problems which in turn were the object of a very intense research activity. The present article tries to review the detection techniques for the high energy gamma rays of cosmic origin. In the 'Introduction' we summarize the specific problems involved in the detection of this type of radiation. 'Chapter 1' presents the classic technique based on the use of scintillation detectors. 'Chapter 2' includes the imaging atmospheric Cherenkov technique (IACT) and the sampling wavefront technique. 'Chapter 3' is dedicated to the detection of the atmospheric nitrogen. 'Chapter 4' describes issues related to the calibration of the detectors, the cross checking of the experimental data, the use of the Monte Carlo simulations and the use of the density observed at a distance of 600 m S(600), in order to estimate the primary energy. The characteristics of some future developments of the above presented techniques are included in the last chapter. (authors)

  1. Rey: a computer code for the determination of the radionuclides activities from the gamma-ray spectrum data

    International Nuclear Information System (INIS)

    Palomares, J.; Perez, A.; Travesi, A.

    1978-01-01

    The Fortran IV computer Code, REY (REsolution and Identification), has been developed for the automatic resolution of the gamma-ray spectra from high resolution Ge-Li detectors. The Code searches the full energy peaks in the spectra background as the base line under the peak and calculates the energy of the statistically significant peaks. Also the Code assigns each peak to the most probable isotope and makes a selection of all the possible radioisotopes of the spectra, according the relative intensities of all the peaks in the whole spectra. Finally, it obtains the activities, in microcuries of each isotope, according the geometry used in the measurement. Although the Code is a general purpose one, their actual library of nuclear data is adapted for the analysis of liquid effluents from nuclear power plants. A computer with a 16 core memory and a hard disk are sufficient for this code.(author)

  2. MEGA - A next generation mission in Medium Energy Gamma-Ray Astronomy

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2001-01-01

    A Medium Energy Gamma-Ray Astronomy (MEGA) detector is being developed and proposed for a small satellite mission. MEGA intends to improve the sensitivity at medium γ-ray energies (0.4-50 MeV) by at least an order of magnitude with respect to past instruments. Its large field of view will be especially important for the discovery of transient sources and for conducting all-sky surveys. Key science objectives for MEGA are the investigation of cosmic high-energy accelerators and of nucleosynthesis sites with γ-ray lines. The large-scale structure of the galactic and cosmic diffuse background is another important goal for this mission. MEGA records and images γ-ray events by completely tracking Compton and pair creation interactions in a stack of double sided Si-strip track detectors and 3-D resolving CsI calorimeters

  3. First detection of very-high-energy gamma-ray emission from the extreme blazar PGC 2402248 with the MAGIC telescopes

    Science.gov (United States)

    Mirzoyan, Razmik

    2018-04-01

    The MAGIC collaboration reports the first detection of very-high-energy (VHE; E > 100 GeV) gamma-ray emission from PGC 2402248, also known as 2WHSP J073326.7+515354 (Chang et al. 2016, A & A, 598, A17) with coordinates R.A.: 07:33:26.7 h, Dec: +51:53:54.99 deg. The source is classified as an extreme high-energy peaked BL Lacertae object of unknown redshift, included in the 2WHSP catalog with a synchrotron peak located at 10^17.9 Hz. PGC 2402248 was observed with the MAGIC telescopes from 2018/01/23 to 2018/04/18 (MJD 58141-58226) for about 23 h. The preliminary analysis of these data resulted in the detection of PGC 2402248 with a statistical significance of more than 6 standard deviations.

  4. Gamma-ray multiplicity distribution in ternary fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Kliman, J [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Krupa, L [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Morhac, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Hamilton, J H [Department of Physics, Vanderbilt University, Nashville, TN (United States); Kormicki, J [Department of Physics, Vanderbilt University, Nashville, TN (United States); Ramayya, A V [Department of Physics, Vanderbilt University, Nashville, TN (United States); Hwang, J K [Department of Physics, Vanderbilt University, Nashville, TN (United States); Luo, Y X [Department of Physics, Vanderbilt University, Nashville, TN (United States); Fong, D [Department of Physics, Vanderbilt University, Nashville, TN (United States); Gore, P [Department of Physics, Vanderbilt University, Nashville, TN (United States); Akopian, G M Ter; Oganessian, Yu Ts; Rodin, A M; Fomichev, A S; Popeko, G S; Daniel, A V [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russian Federation); Rasmussen, J O; Macchiavelli, A O [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Stoyer, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R [Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro (Brazil); Cole, J D [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States)

    2002-12-01

    From multiparameter data obtained at Lawrence Berkeley National Laboratory, the integral characteristics of the prompt {gamma}-ray emission were extracted for tripartition of {sup 252}Cf with He, Be and C being the third light charged particle. We used multifold {gamma}-ray coincidence spectra for the determination of {gamma}-ray multiplicities assuming a Gaussian distribution for {gamma}-ray multiplicity. The multiplicity distribution characteristics, i.e. mean multiplicity and its dispersion were obtained by minimizing with respect to the calculated values of probabilities of multifold {gamma}-ray coincidences using a combinatoric method. Comparison with the known experimental data from binary fission was made. Further, we investigated dependencies of the mean {gamma}-ray multiplicity on the kinetic energy of the light charged particle. The mean {gamma}-ray multiplicity for He ternary fission is found to increase rapidly with increasing kinetic energy of He in the region less than 11 MeV and then decrease slowly with increasing kinetic energy of He. The anomalous behaviour of {gamma}-ray emission is discussed. The mean {gamma}-ray multiplicity was determined for the first time for Be and C ternary fission. For Be, the {gamma}-ray multiplicity as a function of kinetic energy was obtained as well.

  5. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  6. Study of the high energy gamma-ray emission from the crab pulsar with the MAGIC telescope and Fermi-LAT

    International Nuclear Information System (INIS)

    Saito, Takayuki

    2010-01-01

    law with an exponential cut-off at a few GeV can well describe the energy spectrum of the Crab pulsar between 100 MeV and 30 GeV. This is consistent with the outer magnetosphere scenario and again, inconsistent with the inner magnetosphere scenario. The measurements of both experiments strongly disfavor the inner magnetosphere scenario. However, by combining the results of the two experiments, it turns out that even the standard outer magnetosphere scenario cannot explain the measurements. Various assumptions have been made to explain this discrepancy. By modifying the energy spectrum of the electrons which emit high energy gamma-rays via the curvature radiation, the combined measurements can be reproduced but further studies with higher statistics and a better energy resolution are needed to support this assumption. The energy-dependent pulse profile from 100 MeV to 100 GeV has also been studied in detail. Many interesting features have been found, among which the variabilities of both the pulse edges and the pulse peak phases are the most remarkable. More data would allow a more thorough investigation of the fine structure of the pulsar magnetosphere based on these features. Aiming for better observations of pulsars and other sources below 100 GeV, a new photosensor, HPD R9792U-40, has been investigated. Many beneficial properties, such as a very high photodetection efficiency, an extremely low ion-feedback probability and an excellent charge resolution have been found. (orig.)

  7. Study of the high energy gamma-ray emission from the crab pulsar with the MAGIC telescope and Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takayuki

    2010-12-06

    law with an exponential cut-off at a few GeV can well describe the energy spectrum of the Crab pulsar between 100 MeV and 30 GeV. This is consistent with the outer magnetosphere scenario and again, inconsistent with the inner magnetosphere scenario. The measurements of both experiments strongly disfavor the inner magnetosphere scenario. However, by combining the results of the two experiments, it turns out that even the standard outer magnetosphere scenario cannot explain the measurements. Various assumptions have been made to explain this discrepancy. By modifying the energy spectrum of the electrons which emit high energy gamma-rays via the curvature radiation, the combined measurements can be reproduced but further studies with higher statistics and a better energy resolution are needed to support this assumption. The energy-dependent pulse profile from 100 MeV to 100 GeV has also been studied in detail. Many interesting features have been found, among which the variabilities of both the pulse edges and the pulse peak phases are the most remarkable. More data would allow a more thorough investigation of the fine structure of the pulsar magnetosphere based on these features. Aiming for better observations of pulsars and other sources below 100 GeV, a new photosensor, HPD R9792U-40, has been investigated. Many beneficial properties, such as a very high photodetection efficiency, an extremely low ion-feedback probability and an excellent charge resolution have been found. (orig.)

  8. The bright gamma-ray burst of 2000 February 10: A case study of an optically dark gamma-ray burst

    DEFF Research Database (Denmark)

    Piro, L.; Frail, D.A.; Gorosabel, J.

    2002-01-01

    The gamma-ray burst GRB 000210 had the highest gamma-ray peak flux of any event localized by BeppoSAX as yet, but it did not have a detected optical afterglow, despite prompt and deep searches down to R-lim approximate to 23.5. It is therefore one of the events recently classified as dark GRBs......, whose origin is still unclear. Chandra observations allowed us to localize the X-ray afterglow of GRB 000210 to within approximate to1", and a radio transient was detected with the Very Large Array. The precise X-ray and radio positions allowed us to identify the likely host galaxy of this burst...

  9. Sample analysis using gamma ray induced fluorescent X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Gandhi, R; Batra, O P; Singh, N [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-01-01

    A non-destructive method for the analysis of materials using gamma ray-induced fluorescent x-ray emission has been developed. In this method, special preparation of very thin samples in which the absorption of the incident gamma rays and the emitted fluorescent x-rays is negligible, is not needed, and the absorption correction is determined experimentally. A suitable choice of the incident gamma ray energies is made to minimise enhancement effects through selective photoionization of the elements in the sample. The method is applied to the analysis of a typical sample of the soldering material using 279 keV and 59.5 keV gamma rays from /sup 203/Hg and /sup 241/Am radioactive sources respectively. The results of the analysis are found to agree well with those obtained from the chemical analysis.

  10. Gamma ray imager on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.; Van Zeeland, M. A.; Watkins, M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Cooper, C. M. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Riso, V. [State University of New York-Buffalo, 12 Capen Hall, Buffalo, New York 14260-1660 (United States)

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

  11. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  12. Energy budget in collimated gamma-ray bursts

    International Nuclear Information System (INIS)

    Tudose, Valeriu; Biermann, Peter

    2003-01-01

    There is increasing evidence for the existence of collimation in some, if not most, of the gamma-ray bursts. This would have direct implications, for instance, on the energy budget, the rate of events, but also indirect consequences for the theoretical models because it provides a tool to differentiate between their predictions. We consider the case of a structured jet, i.e. we assume the energy within the jet varies as a power-law, being a function of the angle between the jet axis and an arbitrary direction. We analyze first the situation in which the jet axis and the line of sight have a particular orientation, then we relax this assumption by allowing for an arbitrary viewing angle with respect to the symmetry axis of the jet. A qualitative study of the total energy content of the jet is performed. It turns out that the 'real' energy could be higher than what is inferred from observations. (authors)

  13. Qualitative and quantitative validation of the SINBAD code on complex HPGe gamma-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rohee, E.; Coulon, R.; Normand, S.; Carrel, F. [CEA, LIST, Laboratoire Capteurs et Architectures electroniques, F-91191 Gif-sur-Yvette, (France); Dautremer, T.; Barat, E.; Montagu, T. [CEA, LIST, Laboratoire Modelisation, Simulation et Systemes, F-91191 Gif-sur-Yvette, (France); Jammes, C. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance, (France)

    2015-07-01

    Radionuclides identification and quantification is a serious concern for many applications as safety or security of nuclear power plant or fuel cycle facility, CBRN risk identification, environmental radioprotection and waste measurements. High resolution gamma-ray spectrometry based on HPGe detectors is a performing solution for all these topics. During last decades, a great number of software has been developed to improve gamma spectra analysis. However, some difficulties remain in the analysis when photoelectric peaks are folded together with a high ratio between theirs amplitudes, when the Compton background is much larger compared to the signal of a single peak and when spectra are composed of a great number of peaks. This study deals with the comparison between conventional methods in radionuclides identification and quantification and the code called SINBAD ('Spectrometrie par Inference Non parametrique Bayesienne Deconvolutive'). For many years, SINBAD has been developed by CEA LIST for unfolding complex spectra from HPGe detectors. Contrary to conventional methods using fitting procedures, SINBAD uses a probabilistic approach with Bayesian inference to describe spectrum data. This conventional fitting method founded for example in Genie 2000 is compared with the nonparametric SINBAD approach regarding some key figures of merit as the peak centroid evaluation (identification) and peak surface evaluation (quantification). Unfriendly cases are studied for nuclides detection with closed gamma-rays energies and high photoelectric peak intensity differences. Tests are performed with spectra from the International Atomic Energy Agency (IAEA) for gamma spectra analysis software benchmark and with spectra acquired at the laboratory. Results show that SINBAD and Genie 2000 performances are quite similar with sometimes best results for SINBAD with the important difference that to achieve same performances the nonparametric method is user-friendly compared

  14. Cosmic-ray world with gamma-ray astronomy: a wealth on information, an even more open issue

    Directory of Open Access Journals (Sweden)

    Cardillo Martina

    2015-01-01

    Full Text Available Since from their discovery in 1912, Cosmic-Rays (CRs are one of the most debated issues of the high energy astrophysics. Their origin is still a fundamental problem and is the subject of very intense research. Until now, the best candidate sources of Galactic CR component are Supernova Remnants (SNRs but final proof for the origin of CRs up to the knee can only be obtained through two fundamental signatures, the detection of a clear gamma-ray signature of π0 decay in Galactic sources and the identification of sources emitting a photon spectrum up to PeV energies. Both indications are quite difficult to obtain. The two gamma-ray satellites, AGILE and Fermi, together with ground telescopes operating in the TeV energy range (HESS, VERITAS and MAGIC, collected a great amount of data from SNRs. In spite of the recent discovery of the neutral pion spectral signature in the SNR W44 spectrum by AGILE (and confirmed by Fermi-LAT, all gamma-ray data collected at GeV and TeV energies for several young and middle-aged SNRs provide interesting challenges to current theoretical models. The emerging view from gamma-ray and particle detection is intriguing and lead to revisit the CR-SNR paradigm, considering also the contribution of other kind of sources.

  15. Discovery of Pulsations from the Pulsar J0205 6449 in SNR 3C 58 with the Fermi Gamma-Ray Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, Marco; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, William B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, Ronaldo; /INFN, Pisa; Berenji, Bijan; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, Roger D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, Anders W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bouvier, A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Columbia U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Manchester U. /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2011-12-01

    We report the discovery of {gamma}-ray pulsations ({ge}0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the {gamma}-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold {gamma}-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 {+-} 0.01 {+-} 0.01 cycles which are aligned with the X-ray peaks. The first {gamma}-ray peak trails the radio pulse by 0.08 {+-} 0.01 {+-} 0.01, while its amplitude decreases with increasing energy as for the other {gamma}-ray pulsars. Spectral analysis of the pulsed {gamma}-ray emission suggests a simple power law of index -2.1 {+-} 0.1 {+-} 0.2 with an exponential cutoff at 3.0{sub -0.7}{sup +1.1} {+-} 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral {gamma}-ray photon flux above 0.1 GeV is (13.7 {+-} 1.4 {+-} 3.0) x 10{sup -8} cm{sup -2} s{sup -1}, which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10{sup 34} erg s{sup -1} and an efficiency {eta} of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10{sup -8} cm{sup -2} s{sup -1} for off-pulse emission from the object.

  16. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K.; Çelik, Ö.; Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillemot, L. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orléans Cedex 02 (France); Smith, D. A.; Hou, X. [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Kramer, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Den Hartog, P. R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Lande, J. [Twitter Inc., 1355 Market Street 900, San Francisco, CA 94103 (United States); Ray, P. S., E-mail: tyrel.j.johnson@gmail.com, E-mail: Christo.Venter@nwu.ac.za, E-mail: ahardingx@yahoo.com [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  17. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Kramer, M.; Den Hartog, P. R.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed

  18. Constraints on the galactic distribution of cosmic rays from the COS-B gamma-ray data

    International Nuclear Information System (INIS)

    1985-08-01

    The velocity information of the HI and CO observations is used as a distance indicator to ascertain the spatial distribution of the interstellar gas. Using this distance information, the galacto-centric distribution of the gamma-ray emissivity (the production rate per H atom) is determined for three gamma-ray energy ranges from a correlation study of the gamma-ray intensity maps and the gas-tracer maps for selected galacto-centric distance intervals, taking into account the expected IC contribution and pointlike gamma-ray sources. On the assumption that unresolved gamma-ray point sources do not contribute significantly to the observed gamma-ray emission, the gamma-ray emissivity is proportional to the Cosmic ray density and, more specifically, the energy dependence can be used to study separately the distribution of Cosmic ray electrons and nuclei: whereas the emission for the 300 MeV - 5 GeV range is dominated by π 0 -decay, the 70 MeV - 150 MeV range has a large electron bremsstrahlung contribution

  19. Calculation of the energy spectrum of atmospheric gamma-rays between 1 and 1000 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    The energy spectrum of atmospheric gamma-rays at 4 g/cm 2 has been calculated for cut-off rigidities of 4.5, 10 and 16 GV. The considered processes for the production of these gamma-rays were the π 0 decay plus the bremsstrahlung from primary, secondary like splash and re-entrant albedo electrons. The calculations indicated that the spectrum could be fitted to a power law in energy, with the exponential index varying from 1.1 in the energy range 1 - 10 MeV, to 1.4 in the energy range 10 - 200 MeV and 1.8 in the energy range 200 - 1000 MeV. These results are discussed [pt

  20. DISCOVERY OF GAMMA-RAY PULSATIONS FROM THE TRANSITIONAL REDBACK PSR J1227-4853

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Ray, P. S.; Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Roy, J.; Bhattacharyya, B.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pletsch, H. J.; Fort, S. [Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Deneva, J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Kerr, M., E-mail: tyrel.j.johnson@gmail.com, E-mail: Paul.Ray@nrl.navy.mil, E-mail: jayanta.roy@manchester.ac.uk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping NSW 1710 (Australia)

    2015-06-10

    The 1.69 ms spin period of PSR J1227−4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270−4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ) gamma-ray pulsations after the transition, at the known spin period, using ∼1 year of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227−4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227−4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.

