WorldWideScience

Sample records for full solution mechanics

  1. Pitfall in quantum mechanical/molecular mechanical molecular dynamics simulation of small solutes in solution.

    Science.gov (United States)

    Hu, Hao; Liu, Haiyan

    2013-05-30

    Developments in computing hardware and algorithms have made direct molecular dynamics simulation with the combined quantum mechanical/molecular mechanical methods affordable for small solute molecules in solution, in which much improved accuracy can be obtained via the quantum mechanical treatment of the solute molecule and even sometimes water molecules in the first solvation shell. However, unlike the conventional molecular mechanical simulations of large molecules, e.g., proteins, in solutions, special care must be taken in the technical details of the simulation, including the thermostat of the solute/solvent system, so that the conformational space of the solute molecules can be properly sampled. We show here that the common setup for classical molecular mechanical molecular dynamics simulations, such as the Berendsen or single Nose-Hoover thermostat, and/or rigid water models could lead to pathological sampling of the solutes' conformation. In the extreme example of a methanol molecule in aqueous solution, improper and sluggish setups could generate two peaks in the distribution of the O-H bond length. We discuss the factors responsible for this somewhat unexpected result and evoke a simple and ancient technical fix-up to resolve this problem.

  2. Exposure to buffer solution alters tendon hydration and mechanics.

    Science.gov (United States)

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Full Dynamic Analysis of Mooring Solution Candidates - First Iteration

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco

    This report covers an initial full dynamic analysis of the mooring solutions for the four wave energy converters in the project “Mooring Solutions for Large Wave Energy Converters”. The analysis tends to provide the first understanding of the layouts and provide discussion on what parameters that...

  4. SOLUTION TREATMENT EFFECT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUTOMOTIVE CAST ALLOY

    Directory of Open Access Journals (Sweden)

    Eva Tillová

    2012-02-01

    Full Text Available The contribution describes influence of the heat treatment (solution treatment at temperature 545°C and 565°C with different holding time 2, 4, 8, 16 and 32 hours; than water quenching at 40°C and natural aging at room temperature during 24 hours on mechanical properties (tensile strength and Brinell hardness and microstructure of the secondary AlSi12Cu1Fe automotive cast alloy. Mechanical properties were measured in line with EN ISO. A combination of different analytical techniques (light microscopy, scanning electron microscopy (SEM were therefore been used for study of microstructure. Solution treatment led to changes in microstructure includes the spheroidization and coarsening of eutectic silicon. The dissolution of precipitates and the precipitation of finer hardening phase further increase the hardness and tensile strength of the alloy. Optimal solution treatment (545°C/4 hours most improves mechanical properties and there mechanical properties are comparable with mechanical properties of primary AlSi12Cu1Fe alloy. Solution treatment at 565 °C caused testing samples distortion, local melting process and is not applicable for this secondary alloy with 12.5 % Si.

  5. Fluid mechanics problems and solutions

    CERN Document Server

    Spurk, Joseph H

    1997-01-01

    his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.

  6. Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells

    Science.gov (United States)

    Zhen, Hongyu; Li, Kan; Zhang, Yaokang; Chen, Lina; Niu, Liyong; Wei, Xiaoling; Fang, Xu; You, Peng; Liu, Zhike; Wang, Dongrui; Yan, Feng; Zheng, Zijian

    2018-01-01

    Printing of metal bottom back electrodes of flexible organic solar cells (FOSCs) at low temperature is of great significance to realize the full-solution fabrication technology. However, this has been difficult to achieve because often the interfacial properties of those printed electrodes, including conductivity, roughness, work function, optical and mechanical flexibility, cannot meet the device requirement at the same time. In this work, we fabricate printed Ag and Cu bottom back cathodes by a low-temperature solution technique named polymer-assisted metal deposition (PAMD) on flexible PET substrates. Branched polyethylenimine (PEI) and ZnO thin films are used as the interface modification layers (IMLs) of these cathodes. Detailed experimental studies on the electrical, mechanical, and morphological properties, and simulation study on the optical properties of these IMLs are carried out to understand and optimize the interface of printed cathodes. We demonstrate that the highest power conversion efficiency over 3.0% can be achieved from a full-solution processed OFSC with the device structure being PAMD-Ag/PEI/P3HT:PC61BM/PH1000. This device also acquires remarkable stability upon repeating bending tests. Project supported by the Research Grant Council of Hong Kong (No. PolyUC5015-15G), the Hong Kong Polytechnic University (No. G-SB06), and the National Natural Science Foundation of China (Nos. 21125316, 21434009, 51573026).

  7. PHENOMENOLOGY AND MECHANISMS OF THE SOLUTION OF EXISTENTIAL INTRAPERSONAL CONFLICTS

    Directory of Open Access Journals (Sweden)

    Krasilnikov Igor Aleksandrovich

    2013-05-01

    Full Text Available In the article sights of founders of existential psychology at phenomenology and psychological mechanisms of intrapersonal conflicts are considered. It is underlined, that the basic internal conflict is connected with existential anxiety, human life-death. Experience of the existence in the modern social world often has tragical character for the person. The solution of existential intrapersonal conflicts is defined by how the person could realize in itself deep «Me» connected with feeling of finding of internal and external freedom, creative and spontaneity. It is emphasized, that freedom is the main quality of social human life, but the way to it demands from the person of the responsibility, courage and honesty. The authorship of own destiny, personal identity are a source of the solution of existential intrapersonal conflicts. Not each person is capable to keep authenticity in the life. Integrity «Me» cannot be restored, ignoring cultural mental-moral values. Purpose. To study phenomenology and psychological mechanisms of the solution of existential intrapersonal conflicts. Methodology. The qualitative theoretical analysis and synthesis of literary data. Results. In the article general concepts of leading scientists-psychologists of existential orientation to phenomenology and mechanisms of the solution of intrapersonal conflicts are presented. The significant attention is given R. Meya's to sights, as one of the main representatives of existential psychotherapy. Practical implications. Preparation of psychologists in the field of psychotherapeutic consultation.

  8. Travelling wave solutions for a surface wave equation in fluid mechanics

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.

  9. Numerical Solutions of Mechanical Turbulent Filtration Equation Used in Mechatronics and Micro Mechanic

    OpenAIRE

    Hassan Fathabadi

    2013-01-01

    In this study, several novel numerical solutions are presented to solve the turbulent filtration equation and its special case called “Non-Newtonian mechanical filtration equation”. The turbulent filtration equation in porous media is a very important equation which has many applications to solve the problems appearing especially in mechatronics, micro mechanic and fluid mechanic. Many applied mechanical problems can be solved using this equation. For example, non-Newtonian mechanical filtrat...

  10. Numerical solution of the full potential equation using a chimera grid approach

    Science.gov (United States)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  11. Nonextensive statistical mechanics of ionic solutions

    International Nuclear Information System (INIS)

    Varela, L.M.; Carrete, J.; Munoz-Sola, R.; Rodriguez, J.R.; Gallego, J.

    2007-01-01

    Classical mean-field Poisson-Boltzmann theory of ionic solutions is revisited in the theoretical framework of nonextensive Tsallis statistics. The nonextensive equivalent of Poisson-Boltzmann equation is formulated revisiting the statistical mechanics of liquids and the Debye-Hueckel framework is shown to be valid for highly diluted solutions even under circumstances where nonextensive thermostatistics must be applied. The lowest order corrections associated to nonadditive effects are identified for both symmetric and asymmetric electrolytes and the behavior of the average electrostatic potential in a homogeneous system is analytically and numerically analyzed for various values of the complexity measurement nonextensive parameter q

  12. KDP Aqueous Solution-in-Oil Microemulsion for Ultra-Precision Chemical-Mechanical Polishing of KDP Crystal

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2017-03-01

    Full Text Available A novel functional KH2PO4 (KDP aqueous solution-in-oil (KDP aq/O microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP was prepared. The system, which consisted of decanol, Triton X-100, and KH2PO4 aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations (cKDP were applied to replace water in the traditional water-in-oil (W/O microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR with the increasing of the cKDP. As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion (cKDP was changed from 10 mM to 100 mM as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR.

  13. Full Gradient Solution to Adaptive Hybrid Control

    Science.gov (United States)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2017-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  14. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    Science.gov (United States)

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  15. Direct methods of solution for problems in mechanics from invariance principles

    International Nuclear Information System (INIS)

    Rajan, M.

    1986-01-01

    Direct solutions to problems in mechanics are developed from variational statements derived from the principle of invariance of the action integral under a one-parameter family of infinitesimal transformations. Exact, direct solution procedures for linear systems are developed by a careful choice of the arbitrary functions used to generate the infinitesimal transformations. It is demonstrated that the well-known methods for the solution of differential equations can be directly adapted to the required variational statements. Examples in particle and continuum mechanics are presented

  16. Whole analogy between Daniel Bernoulli solution and direct kinematics solution

    Directory of Open Access Journals (Sweden)

    Filipović Mirjana

    2010-01-01

    Full Text Available In this paper, the relationship between the original Euler-Bernoulli's rod equation and contemporary knowledge is established. The solution which Daniel Bernoulli defined for the simplest conditions is essentially the solution of 'direct kinematics'. For this reason, special attention is devoted to dynamics and kinematics of elastic mechanisms configuration. The Euler-Bernoulli equation and its solution (used in literature for a long time should be expanded according to the requirements of the mechanisms motion complexity. The elastic deformation is a dynamic value that depends on the total mechanism movements dynamics. Mathematical model of the actuators comprises also elasticity forces.

  17. A new technique in constructing closed-form solutions for nonlinear PDEs appearing in fluid mechanics and gas dynamics

    Directory of Open Access Journals (Sweden)

    Panayotounakos D. E.

    1996-01-01

    Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.

  18. Game Theoretic Problems in Network Economics and Mechanism Design Solutions

    CERN Document Server

    Narahari, Y; Narayanam, Ramasuri; Prakash, Hastagiri

    2009-01-01

    Explores game theoretic modeling and mechanism design for problem solving in Internet and network economics. This monograph contains an exposition of representative game theoretic problems in three different network economics situations and a systematic exploration of mechanism design solutions to these problems.

  19. Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution, and Inversion

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Wasniewski, Jerzy; Dongarra, Jack J

    2010-01-01

    of the storage space but provide high performance via the use of Level 3 BLAS. Standard packed format arrays fully utilize storage (array space) but provide low performance as there is no Level 3 packed BLAS. We combine the good features of packed and full storage using RFPF to obtain high performance via using...... Level 3 BLAS as RFPF is a standard full-format representation. Also, RFPF requires exactly the same minimal storage as packed the format. Each LAPACK full and/or packed triangular, symmetric, and Hermitian routine becomes a single new RFPF routine based on eight possible data layouts of RFPF. This new...... RFPF routine usually consists of two calls to the corresponding LAPACK full-format routine and two calls to Level 3 BLAS routines. This means no new software is required. As examples, we present LAPACK routines for Cholesky factorization, Cholesky solution, and Cholesky inverse computation in RFPF...

  20. Influence aqueous solutions on the mechanical behavior of argillaceous rocks

    International Nuclear Information System (INIS)

    Wakim, J.

    2005-12-01

    The hydration of the shale with an aqueous solution induces a swelling deformation which plays an important role in the behaviour of the structures excavated in this type of grounds. This deformation is marked by a three-dimensional and anisotropic character and involves several mechanisms like adsorption, osmosis or capillarity. Several researches were dedicated to swelling and were often much debated due to the complexity of the implied phenomena. The goal of this thesis is therefore to contribute to a better understanding of shale swelling when the rock is confined and hydrated with an aqueous solution. The main part of the work accomplished was related to the Lorraine shale and to the Tournemire shale. To characterize swelling and to identify the main governing parameters, it was necessary to start the issue with an experimental approach. Many apparatus were then developed to carry out tests under various conditions of swelling. In order to facilitate the interpretation of the tests and thereafter the modelling of the behaviour, the experimental procedure adopted consisted of studying first the mechanical aspect and then the chemical aspect of swelling. In the mechanical part, swelling was studied by imposing on the sample a mechanical loading while maintaining during the tests the same aqueous solution. The principal parameters which were studied are the effect of the lateral conditions on axial swelling (impeded strain or constant stress) as well as the influence of the axial stress on radial swelling. The anisotropy of swelling was studied by carrying out, for different orientations of the sample, tests of free swelling, impeded swelling and uniaxial swelling. These various mechanical tests allowed to study the three-dimensional anisotropic swelling in all the conditions and to select the most appropriate test to be used in the second phase of the research. The precise analysis performed to explain the mechanisms behind the swelling of an argillaceous rock

  1. MWCNTs/Cellulose Hydrogels Prepared from NaOH/Urea Aqueous Solution with Improved Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Yingpu Zhang

    2015-01-01

    Full Text Available Novel high strength composite hydrogels were designed and synthesized by introducing multiwalled carbon nanotubes (MWCNTs into cellulose/NaOH/urea aqueous solution and then cross-linked by epichlorohydrin. MWCNTs were used to modify the matrix of cellulose. The structure and morphology of the hydrogels were characterized by Fourier transform infrared (FT-IR spectroscopy, high resolution transmission electron microscopy (HR-TEM, and scanning electron microscopy (SEM. The results from swelling testing revealed that the equilibrium swelling ratio of hydrogels decreased with the increment of MWCNTs content. Thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA results demonstrated that the introduction of MWCNT into cellulose hydrogel networks remarkably improved both thermal and mechanical properties of the composite hydrogels. The preparation of MWCNTs modifiedcellulose-based composites with improved mechanical properties was the first important step towards the development of advanced functional materials.

  2. Optimal solution of full fuzzy transportation problems using total integral ranking

    Science.gov (United States)

    Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.

    2018-03-01

    Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.

  3. Electronic structure tautomerism, and mechanism of H-D exchange in imidazole aqueous solutions

    International Nuclear Information System (INIS)

    Borisov, Yu.A.; Vorob'eva, N.P.; Abronin, I.A.; Kolomiets, A.F.

    1988-01-01

    The imidazole electronic structure in a gaseous phase is studied taking into account the influence of solvation effects in aqueous solutions. Possible mechanisms of tautomeric transformations and H-D exchange reactions with water molecules are discussed. Using the quantum chemistry methods, it is shown that the intramolecular mechanism of imidazole isomerization in the gaseous phase and the aqueous solution is unprofitable, and the intermolecular mechanism can proceed through the stage of protonated and carbene form formation

  4. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution.

    Science.gov (United States)

    Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou

    2017-08-10

    Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.

  5. Mechanical and Morphological Effect of Plant Based Antimicrobial Solutions on Maxillofacial Silicone Elastomer

    Directory of Open Access Journals (Sweden)

    Sophia Tetteh

    2018-05-01

    Full Text Available The objective of this study was to determine the effect of plant based antimicrobial solutions specifically tea tree and Manuka oil on facial silicone elastomers. The purpose of this in vitro study was to evaluate the effect of disinfection with plant extract solution on mechanical properties and morphology on the silicone elastomer. Test specimens were subjected to disinfection using tea tree oil, Manuka oil and the staphylococcus epidermidis bacteria. Furthermore, a procedure duration was used in the disinfection process to simulate up to one year of usage. Over 500 test specimens were fabricated for all tests performed namely hardness, elongation, tensile, tear strength tests, visual inspection and lastly surface characterization using SEM. A repeated measures ANOVA revealed that hardness and elongation at break varied significantly over the time period, whereas this was not observed in the tear and tensile strength parameters of the test samples.

  6. Solutions Stability of Initial Boundary Problem, Modeling of Dynamics of Some Discrete Continuum Mechanical System

    Directory of Open Access Journals (Sweden)

    D. A. Eliseev

    2015-01-01

    Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.

  7. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading

    International Nuclear Information System (INIS)

    Yeo, W.H.; Purbolaksono, J.; Aliabadi, M.H.; Ramesh, S.; Liew, H.L.

    2017-01-01

    In this study, a new analytical solution by the recursive method for evaluating stresses/displacements in multilayered hollow cylinder under thermo-mechanical loading was developed. The results for temperature distribution, displacements and stresses obtained by using the proposed solution were shown to be in good agreement with the FEM results. The proposed analytical solution was also found to produce more accurate results than those by the analytical solution reported in literature. - Highlights: • A new analytical solution for evaluating stresses in multilayered hollow cylinder under thermo-mechanical loading. • A simple computational procedure using a recursive method. • A promising technique for evaluating the operating axial and hoop stresses in pressurized composite vessels.

  8. Solved problems in classical mechanics analytical and numerical solutions with comments

    CERN Document Server

    de Lange, O L

    2010-01-01

    Apart from an introductory chapter giving a brief summary of Newtonian and Lagrangian mechanics, this book consists entirely of questions and solutions on topics in classical mechanics that will be encountered in undergraduate and graduate courses. These include one-, two-, and three- dimensional motion; linear and nonlinear oscillations; energy, potentials, momentum, and angular momentum; spherically symmetric potentials; multi-particle systems; rigid bodies; translation androtation of the reference frame; the relativity principle and some of its consequences. The solutions are followed by a set of comments intended to stimulate inductive reasoning and provide additional information of interest. Both analytical and numerical (computer) techniques are used to obtain andanalyze solutions. The computer calculations use Mathematica (version 7), and the relevant code is given in the text. It includes use of the interactive Manipulate function which enables one to observe simulated motion on a computer screen, and...

  9. Full-wave solution of short impulses in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Ferencz, Orsolya E.

    2005-01-01

    In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation. (author)

  10. Effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Liu, Xiao Yan; Pan, Qing Lin; Lu, Zhi Lun; Cao, Su Fang; He, Yun Bin; Li, Wen Bin

    2010-01-01

    The effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy were studied by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), differential scanning calorimeter (DSC), transmission electron microscopy (TEM) and tensile test, respectively. The results show that the mechanical property increases and then decreases with increasing the solution temperature. And the residual phases are dissolved into the matrix gradually, the number fraction of the precipitation and the size of recrystallized grains increase. Compared to the solution temperature, the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu-Mg-Ag alloy. The overburnt temperature of Al-Cu-Mg-Ag alloy is 525 o C. The yield strength and the elongation get the best when the alloy is solution treated at 515 o C for 1.5 h, is 504 MPa and 12.2% respectively. The fracture mechanism of the samples is ductile fracture.

  11. Skeletal muscle mechanics: questions, problems and possible solutions.

    Science.gov (United States)

    Herzog, Walter

    2017-09-16

    Skeletal muscle mechanics have been studied ever since people have shown an interest in human movement. However, our understanding of muscle contraction and muscle mechanical properties has changed fundamentally with the discovery of the sliding filament theory in 1954 and associated cross-bridge theory in 1957. Nevertheless, experimental evidence suggests that our knowledge of the mechanisms of contraction is far from complete, and muscle properties and muscle function in human movement remain largely unknown.In this manuscript, I am trying to identify some of the crucial challenges we are faced with in muscle mechanics, offer possible solutions to questions, and identify problems that might be worthwhile exploring in the future. Since it is impossible to tackle all (worthwhile) problems in a single manuscript, I identified three problems that are controversial, important, and close to my heart. They may be identified as follows: (i) mechanisms of muscle contraction, (ii) in vivo whole muscle mechanics and properties, and (iii) force-sharing among synergistic muscles. These topics are fundamental to our understanding of human movement and movement control, and they contain a series of unknowns and challenges to be explored in the future.It is my hope that this paper may serve as an inspiration for some, may challenge current beliefs in selected areas, tackle important problems in the area of muscle mechanics, physiology and movement control, and may guide and focus some of the thinking of future muscle mechanics research.

  12. Mechanical properties of calcium phosphate cements obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Volkmer, Tiago M.; Barreiro, Oscar; Souza, Vania Caldas; Santos, Luis Alberto dos, E-mail: tiagovolkmer@gmail.com, E-mail: oscarbafer@hotmail.com, E-mail: vania.souza@ufrgs.br, E-mail: luis.santos@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Laboratorio de Biomateriais

    2009-07-01

    Bioceramics based on calcium phosphates, especially hydroxyapatite and tricalcium phosphates (TCP) are the most used biomaterials as bone substitutes. The objective of this work is to evaluate the mechanical properties of α-tricalcium phosphate (α-TCP) synthesized by the solution combustion method. The solution combustion synthesis (SCS) can be considered as faster and simpler as other methods, furthermore it allows the obtainment of high purity α-TCP. In the calcium phosphates (CPC), α-TCP reacts with water forming needle like HA, which restrain the movement of grains, increasing mechanical resistance. In the present paper the influence of particle size on mechanical properties of α-TCP cements were evaluated. The α-TCP powder were characterized by XRD, TEM, BET and laser diffraction to asses particle size while the CPC bodies by SEM, Arquimedes method and compression tests. Increasing the milling time, the particle size decreases, resulting in samples with less porosity and consequently with higher compression resistance. (author)

  13. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    Science.gov (United States)

    Kumar, Pankaj; Singh, Akhilendra

    2017-10-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  14. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  15. Buffer management in wireless full-duplex systems

    KAUST Repository

    Bouacida, Nader

    2015-10-19

    Wireless full-duplex radios can simultaneously transmit and receive using the same frequency. In theory, this can double the throughput. In fact, there is only little work addressing aspects other than throughput gains in full-duplex systems. Over-buffering in today\\'s networks or the so-called “bufferbloat” phenomenon creates excessive end-to-end delays resulting in network performance degradation. Our analysis shows that full-duplex systems may suffer from high latency caused by bloated buffers. In this paper, we address the problem of buffer management in full-duplex networks by using Wireless Queue Management (WQM), which is an active queue management technique for wireless networks. Our solution is based on Relay Full-Duplex MAC (RFD-MAC), an asynchronous media access control protocol designed for relay full-duplexing. We compare the performance of WQM in full-duplex environment to Drop Tail mechanism over various scenarios. Our solution reduces the end-to-end delay by two orders of magnitude while achieving similar throughput in most of the cases.

  16. Mechanisms of iodine release from iodoapatite in aqueous solution

    Science.gov (United States)

    Zhang, Z.; Wang, J.

    2017-12-01

    Immobilization of iodine-129 with waste forms in geological setting is challenging due to its extremely long half-life and high volatility in the environment. To evaluate the long-term performance of waste form, it is imperative to determine the release mechanism of iodine hosted in the waste form materials. This study investigated the iodine released from apatite structured waste form Pb9.85 (VO4)6 I1.7 to understand how diffusion and dissolution control the durability of apatite waste form. A standard semi-dynamic leach test was adopted in this study. Samples were exposed in fresh leachant periodically and the leachant was replaced after each interval. Each experiment was carried out in cap-sealed Teflon vessels under constant temperature (e.g. 90 °C). ICP-MS analysis on the reacted leachates shows that Pb and V were released constantly and congruently with the stoichiometric ratio of Pb/V. However, iodine release is incongruent and time dependent. The iodine release rate starts significantly higher than the corresponding stoichiometric value and gradually decreases, approaching the stoichiometric value. Therefore, a dual-mode mechanism is proposed to account for the iodine release from apatite, which is dominated by short-term diffusion and long-term dissolution processes. Additional tests show that the element release rates depend on a number of test parameters, including sample surface to solution volume ratio (m-1), interval (day), temperature (°C), and solution pH. This study provides a quantitative characterization of iodine release mechanism. The activation energy of iodine leaching 21±1.6 kJ/mol was obtained by varying the test temperature. At the test conditions of to neutral pH and 90 °C, the long-term iodine release rate 3.3 mg/(m2 • day) is projected by normalizing sample surface area to solution volume ratio (S/V) to 1.0 m-1 and interval to 1 day. These findings demonstrate i) the feasibility of our approach to quantify the release mechanism

  17. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    International Nuclear Information System (INIS)

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-01-01

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  18. The Development and Full-Scale Experimental Validation of an Optimal Water Treatment Solution in Improving Chiller Performances

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chiang

    2016-06-01

    Full Text Available An optimal solution, in combining physical and chemical water treatment methods, has been developed. This method uses a high voltage capacitance based (HVCB electrodes, coupled with biocides to form a sustainable solution in improving chiller plant performances. In this study, the industrial full-scale tests, instead of laboratory tests, have been conducted on chiller plants at the size of 5000 RT to 10,000 RT cooling capacities under commercial operation for more than two years. The experimental results indicated that the condenser approach temperatures can be maintained at below 1 °C for over two years. It has been validated that the coefficient of performance (COP of a chiller can be improved by over 5% by implementing this solution. Every 1 °C reduction in condenser approach temperature can yield approximately 3% increase on chiller COP, which warrants its future application potential in the HVAC industry, where Ta can degrade by 1 °C every three to six months. The solution developed in this study could also reduce chemical dosages and conserve makeup water substantially and is more environment friendly.

  19. Multi-level quantum mechanics theories and molecular mechanics study of the double-inversion mechanism of the F- + CH3I reaction in aqueous solution.

    Science.gov (United States)

    Liu, Peng; Zhang, Jingxue; Wang, Dunyou

    2017-06-07

    A double-inversion mechanism of the F - + CH 3 I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol -1 at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol -1 calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol -1 , which agrees very well with the experimental value at 25.2 kcal mol -1 in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.

  20. Influence of solution annealing on microstructure and mechanical properties of Maraging 300 steel

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Venceslau Xavier; Barros, Isabel Ferreira; Abreu, Hamilton Ferreira Gomes de, E-mail: venceslau@ifce.edu.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Departamento de Engenharia Metalurgica e Materiais. Laboratorio de Caracterizacao de Materiais, Metalurgia Fisica e Grupo de Pesquisa de Transformacao de Fase

    2017-01-15

    Maraging 300 belongs to a family of metallic materials with extremely high mechanical strength and good toughness. Some works have been published about aging temperatures that improve ultimate strength resistance with acceptable toughness levels in this steel family, where the prior austenite grain size obtained by different solution annealing temperature influence in the final mechanical properties. Solution annealing temperatures ranging from 860 °C to 1150 deg C and were kept constant until the aging temperature. These treatments were used in order to investigate their influence on the microstructure and mechanical properties of maraging steel 300, especially with regard to toughness. The characterization of the microstructure was performed by optical microscopy, scanning electron microscope (SEM) and X-ray diffraction (XRD). Mechanical properties were evaluated by Rockwell C hardness and Charpy impact tests. The results showed that there is a temperature range where one can get some improvement in toughness without a large loss of mechanical strength. (author)

  1. Extraction mechanics in lingual orthodontics: Challenges and solutions

    Directory of Open Access Journals (Sweden)

    Tushar M Hegde

    2016-01-01

    Full Text Available The 21st century has witnessed a slow but sure incorporation of lingual orthodontic protocols into the orthodontic mainstream. Extraction mechanics with lingual orthodontic appliance poses challenges to even the most experienced clinician. This article is a case series of three cases treated by extraction mechanics in a detailed and sequential manner.

  2. Investigation on the Effect of Addition of Fe3+ Ion into the Colloidal AgNPs in PVA Solution and Understanding Its Reaction Mechanism

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2017-11-01

    Full Text Available Analysis of Fe3+ ion present in aqueous solutions is always of interests. Recently, this ion has been analyzed by colorimetric methods using colloid of silver nanoparticles (AgNPs in capping agents of polymers. The reaction mechanism between AgNPs and Fe3+ is still subject to the further investigation. In this work, 1,10-phenanthroline was used to probe the reaction mechanism between AgNPs and Fe3+ ion in the solution. The colloids of AgNPs were prepared in the polyvinyl alcohol (PVA solution and reacted with Fe3+. The colloid surface plasmon absorbance decreases linearly along with the increase in Fe3+ concentration. The addition of 1,10-phenanthroline to mixture changes the solution to red, indicating that the reaction produces Fe2+. This suggests that the reduction of the AgNPs absorbance is the result of oxidation of the Ag nanoparticles along with the reduction of Fe3+.

  3. Mechanism for suppression of radiation-induced segregation by oversized solute addition in austenitic stainless steel

    Science.gov (United States)

    Hackett, Micah Jeremiah

    The objective of this thesis is to quantify the effect of oversized solutes on radiation-induced segregation in austenitic stainless steels and to determine the mechanism of this effect. Zr or Hf additions to austenitic stainless steels demonstrated a reduction in radiation-induced segregation of Cr and Ni at the grain boundary after proton irradiation at 400°C and 500°C to low doses, but the solute effect disappeared at higher doses. Rate theory modeling of RIS was extended to incorporate a solute-vacancy trapping mechanism to predict the effect of solutes on RIS. The model showed that RIS is most sensitive to the solute-vacancy binding energy. First principles calculations were used to determine a binding energy of 1.08 eV for Zr and 0.71 eV for Hf. Model and experiment agreed in showing suppression of Cr depletion at doses of 3 dpa at 400°C and 1 dpa at 500°C, and experimental results were consistent with the model in showing greater effectiveness of Zr relative to Hf due to a larger binding energy. The dislocation loop microstructure was measured at 400°C, 3 and 7 dpa, and a significant decrease in loop density and total loop line length in the oversized solute alloys relative to the reference alloys. The loop microstructure results were consistent with RIS results by confirming enhanced recombination of point defects by solute-vacancy trapping. Increases in RIS with dose indicated a loss of solute effectiveness, which was consistent with an observed increase in loop line length from 3 to 7 dpa. The loss of solute effectiveness at high dose is attributed to a loss of oversized solute from the matrix due to coarsening of carbide precipitates. X-ray diffraction identified a microstructure with ZrC or HfC precipitates prior to irradiation. Precipitate coarsening was identified as the most likely mechanism for the loss of solute effectiveness on RIS by the following: (1) diffusion analysis suggested significant solute diffusion by the vacancy flux to

  4. The Virtual Fields Method Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements

    CERN Document Server

    Pierron, Fabrice

    2012-01-01

    The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first book on the Virtual Fields Method (VFM), a technique to identify materials mechanical properties from full-field measurements. Firmly rooted with extensive theoretical description of the method, the book presents numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials) and situations (static, vibration, high strain rate). The authors give a detailed training section with examples of progressive difficulty to lead the reader to program the VFM and include a set of commented Matlab programs as well as GUI Matlab-based software for more general situations. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is an ideal book for researchers, engineers, and students interested in applying the VFM to new situations motivated by their research.  

  5. Assessing the Impact of Mechanical Damage on Full-Thickness Porcine and Human Skin Using an In Vitro Approach

    Directory of Open Access Journals (Sweden)

    Hinda Dabboue

    2015-01-01

    Full Text Available For most xenobiotics, the rates of percutaneous absorption are limited by diffusion through the horny layer of skin. However, percutaneous absorption of chemicals may seriously increase when the skin is damaged. The aim of this work was to develop an in vitro representative model of mechanically damaged skins. The epidermal barrier was examined following exposure to a razor, a rotating brush, and a microneedle system in comparison to tape-stripping which acted as a reference. Excised full-thickness skins were mounted on a diffusion chamber in order to evaluate the effect of injuries and to mimic physiological conditions. The transepidermal water loss (TEWL was greatly increased when the barrier function was compromised. Measurements were made for all the damaged biopsies and observed histologically by microscopy. On human and porcine skins, the tape-stripping application (0 to 40 times showed a proportional increase in TEWL which highlights the destruction of the stratum corneum. Similar results were obtained for all cosmetic instruments. This is reflected in our study by the nonsignificant difference of the mean TEWL scores between 30 strips and mechanical damage. For a specific appreciation, damaged skins were then selected to qualitatively evaluate the absorption of a chlorogenic acid solution using fluorescence microscopy.

  6. Kinetics and mechanism of nitrobenzene hydrogenation to phenylhydroxylamine in rhenium thiocomplexes solutions

    International Nuclear Information System (INIS)

    Korenyako, G.I.; Belousov, V.M.

    1985-01-01

    A study was made on kinetics of nitrobenzene hydrogenation to phenylhydroxylamine in dimethylformamide solutions of rhenium thiocomplexes. The mechanism of hydrogenation was suggested. Formation of hydride catalyst complex represents the first stage of the process. Kinetic equation derived on the basis of suggested mechanism corresponds satisfactorily with experimental results. Thermodynamic parameters of separate process stages calculated on the basis of equilibrium constant values testify as well to the benefit of suggested mechanism

  7. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding

    DEFF Research Database (Denmark)

    Madaleno, Liliana Andreia Oliveira; Schjødt-Thomsen, Jan; Pinto, José Cruz

    2010-01-01

    Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods solution blending...... and solution blending + melt compounding The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all...... prepared by solution blending + melt compounding method Experimental values for 1 and 2 phr are larger than the calculated values which directly suggest that the MMT particles are exfoliated (C) 2010 Elsevier Ltd All rights reserved...

  8. Mechanical energy expenditures and movement efficiency in full body reaching movements.

    Science.gov (United States)

    Sha, Daohang; France, Christopher R; Thomas, James S

    2010-02-01

    The effect of target location, speed, and handedness on the average total mechanical energy and movement efficiency is studied in 15 healthy subjects (7 males and 8 females with age 22.9 +/- 1.79 years old) performing full body reaching movements. The average total mechanical energy is measured as the time average of integration of joint power, potential energy, and kinetic energy respectively. Movement efficiency is calculated as the ratio of total kinetic energy to the total joint power and potential energy. Results show that speed and target location have significant effects on total mechanical energy and movement efficiency, but reaching hand only effects kinetic energy. From our findings we conclude that (1) efficiency in whole body reaching is dependent on whether the height of the body center of mass is raised or lowered during the task; (2) efficiency is increased as movement speed is increased, in part because of greater changes in potential energy; and (3) the CNS does not appear to use movement efficiency as a primary planning variable in full body reaching. It may be dependent on a combination of other factors or constraints.

  9. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  10. Effects of solution treatment on mechanical properties and corrosion resistance of 4A duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Panpan; Wang, Aiqin; Wang, Wenyan [Henan Univ. of Science and Technology, Luoyang (China). School of Material Science and Engineering; Xie, Jingpei [Henan Univ. of Science and Technology, Luoyang (China). Collaborative Innovation Center of Nonferrous Metals

    2018-02-15

    In this study, 4A duplex stainless steels were prepared via remelting in an intermediate frequency furnace and subsequently solution treated at different temperatures. The effects of solution treatment on the mechanical properties and corrosion resistance of 4A duplex stainless steel were investigated. Microstructures were characterized via optical microscopy and scanning electron microscopy. The mechanical properties were evaluated via hardness test, tensile test, and impact test experiments. The point corrosion resistance was studied via chemical immersion and potentiodynamic anodic polarization. The results showed that with increasing solution temperature in the range of 1223 - 1423 K, the tensile strength and hardness first decreased and then increased, and minimum values were obtained at 1323 K. The σ phase precipitated at the boundaries of the α/γ phases in samples solution treated at 1223 K, decreasing both impact energy and pitting potential of the experimental steels. When experimental steels were solution treated at 1373 K for 2 h, a suitable volume fraction of α/γ was uniformly distributed throughout the microstructure, and the steels exhibited optimal mechanical properties and pitting corrosion resistance.

  11. Influence aqueous solutions on the mechanical behavior of argillaceous rocks; Influence des solutions aqueuses sur le comportement mecanique des roches argileuses

    Energy Technology Data Exchange (ETDEWEB)

    Wakim, J

    2005-12-15

    The hydration of the shale with an aqueous solution induces a swelling deformation which plays an important role in the behaviour of the structures excavated in this type of grounds. This deformation is marked by a three-dimensional and anisotropic character and involves several mechanisms like adsorption, osmosis or capillarity. Several researches were dedicated to swelling and were often much debated due to the complexity of the implied phenomena. The goal of this thesis is therefore to contribute to a better understanding of shale swelling when the rock is confined and hydrated with an aqueous solution. The main part of the work accomplished was related to the Lorraine shale and to the Tournemire shale. To characterize swelling and to identify the main governing parameters, it was necessary to start the issue with an experimental approach. Many apparatus were then developed to carry out tests under various conditions of swelling. In order to facilitate the interpretation of the tests and thereafter the modelling of the behaviour, the experimental procedure adopted consisted of studying first the mechanical aspect and then the chemical aspect of swelling. In the mechanical part, swelling was studied by imposing on the sample a mechanical loading while maintaining during the tests the same aqueous solution. The principal parameters which were studied are the effect of the lateral conditions on axial swelling (impeded strain or constant stress) as well as the influence of the axial stress on radial swelling. The anisotropy of swelling was studied by carrying out, for different orientations of the sample, tests of free swelling, impeded swelling and uniaxial swelling. These various mechanical tests allowed to study the three-dimensional anisotropic swelling in all the conditions and to select the most appropriate test to be used in the second phase of the research. The precise analysis performed to explain the mechanisms behind the swelling of an argillaceous rock

  12. Lectures on quantum mechanics with problems, exercises and their solutions

    CERN Document Server

    Basdevant, Jean-Louis

    2016-01-01

    The new edition of this remarkable text offers the reader a conceptually strong introduction to quantum mechanics, but goes beyond this to present a fascinating tour of modern theoretical physics. Beautifully illustrated and engagingly written, it starts with a brief overview of diverse topics across physics including nanotechnology, statistical physics, materials science, astrophysics, and cosmology. The core of the book covers both established and emerging aspects of quantum mechanics. A concise introduction to traditional quantum mechanics covers the Schrödinger equation, Hilbert space, the algebra of observables, hydrogen atom, spin and Pauli principle. Modern features of the field are presented by exploring entangled states, Bell's inequality, quantum cryptography, quantum teleportation and quantum mechanics in the universe. This new edition has been enchanced through the addition of numerous problems with detailed solutions, an introduction to the mathematical tools needed and expanded discussion of th...

  13. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds.

    Science.gov (United States)

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-03-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC tap water formed insoluble matters. This formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each molecule of the active coagulation component in MOC-SC-PC and form a net-like structure. The coagulation mechanism of MOC-SC-PC seemed to be an enmeshment of Kaolin by the insoluble matters with the net-like structure. In case of Ca2+ ion (bivalent cations), at least 0.2 mM was necessary for coagulation at 0.3 mgC l-1 dose of MOC-SC-PC. Other coagulation mechanisms like compression of double layer, interparticle bridging or charge neutralization were not responsible for the coagulation by MOC-SC-PC.

  14. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds

    OpenAIRE

    Okuda, Tetsuji; Baes, Aloysius U.; Nishijima, Wataru; Okada, Mitsumasa

    2001-01-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC into tap water formed insoluble matters. The formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each m...

  15. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading

    International Nuclear Information System (INIS)

    Zaslawsky, M.; Kennedy, W.N.

    1992-01-01

    Mathematical solutions to the problem consisting of a partially-full waste tank subjected to seismic loading, embedded in soil, is classically difficult in that one has to address: soil-structure interaction, fluid-structure interaction, non-linear behavior of material, dynamic effects. Separating the problem and applying numerous assumptions will yield approximate solutions. This paper explores methods for generating these solutions accurately

  16. Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships

    International Nuclear Information System (INIS)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2016-01-01

    Dislocation mobility in a solid solution was studied using atomistic simulations of an Mg/Al system. The critical resolved shear stress (CRSS) for the dislocations on the basal plane was calculated at temperatures from 0 K to 500 K with solute concentrations from 0 to 7 at%, and with four different strain rates. Solute hardening of the CRSS is decomposed into two contributions: one scales with c 2/3 , where c is the solute concentration, and the other scales with c 1 . The former was consistent with the Labusch model for local solute obstacles, and the latter was related to the athermal plateau stress due to the long range solute effect. A thermo-mechanical model was then used to analyze the temperature and strain rate dependences of the CRSS, and it yielded self-consistent and realistic results. The scaling laws were confirmed and the thermo-mechanical model was successfully parameterized using experimental measurements of the CRSS for Mg/Al alloys under quasi-static conditions. The predicted strain rate sensitivity from the experimental measurements of the CRSS is in reasonable agreement with separate mechanical tests. The concentration scaling and the thermo-mechanical relationships provide a potential tool to analytically relate the structural and thermodynamic parameters on the microscopic level with the macroscopic mechanical properties arising from dislocation mediated deformation.

  17. Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić M.

    2012-01-01

    Full Text Available Interest for application of hydrometallurgical processes in a processing of complex sulphide ores and concentrates has increased in recent years. Their application provides better metal recoveries and reduced emission of gaseous and toxic ageneses in the environment. The kinetics and mechanism of sphalerite leaching from complex sulphide concentrate with sulphuric acid and sodium nitrate solution at standard conditions was presented in this paper. The influences of temperature and time on the leaching degree of zinc were investigated and kinetic analysis of the process was accomplished. With temperature increasing from 60 to 90°C, the zinc leaching increased from 25.23% to 71.66% after 2 hours, i.e. from 59.40% to 99.83% after 4 hours. The selected kinetic model indicated that the diffusion through the product layer was the rate-controlling step during the sphalerite leaching. The activation energy was determined to be 55 kJ/mol in the temperature range 60-90°C. XRD, light microscopy and SEM/EDX analyses of the complex concentrate and leach residue confirmed formation of elemental sulphur and diffusion-controlled leaching mechanism.

  18. Determinations of directions of the mean stress field in Sichuan-Yunnan region from a number of focal mechanism solutions

    Science.gov (United States)

    Zhong, Ji-Mao; Cheng, Wan-Zheng

    2006-07-01

    Based on the spatial orientation and slip direction of the fault plane solutions, we present the expression of corresponding mechanical axis tensor in geographic coordinate system, and then put forward a method for calculating average mechanical axis tensor and its eigenvalues, which involves solving the corresponding eigenequation. The method for deducing mean stress field from T, B, and P axes parameters of a number of focal mechanism solutions has been verified by inverting data of mean stress fields in Fuyun region and in Tangshan region with fitting method of slip direction, and both results are consistent. To study regional average stress field, we need to choose a population of focal mechanism solutions of earthquakes in the massifs where there are significant tectonic structures. According to the focal mechanism solutions of 256 moderate-strong earthquakes occurred in 13 seismic zones of Sichuan-Yunnan region, the quantitative analysis results of stress tensor in each seismic zone have been given. The algorithm of such method is simple and convenient, which makes the method for analyzing tectonic stress field with large amount of focal mechanism solution data become quantified.

  19. Blow-up Mechanism of Classical Solutions to Quasilinear Hyperbolic Systems in the Critical Case

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper deals with the blow-up phenomenon, particularly, the geometric blow-up mechanism, of classical solutions to the Cauchy problem for quasilinear hyperbolic systems in the critical case. We prove that it is still the envelope of the same family of characteristics which yields the blowup of classical solutions to the Cauchy problem in the critical case.

  20. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  1. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions.

    Science.gov (United States)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Zhang, Shuyuan; Guo, Sai; Lin, Junjie; Lin, Jinxin

    2015-03-01

    In the study, the microstructure, mechanical property and metal release behavior of selective laser melted CoCrW alloys under different solution treatment conditions were systemically investigated to assess their potential use in orthopedic implants. The effects of the solution treatment on the microstructure, mechanical properties and metal release were systematically studied by OM, SEM, XRD, tensile test, and ICP-AES, respectively. The XRD indicated that during the solution treatment the alloy underwent the transformation of γ-fcc to ε-hcp phase; the ε-hcp phase nearly dominated in the alloy when treated at 1200°C following the water quenching; the results from OM, SEM showed that the microstructural change was occurred under different solution treatments; solution at 1150°C with furnace cooling contributed to the formation of larger precipitates at the grain boundary regions, while the size and number of the precipitates was decreased as heated above 1100°C with the water quenching; moreover, the diamond-like structure was invisible at higher solution temperature over 1150°C following water quenching; compared with the furnace cooling, the alloy quenched by water showed excellent mechanical properties and low amount of metal release; as the alloy heated at 1200°C, the mechanical properties of the alloy reached their optimum combination at UTS=1113.6MPa, 0.2%YS=639.5MPa, and E%=20.1%, whilst showed the lower total quantity of metal release. It is suggested that a proper solution treatment is an efficient strategy for improving the mechanical properties and corrosion resistance of As-SLM CoCrW alloy that show acceptable tensile ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A Direct Kinematics Problem Solution for the Three-degree-of-freedom Parallel Structure Manipulator Based on Crank Mechanism

    Directory of Open Access Journals (Sweden)

    V. N. Paschenko

    2015-01-01

    Full Text Available The paper describes a mechanism representing a kind of mechanisms of parallel kinematics with three degrees of freedom based on the crank mechanism. This mechanism consists of two platforms, namely: the lower fixed and the upper movable. The upper platform is connected to the lower one by six movable elements, three of which are rods attached to the bases by means of spherical joints, and another three have a crank structure.The paper shows an approach to the solution of a direct task of kinematics based on mathematical modeling. The inverse problem of kinematics is formulated as follows: at specified angles of rotation drive (the values of generalized coordinates to determine the position of the top mobile platform.To solve this problem has been used a mathematical model describing the proposed system. On the basis of the constructed model were made the necessary calculations that allowed us using the values of crank angles connected with the engines to determine the position of the platform in space. To solve the problem we used the method of virtual points to reduce the number of equations and unknowns, which determine the position of the upper platform in space, at a crucial system from eighteen to nine, thus simplifying the solution.To check the solution correctness was carried out numerical experiment. Each generalized coordinate took on values in the range from -30 ° to 30 °; for them a direct positional problem was solved, and its result was inserted, as initial data, in the previous solved and proven inverse problem on the position of the platform under study.The paper presents comparative results of measurements with the calculated values of the generalized coordinates and draws the appropriate conclusions, that this model is in good compliance with the results observed in practice. One of the distinctive features of the proposed approach is that rotation angles of engines are used as the generalized coordinates. This allowed us

  3. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    Science.gov (United States)

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  4. Full-field measurements and identification in solid mechanics

    CERN Document Server

    Grediac, Michel

    2008-01-01

    This timely book presents cutting-edge developments by experts in the field on the rapidly developing and scientifically challenging area of full-field measurement techniques used in solid mechanics - including photoelasticity, grid methods, deflectometry, holography, speckle interferometry and digital image correlation. The evaluation of strains and the use of the measurements in subsequent parameter identification techniques to determine material properties are also presented. Since parametric identification techniques require a close coupling of theoretical models and experimental measurements, the book focuses on specific modeling approaches that include finite element model updating, the equilibrium gap method, constitutive equation gap method, virtual field method and reciprocity gap method. In the latter part of the book, the authors discuss two particular applications of selected methods that are of special interest to many investigators: the analysis of localized phenomenon and connections between mi...

  5. Effect of solution treatment temperature and cooling rate on the mechanical properties of tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Anjali, E-mail: anjalikumari1261@gmail.com; Prabhu, G.; Sankaranarayana, M.; Nandy, T.K.

    2017-03-14

    The present study investigates the effect of solution treatment temperature and cooling rate on mechanical properties of a tungsten heavy alloy (89.6W-6.2Ni-1.8Fe-2.4Co). In addition to water quenching, rapid argon quenching has been attempted in this study since it is a relatively cleaner process and it can be used in conjunction with vacuum treatment. Since in these alloys, there is a possibility of incomplete dissolution of intermetallics or segregation of impurities during heat treatment, which results in scatter in the mechanical properties, it was decided that the solution treatment temperature for both water and argon quenching would be varied from 1100 to 1250 °C in order to see its effect on the microstructure and mechanical properties. Solution treatment at varying temperatures followed by water quenching resulted in tensile strength ranging from 908 to 921 MPa and % elongation varied from 19% to 26%. On the other hand, the argon quenching heat treatment resulted in tensile strength in the range of 871–955 MPa and % elongation from 9% to 25%. No significant trend with respect to solution treatment temperature on tensile properties was seen in both argon and water quenched samples. % elongation to failure and impact values of water quenched specimens were better than those of argon quenched specimens for a given solution treatment temperature. The impact values appeared to improve with increasing solution treatment temperature in water quenched condition. The properties were correlated with underlying microstructure and fractographs of the failed specimens. The study showed the argon quenching may not be appropriate for the heat treatment of heavy alloys since it results in inferior mechanical properties as compared to water quenching.

  6. On Conservation Forms and Invariant Solutions for Classical Mechanics Problems of Liénard Type

    Directory of Open Access Journals (Sweden)

    Gülden Gün Polat

    2014-01-01

    Full Text Available In this study we apply partial Noether and λ-symmetry approaches to a second-order nonlinear autonomous equation of the form y′′+fyy′+g(y=0, called Liénard equation corresponding to some important problems in classical mechanics field with respect to f(y and g(y functions. As a first approach we utilize partial Lagrangians and partial Noether operators to obtain conserved forms of Liénard equation. Then, as a second approach, based on the λ-symmetry method, we analyze λ-symmetries for the case that λ-function is in the form of λ(x,y,y′=λ1(x,yy′+λ2(x,y. Finally, a classification problem for the conservation forms and invariant solutions are considered.

  7. Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations

    Science.gov (United States)

    Huang, Xiangdi; Li, Jing

    2018-03-01

    For the three-dimensional full compressible Navier-Stokes system describing the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic fluid, we establish the global existence and uniqueness of classical solutions with smooth initial data which are of small energy but possibly large oscillations where the initial density is allowed to vanish. Moreover, for the initial data, which may be discontinuous and contain vacuum states, we also obtain the global existence of weak solutions. These results generalize previous ones on classical and weak solutions for initial density being strictly away from a vacuum, and are the first for global classical and weak solutions which may have large oscillations and can contain vacuum states.

  8. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  9. First order mean field games - explicit solutions, perturbations and connection with classical mechanics

    KAUST Repository

    Gomes, Diogo A.

    2016-01-06

    We present recent developments in the theory of first-order mean-field games (MFGs). A standard assumption in MFGs is that the cost function of the agents is monotone in the density of the distribution. This assumption leads to a comprehensive existence theory and to the uniqueness of smooth solutions. Here, our goals are to understand the role of local monotonicity in the small perturbation regime and the properties of solutions for problems without monotonicity. Under a local monotonicity assumption, we show that small perturbations of MFGs have unique smooth solutions. In addition, we explore the connection between first-order MFGs and classical mechanics and KAM theory. Next, for non-monotone problems, we construct non-unique explicit solutions for a broad class of first-order mean-field games. We provide an alternative formulation of MFGs in terms of a new current variable. These examples illustrate two new phenomena: the non-uniqueness of solutions and the breakdown of regularity.

  10. First order mean field games - explicit solutions, perturbations and connection with classical mechanics

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana

    2016-01-01

    We present recent developments in the theory of first-order mean-field games (MFGs). A standard assumption in MFGs is that the cost function of the agents is monotone in the density of the distribution. This assumption leads to a comprehensive existence theory and to the uniqueness of smooth solutions. Here, our goals are to understand the role of local monotonicity in the small perturbation regime and the properties of solutions for problems without monotonicity. Under a local monotonicity assumption, we show that small perturbations of MFGs have unique smooth solutions. In addition, we explore the connection between first-order MFGs and classical mechanics and KAM theory. Next, for non-monotone problems, we construct non-unique explicit solutions for a broad class of first-order mean-field games. We provide an alternative formulation of MFGs in terms of a new current variable. These examples illustrate two new phenomena: the non-uniqueness of solutions and the breakdown of regularity.

  11. The full integration of black hole solutions to symmetric supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Chemissany, W., E-mail: wissam.chemissany@uleth.c [University of Lethbridge, Physics Department, Lethbridge Alberta, T1K 3M4 (Canada); Rosseel, J., E-mail: rosseel@to.infn.i [Dipartimento di Fisica Teorica, Universita di Torino and INFN-Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Trigiante, M., E-mail: mario.trigiante@polito.i [Dipartimento di Fisica Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129 Torino (Italy); Van Riet, T., E-mail: thomas.vanriet@fysast.uu.s [Institutionen foer Fysik och Astronomi, Box 803, SE-751 08 Uppsala (Sweden)

    2010-05-11

    We prove that all stationary and spherical symmetric black hole solutions to theories with symmetric target spaces are integrable and we provide an explicit integration method. This exact integration is based on the description of black hole solutions as geodesic curves on the moduli space of the theory when reduced over the time-like direction. These geodesic equations of motion can be rewritten as a specific Lax pair equation for which mathematicians have provided the integration algorithms when the initial conditions are described by a diagonalizable Lax matrix. On the other hand, solutions described by nilpotent Lax matrices, which originate from extremal regular (small) D=4 black holes can be obtained as suitable limits of solutions obtained in the diagonalizable case, as we show on the generating geodesic (i.e. most general geodesic modulo global symmetries of the D=3 model) corresponding to regular (and small) D=4 black holes. As a byproduct of our analysis we give the explicit form of the 'Wick rotation' connecting the orbits of BPS and non-BPS solutions in maximally supersymmetric supergravity and its STU truncation.

  12. The Substitution Effect on Reaction Enthalpies of Antioxidant Mechanisms of Juglone and Its Derivatives in Gas and Solution Phase: DFT Study

    Directory of Open Access Journals (Sweden)

    Aymard Didier Tamafo Fouegue

    2018-01-01

    Full Text Available We examined the structure-reaction enthalpies-antioxidant activity relationship of the molecule library built around juglone and its derivatives at B3LYP/6-31+G(d,p level. Three major antioxidant mechanisms (hydrogen atom transfer (HAT, single electron transfer-proton transfer (SET-PT, and sequential proton loss electron transfer (SPLET have been investigated in five solvents and in the gas phase. The delocalization of the unpaired electrons in the radicals or cation radicals has been explored by the natural bond orbital analysis and the interpretation of spin density maps. The results obtained have proven that the HAT mechanism is the thermodynamically preferred mechanism in the gas phase. But, in the solution phase, the SPLET mechanism has been shown to be more predominant than HAT. The reactivity order of compounds towards selected reactive oxygen species has also been studied.

  13. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    Science.gov (United States)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  14. Linear Analytical Solutions of Mechanical Sensitivity in Large Deflection of Unsymmetrically Layered Piezoelectric Plate under Pretension

    Directory of Open Access Journals (Sweden)

    Chun-Fu Chen

    2014-03-01

    Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.

  15. Non-Gaussian Closed Form Solutions for Geometric Average Asian Options in the Framework of Non-Extensive Statistical Mechanics

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2018-01-01

    Full Text Available In this paper we consider pricing problems of the geometric average Asian options under a non-Gaussian model, in which the underlying stock price is driven by a process based on non-extensive statistical mechanics. The model can describe the peak and fat tail characteristics of returns. Thus, the description of underlying asset price and the pricing of options are more accurate. Moreover, using the martingale method, we obtain closed form solutions for geometric average Asian options. Furthermore, the numerical analysis shows that the model can avoid underestimating risks relative to the Black-Scholes model.

  16. Sturm solutions of the two-centre problem in quantum mechanics

    International Nuclear Information System (INIS)

    Truskova, N.F.

    1984-01-01

    Algorithm of computer calculation of the Sturm solutions of the two-body problem in quantum mechanics has been presented for different magnitudes of internuclear distance R and at energies E<0, which correspond to a definite term of the above problem or to a constants. Formulae of transition from spherical quantum numbers to parabolic ones have been presented, and asymptotics of eigen values at R→0 and R→infinity have been obtained. Calculation results are presented in a graphical form

  17. Existence and asymptotic estimates of periodic solutions of El Niño mechanism of atmospheric physics

    International Nuclear Information System (INIS)

    Xiao-Jing, Li

    2010-01-01

    This paper is devoted to studying the El Niño mechanism of atmospheric physics. The existence and asymptotic estimates of periodic solutions for its model are obtained by employing the technique of upper and lower solution, and using the continuation theorem of coincidence degree theory. (general)

  18. Effect of solution volume covariation on the growth mechanism of Au nanorods using the seed-mediated method

    International Nuclear Information System (INIS)

    Ma, Xiao; Wang, Moo-Chin; Feng, Jinyang; Zhao, Xiujian

    2015-01-01

    The effect of solution volume covariation on the growth mechanism of Au nanorods synthesized using a seed-mediated method was studied. The results from the ultraviolet–visible absorption spectra of gold nanorods (GNRs) revealed that the transverse surface plasmon resonance was ∼550 nm for all GNR samples synthesized in various total volumes of growth solutions. The wavelength of longitudinal surface plasmon resonance of GNRs increased from 757 to 915 nm, with the total volume of growth solution being raised from 10 to 320 ml. Moreover, the calculated aspect ratio (AR) also increased from 3.55 to 5.21 while the total volume of growth solution increased from 10 to 320 ml. Transmission electron microscopy microstructures showed that the growth mechanism of GNRs along 〈1 0 0〉 is in accordance with the hypothesis that the ratio of the number of monodispersed Au atoms existing in the growth solution to the number of seeds explain the behavior of Au atoms deposited on the nanorods with respect to all of the constituent concentrations in the growth solution on the AR of GNRs

  19. Full waveform inversion for mechanized tunneling reconnaissance

    Science.gov (United States)

    Lamert, Andre; Musayev, Khayal; Lambrecht, Lasse; Friederich, Wolfgang; Hackl, Klaus; Baitsch, Matthias

    2016-04-01

    In mechanized tunnel drilling processes, exploration of soil structure and properties ahead of the tunnel boring machine can greatly help to lower costs and improve safety conditions during drilling. We present numerical full waveform inversion approaches in time and frequency domain of synthetic acoustic data to detect different small scale structures representing potential obstacles in front of the tunnel boring machine. With the use of sensitivity kernels based on the adjoint wave field in time domain and in frequency domain it is possible to derive satisfactory models with a manageable amount of computational load. Convergence to a suitable model is assured by the use of iterative model improvements and gradually increasing frequencies. Results of both, time and frequency approach, will be compared for different obstacle and source/receiver setups. They show that the image quality strongly depends on the used receiver and source positions and increases significantly with the use of transmission waves due to the installed receivers and sources at the surface and/or in bore holes. Transmission waves lead to clearly identified structure and position of the obstacles and give satisfactory guesses for the wave speed. Setups using only reflected waves result in blurred objects and ambiguous position of distant objects and allow to distinguish heterogeneities with higher or lower wave speed, respectively.

  20. Exact solutions of the Fokker-Planck equation from an nth order supersymmetric quantum mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, Axel [Escuela Superior de Fisica y Matematicas, IPN, Unidad Profesional Adolfo Lopez Mateos, Col. San Pedro Zacatenco, Edificio 9, 07738 Mexico D.F. (Mexico)], E-mail: xbataxel@gmail.com; Rivas, Jesus Morales [Universidad Autonoma Metropolitana - Azcapotzalco, CBI - Area de Fisica Atomica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 Mexico D.F. (Mexico)], E-mail: jmr@correo.azc.uam.mx; Pena Gil, Jose Juan [Universidad Autonoma Metropolitana - Azcapotzalco, CBI - Area de Fisica Atomica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 Mexico D.F. (Mexico)], E-mail: jjpg@correo.azc.uam.mx; Garcia-Ravelo, Jesus [Escuela Superior de Fisica y Matematicas, IPN, Unidad Profesional Adolfo Lopez Mateos, Col. San Pedro Zacatenco, Edificio 9, 07738 Mexico D.F. (Mexico)], E-mail: ravelo@esfm.ipn.mx; Roy, Pinaki [Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta-700108 (India)], E-mail: pinaki@isical.ac.in

    2009-04-20

    We generalize the formalism of nth order Supersymmetric Quantum Mechanics (n-SUSY) to the Fokker-Planck equation for constant diffusion coefficient and stationary drift potential. The SUSY partner drift potentials and the corresponding solutions of the Fokker-Planck equation are given explicitly. As an application, we generate new solutions of the Fokker-Planck equation by means of our first- and second-order transformation.

  1. Exact solutions of the Fokker-Planck equation from an nth order supersymmetric quantum mechanics approach

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; Rivas, Jesus Morales; Pena Gil, Jose Juan; Garcia-Ravelo, Jesus; Roy, Pinaki

    2009-01-01

    We generalize the formalism of nth order Supersymmetric Quantum Mechanics (n-SUSY) to the Fokker-Planck equation for constant diffusion coefficient and stationary drift potential. The SUSY partner drift potentials and the corresponding solutions of the Fokker-Planck equation are given explicitly. As an application, we generate new solutions of the Fokker-Planck equation by means of our first- and second-order transformation.

  2. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  3. Anomalous diffusion in niobium. Study of solute diffusion mechanism of iron in niobium

    International Nuclear Information System (INIS)

    Ablitzer, D.

    1977-01-01

    In order to explain anomalously high diffusion velocities observed for iron diffusion in niobium, the following parameters were measured: isotope effect, b factor (which expresses the effect of iron on niobium self-diffusion), self-diffusion coefficient of niobium, solute diffusion coefficient of iron in niobium. The results obtained show that neither pure vacancy models, nor diffusion in the lattice defects (dislocations, sub-boundaries, grain boundaries), nor pure interstitialy mechanisms, nor simple or cyclic exchange mechanisms agree with experiments. A mechanism is proposed which considers an equilibrium between substitution iron atoms and interstitial iron atoms. The diffusion of iron then occurs through interstitial vancancy pairs [fr

  4. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  5. Risk transfer solutions for the insurance industry

    Directory of Open Access Journals (Sweden)

    Njegomir Vladimir

    2009-01-01

    Full Text Available The paper focuses on the traditional and alternative mechanisms for insurance risk transfer that are available to global as well as to domestic insurance companies. The findings suggest that traditional insurance risk transfer solutions available to insurance industry nowadays will be predominant in the foreseeable future but the increasing role of alternative solutions is to be expected as the complementary rather than supplementary solution to traditional transfer. Additionally, findings suggest that it is reasonable to expect that future development of risk transfer solutions in Serbia will follow the path that has been passed by global insurance industry.

  6. Development of a resilient mechanical sealing solution to resist electro corrosion in ultrapure feedwater applications

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowservice Flow Solutions Division, Etten-Leur (Netherlands); Enders, Klaus; Schmerberg, Rainer [Vattenfall Europe Generation AG, Peitz (Germany)

    2012-11-01

    Ever since the introduction of mechanical seals on high speed boiler feed pumps in the sixties, mechanical seals have proven to be a reliable, cost effective sealing method. However, since the introduction of combined water treatment chemistry used in today's modern fossil-fuelled power stations, keeping mechanical seal reliability high, became a challenge. A pragmatic approach is presented. A resilient sealing solution was developed to resist electro corrosion for such critical feed water pumps. (orig.)

  7. Solution mechanism guide: implementing innovation within a research & development organization.

    Science.gov (United States)

    Keeton, Kathryn E; Richard, Elizabeth E; Davis, Jeffrey R

    2014-10-01

    In order to create a culture more open to novel problem-solving mechanisms, NASA's Human Health and Performance Directorate (HH&P) created a strategic knowledge management tool that educates employees about innovative problem-solving techniques, the Solution Mechanism Guide (SMG). The SMG is a web-based, interactive guide that leverages existing and innovative problem-solving methods and presents this information as a unique user experience so that the employee is empowered to make the best decision about which problem-solving tool best meets their needs. By integrating new and innovative methods with existing problem solving tools, the SMG seamlessly introduces open innovation and collaboration concepts within HH&P to more effectively address human health and performance risks. This commentary reviews the path of creating a more open and innovative culture within HH&P and the process and development steps that were taken to develop the SMG.

  8. An algorithm for full parametric solution of problems on the statics of orthotropic plates by the method of boundary states with perturbations

    Science.gov (United States)

    Penkov, V. B.; Ivanychev, D. A.; Novikova, O. S.; Levina, L. V.

    2018-03-01

    The article substantiates the possibility of building full parametric analytical solutions of mathematical physics problems in arbitrary regions by means of computer systems. The suggested effective means for such solutions is the method of boundary states with perturbations, which aptly incorporates all parameters of an orthotropic medium in a general solution. We performed check calculations of elastic fields of an anisotropic rectangular region (test and calculation problems) for a generalized plane stress state.

  9. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  10. Electron spectra and mechanism of complexing of uranyl nitrate in water-acetone solutions

    International Nuclear Information System (INIS)

    Zazhogin, A.A.; Zazhogin, A.P.; Komyak, A.I.; Serafimovich, A.I.

    2003-01-01

    Based on the analysis of the luminescence and electronic absorption spectra, the processes of complexing in an aqueous solution of UO 2 (NO 3 ) 2 ·6H 2 O with small additions of acetone have been studied. In a pure aqueous solution, uranyl exists as the complex UO 2 ·5H 2 O. It is shown that the addition of acetone to the solution leads to the displacement of some water molecules out of the first coordination sphere of uranyl and the formation of the uranyl nitrate dihydrate complexes UO 2 (NO 3 ) 2 ·2H 2 O. It has been established that the stability of these complexes is determined by the decrease in the water activity and in the degree of hydration of uranyl and nitrate, which is the result of the local increase in the concentration of acetone molecules (due to their hydrophobicity) in the regions of the solution where uranyl and nitrate ions are found. The experimental facts supported the mechanism proposed are presented. (authors)

  11. Construction experience with Fermilab-built full length 50mm SSC dipoles

    International Nuclear Information System (INIS)

    Blessing, M.J.; Hoffman, D.E.; Packer, M.D.; Gordon, M.; Higinbotham, W.; Sims, R.

    1992-03-01

    Fourteen full length SSC dipole magnets are being built and tested at Fermilab. Their purpose is to verify the magnet design as well as transfer the construction technology to industry. Magnet design is summarized. Construction problems and their solutions are discussed. Topics include coil winding, curing and measuring, collaring, instrumentation, end clamp installation, yoking and electrical and mechanical interconnection

  12. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  13. The Electroluminescence Mechanism of Solution-Processed TADF Emitter 4CzIPN Doped OLEDs Investigated by Transient Measurements

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-10-01

    Full Text Available High efficiency, solution-processed, organic light emitting devices (OLEDs, using a thermally-activated delayed fluorescent (TADF emitter, 1,2,3,5-tetrakis(carbazol-9-yl-4,6-dicyanobenzene (4CzIPN, are fabricated, and the transient electroluminescence (EL decay of the device with a structure of [ITO/PEDOT: PSS/4CzIPN 5 wt % doped 4,40-N,N0-dicarbazolylbiphenyl(CBP/bis-4,6-(3,5-di-4-pyridylphenyl-2-methylpyrimidine (B4PyMPM/lithium fluoride (LiF/Al], is systematically studied. The results shed light on the dominant operating mechanism in TADF-based OLEDs. Electroluminescence in the host–guest system is mainly produced from the 4CzIPN emitter, rather than the exciplex host materials.

  14. Macro and micro observations on mortar alternation mechanism under the various solution conditions

    International Nuclear Information System (INIS)

    Fujiwara, A.; Tashiro, S.; Takemura, T.; Sakogaichi, K.; Yokomoto, S.; Katsuyama, K.

    1995-01-01

    Accelerated aging tests have been conducted to evaluate the long-term durability of cementitious material against aggressive ions. In tests, cementitious specimens were immersed in the solutions containing concentrated aggressive ions at high temperature and it promoted diffusion of the ions in the specimen. This method would be suitable for the evaluation on the aging as the alteration of the specimen would be expected to resemble the natural behavior. This paper presents a classification of alteration mechanism in the immersion tests using MgCl 2 and Na 2 SO 4 solution. This classification was done by relating the changes of compressive strength to microscopic and mineralogical changes

  15. Spectral methods and their implementation to solution of aerodynamic and fluid mechanic problems

    Science.gov (United States)

    Streett, C. L.

    1987-01-01

    Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and compared with results from test problems. A number of practical aspects of the construction and use of spectral methods are detailed, along with several solution schemes which have found utility in applications of spectral methods to practical problems. Results from a few of the successful applications of spectral methods to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the problem areas in spectral methods and the current research under way to overcome these difficulties.

  16. Microstructure and Mechanical Strengths of Metastable FCC Solid Solutions in Al-Ce-Fe System

    OpenAIRE

    A., Inoue; H., Yamaguchi; M., Kikuchi; T., Masumoto; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research

    1990-01-01

    A metastable fcc solid solution (SS) with high mechanical strengths and good bending ductility was found to be formed in rapidly solidified Al-Ce-Fe alloys containing the solute elements below about 6 at%. The SS consists of equiaxed grains with a size of about 2μm and contains a high density of internal defects. The highest hardness (H_v) and tensile fracture strengtn (σ_f) are 440 and 860 MPa in the as-quenched state and remain almost unchanged up to about 600 K for 1 h, though fine compoun...

  17. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  18. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    Science.gov (United States)

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  20. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    Science.gov (United States)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  1. Constructing integrable full-pressure full-current free-boundary stellarator magnetohydrodynamic equilibrium solutions

    International Nuclear Information System (INIS)

    Hudson, S.R.

    2002-01-01

    For stellarators to be feasible candidates for fusion power stations it is essential that the magnetic field lines lie on nested flux surfaces; however, the lack of a continuous symmetry implies that magnetic islands, caused by Pfirsch-Schlueter currents, diamagnetic currents and resonant coil fields, are guaranteed to exist. The challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary full-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the PIES code [Comp. Phys. Comm., 43:157, 1986] which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to lie in the nullspace of certain measures of engineering acceptability and kink stability. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible. The method is applied to a candidate plasma and coil design for NCSX [Phys. Plas., 7:1911, 2000]. (author)

  2. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  3. Passivation of mechanically polished, chemically etched and anodized zirconium in various aqueous solutions: Impedance measurements

    International Nuclear Information System (INIS)

    Abo-Elenien, G.M.; Abdel-Salam, O.E.

    1987-01-01

    Zirconium and its alloys are finding increasing applications especially in water-cooled nuclear reactors. Because of the fact that zirconium is electronegative (E 0 = -1.529V) its corrosion resistance in aqueous solutions is largely determined by the existence of a thin oxide film on its surface. The structure and properties of this film depend in the first place on the method of surface pre-treatment. This paper presents an experimental study of the nature of the oxide film on mechanically polished, chemically etched and anodized zirconium. Ac impedance measurements carried out in various acidic, neutral and alkaline solutions show that the film thickness depends on the method of surface pre-treatment and the type of electrolyte solution. The variation of the potential and impedance during anodization of zirconium at low current density indicates that the initial stages of polarization consist of oxide build-up at a rate dependent on the nature of the electrode surface and the electrolyte. Oxygen evolution commences at a stage where oxide thickening starts to decline. The effect of frequency on the measured impedance indicates that the surface reactivity, and hence the corrosion rate, decreases in the following order: mechanically polished > chemically etched > anodized

  4. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences.

    Science.gov (United States)

    Pramanik, Chandrani; Gissinger, Jacob R; Kumar, Satish; Heinz, Hendrik

    2017-12-26

    Debundling and dispersion of carbon nanotubes (CNTs) in polymer solutions play a major role in the preparation of carbon nanofibers due to early effects on interfacial ordering and mechanical properties. A roadblock toward ultrastrong fibers is the difficulty to achieve homogeneous dispersions of CNTs in polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) precursor solutions in solvents such as dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). In this contribution, molecular dynamics simulations with accurate interatomic potentials for graphitic materials that include virtual π electrons are reported to analyze the interaction of pristine single wall CNTs with the solvents and polymer solutions at 25 °C. The results explain the barriers toward dispersion of SWCNTs and quantify CNT-solvent, polymer-solvent, as well as CNT-polymer interactions in atomic detail. Debundling of CNTs is overall endothermic and unfavorable with dispersion energies of +20 to +30 mJ/m 2 in the pure solvents, + 20 to +40 mJ/m 2 in PAN solutions, and +20 to +60 mJ/m 2 in PMMA solutions. Differences arise due to molecular geometry, polar, van der Waals, and CH-π interactions. Among the pure solvents, DMF restricts CNT dispersion less due to the planar geometry and stronger van der Waals interactions. PAN and PMMA interact favorably with the pure solvents with dissolution energies of -0.7 to -1.1 kcal per mole monomer and -1.5 to -2.2 kcal per mole monomer, respectively. Adsorption of PMMA onto CNTs is stronger than that of PAN in all solvents as the molecular geometry enables more van der Waals contacts between alkyl groups and the CNT surface. Polar side groups in both polymers prefer interactions with the polar solvents. Higher polymer concentrations in solution lead to polymer aggregation via alkyl groups and reduce adsorption onto CNTs. PAN and PMMA solutions in DMSO and dilute solutions in DMF support CNT dispersion more than other

  5. Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Shi, Shuang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Yang, Jenn-Ming [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wang, Yinong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Li, Jiayan; You, Qifan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2017-03-24

    Inconel 718 superalloy was fabricated by electron beam smelting (EBS) technique. The effect of solution heat treatment on the precipitation behavior and mechanical properties of EBS 718 superalloys were studied, the strengthening mechanisms were analyzed and related to the mechanical properties. The results indicate that the optimized microstructures can be acquired by means of EBS, which is attributed to the rapid cooling rate of approximately 280 ℃/min. The solution heat treatment shows a great impact on the microstructures, precipitation behavior and mechanical properties of EBS 718 superalloy. The γ'' phase shows an apt to precipitate at relatively lower solution temperatures followed by aging, while the γ' precipitates are prone to precipitate at higher temperatures. When solution treated at 1150 ℃, the γ' precipitates are dispersively distributed in the matrix with size and volume fraction of 8.43 nm and 21.66%, respectively, a Vickers hardness of approximately 489 HV{sub 0.1} is observed for the aged superalloy. The precipitation strengthening effect of EBS 718 superalloy could be elucidated by considering the interaction between the dislocations and γ''/γ' precipitates. The shearing of γ' is resisted by the coherency strengthening and formation of antiphase boundary (APB), which shows equal effect as weakly coupled dislocation (WCD) model. And for γ'', the strengthening effect is much more prominent with the primary strengthening mechanism of ordering. Moreover, it is interestingly found that the strengthening mechanism of stacking fault (SF) shearing coexists with APB shearing, and SF shearing plays a major role in strengthening of EBS 718 superalloy.

  6. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  7. Comparison of two approaches for differentiating full-field data in solid mechanics

    International Nuclear Information System (INIS)

    Avril, Stéphane; Feissel, Pierre; Villon, Pierre; Pierron, Fabrice

    2010-01-01

    In this study, the issue of reconstructing the gradients of noisy full-field data is addressed within the framework of solid mechanics. Two approaches are considered, a global one based on finite element approximation (FEA) and a local one based on diffuse approximation (DA). For both approaches, it is proposed to monitor locally the filtering effect in order to adapt the uncertainty to the local signal to noise ratio. Both approaches are applied to a case study which is commonly considered as difficult in solid mechanics (open-hole tensile test on a composite laminate). Both DA and FEA are successful for detecting local subsurface damage from the measured noisy displacement fields. Indications are also provided about the compared performances of DA and FEA. It is shown that DA is more robust, but the downside is that it is also more CPU time consuming

  8. Mechanical Pretreatment to Increase the Bioenergy Yield for Full-scale Biogas Plants

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Angelidaki, Irini

    % compared to the untreated one. The digestion of meadow grass as an alternative co-substrate had positive impact on the energy yield of full-scale biogas reactors operating with cattle manure, pig manure or mixture of both. A preliminary analysis showed that the addition of meadow grass in a manure based...... biogas reactor was possible with biomass share of 10%, leading to energy production of 280 GJ/day. The digestion of pretreated meadow grass as alternative co-substrate had clearly positive impact in all the examined scenarios, leading to increased biogas production in the range of 10%-20%.......This study investigated the efficiency of commercially available harvesting machines for mechanical pretreatment of meadow grass, in order to enhance the energy yield per hectare. Excoriator was shown to be the most efficient mechanical pretreatment increasing the biogas yield of grass by 16...