  1. ASSOCIATING LONG-TERM {gamma}-RAY VARIABILITY WITH THE SUPERORBITAL PERIOD OF LS I +61 Degree-Sign 303

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Ballet, J.; Casandjian, J. M. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E.; Cecchi, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Caliandro, G. A. [Institute of Space Sciences (IEEE-CSIC), Campus UAB, E-08193 Barcelona (Spain); Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Caraveo, P. A. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); Cavazzuti, E. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); Chekhtman, A., E-mail: andrea.caliandro@ieec.uab.es, E-mail: hadasch@ieec.uab.es, E-mail: dtorres@ieec.uab.es [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); and others

    2013-08-20

    Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the {gamma}-ray binary LS I +61 Degree-Sign 303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the {approx}26.4960 day orbital period. Here we show that, during the time of our observations, the {gamma}-ray emission of LS I +61 Degree-Sign 303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use {gamma}-ray observations to study the outflows of massive stars in eccentric binary systems.

  2. Local gamma ray events as tests of the antimatter theory of gamma ray bursts

    International Nuclear Information System (INIS)

    Sofia, S.; Wilson, R.E.

    1976-01-01

    Nearby examples of the antimatter 'chunks' postulated by Sofia and Van Horn to explain the cosmic gamma ray bursts may produce detectable gamma ray events when struck by solar system meteoroids. These events would have a much shorter time scale and higher energy spectrum than the bursts already observed. In order to have a reasonably high event rate, the local meteoroid population must extend to a distance from the Sun of the order of 0.1 pc, but the required distance could become much lower if the instrumental threshold is improved. The expected gamma ray flux for interaction of the antimatter bodies with the solar wind is also examined, and found to be far below present instrumental capabilities. (Auth.)

  3. Gamma-Ray Bursts

    Science.gov (United States)

    Pellizza, L. J.

    Gamma-ray bursts are the brightest transient sources in the gamma-ray sky. Since their discovery in the late 1960s, the investigation of the astrophysical sys- tems in which these phenomena take place, and the physical mechanisms that drive them, has become a vast and prolific area of modern astrophysics. In this work I will briefly describe the most relevant observations of these sources, and the models that describe their nature, emphasizing on the in- vestigations about the progenitor astrophysical systems. FULL TEXT IN SPANISH

  4. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Taya, T., E-mail: taka48138@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kataoka, J.; Kishimoto, A.; Iwamoto, Y.; Koide, A. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Nishio, T. [Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima (Japan); Kabuki, S. [School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa (Japan); Inaniwa, T. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba (Japan)

    2016-09-21

    The use of real-time gamma imaging for cancer treatment in particle therapy is expected to improve the accuracy of the treatment beam delivery. In this study, we demonstrated the imaging of gamma rays generated by the nuclear interactions during proton irradiation, using a handheld Compton camera (14 cm×15 cm×16 cm, 2.5 kg) based on scintillation detectors. The angular resolution of this Compton camera is ∼8° at full width at half maximum (FWHM) for a {sup 137}Cs source. We measured the energy spectra of the gamma rays using a LaBr{sub 3}(Ce) scintillator and photomultiplier tube, and using the handheld Compton camera, performed image reconstruction when using a 70 MeV proton beam to irradiate a water, Ca(OH){sub 2}, and polymethyl methacrylate (PMMA) phantom. In the energy spectra of all three phantoms, we found an obvious peak at 511 keV, which was derived from annihilation gamma rays, and in the energy spectrum of the PMMA phantom, we found another peak at 718 keV, which contains some of the prompt gamma rays produced from {sup 10}B. Therefore, we evaluated the peak positions of the projection from the reconstructed images of the PMMA phantom. The differences between the peak positions and the Bragg peak position calculated using simulation are 7 mm±2 mm and 3 mm±8 mm, respectively. Although we could quickly acquire online gamma imaging of both of the energy ranges during proton irradiation, we cannot arrive at a clear conclusion that prompt gamma rays sufficiently trace the Bragg peak from these results because of the uncertainty given by the spatial resolution of the Compton camera. We will develop a high-resolution Compton camera in the near future for further study. - Highlights: • Gamma imaging during proton irradiation by a handheld Compton camera is demonstrated. • We were able to acquire the online gamma-ray images quickly. • We are developing a high resolution Compton camera for range verification.

  5. De-excitation gamma-ray technique for improved resolution in intermediate energy photonuclear reactions

    International Nuclear Information System (INIS)

    Kuzin, A.; Thompson, M.N.; Rassool, R.; Adler, J.O.; Fissum, K.; Issaksson, L.; Ruijter, H.; Schroeder, B.; Annand, J.R.M.; McGeorge, J.C.; Crawford, G.I.; Gregel, J.

    1997-01-01

    The 12 C (γ,p) reaction was studied. The experiment was done at the MAX Laboratory of Lund University, using tagged photons with energy between 50 and 70 MeV and natural carbon targets. It has been possible to detect γ-ray emitted from the residual nucleus, in coincidence with photoprotons leading to the excited residual state. The 200 KeV gamma-ray resolution permitted the identification of the residual states and allowed off-line cuts to be made in order to identify the excitation region in 11 B from what particular de-excitation gamma-ray were seen. 9 refs., 1 tab., 3 figs

  6. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  7. Gamma ray astronomy from satellites and balloons

    International Nuclear Information System (INIS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy

  8. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  9. Coakial gamma ray detector and method therefor

    International Nuclear Information System (INIS)

    Harchol, M.

    1977-01-01

    A coaxial gamma ray detector is fabricated using intrinsic Ge semiconductor material in a geometry whereby full depletion of electrical carriers is prevented within a small region proximate the point of electrical contact thereby allowing greater biasing potentials across the detector and, consequently, providing reduced electronic noise and increased energy resolution

  10. Gamma-ray tracking - A new detector concept for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Gast, W.

    2001-01-01

    In the framework of an European collaboration the nest generation of large efficiency, high resolution spectrometers for nuclear spectroscopy is under development. The new spectrometers are large volume, segmented Ge-detectors featuring 3D position sensitivity in order to allow Gamma-Ray Tracking. That is, knowing the interaction positions and the energies released at each interaction, the track each gamma-ray follows during its scattering process inside the detector volume can be reconstructed on basis of the Compton-scattering formula. The resulting high add-back efficiency an effective granularity significantly improves peak-to-total ratio, efficiency, and Doppler-broadening of the spectrometer. In this contribution the states of the project concerning detector design and development of digital signal processing techniques to achieve an optimal 3D position sensitivity is presented. (authors)

  11. Visual gamma-ray analysis. VIPF program (WINDOW 95)

    International Nuclear Information System (INIS)

    Yamada, S.

    1998-01-01

    VIsual Peak Fitting (VIPF) program for the analysis of gamma radiation peaks from Ge detectors which works on WINDOWS 95 as an operating system has been developed. Gamma-ray peaks are simulated as Gauss function with 1st- or 2nd-order polynomial function for the background spectrum. Any function can be further added to for parameter fitting. The VIPF program can be obtained through internet by down-loading: http://w3.rri.kyoto-u.ac.jp/~yamada. Details of the program procedure, explanation of the fitting function to be used and peak search routine, and manuals of the code are given. (Ohno, S.)

  12. UV and gamma ray induced thermoluminescence properties of cubic Gd2O3:Er3+ phosphor

    Directory of Open Access Journals (Sweden)

    Raunak Kumar Tamrakar

    2014-10-01

    Full Text Available This paper reports the thermoluminescence properties of Er3+ doped gadolinium oxide nanophosphor. The phosphor is prepared by high temperature solid state reaction method. The method is suitable for large scale production. Starting materials used for sample preparation were Gd2O3, Er2O3 (0.5–2.5 mol% and fixed concentration of boric acid using as a flux. The prepared samples were characterized by X-ray diffraction technique and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor is determined by scanning electron microscopic (SEM technique. Functional group analysis was done by Fourier transform infra-red spectroscopy (FTIR analysis. The elemental analysis of prepared sample was determined by energy dispersive X-ray analysis (EDX and the exact particle size of prepared phosphor for the different concentration of dopant (Er3+ was evaluated by transmission electron microscopy (TEM technique. The prepared phosphors for different concentration of Er3+ were examined by thermoluminescence (TL glow curve for UV and gamma irradiation. The UV 254 nm source was used for UV irradiation and Co60 source was used for gamma irradiation. The samples show well resolved broad peak covered the temperature range 50–250 °C and the peak temperature found at 126 °C for UV irradiation and higher temperature peak at 214 °C for gamma irradiation. The effect of heating rate on TL studies was presented for optimized sample. Here UV irradiated sample shows the formation of shallow trap (surface trapping and the gamma irradiated sample shows the formation of deep trapping. The estimation of trap formation was evaluated by knowledge of trapping parameters. The trapping parameters such as activation energy, order of kinetics and frequency factor were calculated by peak shape method. Here most of the peak shows second order of kinetics. The effect of gamma and UV exposure on TL studies was also examined and it shows linear

  13. Gamma ray lines from a universal extra dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco; Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M.P.; Vallinotto, Alberto

    2012-03-01

    Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \\gamma \\gamma, but we extend these results to include \\gamma Z and \\gamma H final states. We find that these spectral lines are subdominant compared to the predicted \\gamma \\gamma signal, but they would be important as follow-up signals in the event of the observation of the \\gamma \\gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.

  14. Airborne gamma-ray spectrometry and computer data processing

    International Nuclear Information System (INIS)

    Raghuwanshi, S.S.; Bhishma Kumar; Tewari, S.G.

    1993-01-01

    The physical basis for the measurement of radioelemental concentrations of U, Th, and K on the surface of the earth by airborne gamma-ray spectrometry (AGRS) are described in this paper. The yield of an infinite radioactive plane source for a particular gamma energy helps to know the sampled volume in AGRS, the ground coverage, the ground resolution, the effective planning of the survey, flight line spacing, and sampling time. The infinite source-yield enables the determination of the attenuation coefficients in actual surveys and lays down the criteria for a standard test strip. Scattering of gamma-rays in matter is discussed in order to study its influence in the measurements from air. The theoretical gamma-ray spectrum from terrestrial U, Th, and K are discussed in contrast to its realistic picture which poses problems for their direct use for measurements. The criterion of FWHM (full width at half maximum) and inter-energy distance with their yields is described which finally helps to select the energy windows for (window and MCA) AGRS system. Factors which affect the measurements of radioelemental concentration in AGRS surveys include both correctable and non-correctable ones. Correctable factors are : (a) non-terrestrial sources of gamma-rays aircraft, cosmic, and airborne background (H) (B); (b) interference due to gamma-scattering inter channel effects (l); (c) height variations (H) due to navigation and topography; (d) temperature (T) of ambient air; and (e) pressure (P) of air at flying altitude. For removal of background effects, measurements over test strip and calibration pads are necessary for making the corrections in the order - BIH. These methods are described in the paper. The non-correctable factors include effects, due to terrain moisture, vegetation, and others. The possible ways to eliminate these effects are also briefly described. (author). 17 refs., 13 figs

  15. Gamma-Ray Imaging Spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; Maccallum, C.J.; Stang, P.D.; Sandia Labs., Albuquerque, NM)

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments

  16. THE 2010 VERY HIGH ENERGY {gamma}-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87

    Energy Technology Data Exchange (ETDEWEB)

    Abramowski, A. [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D 22761 Hamburg (Germany); Acero, F. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, CC 72, Place Eugene Bataillon, F-34095 Montpellier Cedex 5 (France); Aharonian, F.; Bernloehr, K.; Bochow, A. [Max-Planck-Institut fuer Kernphysik, P.O. Box 103980, D 69029 Heidelberg (Germany); Akhperjanian, A. G. [National Academy of Sciences of the Republic of Armenia, 24 Marshall Baghramian Avenue, 0019 Yerevan (Armenia); Anton, G.; Balzer, A. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, D 91058 Erlangen (Germany); Barnacka, A. [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Barres de Almeida, U. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Becherini, Y. [Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Becker, J. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universitaet Bochum, D 44780 Bochum (Germany); Behera, B. [Landessternwarte, Universitaet Heidelberg, Koenigstuhl, D 69117 Heidelberg (Germany); Birsin, E. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D 12489 Berlin (Germany); Biteau, J. [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Boisson, C. [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 Place Jules Janssen, 92190 Meudon (France); Bolmont, J. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5 (France); Bordas, P., E-mail: martin.raue@desy.de [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D 72076 Tuebingen (Germany); Collaboration: H.E.S.S. Collaboration; MAGIC Collaboration; VERITAS Collaboration; and others

    2012-02-20

    The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) Multiplication-Sign 10{sup 9} M{sub Sun }) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) {gamma}-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE {gamma}-ray emitter since 2006. The VHE {gamma}-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE {gamma}-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of {tau}{sup rise}{sub d} = (1.69 {+-} 0.30) days and {tau}{sup decay}{sub d} = (0.611 {+-} 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales ({approx}day), peak fluxes ({Phi}{sub >0.35TeV} {approx_equal} (1-3) Multiplication-Sign 10{sup -11} photons cm{sup -2} s{sup -1}), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken {approx}3 days after the peak of the VHE {gamma}-ray emission reveal an enhanced flux from the core (flux increased by factor {approx}2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL

  17. Neutrino emission from gamma-ray burst fireballs, revised.

    Science.gov (United States)

    Hümmer, Svenja; Baerwald, Philipp; Winter, Walter

    2012-06-08

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the recomputation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years.