  9. The mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels: The case of Fe-Cu model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, A.V., E-mail: Alexey.V.Subbotin@gmail.com [Scientific and Production Complex Atomtechnoprom, Moscow 119180 (Russian Federation); Panyukov, S.V., E-mail: panyukov@lpi.ru [PN Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924 (Russian Federation)

    2016-08-15

    Mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels is proposed and developed in case of Fe-Cu model alloys. The suggested solute-drag mechanism is analogous to the well-known zone-refining process. We show that the obtained results are in good agreement with available experimental data on the parameters of clusters enriched with the alloying elements. Our model explains why the formation of solute-enriched clusters does not happen in austenitic stainless steels with fcc lattice structure. It also allows to quantify the method of evaluation of neutron irradiation dose for the process of RPV steels hardening.

  10. Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution

    Science.gov (United States)

    Ghadiri, Majid; Jafari, Ali

    2016-12-01

    Present disquisition proposes an analytical solution method for exploring the vibration characteristics of a cantilever functionally graded nanobeam with a concentrated mass exposed to thermal loading for the first time. Thermo-mechanical properties of FGM nanobeam are supposed to change through the thickness direction of beam based on the rule of power-law (P-FGM). The small-scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Linear temperature rise (LTR) through thickness direction is studied. Existence of centralized mass in the free end of nanobeam influences the mechanical and physical properties. Timoshenko beam theory is employed to derive the nonlocal governing equations and boundary conditions of FGM beam attached with a tip mass under temperature field via Hamilton's principle. An exact solution procedure is exploited to achieve the non-dimensional frequency of FG nanobeam exposed to temperature field with a tip mass. A parametric study is led to assess the efficacy of temperature changes, tip mass, small scale, beam thickness, power-law exponent, slenderness and thermal loading on the natural frequencies of FG cantilever nanobeam with a point mass at the free end. It is concluded that these parameters play remarkable roles on the dynamic behavior of FG nanobeam subjected to LTR with a tip mass. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future thermo-mechanical analyses of FG nanobeam with tip mass.

  11. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  12. Statistical mechanics of protein solutions

    NARCIS (Netherlands)

    Prinsen, P.

    2007-01-01

    We study theoretically thermodynamic properties of spherical globular proteins in aqueous solution with added monovalent salt. We show how one can determine an effective interaction potential between the proteins from experimental data as a function of salt concentration and we apply this to the

  13. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Guo, Mingxing, E-mail: mingxingguo@skl.ustb.edu.cn; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-05

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube{sub ND} orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper.

  14. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    International Nuclear Information System (INIS)

    Wang, Xiaofeng; Guo, Mingxing; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-01

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube ND orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper

  15. On the existence of the H3 tautomer of adenine in aqueous solution. Rationalizations based on hybrid quantum mechanics/molecular mechanics predictions

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Mikkelsen, Kurt V; Kongsted, Jacob

    2010-01-01

    The (15)N NMR spectrum of adenine in aqueous solution has been modeled using high-level combined density functional theory/molecular mechanics techniques coupled to a dynamical averaging scheme. The explicit consideration of the three lowest-energy tautomers of adenine-H9, H7 and H3-allows...

  16. Mechanism of action of sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Estrela Carlos

    2002-01-01

    Full Text Available The choice of an irrigating solution for use in infected root canals requires previous knowledge of the microorganisms responsible for the infectious process as well as the properties of different irrigating solutions. Complex internal anatomy, host defenses and microorganism virulence are important factors in the treatment of teeth with asymptomatic apical periodontitis. Irrigating solutions must have expressive antimicrobial action and tissue dissolution capacity. Sodium hypochlorite is the most used irrigating solution in endodontics, because its mechanism of action causes biosynthetic alterations in cellular metabolism and phospholipid destruction, formation of chloramines that interfere in cellular metabolism, oxidative action with irreversible enzymatic inactivation in bacteria, and lipid and fatty acid degradation. The aim of this work is to discuss the mechanism of action of sodium hypochlorite based on its antimicrobial and physico-chemical properties.

  17. Microstructure and mechanical properties of a novel Ti–Al–Cr–Fe titanium alloy after solution treatment

    International Nuclear Information System (INIS)

    Wang, Zhenguo; Cai, Haijiao; Hui, Songxiao

    2015-01-01

    Highlights: • Microstructure and mechanical properties of a novel Ti–3.0Al–3.7Cr–2.0Fe alloy were studied. • The effects of cooling rates and solution temperature were considered. • The strength–ductility combination were investigated through different heat treatment. - Abstract: The relationship between microstructure and mechanical properties of a novel Ti–3.0Al–3.7Cr–2.0Fe alloy were studied. The effects of cooling rates and solution temperature were considered. The analysis methods of optical microscope (OM), X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used. The results indicate that β and α phase in this alloy are obtained after solution treated at 1183 K on the cooling ways of air cooling and furnace cooling; and β and α″ martensite are observed after quenching in water. Besides, the volume of α phase is decreased with increasing solution temperature. In the present study, the ultimate strength 1065 MPa with 12.0% in elongation of the alloy is acquired under the heat treatment condition of 1183 K/30 min/AC, and the strength–ductility combination in this case is also the best. Under the heat treatment condition of 1183 K/30 min/WQ, the elasticity modulus of the alloy is only 91.3 GPa, as a result of the lower elasticity modulus of β phase

  18. A study on elongation/contraction behavior and mechanical properties of oxy-polyacrylonitrile(PAN) fiber in basic/acidic solution for artificial muscle applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.K.; Kim, S.W.; Lee, K.S.; Cho, I.H.; Lee, J.H.; Lee, J.W. [Sungkyunkwan University, Suwon (Korea); Kim, K.J. [University of Nevada, Reno (United States); Nam, J.D. [Sungkyunkwan University, Suwon (Korea)

    2002-07-01

    Oxy-PAN fiber prepared from the preoxidation and saponification of raw PAN fiber is known to elongate and contract when immersed in basic and acidic solutions, respectively. In this study, about 30% elongation in NaOH solution and 30{approx}50% contraction in HCl solution have been observed. In mechanical test, the mechanical properties of oxy-PAN fiber in the contracted state was stronger than that in the elongated state. These behaviors and mechanical properties are compared to those of living muscle and linear actuator. The change of length in NaOH and HCl solutions is due to switching between a hydrophilic and a hydrophobic structure. Other reasons are exchange of ion and water in/out of oxy-PAN fiber, and osmotic pressure difference associated with relevant ions. Much studies are needed to clarify the effective factors on but the oxy-PAN fiber's elongation/contraction behavior and mechanical properties, but the oxy-PAN fiber prepared in our laboratory has a sufficient potential for application as artificial muscle and linear actuator. (author). 20 refs., 1 tab., 9 figs.

  19. Experimental Hydro-Mechanical Characterization of Full Load Pressure Surge in Francis Turbines

    Science.gov (United States)

    Müller, A.; Favrel, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2017-04-01

    Full load pressure surge limits the operating range of hydro-electric generating units by causing significant power output swings and by compromising the safety of the plant. It appears during the off-design operation of hydraulic machines, which is increasingly required to regulate the broad integration of volatile renewable energy sources into the existing power network. The underlying causes and governing physical mechanisms of this instability were investigated in the frame of a large European research project and this paper documents the main findings from two experimental campaigns on a reduced scale model of a Francis turbine. The multi-phase flow in the draft tube is characterized by Particle Image Velocimetry, Laser Doppler Velocimetry and high-speed visualizations, along with synchronized measurements of the relevant hydro-mechanical quantities. The final result is a comprehensive overview of how the unsteady draft tube flow and the mechanical torque on the runner shaft behave during one mean period of the pressure oscillation, thus defining the unstable fluid-structure interaction responsible for the power swings. A discussion of the root cause is initiated, based on the state of the art. Finally, the latest results will enable a validation of recent RANS flow simulations used for determining the key parameters of hydro-acoustic stability models.

  20. The homeostasis solutionMechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  1. Fluorimetric study of the mechanism of molecular association in aqueous solutions of polymethacrylic acid and sodium dodecylbenzenesulfonate

    Science.gov (United States)

    Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S.

    2013-03-01

    Fluorescent spectroscopy is used to investigate the processes of intermolecular association in mixed solutions of polymethacrylic acid (PMAA) and anionic sodium dodecylbenzenesulfonate (SDBS). We propose a model for describing the stage-by-stage mechanism of association processes and conclude that the nature of intermolecular associates depends on the PMAA-SDBS concentration ratio in the solution. Studying the kinetics of fluorescence decay reveals the simultaneous existence of two types of formations capable of pyrene solubilization.

  2. Distribution of iron during full loading of amberlite IRC-72 resin with uranium from nitrate solutions at 300C

    International Nuclear Information System (INIS)

    Shaffer, J.H.; Greene, C.W.

    1979-01-01

    The integrity of resin-based fuel kernels used in the fabrication of fuel elements for a high-temperature gas-cooled reactor will depend, in part, on the concentration of iron incorporated in the resin particles during their loading with uranium. Consequently, assessment of chemical specifications for iron as an impurity in uranyl nitrate solution should be based on its distribution during the resin loading operation. For this purpose, the behavior of iron, as an impurity in uranyl nitrate solutions, was investigated under equilibrium conditions at 30 0 C during full loading of Amberlite IRC-72 cation exchange reaction were derived from calculations based on complex coordination of ferric ion with the resin over the nitrate ion concentration range of approx. 0.5 to 2 N

  3. Radiolysis of nucleosides in aqueous solutions: base liberation by the base attack mechanism

    International Nuclear Information System (INIS)

    Fujita, S.

    1984-01-01

    On the radiolysis of uridine and some other nucleosides in aqueous solution, a pH-dependent liberation of uracil or the corresponding base was found. e - sub(aq) and HOsup(anion radicals) 2 gave no freed bases, although many oxidizing radicals, including OH, Clsup(anion radicals) 2 , Brsup(anion radicals) 2 , (CNS)sup(anion radicals) 2 and SOsup(anion radicals) 4 , did cause the release of unaltered bases, depending on the pH of the solutions. The base yields were generally high at pH >= 11, with the exception of SOsup(anion radicals) 4 , which gave a rather high yield of uracil (from uridine) even in the pH region of - , present at high pH as the dissociated form of OH, may act partly as an oxidizing radical. A plausible mechanism of 3 1 -radical formation is discussed. (author)

  4. Electrodeposition of ZnO from DMSO solution: influence of anion nature and its concentration in the nucleation and growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Gonzalo; Ramirez, Daniel, E-mail: gonzalo.riveros@uv.cl [Departamento de Quimica y Bioquimica, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso (Chile); Tello, Alejandra; Schrebler, Ricardo; Henriquez, Rodrigo; Gomez, Humberto [Instituto de Quimica, Pontificia Universidad Catolica de Valparaiso, Curauma, Valparaiso (Chile)

    2012-03-15

    The influence of the anion nature and its concentration in the electrodeposition of ZnO onto a gold electrode from dimethylsulfoxide (DMSO) solutions was studied. Voltammetric experiments revealed important changes in the zinc oxide electrodeposition process depending on the employed anion as electrolyte. From chronoamperometric experiments, the corresponding current-time curves were fitted with different nucleation and growth mechanism models. The analysis of these results showed changes from an instantaneous to a progressive growth when the solution composition was changed from ZnCl{sub 2} to ZnCl{sub 2} + LiCl. The change of the mechanism is associated to the adsorption of chloride ion on the active sites of the electrode surface when LiCl is present in the solution. (author)

  5. Extraction mechanism of Sc(III) from sulphuric acid solution by primary amine N1923

    International Nuclear Information System (INIS)

    Le Shaoming; Li Deqian; Ni Jiazan

    1987-01-01

    The extraction mechanism of Sc(III) from sulphuric acid solution by primary amine N 1923 (RNH 2 ) has been investigated by means of slope, isomolar continuous variation and saturation methods. The effect of temperature on the extraction of Sc(III) is observed. The extraction equilibrium constant and thermodynamic functions (ΔH, ΔS and ΔG) are obtained. The IR and NMR of extracted compound are measured

  6. Development of the mechanical properties of engineered skin substitutes after grafting to full-thickness wounds.

    Science.gov (United States)

    Sander, Edward A; Lynch, Kaari A; Boyce, Steven T

    2014-05-01

    Engineered skin substitutes (ESSs) have been reported to close full-thickness burn wounds but are subject to loss from mechanical shear due to their deficiencies in tensile strength and elasticity. Hypothetically, if the mechanical properties of ESS matched those of native skin, losses due to shear or fracture could be reduced. To consider modifications of the composition of ESS to improve homology with native skin, biomechanical analyses of the current composition of ESS were performed. ESSs consist of a degradable biopolymer scaffold of type I collagen and chondroitin-sulfate (CGS) that is populated sequentially with cultured human dermal fibroblasts (hF) and epidermal keratinocytes (hK). In the current study, the hydrated biopolymer scaffold (CGS), the scaffold populated with hF dermal skin substitute (DSS), or the complete ESS were evaluated mechanically for linear stiffness (N/mm), ultimate tensile load at failure (N), maximum extension at failure (mm), and energy absorbed up to the point of failure (N-mm). These biomechanical end points were also used to evaluate ESS at six weeks after grafting to full-thickness skin wounds in athymic mice and compared to murine autograft or excised murine skin. The data showed statistically significant differences (p clinical morbidity from graft loss.

  7. Equilibrium and extraction mechanism from monomeric and polimeric species of zirconium in solution. part. 2

    International Nuclear Information System (INIS)

    Azevedo, H.L.P. de.

    1980-01-01

    The mechanism of extraction and the equilibrium of chemical species from Zirconium solutions was studied. The multiple extraction method was used to show the species envolved in the extraction process and qualitative informations was obtained about the equilibrium between extractable species (monomers) and non-extractable species (polymers) in the aqueous phase. (M.J.C.) [pt

  8. Creep/Stress Rupture Behavior and Failure Mechanisms of Full CVI and Full PIP SiC/SiC Composites at Elevated Temperatures in Air

    Science.gov (United States)

    Bhatt, R. T.; Kiser, J. D.

    2017-01-01

    SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.

  9. Study of Asphaltene Solutions by Electrical Conductivity Measurements Conductivité électrique des solutions d'asphaltènes

    Directory of Open Access Journals (Sweden)

    Behar E.

    2006-11-01

    Full Text Available The asphaltene interactions in model solutions were studied using a technique based on the electrical conductivity measurement. Interactions with n-heptane, resins, surfactants, water, phenol and NaCI were investigated. The conclusions drawn from this study confirmed previous opinions on aggregation mechanism of asphaltenes in solutions. They confirmed also the interpretation of asphaltene behaviour in terms of colloidal solution theories. Les interactions des asphaltènes avec leur environnement moléculaire dans des solutions modèles ont été étudiées par la mesure de la conductivité électrique de ces solutions. Les interactions avec le n-heptane, des résines, des tensioactifs, l'eau, le phénol et le chlorure de sodium ont été explorées. Les conclusions tirées de cette étude ont confirmé certaines hypothèses faites sur les mécanismes d'agrégation des asphaltènes en solution, en particulier dans le cadre de la théorie des solutions colloïdales.

  10. Structural transitions in the titanium alloy β-CEZ studied by precipitation mechanisms after solution treatment

    International Nuclear Information System (INIS)

    Angelier, C.; Bechet, J.

    1994-01-01

    The β-CEZ, a high strength titanium alloy developed for aerospace engine applications, is a α/β near β alloy. A wide variety of phase transformations and attendant nodular, lamellar and mixed microstructures are possible according to thermomechanical treatment conditions. The aim of this present paper is to illustrate the influence of solution treat-ment temperature on equilibrium microstructures and continuous cooling transformations. Solution treatment temperature controls the volume fraction of primary α particles and composition of the β-matrix. Therefore the transformation during continuous cooling from α/β or β field depends on β-matrix stability and potential sites amount of α precipitation. After a β solution treatment, the α particles are disappeared and the β phase contains all alloying elements; the continuous cooling transformation produces a Widmanstaetten structure. If the cooling rate or/and the solution treatment temperature in the α/β field are sufficiently low, the microstructure consists only of nodular morphology. During α particles growth the α volume fraction increases as equilibrium and the decreasing of growth kinetic leads to supersaturated β matrix and Widmanstaetten α precipitation. The final microstructures are mixed. The influence of solution trat-ment temperature and cooling rate on nucleation and growth mechanisms is specially developed. (orig.)

  11. Mechanical and Morphological Effect of Plant Based Antimicrobial Solutions on Maxillofacial Silicone Elastomer.

    Science.gov (United States)

    Tetteh, Sophia; Bibb, Richard J; Martin, Simon J

    2018-05-30

    The objective of this study was to determine the effect of plant based antimicrobial solutions specifically tea tree and Manuka oil on facial silicone elastomers. The purpose of this in vitro study was to evaluate the effect of disinfection with plant extract solution on mechanical properties and morphology on the silicone elastomer. Test specimens were subjected to disinfection using tea tree oil, Manuka oil and the staphylococcus epidermidis bacteria. Furthermore, a procedure duration was used in the disinfection process to simulate up to one year of usage. Over 500 test specimens were fabricated for all tests performed namely hardness, elongation, tensile, tear strength tests, visual inspection and lastly surface characterization using SEM. A repeated measures ANOVA revealed that hardness and elongation at break varied significantly over the time period, whereas this was not observed in the tear and tensile strength parameters of the test samples.

  12. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - Combustion of methane

    Science.gov (United States)

    Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.

    1992-01-01

    A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.

  13. Analytical solutions to orthotropic variable thickness disk problems

    Directory of Open Access Journals (Sweden)

    Ahmet N. ERASLAN

    2016-02-01

    Full Text Available An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The boundary conditions used to complete the solutions simulate rotating annular disks with two free surfaces, stationary annular disks with pressurized inner and free outer surfaces, and free inner and pressurized outer surfaces. The results of the solutions to each of these cases are presented in graphical forms. It is observed that, for the three cases investigated the elastic orthotropy parameter turns out to be an important parameter affecting the elastic behaviorKeywords: Orthotropic disk, Variable thickness, Thermoelasticity, Hypergeometric equation

  14. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  15. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  16. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  17. Fluoride removal from diluted solutions by Donnan dialysis using full factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Boubakri, Ali; Helali, Nawel; Tlili, Mohamed; Amor, Mohamed Ben [Center of Researches and Water Technologies, Soliman (Turkey)

    2014-03-15

    Excessive fluoride concentration in potable water can lead to fluorosis of teeth and bones. In the present study, Donnan dialysis (DD) is applied for the removal of fluoride ions from diluted sodium fluoride solutions. A four factor two level (2{sup 4}) full factorial design was used to investigate the influence of different physico-chemical parameters on fluoride removal efficiency (Y{sub F}) and fluoride flux (J{sub F}) through anion exchange membrane. The statistical design determines factors which have the important effects on Donnan dialysis performance and studies all interactions among the considered parameters. The four significant factors were initial fluoride concentration, feed flow rate, temperature and agitation speed. The experimental results and statistical analysis show that the temperature and agitation speed have positive effects on fluoride removal efficiency and the initial fluoride concentration has a negative effect. In the case of fluoride flux, feed flow rate and initial concentration are the main effect and all factors have a positive effect. The interaction between studied parameters was not negligible on two responses. A maximum fluoride removal of 75.52% was obtained under optimum conditions and the highest value of fluoride flux obtained was 2.4 mg/cm{sup 2}·h. Empirical regression models were also obtained and used to predict the flux and the fluoride removal profiles with satisfactory results.

  18. Mechanism and kinetic considerations of TOC removal from the powdered activated carbon ozonation of diclofenac aqueous solutions.

    Science.gov (United States)

    Beltrán, Fernando J; Pocostales, J Pablo; Alvarez, Pedro M; Jaramillo, Josefa

    2009-09-30

    Ozonation of DCF in aqueous solution in the presence of powdered activated carbon (PAC) has been studied for mechanistic and kinetic purposes. The effects of gas flow rate, ozone gas concentration and initial TOC on the TOC elimination rate were then investigated. The use of PAC allows liquid-solid and internal diffusion mass transfer resistances being eliminated. Gas-liquid mass transfer resistance is also eliminated when ozonation is applied to DCF preozonated solutions. In the absence of mass transfer resistances a mechanism of reactions involving homogeneous and heterogeneous steps for TOC removal was proposed. From this mechanism a mathematical model constituted by mass balances of main species in water was established. Considerations about the changing nature of ozonation intermediates, as being promoters or inhibitors of ozone decomposition, is a key point to better predict the experimental concentrations of species present in this system.

  19. Mechanisms of bands and spirals formation during the drying of watery solutions of mercury (II) chloride with agar-agar

    International Nuclear Information System (INIS)

    Suarez-DomInguez, Edgardo Jonathan; Betancourt-Mar, Juvencio Alberto

    2005-01-01

    It is proposed two mechanisms to explain the formation of periodic and non periodic bands and spirals as thin films of gelatinous aqueous solutions of mercury (II) chloride are dried. The first mechanism supposes an homogeneous drying, where the height of the film decreases at constant rate, forming Liesegang bands. The second mechanism implies a non homogeneous drying where an evaporation front drives the formation of periodic bands and spirals

  20. Molecular mechanism of the viscosity of aqueous glucose solutions

    Science.gov (United States)

    Bulavin, L. A.; Zabashta, Yu. F.; Khlopov, A. M.; Khorol'skii, A. V.

    2017-01-01

    Experimental relations are obtained for the viscosity of aqueous glucose solutions in the temperature range of 10-80°C and concentration range 0.01-2.5%. It is found that the concentration dependence of fluidity is linear when the concentration is higher than a certain value and varies at different temperatures. The existence of such a dependence indicates that the mobilities of solvent and solute molecules are independent of the concentration of solutions. This assumption is used to construct a theoretical model, in which the structure of an aqueous glucose solution is presented as a combination of two weakly interacting networks formed by hydrogen bonds between water molecules and between glucose molecules. Theoretical relations are obtained using this model of network solution structure for the concentration and temperature dependence of solution viscosity. Experimental data are used to calculate the activation energies for water ( U w = 3.0 × 10-20 J) and glucose molecules ( U g = 2.8 × 10-20 J). It is shown that the viscosity of a solution in such a network structure is governed by the Brownian motion of solitons along the chains of hydrogen bonds. The weak interaction between networks results in the contributions to solution fluidity made by the motion of solitons in both of them being almost independent.

  1. Evaluation of Thermal and Thermo-mechanical Behavior of Full-scale Energy Foundations

    Science.gov (United States)

    Murphy, Kyle D.

    This study focuses on the thermo-mechanical and thermal behavior of full-scale energy foundations installed as part of two buildings recently constructed in Colorado. The soil stratigraphy at each of the sites differed, but both foundations were expected to function as primarily end-bearing elements with a tip socketed into rock. The heat exchanger configurations were also different amongst the foundations at both sites, permitting evaluation of the role of heat exchange. A common thread for both energy foundation case histories was the monitoring of the temperature and axial strain within the foundations during heat exchange operations. The first case study involves an evaluation of the long-term thermo-mechanical response of two full-scale energy foundations installed at the new Denver Housing Authority (DHA) Senior Living Facility at 1099 Osage St. in Denver, Colorado. Due to the construction schedule for this project, the thermal properties of the foundations and surrounding subsurface could not be assessed using thermal response tests. However, instrumentation was incorporated into the foundations to assess their long-term heat exchange response as well as the thermo-mechanical strains, stresses, and displacements that occurred during construction and operation of the ground-source heat pump system. The temperature changes within the foundations during heating and cooling operations over a period of approximately 600 days ranged from 9 to 32 °C, respectively. The thermal axial stresses in the foundations were calculated from the measured strains, and ranged from 3.1 MPa during heating to --1.0 MPa during cooling. These values are within reasonable limits for reinforced concrete structures. The maximum thermal axial stress was observed near the toe of both foundations, which is consistent with trends expected for end-bearing toe boundary conditions. The greatest thermal axial strains were observed near the top of the foundations (upward expansion during

  2. Full Equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures

    Science.gov (United States)

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures. A stream system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the stream system for which complete information on flow and depth are not required (dummy branches), and level-pool reservoirs. These components are connected by special features; that is, hydraulic control structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and pumps. The principles of conservation of mass and conservation of momentum are used to calculate the flow and depth throughout the stream system resulting from known initial and boundary conditions by means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic characteristics of (1) branches including top width, area, first moment of area with respect to the water surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater and (or) tail-water elevations, including the operation of variable-geometry structures) are stored in function tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs, and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution scheme for flow and depth throughout the stream system, an interpolation of the function tables corresponding to the computational nodes throughout the stream system is done in the model. FEQ can be applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow conditions, and special features. The

  3. The Reaction Mechanism and Rate Constants in the Radiolysis of Fe2+-Cu2+ Solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Sehested, Knud; Rasmussen, O. Lang

    1976-01-01

    Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some ...... 10^{8}$ and $1.3\\times 10^{8}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$ in pH 2.1 H2 SO4 and HClO4, respectively.......Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some...... of the reactions have been determined at different pH's. $k_{{\\rm Cu}^{+}+{\\rm O}_{2}}=4.6\\times 10^{5}$ and $1.0\\times 10^{6}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}^{+}+{\\rm Fe}^{3+}}=5.5\\times 10^{6}$ and $1.3\\times 10^{7}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}({\\rm III)}+{\\rm Fe}^{2+}}=3.3\\times...

  4. Symmetries, Traveling Wave Solutions, and Conservation Laws of a (3+1-Dimensional Boussinesq Equation

    Directory of Open Access Journals (Sweden)

    Letlhogonolo Daddy Moleleki

    2014-01-01

    Full Text Available We analyze the (3+1-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the (3+1-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the (3+1-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.

  5. Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution

    International Nuclear Information System (INIS)

    Contreras, A.; Hernández, S.L.; Orozco-Cruz, R.; Galvan-Martínez, R.

    2012-01-01

    Highlights: ► Mechanical and environmental effects on SCC of X52 steel were investigated. ► Slow strain rate tests (SSRT) were performed in a soil solution (NS4). ► Different levels of polarization potentials were applied to mitigating SCC. ► SSRT results indicate that X52 pipeline steel was susceptible to SCC. ► SCC susceptibility increase as the yielding and ultimate tensile stress increase. -- Abstract: Mechanical and environmental effects on stress corrosion cracking (SCC) susceptibility of X52 pipeline steel were investigated using slow strain rate tests (SSRT) performed in a glass autoclave containing a soil solution at strain rate of 1 × 10 −6 in./s at room temperature. Polarization potentials of −100, −200 and −400 mV referred to open circuit potential (OCP) was applied in order to establish the effectiveness of cathodic protection in mitigating SCC of X52 pipeline steel. Electrochemical impedance spectroscopy (EIS) tests and scanning electron microscopy (SEM) observations were done in order to analyze the SCC process. SSRT results indicate that X52 pipeline steel was susceptible to SCC. Susceptibility to SCC increase as the yielding stress (YS) and ultimate tensile stress (UTS) increase. The EIS results showed that the highest corrosion of the steel sample was obtained when the highest cathodic over potential was applied. SEM observations of these specimens showed a brittle type of fracture with transgranular appearance. The failure and SCC of X52 steel in soil solution was explained by hydrogen mechanism.

  6. Effect of C content on the mechanical properties of solution treated as-cast ASTM F-75 alloys.

    Science.gov (United States)

    Herrera, M; Espinoza, A; Méndez, J; Castro, M; López, J; Rendón, J

    2005-07-01

    The mechanical properties of solution treated ASTM F-75 alloys with various carbon contents have been studied. Alloys cast under the same conditions were subjected to solution treatment for several periods and then their tensile properties were evaluated. In the as-cast conditions, the alloys exhibited higher strength values with increasing carbon content whereas their ductility was not significantly affected. For the solution treated alloys, the variation of the strength was characterized by a progressive increase for short treatment times until a maximum value was achieved, which was followed by a diminution in this property for longer treatment times. This behavior was more accentuated for the case of the alloys with medium carbon contents, which also exhibited the highest values of strength. Furthermore, the alloy's ductility was enhanced progressively with increasing solution treatment time. This improvement in ductility was significantly higher for the medium carbon alloys compared with the rest of the studied alloys. Thus, high and low carbon contents in solution treated ASTM F-75 alloys did not produced sufficiently high tensile properties.

  7. Adsorption and wetting mechanisms at the surface of aqueous hydrocarbon solutions as a possible source of atmospheric pollution

    International Nuclear Information System (INIS)

    Sadiki, M.; Quentel, F.; Elleouet, C.; Olier, R.; Privat, M.

    2006-01-01

    Hydrocarbons in solutions have been the subject of very few investigations despite their relevance, in particular, in situations where environmental mechanisms are involved. We present, here, a synthesis of several studies conducted within our laboratory about the adsorption, at the water surface, of benzene and cyclohexane from under-saturated solutions. The co-adsorption of lead nitrate is also evidenced, though it does not adsorb in absence of organic molecules in the surface. Most of the data reported here were collected from series of measurements made with a very uncommon method: the bubble column; this technique, though being very time-demanding and lacking of user-friendliness, proved its usefulness and relevance in the study of such weakly adsorbable, surface-tension inactive compounds. The study of mixtures is simple and requires no model, which is precious in environmental research. The gathered data demonstrate that, through mechanical mechanisms such as bubbling, co-adsorption can lead to the passing from water to the atmosphere of harmful non-soluble, poorly surface-active, components. (authors)

  8. Analytical solution of the thermo-mechanical stresses in a multilayered composite pressure vessel considering the influence of the closed ends

    International Nuclear Information System (INIS)

    Zhang, Q.; Wang, Z.W.; Tang, C.Y.; Hu, D.P.; Liu, P.Q.; Xia, L.Z.

    2012-01-01

    Limited work has been reported on determining the thermo-mechanical stresses in a multilayered composite pressure vessel when the influence of its closed ends is considered. In this study, an analytical solution was derived for determining the stress distribution of a multilayered composite pressure vessel subjected to an internal fluid pressure and a thermal load, based on thermo-elasticity theory. In the solution, a pseudo extrusion pressure was proposed to emulate the effect of the closed ends of the pressure vessel. To validate the analytical solution, the stress distribution of the pressure vessel was also computed using finite element (FE) method. It was found that the analytical results were in good agreement with the computational ones, and the effect of thermal load on the stress distribution was discussed in detail. The proposed analytical solution provides an exact means to design multilayered composite pressure vessels. Highlights: ► The thermal-mechanical stress was derived for a multilayered pressure vessel. ► A new pseudo extrusion pressure was proposed to emulate the effect of closed ends. ► The analytical results are in good agreement with the computational ones using FEM. ► The solution provides an exact way to design the multilayered pressure vessel.

  9. Analytic Solution to Shell Boundary – Value Problems

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available Object of research is to find analytical solution to the shell boundary – value problems, i.e. to consider the solution for a class of problems concerning the mechanics of hoop closed shells strain.The objective of work is to create an analytical method to define a stress – strain state of shells under non-axisymmetric loading. Thus, a main goal is to derive the formulas – solutions of the linear ordinary differential equations with variable continuous coefficients.The partial derivative differential equations of mechanics of shells strain by Fourier's method of variables division are reduced to the system of the differential equations with ordinary derivatives. The paper presents the obtained formulas to define solutions of the uniform differential equations and received on their basis formulas to define a particular solution depending on a type of the right parts of the differential equations.The analytical algorithm of the solution of a boundary task uses an approach to transfer the boundary conditions to the randomly chosen point of an interval of changing independent variable through the solution of the canonical matrix ordinary differential equation with the subsequent solution of system of algebraic equations for compatibility of boundary conditions at this point. Efficiency of algorithm is based on the fact that the solution of the ordinary differential equations is defined as the values of Cauchy – Krylova functions, which meet initial arbitrary conditions.The results of researches presented in work are useful to experts in the field of calculus mathematics, dealing with solution of systems of linear ordinary differential equations and creation of effective analytical computing methods to solve shell boundary – value problems.

  10. A multi-level quantum mechanics and molecular mechanics study of SN2 reaction at nitrogen: NH2Cl + OH(-) in aqueous solution.

    Science.gov (United States)

    Lv, Jing; Zhang, Jingxue; Wang, Dunyou

    2016-02-17

    We employed a multi-level quantum mechanics and molecular mechanics approach to study the reaction NH2Cl + OH(-) in aqueous solution. The multi-level quantum method (including the DFT method with both the B3LYP and M06-2X exchange-correlation functionals and the CCSD(T) method, and both methods with the aug-cc-pVDZ basis set) was used to treat the quantum reaction region in different stages of the calculation in order to obtain an accurate potential of mean force. The obtained free energy activation barriers at the DFT/MM level of theory yielded a big difference of 21.8 kcal mol(-1) with the B3LYP functional and 27.4 kcal mol(-1) with the M06-2X functional respectively. Nonetheless, the barrier heights become very close when shifted from DFT to CCSD(T): 22.4 kcal mol(-1) and 22.9 kcal mol(-1) at CCSD(T)(B3LYP)/MM and CCSD(T)(M06-2X)/MM levels of theory, respectively. The free reaction energy obtained using CCSD(T)(M06-2X)/MM shows an excellent agreement with the one calculated using the available gas-phase data. Aqueous solution plays a significant role in shaping the reaction profile. In total, the water solution contributes 13.3 kcal mol(-1) and 14.6 kcal mol(-1) to the free energy barrier heights at CCSD(T)(B3LYP)/MM and CCSD(T)(M06-2X)/MM respectively. The title reaction at nitrogen is a faster reaction than the corresponding reaction at carbon, CH3Cl + OH(-).

  11. MAINTAINING VEHICLE SPEED USING A MECHANICAL CRUISE CONTROL

    Directory of Open Access Journals (Sweden)

    Peter GIROVSKÝ

    2017-06-01

    Full Text Available In this article we would like to present cruise control realization. This cruise control is presented as mechanical device for vehicle speed maintenance and has been proposed as a low cost solution. Principle of function in mechanical cruise control is based on a position control of throttle. For the right action of mechanical cruise control it was need to solve some particular tasks related with speed sensing, construct of device for control of throttle position and design of control system of whole mechanical cruise control. Information about car velocity we have gained using Hall sensor attached on a magnetic ring of car tachometer. For control of the throttle was used a small servo drive and as the control unit was used Arduino. The designed solution of mechanical cruise control have been realized for car Škoda Felicia.

  12. Collisionless Weibel shocks: Full formation mechanism and timing

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  13. Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions

    DEFF Research Database (Denmark)

    Murgich, J.; Lira-Galeana, C.; Garcia, Daniel Merino

    2002-01-01

    The interaction of two model asphaltene molecules from the Athabasca sand oil with a water molecule in a toluene solution was studied by means of molecular mechanics calculations. It was found that water forms bridging H bonds between the heteroatoms of asphaltenes with a considerable span...... in energies. The stronger H bond found has energies higher than those corresponding to the stacking of the aromatic areas of the same asphaltene molecules. This shows that the water molecule may generate additional mechanisms of aggregation of asphaltenes in toluene solution, as found experimentally. The H...... by titration calorimetry. A simple dimer dissociation model was used to derive the information about the heat and the constant of dissociation from asphaltenes of Mexico and Alaska obtained from the calorimetric data. The association enthalpies calculated were found to be in excellent agreement with those...

  14. Effectiveness and Mechanism of Preoperative Lugol Solution for Reducing Thyroid Blood Flow in Patients with Euthyroid Graves' Disease.

    Science.gov (United States)

    Huang, Shih-Ming; Liao, Wei-Ting; Lin, Chiou-Feng; Sun, H Sunny; Chow, Nan-Haw

    2016-03-01

    To reduce intraoperative and postoperative complications, using Lugol solution to preoperatively prepare patients with Graves' disease has (1) rapidly reduced the severity of thyrotoxicosis and (2) reduced the vascularity of the thyroid gland. The vascularity reduction normally accompanies reducing the severity of thyrotoxicosis. However, the effects and mechanism of Lugol solution for reducing blood flow have not been well investigated in the patients with euthyroid (normally functioning thyroid) Graves' disease. Twenty-five patients with euthyroid Graves' disease being preoperatively treated with Lugol solution for 10 days were measured, at baseline and on the operative day, for (1) superior thyroid artery blood flow; (2) systemic angiogenic factor (VEGF); and (3) systemic inflammatory factor [interleukin (IL)-16]. All three parameters were significantly (p Graves' disease. We recommend routine preoperative Lugol solution treatment for all patients with Graves' disease.

  15. Investigation of the mechanism of microplasma impact on iron and aluminum load using solutions of organic substances

    International Nuclear Information System (INIS)

    Lobanova, G L; Yurmazova, T A; Shiyan, L N; Voyno, D A

    2015-01-01

    The paper reports on the study of mechanism of electroeffects on iron and aluminum and pellets with using solutions of organic substances. Methylene blue solution, furacilin and eosin were used. It is observed the reactions of the pulse at the time and after switching off the voltage source. It is shown that there are two developing process in the conditions studied. The first process depends on material of electrodes and pulse parameters. The second process occurs spontaneously and it is determined by the redox reaction and sorption processes. The products of electrode erosion and active particles react in the redox reactions. Active particles are formed in solution by the action of pulsed electric discharge in water. The highest efficiency of the process was demonstrated on an iron pellets. (paper)

  16. Full-order optimal compensators for flow control: the multiple inputs case

    Science.gov (United States)

    Semeraro, Onofrio; Pralits, Jan O.

    2018-03-01

    Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.