  18. Study of gamma ray analysis software's. Application to activation analysis of geological samples

    International Nuclear Information System (INIS)

    Silva, Luiz Roberto Nogueira da

    1998-01-01

    A comparative evaluation of the gamma-ray analysis software VISPECT, in relation to two commercial gamma-ray analysis software packages, OMNIGAM (EG and G Ortec) and SAMPO 90 (Canberra) was performed. For this evaluation, artificial gamma ray spectra were created, presenting peaks of different intensities and located at four different regions of the spectrum. Multiplet peaks with equal and different intensities, but with different channel separations, were also created. The results obtained showed a good performance of VISPECT in detecting and analysing single and multiplet peaks of different intensities in the gamma-ray spectrum. Neutron activation analysis of the geological reference material GS-N (IWG-GIT) and of the granite G-94, used in a Proficiency Testing Trial of Analytical Geochemistry Laboratories, was also performed , in order to evaluate the VISEPCT software in the analysis of real samples. The results obtained by using VISPECT were as good or better than the ones obtained using the other programs. (author)

  19. Method Validation for the Gamma-ray Spectrometric Determination of Natural Radioactive Nuclides in NORM Samples - Method Validation for the Gamma-ray Spectrometric Determination of Natural Radionuclides in raw materials and by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Young-Yong; Lim, Jong-Myoung; Jang, Mee; Kim, Chang-Jong; Chung, Kun Ho; Kang, Mun Ja; Choi, Geun-Sik [Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2014-07-01

    It has established the 'Act on safety control of radioactive rays around living environment' in Korea, since 2011, to protect the public from natural occurring radioactive materials (NORM) and their by-products. The increasing concerns regarding the radioactivity of those materials therefore dictate many demands for the radioactive analysis for them. There are several methods to determine the concentration of natural radionuclides, such as {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 232}Th, and so on, through a radiochemical analysis using an alpha spectrometer, mass spectrometer and liquid scintillation counter. However, gamma-ray spectroscopy still has an effect on the assessment of radioactive concentration for these nuclides and their progenies. To adapt a gamma spectrometer to the determination of natural radionuclides, the feasibility of their analysis methods should be first verified and validated with respect to accuracy and time and cost constraints. In general, one of the well-known processes in analyzing uranium with a gamma spectrometer is an indirect measurement using the secular equilibrium state with their progenies in a sample. This method, however, demands the time elapsed about 3 weeks to reach the equilibrium state between {sup 226}Ra and {sup 222}Rn and the sufficient integrity of a sample bottle to prevent the leakage of radon isotopes which is a form of noble gas. The simple and quick method is to directly measure a full energy absorption peak of 186.2 keV from {sup 226}Ra without the secular equilibrium state between {sup 226}Ra and {sup 222}Rn in the common sample bottle. However, this direct measurement also has difficulties about the interference with a full energy absorption peak of 185.7 keV from {sup 235}U. In this study, direct measurement with the interference correction technique, which uses several reference peaks for gamma-rays from {sup 235}U and {sup 234}Th, and indirect measurement, which means the identification of {sup

  20. The Study of Radiation of Gamma-Ray Background at Sedimentology Laboratorium, P3TIR, BATAN, Using Gamma Spectrometry

    International Nuclear Information System (INIS)

    Lubis, Ali Arman; Aliyanta, Barokah; Darman

    2002-01-01

    The measurement of background radiation of gamma-ray has been done at Sedimentology Laboratory, SDAL building, P3TIR, BATAN using gamma spectrometer. The measurement was done without shielding with the range of energy between 50 keV and 1500 keV. The identified radiations are coming from environmental radionuclide and man-made radionuclide as well with 32 energy peaks. The environmental radionuclides are from Uranium series, Thorium series, and 4 0 K having dose rate of 12.510 ± O.980, 36.408 ± 3.243, 9.455 ±O.016 n Sv/day, respectively, whilst man-made radionuclide is 6 O C o having dose rate of O.136 ±O.078 n Sv/day

  1. On the transparency of the metagalaxy to ultrahigh-energy gamma rays

    International Nuclear Information System (INIS)

    Aharonyan, F.A.; Vardanyan, V.V.

    1987-01-01

    The electron-photon shower production in the field of the microwave background radiation (MBR) is considered. The absolute flux of ultrahigh-energy cascade gamma-rays (E>or approx.5X10 19 eV), resulting from the Π-meson photoproduction in the field of the MBR is obtained

  2. ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS

    International Nuclear Information System (INIS)

    Essey, Warren; Kusenko, Alexander; Kalashev, Oleg; Beacom, John F.

    2011-01-01

    Active galactic nuclei (AGNs) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus, the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGNs. We also make predictions for the neutrino signals, which can help probe the acceleration of cosmic rays in AGNs.

  3. Energy spectrum of lightning gamma emission

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, A.P. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Karashtin, A.N. [Research Radiophysics Institute, Nizhny Novgorod (Russian Federation); Ryabov, V.A., E-mail: ryabov@x4u.lebedev.r [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Shepetov, A.L. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Antonova, V.P.; Kryukov, S.V. [Ionosphere Institute, Almaty (Kazakhstan); Mitko, G.G.; Naumov, A.S.; Pavljuchenko, L.V. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Ptitsyn, M.O., E-mail: ptitsyn@lpi.r [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Shalamova, S.Ya. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Shlyugaev, Yu.V. [Research Radiophysics Institute, Nizhny Novgorod (Russian Federation); Vildanova, L.I. [Tien-Shan Mountain Cosmic Ray Station, Almaty (Kazakhstan); Zybin, K.P. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Gurevich, A.V., E-mail: alex@lpi.r [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation)

    2009-08-10

    The results of gamma emission observations obtained during thunderstorms at Tien-Shan Mountain Cosmic Ray Station are presented. The energy spectrum radiation of the stepped leader gamma radiation is measured. The total energy of stepped leader emitted in gamma rays is estimated as 10{sup -3}-10{sup -2} J. The experimental results are in an agreement with the runaway breakdown mechanism.

  4. Energy spectrum of lightning gamma emission

    International Nuclear Information System (INIS)

    Chubenko, A.P.; Karashtin, A.N.; Ryabov, V.A.; Shepetov, A.L.; Antonova, V.P.; Kryukov, S.V.; Mitko, G.G.; Naumov, A.S.; Pavljuchenko, L.V.; Ptitsyn, M.O.; Shalamova, S.Ya.; Shlyugaev, Yu.V.; Vildanova, L.I.; Zybin, K.P.; Gurevich, A.V.

    2009-01-01

    The results of gamma emission observations obtained during thunderstorms at Tien-Shan Mountain Cosmic Ray Station are presented. The energy spectrum radiation of the stepped leader gamma radiation is measured. The total energy of stepped leader emitted in gamma rays is estimated as 10 -3 -10 -2 J. The experimental results are in an agreement with the runaway breakdown mechanism.

  5. Measurement of actinide concentration in solution samples from the NUCEF reprocessing facility by X-ray and low energy gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Howarth, P.J.A.; Uchiyama, Gunzo; Asakura, Toshihide; Sawada, Mutsumi; Hagiya, Hiromichi; Fujine, Sachio

    1999-01-01

    X-ray and low-energy gamma-ray spectroscopy has been used to measure actinide concentration within the backend nuclear fuel reprocessing research facility at NUCEF. Research on advanced reprocessing techniques at NUCEF is based on the PARC refinement of the PUREX process which aims to recover Am and Cm from the highly active waste stream and to control and partition Np and Tc. It is hoped that the PARC process will mitigate the environmental impact of the wastes and improve the economy of reprocessing. The main actinides for which assay is required are U, Pu, Np and Am and knowledge of these concentrations will enable the following to be determined: i.) evaluation of the distribution of actinides throughout the reprocessing facility ii.) verification of the simulated actinide distribution from chemical kinetic simulations of the PARC process and iii.) assurance of safety and control over migrant radioactive species. The research presented here shows that passive measurement of x-rays and low-energy gamma-rays from solution samples provides an accurate and non-destructive means for assaying the concentration. The measurement technique is based on the use of the characteristic low energy gamma-rays and internal conversion x-ray emission from actinides (11 keV to 22 keV). The x-ray emission is a few orders of magnitude more intense than the characteristic gamma-ray emission and can be easily detected from solutions. The experimental system described here can be used for solution monitoring to a minimum concentration of typically 10-6 M for Pu, 10-10 M for Am and 10-6 M for Np. (author)

  6. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Briggs, M. S.; Bissaldi, E.; Bonamente, E.; Brigida, M.

    2010-01-01

    The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9σ. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to ∼1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.

  7. ICIT contribution to JET gamma-ray diagnostics enhancement

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Zoita, V.

    2010-01-01

    Full text: Gamma-ray emission of tokamak plasmas is the result of the interaction of fast ions (fusion reaction products, including alpha particles, NBI ions, ICRH-accelerated ions) with main plasma impurities (e.g., carbon, beryllium). Gamma-ray diagnostics involve both gamma-ray imaging (cameras) and gamma-ray spectrometry (spectrometers). For the JET tokamak, gamma-ray diagnostics have been used to provide information on the characteristics of the fast ion population in plasmas. Two gamma-ray diagnostics enhancements project have been launched by JET and the MEdC/EURATOM Association has agreed to lead both of them with ICIT as projects leader. (authors)

  8. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    Directory of Open Access Journals (Sweden)

    Sahakyan N.

    2016-01-01

    Full Text Available The recent results from ground based γ-ray detectors (HESS, MAGIC, VERITAS provide a population of TeV galactic γ-ray sources which are potential sources of High Energy (HE neutrinos. Since the γ-rays and ν-s are produced from decays of neutral and charged pions, the flux of TeV γ-rays can be used to estimate the upper limit of ν flux and vice versa; the detectability of ν flux implies a minimum flux of the accompanying γ-rays (assuming the internal and the external absorption of γ-rays is negligible. Using this minimum flux, it is possible to find the sources which can be detected with cubic-kilometer telescopes. I will discuss the possibility to detect HE neutrinos from powerful galactic accelerators, such as Supernova Remnants (SNRs and Pulsar Wind Nebulae (PWNe and show that likely only RX J1713.7-3946, RX J0852.0-4622 and Vela X can be detected by current generation of instruments (IceCube and Km3Net. It will be shown also, that galactic binary systems could be promising sources of HE ν-s. In particular, ν-s and γ-rays from Cygnus X-3 will be discussed during recent gamma-ray activity, showing that in the future such kind of activities could produce detectable flux of HE ν-s.

  9. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  10. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  11. Exploring the extreme gamma-ray sky with HESS

    International Nuclear Information System (INIS)

    Sol, Helene

    2006-01-01

    The international HESS experiment. High Energy Stereoscopic System, fully operational since January 2004, is opening a new era for extreme gamma-ray astronomy. Located in Namibia, it is now the most sensitive detector for cosmic sources of very high energy (VHE) gamma-rays, in the tera-electron-volt (TeV) range. In July 2005, it had already more than double the number of sources detected at such energies, with the discovery of several active galactic nuclei (AGN), supernova remnants and plerions, a binary pulsar system, a microquasar candidate, and a sample of yet unidentified sources. HESS has also provide for the first time gamma-ray images of extended sources with the first astrophysical jet resolved in gamma-rays, and the first mapping of a shell supernova remnant, which proves the efficiency of in situ acceleration of particles up to 100 TeV and beyond

  12. A possible very high energy gamma-ray burst from Hercules X-1

    International Nuclear Information System (INIS)

    Vishwanath, P.R.; Bhat, P.N.; Ramanamurthy, P.V.; Sreekantan, B.V.

    1989-01-01

    A large increase is observed in the trigger rate in the direction of Hercules X-1 in the Atmospheric Cerenkov array at Pachmarhi, India. The burst lasted from 2147 UT to 2201 UT on April 11, 1986. The accidental coincidence rate did not show any increase during the burst. Barring any electronic noise or celestial or terrestrial optical phenomenon with time structure similar to that of atmospheric Cerenkov phenomenon, the increase is ascribed to TeV gamma rays from Her X-1. The number of gamma-ray events during the burst amounted to about 54 percent of the cosmic-ray flux, resulting in a 42-sigma effect. This is the largest TeV gamma-ray signal seen from any source till now. The time-averaged flux for the burst period is 1.8 x 10 photons/sq cm per s above a threshold energy of 0.4 TeV, which results in a luminosity of 1.8 x 10 to the 37 ergs/s. The burst took place at the end of the 'high on' state in the 35-day cycle of the Her X-1 binary system indicating accretion disk as the possible production site. 14 refs

  13. Gamma-rays attenuation of zircons from Cambodia and South Africa at different energies: A new technique for identifying the origin of gemstone

    Science.gov (United States)

    Limkitjaroenporn, P.; Kaewkhao, J.

    2014-10-01

    In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African's zircons are 4.6716±0.0040 g/cm3 and 4.5505±0.0018 g/cm3, respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223-662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing.

  14. Distribution of iron and titanium on the lunar surface from lunar prospector gamma ray spectra

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Feldman, W.C.; Lawrence, David J.; Elphic, R.C.; Gasnault, O.M.; Maurice, S.; Moore, K.R.; Binder, A.B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. ∼140 g/cm 2 for inelastic scattering and ∼50 g/cm 2 for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods (e.g. Clementine Spectral Reflectance (CSR)), which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  15. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    Science.gov (United States)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  16. Gamma ray astronomy and the origin of galactic cosmic rays

    International Nuclear Information System (INIS)

    Gabici, Stefano

    2011-01-01

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by the model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. The main goal of my research is to search for an unambiguous and conclusive observational test for proving (or disproving) the idea that supernova remnants are the sources of galactic cosmic rays with energies up to (at least) the cosmic ray knee. Our present comprehension of the mechanisms of particle acceleration at shocks and of the propagation of cosmic rays in turbulent magnetic fields encourages beliefs that such a conclusive test might come from future observations of supernova remnants and of the Galaxy in the almost unexplored domain of multi-TeV gamma rays. (author)

  17. Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare

    Science.gov (United States)

    Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.

    2018-04-01

    Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

  18. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy

    International Nuclear Information System (INIS)

    Frandes, M.

    2010-09-01

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  19. Toward a next-generation high-energy gamma-ray telescope. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E.D.; Evans, L.L. [eds.

    1997-03-01

    It has been some time between the time of the first Gamma-ray Large Area Space Telescope (GLAST) workshop, Towards a Next Generation High-Energy Gamma-Ray Telescope, in late August 1994, and the publication of a partial proceedings of that meeting. Since then there has been considerable progress in both the technical and project development of GLAST. From its origins at SLAC/Stanford in early 1992, the collaboration has currently grown to more than 20 institutions from France, Germany, Italy, Japan, and the US, and is still growing. About half of these are astrophysics/astronomy institutions; the other half are high-energy physics institutions. About 100 astronomers, astrophysicists, and particle physicists are currently spending some fraction of their time on the GLAST R and D program. The late publication date of this proceedings has resulted in some additions to the original content of the meeting. The first paper is actually a brochure prepared for NASA by Peter Michelson in early 1996. Except for the appendix, the other papers in the proceedings were presented at the conference, and written up over the following two years. Some presentations were never written up.

  20. Towards a next-generation high-energy gamma-ray telescope. Proceedings

    International Nuclear Information System (INIS)

    Bloom, E.D.; Evans, L.L.

    1997-03-01

    It has been some time between the time of the first Gamma-ray Large Area Space Telescope (GLAST) workshop, Towards a Next Generation High-Energy Gamma-Ray Telescope, in late August 1994, and the publication of a partial proceedings of that meeting. Since then there has been considerable progress in both the technical and project development of GLAST. From its origins at SLAC/Stanford in early 1992, the collaboration has currently grown to more than 20 institutions from France, Germany, Italy, Japan, and the US, and is still growing. About half of these are astrophysics/astronomy institutions; the other half are high-energy physics institutions. About 100 astronomers, astrophysicists, and particle physicists are currently spending some fraction of their time on the GLAST R and D program. The late publication date of this proceedings has resulted in some additions to the original content of the meeting. The first paper is actually a brochure prepared for NASA by Peter Michelson in early 1996. Except for the appendix, the other papers in the proceedings were presented at the conference, and written up over the following two years. Some presentations were never written up

  1. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Feng, Q.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Fleischhack, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Flinders, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Fortson, L., E-mail: asmith44@umd.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); and others

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.

  2. The 2017 Periastron Passage of PSR B1259-63 in Gamma-rays and X-rays

    Science.gov (United States)

    Wood, Kent S.; Johnson, Tyrel; Ray, Paul S.; Kerr, Matthew T.; Chernyakova, Masha; Fermi LAT Collaboration

    2018-01-01

    PSR B1259‑ 63 is a 48-ms radio pulsar in a highly eccentric 3.4-yr orbit with a Be star LS 2883. While the pulsed emission has been detected only in radio, un-pulsed radio, X-ray and gamma-ray emission are regularly observed from the binary system around the periastron. It is likely that the collision of the pulsar wind with the anisotropic wind of the Be star plays a crucial role in the generation of the observed non-thermal emission. The spectral energy distribution observed near periastron peaks in GeV gamma-rays, reaching maximum flux several weeks past periastron. In September 2017 it is being observed for a third periastron passage by the Fermi satellite. Here we present first results of the 2017 multi-wavelength campaign. The 2017 observations are compared to the two previous cycles, and used to test current models. Until recently there was no similar source known in the Galaxy but now a near-twin to it, PSR J2032+4127 , (Pspin=143 ms, Porbit ~50 yr, detectable radio to gamma rays) has been found, and is also undergoing periastron passage in Nov 2017. Gamma-ray and X-ray phenomena in the two sources are compared and discussed. These objects may represent a transitional phase, with possible later phases being accreting pulsars, and eventually perhaps NS-BH or NS-NS binary systems. Portions of this research performed at the US Naval Research Laboratory are sponsored by NASA DPR S-15633-Y.

  3. Systematics of gamma-ray energy spectra for classification of workplaces around a nuclear facility

    International Nuclear Information System (INIS)

    Urabe, Itsumasa; Tsujimoto, Tadashi; Katsurayama, Kousuke

    1988-01-01

    Radiation dosimetry in workplaces has been carried out both for assurance of the doses complying with the acceptable values and for improvement of protection methods to minimise detriments of the exposed population. This means that it is very important not only to determine dosimetric quantities in workplaces but also to know features of radiation levels because information for radiation protection can often be derived from the radiometric quantities. Classification of workplaces based on the feature of gamma-ray energy spectra is one of the practical ways to realise radiation protection being taken into consideration of the radiometric quantities. Furthermore, demarcation of workplaces based on these radiometric quantities may be effective for improvement of radiation protection practice such as estimation of radiation doses, designing of radiation shields and other activities. From these points of view, gamma-ray energy spectra have been determined in various workplaces in nuclear facilities, and systematics of gamma-ray fields were tried for classification of workplaces on the basis of the feature appeared in health physical quantities such as effective dose equivalents and responses of dosemeters

  4. Method of making a low energy gamma ray collimator

    International Nuclear Information System (INIS)

    Muehllehner, Gerd.

    1975-01-01

    Described herein is a method for making a low energy gamma ray collimator which involves corrugating lead foil strips by passing them through pinion wire rollers and gluing corrugated strips between straight strips using an adhesive such as epoxy to build up a honeycomb-like structure. A thin aluminum sheet is glued to both edges of the strips to protect them and to provide a more rigid assembly which may be sawed to a desired shape. (Patent Office Record)

  5. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    Directory of Open Access Journals (Sweden)

    Postnikov E.B.

    2017-01-01

    Full Text Available This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV. It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  6. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  7. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  8. Dependence on incident angle of solid state detector response to gamma-rays

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Yamaguchi, Satarou; Yamaguchi, Takayuki; Ueki, Kohtaro

    2002-01-01

    The shape and size of a NaI(Tl) scintillator that should maximize response variation with γ-ray incident angle was estimated by analytical model calculation. It proved that, even for gamma rays of energy exceeding 1 MeV, a slab detector measuring 50 cm x 50 cm x 5 cm thick should present a ratio of at least 4 between maximum and minimum responses against incidence at different angles. For a sample case of 60 keV gamma rays, estimation of the incident angle dependence by means of Monte Carlo simulation agreed well with experiment using a CZT detector. The counts from photo-electric peak varied with incident angle roughly along a sine curve. The foregoing finding served as basis for proposing a practical direction finder for γ-ray source operating on the principle of determining the source direction from variations in count with incident angle. (author)

  9. Gamma-Ray Bursts: 4th Huntsville Symposium. Proceedings

    International Nuclear Information System (INIS)

    Meegan, C.A.; Preece, R.D.; Koshut, T.M.

    1998-01-01

    These proceedings represent papers presented at the Fourth Huntsville Gamma-Ray Bursts Symposium held in September, 1997 in Huntsville, Alabama, USA. This conference occurred at a crucial time in the history of the gamma-ray burst research. In early 1997, 30 years after the detection of the first gamma-ray burst by the Vela satellites, counterparts to bursts were finally detected at optical and radio wavelengths. The symposium attracted about 200 scientists from 16 countries. Some of the topics discussed include gamma-ray burst spectra, x-ray observations, optical observations, radio observations, host galaxies, shocks and afterglows and models of gamma-ray bursts. There were 183 papers presented, out of these, 16 have been abstracted for the Energy Science and Technology database

  10. A low-background gamma-ray assay laboratory for activation analysis

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Langland, J.K.; Lindstrom, D.J.; Slaback, L.A.

    1990-01-01

    The sources of background in a gamma-ray detector were experimentally determined in underground and surface counting rooms, and an optimized shield was constructed at NIST. The optimum thickness of lead was 10-15 cm, with a greater thickness giving an increased background due to the buildup of tertiary cosmic-ray particles. Neither cadmium, tin, copper nor plastic (hydrocarbon or fluorocarbon) was desirable as a shield liner, since all these increased the background continuum or introduced characteristic peaks into the background spectrum. Two broad peaks in the background result from inelastic scattering of cosmic-ray neutrons (0.02 cm -2 s -1 ) in germanium. These neutrons also excite the lower nuclear levels of lead and structural iron to produce additional gamma-ray peaks in the spectrum. The influence of the 20 MW NIST reactor, located 60 m from the detector, was undetectable. Comparisons among detectors and locations clearly separate cosmic from environmental components of the background. (orig.)

  11. A low-background gamma-ray assay laboratory for activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Langland, J K [National Inst. of Standards and Technology, Gaithersburg, MD (USA). Center for Analytical Chemistry; Lindstrom, D J [National Aeronautics and Space Administration, Houston, TX (USA). Lyndon B. Johnson Space Center; Slaback, L A [National Inst. of Standards and Technology, Gaithersburg, MD (USA). Occupational Health and Safety Div.

    1990-12-20

    The sources of background in a gamma-ray detector were experimentally determined in underground and surface counting rooms, and an optimized shield was constructed at NIST. The optimum thickness of lead was 10-15 cm, with a greater thickness giving an increased background due to the buildup of tertiary cosmic-ray particles. Neither cadmium, tin, copper nor plastic (hydrocarbon or fluorocarbon) was desirable as a shield liner, since all these increased the background continuum or introduced characteristic peaks into the background spectrum. Two broad peaks in the background result from inelastic scattering of cosmic-ray neutrons (0.02 cm{sup -2} s{sup -1}) in germanium. These neutrons also excite the lower nuclear levels of lead and structural iron to produce additional gamma-ray peaks in the spectrum. The influence of the 20 MW NIST reactor, located 60 m from the detector, was undetectable. Comparisons among detectors and locations clearly separate cosmic from environmental components of the background. (orig.).

  12. Recent achievements in the field of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lu Tan; Dai Zigao

    2001-01-01

    Recent progresses in the field of gamma-ray bursts is briefly introduced. Gamma-ray bursts are the most energetic explosion since the Big Bang of the universe. Within a few tens of seconds, the energy released in gamma-ray bursts could be several hundred times larger than that released form the sun in its whole life (about 10 billion years). The authors will first briefly discuss the observational facts, based on which the authors will discuss the standard fireball model, the dynamical behavior and evolution of gamma-ray bursts and their afterglows. Then, various observational phenomena that contradict the standard model are given and the importance of these post-standard effects are pointed out. The questions related to the energy source of gamma-ray bursts are still unanswered, and other important questions also remain to be solved

  13. Point source search techniques in ultra high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    Alexandreas, D.E.; Biller, S.; Dion, G.M.; Lu, X.Q.; Yodh, G.B.; Berley, D.; Goodman, J.A.; Haines, T.J.; Hoffman, C.M.; Horch, E.; Sinnis, C.; Zhang, W.

    1993-01-01

    Searches for point astrophysical sources of ultra high energy (UHE) gamma rays are plagued by large numbers of background events from isotropic cosmic rays. Some of the methods that have been used to estimate the expected number of background events coming from the direction of a possible source are found to contain biases. Search techniques that avoid this problem are described. There is also a discussion of how to optimize the sensitivity of a search to emission from a point source. (orig.)

  14. Gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-01-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166 degrees C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen

  15. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Robles, A.; Drury, O.B.; Friedrich, S.

    2009-01-01

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm 3 Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  16. Processing of gamma-ray spectra employing a Fourier deconvolver for the analysis of complex spectra

    International Nuclear Information System (INIS)

    Madan, V.K.; Rattan, S.S.

    1996-01-01

    Processing of a nuclear spectrum e.g. gamma ray spectrum is concerned with the estimation of energies and intensities of radiation. The processing involves filtering, peak detection and its significance, baseline delineation, the qualitative and the quantitative analysis of singlets and multiplets present in the spectrum. The methodology for the analysis of singlets is well established. However, the analysis of multiplets provides a challenge and is a extremely difficult problem. This report incorporates a Fourier deconvolver for the quantitative analysis of doublets separated by more than a full width at half maximum. The method is easy to implement. The report discusses the methodology, mathematical analysis, and the results obtained by analyzing both synthetic and observed spectra. A computer program, developed for the analysis of a nuclear spectrum, was verified by analyzing a 152 Eu gamma ray spectrum. The proposed technique compared favourably with SAMPO and MDFT method. (author). 16 refs., 3 tabs

  17. Correction of Doppler broadening of {gamma}-ray lines induced by particle emission in heavy-ion induced fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, J; Seweryniak, D; Fahlander, C; Insua-Cao, P [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Johnson, A; Cederwall, B [Manne Siegbahn Inst. of Physics, Stockholm (Sweden); [Royal Inst. of Tech., Stockholm (Sweden); Adamides, E; Piiparinen, M [National Centre for Scientific Research, Ag. Paraskevi, Attiki (Greece); Atac, A; Norlin, L O [Niels Bohr Inst., Copenhagen (Denmark); Ideguchi, E; Mitarai, S [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Julin, R; Juutinen, S; Tormanen, S; Virtanen, A [Jyvaeskylae Univ. (Finland). Dept. of Physics; Karczmarczyk, W; Kownacki, J [Warsaw Univ. (Poland); Schubart, R [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1992-08-01

    The effect of particle emission on the peak shape of {gamma}-ray lines have been investigated using the NORDBALL detector system. By detecting neutrons, protons and {alpha} particles emitted in the {sup 32}S (95 MeV) + {sup 27}Al reaction, the energy and direction of emission of the residual nuclei could be determined and subsequently used for an event-by -event Doppler correction of the detected {gamma} rays. Extensive Monte Carlo simulations were performed to study how the different Doppler phenomena influence the peak shape and in particular which particle detector properties are important for the Doppler correction. (author). 2 refs., 1 tab., 4 figs.

  18. Advance features in the SPAN and SPAN/XRF gamma ray and X ray spectrum analysis software

    International Nuclear Information System (INIS)

    Wang Liyu

    1998-01-01

    This paper describes the advanced techniques, integral peak background, experimental peak shape and complex peak shape, which have been used successfully in the software packages SPAN and SPAN/XRF to process gamma ray and X ray spectra from HPGe and Si(Li) detector. Main features of SPAN and SPAN/XRF are also described. The software runs on PC and has convenient graphical capabilities and a powerful user interface. (author)

  19. Measurement of Cerenkov Radiation Induced by the Gamma-Rays of Co-60 Therapy Units Using Wavelength Shifting Fiber

    Directory of Open Access Journals (Sweden)

    Kyoung Won Jang

    2014-04-01

    Full Text Available In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.

  20. Performance test of Spectran-F and Spectran-III computer programs for resolving the 137Cs-110Ag double peak in gamma-ray spectrometric analysis

    International Nuclear Information System (INIS)

    Terada, H.; Malinowski, J.; Blick, H.

    1981-09-01

    The performance of the computer programs (Spectran F and Spectran-III) in resolving the 137 Cs-sup(110m)Ag double peak at 661.6-657.7 keV in the gamma-ray spectrum was investigated. In the experiments, the intensity ratios of both lines in the double peak were varied from 0.1 to 60. The results obtained show, that both programs have almost the same performance in resolving the double peak investigated, with slight superiority of Spectran-F. If accuracy better than 5% is desired, the peak intensity ratio in the dublet must be kept below 10. (orig.)

  1. Applications of Monte Carlo simulations of gamma-ray spectra

    International Nuclear Information System (INIS)

    Clark, D.D.

    1995-01-01

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry

  2. From high energy gamma sources to cosmic rays, one century after their discovery. Summary of the SciNeGHE2012 workshop

    International Nuclear Information System (INIS)

    Longo, Francesco

    2013-01-01

    The interplay between studies and measurements concerning high energy gamma ray sources and cosmic rays was the main focus of the 2012 edition of the Science with the New Generation of High Energy Gamma-ray Experiments (SciNeGHE) workshop. The workshop started with a special session devoted to the history of the cosmic radiation research in the centenary of its discovery, with a special attention also to the history of very high energy gamma-ray astronomy. The main results and the current status from space-borne and ground-based gamma and cosmic ray experiments were presented, together with the state of the art theoretical scenarios. The future of the field was studied through the presentation of many new experiment concepts, as well as through the analysis of new observational techniques and R and D programs

  3. THE LATE PEAKING AFTERGLOW OF GRB 100418A

    International Nuclear Information System (INIS)

    Marshall, F. E.; Holland, S. T.; Sakamoto, T.; Antonelli, L. A.; Burrows, D. N.; Siegel, M. H.; Covino, S.; Fugazza, D.; De Pasquale, M.; Oates, S. R.; Evans, P. A.; O'Brien, P. T.; Osborne, J. P.; Pagani, C.; Liang, E. W.; Wu, X. F.; Zhang, B.

    2011-01-01

    GRB 100418A is a long gamma-ray burst (GRB) at redshift z = 0.6235 discovered with the Swift Gamma-ray Burst Explorer with unusual optical and X-ray light curves. After an initial short-lived, rapid decline in X-rays, the optical and X-ray light curves observed with Swift are approximately flat or rising slightly out to at least ∼7 x 10 3 s after the trigger, peak at ∼5 x 10 4 s, and then follow an approximately power-law decay. Such a long optical plateau and late peaking is rarely seen in GRB afterglows. Observations with Rapid Eye Mount during a gap in the Swift coverage indicate a bright optical flare at ∼2.5 x 10 4 s. The long plateau phase of the afterglow is interpreted using either a model with continuous injection of energy into the forward shock of the burst or a model in which the jet of the burst is viewed off-axis. In both models the isotropic kinetic energy in the late afterglow after the plateau phase is ≥10 2 times the 10 51 erg of the prompt isotropic gamma-ray energy release. The energy injection model is favored because the off-axis jet model would require the intrinsic T 90 for the GRB jet viewed on-axis to be very short, ∼10 ms, and the intrinsic isotropic gamma-ray energy release and the true jet energy to be much higher than the typical values of known short GRBs. The non-detection of a jet break up to t ∼ 2 x 10 6 s indicates a jet half-opening angle of at least ∼14 0 , and a relatively high-collimation-corrected jet energy of E jet ≥ 10 52 erg.

  4. AGILE: A gamma-ray mission

    International Nuclear Information System (INIS)

    Tavani, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Vercellone, S.; Barbiellini, G.; Budini, G.; Longo, F.; Prest, M.; Vallazza, E.; Cocco, V.; Morselli, A.; Picozza, P.; Pittori, C.; Costa, E.; Feroci, M.; Lapshov, I.; Morelli, E.; Rubini, A.; Soffitta, P.

    2000-01-01

    AGILE is an innovative, cost-effective gamma-ray mission selected by the Italian Space Agency for a Program of Small Scientific Missions. The AGILE gamma-ray imaging detector (GRID, made of a Silicon tracker and CsI Mini-Calorimeter) is designed to detect and image photons in the 30 MeV-50 GeV energy band with good sensitivity and very large field of view (FOV ∼3 sr). The X-ray detector, Super-AGILE, sensitive in the 10-40 keV band and integrated on top of the GRID gamma-ray tracker will provide imaging (1-3 arcmin) and moderate spectroscopy. For selected sky areas, AGILE might achieve a flux sensitivity (above 100 MeV) better than 5x10 -8 ph cm 2 s -1 at the completion of its scientific program. AGILE will operate as an Observatory open to the international community and is planned to be operational during the year 2002 for a nominal 2-year mission. It will be an ideal 'bridge' between EGRET and GLAST, and the only mission entirely dedicated to high-energy astrophysics above 30 MeV during that period

  5. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    Ion Cyclotron Resonant Heating (ICRH) that is tuned to minority fuel ions can induce an energy diffusion of the heated species and create high energy tail temperatures of {approx} 1 MeV. The most energetic of these accelerated minority ions can undergo nuclear reactions with impurity Be and C that produces {gamma}-ray emission from the decay of the excited product nuclei. This RF-induced {gamma}-ray emission has been recorded using the JET neutron emission profile diagnostic which is capable of distinguishing neutrons and {gamma}-rays. Appropriate data processing has enabled the RF-induced {gamma}-ray emission signals to be isolated from the {gamma}-ray emission signals associated with neutron interactions in the material surrounding the profile monitor. The 2-d {gamma}-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. (author) 6 refs., 4 figs.

  6. Measurement of 15 MeV gamma-rays with the Ge cluster detectors of EUROBALL

    CERN Document Server

    Million, B; Camera, F; Brambilla, S; Gadea, A; Giugni, D; Herskind, B; Kmiecik, M; Isocrate, R; Leoni, S; Maj, A; Prelz, F; Wieland, O

    2000-01-01

    A measurement of the response to 15.1 MeV gamma-rays has been made for the Ge cluster detectors in the EUROBALL array. Each cluster detector consists of seven germanium capsules surrounded by a single anticompton shield of BGO. The reaction D( sup 1 sup 1 B,gamma) sup 1 sup 2 C+n at E sub b sub e sub a sub m =19.1 MeV has been employed. The 'adding-back' of signals simultaneously present in the capsules composing each cluster detector has been made on an event by event basis. The intensity in full-energy peak increases by a factor of three as compared to that of the spectrum obtained by summing the individual spectra of the 7 capsules. The pulse height to energy conversion is found to be very linear from few hundreds keV to 15 MeV. The efficiency is discussed relative to that of large volume BaF sub 2 scintillators.

  7. Study of TGEs and Gamma-Flashes from thunderstorms in 20-3000 keV energy range with SINP MSU Gamma-Ray spectrometers

    International Nuclear Information System (INIS)

    Bogomolov, V.V.; Svertilov, S.I.; Maximov, I.A.; Panasyuk, M.I.; Garipov, G.K.