  17. Approximate solutions: ramps and periodic variations. Chapter 5

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of reactor regulation is generally to maintain reactor power at the demand power, or to vary it slowly to attain a new demand power. On the other hand, the purpose of reactor shutdown systems (SDS) is to insert rapidly, on actuation, a large negative reactivity in order to minimize an overpower, or limit the energy released during a transient, so that fuel failure is improbable. Control mechanisms are therefore characterized by: their reactivity worth (mk), which must exceed the reactivity effect which the mechanism is designed to compensate; and their insertion rate (mk/s), which must be at least as fast as the effect to be controlled. Table 5.1 gives a summary of the various control mechanisms in a CANDU 6 reactor. The reactivity worth shown for each mechanism is the static reactivity change associated with full movement of the device. In reality, the dynamic reactivity will vary in a continuous manner, not suddenly, as assumed in the previous chapter. The realistic simulation of a reactivity insertion in the reactor must then take into account the rate of insertion of reactivity, which is governed by the insertion speed of the mechanism. We have seen in the previous chapter that it is possible to solved analytically the point-kinetics equations for constant reactivity. We could generalize these solutions to step-wise reactivity variations by linking together the analytic solutions to for a sequence of step changes. This approach is not necessarily the best from a numerical point of view. By introducing one or more simplifying assumptions, it will be possible to obtain an analytical solution of arbitrary variations in reactivity or in the external source. These assumptions will undoubtedly limit the applicability of the results, but the approximate solutions obtained will allow us to describe the reactor behaviour analytically. (author)

  18. A new mechanism for selective adsorption of rubber on carbon black surface caused by nano-confinement in SBR/NBR solution

    Science.gov (United States)

    Kawazoe, Masayuki

    A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.

  19. Influence of Solution Heat Treatment on Structure and Mechanical Properties of ZnAl22Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-09-01

    Full Text Available The influence of solution heat treatment at 385°C over 10 h with cooling in water on the structure, hardness and strength of the ZnAl22Cu3 eutectoid alloy is presented in the paper. The eutectoid ZnAl22Cu3 alloy is characterized by a dendritic structure. Dendrites are composed of a supersaturated solid solution of Al in Zn. In the interdendritic spaces a eutectoid mixture is present, with an absence of the ε (CuZn4 phase. Solution heat treatment of the ZnAl22Cu3 alloy causes the occurrence of precipitates rich in Zn and Cu, possibly ε phase. Solution heat treatment at 385°C initially causes a significant decrease of the alloy hardness, although longer solution heat treatment causes a significant increase of the hardness as compared to the as-cast alloy.

  20. Electrochemical mechanism of uranium mononitride dissolution in aqueous solutions of nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, Boris G. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry

    2017-09-01

    It was shown that the dissolution of UN with metallic conduction follows an electrochemical mechanism when it proceeds in contact with an electrically conductive medium (HNO{sub 3} solution). According to this mechanism, the oxidation of UN (at the anode) passes an electron into the UN matrix, which is a conductor, and can then reduce nitric acid in a parallel reaction a short distance away at another exposed surface of the UN (at the cathode). As a result, the reduction of HNO{sub 3} affords NO and NO{sub 2}, while oxidation of uranium mononitride affords NH{sub 3}, N{sub 2}, and N{sub 2}O. The occurrence of these two separate processes accounts for the composition and yields of the products formed from UN and HNO{sub 3} as well as for the nitrogen isotope distribution between them when UN and HNO{sub 3} were labeled with {sup 14} N or {sup 15}N. A mathematical equation describing the dependence of N{sub 2} and N{sub 2}O yields on HNO{sub 3} concentration was derived. It was also shown that the calculated value of standard electromotive force of the galvanic pair formed on the UN surface during its dissolution in HNO{sub 3} is high enough to initiate and support the electrochemical mechanism of its dissolution in nitric acid.

  1. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  2. Fault plane solutions as related to known geological faults in and near India

    Directory of Open Access Journals (Sweden)

    N. SRIVASTAVA

    1975-05-01

    Full Text Available Based on the focal mechanism solutions of newly determined solutions, and other recent workers the correlation between one of the nodal planes and the geological faults has been discussed for three regions namely Kashmir, Central Himalayas and northeast India including Assam. The variability between multiple solutions reported for some earthquakes and the limitations in the choice of the nodal plane from /'-wave solutions have been brought out. It is seen that no standard criteria either on the basis of isoseismals or of aftershocks can be used to distinguish the fault plane from the auxiliary plane. It has been found that in general there is good agreement between one of the nodal planes and the geological faults in Kashmir and the Central Himalayas. In northeast India, the strike directions obtained from the mechanism solutions generally agree with the trends of the main thrusts but the dip direction for shocks originating in the India-Burma border

  3. An Efficient and Robust Numerical Solution of the Full-Order Multiscale Model of Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Michal Beneš

    2018-01-01

    Full Text Available We propose a novel and efficient numerical approach for solving the pseudo two-dimensional multiscale model of the Li-ion cell dynamics based on first principles, describing the ion diffusion through the electrolyte and the porous electrodes, electric potential distribution, and Butler-Volmer kinetics. The numerical solution is obtained by the finite difference discretization of the diffusion equations combined with an original iterative scheme for solving the integral formulation of the laws of electrochemical interactions. We demonstrate that our implementation is fast and stable over the expected lifetime of the cell. In contrast to some simplified models, it provides physically consistent results for a wide range of applied currents including high loads. The algorithm forms a solid basis for simulations of cells and battery packs in hybrid electric vehicles, with possible straightforward extensions by aging and heat effects.

  4. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk' vs. lg[H2O].

    Science.gov (United States)

    Wang, Fei; Yang, Fan; Tian, Yang; Liu, Jiawei; Shen, Jiwei; Bai, Quan

    2018-01-01

    A stoichiometric displacement model for retention (SDM-R) of small solutes and proteins based on hydrophilic interaction chromatography (HILIC) was presented. A linear equation that related the logarithm of the capacity factor of the solute to the logarithm of the concentration of water in the mobile phase was derived. The stoichiometric displacement parameters, Z (the number of water molecules required to displace a solute from ligands) and lgI (containing a number of constants that relate to the affinity of solute to the ligands) could be obtained from the slope and the intercept of the linear plots of lgk' vs. lg[H 2 O]. The retention behaviors and retention mechanism of 15 kinds of small solutes and 6 kinds of proteins on 5 kinds HILIC columns with different ligands were investigated with SDM-R in typical range of water concentration in mobile phase. A good linear relationship between lgk' and lg[H 2 O] demonstrated that the most rational retention mechanism of solute in HILIC was a stoichiometric displacement process between solute and solvent molecules with water as displacing agents, which was not only valid for small solutes, but also could be used to explain the retention mechanism of biopolymers in HILIC. Comparing with the partition and adsorption models in HILIC, SDM-R was superior to them. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bis(carbazol-9-ylphenyl)aniline end-capped oligoarylenes as solution-processed nondoped emitters for full-emission color tuning organic light-emitting diodes.

    Science.gov (United States)

    Khanasa, Tanika; Prachumrak, Narid; Rattanawan, Rattanawaree; Jungsuttiwong, Siriporn; Keawin, Tinnagon; Sudyoadsuk, Taweesak; Tuntulani, Thawatchai; Promarak, Vinich

    2013-07-05

    A series of bis(3,6-di-tert-butylcarbazol-9-ylphenyl)aniline end-capped oligoarylenes, BCPA-Ars, are synthesized by double palladium-catalyzed cross-coupling reactions. By using this bis(carbazol-9-yl)triphenylamine moiety as an end-cap, we are able to reduce the crystallization and retain the high-emission ability of these planar fluorescent oligoarylene cores in the solid state, as well as improve the amorphous stability and solubility of the materials. The results of optical and electrochemical studies show that their HOMOs, LUMOs, and energy gaps can be easily modified or fine-tuned by either varying the degree of π-conjugation or using electron affinities of the aryl cores which include fluorene, oligothiophenes, 2,1,3-benzothiadiazole, 4,7-diphenyl-4-yl-2,1,3-benzothiadiazole, and 4,7-dithien-2-yl-2,1,3-benzothiadiazole. As a result, their emission spectra measured in solution and thin films can cover the full UV-vis spectrum (426-644 nm). Remarkably, solution-processed nondoped BCPA-Ars-based OLEDs could show moderate to excellent device performance with emission colors spanning the whole visible spectrum (deep blue to red). Particularly, the RGB (red, green, blue) OLEDs exhibit good color purity close to the pure RGB colors. This report offers a practical approach for both decorating the highly efficient but planar fluorophores and tuning their emission colors to be suitable for applications in nondoped and solution-processable full-color emission OLEDs.

  6. Structural analysis and magnetic properties of solid solutions of Co–Cr system obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Cantera, J.A. [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Sánchez-De Jesús, F., E-mail: fsanchez@uaeh.edu.mx [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Bolarín-Miró, A.M. [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Betancourt, I.; Torres-Villaseñor, G. [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-03-15

    In this paper, a systematic study on the structural and magnetic properties of Co{sub 100−x}Cr{sub x} alloys (0mechanical alloying is presented. Co and Cr elemental powders were used as precursors, and mixed in an adequate weight ratio to obtain Co{sub 1−x}Cr{sub x} (0Mechanical milling was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as the milling media with a ball:powder weight ratio of 10:1. The mixtures were milled for 7 h. Results shown that after 7 h of milling time, solid solutions based on Co-hcp, Co-fcc and Cr-bcc structures were obtained. The saturation polarization indicated a maximum value of 1.17 T (144 Am{sup 2}/kg) for the Co{sub 90}Cr{sub 10}, which decreases with the increasing of the Cr content up to x=80, as a consequence of the dilution effect of the magnetic moment which is caused by the Cr content and by the competition between ferromagnetic and antiferromagnetic exchange interactions. The coercivity increases up to 34 kA/m (435 Oe) for Co{sub 40}Cr{sub 60}. For Cr rich compositions, it is observed an important decrease reaching 21 kA/m (272 Oe) for Co{sub 10}Cr{sub 90,} it is related to the grain size and the structural change. Besides, the magnetic anisotropy constant was determined for each composition. Magnetic thermogravimetric analysis allowed to obtain Curie temperatures corresponding to the formation of hcp-Co(Cr) and fcc-Co(Cr) solid solutions. - Highlights: • Mechanical alloying (MA) induces the formation of solid solutions of Co–Cr system in non-equilibrium. • We report the crystal structure and the magnetic behavior of Co–Cr alloys produced by MA. • MA improves the magnetic properties of Co–Cr system.

  7. Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl- attack on CH3Cl.

    Science.gov (United States)

    Kuechler, Erich R; York, Darrin M

    2014-02-07

    The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.

  8. Autonomous path planning solution for industrial robot manipulator using backpropagation algorithm

    Directory of Open Access Journals (Sweden)

    PeiJiang Yuan

    2015-12-01

    Full Text Available Here, we propose an autonomous path planning solution using backpropagation algorithm. The mechanism of movement used by humans in controlling their arms is analyzed and then applied to control a robot manipulator. Autonomous path planning solution is a numerical method. The model of industrial robot manipulator used in this article is a KUKA KR 210 R2700 EXTRA robot. In order to show the performance of the autonomous path planning solution, an experiment validation of path tracking is provided. Experiment validation consists of implementation of the autonomous path planning solution and the control of physical robot. The process of converging to target solution is provided. The mean absolute error of position for tool center point is also analyzed. Comparison between autonomous path planning solution and the numerical methods based on Newton–Raphson algorithm is provided to demonstrate the efficiency and accuracy of the autonomous path planning solution.

  9. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and displac......The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain...... of the system free energy and its dependence on the surface amount. It is solved in the cantilever case thanks to an asymptotic analysis, and an approached closed-form solution is obtained for the interfacial stress field. Finally, some conclusions regarding the transducer efficiency of cantilevers are drawn...

  10. On mechanism of chlorophos radiation-chemical decomposition in aqueous solutions

    International Nuclear Information System (INIS)

    Danilin, D.I.; Shubin, V.N.

    1992-01-01

    Quantitative indices of chlorophos decomposition in a aqueous solution and in solutions with a number of additions are studied. Chlorine ions and substances containing the carbonyl group are found among the products of gamma-irradiation of low-concentration chlorophos solutions. The data supporting the running of radiation destructive reactions of reduction nature rather than oxidation type, are presented

  11. Novel Problem Solving - The NASA Solution Mechanism Guide

    Science.gov (United States)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the

  12. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J; Verkman, Alan S

    2016-12-01

    A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. © 2016 Jin et al.

  13. Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation

    Directory of Open Access Journals (Sweden)

    S. Balaji

    2014-01-01

    Full Text Available A Legendre wavelet operational matrix method (LWM is presented for the solution of nonlinear fractional-order Riccati differential equations, having variety of applications in quantum chemistry and quantum mechanics. The fractional-order Riccati differential equations converted into a system of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed scheme are more accurate and reliable and they are compared with recently developed numerical, analytical, and stochastic approaches. Comparison shows that the proposed LWM approach has a greater performance and less computational effort for getting accurate solutions. Further existence and uniqueness of the proposed problem are given and moreover the condition of convergence is verified.

  14. Stability of the isentropic Riemann solutions of the full multidimensional Euler system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Kreml, Ondřej; Vasseur, A.

    2015-01-01

    Roč. 47, č. 3 (2015), s. 2416-2425 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * isentropic solutions * Riemann problem * rarefaction wave Subject RIV: BA - General Mathematics Impact factor: 1.486, year: 2015 http://epubs.siam.org/doi/abs/10.1137/140999827

  15. SAS Enterprise Data Integration Server - A Complete Solution Designed To Meet the Full Spectrum of Enterprise Data Integration Needs

    Directory of Open Access Journals (Sweden)

    Silvia BOLOHAN

    2012-05-01

    Full Text Available This paper is about why is Data Integration important for organisations around the world. Organizations struggle daily with the challenges of large distributed data volumes, inconsistently defined data across disparate systems and the high expectations of data consumers who depend on information to be correct, complete and available when they need it. SAS Enterprise Data Integration Server provides a comprehensive solution that enables organizations to solve these challenges in a timely, cost-effective manner with the ability to efficiently manage data integration projects on an enterprise scale, increasing overall productivity and reducing the total cost of ownership.

  16. Spectral bisection algorithm for solving Schrodinger equation using upper and lower solutions

    Directory of Open Access Journals (Sweden)

    Qutaibeh Deeb Katatbeh

    2007-10-01

    Full Text Available This paper establishes a new criteria for obtaining a sequence of upper and lower bounds for the ground state eigenvalue of Schr"odinger equation $ -Deltapsi(r+V(rpsi(r=Epsi(r$ in $N$ spatial dimensions. Based on this proposed criteria, we prove a new comparison theorem in quantum mechanics for the ground state eigenfunctions of Schrodinger equation. We determine also lower and upper solutions for the exact wave function of the ground state eigenfunctions using the computed upper and lower bounds for the eigenvalues obtained by variational methods. In other words, by using this criteria, we prove that the substitution of the lower(upper bound of the eigenvalue in Schrodinger equation leads to an upper(lower solution. Finally, two proposed iteration approaches lead to an exact convergent sequence of solutions. The first one uses Raielgh-Ritz theorem. Meanwhile, the second approach uses a new numerical spectral bisection technique. We apply our results for a wide class of potentials in quantum mechanics such as sum of power-law potentials in quantum mechanics.

  17. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models.

    Science.gov (United States)

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-03-01

    Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when

  18. Cementation feasibility of a uranium-thorium based solution by physical and mechanical characterization

    International Nuclear Information System (INIS)

    Carpentiero, R.; Luce, A.; Troiani, F.

    2002-01-01

    By reprocessing Elk River nuclear fuel, at the ENEA ITREC Plant (South of Italy), about 3 m 3 of Uranium-Thorium based solution were produced. Previously considered an intermediate product to be further treated to recover U and Th, it is now being considered a waste, due to considerable content of fission products and to phasing out of the Italian nuclear industry. Together with other treatment options, a conditioning process in cement matrix is being evaluated, supported by some chemical, physical and mechanical tests on samples prepared with simulated waste. The main components selected to simulate the real solution were thorium nitrate (at two different concentrations), ferrous nitrate and nitric acid. This solution has been neutralized with sodium carbonate (at two different concentration) and cemented by means of a properly defined formulation. Pozzolanic blend cement, at different water to cement ratio, with and without a silica type additive, has been investigated. Cubic samples were subjected to compression tests and repeated freeze-thaw cycles followed by compression tests. Cylindrical samples were subjected to a leach test (according. to the tn ANSI/ANS-16.1 standard). The obtained results are above the minimum acceptance values established by the Italian authority. The evaluated properties are the first important elements to estimate the long term-instability of conditioned radioactive waste. Meanwhile a preliminary theoretical study has been done to evaluate the gas evolution from the matrix due to radiolysis effect. The reached conclusions encourage the development of further analysis to implement a cementation facility. (Author)

  19. Solar orbiter/PHI full disk telescope entrance window mechanical mount

    Science.gov (United States)

    Barandiaran, J.; Zuluaga, P.; Fernandez, A. B.; Vera, I.; Garranzo, D.; Nuñez, A.; Bastide, L.; Royo, M. T.; Alvarez, A.

    2017-11-01

    PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, and polarization sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft (spacecraft (S/C)). PHI will consist of two telescopes: The High Resolution Telescope (HRT)[1] and the Full Disk Telescope (FDT). The HRT and the FDT will view the Sun through entrance windows located in the S/C heat shield. These windows act as heat rejecting filters with a transmission band of about 30 nm width centered on the science wavelength, such that the total transmittance (integral over the filter curve weighted with solar spectrum, including white leakage plus transmission profile of the pass band) does not exceed 4% of the total energy falling onto the window [2][3]. The HREW filter has been designed by SELEX in the framework of an ESA led technology development activity under original ESTEC contract No. 20018/06/NL/CP[4], and extensions thereof. For FDT HREW SLEX will provide the windows and it coatings. The HREW consists of two parallel-plane substrate plates (window 1 & window 2)[5] made of SUPRASIL 300 with a central thickness of 9 mm and a wedge of 30 arcsec each. These two substrates are each coated on both sides with four different coatings. These coatings and the choice of SUPRASIL help to minimize the optical absorptivity in the substrate and to radiatively decouple the HREW, which is expected to run at high temperatures during perihelion passages, from the PHI instrument cavity. The temperature distribution of the HREW is driven by two main factors: the mechanical mounting of the substrates to the feedthrough, and the radiative environment within the heat-shield/feedthrough assembly. The mechanical mount must ensure the correct integration of both suprasil substrates in its correct position and minimize the loads in windows due to thermal induced deformations and launching vibration environment. All the

  20. Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV-Vis Spectroscopy.

    Science.gov (United States)

    Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron

    2018-04-04

    Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.

  1. Modelling of bentonite-granite solutes transfer from an in situ full-scale experiment to simulate a deep geological repository (Grimsel Test Site, Switzerland)

    International Nuclear Information System (INIS)

    Buil, B.; Gomez, P.; Pena, J.; Garralon, A.; Turrero, M.J.; Escribano, A.; Sanchez, L.; Duran, J.M.

    2010-01-01

    Research highlights: → The FEBEX experiment is a 1:1 simulation of a high level waste disposal facility in crystalline rock according to the Spanish radwaste disposal concept. → Solute transfer processes occurrs at the bentonite-granite interface. → An increase of Cl and Na is observed in granitic water of the surrounding of the experiment. → Solute transfer does not affect the sealing and thermo-hydromechanical properties of the engineered barriers. → A diffusive transport of Cl and Na simulated by 1D transport modeling with an effective diffusion coefficient of D e ≅ 5.0 E-11 m 2 /s. - Abstract: The FEBEX experiment is a 1:1 simulation of a high level waste disposal facility in crystalline rock according to the Spanish radwaste disposal concept. This experiment has been performed in a gallery drilled in the underground laboratory Grimsel Test Site (Switzerland). Two boreholes parallel to the FEBEX drift were drilled 20 and 60 cm away from the granite-bentonite interface to provide data on potential bentonite-granite solutes transfer. Periodic sampling and analysis of the major ions showed: (a) the existence of solutes transfer from the bentonite porewater towards the granite groundwater, explaining the Cl - and Na + contents of the latter; (b) that the concentration of the natural tracers coming into the granite groundwater from the bentonite porewater increased over time. This bentonite-granite solutes transfer was modelled in order to predict the increase in the Cl - and Na + concentrations of the granite groundwater. The modelled results seem to confirm that the mechanism of solute migration in this scenario is that of diffusive transport. An effective diffusion coefficient of D e = 5 x 10 -11 m 2 /s was that which best fitted the data obtained.

  2. Implementing Data Acquisition Systems DAS1 and DAS2 at Cernavoda Full-Scope Simulator Main Control Room based on the SIEN2007 solution

    International Nuclear Information System (INIS)

    Ionescu, Ana Maria; Tutuianu, Bogdan; Ionescu, Teodor

    2009-01-01

    Modern personnel training, re-training and licensing is a guarantee of NPP's safe reliable operation. Cernavoda NPP personnel training system is the main objective of its specialized department built up as Training Center (TC), directly supervised by Administration of the National Nuclearelectrica Society (SNN) and National Regulatory Body for Nuclear Activities (CNCAN). It was implemented to ensure the abilities, skills and knowledge required by the safe reliable operation of the nuclear reactor by the Main Control Room (MCR) operators. This objective was reached through training lessons taught and tested on the Full Scope Simulator (FSS), the TC's main training tool, a replica of the MCR of the real plant. Its description is the subject of this paper. The TC's FSS includes a computer network equipped with a software connected to the specialized program DATAPATH supplied for Cernavoda FSS by the FSS provider, delivered by L-3/ MAPPS. An alternative to DATAPATH Communication of the L 3/MAPPS Simulation System, developed by Cernavoda Full Scope Simulator Staff, was presented in the previous edition of the symposium (see the SIEN 2007 paper). This original solution is now already applied in order to connect to simulation process Data Acquisition Systems DAS1 and DAS2, two new systems already installed in the real MCR but not included by the Cernavoda FSS initial design. Communication between simulation software and DAS1 and DAS2, considered to be simple receivers of simulated data both as much alike as the two DASs from real plant, is performed in parallel with DATAPATH in a safe mode and without affecting simulation process. This paperwork presents the above mentioned application of this communication solution, developed by the Cernavoda NPP Full Scope Simulator Staff with details about the hardware/software solutions and their performance, training impact, cost and benefits. (authors)

  3. Frequency domain design of gain scheduling control for large wind systems in full-load region

    International Nuclear Information System (INIS)

    Burlibaşa, A.; Ceangă, E.

    2014-01-01

    Highlights: • A large wind energy system, operating under full-load regime, is considered. • According to its particularities in frequency domain, control law design is provided. • These particularities are influenced by the interactions of wind–tower–blade ensemble. • Control low, within gain scheduling strategy, is achieved imposing stability reserve. • Supplementary a criterion, aimed at reducing mechanical loads, is imposed. - Abstract: The paper presents the issue of power control law synthesis, in the case of a large wind system that operates under full-load regime, based on dynamic properties details in frequency domain. Solving this problem involves two phases: the establishment of a linearized model as faithfully as possible in various operating points of the full-load region, and synthesis of the power controller, considered with classic structure, taking into account frequency particularities of the obtained linearized model. Obtained linear model of the controlled process is of order 16 and encloses subsystems for tower fore-aft oscillations damping, and for drive-train torsion oscillations damping. The designed controller contains a PI component and a lag compensator for dynamic correction at high frequencies. It is known that the main features of wind system dynamics generated by the interaction of wind–tower–blade ensemble cause a gap in the gain characteristic of the model and complex conjugate zeros, which can move between right and left half-planes, depending on the average wind speed value. Consequently, for control law synthesis an interactive frequency solution is adopted. This is “transparent” in relation to particularities induced by wind–tower–blade interaction. This solution allows evaluation of the extent to which control law is affected by the subsystem for tower oscillations damping. Given the strong dependence between the model and the mean wind speed value, a gain scheduling control law is designed. At

  4. Precipitation kinetics and mechanical behavior in a solution treated and aged dual phase stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Badji, R., E-mail: riadbadji1@yahoo.fr [Welding and NDT Research Centre (CSC), B.P. 64, Cheraga (Algeria); Kherrouba, N.; Mehdi, B.; Cheniti, B. [Welding and NDT Research Centre (CSC), B.P. 64, Cheraga (Algeria); Bouabdallah, M. [LGSDS – ENP, 10, Avenue Hassan Badi, 16200 El Harrah, Alger (Algeria); Kahloun, C.; Bacroix, B. [LSPM – CNRS, Université Paris 13, 93430 Villetaneuse (France)

    2014-12-15

    The precipitation kinetics and the mechanical behavior in a solution treated and aged dual phase stainless steel (DSS) are investigated. X-ray diffraction, transmission and scanning electron microscopy techniques are used to characterize the microstructure and to identify its constituents. The precipitation kinetics analysis shows that the ferrite to σ phase transformation follows the modified Johnson Mehl Avrami (JMA) model containing an impingement parameter c that is adjusted to 0.3. Activation energies calculation leads to conclude that interface reaction is the main mechanism that controls the σ phase formation. Detailed analysis of the extent of the different tensile deformation domains reveals the significant contribution of both σ phase particles and dislocation accumulation to the strain hardening of the material. - Highlights: • The precipitation kinetics of the σ phase is affected by both soft and hard impingement phenomena. • Interface reaction is found to be the main mechanism that controls the ferrite to σ phase transformation. • Both σ phase particles and dislocation accumulation contribute to the strain hardening of the dual phase steel studied.

  5. The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.J.; Chu, W., E-mail: cewchu@polyu.edu.hk; Lee, Po-Heng; Wang, Jian

    2016-05-05

    Highlights: • pH influenced NP sonophotolysis by changing its existing form and light absorption. • NO{sub 3}{sup −} accelerated NP sonophotolysis while HCO{sub 3}{sup −} showed insignificant influence. • Both ortho- and meta-hydroxy-NP species can exist together thermodynamically. • Only the ortho-4-nonyl-benzoquinone is dominant thermodynamically. • The mechanism of ortho-hydroxy-NP formation was the addition of HO· and H· - Abstract: Nonylphenol is a hydrophobic endocrine disrupting compound, which can inhibit the growth of sewage bacteria in biological processes. This study investigated the degradation of 4-n-nonylphenol (NP) in water by a chemical-free technology of sonophotolysis with emphasis on the impacts of several important parameters, including light intensity, solution pH, two commonly seen inorganic ions (i.e. NO{sub 3}{sup −} and HCO{sub 3}{sup −}), and principally on the examination of degradation mechanisms. It was found that, solution pH could significantly influence both NP degradation efficiency and the synergistic effect of sonophotolytic process, where higher synergistic effect was obtained at more acidic condition. In addition, the presence of NO{sub 3}{sup −} accelerated NP degradation by both acting as a photosensitizer and providing NO{sub 2}· radicals, while HCO{sub 3}{sup −} had little effect on NP degradation. Identification of intermediates of NP degradation indicated that NP sonophotolysis was mainly initiated by the formation of hydroxy-NP, and a new intermediate di-hydroxy-NP was identified for the first time ever in this study. Through thermodynamic analysis, results indicated that both ortho- and meta-hydroxy-NP species can coexist in the solution but the ortho-4-NBZQ (4-nonyl-benzoquinone) is dominant. In addition, the mechanism of ortho-hydroxy-NP formation was suggested by the addition of HO· and H· radicals.

  6. Effects of Chlorine Ions on the Dissolution Mechanism of Cu Thin Film in Phosphoric Acid Based Solution.

    Science.gov (United States)

    Seo, Bo-Hyun; Kim, Byoung O; Seo, Jong Hyun

    2015-10-01

    The dissolution mechanisms of Cu thin film were studied with a focus on the effect of chlorine ion concentrations in mixture solutions of phosphoric and nitric acid. The dissolution behaviors of Cu thin film were investigated by using potentio-dynamic curves and impedance spectroscopy with varying chlorine ion concentrations. The copper dissolution rate decreased and as a result of this change, CuCl, salt films formed on the Cu surface in the presence of chlorine ions in the mixture solution. Such behavior was interpreted as being competitive adsorption between chlorine and nitrate ions on the copper surface. The passive oxide film on the Cu surface was further investigated in detail using X-ray photoelectron spectroscopy in both the absence and presence of differing chlorine ion concentrations.

  7. Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

    Science.gov (United States)

    2015-01-01

    Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624

  8. Buffer management in wireless full-duplex systems

    KAUST Repository

    Bouacida, Nader; Showail, Ahmad; Shihada, Basem

    2015-01-01

    , we address the problem of buffer management in full-duplex networks by using Wireless Queue Management (WQM), which is an active queue management technique for wireless networks. Our solution is based on Relay Full-Duplex MAC (RFD

  9. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J.

    2016-01-01

    A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. PMID:27836940

  10. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation.

    Science.gov (United States)

    Saleh, H M; Annuar, M S M; Simarani, K

    2017-11-01

    Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm -2 , irradiation time 120min and 0.1gL -1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High mobility solution-processed hybrid light emitting transistors

    International Nuclear Information System (INIS)

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B.; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa

    2014-01-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm 2 /V s, current on/off ratios of >10 7 , and external quantum efficiency of 10 −2 % at 2100 cd/m 2 . These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective

  12. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  13. A Study of Analytical Solution for the Special Dissolution Rate Model of Rock Salt

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available By calculating the concentration distributions of rock salt solutions at the boundary layer, an ordinary differential equation for describing a special dissolution rate model of rock salt under the assumption of an instantaneous diffusion process was established to investigate the dissolution mechanism of rock salt under transient but stable conditions. The ordinary differential equation was then solved mathematically to give an analytical solution and related expressions for the dissolved radius and solution concentration. Thereafter, the analytical solution was fitted with transient dissolution test data of rock salt to provide the dissolution parameters at different flow rates, and the physical meaning of the analytical formula was also discussed. Finally, the influential factors of the analytical formula were investigated. There was approximately a linear relationship between the dissolution parameters and the flow rate. The effects of the dissolution area and initial volume of the solution on the dissolution rate equation of rock salt were computationally investigated. The results showed that the present analytical solution gives a good description of the dissolution mechanism of rock salt under some special conditions, which may provide a primary theoretical basis and an analytical way to investigate the dissolution characteristics of rock salt.

  14. Periodic Solutions and S-Asymptotically Periodic Solutions to Fractional Evolution Equations

    Directory of Open Access Journals (Sweden)

    Jia Mu

    2017-01-01

    Full Text Available This paper deals with the existence and uniqueness of periodic solutions, S-asymptotically periodic solutions, and other types of bounded solutions for some fractional evolution equations with the Weyl-Liouville fractional derivative defined for periodic functions. Applying Fourier transform we give reasonable definitions of mild solutions. Then we accurately estimate the spectral radius of resolvent operator and obtain some existence and uniqueness results.

  15. Quantum mechanics for natural-scientists. A text and exercise book with numerous problems and solutions; Quantenmechanik fuer Naturwissenschaftler. Ein Lehr- und Uebungsbuch mit zahlreichen Aufgaben und Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, Martin O. [Fraunhofer Ernst-Mach-Institut, Freiburg (Germany). Dept. Systems Solutions

    2017-05-01

    This textbook applies especially to studyings, in the curriculum of which in the bachelor nor master study methods of quantum mechanics. Treated are the non-relativistic quantum mechanics, so the Schroedinger equation and its solution in the central field and in different potentials, the hydrogen atom, the formalism of the creation and annihilation operators, the harmonic oscillator, the electron spin, as well as the electronic structure (Hartree-Fock solution procedure).

  16. Evidence of nonuniqueness and oscillatory solutions in computational fluid mechanics

    International Nuclear Information System (INIS)

    Nunziato, J.W.; Gartling, D.K.; Kipp, M.E.

    1985-01-01

    We will review some of our recent experiences in computing solutions for nonlinear fluids in relatively simple, two-dimensional geometries. The purpose of this discussion will be to display by example some of the interesting but difficult questions that arise when ill-behaved solutions are obtained numerically. We will consider two examples. As the first example, we will consider a nonlinear elastic (compressible) fluid with chemical reactions and discuss solutions for detonation and detonation failure in a two-dimensional cylinder. In this case, the numerical algorithm utilizes a finite-difference method with artificial viscosity (von Neumann-Richtmyer method) and leads to two, distinctly different, stable solutions depending on the time step criterion used. The second example to be considered involves the convection of a viscous fluid in a rectangular container as a result of an exothermic polymerization reaction. A solidification front develops near the top of the container and propagates down through the fluid, changing the aspect ratio of the region ahead of the front. Using a Galerkin-based finite element method, a numerical solution of the partial differential equations is obtained which tracks the front and correctly predicts the fluid temperatures near the walls. However, the solution also exhibits oscillatory behavior with regard to the number of cells in the fluid ahead of the front and in the strength of the cells. More definitive experiments and analysis are required to determine whether this oscillatory phenomena is a numerical artifact or a physical reality. 20 refs., 14 figs

  17. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  18. Inverse operator theory method mathematics-mechanization for the solutions of nonlinear equations and some typical applications in nonlinear physics

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    1992-12-01

    Inverse operator theory method (IOTM) has developed rapidly in the last few years. It is an effective and useful procedure for quantitative solution of nonlinear or stochastic continuous dynamical systems. Solutions are obtained in series form for deterministic equations, and in the case of stochastic equation it gives statistic measures of the solution process. A very important advantage of the IOTM is to eliminate a number of restrictive and assumption on the nature of stochastic processes. Therefore, it provides more realistic solutions. The IOTM and its mathematics-mechanization (MM) are briefly introduced. They are used successfully to study the chaotic behaviors of the nonlinear dynamical systems for the first time in the world. As typical examples, the Lorentz equation, generalized Duffing equation, two coupled generalized Duffing equations are investigated by the use of the IOTM and the MM. The results are in good agreement with ones by the Runge-Kutta method (RKM). It has higher accuracy and faster convergence. So the IOTM realized by the MM is of potential application valuable in nonlinear science

  19. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  20. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  1. Solute Transfer in Osmotic Dehydration of Vegetable Foods: A Review.

    Science.gov (United States)

    Muñiz-Becerá, Sahylin; Méndez-Lagunas, Lilia L; Rodríguez-Ramírez, Juan

    2017-10-01

    While various mechanisms have been proposed for the water transfer during osmotic dehydration (OD), little progress has been made to understand the mechanisms of solute transfer during osmotic dehydration. The transfer of solutes has been often described only by the diffusion mechanism; however, numerous evidences suggest the participation of a variety of mechanisms. This review deals with the main issues of solute transfer in the OD of vegetables. In this context, several studies suggest that during OD of fruits and vegetables, the migration of solutes is not influenced by diffusion. Thus, new theories that may explain the solute transport are analyzed, considering the influence of the plant microstructure and its interaction with the physicochemical properties of osmotic liquid media. In particular, the surface adhesion phenomenon is analyzed and discussed, as a possible mechanism present during the transfer of solutes in OD. © 2017 Institute of Food Technologists®.

  2. Mechanical structures with enhanced layout characteristics

    Directory of Open Access Journals (Sweden)

    Yefimenko A. A.

    2016-10-01

    Full Text Available The authors propose solutions for constructing mechanical structures for electronic equipment in terms of plug-in units and subracks, allowing to increase the layout characteristics of electronic modules, sections and desktop devices and increase their functional capacity without changing the architecture of standard mechanical structures. The paper shows effectiveness of the developed solutions. There is a problem of restraining of mass redundancy of mechanical structures for electronic equipment in relation to the weight of the electronic components. On the other hand, the weight is an indicator of structural strength, providing of which is not less important problem. These problems can be solved in different ways, the main of which are the following: a development of new mechanical structures for electronic equipment taking into account the development of the electronic components; b improving layout characteristics of mechanical structures for electronic equipment without significant changes in their architecture. The aim of the study was to research mechanical structures of the first level (plug-in units and modules of the second level of subracks to improve layout characteristics, and to develop methods for the use of connections for surface mounting and for the use of printed circuit boards of smaller dimensions without changing the architecture of the mechanical structures in order to improve layout characteristics. The research allowed the authors to develop the following solutions: 1. The design of plug-in units in which instead of one printed circuit board (PCB may be two, three or more PCBs of smaller dimensions to compensate a decrease in PCB fill factor in time and to increase the functional capacity of electronic modules. 2. Construction of block designs with a bilateral arrangement of plug-in units and the organization of the electrical connections by way of backplanes with electrical connectors for surface mounting, which allows

  3. Stress Corrosion Cracking of Zircaloy-4 in Halide Solutions: Effect of Temperature

    Directory of Open Access Journals (Sweden)

    Farina S.B.

    2002-01-01

    Full Text Available Zircaloy-4 was found to be susceptible to stress corrosion cracking in 1 M NaCl, 1 M KBr and 1 M KI aqueous solutions at potentials above the pitting potential. In all the solutions tested crack propagation was initially intergranular and then changed to transgranular. The effect of strain rate and temperature on the SCC propagation was investigated. An increase in the strain rate was found to lead to an increase in the crack propagation rate. The crack propagation rate increases in the three solutions tested as the temperatures increases between 20 and 90 °C. The Surface-Mobility SCC mechanism accounts for the observation made in the present work, and the activation energy predicted in iodide solutions is similar to that found in the literature.

  4. Some exact solutions for a unidimensional fokker-planck equation by using lie symmetries

    Directory of Open Access Journals (Sweden)

    Hugo Hernán Ortíz-Álvarez

    2015-01-01

    Full Text Available The Fokker Planck equation appears in the study of diffusion phenomena, stochastics processes and quantum and classical mechanics. A particular case fromthis equation, ut − uxx − xux − u=0, is examined by the Lie group method approach. From the invariant condition it was possible to obtain the infinitesimal generators or vectors associated to this equation, identifying the corresponding symmetry groups. Exact solution were found for each one of this generators and new solution were constructed by using symmetry properties.

  5. Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors.

    Science.gov (United States)

    Yu, You; Yan, Casey; Zheng, Zijian

    2014-08-20

    Metal interconnects, contacts, and electrodes are indispensable elements for most applications of flexible, stretchable, and wearable electronics. Current fabrication methods for these metal conductors are mainly based on conventional microfabrication procedures that have been migrated from Si semiconductor industries, which face significant challenges for organic-based compliant substrates. This Research News highlights a recently developed full-solution processing strategy, polymer-assisted metal deposition (PAMD), which is particularly suitable for the roll-to-roll, low-cost fabrication of high-performance compliant metal conductors (Cu, Ni, Ag, and Au) on a wide variety of organic substrates including plastics, elastomers, papers, and textiles. This paper presents i) the principles of PAMD, and how to use it for making ii) flexible, stretchable, and wearable conductive metal electrodes, iii) patterned metal interconnects, and d) 3D stretchable and compressible metal sponges. A critical perspective on this emerging strategy is also provided. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Thermalized solutions, statistical mechanics and turbulence

    Indian Academy of Sciences (India)

    2015-02-20

    Feb 20, 2015 ... In this study, we examine the intriguing connection between turbulence and equilibrium statistical mechanics. There are several recent works which emphasize this connection. Thus in the last ... Current Issue : Vol. 90, Issue 6.

  7. Quantum mechanics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum

  8. Mechanical engineering aspects of TFTR

    International Nuclear Information System (INIS)

    Citrolo, J.C.

    1983-04-01

    This paper briefly presents the principles which characterize a tokamak and discusses the mechanical aspects of TFTR, particularly the toroidal field coils and the vacuum chamber, in the context of being key components common to all tokamaks. The mechanical loads on these items as well as other design requirements are considered and the solutions to these requirements as executed in TFTR are presented. Future technological developments beyond the scope of TFTR, which are necessary to bring the tokamak concept to a full fusion-power system, are also presented. Additional methods of plasma heating, current drive, and first wall designs are examples of items in this category

  9. MILLING MECHANICS OF MATERIALS ROLLED IN THICK LAYER

    Directory of Open Access Journals (Sweden)

    E. B. Lojechnikov

    2006-01-01

    Full Text Available Powder rolling conditions are systematized with the purpose of their compacting and milling. The generalized  condition of solid and free-flowing bulk material deformation is proposed in the  paper. The analytical solution of a stressed state of powder being shaped mechanically that ensures milling of its particles has been obtained.

  10. Long runout landslides: a solution from granular mechanics

    Directory of Open Access Journals (Sweden)

    Stanislav eParez

    2015-10-01

    Full Text Available Large landslides exhibit surprisingly long runout distances compared to a rigid body sliding from the same slope, and the mechanism of this phenomena has been studied for decades. This paper shows that the observed long runouts can be explained quite simply via a granular pile flowing downhill, while collapsing and spreading, without the need for frictional weakening that has traditionally been suggested to cause long runouts. Kinematics of the granular flow is divided into center of mass motion and spreading due to flattening of the flowing mass. We solve the center of mass motion analytically based on a frictional law valid for granular flow, and find that center of mass runout is similar to that of a rigid body. Based on the shape of deposits observed in experiments with collapsing granular columns and numerical simulations of landslides, we derive a spreading length Rf~V^1/3. Spreading of a granular pile, leading to a deposit angle much lower than the angle of repose or the dynamic friction angle, is shown to be an important, often dominating, contribution to the total runout distance, accounting for the long runouts observed for natural landslides.

  11. Solute transport across the articular surface of injured cartilage.

    Science.gov (United States)

    Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M

    2013-07-15

    Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    König, Gerhard; Mei, Ye; Pickard, Frank C; Simmonett, Andrew C; Miller, Benjamin T; Herbert, John M; Woodcock, H Lee; Brooks, Bernard R; Shao, Yihan

    2016-01-12

    A recently developed MESS-E-QM/MM method (multiple-environment single-system quantum mechanical molecular/mechanical calculations with a Roothaan-step extrapolation) is applied to the computation of hydration free energies for the blind SAMPL4 test set and for 12 small molecules. First, free energy simulations are performed with a classical molecular mechanics force field using fixed-geometry solute molecules and explicit TIP3P solvent, and then the non-Boltzmann-Bennett method is employed to compute the QM/MM correction (QM/MM-NBB) to the molecular mechanical hydration free energies. For the SAMPL4 set, MESS-E-QM/MM-NBB corrections to the hydration free energy can be obtained 2 or 3 orders of magnitude faster than fully converged QM/MM-NBB corrections, and, on average, the hydration free energies predicted with MESS-E-QM/MM-NBB fall within 0.10-0.20 kcal/mol of full-converged QM/MM-NBB results. Out of five density functionals (BLYP, B3LYP, PBE0, M06-2X, and ωB97X-D), the BLYP functional is found to be most compatible with the TIP3P solvent model and yields the most accurate hydration free energies against experimental values for solute molecules included in this study.

  13. The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amido-amine in CO2 saturated solution

    OpenAIRE

    Desimone, Paula Mariela; Gordillo, Gabriel Jorge; Simison, Silvia Noemi

    2017-01-01

    The corrosion inhibition mechanism of the N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide on mild steel surface in CO2-saturated 5% NaCl solution has been studied. The inhibition efficiency decreases with increasing temperature. Adsorption of the inhibitor studied is found to follow the Frumkin adsorption isotherm. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than critical micelle concentration is by forming a protective porous bi-layer. The a...

  14. Category Theory Approach to Solution Searching Based on Photoexcitation Transfer Dynamics

    Directory of Open Access Journals (Sweden)

    Makoto Naruse

    2017-07-01

    Full Text Available Solution searching that accompanies combinatorial explosion is one of the most important issues in the age of artificial intelligence. Natural intelligence, which exploits natural processes for intelligent functions, is expected to help resolve or alleviate the difficulties of conventional computing paradigms and technologies. In fact, we have shown that a single-celled organism such as an amoeba can solve constraint satisfaction problems and related optimization problems as well as demonstrate experimental systems based on non-organic systems such as optical energy transfer involving near-field interactions. However, the fundamental mechanisms and limitations behind solution searching based on natural processes have not yet been understood. Herein, we present a theoretical background of solution searching based on optical excitation transfer from a category-theoretic standpoint. One important indication inspired by the category theory is that the satisfaction of short exact sequences is critical for an adequate computational operation that determines the flow of time for the system and is termed as “short-exact-sequence-based time.” In addition, the octahedral and braid structures known in triangulated categories provide a clear understanding of the underlying mechanisms, including a quantitative indication of the difficulties of obtaining solutions based on homology dimension. This study contributes to providing a fundamental background of natural intelligence.

  15. Comparative study of the various methods of preparation of silicate solution and its effect on the geopolymerization reaction

    Directory of Open Access Journals (Sweden)

    N. Essaidi

    Full Text Available This paper is based on the characterization of synthesized geopolymer binders based on either powder or solution silicate, and the amount of water contained in synthesized binders is determined to evaluate their possibility to coat a brick. The structural evolution of the formed geopolymers was investigated using FTIR spectroscopy. The mechanical properties were evaluated using compression tests. The structural evolution ensured that the solutions prepared from silicate powder or liquid had different degrees of polymerization, which modified the polycondensation reaction of the mixture. Nevertheless, the use of aluminosilicate solutions based on powder or liquid display similar behavior in a polycondensation reaction. The obtained materials show good mechanical properties, and it is possible to deposit this binder on the brick depending on the water content. Keywords: Silicate powder, Bricks, Alkaline solution, Binders, Depolymerization, Metakaolin reactivity

  16. Highly luminescent pure-red-emitting fluorinated β-diketonate europium(III) complex for full solution-processed OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao P. [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Serviço de Medicina Nuclear, SESARAM E.P.E., Avenida Luís de Camões 57, Funchal 9004-514, Madeira (Portugal); Martín-Ramos, Pablo [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Higher Technical School of Telecommunications Engineering, Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén 15, Valladolid 47011 (Spain); Coya, Carmen, E-mail: carmen.coya@urjc.es [Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid 28933 (Spain); Silva, Manuela Ramos [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Eusebio, M. Ermelinda S. [Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra P-3004-535 (Portugal); Andrés, Alicia de [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid 28049 (Spain); Álvarez, Ángel L. [Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid 28933 (Spain); Martín-Gil, Jesús [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, Palencia 34004 (Spain)

    2015-03-15

    Current manufacturing technologies for OLEDs involve the use of expensive high vacuum techniques and call for thermal stability requirements which are not fulfilled by many materials. These problems disappear when the OLED films are deposited directly from solution. In this study, we have designed, synthesized and characterized a novel octacoordinated complex, Tris(1-(4-chlorophenyl)-4,4,4-trifluoro-1, 3-butanedionate)mono(bathophenanthroline) europium(III), to be used as a “complex-only” emissive layer in wet-processed OLEDs. Upon excitation in the UV region, very efficient energy transfer from the ligands to Eu{sup 3+} takes place, giving rise to intense red emission with very high monochromaticity (R=19), both in powder and as a thin film. The decay times of 754 µs (powder) and 620 µs (thin film) are comparable to those of the most efficient Eu{sup 3+} β-diketonate complexes reported to date. The same energy transfer leading to saturated red and narrow emission is also observed in the OLED device (glass/ITO/PEDOT:PSS/[Eu(cbtfa){sub 3}(bath)]/Ca/Al) when biased at >5.2 V. Its high quantum efficiency (∼60%), good thermal stability up to 200 °C and adequate thin film forming properties make this material a promising chromophore for cost-effective OLEDs. - Highlights: • A highly fluorinated europium(III) octacoordinated complex, [Eu(cbtfa)3(bath)], has been synthesized and its structure elucidated by single crystal X-ray diffraction. • The chosen coordination environment is well-suited for sensitizing the luminescence of the Eu{sup 3+} ion, achieving very efficient energy transfer from the organic ligands (excited in the UV region) to the rare earth ion, leading to highly efficient (Q∼60% in crystalline powder and Q∼50% in thin film) and saturated red photoluminescence. • The material has also been integrated into a single active layer, full solution-processed OLED, with ITO/PEDOT:PSS/[Eu(cbtfa)3(bath)]/ Ca/Al structure.

  17. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent

    International Nuclear Information System (INIS)

    Al-Ghouti, Mohammad A.; Li, Juiki; Salamh, Yousef; Al-Laqtah, Nasir; Walker, Gavin; Ahmad, Mohammad N.M.

    2010-01-01

    A potential usefulness of raw date pits as an inexpensive solid adsorbent for methylene blue (MB), copper ion (Cu 2+ ), and cadmium ion (Cd 2+ ) has been demonstrated in this work. This work was conducted to provide fundamental information from the study of equilibrium adsorption isotherms and to investigate the adsorption mechanisms in the adsorption of MB, Cu 2+ , and Cd 2+ onto raw date pits. The fit of two models, namely Langmuir and Freundlich models, to experimental data obtained from the adsorption isotherms was checked. The adsorption capacities of the raw date pits towards MB and both Cu 2+ and Cd 2+ ions obtained from Langmuir and Freundlich models were found to be 277.8, 35.9, and 39.5 mg g -1 , respectively. Surface functional groups on the raw date pits surface substantially influence the adsorption characteristics of MB, Cu 2+ , and Cd 2+ onto the raw date pits. The Fourier transform infrared spectroscopy (FTIR) studies show clear differences in both absorbances and shapes of the bands and in their locations before and after solute adsorption. Two mechanisms were observed for MB adsorption, hydrogen bonding and electrostatic attraction, while other mechanisms were observed for Cu 2+ and Cd 2+ . For Cu 2+ , binding two cellulose/lignin units together is the predominant mechanism. For Cd 2+ , the predominant mechanism is by binding itself using two hydroxyl groups in the cellulose/lignin unit.

  18. Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels

    Science.gov (United States)

    Vandersickel, A.; Wright, Y. M.; Boulouchos, K.

    2013-12-01

    Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.

  19. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  20. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  1. Proteins in solution: Fractal surfaces in solutions

    Directory of Open Access Journals (Sweden)

    R. Tscheliessnig

    2016-02-01

    Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.

  2. Metaldehyde removal from aqueous solution by adsorption and ion exchange mechanisms onto activated carbon and polymeric sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Bing [Chemical and Process Engineering, Faculty of Engineering, University of Strathclyde, Glasgow G1 1XW (United Kingdom); Fletcher, Ashleigh J., E-mail: ashleigh.fletcher@strath.ac.uk [Chemical and Process Engineering, Faculty of Engineering, University of Strathclyde, Glasgow G1 1XW (United Kingdom)

    2013-01-15

    Highlights: ► First detailed analysis and study on metaldehyde removal by physical adsorbents. ► Adsorption performance of current method studied to probe reasons for failure of removal. ► Sorption performances of proposed alternative materials studied and mechanism proposed. ► Mechanism explains full sorption and degradation of metaldehyde. ► Results are of marked significance to the water treatment industries. -- Abstract: Metaldehyde removal from aqueous solution was evaluated using granular activated carbon (GAC), a non-functionalised hyper-cross-linked polymer Macronet (MN200) and an ion-exchange resin (S957) with sulfonic and phosphonic functional groups. Equilibrium experimental data were successfully described by Freundlich isotherm models. The maximum adsorption capacity of S957 (7.5 g metaldehyde/g S957) exceeded those of MN200 and GAC. Thermodynamic studies showed that sorption of metaldehyde onto all sorbents is endothermic and processes are controlled by entropic rather than enthalpic changes. Kinetic experiments demonstrated that experimental data for MN200 and GAC obey pseudo-second order models with rates limited by particle diffusion. Comparatively, S957 was shown to obey a pseudo-first order model with a rate-limiting step of metaldehyde diffusion through the solid/liquid interface. Results obtained suggest that metaldehyde adsorption onto MN200 and GAC are driven by hydrophobic interactions and hydrogen bonding, as leaching tendencies were high since no degradation of metaldehyde occurred. Conversely, adsorption of metaldehyde onto S957 occurs via ion-exchange processes, where sulfonic and phosphonic functionalities degrade adsorbed metaldehyde molecules and failure to detect metaldehyde in leaching studies for S957 supports this theory. Consequently, the high adsorption capacity and absence of leaching indicate S957 is promising for metaldehyde removal from source water.

  3. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    Science.gov (United States)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  4. Mechanism and Kinetics for the Dissolution of Apatitic Materials in Acid Solutions

    Directory of Open Access Journals (Sweden)

    Calmanovici C.E.

    1997-01-01

    Full Text Available Abstract - This work concerns the study of the digestion step in the production process of phosphoric acid. Some qualitative experiments indicate that the difference between the pH at the surface of the phosphate and that in the bulk of the solution is negligible and that the dissolution is controlled by diffusion of products away from the phosphate particle. In further experiments, to isolate the dissolution phenomenon from the formation of calcium sulfate, the sulfuric acid normally used industrially is replaced by hydrochloric acid. The phosphate material used in our experiments is a model apatitic material: synthetic hydroxyapatite (HAP. The dissolution of calcium hydroxyapatite was studied with increasing amounts of calcium and phosphate at different temperatures. A simple method was developed for this observation based on the time required for complete dissolution of the HAP powder. The results confirm that the dissolution is controlled by a diffusional process through an interface of calcium and phosphate ions released from the solid surface. A kinetic model for the dissolution of apatitic materials is proposed which assumes a shrinking particle behaviour controlled by diffusion of calcium ions. The experimental results are fitted to this model to determine the mass transfer constant for HAP dissolution in acid solutions. The activation energy of the reaction is about 14kJ/mol. This study was carried on in conditions similar to the industrial ones for the production of phosphoric acid by the dihydrate-process

  5. Problems in Quantum Mechanics with Solutions

    CERN Document Server

    d'Emilio, Emilio

    2011-01-01

    242 solved problems of several degrees of difficulty in nonrelativistic Quantum Mechanics, ranging from the themes of the crisis of classical physics, through the achievements in the framework of modern atomic physics, down to the still alive, more intriguing aspects connected e.g. with the EPR paradox, the Aharonov--Bohm effect, quantum teleportation.

  6. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi2O3-ZnO-(Nb, Ta)2O5

    International Nuclear Information System (INIS)

    Tan, K.B.; Khaw, C.C.; Lee, C.K.; Zainal, Z.; Miles, G.C.

    2010-01-01

    Research highlights: → Combined XRD and ND Rietveld structural refinement of pyrochlores. → Structures and solid solution mechanisms of Bi-pyrochlores. → Bi and Zn displaced off-centre to different 96g A-site positions. → Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi 1.5 ZnTa 1.5 O 7 and non-stoichiometric Bi 1.56 Zn 0.92 Nb 1.44 O 6.86 . In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  7. A post Gurney quantum mechanical perspective on the electrolysis of water: ion neutralization in solution

    Science.gov (United States)

    Guo, Enyi; McKenzie, David R.

    2017-11-01

    Electron fluxes crossing the interface between a metallic conductor and an aqueous environment are important in many fields; hydrogen production, environmental scanning tunnelling microscopy, scanning electrochemical microscopy being some of them. Gurney (Gurney 1931 Proc. R. Soc. Lond. 134, 137 (doi:10.1098/rspa.1931.0187)) provided in 1931 a scheme for tunnelling during electrolysis and outlined conditions for it to occur. We measure the low-voltage current flows between gold electrodes in pure water and use the time-dependent behaviour at voltage switch-on and switch-off to evaluate the relative contribution to the steady current arising from tunnelling of electrons between the electrodes and ions in solution and from the neutralization of ions adsorbed onto the electrode surface. We ascribe the larger current contribution to quantum tunnelling of electrons to and from ions in solution near the electrodes. We refine Gurney's barrier scheme to include solvated electron states and quantify energy differences using updated information. We show that Gurney's conditions would prevent the current flow at low voltages we observe but outline how the ideas of Marcus (Marcus 1956 J. Chem. Phys. 24, 966-978 (doi:10.1063/1.1742723)) concerning solvation fluctuations enable the condition to be relaxed. We derive an average barrier tunnelling model and a multiple pathways tunnelling model and compare predictions with measurements of the steady-state current-voltage relation. The tunnelling barrier was found to be wide and low in agreement with other experimental studies. Applications as a biosensing mechanism are discussed that exploit the fast tunnelling pathways along molecules in solution.

  8. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions

    International Nuclear Information System (INIS)

    Wang, Yafei; Cheng, Guangxu; Wu, Wei; Qiao, Qiao; Li, Yun; Li, Xiufeng

    2015-01-01

    Highlights: • Pitting behavior of X80 steel in aerated NaCl solutions is studied systematically. • Unique large pit morphology is observed in neutral/acidic NaCl solutions. • In low pH solutions, pit will propagate in the horizontal direction, leading to the shallow shape of pitting morphology; in high pH solutions, the pit sizes are much smaller. • Film growth, which is dependent on the pH and chloride concentration, has great influence on the cathodic reaction by affecting oxygen diffusion process. - Abstract: The pitting corrosion mechanism of high strength pipeline steel in aerated NaCl solutions with different pH and chloride content was investigated, using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The pitting behavior in alkaline solutions was found to be significantly different from that in neutral and acidic solutions. Electrochemical results and SEM images indicate that the product film formed on the steel surface results in different corrosion behavior in an alkaline solution. SEM images show that pH and chloride concentration in the bulk solution have a great influence on the pitting morphology. Unique large pit morphology due to corrosion in neutral/acidic solutions with 0.05 mol/L NaCl was observed. The relationship between solution pH and the effect of chloride concentration is also discussed

  9. Studies of mechanism of radioactive cesium-134 adsorption from water solutions onto tri ammonium dodecamolybdenophosphate(V)

    International Nuclear Information System (INIS)

    Choma, J.; Stasiuk, J.

    1992-01-01

    A mechanism of radioactive cesium-134 adsorption from water solutions on new, inorganic adsorbent composed from 85% of tri ammonium dodecamolibdophosphate(V) and 15% of urea resin is presented. A migration is found of Cs cations into the adsorbent grains. The absorption of Cs-134 beta radiation is studied as a function of WMF-15 tablet thickness. The penetration depth of radionuclide was found to be function of the process duration and the adsorbent density. Diffusion of cesium into the adsorbent grains explains the effect of ''recreation'' of its adsorption capacitance. (author). 2 refs, 2 figs

  10. Effect of Solution Treatment Process on Hardness of Alumina Reinforced Al-9Zn Composite Produced by Squeeze Casting

    Directory of Open Access Journals (Sweden)

    Dwi Rahmalina

    2014-10-01

    Full Text Available Characteristics of aluminium matrix composites reinforced by alumina have been developed to improve mechanical properties. One of the determining factors in the development of this material is parameter of solution treatment process. This study discusses the performance of the composite matrix of Al-9Zn-6Mg-3Si reinforced by alumina powder of 5 % volume fraction. Composite are manufactured by squeeze casting process with the pressure of 20 Ton in the metal mould. To improve mechanical properties, the precipitation hardening process is conducted through variation of temperature of solution treatment of 450, 475 and 500 °C and holding time of solution treatment of 30, 60 and 90 minutes. Materials are characterized by hardness testing and microstructure observation. The results showed that the optimum condition of hardness was produced by solution treatment temperature of 500 °C and 90 minutes holding time of 86 HRB.

  11. Thermo-mechanical analysis of the ICRH antenna for the ignitor experiment

    International Nuclear Information System (INIS)

    Salvetti, M.F.; Berruti, T.; Gola, M.M.

    2005-01-01

    This paper presents the design of the ion cyclotron resonance heating (ICRH) system of the ignitor machine. In addition, the paper presents relevant calculations and the design solutions adopted for the ICRH antenna straps. The thermal-mechanical analysis of the structure is illustrated. The displacements and stresses due to thermal loading and to dynamic loads induced during plasma vertical disruptions events (VDE) are calculated. The capability of carrying out both the assembly and maintenance of the antennas' components in full remote handling (RH) conditions is one of the specifications to which the design has to comply. A mechanical design that guarantees ease of operation is discussed. The proposed solution minimizes the variety of movements required for the manipulator

  12. Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schroedinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications

    International Nuclear Information System (INIS)

    Lue Xing; Zhu Hongwu; Yao Zhenzhi; Meng Xianghua; Zhang Cheng; Zhang Chunyi; Tian Bo

    2008-01-01

    In this paper, the multisoliton solutions in terms of double Wronskian determinant are presented for a generalized variable-coefficient nonlinear Schroedinger equation, which appears in space and laboratory plasmas, arterial mechanics, fluid dynamics, optical communications and so on. By means of the particularly nice properties of Wronskian determinant, the solutions are testified through direct substitution into the bilinear equations. Furthermore, it can be proved that the bilinear Baecklund transformation transforms between (N - 1)- and N-soliton solutions

  13. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-02-01

    Full Text Available The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  14. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature.

    Science.gov (United States)

    Konishi, Tatsuya; Kiguchi, Manabu; Takase, Mai; Nagasawa, Fumika; Nabika, Hideki; Ikeda, Katsuyoshi; Uosaki, Kohei; Ueno, Kosei; Misawa, Hiroaki; Murakoshi, Kei

    2013-01-23

    The in situ observation of geometrical and electronic structural dynamics of a single molecule junction is critically important in order to further progress in molecular electronics. Observations of single molecular junctions are difficult, however, because of sensitivity limits. Here, we report surface-enhanced Raman scattering (SERS) of a single 4,4'-bipyridine molecule under conditions of in situ current flow in a nanogap, by using nano-fabricated, mechanically controllable break junction (MCBJ) electrodes. When adsorbed at room temperature on metal nanoelectrodes in solution to form a single molecule junction, statistical analysis showed that nontotally symmetric b(1) and b(2) modes of 4,4'-bipyridine were strongly enhanced relative to observations of the same modes in solid or aqueous solutions. Significant changes in SERS intensity, energy (wavenumber), and selectivity of Raman vibrational bands that are coincident with current fluctuations provide information on distinct states of electronic and geometrical structure of the single molecule junction, even under large thermal fluctuations occurring at room temperature. We observed the dynamics of 4,4'-bipyridine motion between vertical and tilting configurations in the Au nanogap via b(1) and b(2) mode switching. A slight increase in the tilting angle of the molecule was also observed by noting the increase in the energies of Raman modes and the decrease in conductance of the molecular junction.

  15. Improving conditions for reuse of design solutions - by means of a context based solution library

    DEFF Research Database (Denmark)

    Mortensen, Niels Henrik; Grothe-Møller, Thorkild; Andreasen, Mogens Myrup

    1997-01-01

    Among the most important reasoning mechanisms in design is reasoning by analogy. One precondition for being able to reason about the properties and functionalitues of a product or subsystem is that the context of the solution is known. This paper presents a computer based solution library where...

  16. A full quantum analysis of the Stern–Gerlach experiment using the evolution operator method: analyzing current issues in teaching quantum mechanics

    International Nuclear Information System (INIS)

    Benítez Rodríguez, E; Aguilar, L M Arévalo; Martínez, E Piceno

    2017-01-01

    To the quantum mechanics specialists community it is a well-known fact that the famous original Stern–Gerlach experiment (SGE) produces entanglement between the external degrees of freedom (position) and the internal degree of freedom (spin) of silver atoms. Despite this fact, almost all textbooks on quantum mechanics explain this experiment using a semiclassical approach, where the external degrees of freedom are considered classical variables, the internal degree is treated as a quantum variable, and Newton's second law is used to describe the dynamics. In the literature there are some works that analyze this experiment in its full quantum mechanical form. However, astonishingly, to the best of our knowledge the original experiment, where the initial states of the spin degree of freedom are randomly oriented coming from the oven, has not been analyzed yet in the available textbooks using the Schrödinger equation (to the best of our knowledge there is only one paper that treats this case: Hsu et al (2011 Phys. Rev. A 83 012109)). Therefore, in this contribution we use the time-evolution operator to give a full quantum mechanics analysis of the SGE when the initial state of the internal degree of freedom is completely random, i.e. when it is a statistical mixture. Additionally, as the SGE and the development of quantum mechanics are heavily intermingled, we analyze some features and drawbacks in the current teaching of quantum mechanics. We focus on textbooks that use the SGE as a starting point, based on the fact that most physicist do not use results from physics education research, and comment on traditional pedagogical attitudes in the physics community. (paper)

  17. Fully Decoupled Compliant Parallel Mechanism: a New Solution for the Design of Multidimensional Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhen GAO

    2010-08-01

    Full Text Available In this paper, a novel multidimensional accelerometer is proposed based on fully decoupled compliant parallel mechanism. Three separated chains, which are served as the elastic body, are perpendicular to each other for sensing the kinetic information in different directions without decoupling process. As the crucial part of the whole sensor structure, the revolute and prismatic joints in three pairwise orthogonal branches of the parallel mechanism are manufactured with the alloy aluminium as flexure hinge-based compliant joints. The structure development is first introduced, followed by the comprehensive finite-element analysis including the strain of the sensitive legs, modal analysis for total deformation under different frequency, and the performance of harmonic response. Then, the shape optimization is conducted to reduce the unnecessary parts. Compliance optimization with particle swarm algorithm is implemented to redesign the dimension of the sensitive legs. The research supplies a new viewpoint for the mechanical design of physical sensor, especially acceleration sensor.

  18. Microstructures and mechanical properties of directionally solidified Ni-25%Si full lamellar in situ composites

    International Nuclear Information System (INIS)

    Zhang, Binggang; Li, Xiaopeng; Wang, Ting; Liu, Zheng

    2016-01-01

    Directional solidification experiments have been performed on Ni-25 at% Si alloy using electron beam floating zone method. A fully regular eutectic microstructures consisting of Ni, γ-Ni 31 Si 12 and β 1 -Ni 3 Si have been obtained. The influences of the directional solidification rate on the microstructures and properties of the full lamellar structures have been studied. The results show that the relationship between the mean interphase spacing (λ) and withdrawal rate (v) meets λ=29.9v −0.65 . The hardness increases with the increasing of growth rate (v) and decreasing of the interlamellar spacing (λ) which meets the relationship of H V =445.2v 0.14 and H V =910λ −0.21 . The maximum compressive strength, 2576 MPa, for DS samples is obtained by 10 mm/h. The average fracture toughness value found for 5 mm/h, 7 mm/h, 10 mm/h is 28.3 MPa m 1/2 , 29.1 MPa m 1/2 and 35.9 MPa m 1/2 , respectively. The crack bridging and crack deflection/interface debonding are the main toughening mechanism of Ni-25 at% Si with full lamellar structures.

  19. Formation of by-products at radiation - chemical treatment of water solutions of chloroform

    International Nuclear Information System (INIS)

    Ahmedov, S.A.; Abdullayev, E.T.; Gurbanov, M.A.; Gurbanov, A.H.; Ibadov, N.A.

    2006-01-01

    Full text: Radiation-chemical treatment is considered as a perspective method of water purification from chloroform. It provides the high level of purification (98 percent) of water solutions from chloroform and other chlorine-containing compounds. Meanwhile, other chlorine-containing products can be formed during the process of chloroform degradation and as a result of it the quality of water can change. This work studies the formation of by-products of γ-radiolysis of water solutions at various initial contents of chloroform. Dichlormethane and tetrachlorethane are identified as by-products. It is shown that at high contents of chloroform after certain adsorbed dose the forming products are reducing till their full disappearing. At small contents of chloroform in the studied interval of doses di-chlor-methane is forming. Differences of dose dependences of by-products at various contents of chloroform can be connected with the transition from radical mechanism to chain reaction at high concentrations of chloroform in solutions saturated by oxygen. pH-solutions also reduces during the radiation till pH=1, although this reduction also depends on initial concentration of chloroform. Essential change of pH occurs only at the radiolysis of water solutions containing chloroform ≥0,2 percent. And at radiating of 0,03 percent solution pH reduces only till 4 - 4,5

  20. Design Optimization of Mechanical Components Using an Enhanced Teaching-Learning Based Optimization Algorithm with Differential Operator

    Directory of Open Access Journals (Sweden)

    B. Thamaraikannan

    2014-01-01

    Full Text Available This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO algorithm with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization (mechanical components problems reveals the ability of the proposed methodology to find better optimal solutions compared to other optimization algorithms.

  1. Structure and dynamics of solutions

    CERN Document Server

    Ohtaki, H

    2013-01-01

    Recent advances in the study of structural and dynamic properties of solutions have provided a molecular picture of solute-solvent interactions. Although the study of thermodynamic as well as electronic properties of solutions have played a role in the development of research on the rate and mechanism of chemical reactions, such macroscopic and microscopic properties are insufficient for a deeper understanding of fast chemical and biological reactions. In order to fill the gap between the two extremes, it is necessary to know how molecules are arranged in solution and how they change their pos

  2. Aspects récents de la thermodynamique des solutions de polymères Recent Aspects of the Thermodynamics of Polymer Solutions

    Directory of Open Access Journals (Sweden)

    Dayantis J.

    2006-11-01

    Full Text Available On examine dans cet article différentes approches de la thermodynamique des solutions de polymères placées dans leur contexte historique. On rappelle d'abord le modèle du réseau de Flory-Huggins et on en souligne les déficiences. On traite ensuite brièvement de la mécanique statistique des solutions de polymères introduite par Prigogine en 1957 et on montre qu'elle constitue un progrès qualitatif par rapport à la théorie du réseau, mais qu'elle ne prévoit cependant pas de manière quantitative les propriétés de ces solutions. On montre ensuite que le concept de volume libre, qui permet un traitement simplifié de certaines quantités, permet également d'expliquer tout naturellement l'existence d'une deuxième température de séparation en phase lorsque l'on élève la température, propriété qui différencie les solutions de polymères des mélanges de liquidés simples. Enfin, dans une dernière partie, on mentionne brièvement les travaux récents de l'École de Paris, qui traite les solutions de polymères par analogie avec les transitions magnétiques. This article examines différent approaches ta the thermodynamics of polymer solutions set in their historical context. First of all, the Flory-Huggins network model is described and ifs deficiencies are pointed out. Then attention is briefly drawn to the statistical mechanics of polymer solutions as introduced by Prigogine in 1957, and this mechanics is shown to be a qualitative advance compared with the network theory, but it nonetheless does not quantitatively predict the properties of such solutions. It is then shown that the concept of free volume, enabling some quantifies to be treated in a simplified way, also serves to provide a quite natural explanation for the existence of a second phase separation temperature when the temperature is raised, i. e. a property that differentiates polymer solutions from simple liquid mixtures. In the final part, brief mention is made

  3. Full quantum-mechanical structure of the human protein Metallothionein-2

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2012-01-01

    -free clusters, causing a hierarchy in binding that most likely allows MTs to transfer ions to multiple targets in vivo. The protein polarization is substantial and occurs primarily via the terminal sulfurs, a key mechanism in providing domain-specific electronic structures. The β-domain polarizes its smaller...

  4. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  5. Mechanical performance of full-scale prototype quadrupole magnets for the SSC

    International Nuclear Information System (INIS)

    Cortella, J.M.; Wandesforde, A.; Devred, A.

    1992-08-01

    Six 5-m-long prototype quadrupole magnets have been built and cold-tested at Lawrence Berkeley Laboratory for the Superconducting Super Collider. Each of the magnets contained instrumentation to monitor the mechanical performance of the magnets during assembly and cold-testing. In addition, the instrumentation was used along with physical measurements as aids during magnet assembly. Quantities measured include coil pressures during assembly, cooldown, and magnet energization; axial thermal contraction of the magnets during cooldown; and axial force transmitted to the magnet end-plates. For the most part, mechanical measurements have proven repeatable and agree well with analysis

  6. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  7. UNIQUAC interaction parameters for molecules with -OH groups on adjacent carbon atoms in aqueous solution determined by molecular mechanics - glycols, glycerol and glucose

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Klein, R. A.

    1997-01-01

    UNIQUAC interaction parameters have been determined, using molecular mechanics calculations, for 1,2-ethanediol, 1,2-propanediol, glycerol and glucose with water in aqueous solution. Conformational space for individual pairs of molecules was explored using a stochastic method, the Boltzmann Jump...

  8. Full On-Device Stay Points Detection in Smartphones for Location-Based Mobile Applications

    Directory of Open Access Journals (Sweden)

    Rafael Pérez-Torres

    2016-10-01

    Full Text Available The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection. Such Mobile Cloud Computing approach has been successfully employed for extending smartphone’s battery lifetime by exchanging computation costs, assuming that on-device stay points detection is prohibitive. In this article, we propose and validate the feasibility of having an alternative event-driven mechanism for stay points detection that is executed fully on-device, and that provides higher energy savings by avoiding communication costs. Our solution is encapsulated in a sensing middleware for Android smartphones, where a stream of GPS location updates is collected in the background, supporting duty cycling schemes, and incrementally analyzed following an event-driven paradigm for stay points detection. To evaluate the performance of the proposed middleware, real world experiments were conducted under different stress levels, validating its power efficiency when compared against a Mobile Cloud Computing oriented solution.

  9. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    Science.gov (United States)

    Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi

    2013-01-01

    Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968

  10. Radiolysis of spray solutions

    International Nuclear Information System (INIS)

    Habersbergerova, A.; Janovsky, I.

    1985-01-01

    The factors were studied affecting thiosulfate radiolysis in the so-called spray solution for nuclear power plant containments. The reaction mechanism of primary radiolytic reactions leading to thiosulfate decomposition was studied using pulse radiolysis. Also measured was hydrazine loss in the irradiation of the bubbling solution intended for the capture of volatile chemical forms of radioiodine. Pulse radiolysis was used to study the kinetics of hydrazine reaction with elemental iodine. (author)

  11. Mechanism of nanofiber crimp

    Directory of Open Access Journals (Sweden)

    Chen Rou-Xi

    2013-01-01

    Full Text Available Fabrication of crimped fibers has been caught much attention recently due to remarkable improvement surface-to-volume ratio. The precise mechanism of the fiber crimp is, however, rare and preliminary. This paper finds that pulsation of fibers is the key factor for fiber crimp, and its configuration (wave formation corresponds to its nature frequency after solidification. Crimping performance can be improved by temperature control of the uncrimped fibers. In the paper, polylactide/ dimethylfomamide solution is fabricated into crimped nanofibers by the bubble electrospinning, an approximate period- amplitude relationship of the wave formation is obtained.

  12. The Dirac equation and its solutions

    CERN Document Server

    Bagrov, Vladislav G

    2014-01-01

    Dirac equations are of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly.In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.

  13. The Dirac equation and its solutions

    International Nuclear Information System (INIS)

    Bagrov, Vladislav G.; Gitman, Dmitry; P.N. Lebedev Physical Institute, Moscow; Tomsk State Univ., Tomsk

    2013-01-01

    The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.

  14. Throughput maximization for buffer-aided hybrid half-/full-duplex relaying with self-interference

    KAUST Repository

    Khafagy, Mohammad Galal

    2015-06-01

    In this work, we consider a two-hop cooperative setting where a source communicates with a destination through an intermediate relay node with a buffer. Unlike the existing body of work on buffer-aided half-duplex relaying, we consider a hybrid half-/full-duplex relaying scenario with loopback interference in the full-duplex mode. Depending on the channel outage and buffer states that are assumed available at the transmitters, the source and relay may either transmit simultaneously or revert to orthogonal transmission. Specifically, a joint source/relay scheduling and relaying mode selection mechanism is proposed to maximize the end-to-end throughput. The throughput maximization problem is converted to a linear program where the exact global optimal solution is efficiently obtained via standard convex/linear numerical optimization tools. Finally, the theoretical findings are corroborated with event-based simulations to provide the necessary performance validation.

  15. ICRF full wave field solution and absorption for D-T and D-3He heating scenarios

    International Nuclear Information System (INIS)

    Scharer, J.; Sund, R.