    2016-01-01

    SINP MSU provided a number of experiments with scintillator gamma-spectrometers for study of spectral, temporal and spatial characteristics of TGEs as well as for search of fast hard x-ray and gamma-ray flashes probably appearing at the moment of lightning. The measurements were done in Moscow region and in Armenia at Aragats Mountain. Each instrument used in this work was able to record data in so called “event mode”: the time of each interaction was recorded with ∼15 mcs accuracy together with detailed spectral data. Such design allowed one to look for fast sequences of gamma-quanta, coming at the moments of discharges during thunderstorms. The pulse-shape analysis made by detector electronics was used to separate real gammaray events and possible imitations of flashes by electrical disturbances when discharges occur. During the time period from spring to autumn of 2015 a number of TGEs were detected. Spectral analysis of received data showed that the energy spectrum of coming radiation in 20-3000 kev range demonstrate a set of gamma-ray lines that can be interpreted as radiation from Rn-222 daughter isotopes. The increase of Rn-222 radiation was detected during rainfalls with thunderstorm as well as during rainy weather without thunderstorms. Variations of Rn-222 radiation dominate in low energies (<2.6MeV) and must be taken into account in the experiments performed to measure low energy gamma-radiation from the electrons accelerated in thunderclouds. In order to determine the direction from which the additional gamma-quanta come the experiment with collimated gamma-spectrometer placed on rotated platform was done. The results of this experiment realized in Moscow region from august, 2015 will be presented as well as the results of comparison of different TGEs measured in Moscow region and in Armenia. (author)

  8. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  9. Determination of radionuclides for river sediment CRM with HPGe gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Tan Jinbo; Hao Runlong; Tang Zhenxin

    1994-01-01

    The authors described the method and results for determination of seven radionuclides: 238 U, 235 U, 226 Ra, 232 Th, 40 K, 60 Co and 137 Cs in the river sediment Certified Reference Material (CRM) using a HPGe gamma-ray spectrometer. The accuracy and reliability of measurement results were improved through varieties of techniques, which include: precise calibration of the gamma-ray spectrometer, coincidence summing correction and interference peak correction, two kinds of peak analysis methods (TPA and function fit), and utilization of as many as possible characteristic gamma-rays. Present measurement results for the seven radionuclides were in agreement with the verification results of the CRM with 1 σ or 2σ uncertainty, and its relative deviation were in the range of +1.0%--6.5%

  10. Special Nuclear Material Gamma-Ray Signatures for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-29

    These are slides on special nuclear material gamma-ray signatures for reachback analysts for an LSS Spectroscopy course. The closing thoughts for this presentation are the following: SNM materials have definite spectral signatures that should be readily recognizable to analysts in both bare and shielded configurations. One can estimate burnup of plutonium using certain pairs of peaks that are a few keV apart. In most cases, one cannot reliably estimate uranium enrichment in an analogous way to the estimation of plutonium burnup. The origin of the most intense peaks from some SNM items may be indirect and from ‘associated nuclides.' Indirect SNM signatures sometimes have commonalities with the natural gamma-ray background.

  11. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  12. Air shower array designed for cosmic ray variation measurements and high energy gamma ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Morello, C; Navarra, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1981-08-15

    We describe an array for performing measurements of counting rates and arrival directions of extensive air showers at primary energy E/sub 0/ approx. equal to 3 x 10/sup 9/ eV. The aim of the research is to study the time variations and the anisotropies of cosmic rays and the observable gamma ray sources in the high energy region. The installation, composed of four large area scintillation counters and completely controlled by a microcomputer system, operates at mountain altitude (3500 m a.s.l.). The preanalysis of data, stability tests and periodic calibrations are performed by on-line programs. The method for obtaining the required stability and the corrections on temperature and gain variations are also described.

  13. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Kiuchi, Kenta [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto, Kyoto 606-8502 (Japan)

    2017-10-10

    We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detection of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.

  14. The MeV spectra of gamma-ray bursts measured with COMPTEL

    International Nuclear Information System (INIS)

    Hoover, A.S.; Kippen, R.M.; McConnell, M.L.

    2005-01-01

    The past decade has produced a wealth of observational data on the energy spectra of prompt emission from gamma-ray bursts. Most of the data cover the energy range from a few to several hundred KeV. One set of higher energy observations comes from the Imaging Compton Telescope COMPTEL on the Compton Observatory, which measured in the energy range from 0.75 to 30 MeV. We analyzed the full 9.2 years COMPTEL data to reveal the significant detection of 44 gamma-ray bursts. We present preliminary results obtained in the process of preparing a final catalog of the spectral analysis of these events. In addiction, we compare the COMPTEL spectra to simultaneous BATSE measurements for purposes of cross-calibration

  15. TL detectors for gamma-ray dose measurements in critically accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Knezevic, Z.; Zorko, B.; Gregori, B.

    2005-01-01

    Full text: Determination of gamma-ray dose in mixed neutron + gamma-ray fields is still a challenging task. Dosemeters used for gamma-ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e. on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosimeter responses to gamma-rays. To reduce all these influences, design of dosemeter holders is of special importance. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma-ray dose determination in mixed fields were examined. Dosemeters were from three different institutions: Ruder Boscovic Institute (RBI), Croatia, Jozef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. At that exercise three accidental scenarios were reproduced: bare reactor, free evolution; lead shielded reactor, steady state; and lead shielded reactor, free evolution. In each irradiation dosemeters were exposed placed on the front of phantom and 'free-in-air'. Also, dosemeters were irradiated in a pure gamma ray field of 60 Co source. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and AI 2 O 3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the mean participants' values. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (author)

  16. Computer programs for locating and fitting full energie peak in γ-ray spectra. Test and rules for an estimation of the main results

    International Nuclear Information System (INIS)

    1980-12-01

    After the different interlaboratory tests on gamma spectrum analysis organised by the 'Laboratoire de Metrologie des Rayonnements Ionisants' and by the International Atomic Energy Agency, it looked useful to manage a same type of intercomparison with the different supplies of Data acquisition and Analysis systems including mini-ordinator or microprocessor. Four spectrum have been chosen between those of the interlaboratory tests. The test dealt with the investigation of total absorption peaks of different levels in a complex spectrum and the calculation of their main parameters. Four supplies participed in the intercomparison with their own logicial. The result allow to suggest a few tests in order to try a new logicial, or to compare results with standards [fr

  17. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  18. The First Fermi-LAT Gamma-Ray Burst Catalog

    NARCIS (Netherlands)

    Ackermann, M.; et al., [Unknown; van der Horst, A.J.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected

  19. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    Science.gov (United States)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  20. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    International Nuclear Information System (INIS)

    Kouveliotou, C.; Norris, J.P.; Cline, T.L.; Dennis, B.R.; Desai, U.D.; Orwig, L.E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster. 19 references

  1. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Hunt, Alan W.; Reedy, Edward T.E.; Seipel, Heather

    2015-01-01

    High-energy, beta-delayed gamma-ray spectroscopy is a potential, non-destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried out at the IAC using a photo-neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-energy delayed gamma rays from 235 U, 239 Pu, and 241 Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241 Pu, a significant fissile constituent in spent fuel, was measured and compared to 239 Pu. The 241 Pu/ 239 Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-ray emission was developed and demonstrated on a limited 235 U data set. De-convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-rate LaBr 3 detectors was investigated as a potential alternative to HPGe detectors. Modeling capabilities were added to an

  2. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  3. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    International Nuclear Information System (INIS)

    Wada, Y.; Inoue, N.; Miyazawa, K.; Vankov, H.P.

    2008-01-01

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution (η) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10 19.5 eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis

  4. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Y.; Inoue, N.; Miyazawa, K. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Vankov, H.P. [Institute for Nuclear Research and Nuclear Energy, Bulgaria Academy, Sofia (Bulgaria)

    2008-01-15

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution ({eta}) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10{sup 19.5}eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis.

  5. International comparison of interpolation procedures for the efficiency of germanium gamma-ray spectrometers (GAM83 exercise)

    International Nuclear Information System (INIS)

    Zijp, W.L.; Polle, A.N.; Nolthenius, H.J.

    1986-01-01

    Results are presented for the outcome of an international intercomparison of a particular gamma-ray spectrometric procedure. Laboratories were asked to determine full energy peak efficiencies and activities by means of their own procedures, starting from supplied peak-efficiency data. Four data sets for four different conditions of germanium detectors were distributed. The sets comprised: a high accuracy- (uncertainty > 1%) data set with a relatively large number of measured data (SET 1); a low accuracy- (uncertainty 3-5%) data set with a relatively small number of measured data (SET 2); a low energy-data set (SET 3); a high accuracy-data set with a relatively small number of measured data (SET 4). The intercomparison (coded GAM83) was organized and analyzed under auspices of the International Committee for Radionuclide Metrology (ICRM). The results comprise the analysis of the contributions of 41 participants

  6. Silicon photomultipliers in scintillation detectors used for gamma ray energies up to 6.1 MeV

    Science.gov (United States)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Swiderski, L.; Szawłowski, M.

    2017-12-01

    Majority of papers concerning scintillation detectors with light readout by means of silicon photomultipliers refer to nuclear medicine or radiation monitoring devices where energy of detected gamma rays do not exceed 2 MeV. Detection of gamma radiation with higher energies is of interest to e.g. high energy physics and plasma diagnostics. The aim of this paper is to study applicability (usefulness) of SiPM light readout in detection of gamma rays up to 6.1 MeV in combination with various scintillators. The reported measurements were made with 3 samples of one type of Hamamatsu TSV (Through-Silicon Via technology) MPPC arrays. These 4x4 channel arrays have a 50 × 50 μm2 cell size and 12 × 12 mm2 effective active area. The following scintillators were used: CeBr3, NaI:Tl, CsI:Tl. During all the tests detectors were located in a climatic chamber. The studies are focused on optimization of the MPPC performance for practical use in detection of high energy gamma rays. The optimization includes selection of the optimum operating voltage in respect to the required energy resolution, dynamic range, linearity and pulse amplitude. The presented temperature tests show breakdown voltage dependence on the temperature change and define requirements for a power supply and gain stabilization method. The energy spectra for energies between 511 keV and 6.1 MeV are also presented and compared with data acquired with a classic photomultiplier XP5212B readout. Such a comparison allowed study of nonlinearity of the tested MPPCs, correction of the energy spectra and proper analysis of the energy resolution.

  7. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  8. Gamma ray bursts: Current status of observations and theory

    International Nuclear Information System (INIS)

    Meegan, C.A.

    1990-04-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed

  9. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka; Shiki, Kensei; Kawabata, Miho; Nakaoka, Tatsuya; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Nalewajko, Krzysztof; Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Akitaya, Hiroshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Schinzel, Frank K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Moritani, Yuki [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sasada, Mahito [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Yamanaka, Masayuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp, E-mail: itoh@hp.phys.titech.ac.jp [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); and others

    2016-12-10

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).

  10. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1986-01-01

    The Whipple Observatory's atmospheric Cerenkov camera has detected TeV radiation from four galactic sources: the Crab Nebula, Cygnus X-3, Hercules X-1, and 4U0115+63. Recent simulations encourage the view that unwanted cosmic-ray background showers may be suppressed by a large factor. Emphasis in the coming year will be on determining optimum selection criteria for enhancing gamma-ray signals and in developing a prototype camera with finer angular resolution as a first step towards implementation of the HERCULES concept

  11. Searching for Short GRBs in Soft Gamma Rays with INTEGRAL/PICsIT

    Science.gov (United States)

    Rodi, James; Bazzano, Angela; Ubertini, Pietro; Natalucci, Lorenzo; Savchenko, V.; Kuulkers, E.; Ferrigno, Carlo; Bozzo, Enrico; Brandt, Soren; Chenevez, Jerome; Courvoisier, T. J.-L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; von Kienlin, A.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.; Mereghetti, S.; Roques, J.-P.; Sunyaev, R.

    2018-01-01

    With gravitational wave (GW) detections by the LIGO/Virgo collaboration over the past several years, there is heightened interest in gamma-ray bursts (GRBs), especially “short” GRBs (T90 soft gamma-ray, all-sky monitor for impulsive events, such as SGRBs. Because SGRBs typically have hard spectra with peak energies of a few hundred keV, PICsIT with its ~ 3000 cm2 collecting area is able to provide spectral information about these sources at soft gamma-ray energies.We have begun a study of PICsIT data for faint SGRBs similar to the one associated with the binary neutron star (BNS) merger GW 170817, and also are preparing for future GW triggers by developing a real-time burst analysis for PICsIT. Searching the PICsIT data for significant excesses during ~30 min-long pointings containing times of SGRBs, we have been able to differentiate between SGRBs and spurious events. Also, this work allows us to assess what fraction of reported SGRBs have been detected by PICsIT, which can be used to provide an estimate of the number of GW BNS events seen by PICsIT during the next LIGO/Virgo observing run starting in Fall 2018.

  12. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    Science.gov (United States)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  13. gamma-ray tracking in germanium the backtracking method

    CERN Document Server

    Marel, J V D

    2002-01-01

    In the framework of a European TMR network project the concept for a gamma-ray tracking array is being developed for nuclear physics spectroscopy in the energy range of approx 10 keV up to several MeV. The tracking array will consist of a large number of position-sensitive germanium detectors in a spherical geometry around a target. Due to the high segmentation, a Compton scattered gamma-ray will deposit energy in several different segments. A method has been developed to reconstruct the tracks of multiple coincident gamma-rays and to find their initial energies. By starting from the final point the track can be reconstructed backwards to the origin with the help of the photoelectric and Compton cross-sections and the Compton scatter formula. Every reconstructed track is given a figure of merit, thus allowing suppression of wrongly reconstructed tracks and gamma-rays that have scattered out of the detector system. This so-called backtracking method has been tested on simulated events in a shell-like geometry ...

  14. Search for Very High-energy Gamma Rays from the Northern Fermi Bubble Region with HAWC

    OpenAIRE

    Abeysekara, AU; Albert, A; Alfaro, R; Alvarez, C; Alvarez, JD; Arceo, R; Arteaga-Velázquez, JC; Ayala Solares, HA; Barber, AS; Bautista-Elivar, N; Becerril, A; Belmont-Moreno, E; BenZvi, SY; Berley, D; Braun, J

    2017-01-01

    © 2017. The American Astronomical Society. All rights reserved. We present a search for very high-energy gamma-ray emission from the Northern Fermi Bubble region using data collected with the High Altitude Water Cherenkov gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern Fermi Bubble region, so upper limits above 1 TeV are calculated. The upper limits are between and . The upper limits disfavor a proton injection spectrum that exten...

  15. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  16. Methods for fitting of efficiency curves obtained by means of HPGe gamma rays spectrometers

    International Nuclear Information System (INIS)

    Cardoso, Vanderlei

    2002-01-01

    The present work describes a few methodologies developed for fitting efficiency curves obtained by means of a HPGe gamma-ray spectrometer. The interpolated values were determined by simple polynomial fitting and polynomial fitting between the ratio of experimental peak efficiency and total efficiency, calculated by Monte Carlo technique, as a function of gamma-ray energy. Moreover, non-linear fitting has been performed using a segmented polynomial function and applying the Gauss-Marquardt method. For the peak area obtainment different methodologies were developed in order to estimate the background area under the peak. This information was obtained by numerical integration or by using analytical functions associated to the background. One non-calibrated radioactive source has been included in the curve efficiency in order to provide additional calibration points. As a by-product, it was possible to determine the activity of this non-calibrated source. For all fittings developed in the present work the covariance matrix methodology was used, which is an essential procedure in order to give a complete description of the partial uncertainties involved. (author)

  17. High-pressure {sup 3}He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Esterline, J.H. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Leckey, C.A. [Department of Physics, The College of William and Mary, Williamsburg, VA 23187 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2011-08-11

    We report on features of high-pressure {sup 3}He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of {gamma}-rays as well. Furthermore, {sup 3}He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy {gamma}-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the {sup 3}He(n,p){sup 3}H reaction, neutron and {gamma}-ray energies can easily be determined in this high-energy regime.

  18. Very high energy gamma ray astrophysics: Progress report, May 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    Lamb, R.G.; Lewis, D.A.

    1988-02-01

    The Whipple observatory Gamma Ray Collaboration has continued to make steady progress in its development of a highly sensitive stereoscopic imaging gamma-ray telescope (known as the HERCULES project). The milestones in this year's development include: the demonstration of the success of the imaging concept with a single camera by the detection of a very weak flux of gamma rays from the Crab Nebula at a high level of statistical significance (7 sigma), the confirmation of our detection of an anomalous pulsed flux from Hercules X-1 in the summer of 1986 by two other groups; this result has serious implications for the mechanism for gamma-ray emission in this binary source. The construction and installation of the new high resolution camera on the 10 m reflector; the realistic simulation of the sensitivity of this camera as well as that of the full HERCULES system was also undertaken. These, and other highlights of this year's program at the Iowa State University and the Smithsonian Astrophysical Observatory, are discussed in this paper. 6 figs

  19. Influence of UV Photo-Transfer on Post Irradiated Double Sulphate Poly-Crystals By Gamma And X-rays

    International Nuclear Information System (INIS)

    El-kolaly, M.A.