    1989-01-01

    We consider a fundamental power conservation relation, full wave solutions for fields and power absorption in moderate and high density tokamaks to third order in the gyroradius expansion. The power absorption, conductivity tensor and kinetic flux associated with the conservation relation as well as the wave differential equation are obtained. Cases examined include D-T and D- 3 He scenarios for TFTR,JET and CIT at the Fundamental and Second harmonic. Optimum single pass absorption cases for D-T operation in JET and CIT are considered as a function of the K ≡ spectrum of the antenna with an without a minority He 3 resonance. It is found that at elevated temperatures >4 keV, minority (10%) fundamental deuterium absorption is very efficient for either fast wave low or high field incidence or high field Bernstein wave incidence. We consider the effects of a 10 keV bulk and 100 keV tail helium distribution on the second harmonic absorption in a deuterium plasma for Jet parameters. In addition, scenarios with ICRF operation without attendant substantial tritium concentrations are found the fundamental (15%) and second harmonic helium (33%) heating in a the deuterium plasma. For High field operation at high density in CIT, we find a higher part of the K parallel spectrum yields good single pass absorption with a 5% minority helium concentration in D-T

  16. Retraction of 'Composition design and mechanical properties of BCC Ti solid solution alloys with low Young's modulus'

    International Nuclear Information System (INIS)

    Tulugan, Keli Mu; Park, Cheol Hong; Park, Won Jo; Qing, Wang

    2012-01-01

    The article 'Composition design and mechanical properties of BCC Ti solid solution alloys with low Young's modulus' has been retracted upon the request of the third author (Prof. Wang Qing, the first author's former advisor during his internship at DaLian University of Technology). The article was published without the third author's knowledge and consent. The corresponding author (Prof. Wonjo Park) apologizes to the third author, to the readers, and to the editorial staff of the JMST. The JMST editorial board does not tolerate such actions from authors and we will take appropriate action to prevent this from happening in the future

  17. The influence of the "cage effect" on the mechanism of reversible bimolecular multistage chemical reactions in solutions.

    Science.gov (United States)

    Doktorov, Alexander B

    2015-08-21

    Manifestations of the "cage effect" at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a "cage complex." Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the "cage effect" leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  18. Synthesis method based on solution regions for planar four bar straight line linkages

    International Nuclear Information System (INIS)

    Lai Rong, Yin; Cong, Mao; Jian you, Han; Tong, Yang; Juan, Huang

    2012-01-01

    An analytical method for synthesizing and selecting desired four-bar straight line mechanisms based on solution regions is presented. Given two fixed pivots, the point position and direction of the target straight line, an infinite number of mechanism solutions can be produced by employing this method, both in the general case and all three special cases. Unifying the straight line direction and the displacement from the given point to the instant center into the same form with different angles as parameters, infinite mechanism solutions can be expressed with different solution region charts. The mechanism property graphs have been computed to enable the designers to find out the involved mechanism information more intuitively and avoid aimlessness in selecting optimal mechanisms

  19. Development of technology for the process of neutralization of pickling solution of metallurgical production

    Directory of Open Access Journals (Sweden)

    Lamzina I.V.

    2016-12-01

    Full Text Available The leading branch of territorial-production complex of Russia - mechanical engineering. Companies of the industry throw dirt in the form of used organic solvents, toxic compounds of metals with waste galvanic and etching solutions, cutting fluids (coolant and emulsions. you need to create complex regeneration treatment system of the most valuable components for these liquids. Reset electroplating and etching solutions can lead to the accumulation of heavy metals in the bio-organisms of the coastal zone and to enter them through the food chain to humans. To prevent contamination, a scheme neutralizing acid waste, accompanied by a reduction in the hazard class of the etching solution to IV class with the ability to accommodate long-term storage solid industrial waste in landfills.

  20. General thermo-elastic solution of radially heterogeneous, spherically isotropic rotating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Yahya; EkhteraeiToussi, THamid [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-06-15

    A thick walled rotating spherical object made of transversely isotropic functionally graded materials (FGMs) with general types of thermo-mechanical boundary conditions is studied. The thermo-mechanical governing equations consisting of decoupled thermal and mechanical equations are represented. The centrifugal body forces of the rotation are considered in the modeling phase. The unsymmetrical thermo-mechanical boundary conditions and rotational body forces are expressed in terms of the Legendre series. The series method is also implemented in the solution of the resulting equations. The solutions are checked with the known literature and FEM based solutions of ABAQUS software. The effects of anisotropy and heterogeneity are studied through the case studies and the results are represented in different figures. The newly developed series form solution is applicable to the rotating FGM spherical transversely isotropic vessels having nonsymmetrical thermo-mechanical boundary condition.

  1. Springer handbook of mechanical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Karl-Heinrich [Magdeburg Univ. (Germany). Dept. of Mechanical Engineering; Antonsson, Erik K. (eds.) [California Inst. of Technology (CALTEC), Pasadena, CA (United States). Dept. of Mechanical Engineering

    2009-07-01

    Mechanical Engineering is a professional engineering discipline which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems. It requires a solid understanding of the key concepts including mechanics, kinematics, thermodynamics and energy. Mechanical engineers use these principles and others in the design and analysis of automobiles, aircrafts, heating and cooling systems, industrial equipment and machinery. In addition to these main areas, specialized fields are necessary to prepare future engineers for their positions in industry, such as mechatronics and robotics, transportation and logistics, fuel technology, automotive engineering, biomechanics, vibration, optics and others. Accordingly, the Springer Handbook of Mechanical Engineering devotes its contents to all areas of interest for the practicing engineer as well as for the student at various levels and educational institutions. Authors from all over the world have contributed with their expertise and support the globally working engineer in finding a solution for today's mechanical engineering problems. Each subject is discussed in detail and supported by numerous figures and tables. DIN standards are retained throughout and ISO equivalents are given where possible. The text offers a concise but detailed and authoritative treatment of the topics with full references. (orig.)

  2. Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Mocuta, Anda; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Sorée, Bart [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium)

    2015-10-07

    Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In{sub 0.53}Ga{sub 0.47}As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET.

  3. The Dirac equation and its solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, Vladislav G. [Tomsk State Univ., Tomsk (Russian Federation). Dept. of Quantum Field Theroy; Gitman, Dmitry [Sao Paulo Univ. (Brazil). Inst. de Fisica; P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State Univ., Tomsk (Russian Federation). Faculty of Physics

    2013-07-01

    The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.

  4. EPR study of the production of OH radicals in aqueous solutions of uranium irradiated by ultraviolet light

    Directory of Open Access Journals (Sweden)

    MARKO DAKOVIĆ

    2009-06-01

    Full Text Available The aim of the study was to establish whether hydroxyl radicals (•OH were produced in UV-irradiated aqueous solutions of uranyl salts. The production of •OH was studied in uranyl acetate and nitrate solutions by an EPR spin trap method over a wide pH range, with variation of the uranium concentrations. The production of •OH in uranyl solutions irradiated with UV was unequivocally demonstrated for the first time using the EPR spin-trapping method. The production of •OH can be connected to speciation of uranium species in aqueous solutions, showing a complex dependence on the solution pH. When compared with the results of radiative de-excitation of excited uranyl (*UO22+ by the quenching of its fluorescence, the present results indicate that the generation of hydroxyl radicals plays a major role in the fluorescence decay of *UO22+. The role of the presence of carbonates and counter ions pertinent to environmental conditions in biological systems on the production of hydroxyl radicals was also assessed in an attempt to reveal the mechanism of *UO22+ de-excitation. Various mechanisms, including •OH production, are inferred but the main point is that the generation of •OH in uranium containing solutions must be considered when assessing uranium toxicity.

  5. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation

    Science.gov (United States)

    Shao, Zhiqiang

    2018-04-01

    The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

  6. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  7. Transition between vortex rings and MAP solutions for electrically charged magnetic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Khai-Ming; Soltanian, Amin; Teh, Rosy [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-03-05

    We consider the bifurcation and transition of axially symmetric monopole-antimonopole pair (MAP) and vortex ring solutions in the presence of electric charge for the SU(2) Yang-Mills-Higgs field theory. Here we investigate the properties of MAP/vortex ring solutions with n = 3,η = 0.65, for different Higgs field strength λ. For λ < 4.93, there is only one fundamental branch of vortex ring solution, but at the critical value of λ{sub b} = 4.93, branching happens and 2 sets of new solutions appeared. The new branch with less energy is a full MAP solution while the branch with higher energy contains MAP at the beginning and separation between poles of MAP on the z-axis reduces gradually and at another critical value of λ{sub t} = 14.852, they merge together at z = 0. Beyond this point the solutions change to the vortex ring solutions and a transitions between MAP and vortex ring solutions happens at this branch.

  8. Ions, solutes and solvents, oh my!

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Daniel David [Iowa State Univ., Ames, IA (United States)

    2009-08-01

    Modern methods in ab initio quantum mechanics have become efficient and accurate enough to study many gas-phase systems. However, chemists often work in the solution phase. The presence of solvent molecules has been shown to affect reaction mechanisms1, lower reaction energy barriers2, participate in energy transfer with the solute3 and change the physical properties of the solute4. These effects would be overlooked in simple gas phase calculations. Careful study of specific solvents and solutes must be done in order to fully understand the chemistry of the solution phase. Water is a key solvent in chemical and biological applications. The properties of an individual water molecule (a monomer) and the behavior of thousands of molecules (bulk solution) are well known for many solvents. Much is also understood about aqueous microsolvation (small clusters containing ten water molecules or fewer) and the solvation characteristics when bulk water is chosen to solvate a solute. However, much less is known about how these properties behave as the cluster size transitions from the microsolvated cluster size to the bulk. This thesis will focus on species solvated with water clusters that are large enough to exhibit the properties of the bulk but small enough to consist of fewer than one hundred solvent molecules. New methods to study such systems will also be presented.

  9. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  10. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Zinc oxide (ZnO nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research.

  11. Stabilizers of edaravone aqueous solution and their action mechanisms. 2. Glutathione

    OpenAIRE

    Tanaka, Masahiko; Motomiya, Satsuki; Fujisawa, Akio; Yamamoto, Yorihiro

    2017-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has garnered attention since its approval for amyotrophic lateral sclerosis in Japan (2015) and the United States (2017). Edaravone is administered intravenously, and as such, is distributed in the form of an aqueous solution. However, aqueous solutions of edaravone are very unstable because they present as edaravone anions, which become edaravone radicals when the anion donates an electron to free radicals including oxygen. In this study, gluta...

  12. Solute strengthening of both mobile and forest dislocations: The origin of dynamic strain aging in fcc metals

    International Nuclear Information System (INIS)

    Soare, M.A.; Curtin, W.A.

    2008-01-01

    A full rate-dependent constitutive theory for dynamic strain aging is developed based on two key ideas. The first idea is that both solute strengthening and forest strengthening must exist and must exhibit aging phenomena. The second idea is that a single physical aging mechanism, cross-core diffusion within a dislocation core, controls the aging of both the solute and forest strengthening mechanisms. All the material parameters in the model, apart from forest dislocation density evolution parameters, are derivable from atomistic-scale studies so that the theory contains essentially no adjustable parameters. The model predicts the steady-state stress/strain/strain-rate/temperature/concentration dependent material response for a variety of Al-Mg alloys, including negative strain-rate sensitivity, in qualitative and quantitative agreement with available experiments. The model also reveals the origin of non-additivity of solute and forest strengthening, and explains observed non-standard transient stress behavior in strain-rate jump tests

  13. A new perspective on the nonextremal Enhancon solution

    International Nuclear Information System (INIS)

    Barrett, Jessica K.

    2006-01-01

    We discuss the nonextremal generalisation of the enhancon mechanism. We find that the nonextremal shell branch solution does not violate the Weak Energy Condition when the nonextremality parameter is small, in contrast to earlier discussions of this subject. We show that this physical shell branch solution fills the mass gap between the extremal enhancon solution and the nonextremal horizon branch solution

  14. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature

    Directory of Open Access Journals (Sweden)

    Oyelami, Benjamin Oyediran

    2013-09-01

    Full Text Available In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  15. Interstitial positions of tin ions in alpha-(FerichSn)(2)O-3 solid solutions prepared by mechanical alloying

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, Rong; Nielsen, Kurt

    1997-01-01

    The microstructure of samples of 91, 85, and 71 mol % alpha-Fe-2-O-3-SnO2. prepared by mechanical alloying, has been studied by x-ray diffraction with Rietveld structure refinements, On the basis of the structure refinements to the whole x-ray diffraction patterns for the four as-milled samples, ......, it is found that tin ions do not substitute iron ions in the solid solution, although this model is generally assumed in the literature. The Sn4+ ions occupy the empty octahedral holes in the lattice of the alpha-Fe2O3 phase.......The microstructure of samples of 91, 85, and 71 mol % alpha-Fe-2-O-3-SnO2. prepared by mechanical alloying, has been studied by x-ray diffraction with Rietveld structure refinements, On the basis of the structure refinements to the whole x-ray diffraction patterns for the four as-milled samples...

  16. Problems and solutions in quantum chemistry and physics

    CERN Document Server

    Johnson, Charles S

    1988-01-01

    Unusually varied problems, with detailed solutions, cover quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems, plus 139 supplementary exercises.

  17. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    Science.gov (United States)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  18. Structural analysis and magnetic properties of solid solutions of Co–Cr system obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Betancourt-Cantera, J.A.; Sánchez-De Jesús, F.; Bolarín-Miró, A.M.; Betancourt, I.; Torres-Villaseñor, G.

    2014-01-01

    In this paper, a systematic study on the structural and magnetic properties of Co 100−x Cr x alloys (0 1−x Cr x (0 2 /kg) for the Co 90 Cr 10 , which decreases with the increasing of the Cr content up to x=80, as a consequence of the dilution effect of the magnetic moment which is caused by the Cr content and by the competition between ferromagnetic and antiferromagnetic exchange interactions. The coercivity increases up to 34 kA/m (435 Oe) for Co 40 Cr 60 . For Cr rich compositions, it is observed an important decrease reaching 21 kA/m (272 Oe) for Co 10 Cr 90, it is related to the grain size and the structural change. Besides, the magnetic anisotropy constant was determined for each composition. Magnetic thermogravimetric analysis allowed to obtain Curie temperatures corresponding to the formation of hcp-Co(Cr) and fcc-Co(Cr) solid solutions. - Highlights: • Mechanical alloying (MA) induces the formation of solid solutions of Co–Cr system in non-equilibrium. • We report the crystal structure and the magnetic behavior of Co–Cr alloys produced by MA. • MA improves the magnetic properties of Co–Cr system

  19. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism.

    Science.gov (United States)

    Sun, Chencheng; Xiong, Bowen; Pan, Yang; Cui, Hao

    2017-02-01

    Polyaniline (PANI) prepared by chemical oxidation was studied for adsorption removal of tannic acid (TA) from aqueous solution. Batch adsorption studies were carried out under different adsorbent dosages, pH, ionic strength, initial TA concentration and coexisting anions. Solution pH had an important impact on TA adsorption onto PANI with optimal removal in the pH range of 8-11. TA adsorption on PANI at three ionic strength levels (0.02, 0.2 and 2molL -1 NaCl) could be well described by Langmuir model (monolayer adsorption process) and the maximum adsorption capacity was 230, 223 and 1023mgg -1 , respectively. Kinetic data showed that TA adsorption on PANI fitted well with pseudo-second-order model (controlled by chemical process). Among the coexisting anions tested, PO 4 3- significantly inhibited TA adsorption due to the enhancement of repulsive interaction. Continuous flow adsorption studies indicated good flexibility and adaptability of the PANI adsorbent under different flow rates and influent TA concentrations. The mechanism controlling TA adsorption onto PANI under different operating conditions was analyzed with the combination of electrostatic interactions, hydrogen bonding, π-π interactions and Van der Waals interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Detection of microwave radiation of cytochrome CYP102 A1 solution during the enzyme reaction

    Directory of Open Access Journals (Sweden)

    Yu.D. Ivanov

    2016-03-01

    Full Text Available Microwave radiation at 3.4–4.2 GHz frequency of the cytochrome P450 CYP102 A1 (BM3 solution was registered during the lauric acid hydroxylation reaction. The microwave radiation generation was shown to occur following the addition of electron donor NADPH to a system containing an enzyme and a substrate. The radiation occurs for the enzyme solutions with enzyme concentrations of 10−8 and 10−9 М. The microwave radiation effect elicited by the aqueous enzyme solution was observed for the first time. The results obtained can be used to elaborate a new approach to enzyme systems research, including studying of the mechanism of interaction of a functioning enzyme system with microenvironment.

  1. Growth mechanism and magnetism in carbothermal synthesized Fe{sub 3}O{sub 4} nanoparticles from solution combustion precursors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuanli [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China (China); Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China (China); Cao, Zhiqin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China (China); School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua, 617000 China (China); Jia, Baorui; Gu, Yueru; Qu, Xuanhui [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China (China); Volinsky, Alex A. [Department of Mechanical Engineering, University of South Florida, Tampa, 33620 (United States)

    2016-12-15

    Magnetic Fe{sub 3}O{sub 4} nanoparticles were prepared by carbothermal reduction using solution combustion synthesis precursors derived from ferric nitrate (oxidizer), glycine (fuel) and glucose (carbon source) mixed solution. In this paper, the growth mechanism and magnetism in Fe{sub 3}O{sub 4} nanoparticles were investigated by adjusting the glucose content in precursor and the heat temperature in carbothermal process. The products were analyzed by X-ray diffraction, Field emission scanning electron microscopy, Infrared adsorption method and Vibrating sample magnetometry. The results revealed that the more amount of glucose, the earlier Fe{sub 3}O{sub 4} phase generated as temperature increasing. Depending on glucose content and thermal temperature, the average grain size of Fe{sub 3}O{sub 4} nanoparticles varied from 19.9 nm to 48 nm and saturation magnetization changed from 21.2 emu/g to 71.77 emu/g, which indicated that the saturation magnetization of Fe{sub 3}O{sub 4} nanoparticles fell off as the average grain size decreasing. These results were crucial not only from the application stand-point, but more importantly leaded to a new platform for further studies of high quality magnetic Fe{sub 3}O{sub 4} particles at nanoscale. - Highlights: • Solution combustion. • Carbothermal. • Fe{sub 3}O{sub 4} nanoparticles. • Magnetic properties.

  2. Statistical mechanics of the vertex-cover problem

    Science.gov (United States)

    Hartmann, Alexander K.; Weigt, Martin

    2003-10-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.

  3. Statistical mechanics of the vertex-cover problem

    International Nuclear Information System (INIS)

    Hartmann, Alexander K; Weigt, Martin

    2003-01-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs

  4. Contact nuclei formation in aqueous dextrose solutions

    Science.gov (United States)

    Cerreta, Michael K.; Berglund, Kris A.

    1990-06-01

    A laser Raman microprobe was used in situ to observe the growth of alpha dextrose monohydrate on alpha anhydrous dextrose crystals. The Raman spectra indicate growth of the monohydrate below 28.1°C, but the presence of only the anhydrous form above 40.5°C. Contact nucleation experiments with parent anhydrous crystals yielded only monohydrate nuclei below 28.1°C, while contacts in solutions between 34.5 and 41.0°C produced both crystalline forms, and contacts in solutions above 43.5°C produced only anhydrous nuclei. The inability of the monohydrate to grow on anhydrous crystals in the same solution that forms the two crystalline phases with a single contact precludes a simple attrition mechanism of nuclei formation. For the same reason, the hypothetical mechanism involving parent crystal stabilization of pre-crystalline clusters, allowing the clusters to grow into nuclei, is also contradicted. A third, mechanism, which may be a combination of the two, is believed to apply.

  5. Influence of starch origin on rheological properties of concentrated aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Željko P.

    2011-01-01

    Full Text Available The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starch solutions increased with the storage time. This phenomenon was not observed for the potato starch solutions. It was assumed that the increase of h, G′ and G″ is the result of starch solutions retrogradation. The potato starch solutions retrogradation did not occur probably because of the phosphates presence. The viscosity of 2 mass % corn starch solution is less than the viscosity of 2 mass % potato starch solution. By increasing the concentration of corn starch solution the gel with elastic behavior was formed. The corn starch solutions formed gel as early as at 4 mass % concentration, while potato starch solutions achieved the gel state at the concentration of 5 mass %. The value of exponent m (G′ and G″ µ wm during the transition of potato starch solutions to gel is 0.414, which gives the fractal dimensions for corn starch of 2.10. The obtained value of fractal dimension corresponds to slow aggregation. The corn starch solutions with the starch concentrations higher than 4 mass % form weak gels. For these solutions the values of modulus in rubber plateau were determined. It was found that the modulus in rubber plateau increased with the concentration by the exponent of 4.36. Such high exponent value was obtained in the case when the tridimensional network is formed, i.e. when supermolecular structures like associates or crystal domains are formed.

  6. Motivation Mechanism of Formation of Employee’s Competences

    Directory of Open Access Journals (Sweden)

    Gutsan Oleksandr M.

    2013-11-01

    Full Text Available Competent personnel is a main factor of successful development of a modern enterprise and, consequently, use of knowledge, abilities and skills of an employee becomes a priority task of an enterprise management. The goal of the article is to specify elements of competences and the mechanism of their formation and building up a generalised mechanism of achievement of goals of an employee and enterprise on this basis. For solution of these tasks the article considers and generalises theoretical knowledge on personnel competence and its use for enterprise development. The article offers a complex multi-level mechanism of formation of competences and mechanism of achievement of goals on the basis of introduction of a competence approach. Use of the proposed motivation approach on the basis of competences would allow increase of efficiency of activity of both the employee and enterprise.

  7. COMPARISON OF POLYJET PRINTING AND SILICON MOULDING AS RAPID PLASTIC MOULDING SOLUTIONS

    Directory of Open Access Journals (Sweden)

    R. Singh

    2012-12-01

    Full Text Available The aim of the present investigation is to compare two rapid molding (RM solutions, namely polyjet printing (PP and silicon molding (SM, for the manufacture of plastic components. The comparison has been made on the basis of dimensional accuracy (as per IT grades, mechanical properties (namely surface hardness, surface roughness and production cost. The comparison of the experimental results will serve as a yard stick for the further selection of processes for industrial applications.

  8. Interpretation of quantum mechanics by the double solution theory

    International Nuclear Information System (INIS)

    Broglie, L. de.

    1987-01-01

    English translation of one of Louis de Broglie's latest articles, as a kind of gift to all physicists abroad who are not well acquainted with the double solution theory, or do not read French. Our readers will appreciate the deep physical insight expressed in this tentative theory of wave-particle dualism, a major problem unsolved to everyone's satisfaction

  9. The mechanism of electrodeposition of bismuth sulfide and cadmium sulfide from dimethylsulfoxide and diethylene glycol solution

    International Nuclear Information System (INIS)

    Gilbert, C.M.; Baranski, A.S.; Fawcett, W.R.

    1985-01-01

    The kinetics of the electrodeposition of Bi 2 S 3 on an electrode covered with a coherent layer of Bi 2 S 3 was examined by analysis of the Tafel plots for different solution compositions and at different temperatures in two nonaqueous solvents, dimethylsulfoxide (DMSO) and diethylene glycol (DEG). The results were compared with those obtained for the electrodeposition of CdS on CdS under similar conditions. In both cases, it was found that the rate-determining step was an irreversible electron transfer. The rate of the reaction was independent of the metal ion concentration, but electrochemical orders with respect to S 8 of 0.7 in DMSO and 1.0 in DEG were found. Several mechanisms explaining these results are proposed and discussed

  10. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J. [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  11. Comment on "Critique and correction of the currently accepted solution of the infinite spherical well in quantum mechanics" by Huang Young-Sea and Thomann Hans-Rudolph

    OpenAIRE

    Prados, A.; Plata, C. A.

    2016-01-01

    We comment on the paper "Critique and correction of the currently accepted solution of the infinite spherical well in quantum mechanics" by Huang Young-Sea and Thomann Hans-Rudolph, EPL 115, 60001 (2016) .

  12. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis

    International Nuclear Information System (INIS)

    Ai, Lunhong; Zhang, Chunying; Liao, Fang; Wang, Yao; Li, Ming; Meng, Lanying; Jiang, Jing

    2011-01-01

    Highlights: ► M-MWCNTs were synthesized by a facile one-pot solvothermal method and used as an efficient adsorbent for removing toxic dye from aqueous solution. ► The adsorption process was characterized by kinetics and isotherm analysis. ► FTIR analysis was employed to investigate the interactions between M-MWCNTs and dye. - Abstract: In this study, we have demonstrated the efficient removal of cationic dye, methylene blue (MB), from aqueous solution with the one-pot solvothermal synthesized magnetite-loaded multi-walled carbon nanotubes (M-MWCNTs). The as-prepared M-MWCNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The effects of contact time, initial dye concentration, and solution pH on the adsorption of MB onto M-MWCNTs were systematically studied. It was shown that the MB adsorption was pH-dependent. Adsorption kinetics was best described by the pseudo-second-order model. Equilibrium data were well fitted to the Langmuir isotherm model, yielding maximum monolayer adsorption capacity of 48.06 mg g −1 . FTIR analysis suggested that the adsorption mechanism was possibly attributed to the electrostatic attraction and π–π stacking interactions between MWCNTs and MB.

  13. Full in vitro fertilization laboratory mechanization: toward robotic assisted reproduction?

    DEFF Research Database (Denmark)

    Meseguer, Marcos; Krühne, Ulrich; Laursen, Steen

    2012-01-01

    Objective: To describe the current efforts made to standardize different steps of assisted reproductive technology processes by the introduction of new technologies for the nonsubjective sperm selection process, oocyte denudation by mechanical removal of cumulus cells, oocyte positioning, sperm...... of embryo manipulation; 5) time-lapse, proteomic, and metabolic scoring of the developing embryo, allowing multiple and optimized selection of the embryos. The technologies described in this review have not yet reported reliable clinical proofs. Conclusion(s): We already have available some...

  14. Existence of Periodic Solutions and Stability of Zero Solution of a Mathematical Model of Schistosomiasis

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available A mathematical model on schistosomiasis governed by periodic differential equations with a time delay was studied. By discussing boundedness of the solutions of this model and construction of a monotonic sequence, the existence of positive periodic solution was shown. The conditions under which the model admits a periodic solution and the conditions under which the zero solution is globally stable are given, respectively. Some numerical analyses show the conditional coexistence of locally stable zero solution and periodic solutions and that it is an effective treatment by simply reducing the population of snails and enlarging the death ratio of snails for the control of schistosomiasis.

  15. The influence of the “cage effect” on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    International Nuclear Information System (INIS)

    Doktorov, Alexander B.

    2015-01-01

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants

  16. The influence of the “cage effect” on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    Energy Technology Data Exchange (ETDEWEB)

    Doktorov, Alexander B., E-mail: doktorov@kinetics.nsc.ru [Voevodsky Institute of Chemical Kinetics & Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2015-08-21

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  17. Characteristic and mechanism of Th{sup 4+} sorption from nitric acid solutions by rice and wheat bran

    Energy Technology Data Exchange (ETDEWEB)

    Monji, Akbar Boveiri [Kharazmi Univ., Tehran (Iran, Islamic Republic of). Faculty of Chemistry; Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghoulipour, Vanik [Kharazmi Univ., Tehran (Iran, Islamic Republic of). Faculty of Chemistry; Mallah, Mohammad Hassan [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In line with our previously conducted researches, various instrumental methods were applied to evaluate the adsorption features and mechanism of Th{sup 4+} from highly acidic solution (4M HNO{sub 3}) by rice and wheat bran. Although the results of cation exchange confirmed the existence of ion-exchange interaction in Th{sup 4+} adsorption, it had a trivial contribution in the biosorption process. The presence of Th{sup 4+} ions on the biomass surface was obviously revealed in SEM images and EDS elemental analysis. Moreover, the linkage of C=O, O-H and N-H functional groups on the biomass surface with Th{sup 4+} ions was clearly represented in the ATR-FTIR spectroscopic analysis. Additionally, desorption studies indicated that ammonium oxalate (>81.3%) and ammonium carbonate (>75.4%) were effective in desorbing Th{sup 4+} from the biomass surface due to strong interactions of hard functional groups of C=O with Th{sup 4+}. The overall observations unfold the fact that electrostatic complexation mechanism is dominant between biomass and Th{sup 4+} ions.

  18. ADSORPTION OF COPPER FROM AQUEOUS SOLUTION BY ELAIS GUINEENSIS KERNEL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    NAJUA DELAILA TUMIN

    2008-08-01

    Full Text Available In this study, a series of batch laboratory experiments were conducted in order to investigate the feasibility of Elais Guineensis kernel or known as palm kernel shell (PKS-based activated carbon for the removal of copper from aqueous solution by the adsorption process. Investigation was carried out by studying the influence of initial solution pH, adsorbent dosage and initial concentration of copper. The particle size of PKS used was categorized as PKS–M. All batch experiments were carried out at a constant temperature of 30°C (±2°C using mechanical shaker that operated at 100 rpm. The single component equilibrium data was analyzed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth adsorption isotherms.

  19. Gamma radiolysis of alkaline aqueous solutions of neptunium and plutonium ions

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Gogolev, A.V.; Shilov, V.P.

    1998-01-01

    Full text: The paper is a brief review of data obtained by the authors from the study on redox reactions of neptunium and plutonium ions upon γ radiolysis of their aerated alkaline aqueous solutions. It includes the information on radiolytic reduction of Np(V), Np(VI) and Pu(VI) ions under various experimental conditions. It was found that the values of Np(VI) and Pu(VI) reduction yields do not depend on alkali concentration. The values considerably increase in the presence of some organic compounds (EDTA and formate were investigated). The formation of the Np(V) peroxo complex was observed in the γ radiolysis of alkaline aqueous solutions of Np(VI) and Np(V) in the presence of nitrate. The mechanism of radiolytic redox reactions of the ions is discussed in some detail

  20. Indications of the formation of an oversaturated solid solution during hydrogenation of Mg-Ni based nanocomposite produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama, CRIDESAT, Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)

    2009-07-15

    An oversaturated solid solution of H in a nanocomposite material formed mainly by nanocrystalline Mg{sub 2}Ni, some residual nanocrystalline Ni and an Mg rich amorphous phase has been found for the first time. The nanocomposite was produced by mechanical alloying starting from Mg and Ni elemental powders, using a SPEX 8000D mill. The hydriding characterization of the nanocomposite was carried out by solid-gas reaction method in a Sievert's type apparatus. The maximum hydrogen content reached in a period of 21 Ks without prior activation was 2.00 wt.% H under hydrogen pressure of 2 MPa at 363 K. The X-ray diffraction analysis showed the presence of an oversaturated solid solution between nanocrystalline Mg{sub 2}Ni and H without any sign of Mg{sub 2}NiH{sub 4} hydride formation. The dehydriding behaviour was studied by differential scanning calorimetry and thermogravimetry. The results showed the existence of two desorption peaks, the first one associated with the transformation of the oversaturated solid solution into Mg{sub 2}NiH{sub 4}, and the second one with the Mg{sub 2}NiH{sub 4} desorption. (author)

  1. Aggregation mechanism of Pd nanoparticles in L-cysteine aqueous solution studied by NEXAFS and AFM

    International Nuclear Information System (INIS)

    Tsukada, C.; Ogawa, S.; Mizutani, T.; Kutluk, G.; Namatame, H.; Taniguchi, M.; Yagi, S.

    2012-01-01

    Highlight: ► We focus on the biocompatibility of Pd nanoparticles (NPs) for L-cysteine under water environment. ► The Pd NPs have been fabricated and deposited on Si wafer by gas evaporation method. ► When the Pd NPs/Si has been dipped into L-cysteine aqueous solution, the L-cysteine has selectively adsorbed on Pd NPs surface and existed as the L-cysteine thiolate, atomic S and L-cystine. ► Moreover, the aggregation of Pd NPs occurs by the migration of Pd NPs on Si and the cross-linked reaction between L-cysteine thiolate molecules adsorbed on Pd NPs. - Abstract: We focus on the biocompatibility of Pd nanoparticles (NPs) from the point of microscopic view. Thus, as the basic research for the biocompatibility, we have investigated the adsorbates on the Pd NPs surface and the aggregation mechanism for the Pd NPs on Si substrate after dipping into L-cysteine aqueous solution by means of NEXAFS measurement and AFM observation. The Pd NPs have been fabricated and deposited on the Si wafer by the gas evaporation method. Judging from the results of NEXAFS measurement, it is clear that the L-cysteine thiolate and atomic S exist on the Pd NPs surface. The results of AFM observation show that the Pd NPs aggregate. It is thought that the aggregation of the Pd NPs occurs by both the migration of the Pd NPs on Si wafer and the cross-linked reaction.

  2. Physicochemistry of the plasma-electrolyte solution interface

    International Nuclear Information System (INIS)

    Chen Qiang; Saito, Kenji; Takemura, Yu-ichiro; Shirai, Hajime

    2008-01-01

    The atmospheric rf plasma discharge was successfully investigated using NaOH or HCl electrolyte solutions as a counter electrode at different pH values. The emission intensities of solution components, self bias, and electron density strongly depend on the pH value of electrolyte. An addition of ethanol to the electrolyte solutions enhanced the dehydration, which markedly promoted the emissions of solution components as well as electrons from the solution. An acidification of the solution was always observed after the plasma exposure and two coexisting mechanisms were proposed to give a reasonable interpretation. The plasma-electrolyte interface was discussed based on a model of hydrogen cycle

  3. PERVASIVE BUSINESS INTELLIGENCE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Rocsana Tonis (Bucea-Manea

    2011-03-01

    Full Text Available The utility of BI solutions is accepted all over the world in the modern organizations. However, the BI solutions do not offer a constant feedback in line with the organizational activities. In this context, there have been developed pervasive BI solutions which are present at different levels of the organization, so that employees can observe only what is most relevant to their day-to-day tasks. They are organized in vertical silos, with clearly identified performance and expectations. The paper emphasizes the role of pervasive BI solutions in reaching the key performance indicators of the modern organizations, more important in the context of crisis.

  4. The mechanism of 'solid-body' rotation of superfluid and normal components in the process of separation into layers of the over saturated 3He-4He solution

    International Nuclear Information System (INIS)

    Pashitskij, Eh.A.; Mal'nev, V.N.; Naryshkin, R.A.

    2005-01-01

    It is shown that unstable hydrodynamic vortices may be formed inside subcritical nuclei of separation in the normal component of the decaying over saturated 3 He- 4 He solution. We consider the mechanism of drag of the superfluid component of the 3 He- 4 He solution by the normal component into the 'solid-body' rotation due to the Hall-Vinen-Bekarevich-Khalatnikov forces in the equations of two-fluid hydrodynamics, resulting in the formation of quantized vortices. An increase in the average density of the quantized vortices may accelerate the process of heterogeneous decomposition of the 3 He- 4 He solution

  5. Transnistria: Prospects for a Solution

    National Research Council Canada - National Science Library

    Urse, Cristian

    2007-01-01

    .... After the conclusion of the agreement that ended the armed conflict, Chisinau and Tiraspol made efforts to find a political solution, under the supervision of a negotiation mechanism that included...

  6. A Spectrum Allocation Mechanism Based on HJ-DQPSO for Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhu Jiang

    2015-11-01

    Full Text Available In cognitive radio network model consisting of secondary users and primary users, in order to solve the difficult multi-objective spectrum allocation issue about maximizing network efficiency and users’ fairness to access network, this paper proposes a new discrete multi-objective combinatorial optimization mechanism—HJ-DQPSO based on Hooke Jeeves (HJ and Quantum Particle Swarm Optimization (QPSO algorithm. The mechanism adopts HJ algorithm to local search to prevent falling into the local optimum, and proposes a discrete QPSO algorithm to match the discrete spectrum assignment model. The mechanism has the advantages of approximating optimal solution, rapid convergence, less parameters, avoiding falling into local optimum. Compared with existing spectrum assignment algorithms, the simulation results show that according to different optimization objectives, the HJ-DQPSO optimization mechanism for multi-objective optimization can better approximate optimal solution and converge fast. We can obtain a reasonable spectrum allocation scheme in the case of satisfying multiple optimization objectives.

  7. Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(VI) hydroxide in aqueous solution.

    Science.gov (United States)

    Yang, Xia; Chai, Zhifang; Wang, Dongqi

    2015-03-21

    Four types of reaction mechanisms for the oxo ligand exchange of monomeric and dimeric neptunyl(VI) hydroxide in aqueous solution were explored computationally using density functional theory (DFT) and ab initio classical molecular dynamics. The obtained results were compared with previous studies on the oxo exchange of uranyl hydroxide, as well as with experiments. It is found that the stable T-shaped [NpO3(OH)3](3-) intermediate is a key species for oxo exchange in the proton transfer in mononuclear Path I and binuclear Path IV, similar to the case of uranyl(VI) hydroxide. Path I is thought to be the preferred oxo exchange mechanism for neptunyl(VI) hydroxide in our calculations, due to the lower activation energy (22.7 and 13.1 kcal mol(-1) for ΔG(‡) and ΔH(‡), respectively) of the overall reaction. Path II via a cis-neptunyl structure assisted by a water molecule might be a competitive channel against Path I with a mononuclear mechanism, owing to a rapid dynamical process occurring in Path II. In Path IV with the binuclear mechanism, oxo exchange is accomplished via the interaction between [NpO2(OH)4](2-) and T-shaped [NpO3(OH)3](3-) with a low activation energy for the rate-determining step, however, the overall energy required to fulfill the reaction is slightly higher than that in mononuclear Path I, suggesting a possible binuclear process in the higher energy region. The chemical bonding evolution along the reaction pathways was discussed by using topological methodologies of the electron localization function (ELF).

  8. Quantum mechanical calculations to chemical accuracy

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

  9. Dielectric properties of binary solutions a data handbook

    CERN Document Server

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  10. Electrostrictive Mechanism of Radiation Self-Action in Nanofluids

    Directory of Open Access Journals (Sweden)

    Albert Livashvili

    2013-01-01

    Full Text Available The electrostriction mechanism of beam self-focusing in nanofluids is theoretically investigated. An analytical solution of the diffusion equation, which describes the dynamics of particles in nanofluids, was obtained and studied. Explicit expressions for the nonlinear part of the refractive index and concentration lens focal length are presented. It is shown that there is a limit on the radiation intensity associated with the physical and hydrodynamic characteristics of the phenomena in these processes.

  11. Lectures in nonlinear mechanics and chaos theory

    CERN Document Server

    Stetz, Albert W

    2016-01-01

    This elegant book presents a rigorous introduction to the theory of nonlinear mechanics and chaos. It turns out that many simple mechanical systems suffer from a peculiar malady. They are deterministic in the sense that their motion can be described with partial differential equations, but these equations have no proper solutions and the behavior they describe can be wildly unpredictable. This is implicit in Newtonian physics, and although it was analyzed in the pioneering work of Poincaré in the 19th century, its full significance has only been realized since the advent of modern computing. This book follows this development in the context of classical mechanics as it is usually taught in most graduate programs in physics. It starts with the seminal work of Laplace, Hamilton, and Liouville in the early 19th century and shows how their formulation of mechanics inevitably leads to systems that cannot be 'solved' in the usual sense of the word. It then discusses perturbation theory which, rather than providing...

  12. Analytical solutions to matrix diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  13. Electrochemical Noise Chaotic Analysis of NiCoAg Alloy in Hank Solution

    Directory of Open Access Journals (Sweden)

    D. Bahena

    2011-01-01

    Full Text Available The potential and current oscillations during corrosion of NiCoAg alloy in Hank solution were studied. Detailed nonlinear fractal analyses were used to characterize complex time series clearly showing that the irregularity in these time series corresponds to deterministic chaos rather than to random noise. The chaotic oscillations were characterized by power spectral densities, phase space, and Lyapunov exponents. Electrochemical impedance was also applied the fractal dimensions for the corroded surface was obtained, and a corrosion mechanism was proposed.

  14. SPECIAL TRAITS OF MANIFESTATION OF DEFENCIVE MECHANISMS DURING DEVELOPMENT OF SELF-ATTITUDE OF TEENAGERS FROM FULL AND SINGLE-PARENT FAMILIES

    Directory of Open Access Journals (Sweden)

    A. E. Melojan

    2015-01-01

    Full Text Available The article is devoted to one of the problems of personality development of today’s teenagers pertaining to their self-attitude and psychological defence. It presents the results of a comparative analysis of self-attitude development specifics and manifestation of defence mechanisms in teenagers from full and single-parent families as well as special traits of interconnection of self-attitude main components and some types of psychological defence that are typical for them. Better well-being and greater disposition to approve of themselves has been revealed among those raised in full families as against a tendency to self-disparagement, besides the more intensive use of psychological defence, of their peers from single-parent families. It has been established that family structure defined by the principle “full” - “single-parent” is an important factor of self-attitude development and manifestation of psychological defence in teenagers.

  15. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei, Wei [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of); Wu, Xiaohui; Zhou, Tao [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Mao, Juan, E-mail: monicamao45@hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of)

    2015-12-15

    Highlights: • An acid-resisting chitosan fiber was prepared by ion-imprinting technique. • Pd(II) and ECH were as template and two-step crosslinking agent, respectively. • IIF showed a good adsorption and selectivity performance on Pd(II) solutions. • Selectivity was due to the electrostatic attraction between −NH{sub 3}{sup +} and [PdCl{sub 4}]{sup 2−}. • Stable sorption/desorption performance shows a potential in further application. - Abstract: A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6–326.4 mg g{sup −1} in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g{sup −1} in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications.

  16. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms

    International Nuclear Information System (INIS)

    Lin, Shuo; Wei, Wei; Wu, Xiaohui; Zhou, Tao; Mao, Juan; Yun, Yeoung-Sang

    2015-01-01

    Highlights: • An acid-resisting chitosan fiber was prepared by ion-imprinting technique. • Pd(II) and ECH were as template and two-step crosslinking agent, respectively. • IIF showed a good adsorption and selectivity performance on Pd(II) solutions. • Selectivity was due to the electrostatic attraction between −NH_3"+ and [PdCl_4]"2"−. • Stable sorption/desorption performance shows a potential in further application. - Abstract: A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6–326.4 mg g"−"1 in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g"−"1 in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications.

  17. Full-service concept for energy efficient renovation of single-family houses

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Tommerup, Henrik M.; Svendsen, Svend

    2011-01-01

    the solutions. Such one-stop-shops in the form of full-service providers of energy efficient renovation of single-family house are missing in the Nordic countries, although this service is vital to open up the market. As part of the Nordic research project `SuccesFamilies´ with the purpose to change...... houses. A one-stop-shop in the form of a full-service concept could be seen as a possibility to make it easy for the homeowner to comply with possible future requirements to realize far-reaching energy savings in connection with extensive renovations, provided that the building sector offers...... includes an ideal full-service concept and technical renovation solutions targeted to different types of single-family houses....

  18. Pitting resistance and mechanism of TiN-coated Inconel 600 in 100 C NaCl solution

    International Nuclear Information System (INIS)

    In, C.B.; Kim, J.S.; Chun, S.S.; Lee, W.J.

    1995-01-01

    TiN films were deposited on Inconel 600 by PACVD method using a gaseous mixture of TiCl 4 , N 2 , H 2 and Ar, and their pitting resistance and mechanism in 100 C NaCl solution were investigated. Anodic polarization measurement of TiN-coated Inconel 600 was compared with that of bare Inconel 600. TiN-coated Inconel 600 has a higher E np and a lower pit depth than bare Inconel 600. It also shows a smaller pit aspect ratio due to the concentration of the corrosion in the Inconel 600 contacted with the TiN film. When the Inconel 600 has a rough surface, E np decreases and the pit density increases to a great extent. However, E corr , pit depth and pit aspect ratio are not affected. ((orig.))

  19. Improved diffusivity of NaOH solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production.

    Science.gov (United States)

    Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi

    2018-07-01

    This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The mechanism of borax crystallization using in situ optical microscopy and AFM

    International Nuclear Information System (INIS)

    Suharso, G.; Parkinson, M.; Ogden, M.

    2002-01-01

    Full text: The quality of high-purity borax depends both on the concentrations of the impurities and the product appearance, which are mainly determined by the size and morphology of the crystals. Thus, knowledge about crystallization of borax is of direct relevance to the industrial production of borax. In addition, fundamental studies of borax crystallization will provide results of relevance to the crystallization of other economically important materials. An investigation into the fundamental mechanism of crystal growth of borax from aqueous solution was carried out, as a model system. The investigation focussed on the growth mechanism, and the influence of factors such as solution supersaturation, temperature, crystal size and solution flow on the rate of crystal growth. In situ optical microscopy was used to determine growth rates of three different faces of borax crystals at 20, 25, 30, and 35 deg C, at various concentrations. It was found that the growth rate increases with increasing temperature and supersaturation. At low concentration , growth on the (010), (001), and (111) faces occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating. The activation energy for the different mechanisms was determined. Examination by ex situ Atomic Force Microscopy (AFM) showed features suggesting that the (100), (010), (001) faces of borax crystals grow by spiral mechanism at low concentration and two dimensional nucleation at high concentration. These experiments support the data obtained from in situ optical microscopy. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. Long-term interactions of full-scale cemented waste simulates in salt solutions. Summary report; Langzeit-Wechselwirkungen von zementierten Abfallsimulaten im Originalmassstab mit Salzloesungen. Zusammenfassender Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard; Borkel, Christoph; Metz, Volker [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung (INE)

    2015-12-04

    On March 13,.2013 the Federal Office of Radiation Protection (BfS) published a note that the responsible group of the Helmholtz Zentrums Muenchen had finished the experiments in the socalled leaching test room at the 490 m level of the Asse II mine. In this room, the previous operator the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF) carried out leaching and corrosion experiments with cemented full-scale samples. These experiments were performed since 1979 requested by the licensing authorities. With respect to the safety case for the Asse salt mine it was a need to demonstrate the transferability of results obtained by laboratory samples to real waste forms and to investigate the effects of the industrial cementation process an the properties of the waste forms. A research program was initiated by the Nuclear Research Centre Karlsruhe (today Karlsruhe Institute of Technology, KIT) and the Institut fuer Tieflagerung of the Gesellschaft fuer Strahlenforschung m.b.H. (GSF). Since 1996 the scientific supervision of the experiments were dedicated to the Institute for Nuclear Waste Disposal (INE) of KIT. Until 2013, the corroding solutions were sampled several times. In 2006 four full-scale samples were retrieved and investigated with respect to variations of the solids. After termination of the experiments in January 2013, radioactively doped samples were transferred to KIT-INE for final evaluations. The present report summarizes the background and objectives of the experiments as well as the results of the solutions and solid state analyses.

  2. Fundamental solutions in piezoelectricity. Penny-shaped crack solution

    International Nuclear Information System (INIS)

    Dyka, Ewa; Rogowski, Bogdan

    2006-01-01

    The problem of electroelasticity for piezoelectric materials is considered. For axially symmetric states three potentials are introduced, which determine the displacements, the electric potentials, the stresses, the components of the electric field vector and the electric displacements in a piezoelectric body. These fundamental solutions are utilized to solve the penny-shaped crack problem. Two cases of boundary-value problems are considered, namely the permeable and impermeable crack boundary conditions. Exact solutions are obtained for elastic and electric fields. The main results are the stress intensity factor for singular stress and the electric displacement intensity factor. The numerical results are presented graphically to show the influence of applied mechanical and electrical loading on the analyzed quantities and to clarify the effect of anisotropy of piezoelectric materials. It is show that the influence of anisotropy of the materials on these fields is significant

  3. Studies on the influence of metallurgical variables on the stress corrosion behavior of AISI 304 stainless steel in sodium chloride solution using the fracture mechanics approach

    International Nuclear Information System (INIS)

    Khatak, H.S.; Gnanamoorthy, J.B.; Rodriguez, P.

    1996-01-01

    Stress corrosion data on a nuclear grade AISI type 304 stainless steel in a boiling solution of 5M NaCl + 0.15M Na 2 SO 4 + 3 mL/L HCl (bp 381 K) for various metallurgical conditions of the steel are presented in this article. The metallurgical conditions used are solution annealing, sensitization, 10 pct cold work, 20 pct cold work, solution annealing + sensitization, 10 pct cold work + sensitization, and 20 pct cold work + sensitization. The fracture mechanics approach has been used to obtain quantitative data on the stress corrosion crack growth rates. The stress intensity factor, K I , and J integral, J I , have been used as evaluation parameters. The crack growth rates have been measured using compact tension type samples under both increasing and decreasing stress intensity factors. A crack growth rate of 5 x 10 -11 m/s was chosen for the determination of threshold parameters. Results of the optical microscopic and fractographic examinations are presented. Acoustic signals were recorded during crack growth. Data generated from acoustic emissions, activation energy measurements, and fractographic features indicate hydrogen embrittlement as the possible mechanism of cracking

  4. Sociality as a natural mechanism of public goods provision.

    Directory of Open Access Journals (Sweden)

    Elliot T Berkman

    Full Text Available In the recent literature, several hypotheses have been offered to explain patterns of human behavior in social environments. In particular, these patterns include 'prosocial' ones, such as fairness, cooperation, and collective good provision. Psychologists suggest that these prosocial behaviors are driven not by miscalculations, but by salience of social identity, in-group favoritism, emotion, or evolutionary adaptations. This paper imports psychology scholarship into an economic model and results in a sustainable solution to collective action problems without any external enforcement mechanisms. This natural mechanism of public goods provision is created, analyzed, and observed in a controlled laboratory environment using experimental techniques.

  5. Kinetics of radiocesium released from contaminated soil by fertilizer solutions

    International Nuclear Information System (INIS)

    Chiang, P.N.; Wang, M.K.; Huang, P.M.; Wang, J.J.

    2008-01-01

    137 Cs is one of the major artificial radionuclides found in environments; but the mechanisms behind fertilizer-induced 137 Cs desorption from soil remain unknown. This study aimed to investigate the kinetics and mechanisms underlying the various cations and anions that cause Cs release from soil under acidic conditions. NH 4 H 2 PO 4 (1 M), 0.5 M (NH 4 ) 2 SO 4 , 1 M NH 4 Cl, 1 M KCl or 1 M NaCl solutions were added to 137 Cs-contaminated soil. The power function model well described the short term 137 Cs desorption with the solutions. The rate coefficients for 137 Cs release from soil in NH 4 H 2 PO 4 , (NH 4 ) 2 SO 4 , NH 4 Cl, and KCl solutions were 7.7, 7.3, 6.8, and 6.1 times higher than the rate observed in a NaCl solution, respectively. The NH 4 H 2 PO 4 and (NH 4 ) 2 SO 4 solutions induced significantly greater 137 Cs release from the contaminated soil than the NH 4 Cl, KCl and NaCl solutions. After four times repeated extractions with the fertilizer solutions, the total amount of 137 Cs extracted by (NH 4 ) 2 SO 4 and NH 4 Cl solutions reached equilibrium, while that extracted using an NH 4 H 2 PO 4 solution continued to increase. The combined effect of phosphate and protons was the major mechanism behind 137 Cs release from contaminated soils, when an NH 4 H 2 PO 4 solution was used

  6. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  7. Energies and transition probabilities from the full solution of nuclear quadrupole-octupole model

    International Nuclear Information System (INIS)

    Strecker, M.; Lenske, H.; Minkov, N.

    2013-01-01

    A collective model of nuclear quadrupole-octupole vibrations and rotations, originally restricted to a coherent interplay between quadrupole and octupole modes, is now developed for application beyond this restriction. The eigenvalue problem is solved by diagonalizing the unrestricted Hamiltonian in the basis of the analytic solution obtained in the case of the coherent-mode assumption. Within this scheme the yrast alternating-parity band is constructed by the lowest eigenvalues having the appropriate parity at given angular momentum. Additionally we include the calculation of transition probabilities which are fitted with the energies simultaneously. As a result we obtain a unique set of parameters. The obtained model parameters unambiguously determine the shape of the quadrupole-octupole potential. From the resulting wave functions quadrupole deformation expectation values are calculated which are found to be in agreement with experimental values. (author)

  8. AdS solutions through transgression

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P.; Kim, Nakwoo

    2008-01-01

    We present new classes of explicit supersymmetric AdS 3 solutions of type IIB supergravity with non-vanishing five-form flux and AdS 2 solutions of D = 11 supergravity with electric four-form flux. The former are dual to two-dimensional SCFTs with (0,2) supersymmetry and the latter to supersymmetric quantum mechanics with two supercharges. We also investigate more general classes of AdS 3 solutions of type IIB supergravity and AdS 2 solutions of D = 11 supergravity which in addition have non-vanishing three-form flux and magnetic four-form flux, respectively. The construction of these more general solutions makes essential use of the Chern-Simons or 'transgression' terms in the Bianchi identity or the equation of motion of the field strengths in the supergravity theories. We construct infinite new classes of explicit examples and for some of the type IIB solutions determine the central charge of the dual SCFTs. The type IIB solutions with non-vanishing three-form flux that we construct include a two-torus, and after two T-dualities and an S-duality, we obtain new AdS 3 solutions with only the NS fields being non-trivial.

  9. Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA – Implications for the catalytic mechanism of parvulins

    Directory of Open Access Journals (Sweden)

    Koskela Harri

    2009-03-01

    Full Text Available Abstract Background Staphylococcus aureus is a Gram-positive pathogenic bacterium causing many kinds of infections from mild respiratory tract infections to life-threatening states as sepsis. Recent emergence of S. aureus strains resistant to numerous antibiotics has created a need for new antimicrobial agents and novel drug targets. S. aureus PrsA is a membrane associated extra-cytoplasmic lipoprotein which contains a parvulin-type peptidyl-prolyl cis-trans isomerase domain. PrsA is known to act as an essential folding factor for secreted proteins in Gram-positive bacteria and thus it is a potential target for antimicrobial drugs against S. aureus. Results We have solved a high-resolution solution structure of the parvulin-type peptidyl-prolyl cis-trans isomerase domain of S. aureus PrsA (PrsA-PPIase. The results of substrate peptide titrations pinpoint the active site and demonstrate the substrate preference of the enzyme. With detailed NMR spectroscopic investigation of the orientation and tautomeric state of the active site histidines we are able to give further insight into the structure of the catalytic site. NMR relaxation analysis gives information on the dynamic behaviour of PrsA-PPIase. Conclusion Detailed structural description of the S. aureus PrsA-PPIase lays the foundation for structure-based design of enzyme inhibitors. The structure resembles hPin1-type parvulins both structurally and regarding substrate preference. Even though a wealth of structural data is available on parvulins, the catalytic mechanism has yet to be resolved. The structure of S. aureus PrsA-PPIase and our findings on the role of the conserved active site histidines help in designing further experiments to solve the detailed catalytic mechanism.

  10. Freezing mechanisms of aqueous binary solution on the oscillating vertical cooled plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, Hiromichi; Fukusako, Shoichiro; Yamada, Masahiko; Yanagida, Koki

    1999-07-01

    An experimental and analytical study concerning the freezing characteristics of aqueous binary solution on the oscillating cooled wall was conducted for the purpose of establishment of the continuous production method of slush ice. Ethylene glycol solution was adopted as the test fluid and froze on a vertical cooled plate with an oscillation motion in a vessel. Experiments were carried out for a variety of conditions such as initial concentration of solution, oscillating acceleration, and stroke of the motion. As a result, it was found that the frozen layer being formed on the cooled plate continuously separated from it under the appropriate conditions. Furthermore, the condition range where the continuous production of slush ice may be available was well predicted by using the present analytical results. The experimental setup is depicted in Figure A-1. The essential components of the apparatus are the test section, a cooling brine circulation loop, and associated instrumentation. Figure A-2 presents the continuous production range of slush ice, in which the ordinate is the maximum acceleration of the cooled plate and the abscissa denotes the initial concentration of aqueous binary solution. It is evident from the figure that the tendency of the production range of slush ice obtained by the present analysis well predicts the experimental results.

  11. Mechanical science

    CERN Document Server

    Bolton, W C

    2013-01-01

    This book gives comprehensive coverage of mechanical science for HNC/HND students taking mechanical engineering courses, including all topics likely to be covered in both years of such courses, as well as for first year undergraduate courses in mechanical engineering. It features 500 problems with answers and 200 worked examples. The third edition includes a new section on power transmission and an appendix on mathematics to help students with the basic notation of calculus and solution of differential equations.

  12. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Wolverton, C.

    2007-01-01

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  13. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    International Nuclear Information System (INIS)

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-01-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of E i I i , d, and γ, where E i I i and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates

  14. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    Science.gov (United States)

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  15. Mechanisms Of Formation And Development Of Mahalla Centers In Central Asia

    Directory of Open Access Journals (Sweden)

    Sereeva Guljazira

    2015-08-01

    Full Text Available this article is devoted to the architecture of mahalla where mechanism of its historical formation and evolution planning solutions structural composition are analyzed. In addition an attempt has been made to cover the activity of mahalla neighborhood team in family lifestyle of Central Asias nations from historical and ethnographic viewpoint. Recommendations on increasing the opportunities for efficient use of populated areas.

  16. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection.

    Science.gov (United States)

    Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Christofidou-Solomidou, Melpo

    2016-09-01

    Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3'-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton (1)H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO(-) and radiation. Purine base chlorination by ClO(-) and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Chloride anions (Cl(-)) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by (1)H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO(-) or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO(-) generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl) and dichloro radical anions (Cl2¯)), which were trapped by SDG and its structural analog dopamine. We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged

  17. Drag reduction behavior of hydrolyzed polyacrylamide/xanthan gum mixed polymer solutions

    Institute of Scientific and Technical Information of China (English)

    Mehdi Habibpour; Peter E.Clark

    2017-01-01

    Partially hydrolyzed polyacrylamide (HPAM) as the main component of slickwater fracturing fluid is a shear-sensitive polymer,which suffers from mechanical degradation at turbulent flow rates.Five different concentrations of HPAM as well as mixtures of polyacrylamide/xanthan gum were prepared to investigate the possibility of improving shear stability of HPAM.Drag reduction (DR)measurements were performed in a closed flow loop.For HPAM solutions,the extent of DR increased from 30% to 67% with increasing HPAM concentration from 100 to 1000 wppm.All the HPAM solutions suffered from mechanical degradation and loss of DR efficiency over the shearing period.Results indicated that the resistance to shear degradation increased with increasing polymer concentration.DR efficiency of 600 wppm xanthan gum (XG)was 38%,indicating that XG was not as good a drag reducer as HPAM.But with only 6% DR decline,XG solution exhibited a better shear stability compared to HPAM solutions.Mixed HPAM/XG solutions initially exhibited greater DR (40% and 55%) compared to XG,but due to shear degradation,DR% dropped for HPAM/XG solutions.Compared to 200 wppm HPAM solution,addition of XG did not improve the drag reduction efficiency of HPAM/XG mixed solutions though XG slightly improved the resistance against mechanical degradation in HPAM/XG mixed polymer solutions.

  18. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    Science.gov (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  19. Machine assembly with a new material handling mechanism in the sewing machine

    Directory of Open Access Journals (Sweden)

    Umarova Z.M.

    2017-05-01

    Full Text Available the paper presents the dynamic model of the machine assembly with a recommended mechanism for moving material and the definition of the law of rails motion under various system parameters. The author has suggested the solution implemented by the system of differential equations numerically on the PC and the system describing the motion of the machine set. Recommended values ​​of the parameters of elastic links of material transfer mechanism have been obtained. The researcher has developed the methods of kinematic and dynamic analysis of the material transfer mechanism with elastic elements of the sewing machine and has approved the parameters and development of the design.

  20. THE IMPORTANCE OF LIMIT SOLUTIONS & TEMPORAL AND SPATIAL SCALES IN THE TEACHING OF TRANSPORT PHENOMENA

    Directory of Open Access Journals (Sweden)

    SÁVIO LEANDRO BERTOLI

    2016-07-01

    Full Text Available In the engineering courses the field of Transport Phenomena is of significant importance and it is in several disciplines relating to Fluid Mechanics, Heat and Mass Transfer. In these disciplines, problems involving these phenomena are mathematically formulated and analytical solutions are obtained whenever possible. The aim of this paper is to emphasize the possibility of extending aspects of the teaching-learning in this area by a method based on time scales and limit solutions. Thus, aspects relative to the phenomenology naturally arise during the definition of the scales and / or by determining the limit solutions. Aspects concerning the phenomenology of the limit problems are easily incorporated into the proposed development, which contributes significantly to the understanding of physics inherent in the mathematical modeling of each limiting case studied. Finally the study aims to disseminate the use of the limit solutions and of the time scales in the general fields of engineering.

  1. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2016-07-01

    Full Text Available The viability of mechanical polishing as a surface pre-treatment method for commercially available platinum screen-printed electrodes (SPEs was investigated and compared to a range of other pre-treatment methods (UV-Ozone treatment, soaking in N,N-dimethylformamide, soaking and anodizing in aqueous NaOH solution, and ultrasonication in tetrahydrofuran. Conventional electrochemical activation of platinum SPEs in 0.5 M H2SO4 solution was ineffective for the removal of contaminants found to be passivating the screen-printed surfaces. However, mechanical polishing showed a significant improvement in hydrogen adsorption and in electrochemically active surface areas (probed by two different redox couples due to the effective removal of surface contaminants. Results are also presented that suggest that SPEs are highly susceptible to degradation by strong acidic or caustic solutions, and could potentially lead to instability in long-term applications due to continual etching of the binding materials. The ability of SPEs to be polished effectively extends the reusability of these traditionally “single-use” devices. Keywords: Screen-printed electrodes, Polishing, Platinum, Activation, Pre-treatment, Cyclic voltammetry

  2. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  3. A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2015-01-01

    Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.

  4. Electrodialysis potential for fractionation of multicomponent aqueous solutions

    Directory of Open Access Journals (Sweden)

    Grzegorzek Martyna

    2017-01-01

    Full Text Available The paper aimed at the evaluation of the batch electrodialysis (ED run in the course of treatment and desalination of various aqueous mixtures containing both mineral (sodium fluoride, sodium chloride and organic substances (dyes or humic acids. The commercial ED stack (PCCell Bed equipped with standard anion-exchange and cation-exchange membranes or monovalent selective anion-exchange membranes was used. The ED experiments were performed at a constant current density (1.56 or 1.72 mA/cm2. The mechanism of ion migration as well as membrane deposition for variable solution composition and various membrane types was analyzed The calculated mass balance and electrical energy demand for each ED run were helpful in evaluating the membrane fouling intensity. It was found that the presence of organic substances in the treated solution had a minor impact on energy consumption, but rather strongly affected chloride flux. The extent of organics deposition was significantly lower for monovalent selective anion-exchange membranes than for classic anion-exchange membranes.

  5. A Study On The Metal Carbide Composite Diffusion Bonding For Mechanical Seal

    Directory of Open Access Journals (Sweden)

    Kim D.-K.

    2015-06-01

    Full Text Available Mechanical Seal use highly efficient alternative water having a great quantity of an aqueous solution and has an advantage no corrosion brine. Metal Carbide composites have been investigated as potential materials for high temperature structural applications and for application in the processing industry. The existing Mechanical seal material is a highly expensive carbide alloy, and it is difficult to take a price advantage. Therefore the study of replacing body area with inexpensive steel material excluding O-ring and contact area which demands high characteristics is needed.

  6. The Problems of Realizing the Innovative Potential of Science and Mechanisms for their Solution

    Directory of Open Access Journals (Sweden)

    Ianchenko Zinayida B.

    2017-06-01

    Full Text Available The aim of the article is revealing reasons for the low payoff of science in terms of the effectiveness of the research activity and demand for its results in economic spheres, identifying problems in the innovation activity of research institutions and reasons for their arising, searching for fundamental approaches to the development of a strategy and mechanisms for realization of the innovative potential of science to strengthen its position in the real sector. The study used general scientific methods, including: systems approach — to systematize the problems of the innovation activity of research institutions; methods of theoretical generalization — to study the theoretical principles of the scientific and innovation activity; methods of analysis and synthesis — to search for fundamental approaches to the development of mechanisms for realization of the innovative potential of science. The used concepts of scientific activity and innovations are generalized. The author’s definition of the term “innovation” is proposed. The main reasons of the minor impact of science on the economy are systematized, the mechanisms for their elimination are offered. Based on the comprehensive analysis of the reasons for losing by science its impact on the economy, the ways of realizing the innovative potential of science are improved. The results of the research can be used in reforming domestic scientific research institutions.

  7. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    International Nuclear Information System (INIS)

    Nelson, E; John Gladden, J

    2007-01-01

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments

  8. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  9. Experimental evaluation of rigor mortis IX. The influence of the breaking (mechanical solution) on the development of rigor mortis.

    Science.gov (United States)

    Krompecher, Thomas; Gilles, André; Brandt-Casadevall, Conception; Mangin, Patrice

    2008-04-07

    Objective measurements were carried out to study the possible re-establishment of rigor mortis on rats after "breaking" (mechanical solution). Our experiments showed that: *Cadaveric rigidity can re-establish after breaking. *A significant rigidity can reappear if the breaking occurs before the process is complete. *Rigidity will be considerably weaker after the breaking. *The time course of the intensity does not change in comparison to the controls: --the re-establishment begins immediately after the breaking; --maximal values are reached at the same time as in the controls; --the course of the resolution is the same as in the controls.

  10. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.

    Science.gov (United States)

    Zhao, Yufeng; Wang, Dongfang; Xie, Hezhen; Won, Sung Wook; Cui, Longzhe; Wu, Guiping

    2015-01-01

    One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

  11. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Benjia [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wheeler, Lance M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Barnes, Frank S. [University of Colorado; Shaheen, Sean E. [University of Colorado

    2018-03-02

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporates into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.

  12. Full Stability of Locally Optimal Solutions in Second-Order Cone Programs

    Czech Academy of Sciences Publication Activity Database

    Mordukhovich, B. S.; Outrata, Jiří; Sarabi, E.

    2014-01-01

    Roč. 24, č. 4 (2014), s. 1581-1613 ISSN 1052-6234 R&D Projects: GA ČR GAP402/12/1309 Grant - others:Australian Research Council(AU) DP-12092508; Australian Research Council(AU) DP-110102011; Portuguese Foundation of Science and Technologies(PT) MAT/11109; USA National Science Foundation(US) DMS-1007132 Institutional support: RVO:67985556 Keywords : variational analysis * second-order cone programming * full stability of local minimizers * nondegeneracy * strong regularity * quadratic growth * second-order subdifferentials * coderivatives Subject RIV: BA - General Mathematics Impact factor: 1.829, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/outrata-0434303.pdf

  13. A solution to the decompactification problem in chiral heterotic strings

    Directory of Open Access Journals (Sweden)

    Ioannis Florakis

    2017-08-01

    Full Text Available We present a solution to the decompactification problem of gauge thresholds in chiral heterotic string theories with two large extra dimensions, where supersymmetry is spontaneously broken by the Scherk–Schwarz mechanism. Whenever the Kaluza–Klein scale that controls supersymmetry breaking is much lower than the string scale, the infinite towers of heavy states contribute non-trivially to the renormalisation of gauge couplings, which typically grow linearly with the large volume of the internal space and invalidate perturbation theory. We trace the origin of the decompactification problem to properties of the six dimensional theory obtained in the infinite volume limit and show that thresholds may instead exhibit logarithmic volume dependence and we provide the conditions for this to occur. We illustrate this mechanism with explicit string constructions where the decompactification problem does not occur.

  14. Ion separation from dilute electrolyte solutions by nanofiltration

    International Nuclear Information System (INIS)

    Garcia, Corazon M.

    2000-03-01

    Nanofiltration (NF) is a pressure-driven process which is considered potential for the separation of ionic species selectively from solutions containing mixture of electrolyte solutes. The lower operating pressure requirement of NF than reverse osmosis (RO) makes the earlier potentially economical. In the separation of ions, many authors believed that there are membranes with characteristic fixed surface charge and that the mechanism of separation of ions is by the differences in valences of the ions. In this study, experiments involving dilute single-solute and multiple-solute electrolyte solutions were performed using three different NF membranes. Permeate fluxes and ion rejections of the different species of ions in samples of permeate solutions were measured at varied conditions. The mechanism of separation in NF was determined based on the analysis of the trends and behavior of ion rejection relative to the solution temperature, pressure, type of solute, feed concentration and feed solution pH. The results of the experiments show that there is no evidence of the presence of fixed surface charge on the NF membranes. Ion separation was made possible by the combination of sieve effect and ion-hydration effect. Ions having higher hydration numbers showed higher ion rejection than those having lower hydration numbers. A method to determine the effective membrane pore size of NF membranes using hydrodynamic model was proposed. The proposed method is based on the assumptions that the membrane is neutral and that the separation is based on sieving effect. (Author)

  15. Special solutions of neutral functional differential equations

    Directory of Open Access Journals (Sweden)

    Győri István

    2001-01-01

    Full Text Available For a system of nonlinear neutral functional differential equations we prove the existence of an -parameter family of "special solutions" which characterize the asymptotic behavior of all solutions at infinity. For retarded functional differential equations the special solutions used in this paper were introduced by Ryabov.

  16. Elimination of 2-chlorophenol from aqueous solutions by marine algae: Evidences of the mechanism of adsorption

    International Nuclear Information System (INIS)

    Cuizano, N.A.; Llanos, B.P.

    2009-01-01

    The mechanism of the removal of 2-chlorophenol onto the marine algae Lessonia nigrescens Bory and Macrocystis integrifolia Bory from aqueous solutions was investigated in batch experiments. The effect of the presence of metallic ions in the adsorptive process was evaluated. The results show that lead slightly increases the adsorption of 2-chlorophenol. This suggests two different types of adsorption of both types of pollutants by the two marine algae and a possible synergic effect. Scanning electron microscopy and energy dispersive X-ray analyses predominantly indicated a surface adsorption. Finally, the change in Gibbs free energy (ΔG 0 ) of the process was determined. The results show that the adsorption is not spontaneous for none of the algae. This also corroborates the absence of electrostatic interactions and the existence of a polar interaction in an unfavorable environment surrounded by hydroxyl groups. (author)

  17. Microfluidic model experiments on the injectability of monoclonal antibody solutions

    Science.gov (United States)

    Duchene, Charles; Filipe, Vasco; Nakach, Mostafa; Huille, Sylvain; Lindner, Anke

    2017-11-01

    Autoinjection devices that allow patients to self-administer medicine are becoming used more frequently; however, this advance comes with an increased need for precision in the injection process. The rare occurrence of protein aggregates in solutions of monoclonal antibodies constitutes a threat to the reliability of such devices. Here we study the flow of protein solutions containing aggregates in microfluidic model systems, mimicking injection devices, to gain fundamental understanding of the catastrophic clogging of constrictions of given size. We form aggregates by mechanically shaking or heating antibody solutions and then inject these solutions into microfluidic channels with varying types of constrictions. Geometrical clogging occurs when aggregates reach the size of the constriction and can in some cases be undone by increasing the applied pressure. We perform systematic experiments varying the relative aggregate size and the flow rate or applied pressure. The mechanical deformation of aggregates during their passage through constrictions is investigated to gain a better understanding of the clogging and unclogging mechanisms.

  18. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  19. The Mechanism of Redox Reaction between Palladium(II Complex Ions and Potassium Formate in Acidic Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-06-01

    Full Text Available The kinetics studies of redox reaction between palladium(II chloride complex ions and potassium formate in acidic aqueous solutions was investigated. It was shown, that the reduction reaction of Pd(II is selective in respect to Pd(II complex structure. The kinetic of the process was monitored spectrophotometrically. The influence of chloride ions concentration, Pd(II initial concentration, reductant concentration, ionic strength as well as the temperature were investigated in respect to the process dynamics. Arrhenius equation parameters were determined and are equal to 65.8 kJ/mol, and A = 1.12×1011 s−1.

  20. Solutions to horava gravity.

    Science.gov (United States)

    Lü, H; Mei, Jianwei; Pope, C N

    2009-08-28

    Recently Horava proposed a nonrelativistic renormalizable theory of gravitation, which reduces to Einstein's general relativity at large distances, and that may provide a candidate for a UV completion of Einstein's theory. In this Letter, we derive the full set of equations of motion, and then we obtain spherically symmetric solutions and discuss their properties. We also obtain solutions for the Friedmann-Lemaître-Robertson-Walker cosmological metric.

  1. "Free full text articles": where to search for them?

    Science.gov (United States)

    Singh, Ashish; Singh, Manish; Singh, Ajai Kumar; Singh, Deepti; Singh, Pratibha; Sharma, Abhishek

    2011-07-01

    References form the backbone of any medical literature. Presently, because of high inflation, it is very difficult for any library/organization/college to purchase all journals. The condition is even worse for an individual person, such as private practitioners. The solution lies in the free availability of full-text articles. Here, the authors share their experiences about the accessibility of free full-text articles.

  2. 44th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A. (Compiler)

    2018-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.

  3. Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism.

    Science.gov (United States)

    Wang, Lei; Zhao, Xinhua; Zhang, Jinmiao; Xiong, Zhenhu

    2017-06-01

    Two series of metal-organic frameworks (MOFs) with similar formula units but different central metal ions (M) or organic linkers (L), M-BDC (BDC = terephthalate, M = Zn, Zr, Cr, or Fe), or Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ), were prepared and employed as the receptors for adsorption lead ions. It was found that the Zn-BDC exhibited a much higher adsorption capacity than the other M-BDC series with various metal ions which have very closely low capacities at same conditions. Furthermore, the Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ) still have highly efficient adsorption capacity of lead ions, although the adsorption capacity varies with different ligand, as well as the adsorption rate and the equilibrium pH of the solution. This significant high adsorption over Zn-L, different from other M-BDC series with various metal ions (Zr, Cr, or Fe), can be explained by ion exchange between the central metal ions of Zn-L and lead ion in solution. Based on the analysis of FT-IR, X-ray diffraction pattern, the nitrogen adsorption isotherms, the zeta potentials, and the results, a plausible adsorption mechanism is proposed. When equivalent Zn-L were added to equal volume of aqueous solution with different concentration of lead ion, the content of zinc ion in the solution increases with the increase of the initial concentration of lead ions. The new findings could provide a potential way to fabricate new metal organic frameworks with high and selective capacities of the heavy metal ions.

  4. Stabilizers of edaravone aqueous solution and their action mechanisms. 1. Sodium bisulfite

    OpenAIRE

    Tanaka, Masahiko; Sugimura, Natsuhiko; Fujisawa, Akio; Yamamoto, Yorihiro

    2017-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used as a free radical scavenging drug for the treatment of acute ischemic stroke in Japan since 2001. Edaravone is given to patients intravenously; therefore, it is distributed in the form of an aqueous solution. However, aqueous solutions of edaravone are very unstable because it is present as edaravone anion, which is capable of transferring an electron to free radicals including oxygen, and becomes edaravone radical. We observed the...

  5. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  6. A new preconditioner update strategy for the solution of sequences of linear systems in structural mechanics: application to saddle point problems in elasticity

    Science.gov (United States)

    Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier

    2017-12-01

    Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.