    2000-01-01

    Solid state thermoluminescence (TL) dosimetry has for many years been the pre-eminent method for quantifying ionizing radiation dose. In this work, thermoluminescence characteristics of the double sulphate (Li Cs So 4 ) poly-crystals have been studied after exposure to different doses from X and gamma radiation. The glue curves showed TL response of three peaks at 75,125,250 degree. The structure of the glue peaks due to X-rays is quite different from that due to gamma rays. UV exposure yields a regeneration of the TL peaks for the post irradiated samples for X or gamma radiation with some changes in the peaks structure especially the third peak. For the post X-ray irradiated crystals, the area under the third glow peak (III) increased linearly with the integrated time of UV exposures till about 30 min. after which no changes were observed; while , for the post gamma-irradiated crystals two linear regions were observed

  20. Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks

    International Nuclear Information System (INIS)

    Garo Balian, H.; Eddy, N.W.

    1977-01-01

    A careful experimenter knows that in order to choose the best curve fits of peaks from a gamma ray spectrum for such purposes as energy or intensity calibration, half-life determination, etc., the application of the normalized chi-squared test, [chisub(N)] 2 =chi 2 /(n-m), is insufficient. One must normally verify the goodness-of-fit with plots, detailed scans of residuals, etc. Because of different techniques of application, variations in backgrounds, in peak sizes and shapes, etc., quotation of the [chisub(N)] 2 value associated with an individual peak fit conveys very little information unless accompanied by considerable ancillary data. (This is not to say that the traditional chi 2 formula should not be used as the source of the normal equations in the least squares fitting procedure. But after the fitting, it is unreliable as a criterion for comparison with other fits.) The authors present a formula designated figure-of-merit (FOM) which greatly improves on the uncertainty and fluctuations of the [chisub(N)] 2 formula. An FOM value of less than 2.5% indicates a good fit (in the authors' judgement) irrespective of background conditions and variations in peak sizes and shapes. Furthermore, the authors feel the FOM formula is less subject to fluctuations resulting from different techniques of application. (Auth.)

  1. Are we observing Lorentz violation in gamma ray bursts?

    International Nuclear Information System (INIS)

    Pavlopoulos, Theodore G.

    2005-01-01

    From recent observations of gamma-ray bursts (GRBs), it appears that spectral time lags between higher-energy gamma rays photons and lower-energy photons vary with energy difference and time (distance) traveled. These lags appear to be smaller for the most luminous (close) bursts but larger for the fainter (farther away) bursts. From this observation, it has been suggested that it might be possible to determine the distance (L) these bursts have traveled from these time lags alone, without performing any red-shift measurements. These observed spreads (dispersion) of high-energy electromagnetic pulses of different energies with time contradict the special theory of relativity (STR). However, extended theories (ET) of the STR have been developed that contain a dispersive term, predicting the above observations. An example of such an ET is presented, allowing us to derive a relationship between time lags of gamma rays of different energies and distance L traveled from their origin. In addition, this theory predicts the origin of X-ray flashes

  2. Gamma ray transitions in de-excitation of 252Cf spontaneous fission fragments

    International Nuclear Information System (INIS)

    Khan, N.A.; Rashid, K.; Ahmad, M.; Qureshi, I.E.; Alam, G.D.; Ali, A.; Bhatti, N.; Horsch, F.

    1983-11-01

    Gamma rays in the range from 60 keV to 730 keV have been observed following the spontaneous fission of 252 Cf, with high resolution Ge(Li) detector, full width at half maximum (FWHM) of 700 eV at 122 keV, in coincidence with the two fission fragments observed with surface barrier detectors. A total number of 18, 636, 549 events were recorded over a run period of about 150 hours stretching over three weeks. The events were sorted to generate gamma ray spectra belonging to 2 amu intervals gamma of the fragment masses and 6 MeV intervals of the total kinetic energy released. Some of the prominent gamma lines belonging to various masses of the fission fragments have been identified. For some gamma lines, the intensities have been evaluated as a function of the total kinetic energy of the fission fragments. (authors)

  3. A compact sup 3 H(p,gamma) sup 4 He 19.8 MeV gamma-ray source for energy calibration at the Sudbury Neutrino Observatory

    CERN Document Server

    Poon, A W P; Waltham, C E; Browne, M C; Robertson, R G H; Kherani, N P; Mak, H B

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) is a new 1000-t D sub 2 O Cherenkov solar neutrino detector. A high-energy gamma-ray source is needed to calibrate SNO beyond the sup 8 B solar neutrino endpoint of 15 MeV. This paper describes the design and construction of a source that generates 19.8 MeV gamma rays using the sup 3 H(p,gamma) sup 4 He reaction (''pT''), and demonstrates that the source meets all the physical, operational and lifetime requirements for calibrating SNO. An ion source was built into this unit to generate and to accelerate protons up to 30 keV, and a high-purity scandium tritide target with a scandium-tritium atomic ratio of 1 : 2.0+-0.2 was included. This pT source is the first self-contained, compact, and portable high-energy gamma-ray source (E subgamma>10 MeV). (authors)

  4. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    Science.gov (United States)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  5. The application of two-dimensional imaging to very high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1992-05-01

    A technique has been developed to distinguish air showers generated by gamma rays from those generated by hadronic cosmic rays. The method involves the registration of the Cherenkov light images by a large aperture multi-phototube telescope at the Whipple Observatory in southern Arizona. The energy threshold is 0.4 TeV. The efficacy of the technique has been demonstrated by the detection of a signal from the Crab Nebula, a supernova remnant. The physics of shower development at TeV energies is demonstrated to be what is expected, and no support is found for the detection of anomalous signals from binary sources. The sensitivity of the technique is such that a five sigma gamma-ray signal from the Crab can be detected in just an hour of observation. Further improvements in the technique are under way; in particular, a second large aperture camera is now operated in conjunction with the original camera to give stereoscopic images of showers. When completed, this system will give a flux sensitivity a factor of ten below that now available

  6. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    origin of the soft Galactic gamma-ray continuum through inverse bremsstrahlung. A flux of low-energy cosmic rays strong enough to produce the observed spectrum of gamma-rays implies substantial gamma-ray emission at a few MeV through nuclear de-excitation. It is shown that the existing limits on excess 3......-7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...

  7. Gamma-ray measurements at the WNR white neutron source

    International Nuclear Information System (INIS)

    Nelson, R.O.; Wender, S.A.; Mayo, D.R.

    1994-01-01

    Photon production data have been acquired in the incident neutron energy range, 1 n γ 56 Fe, and 207,208 Pb. These data are useful both for testing nuclear reaction models at intermediate energies and for numerous applied purposes. BGO detectors do not have the good energy resolution of Ge detectors, but have much greater detection efficiency for gamma rays with energies greater than a few MeV. We have used an array of 5 BGO detectors to measure cross sections and angular distributions for photon production from C and N. A large, well-shielded BGO detector has been used to measure fast neutron capture in the giant resonance region with a maximum gamma-ray energy of 52 MeV. We present results of our study of the isovector giant quadrupole resonance in 41 Ca via these capture measurements. Recent measurements of inclusive photon spectra from our neutron proton Bremsstrahlung experiment have been made using a gamma-ray telescope to detect gamma-rays in the energy range, 40 γ < 300 MeV. This detector is briefly described. The advantages and disadvantages of these detector systems are discussed using examples from our measurements. The status of current measurements is presented

  8. Discovery of a point-like very-high-energy gamma-ray source in Monoceros

    International Nuclear Information System (INIS)

    Aharonian, F.A.; Benbow, W.; Berge, D.; Bernlohr, K.; Bolz, O.; Braun, I.; Buhler, R.; Carrigan, S.; Costamante, L.; Domainko, W.; Egberts, K.; Forster, A.; Funk, S.; Hauser, D.; Hermann, G.; Hinton, J.A.; Hofmann, W.; Hoppe, S.; Khelifi, B.; Kosack, K.; Masterson, C.; Panter, M.; Rowell, G.; van Eldik, C.; Volk, H.J.; Akhperjanian, A.G.; Sahakian, V.; Bazer-Bachi, A.R.; Borrel, V.; Marcowith, A.; Olive, J.P.; Beilicke, M.; Cornils, R.; Heinzelmann, G.; Raue, M.; Ripken, J.; Bernlohr, K.; Funk, Seb.; Fussling, M.; Kerschhaggl, M.; Lohse, T.; Schlenker, S.; Schwanke, U.; Boisson, C.; Martin, J.M.; Sol, H.; Brion, E.; Glicenstein, J.F.; Goret, P.; Moulin, E.; Rolland, L.

    2007-01-01

    Aims. The complex Monoceros Loop SNR/Rosette Nebula region contains several potential sources of very-high-energy (VHE) γ-ray emission and two as yet unidentified high-energy EGRET sources. Sensitive VHE observations are required to probe acceleration processes in this region. Methods. The HESS telescope array has been used to search for very high-energy gamma-ray sources in this region. CO data from the NANTEN telescope were used to map the molecular clouds in the region, which could act as target material for γ-ray production via hadronic interactions. Results. We announce the discovery of a new γ-ray source, HESS J0632+057, located close to the rim of the Monoceros SNR. This source is unresolved by HESS and has no clear counterpart at other wavelengths but is possibly associated with the weak X-ray source 1RXS J063258.3+054857, the Be-star MWC148 and/or the lower energy γ-ray source 3EGJ0634+0521. No evidence for an associated molecular cloud was found in the CO data. (authors)

  9. A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding

    Directory of Open Access Journals (Sweden)

    M.I. Sayyed

    Full Text Available The present investigation has been performed on different bricks for the purpose of gamma-ray shielding. The values of the mass attenuation coefficient (µ/ρ, energy absorption buildup factor (EABF and exposure buildup factor (EBF were determined and utilized to assess the shielding effectiveness of the bricks under investigation. The mass attenuation coefficients of the selected bricks were calculated theoretically using WinXcom program and compared with MCNPX code. Good agreement between WinXcom and MCNPX results was observed. Furthermore, the EABF and EBF have been discussed as functions of the incident photon energy and penetration depth. It has been found that the EABF and EBF values are very large in the intermediate energy region. The steel slag showed good shielding properties, consequently, this brick is eco-friendly and feasible compared with other types of bricks used for construction. The results in this work should be useful in the construction of effectual shielding against hazardous gamma-rays. Keywords: Brick, Mass attenuation coefficient, Buildup factor, G-P fitting, Radiation shielding

  10. THE 2010 VERY HIGH ENERGY gamma-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87

    OpenAIRE

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; de Almeida, U. Barres; Becherini, Y.; Becker, J.; Behera, B.; Bernloehr, K.; Birsin, E.; Biteau, J.; Bochow, A.

    2012-01-01

    The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, resu...

  11. Limits to the Fraction of High-energy Photon Emitting Gamma-Ray Bursts

    Science.gov (United States)

    Akerlof, Carl W.; Zheng, WeiKang

    2013-02-01

    After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

  12. LIMITS TO THE FRACTION OF HIGH-ENERGY PHOTON EMITTING GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Akerlof, Carl W.; Zheng, WeiKang

    2013-01-01

    After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

  13. Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, Richard B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF has been used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy an is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We use CASINO, a version of DICEBOX that is modified for this purpose. This can be used to simulate the neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modelling of unknown assemblies.

  14. Characteristics of environmental gamma-rays and dose assessment

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1986-01-01

    Environmental radioactivity has attracted much attention in terms of exposure to the population, although its exposure doses are minimal. This paper presents problems encountered in the assessment of exposure doses using model and monitoring systems, focusing on the characteristics, such as energy distribution, direction distribution, and site, of environmental gamma-rays. The assessment of outdoor and indoor exposure doses of natural gamma-rays is discussed in relation to the shielding effect of the human body. In the assessment of artificial gamma-rays, calculation of exposure doses using build-up factor, the shielding effect of the human body, and energy dependency of the measuring instrument are covered. A continuing elucidation about uncertainties in dose assessment is emphasized. (Namekawa, K.)

  15. VLBI OBSERVATIONS OF THE JET IN M 87 DURING THE VERY HIGH ENERGY {gamma}-RAY FLARE IN 2010 APRIL

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Kino, Motoki; Nagai, Hiroshi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Hagiwara, Yoshiaki; Honma, Mareki; Kawaguchi, Noriyuki [Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-11-20

    We report on the detailed radio status of the M 87 jet during the very high energy (VHE) {gamma}-ray flaring event in 2010 April, obtained from high-resolution, multi-frequency, phase-referencing Very Long Baseline Array observations. We especially focus on the properties of the jet base (the radio core) and the peculiar knot HST-1, which are currently favored as the {gamma}-ray emitting sites. During the VHE flaring event, the HST-1 region remains stable in terms of its structure and flux density in the optically thin regime above 2 GHz, being consistent with no signs of enhanced activities reported at X-ray for this feature. The radio core shows an inverted spectrum at least up to 43 GHz during this event. Astrometry of the core position, which is specified as {approx}20 R {sub s} from the central engine in our previous study, shows that the core position is stable on a level of 4 R {sub s}. The core at 43 and 22 GHz tends to show slightly ({approx}10%) higher flux level near the date of the VHE flux peak compared with the epochs before/after the event. The size of the 43 GHz core is estimated to be {approx}17 R {sub s}, which is close to the size of the emitting region suggested from the observed timescale of rapid variability at VHE. These results tend to favor the scenario that the VHE {gamma}-ray flare in 2010 April is associated with the radio core.

  16. Monte Carlo simulations of plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-01-01

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  17. Observations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Strong, I.B.; Klebesadel, R.W.; Evans, W.D.

    1975-01-01

    Observational data on gamma-ray bursts are reviewed. Information is grouped into temporal properties, energy fluxes and spectral properties, and directions and distributions of the sources in space. (BJG)

  18. A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A., E-mail: ester.aliu.fuste@gmail.com, E-mail: gtrichards@gatech.edu, E-mail: masha.chernyakova@dcu.ie, E-mail: malloryr@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2016-11-10

    The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259–63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than ∼2 G before the disappearance of the radio pulsar and greater than ∼10 G afterward.

  19. NEWFIT, a computer program for the analysis of alpha, X-ray and gamma-ray spectra

    International Nuclear Information System (INIS)

    Welch, R.B.; Gyger, F.; Jost, D.T.; Gunten, H.R. von; Kraehenbuehl, U.

    1988-01-01

    The computer program NEWFIT has been developed for analysis of gamma-ray, X-ray and alpha spectra. The general shape used for the analysis of activity peaks is a Gaussian function. An exponential tail can be added for use in alpha spectra analysis. The algorithms to analyze the peak shapes and the program operation are presented. Special features include the ability to create realistic peak shapes based on the systematic deviations of the real peaks from the theoretical Gaussian shape, as well as the option to constrain the calculated areas of peaks from a given emitting nuclide to their relative branching ratios. The program is available from the authors. (orig.)

  20. Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    Science.gov (United States)

    Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

  1. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, T.H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /Royal Inst. Tech., Stockholm /Stockholm U., OKC /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  2. Quantitative Cs-137 distributions from airborne gamma ray data

    International Nuclear Information System (INIS)

    Oberlercher, G.; Seiberl, W.

    1997-01-01

    The Chernobyl reactor accident caused in Austria Cs-137 activities up to 180 kBq/m 2 . The following paper explains how airborne NaJ-spectroscopy, originally designed for geological surveys, was used as an accurate method to obtain the ground activity of Cs-137 in certain regions of Austria. To retrieve the net count rate in a Cs-137 window it is necessary to subtract all background contributions from the peak, including the Compton continuum and the contribution of overlapping peaks. Therefore the measurement of Cs-137 with a NaJ detector system must take into account radioactive elements with gamma-ray lines near the peak energy of Cs-137 at 662 keV. In regions with higher concentrations of the natural radioactive elements uranium and thorium a peak near 600 keV is found, containing the 609 keV line of Bi-214 and the 585 keV line of TI-208. Additionally a Cs-134 line is located at 604 keV. Because of the poor energy resolution of NaJ detectors it is not possible to find a clear separation between these peaks and the Cs-137 peak. The following section describes the method that was used to obtain accurate quantified Cs-137 activity values. (author)

  3. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  4. The holistic analysis of gamma-ray spectra in instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Blaauw, M

    1993-11-15

    The subject is the computerized analysis of the gamma-ray spectra in INAA. This analysis can be separated in three parts: The conversion of the spectra to information on {gamma}-ray energies and their relative intensities (spectrum reduction), the determination of the relation between the intensity of a {gamma}-ray and the amount of the corresponding element present in the sample (standardization) and the attribution of the {gamma}-ray energies to the elements, including the subsequent computation of the amounts of the elements (interpretation). A {gamma}-ray spectrum can be considered to be the linear sum of the {gamma}-ray spectra of the individual radionuclides present in the sample. Knowing the relative activities of the different radionuclides that may be produced by activation of a single element, a {gamma}-ray spectrum in INAA can also be considered to be the linear sum of the spectra of the elements. This principle has hitherto not been used in INAA to analyze the spectra by linear least squares methods, using all {gamma}-ray energies observed in the spectrum. The implementation of this `holistic` approach required that attention be paid to both spectrum reduction, standardization and interpretation. The thesis describes the methods developed for the holistic analysis of {gamma}-ray spectra in INAA, and present results of experimental comparisons between the holistic and other approaches. (orig./HP).

  5. Conceptual design of the radial gamma ray spectrometers system for α particle and runaway electron measurements at ITER

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.

    2017-07-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.

  6. Wolf-Rayet stars as gamma-ray burst progenitors

    NARCIS (Netherlands)

    Langer, N.; van Marle, A. -J; Yoon, S.C.

    2010-01-01

    It became clear in the last few years that long gamma-ray bursts are associated with the endpoints of massive star evolution. They occur in star forming regions at cosmological distances (Jakobsson et al., 2005), and are associated with supernova-type energies. The collapsar model explains gamma-ray

  7. Measuring naturally occurring uranium in soil and minerals by analysing the 352 keV gamma-ray peak of 214Pb using a NaI(Tl)-detector

    International Nuclear Information System (INIS)

    Bezuidenhout, J.

    2013-01-01

    This article investigates the prospect of utilising the 351.9 keV gamma-ray of 214 Pb when determining the concentration of uranium. Soil samples were collected from various locations around South Africa and laboratory gamma ray spectra for each were obtained by means of a NaI(Tl)-detector (7.62×7.62 cm 2 ). The potassium, uranium and thorium concentrations where extracted by analysing gamma ray peaks that are associated with these radionuclides. Two separate uranium concentrations were extracted; one by means of the 214 Pb decay and the other one by means of the 214 Bi decay. These uranium concentrations were compared in terms of accuracies and detection limits. - Highlights: • Investigated a method to improve uranium concentrations measurements. • Expansion on an existing method that analyses naturally occurring radionuclides. • Utilise pill containers opposed to Marrinelli beakers. • Possible application to in situ measurements. • The method utilise NaI(Tl)-detectors with relative high efficiency

  8. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Document Server

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  9. Optimal energy window setting depending on the energy resolution for radionuclides used in gamma camera imaging. Planar imaging evaluation

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Watanabe, Hiroyuki; Arao, Yuichi; Kawasaki, Masaaki; Takaki, Akihiro; Matsumoto, Masanori

    2007-01-01

    In this study, we examined whether the optimal energy window (EW) setting depending on an energy resolution of a gamma camera, which we previously proposed, is valid on planar scintigraphic imaging using Tl-201, Ga-67, Tc-99m, and I-123. Image acquisitions for line sources and paper sheet phantoms containing each radionuclide were performed in air and with scattering materials. For the six photopeaks excluding the Hg-201 characteristic x-rays' one, the conventional 20%-width energy window (EW20%) setting and the optimal energy window (optimal EW) setting (15%-width below 100 keV and 13%-width above 100 keV) were compared. For the Hg-201 characteristic x-rays' photopeak, the conventional on-peak EW20% setting was compared with the off-peak EW setting (73 keV-25%) and the wider off-peak EW setting (77 keV-29%). Image-count ratio (defined as the ratio of the image counts obtained with an EW and the total image counts obtained with the EW covered the whole photopeak for a line source in air), image quality, spatial resolutions (full width half maximum (FWHM) and full width tenth maximum (FWTM) values), count-profile curves, and defect-contrast values were compared between the conventional EW setting and the optimal EW setting. Except for the Hg-201 characteristic x-rays, the image-count ratios were 94-99% for the EW20% setting, but 78-89% for the optimal EW setting. However, the optimal EW setting reduced scatter fraction (defined as the scattered-to-primary counts ratio) effectively, as compared with the EW20% setting. Consequently, all the images with the optimal EW setting gave better image quality than ones with the EW20% setting. For the Hg-201 characteristic x-rays, the off-peak EW setting showed great improvement in image quality in comparison with the EW20% setting and the wider off-peak EW setting gave the best results. In conclusion, from our planar imaging study it was shown that although the optimal EW setting proposed by us gives less image-count ratio by

  10. Cosmic gamma-ray background from dark matter annihilation

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro

    2007-01-01

    High-energy photons from pair annihilation of dark matter particles contribute to the cosmic gamma-ray background (CGB) observed in a wide energy range. The precise shape of the energy spectrum of CGB depends on the nature of dark matter particles. In order to discriminate between the signals from dark matter annihilation and other astrophysical sources, however, the information from the energy spectrum of CGB may not be sufficient. We show that dark matter annihilation not only contributes to the mean CGB intensity, but also produces a characteristic anisotropy, which provides a powerful tool for testing the origins of the observed CGB. We show that the expected sensitivity of future gamma-ray detectors such as GLAST should allow us to measure the angular power spectrum of CGB anisotropy, if dark matter particles are supersymmetric neutralinos and they account for most of the observed mean intensity. As the intensity of photons from annihilation is proportional to the density squared, we show that the predicted shape of the angular power spectrum of gamma rays from dark matter annihilation is different from that due to other astrophysical sources such as blazars, whose intensity is linearly proportional to density. Therefore, the angular power spectrum of the CGB provides a 'smoking-gun' signature of gamma rays from dark matter annihilation

  11. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  12. Gamma-ray emission spectrum from thermonuclear fusion reactions without intrinsic broadening

    DEFF Research Database (Denmark)

    Nocente, M.; Källne, J.; Salewski, Mirko

    2015-01-01

    First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution instrume......First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution...... instruments. An analytical formula for the spectrum from Maxwellian plasmas, which extends to higher temperatures than the results previously available in the literature, has been derived and used to discuss the assumptions and limitations of earlier models. In case of radio-frequency injection, numerical...... results based on a Monte Carlo method are provided, focusing in particular on improved relations between the peak shift and width from the reaction and the temperature of protons accelerated by radio-frequency heating.The results presented in this paper significantly improve the accuracy of diagnostic...

  13. modern utilization of accurate methods for gamma-ray spectral analysis detected by high pure germanium (HPGE) detectors through different applications

    International Nuclear Information System (INIS)

    El-Sayed, M.M.

    2006-01-01

    this thesis presents a novel way for application of wavelet transform theory in gamma-ray spectroscopy . this technique was applied for searching real and weak peaks, solving problem of multiplets, smoothing and de-noising gamma-ray spectra, and using artificial neural network for identifying peaks. a brief description about gamma-ray spectrum analysis is presented. we discussed the necessary formulas and algorithms of wavelet theory to solve these main problems in gamma -ray spectrum analysis. the algorithm of peak search was applied on different types of spectra, IAEA spectra and other sources of gamma spectra. the algorithm of multiplets algorithm was applied successfully on different types of multiplets. the algorithm of de noising was applied successfully on different sources of spectra.finally, a database for neutron activation laboratory is created. this data base consists of five routines, wavelet gamma spectrum analysis, peak identification, elemental concentration , neutron flux determination,and detector efficiency calculation

  14. Propagation of ultrahigh-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2009-06-15

    We briefly describe the energy loss processes of ultrahigh-energy protons, heavier nuclei and {gamma}-rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic-ray energy spectrum in propagation by the energy loss processes and the charged cosmic-ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh-energy cosmic rays goes into {gamma}-rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.

  15. Operating experience with gamma ray irradiators

    International Nuclear Information System (INIS)

    Fraser, F.M.; Ouwerkerk, T.

    1980-01-01

    The experience of Atomic Energy of Canada, Limited (AECL) with radioisotopes dates back to the mid-1940s when radium was marketed for medical purposes. Cobalt-60 came on the scene in 1949 and within a few years a thriving business in cancer teletherapy machines and research irradiators was developed. AECL's first full-scale cobalt-60 gamma ray sterilizer for medical products was installed in 1964. AECL now has over 50 plants and 30 million curies in service around the world. Sixteen years of design experience in cobalt-60 sources, radiation shielding, safety interlock systems, and source pass mechanisms have made gamma irradiators safe, reliable, and easy to operate. This proven technology is being applied in promising new fields such as sludge treatment and food preservation. Cesium-137 is expected to be extensively utilized as the gamma radiation source for these applications

  16. Modern utilization of accurate methods for gamma-ray spectral analysis detected by high pure germanium (HPGE) detectors through different applications

    International Nuclear Information System (INIS)

    El-Sayed, M.M.

    2005-01-01

    this thesis presents a novel way for application of wavelet trans-from theory in gamma -ray spectroscopy. this technique was applied for searching real and weak peaks, solving problem of multiplets, smoothing and de-noising gamma-ray spectra, and using artificial neural network for identifying peaks. a brief description about gamma-ray spectrum analysis is presented . we discussed the necessary formulas and algorithms of wavelet theory to solve these main problems in gamma ray spectrum analysis. the algorithm of peak search was applied on different types of spectra, IAEA spectra and other sources of gamma spectra. the algorithm of multiplets algorithm was applied successfully on different types of multiplets. the algorithm of denoising was applied successfully on different sources of spectra

  17. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  18. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE-Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [CSIC-Universitat de Valencia, IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM-Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Chiarusi, T. [INFN-Sezione di Bologna, Bologna (Italy); Circella, M. [INFN-Sezione di Bari, Bari (Italy); Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Dekeyser, I.; Lefevre, D.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dumas, A.; Gay, P. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M. [INFN-Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Giordano, V. [INFN-Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje, Texel (Netherlands); Hugon, C.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kouchner, A. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E. [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (France); Marinelli, A. [INFN-Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Migliozzi, P. [INFN-Sezione di Napoli, Naples (IT); Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, Oujda (MA); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Sanguineti, M. [Dipartimento di Fisica dell' Universita, Genoa (IT); Schuessler, F.; Stolarczyk, T.; Vallage, B. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Vivolo, D. [INFN-Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT)

    2017-01-15

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  19. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C.; Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E.; Bruijn, R.; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Caramete, L.; Pavalas, G.E.; Popa, V.; Chiarusi, T.; Circella, M.; Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V.; Dekeyser, I.; Lefevre, D.; Tamburini, C.; Deschamps, A.; Hello, Y.; Donzaud, C.; Dumas, A.; Gay, P.; Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Giordano, V.; Haren, H. van; Hugon, C.; Taiuti, M.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Loucatos, S.; Marinelli, A.; Migliozzi, P.; Moussa, A.; Pradier, T.; Sanguineti, M.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vivolo, D.

    2017-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  20. $\\gamma$-Ray Pulsars: Emission Zones and Viewing Geometries

    OpenAIRE

    Romani, Roger W.; Yadigaroglu, I. -A.

    1994-01-01

    There are now a half dozen young pulsars detected in high energy photons by the Compton GRO, showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high energy emission on the sky in a model which posits $\\gamma$-ray production by charge depleted gaps in the outer magnetosphere. This model accounts for the radio to $\\gamma$-ray pulse offsets of the known pulsars, as well as the shape of the high energy pulse profiles. We also show that $...

  1. The self-absorption effect of gamma rays in 239Pu

    International Nuclear Information System (INIS)

    Hsiaohua Hsu

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. The author has carried out Monte Carlo simulations to study this effect using the 239 Pu α-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections to gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material

  2. THE SECOND KONUS- WIND CATALOG OF SHORT GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Svinkin, D. S.; Frederiks, D. D.; Aptekar, R. L.; Golenetskii, S. V.; Pal' shin, V. D.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg, 194021 (Russian Federation); Cline, T. L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States)

    2016-05-01

    In this catalog, we present the results of a systematic study of 295 short gamma-ray bursts (GRBs) detected by Konus- Wind (KW) from 1994 to 2010. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with three model functions, the total energy fluences, and the peak energy fluxes of the bursts. We discuss evidence found for an additional power-law spectral component and the presence of extended emission in a fraction of the KW short GRBs. Finally, we consider the results obtained in the context of the Type I (merger-origin)/Type II (collapsar-origin) classifications.

  3. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  4. SEARCH FOR VERY HIGH ENERGY GAMMA-RAY EMISSION FROM PULSAR-PULSAR WIND NEBULA SYSTEMS WITH THE MAGIC TELESCOPE

    International Nuclear Information System (INIS)

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla

    2010-01-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  5. A method for unfolding high-energy scintillation gamma-ray spectra up to 8 MeV

    International Nuclear Information System (INIS)

    Dymke, N.; Hofmann, B.

    1982-01-01

    In unfolding a high-energy scintillation gamma-ray spectrum up to 8 MeV with the help of a response matrix, the means of linear algebra fail if the matrix is ill conditioned. In such cases, unfolding could be accomplished by means of a mathematical method based on a priori knowledge of the photon spectrum to be expected. The method which belongs to the class of regularization techniques was tested on in-situ gamma-ray spectra of 16 N recorded in a nuclear power plant near the primary circuit, using an 1.5 x 1.5 in. NaI(Tl) scintillation detector. For one regularized unfolding the results were presented in the form of an energy and a dose-rate spectrum. (author)

  6. Basics of Gamma Ray Detection

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venkataraman, Ram [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-13

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  7. A study on gamma rays from electrochemical cells

    International Nuclear Information System (INIS)

    Shin, Seung Ai

    1993-01-01

    The energies and intensities of gamma rays emitted from 3 cells with Pd-cathodes of φ 1mm x 10mm, φ 2mm x 20mm, φ 1mm x 10mm were determined using HPGe-detector system and compared with Pd-neutron capture model. Very strong gamma rays of 512keC, 622keC, 1051keC and 8 more important ones were found to be identical with characteristic gamma rays of 106 Pd and 109 Pd. It is likely that the neutron capture reaction, A PD(n, γ) A+1 Pd, occurred in the cell and the neutrons came from the fusion reaction of two deutrons. It is necessary, however, to retest the model since another strong 84keV-gamma rays do not belong to any A+1 Pd-gamma spectra and two important 106 Pd-gamma rays 717keV, 1046KeV were not detected. Total amount of emitted gamma rays was large when the size of the Pd-cathod was large. Its depedence on the time of measurement and the preheating period did not have any regularities. Thus the replication is not an easy thing. (Author)

  8. Proceedings of the workshop on multiple prompt gamma-ray analysis

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru; Hatsukawa, Yuichi; Oshima, Masumi

    2006-10-01

    The workshop on 'Multiple Prompt Gamma-ray Analysis' was held on March 8, 2006 at Tokai. It is based on a project, 'Developments of real time, non-destructive ultra sensitive elemental analysis using multiple gamma-ray detections and prompt gamma ray analysis and its application to real samples', one of the High priority Cooperative Research Programs performed by Japan Atomic Energy Agency and the University of Tokyo. In this workshop, the latest results of the Multiple Prompt Gamma ray Analysis (MPGA) study were presented, together with those of Neutron Activation Analysis with Multiple Gamma-ray Detection (NAAMG). The 9 of the presented papers are indexed individually. (J.P.N.)

  9. A gamma-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model.

    Science.gov (United States)

    González, M M; Dingus, B L; Kaneko, Y; Preece, R D; Dermer, C D; Briggs, M S

    2003-08-14

    Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.

  10. Artificial neural networks application for analysis of gamma ray spectrum obtained from the scintillation detectors

    International Nuclear Information System (INIS)

    Stegowski, Z.

    2002-01-01

    Scintillation detectors are commonly used for the gamma ray detection. Actually the small peak resolution and the significant Compton effect fraction limit their utilization in the gamma ray spectrometry analysis. This article presents the artificial neural networks (ANN) application to the analysis of the gamma ray spectra acquired from scintillation detectors. The obtained results validate the effectiveness of the ANN method to spectrometry analysis. (author)

  11. Gamma-ray imaging spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; MacCallum, C.J.; Stang, P.D.

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. Preliminary results such as the annihilation radiation from the galactic center, the 26 Al line from the galactic plane and cyclotron lines from neutron stars may well be just the initial discoveries of a rich and as yet undeveloped field. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload NASA decided to initiate a balloon program to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments. 6 refs., 2 figs

  12. Gamma ray astronomy above 30 TeV and the IceCube results

    Directory of Open Access Journals (Sweden)

    Vernetto Silvia

    2017-01-01

    Full Text Available The study of the diffuse Galactic gamma ray emission is of fundamental importance to understand the properties of cosmic ray propagation in the Milky Way, and extending the measurements to E ≳ 30 TeV is of great interest. In the same energy range the IceCube detector has also recently observed a flux of astrophysical neutrinos, and it is important to test experimentally if the neutrino production is accompanied by a comparable emission of high energy photons. For E ≳ 30 TeV, the absorption effects due to e+e− pair production when the high energy photons interact with radiation fields present in space are not negligible and must be taken into account. Gamma rays, in good approximation, are completely absorbed if they have an extragalactic origin, but the absorption is significant also for Galactic photons. In this case the size and angular dependence of the absorption depends on the space distribution of the emission. In this work we estimate the absorption for different models of the space distribution of the gamma ray emission, and discuss the potential of future detectors.

  13. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, S.A., E-mail: dewjisa@ornl.gov [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States); Croft, S. [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Hertel, N.E. [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

    2017-03-11

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the {sup 235}U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires

  14. X-RAY AND GAMMA-RAY FLASHES FROM TYPE Ia SUPERNOVAE?

    International Nuclear Information System (INIS)

    Hoeflich, Peter; Schaefer, Bradley E.

    2009-01-01

    We investigate two potential mechanisms that will produce X-ray and γ-ray flashes from Type Ia supernovae (SN-Ia). The first mechanism is the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf (WD). The second mechanism is the interaction of the rapidly expanding envelope with material within an accretion disk in the progenitor system. Our study is based on the delayed detonation scenario because this can account for the majority of light curves, spectra, and statistical properties of 'Branch-normal' SN-Ia. Based on detailed radiation-hydro calculations which include nuclear networks, we find that both mechanisms produce brief flashes of high-energy radiation with peak luminosities of 10 48 -10 50 erg s -1 . The breakout from the WD surface produces flashes with a rapid exponential decay by 3-4 orders of magnitude on timescales of a few tenths of a second and with most of the radiation in the X-ray and soft γ-ray range. The shocks produced in gases in and around the binary will produce flashes with a characteristic duration of a few seconds with most of the radiation coming out as X-rays and γ-rays. In both mechanisms, we expect a fast rise and slow decline and, after the peak, an evolution from hard to softer radiation due to adiabatic expansion. In many cases, flashes from both mechanisms will be superposed. The X- and γ-ray visibility of an SN-Ia will depend strongly on self-absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation toward the observer. Such X-ray and γ-ray flashes could be detected as triggered events by gamma-ray burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, and Swift experiments) for GRBs that occur at the extrapolated time of explosion and in the correct direction for known Type Ia supernovae with radial velocity of less than 3000 km s -1 . For the Burst

  15. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  16. AGIS -- the Advanced Gamma-ray Imaging System

    Science.gov (United States)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  17. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mozin, Vladimir [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Campbell, Luke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunt, Alan W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reedy, Edward T.E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Seipel, Heather [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    High-­energy, beta-delayed gamma-­ray spectroscopy is a potential, non-­destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried out at the IAC using a photo-­neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-­energy delayed gamma rays from 235U, 239Pu, and 241Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241Pu, a significant fissile constituent in spent fuel, was measured and compared to 239Pu. The 241Pu/239Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-­3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-­ray emission was developed and demonstrated on a limited 235U data set. De-­convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-­rate LaBr3 detectors

  18. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B. W.; Summers, N.; Escher, J.; Firestone, R. B.; Basunia, S.; Hurst, A.; Krticka, M.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  19. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, R.B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  20. Nuclear models and data for gamma-ray production

    International Nuclear Information System (INIS)

    Young, P.G.

    1975-01-01

    The current Evaluated Nuclear Data File (ENDF/B, Version IV) contains information on prompt gamma-ray production from neutron-induced reactions for some 38 nuclides. In addition, there is a mass of fission product yield, capture, and radioactive decay data from which certain time-dependent gamma-ray results can be calculated. These data are needed in such applications as gamma-ray heating calculations for reactors, estimates of radiation levels near nuclear facilities and weapons, shielding design calculations, and materials damage estimates. The prompt results are comprised of production cross sections, multiplicities, angular distributions, and energy spectra for secondary gamma-rays from a variety of reactions up to an incident neutron energy of 20 MeV. These data are based in many instances on experimental measurements, but nuclear model calculations, generally of a statistical nature, are also frequently used to smooth data, to interpolate between measurements, and to calculate data in unmeasured regions. The techniques and data used in determining the ENDF/B evaluations are reviewed, and comparisons of model-code calculations and ENDF data with recent experimental results are given. 11 figures

  1. A method for interpolating asymmetric peak shapes in multiplet γ-ray spectra

    International Nuclear Information System (INIS)

    Wang Siguang; Mao Yajun; Zhu Bo; Liang Yutie; Tang Peijia

    2009-01-01

    The peak shapes of γ-rays at various energies must be known before unfolding the multiplet spectra obtained by using semiconductor or scintillation detectors. Traditional methods describe isolated peaks with multi-parameter fitting functions, and assume that most of these parameters do not vary with energy because it is rare to find a spectrum with enough isolated peaks to constrain their dependence. We present an algorithm for interpolating the γ-ray profile at any intermediate energy given a pair of isolated γ-ray peaks from the spectrum under consideration. The algorithm is tested on experimental data and leads to a good agreement between the interpolated profile and the fitting function. This method is more accurate than the traditional approach, since all aspects of the peak shape are allowed to vary with energy. New definitions of Left-Half Width at Half Maximum, and Right-Half Width at Half Maximum for peak shape description are introduced in this paper. (authors)

  2. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H. W., E-mail: herrmann@lanl.gov; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Malone, R. M. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States); Rubery, M. S.; Horsfield, C. J. [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Zylstra, A. B. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shmayda, W. T. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  3. Gamma-ray response of NE-213 measured between 2 and 11.5 MeV

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Wehring, B.W.; Starr, R.D.

    1976-01-01

    Because of the capability to discriminate between neutrons and gamma rays, NE-213 scintillators are useful as both fast-neutron and gamma-ray spectrometers. However, measured NE-213 Compton-recoil spectra require unfolding to yield gamma-ray energy spectra which entails a detailed knowledge of the gamma-ray response of the NE-213 detector system. Absolute measurements of the gamma-ray response of an NE-213 scintillator in the energy range of 2 to 11.5 MeV were made. The measurements were made using the University of Illinois superconducting electron microtron equipped with a gamma-ray monochromator. The response measurements will be used to construct a gamma-ray response matrix for NE-213 to be used with the FORIST unfolding code

  4. What Can Simbol-X Do for Gamma-ray Binaries?

    Science.gov (United States)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  5. What Can Simbol-X Do for Gamma-ray Binaries?

    International Nuclear Information System (INIS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-01-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ∼1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61 deg. 303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  6. Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties

    Science.gov (United States)

    Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

  7. Search for Very High Energy Gamma Rays from the Northern $\\textit{Fermi}$ Bubble Region with HAWC

    OpenAIRE

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Braun, J.

    2017-01-01

    We present a search of very high energy gamma-ray emission from the Northern $\\textit{Fermi}$ Bubble region using data collected with the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern $\\textit{Fermi}$ Bubble region, hence upper limits above $1\\,\\text{TeV}$ are calculated. The upper limits are between $3\\times 10^{-7}\\,\\text{GeV}\\, \\text{cm}^{-2}\\, \\text{s}^{-1}\\,\\text{sr}^{-1}$ and $4\\times 1...

  8. JADSPE, Multi-Channel Gamma Spectra Unfolding Program

    International Nuclear Information System (INIS)

    Rikovska, J.; Stejskalova, E.

    2005-01-01

    1 - Description of program or function: JADSPE is a package of eight programs to process multi-channel gamma-ray spectra. The programs can be used to: - locate automatically spectral peaks and calculate their positions, areas, and full widths at half maximum (FWHM); - plot the spectra on a CALCOMP plotter, TEKTRONIX terminal or a line printer; - add or subtract several spectra with the possibility of adjusting either their start and end channels or the maxima of the chosen corresponding peaks. The JADSPE package comprises the following programs: - SPECTF: automatic location of peaks and calculation of their positions, areas and FWHMS. The standard deviations of peak parameters are also determined, and each evaluated region is plotted on the line printer. - SPECT1: The areas and FWHMs are calculated for peaks whose positions are known beforehand. The standard deviations of calculated parameters are also determined, and each evaluated region is plotted on the line printer. - PLOCHA: The peak net area is calculated by summing the channel contents in specified regions and by subtracting a linear background. - GRAPH: Spectrum plotting on the line printer. - PLTNEW: Spectrum plotting on CALCOMP plotter or on TEKTRONIX terminal. - SUMDIF: The channel contents of several gamma-ray spectra are added or subtracted. - SSPFP: The channel contents of several gamma-ray spectra are added with adjustment of the maxima of specified peaks. - SOUCET: The channel contents of several gamma-ray spectra are added with the adjustment of start and end channels of the spectra. 2 - Method of solution: Non-linear least-square fit. 3 - Restrictions on the complexity of the problem: The full energy peaks are approximated by a symmetrical Gaussian function and the underlying background is approximated by a first-order polynomial. A fixed spectrum length of 4096 channels is assumed. Maxima of: - number of peaks in one multiplet: 9; - number of peaks identified by the automatic search procedure

  9. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  10. Very Strong TeV Emission as $\\gamma$-Ray Burst Afterglows

    CERN Document Server

    Totani, T

    1998-01-01

    Gamma-ray bursts (GRBs) and following afterglows are considered to be produced by dissipation of kinetic energy of a relativistic fireball and radiation process is widely believed as synchrotron radiation or inverse Compton scattering of electrons. We argue that the transfer of kinetic energy of ejecta into electrons may be inefficient process and hence the total energy released by a GRB event is much larger than that emitted in soft gamma-rays, by a factor of \\sim (m_p/m_e). We show that, in this case, very strong emission of TeV gamma-rays is possible due to synchrotron radiation of protons accelerated up to \\sim 10^{21} eV, which are trapped in the magnetic field of afterglow shock and radiate their energy on an observational time scale of \\sim day. This suggests a possibility that GRBs are most energetic in TeV range and such TeV gamma-rays may be detectable from GRBs even at cosmological distances, i.e., z gives a quantitative explanation for the famous long-duration GeV photons detected from GRB940217. ...

  11. The relative biological effectiveness (RBE) of high-energy electrons, x-rays and Co-60 gamma-rays

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro

    1974-01-01

    Linac (Mitsubishi-Shimizu 15 MeV medical linear accelerator) electron beams with actual generated energies of 8, 10, 12 and 15 MeV were compared with X-ray beams having energies of 8 and 10 MV. The RBE values were calculated from 50 percent hatch-ability (LD 50 ) in silk-worm embryos, 30-days lethality (LDsub(50/30)) in ddY mice, and mean lethal dose (Do) in cultured mouse YL cells or human FL cells. To estimate the RBE in clinical experiments, LRD (leukocyte reduction dose) value was calculated for each patient irradiated on the chest or lumbar vertebrae. It was concluded that there is little difference in practical significance between 8 to 10 MV X-rays and 8 to 15 MeV electrons, and that the biological effects of Linac radiations are about 90 to 100 percent of the effect of 60 Co gamma rays. The RBE values gradually decreased, contrary to the elevation of energy between 8 and 15 MeV for electrons and between 8 and 10 MV for X-rays. These values were compared with those of earlier reviews of work in this field, and were briefly discussed. (Evans, J.)

  12. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; hide

    2013-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  13. The Future of Gamma Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  14. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Allekotte, I.; Arnaldi, H.; Asorey, H.; Gomez Berisso, M.; Sofo Haro, M.; Cillis, A.; Rovero, A.C.; Supanitsky, A.D.; Actis, M.; Antico, F.; Bottani, A.; Ochoa, I.; Ringegni, P.; Vallejo, G.; De La Vega, G.; Etchegoyen, A.; Videla, M.; Gonzalez, F.; Pallota, J.; Quel, E.; Ristori, P.; Romero, G.E.; Suarez, A.; Papyan, G.; Pogosyan, L.; Sahakian, V.; Bissaldi, E.; Egberts, K.; Reimer, A.; Reimer, O.; Shellard, R.C.; Santos, E.M.; De Gouveia Dal Pino, E.M.; Kowal, G.; De Souza, V.; Todero Peixoto, C.J.; Maneva, G.; Temnikov, P.; Vankov, H.; Golev, V.; Ovcharov, E.; Bonev, T.; Dimitrov, D.; Hrupec, D.; Nedbal, D.; Rob, L.; Sillanpaa, A.; Takalo, L.; Beckmann, V.; Benallou, M.; Boutonnet, C.; Corlier, M.; Courty, B.; Djannati-Atai, A.; Dufour, C.; Gabici, S.; Guglielmi, L.; Olivetto, C.; Pita, S.; Punch, M.; Selmane, S.; Terrier, R.; Yoffo, B.; Brun, P.; Carton, P.H.; Cazaux, S.; Corpace, O.; Delagnes, E.; Disset, G.; Durand, D.; Glicenstein, J.F.; Guilloux, F.; Kosack, K.; Medina, C.; Micolon, P.; Mirabel, F.; Moulin, E.; Peyaud, B.; Reymond, J.M.; Veyssiere, C.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA. (authors)

  15. The Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  16. Calculation of “LS-curves” for coincidence summing corrections in gamma ray spectrometry

    Science.gov (United States)

    Vidmar, Tim; Korun, Matjaž

    2006-01-01

    When coincidence summing correction factors for extended samples are calculated in gamma-ray spectrometry from full-energy-peak and total efficiencies, their variation over the sample volume needs to be considered. In other words, the correction factors cannot be computed as if the sample were a point source. A method developed by Blaauw and Gelsema takes the variation of the efficiencies over the sample volume into account. It introduces the so-called LS-curve in the calibration procedure and only requires the preparation of a single standard for each sample geometry. We propose to replace the standard preparation by calculation and we show that the LS-curves resulting from our method yield coincidence summing correction factors that are consistent with the LS values obtained from experimental data.

  17. Response of CZT drift-strip detector to X- and gamma rays

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Gerward, Leif

    2001-01-01

    The drift-strip method for improving the energy response of a CdZnTe (CZT) detector to hard X- and gamma rays is discussed. Results for a 10 x 10 x 3 mm(3) detector crystal demonstrate a remarkable improvement of the energy resolution. The full width at half maximum (FWHM) is 2.18 keV (3.6%), 2...

  18. Simulation study on unfolding methods for diagnostic X-rays and mixed gamma rays

    International Nuclear Information System (INIS)

    Hashimoto, Makoto; Ohtaka, Masahiko; Ara, Kuniaki; Kanno, Ikuo; Imamura, Ryo; Mikami, Kenta; Nomiya, Seiichiro; Onabe, Hideaki

    2009-01-01

    A photon detector operating in current mode that can sense X-ray energy distribution has been reported. This detector consists of a row of several segment detectors. The energy distribution is derived using an unfolding technique. In this paper, comparisons of the unfolding techniques among error reduction, spectrum surveillance, and neural network methods are discussed through simulation studies on the detection of diagnostic X-rays and gamma rays emitted by a mixture of 137 Cs and 60 Co. For diagnostic X-ray measurement, the spectrum surveillance and neural network methods appeared promising, while the error reduction method yielded poor results. However, in the case of measuring mixtures of gamma rays, the error reduction method was both sufficient and effective. (author)

  19. BiI{sub 3} single crystal for room-temperature gamma ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T., E-mail: saito.tatsuya125@canon.co.jp [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Iwasaki, T. [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Kurosawa, S.; Yoshikawa, A. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Den, T. [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan)

    2016-01-11

    BiI{sub 3} single crystals were grown by the physical vapor transport method. The repeated sublimation of the starting material reduced impurities in the BiI{sub 3} single crystal to sub-ppm levels. The detector was fabricated by depositing Au electrodes on both surfaces of the 100-μm-thick BiI{sub 3} single crystal platelet. The resistivity of the BiI{sub 3} single crystal was increased by post-annealing in an iodine atmosphere (ρ=1.6×10{sup 11} Ω cm). Pulse height spectroscopy measurements showed clear peaks in the energy spectrum of alpha particles or gamma rays. It was estimated that the mobility-lifetime product was μ{sub e}τ{sub e}=3.4–8.5×10{sup −6} cm{sup 2}/V and the electron–hole pair creation energy was 5.8 eV. Our results show that BiI{sub 3} single crystals are promising candidates for detectors used in radiographic imaging or gamma ray spectroscopy.

  20. Mass absorption and mass energy transfer coefficients for 0.4-10 MeV gamma rays in elemental solids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)], E-mail: ogurler@uludag.edu.tr; Oz, H. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey); Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); NCCPM, Medical Physics, Royal Surrey County Hospital, GU2 7XX (United Kingdom)

    2009-01-15

    The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.