  7. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  8. Biosorption behaviors of uranium (VI) from aqueous solution by sunflower straw and insights of binding mechanism

    International Nuclear Information System (INIS)

    Lian Ai; Xuegang Luo; Xiaoyan Lin; Sizhao Zhang

    2013-01-01

    Uranium (VI)-containing water has been recognized as a potential longer-term radiological health hazard. In this work, the sorptive potential of sunflower straw for U (VI) from aqueous solution was investigated in detail, including the effect of initial solution pH, adsorbent dosage, temperature, contact time and initial U (VI) concentration. A dose of 2.0 g L -1 of sunflower straw in an initial U (VI) concentration of 20 mg L -1 with an initial pH of 5.0 and a contact time of 10 h resulted in the maximum U (VI) uptake (about 6.96 mg g -1 ) at 298 K. The isotherm adsorption data was modeled best by the nonlinear Langmuir-Freundlich equation. The equilibrium sorption capacity of sunflower straw was observed to be approximately seven times higher than that of coconut-shell activated carbon as 251.52 and 32.37 mg g -1 under optimal conditions, respectively. The positive enthalpy and negative free energy suggested the endothermic and spontaneous nature of sorption, respectively. The kinetic data conformed successfully to the pseudo-second-order equation. Furthermore, energy dispersive X-ray, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that U (VI) adsorption onto sunflower straw was predominantly controlled by ion exchange as well as complexation mechanism. The study revealed that sunflower straw could be exploited for uranium remediation of aqueous streams as a promising adsorbent. (author)

  9. Investment-innovation mechanism of ensuring competitiveness of industrial enterprises

    Directory of Open Access Journals (Sweden)

    Kozyk Vasyl V.

    2014-01-01

    Full Text Available The article considers the process of formation of the investment-innovation mechanism of ensuring competitiveness of industrial enterprises. It identifies the essence, composition, goals and means of functioning of this mechanism. It establishes sequence of the process of functioning of the investment-innovation mechanism of ensuring competitiveness of economic subjects. It marks out such particular types of this mechanism: mechanism of renovation of fixed assets of an enterprise, mechanism of formation of channels and network of sales of enterprise products, mechanism of expansion of production capacity of the enterprise on manufacture of traditional types of products, mechanism of introduction of new progressive production processes, mechanism of development and production of innovation products, and mechanism of reduction of the level of risk of investment activity of the enterprise. The article conducts modelling of the process of development and realisation of investment solutions on introduction of progressive technologies of manufacture of products at the enterprise. It offers a method of selection of the most competitive variant of technology of manufacture of products depending on the level of quality and also specific current capital outlays for their manufacture.

  10. Influence of thermal treatment on bentonite used as adsorbent for Cd, Pb, Zn retention from mono-solute and poly-solute aqueous solutions

    Directory of Open Access Journals (Sweden)

    Susana Yamila Martinez Stagnaro

    2012-08-01

    Full Text Available The retentions of Zn, Cd and Pb cations by one treated bentonite up to 750 °C were analyzed. The retentions were evaluated by using mono-and poly-solute aqueous solutions of such cations. The adsorptions were carried out in batch system at room temperature. The solid/liquid ratio was 2% wt.v-1. The solids were characterized by X-ray diffraction, thermal and chemical analyses. The Zn cation from mono- or polysolute-solutions was retained in higher amount than Cd and Pb cations in similar solution types by bentonite. The retentions were effective up to 450 °C calcined bentonite, after that, the retention capacity decreased in concordance with dehydroxylation of the structure of clay minerals.

  11. Flotation separation of hafnium(IV) from aqueous solutions

    International Nuclear Information System (INIS)

    Downey, D.M.; Narick, C.N.; Cohen, T.A.

    1985-01-01

    A simple, rapid method for the separation of hafnium from aqueous solutions was investigated using sup(175+181)Hf tracer. Cationic hafnium complex ions were floated from dilute acid solutions with sodium lauryl sulfate (SLS) and anionic hafnium complexes were floated from basic and oxalic acid solutions with hexadecyltrimethyl ammonium bromide (HTMAB). The conditions necessary for quantitative recovery of the metal and mechanisms of flotation are described. (author)

  12. Problems in quantum mechanics with solutions

    CERN Document Server

    d'Emilio, Emilio

    2017-01-01

    This second edition of an extremely well-received book presents more than 250 nonrelativistic quantum mechanics problems of varying difficulty with the aim of providing students didactic material of proven value, allowing them to test their comprehension and mastery of each subject. The coverage is extremely broad, from themes related to the crisis of classical physics through achievements within the framework of modern atomic physics to lively debated, intriguing aspects relating to, for example, the EPR paradox, the Aharonov-Bohm effect, and quantum teleportation. Compared with the first edition, a variety of improvements have been made and additional topics of interest included, especially focusing on elementary potential scattering. The problems themselves range from standard and straightforward ones to those that are complex but can be considered essential because they address questions of outstanding importance or aspects typically overlooked in primers. The book offers students both an excellent tool f...

  13. Electrolysis of Gold from Filtration Waste by Means of Mechanical Activation

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2012-12-01

    Full Text Available The intensification of the gold thiourea leaching from a filtration waste (Košice, Slovakia using mechanical activationas the pretreatment step has been studied. The leaching of “as-received“ sample in an acid thiourea solution resulted in 65 % Audissolution. However, after mechanical activation in a planetary mill 99 % of the gold was leached. The optimum redox potential forelectrolysis is in the range 500-523 mV for the gold extraction 99.79 % from the mechanically activated sample. The mechanicalactivation resulted in an increase of the specific surface area of the waste from 0.7 m2g-1 to a maximum value of 13.5 m2g-1. The physicochemicalchanges in the filtration waste as a consequence of mechanical activation had a pronounced influence on the subsequent goldextraction.

  14. Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis

    Directory of Open Access Journals (Sweden)

    Przemysław Korohoda

    2013-01-01

    Full Text Available Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues λ, assuming they are all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 105 times larger than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the smallest eigenvalue indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.

  15. Discrete Riccati equation solutions: Distributed algorithms

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.

  16. A Coupled Model for Solution Flow and Bioleaching Reaction Based on the Evolution of Heap Pore Structure

    Directory of Open Access Journals (Sweden)

    Shenghua Yin

    2014-01-01

    Full Text Available Based on the basic seepage law, equations have been derived to descript the solution flow within the copper ore heap which is treated as anisotropy porous media. The relationship between heap permeability and pore ratio has been revealed. Given the consideration of cover pressure and particle dissolution, pore evolution model has been set up. The pore evolution mechanism, due to the process of dissolution, precipitation, blockage, collapse, and caking, has been investigated. The comprehensive model for pore evolution and solution flow under the effect of solute transport and leaching reaction has been established. A trapezoidal heap was calculated, and the estimated results show that permeability decreases with the decreasing of pore ratio. Therefore, the permeability of the heap with small particles is relatively low because of its low pore ratio. Furthermore, permeability and height are found to be the two main factors influencing the solution flow.

  17. Influence of temper condition on microstructure and mechanical properties of semisolid metal processed Al–Si–Mg alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2009-01-01

    Full Text Available The microstructures and mechanical properties of strontium modified semisolid metal high pressure die cast A356 alloy are presented. The alloy A356-F (as cast) has a globular primary grain structure containing a fine eutectic. Solution treatment...

  18. Full cycle rapid scan EPR deconvolution algorithm.

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  19. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.

    2017-01-01

    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  20. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  1. Kinetics and mechanism of the oxidation of uranium(III) by aqueous acidic solutions of iodine and bromine

    International Nuclear Information System (INIS)

    Adegite, A.; Egboh, H.; Ojo, J.F.; Olieh, R.

    1977-01-01

    The rates of oxidation of U 3+ by I 2 and Br 2 in aqueous acidic solutions have been investigated. The rate equations for iodine and bromine are shown, together with the corresponding activation parameters. An excellent correlation has been obtained between the rates of uranium(III) reduction of some oxidants, including iodine and bromine, and the free energies of these reactions. Since these other non-halogen reactions go via the outer-sphere mechanism, it is concluded that at least the first step in the two-step oxidation of U 3+ by Br 2 , I 2 , or [I 3 ] - is outer sphere. The homonuclear exchange rate constant ksub(ex) for U 3+ + U 4+ is deduced to be 1.66 +- 0.16 dm 3 mol -1 s -1 . (author)

  2. Pulse radiolytic study of alpha-tocopherol radical mechanisms in ethanolic solution

    International Nuclear Information System (INIS)

    Jore, D.; Patterson, L.K.; Ferradini, C.

    1986-01-01

    Pulse radiolytic studies of alpha-tocopherol (alpha TH) oxidation-reduction processes were carried out with low doses (5 Gy) of high-energy electrons in O 2 -, N 2 -, and air-saturated ethanolic solutions. Depending on the concentration of oxygen in solution, two different radicals, A . and B ., were observed. The first, A ., was obtained under N 2 and results from alpha TH reaction with solvated electron (k alpha TH + e-solv = 3.4 X 10(8) mol-1 liter s-1) and with H 3 C-CH-OH, (R.) (k alpha TH + R. = 5 X 10(5) mol-1 liter s-1). B., observed under O 2 , is produced by alpha TH reaction with RO 2 . peroxyl radicals (k alpha TH + RO 2 . = 9.5 X 10(4) mol-1 liter s-1)

  3. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage.

    Science.gov (United States)

    Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie

    2016-12-01

    The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  5. A Weak Solution of a Stochastic Nonlinear Problem

    Directory of Open Access Journals (Sweden)

    M. L. Hadji

    2015-01-01

    Full Text Available We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.

  6. A Comparative Survey of Adaptive Codec Solutions for VoIP over Multirate WLANs: A Capacity versus Quality Performance Trade-Off

    Directory of Open Access Journals (Sweden)

    Sfairopoulou A

    2011-01-01

    Full Text Available In multi-rate WLANs, users can suffer transmission rate changes due to the link adaptation mechanism. This results in a variable capacity channel, which is very hostile for VoIP and can cause serious quality of service (QoS degradation in all active calls. Various codec adaptation mechanisms have been proposed as a solution to this, as well as to solve congestion problems on WLAN environments. Here, these solutions are presented, categorized according to the adaptation policy and scenario they implement, and evaluated at call-level in terms of the resulting blocking and dropping probabilities, as well as the perceived voice quality. To define a common performance metric, a new index named VGoS-factor is presented, which, by combining these capacity and quality indicators, can provide an overall view of the capacity versus quality trade-off of the proposed mechanisms and consequently help in choosing the adequate policy for each scenario.

  7. Chemical denitration of aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1987-11-01

    The Plant for Active Waste Liquids (PAWL) at CRNL will immobilize in glass the fission products in waste from Mo-99 production. The nitrate ions in the waste can be destroyed by heating, but also by chemical reaction with formic acid (HCOOH). Since chemical denitration has several advantages over thermal denitration it was studied in the course of vitrification process development. Two free radical mechanisms are examined here to explain kinetic data on chemical denitration of nitric acid solutions with formic acid. One mechanism is applicable at > 1 mol/L HNO 3 and involves the formate radical (HCOO . ). The second mechanism holds at 3 and involves the hyponitrous radical (HNO . ). Mass balances for various species were written based on the law of mass action applied to the equations describing the reaction mechanism. Analytical and numerical solutions were obtained and compared. Literature data on batch denitration were used to determine some of the rate constants while others were set arbitrarily. Observed stoichiometry and trends in reactant concentrations are predicted accurately for batch data. There are no literature data to compare with the prediction of negligible induction time

  8. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  9. Two-dimensional analytical solutions for chemical transport in aquifers. Part 1. Simplified solutions for sources with constant concentration. Part 2. Exact solutions for sources with constant flux rate

    International Nuclear Information System (INIS)

    Shan, C.; Javandel, I.

    1996-05-01

    Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method

  10. Flotation separation of hafnium(IV) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Downey, D.M.; Narick, C.N.; Cohen, T.A.

    1985-09-01

    A simple, rapid method for the separation of hafnium from aqueous solutions was investigated using sup(175 + 181)Hf tracer. Cationic hafnium complex ions were floated from dilute acid solutions with sodium lauryl sulfate (SLS) and anionic hafnium complexes were floated from basic and oxalic acid solutions with hexadecyltrimethyl ammonium bromide (HTMAB). The conditions necessary for quantitative recovery of the metal and mechanisms of flotation are described. (author). 21 refs.; 5 figs.

  11. Hyperscaling violating solutions in generalised EMD theory

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-04-01

    Full Text Available This short note is devoted to deriving scaling but hyperscaling violating solutions in a generalised Einstein–Maxwell-Dilaton theory with an arbitrary number of scalars and vectors. We obtain analytic solutions in some special case and discuss the physical constraints on the allowed parameter range in order to have a well-defined holographic ground-state solution.

  12. Adsorption of Chromium from Aqueous Solution Using Polyaniline

    Directory of Open Access Journals (Sweden)

    Majid Riahi Samani

    2011-10-01

    Full Text Available New group of polymers have been synthesized that are conductive of electricity so they are called conducting polymers. One of the most conducting polymers is "polyaniline". In the present study, polyaniline was synthesized by oxidizing aniline monomer under strongly acidic conditions using potassium iodate as an initiator of oxidative polymerization. Synthesized polyaniline as a powder used as an adsorbent to remove chromium from aqueous solution. Experiments were conducted in batch mode with variables such as amount of polyaniline, chromium solution pH and adsorbtion isotherms. Due to presence of Cr (III in solution after using polyaniline, removal mechanism is the combination of surface adsorption and reduction. It seems that polyaniline reduces the Cr(VI to Cr(III and adsorbs the Cr(III and a part of remaining  Cr(VI. It is well known that nitrogen atom in compounds of amine derivative makes co-ordinate bond with positive charge of metals due to the presence of electron in sp3 orbital of nitrogen. The majority of total chromium removal  occurred at 30minute for polyaniline  and the optimum  time for  hexavalent chromium  removal was about 5 min. Polyaniline has the maximum total cheomiume removal at pH, 3-9. The maximum hexavalent chromium removal occurred at acidic pH for polyanilines. The equilibrium adsorption data for polyaniline fitted both Freundlich’s and Langmuir’s isotherms. This research shows that polyaniline can be used as an adsorbent  for removal chromium from aqueous solution.

  13. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    Science.gov (United States)

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  14. Calibration and validation of full-field techniques

    Directory of Open Access Journals (Sweden)

    Thalmann R.

    2010-06-01

    Full Text Available We review basic metrological terms related to the use of measurement equipment for verification of numerical model calculations. We address three challenges that are faced when performing measurements in experimental mechanics with optical techniques: the calibration of a measuring instrument that (i measures strain values, (ii provides full-field data, and (iii is dynamic.

  15. ASPECTS REGARDING THE METHOD OF REALIZING THE TECHNICAL EXPERTISE FOR REPAIRING THE TRANSLATION MECHANISM OF A M4A COAL-MINING MACHINE

    Directory of Open Access Journals (Sweden)

    Marius Liviu CÎRȚÎNĂ

    2018-05-01

    Full Text Available This paper presents the technical state of the mechanism of translation of the coalmining machine after the technical expertise. The rehabilitation to which the translation mechanism will be subjected will be carried out by performing the intervention works that will bring back into the normal operating parameters both the structural part and the functional part. The paper presents: the proposed solutions for repair after verification of the translation mechanism and the way of repairing the mechanism.

  16. Reuse of hydroponic waste solution.

    Science.gov (United States)

    Kumar, Ramasamy Rajesh; Cho, Jae Young

    2014-01-01

    Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.

  17. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Romagnoli, Marcello [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Pollastri, Simone; Gualtieri, Alessandro F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, Via S. Eufemia 19I, I-41121 Modena (Italy)

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  18. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    International Nuclear Information System (INIS)

    Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" data-affiliation=" (Dipartimento di Ingegneria Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" >Lassinantti Gualtieri, Magdalena; Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" data-affiliation=" (Dipartimento di Ingegneria Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" >Romagnoli, Marcello; Pollastri, Simone; Gualtieri, Alessandro F.

    2015-01-01

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed

  19. Reductive and oxidative reactions with inorganic colloids in aqueous solution initiated by ultrasound

    International Nuclear Information System (INIS)

    Mulvaney, P.C.; Sostaric, J.Z.; Ashokkumar, M.; Grieser, F.

    1998-01-01

    Full text: The absorption of ultrasound in an aqueous solution can lead to the formation of H and OH radicals which can act as redox species or react with solutes to produce secondary radicals which themselves may participate in electron transfer reactions. The radical formation occurs through the growth then rapid collapse of microbubbles a process that produces localised hot spots with an internal temperature of the order of 5000 K. We have examined two colloidal systems one involving the reductive dissolution of MnO 2 colloids and the other the oxidative dissolution of CdS colloids. In the case of MnO 2 dissolution we found that the reduction of the colloidal metal oxide was considerably enhanced in the presence of aliphatic alcohols in solution and the longer the alkyl chain length on the alcohol the greater its effect. The dissolution of CdS colloids which we ascribe to the reaction of H 2 O 2 and O 2 - with the metal sulfide lo yield Cd 2+ and S could be significantly retarded by the presence of excess S 2- in solution. The mechanisms involved in these two dissolution processes will he presented. Our results clearly show that sonochemical reactions are quite efficient in colloidal solutions and this fact needs to be considered when using sonication to disperse colloidal material in solution, a common practice among colloid chemists

  20. Intuitive Understanding of Solutions of Partially Differential Equations

    Science.gov (United States)

    Kobayashi, Y.

    2008-01-01

    This article uses diagrams that help the observer see how solutions of the wave equation and heat conduction equation are obtained. The analytical approach cannot necessarily show the mechanisms of the key to the solution without transforming the differential equation into a more convenient form by separation of variables. The visual clues based…

  1. Solution Focused Approach and Usage of Nursing

    Directory of Open Access Journals (Sweden)

    Nurcan AKGUL GUNDOGDU

    2016-12-01

    Full Text Available "Problem talk creates problems; solution talk creates solutions " Steve de Shazer In recent years, concern for solution-oriented approach has increased in nursing practice. In this review it is aimed to give information about nursing application of solution-oriented approach whose efficacy has been proved with many studies. In addition, solution-oriented approach is what how it turned out, the answer to the question of principle, and that is what the management strategy and what the nursing relationship will be sought. [JCBPR 2016; 5(3.000: 145-152

  2. ERP SOLUTIONS FOR SMEs

    Directory of Open Access Journals (Sweden)

    TUTUNEA MIHAELA FILOFTEIA

    2012-09-01

    Full Text Available The integration of activities, the business processes as well as their optimization, bring the perspective of profitable growth and create significant and competitive advantages in any company. The adoption of some ERP integrated software solutions, from SMEs’ perspective, must be considered as a very important management decision in medium and long term. ERP solutions, along with the transparent and optimized management of all internal processes, also offer an intra and inter companies collaborative platform, which allows a rapid expansion of activities towards e- business and mobile-business environments. This material introduces ERP solutions for SMEs from commercial offer and open source perspective; the results of comparative analysis of the solutions on the specific market, can be an useful aid to the management of the companies, in making the decision to integrate business processes, using ERP as a support.

  3. Selective data extension for full-waveform inversion: An efficient solution for cycle skipping

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do

  4. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Science.gov (United States)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  5. Effect of Extraction Process and Surface Treatment on the mechanical properties in Pineapple Leaf Fibre

    Directory of Open Access Journals (Sweden)

    Ariffin Azrie

    2017-01-01

    Full Text Available Pineapple Leaf Fibre (PALF is a one of the natural fibre that has high potential in the industry. Natural fibres have become the main alternative source in the modern world industry. The objective of this study is to observe the effect chemical treatment using Sodium Hydroxide (NaOH solution on the physical and mechanical properties of pineapple leaf fibre. Different concentration of NaOH solution (2%, 4%, 6%, 8% and different treatment time (1 hour, 3 hour and 5 hour are used for the experiment. The tensile test was conducted to obtain the mechanical properties such as tensile strength, Yong modulus, (E and elongation at break. From the results obtained, NaOH concentration of 6% and five-hour treatment time that was used for treatment showed the higher physical and mechanical properties values. Furthermore, morphology analysis also shows the surface of the fibre at 6% NaOH after five-hour of treatment was in the better condition with good bonding arrangement of the fibre.

  6. Analysis of potassium nitrate purification with recovery of solvent through single effect mechanical vapor compression

    Directory of Open Access Journals (Sweden)

    Kiprotich E. Kosgey

    2017-12-01

    Full Text Available Analysis of purification of potassium nitrate with incorporation of single effect mechanical vapor compressor for solvent recovery was done. Analysis focused on the effect of concentration and temperature of mother liquor on the energy efficiency of the process and the amount of recovered solvent. Performance coefficient of mechanical vapor compressor ranged between 1.5 and 7.5 depending primarily on the temperature of mother liquor. It was found that with increase in temperature of mother liquor through pre-heating, the power of the compressor, compression ratio and amount of heat supplied to the evaporator decrease. For a 40% concentrated feed solution and mother liquor temperature above 80 °C, performance coefficient is higher than 4. It is therefore concluded that preheating mother liquor and reduction of the effect of concentration of both mother liquor and concentrated waste stream through other methods reduces the power consumption of purification process. Keywords: Performance coefficient, Mother liquor, Concentrated solution, Recovered solvent, Boiling point elevation, Mechanical vapor compressor

  7. In Vivo Remineralization of Artificial Carious Lesions using Calcifying Solution and Fluoride Solution

    Directory of Open Access Journals (Sweden)

    Els Sunarsih Budipramana

    2015-10-01

    Full Text Available The remineralization potential of fluoride and calcifying solution was studiedas in situ model. Matched enamel discs of artifically demineralized human enamel were attached to an acrylic mandibular removable appliance of 6 adult volunteers who rinsed their mouth with a solution containing either 50 ppm F-, 200 ppm F- in amine fluoride, calcifying solution (formula BR21 or placebo as a control. The volunteers were asked to rinse 3 times a day for 3 minutes with 15 ml of the solution for 6 days (18 times. On the 7th day enamel discs were taken out from the partial denture. Three kinds of measurements were done: enamel permeability testing, depth lesion testing and fluoride retention testing. New demineralized enamel discs were attached to the partial dentures and the volunteers were asked to start rinsing with other solutions using the same protocols. The purpose of this study was to answer the question why the calcifying solutions were no more used as a remineralizing solution. The data ws analyzed using SPSS/PC for two factors Anova and one way Anova for enamel permeability and Kruskal Wallis for studying enamel depth lesion and fluoride retention. There was no significant difference after rinsing with calcifying solution and placebo in enamel permeability, depth lesions, and fluoride retention when compared to fluoride solution. To get a better result in remineralizing carious teeth fluoride contents in solution must be higher than 50 ppm F-.

  8. FORMATION REGULARITIES OF PHASE COMPOSITION, STRUCTURE AND PROPERTIES DURING MECHANICAL ALLOYING OF BINARY ALUMINUM COMPOSITES

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The paper presents investigation results pertaining to  ascertainment of formation regularities of phase composition and structure during mechanical alloying of binary aluminium composites/substances. The invetigations have been executed while applying a wide range of methods, devices and equipment used in modern material science. The obtained data complement each other. It has been established that presence of oxide and hydro-oxide films on aluminium powder  and introduction of surface-active substance in the composite have significant effect on mechanically and thermally activated phase transformations and properties of semi-finished products.  Higher fatty acids have been used as a surface active substance.The mechanism of mechanically activated solid solution formation has been identified. Its essence is  a formation of  specific quasi-solutions at the initial stage of processing. Mechanical and chemical interaction between components during formation of other phases has taken place along with dissolution  in aluminium while processing powder composites. Granule basis is formed according to the dynamic recrystallization mechanism and possess submicrocrystal structural type with the granule dimension basis less than 100 nm and the grains are divided in block size of not more than 20 nm with oxide inclusions of 10–20 nm size.All the compounds  with the addition of  surface-active substances including aluminium powder without alloying elements obtained by processing in mechanic reactor are disperse hardened. In some cases disperse hardening is accompanied by dispersive and solid solution hardnening process. Complex hardening predetermines a high temperature of recrystallization in mechanically alloyed compounds,  its value exceeds 400 °C.

  9. Alternative solutions for public and private catastrophe funding in Austria

    Directory of Open Access Journals (Sweden)

    M. Gruber

    2008-07-01

    Full Text Available The impacts of natural hazards as well as their frequency of occurrence during the last decades have increased decisively. Therefore, the public as well as the private sector are expected to react to this development by providing sufficient funds, in particular for the improvement of protection measures and an enhanced funding of damage compensation for affected private individuals, corporate and public entities.

    From the public stance, the establishment of an appropriate regulatory environment seems to be indispensable. Structural and legal changes should, on the one hand, renew and improve the current distribution system of public catastrophe funds as well as the profitable investment of these financial resources, and on the other hand, facilitate the application of alternative mechanisms provided by the capital and insurance markets.

    In particular, capital markets have developed alternative risk transfer and financing mechanisms, such as captive insurance companies, risk pooling, contingent capital solutions, multi-trigger products and insurance securitisation for hard insurance market phases. These instruments have already been applied to catastrophic (re-insurance in other countries (mainly the US and off-shore domiciles, and may contribute positively to the insurability of extreme weather events in Austria by enhancing financial capacities. Not only private individuals and corporate entities may use alternative mechanisms in order to retain, thus, to finance certain risks, but also public institutions.

    This contribution aims at analysing potential solutions for an improved risk management of natural hazards in the private and the public sector by considering alternative mechanisms of the capital and insurance markets. Also the establishment of public-private-partnerships, which may contribute to a more efficient cat funding system in Austria, is considered.

  10. Problems in quantum mechanics

    CERN Document Server

    Goldman, Iosif Ilich; Geilikman, B T

    2006-01-01

    This challenging book contains a comprehensive collection of problems in nonrelativistic quantum mechanics of varying degrees of difficulty. It features answers and completely worked-out solutions to each problem. Geared toward advanced undergraduates and graduate students, it provides an ideal adjunct to any textbook in quantum mechanics.

  11. Mechanical behaviour of substitutional body centered cubic Fe-Ti solid solutions at temperatures between 77 and 900 K; Plasticite des solutions solides cubiques centrees substitutionnelles fer-titane aux temperatures comprises entre 77 et 900 K

    Energy Technology Data Exchange (ETDEWEB)

    Dubots, Patrick

    1976-05-11

    Plastic behavior of body-centered cubic, interstitial free, Fe-Ti substitutional solid solutions has been characterised. We obtained the following results: at temperatures below 500 K, the thermal component τ* of the critical resolved shear stress τ greatly increases. Solute additions (c >0.12 wt pc) results in: softening at temperatures below 200 K, hardening at temperatures between 200 and 500 K. Results are discussed on Peierls mechanism. At temperatures below 200 K, screw dislocation motion is controlled.by the nucleation of dislocation pairs over the Peierls'hill. Substitutional solute favoring this process gives account of the softening. At temperatures above 200 K, edge dislocation motion controls the strain. The observed hardening is explained by the interaction occurring between edge-dislocations and foreign atoms. At temperatures between 500 and 800 K, a Portevin-Le Chatelier effect is observed. This effect is characterised by two types of serrations. The activation energy of the PLC effect has been determined (E = 1,4 eV). The origin of this phenomenon is the diffusion of solute towards dislocation by a vacancy-mechanism. Two maxima have been observed on the (σ{sub ε} - T) curves. These are due to superposition of overstraining (hardening) and creation of dislocations (softening). The athermal component τ{sub μ} is increased by titanium additions. This hardening has been explained by modulus and size effects. (author) [French] La caracterisation des mecanismes controlant la deformation plastique des solutions solides cubiques centrees substitutionnelles fer-titane, libres d'interstitiels pour les teneurs en solute superieures a 0,12pc pds, a donne les resultats suivants: aux temperatures inferieures a 500 K, la composante thermique τ* de la contrainte critique de cisaillement resolue τ augmente fortement. L'introduction du solute se traduit (pour c>0,12 pc pds): par un adoucissement pour θ < 200 K; par un durcissement pour 200 K< θ < 500 K. Le

  12. Euclidean supergravity and multi-centered solutions

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2017-04-01

    Full Text Available In ungauged supergravity theories, the no-force condition for BPS states implies the existence of stable static multi-centered solutions. The first solutions to Einstein–Maxwell theory with a positive cosmological constant describing an arbitrary number of charged black holes were found by Kastor and Traschen. Generalisations to five and higher dimensional theories were obtained by London. Multi-centered solutions in gauged supergravity, even with time-dependence allowed, have yet to be constructed. In this letter we construct supersymmetry-preserving multi-centered solutions for the case of D=5, N=2 Euclidean gauged supergravity coupled to an arbitrary number of vector multiplets. Higher dimensional Einstein–Maxwell multi-centered solutions are also presented.

  13. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    Science.gov (United States)

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  14. Mechanical behavior of novel W alloys produced by HIP

    International Nuclear Information System (INIS)

    Pastor, J.Y.; Martin, A.; Llorca, J.; Monge, M.A.; Pareja, R.

    2007-01-01

    Full text of publication follows: W appears to be one of the candidate materials being considered for making plasma-facing components (PFCs) in a future fusion power reactor because of its refractory characteristics, low tritium retention and low sputtering yielding. However, its use in PFCs requires the development of W materials that, in addition to these properties, maintains good mechanical properties at high temperatures. In W, high temperature strength and creep resistance may be effectively increased by solid-solution and dispersion strengthening. Sintering could be a suitable method to produce solid-solution and dispersion strengthening in W alloys for these applications if their recrystallization temperature is high enough and the grain growth is restrained. The aim of the present work is to investigate the mechanical properties of W materials produced by liquid phase sintering using Ti as sintering activator and nanoparticles of Y 2 O 3 as strengthening dispersoids. The mechanical behaviour of pure W and W alloys, having 0.5 wt % Y 2 O 3 , X Wt % Ti and 0.5 wt % Y 2 O 3 + X wt % Ti prepared by powder metallurgy have been studied (0≤X≤4). Three point bending tests have been performed on 2 x 2 x 25 mm 3 specimens cut from ingots consolidated by a two-stage hot isostatic pressing process. The bending strength, fracture toughness and elastic modulus have been determined as a function of temperature. The fracture surfaces have been analyzed to find the fracture mode and investigate the temperature dependence of the mechanical properties and fracture mechanisms. The effect of the Y 2 O 3 dispersion and Ti content on the mechanical properties is also investigated. (authors)

  15. Kinetics and Mechanism of the Reaction of a Ruthenium(VI) Nitrido Complex with HSO3 (-) and SO3 (2-) in Aqueous Solution.

    Science.gov (United States)

    Wang, Qian; Zhao, Hong Yan; Man, Wai-Lun; Lam, William W Y; Lau, Kai-Chung; Lau, Tai-Chu

    2016-07-25

    The kinetics and mechanism of the reaction of S(IV) (SO3 (2-) +HSO3 (-) ) with a ruthenium(VI) nitrido complex, [(L)Ru(VI) (N)(OH2 )](+) (Ru(VI) N, L=N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3 (-) and SO3 (2-) by Ru(VI) N. A deuterium isotope effect of 4.7 is observed in the HSO3 (-) pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N-S bond formation (partial N-atom transfer) between Ru(VI) N and HSO3 (-) and H(+) transfer from HSO3 (-) to a H2 O molecule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chemical kinetics and reaction mechanism

    International Nuclear Information System (INIS)

    Jung, Ou Sik; Park, Youn Yeol

    1996-12-01

    This book is about chemical kinetics and reaction mechanism. It consists of eleven chapters, which deal with reaction and reaction speed on reaction mechanism, simple reaction by rate expression, reversible reaction and simultaneous reaction, successive reaction, complicated reaction mechanism, assumption for reaction mechanism, transition state theory, successive reaction and oscillating reaction, reaction by solution, research method high except kinetics on reaction mechanism, high reaction of kinetics like pulsed radiolysis.

  17. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi{sub 2}O{sub 3}-ZnO-(Nb, Ta){sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.edu.m [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Engineering, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Lee, C.K. [Academic Science Malaysia, 902-4 Jalan Tun Ismail, 50480 Kuala Lumpur (Malaysia); Zainal, Z. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Miles, G.C. [Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-10-22

    Research highlights: {yields} Combined XRD and ND Rietveld structural refinement of pyrochlores. {yields} Structures and solid solution mechanisms of Bi-pyrochlores. {yields} Bi and Zn displaced off-centre to different 96g A-site positions. {yields} Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi{sub 1.5} ZnTa{sub 1.5}O{sub 7} and non-stoichiometric Bi{sub 1.56}Zn{sub 0.92}Nb{sub 1.44}O{sub 6.86}. In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  18. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Directory of Open Access Journals (Sweden)

    Preston Donovan

    Full Text Available The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  19. Magnetic power conversion with machines containing full or porous wheel heat exchangers

    Science.gov (United States)

    Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier

    2009-04-01

    A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies—which are promising—are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants.

  20. Magnetic power conversion with machines containing full or porous wheel heat exchangers

    International Nuclear Information System (INIS)

    Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier

    2009-01-01

    A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies-which are promising-are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants

  1. A Hybrid Dynamic Programming for Solving Fixed Cost Transportation with Discounted Mechanism

    Directory of Open Access Journals (Sweden)

    Farhad Ghassemi Tari

    2016-01-01

    Full Text Available The problem of allocating different types of vehicles for transporting a set of products from a manufacturer to its depots/cross docks, in an existing transportation network, to minimize the total transportation costs, is considered. The distribution network involves a heterogeneous fleet of vehicles, with a variable transportation cost and a fixed cost in which a discount mechanism is applied on the fixed part of the transportation costs. It is assumed that the number of available vehicles is limited for some types. A mathematical programming model in the form of the discrete nonlinear optimization model is proposed. A hybrid dynamic programming algorithm is developed for finding the optimal solution. To increase the computational efficiency of the solution algorithm, several concepts and routines, such as the imbedded state routine, surrogate constraint concept, and bounding schemes, are incorporated in the dynamic programming algorithm. A real world case problem is selected and solved by the proposed solution algorithm, and the optimal solution is obtained.

  2. Mechanism of mechanical property enhancement in nitrogen and titanium implanted 321 stainless steel

    International Nuclear Information System (INIS)

    Xu Ming; Li Liuhe; Liu Youming; Cai Xun; Chen Qiulong; Chu, Paul K.

    2006-01-01

    Ion implantation is a well-known method to modify surface mechanical properties. The improvement of the mechanical properties can usually be attributed to the formation of new strengthening phases, solution strengthening, dislocation strengthening, or grain refinement. However, in many cases, the roles of individual factors are not clear. In this study, we implanted nitrogen and titanium into 321 stainless steel samples to investigate the enhancement mechanism of the mechanical properties. Nano-indentation experiments were conducted to measure the hardness under various loadings. The N and Ti implanted 321 stainless steel samples were found to behave differently in the hardness (GPa) versus depth (nm) diagram. The effects of the radiation damage, solution strengthening, and dispersion strengthening phase were analyzed. Characterization of the modified layers was performed using techniques such as Auger electron spectroscopy (AES) and grazing incidence X-ray diffraction (GIXRD). Transmission electron microscopy (TEM) and X-ray diffraction were also applied to reveal the structure of the untreated 321 stainless steel

  3. Inhibiting Effect of Additives on Pressure Solution of Calcite

    Science.gov (United States)

    Traskine, V.; Skvortsova, Z.; Badun, G.; Chernysheva, M.; Simonov, Ya.; Gazizullin, I.

    2018-05-01

    The task of protection of cultural heritage requires a better understanding of combined effects of mechanical and chemical factors involved in environmental deterioration of monuments. The present paper deals with extending some known physicochemical methods proposed for inhibiting the decay of unstressed materials to their study during water-assisted deformation. The tests have been carried out on natural limestone samples and calcite powders in CaCO3 saturated aqueous solutions under static loads causing measurable pressure solution creep. In the solutions containing 1-hydroxyethylidene-1,1-diphosphonic acid, nitrilotriacetic acid, or ethylenediaminetetraacetic acid, the creep rate decreases considerably with increasing concentration of additives. The extent of creep deceleration has been found to be proportional to the independently estimated calcite surface area occupied by adsorbed species. This fact enables us to discriminate the adsorption-induced effect from other variables controlling the pressure solution rate and may be used in screening of compounds able to minimize the environmental impact on marble and limestone objects undergoing mechanical stresses.

  4. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  5. MILK PRODUCTIONS AT SERVAL FARM IN MURES DISTRICT, OBTAINED WITHIN THE EXISTING CONSTRUCTIVE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    S. BOCA

    2008-10-01

    Full Text Available The paper present the research results performed at a farm of the Mures district, between 2005 and 2008, concerning the milk productions, obtained in the existing constructive solutions. The essential changes produced in the last decades, concerning the dairy cattle raising and exploitation technologies, food, reproduction and amelioration, at one time with the technique development witch allow the mechanization of some production processes, imposes, also, our intervention in the constructive variants of accommodation through the actual shelter modernization, existing in this farm.

  6. Innovative Agro-food Technologies Implementation through Instructional Communication Mechanisms

    Directory of Open Access Journals (Sweden)

    Gianita BLEOJU

    2012-04-01

    Full Text Available The current research represents the valorization of the dissemination the design framework of an interdisciplinary area of research, validated through SPAS European FP6 project and a national BIOSIG- PN2 and has as objective to channel communication on target market, through personalized solution of instructional communication mechanisms. The main objective of the national research grant being the implementation of innovative biotechnology on agro-food market, in order to improve the fish diet’s benefits, the prospects must be provided with valuable explicit information. This paper is about the commitment to embedding the actual consumer experience from PN2 fish market research and agro-food agents’ capitalization knowledge behavior from SPAS virtual platform, through designing the adequate communication framework, in order to support and accelerate the implementation of the innovation biotechnology, through improving the target market experience. The projected solution is mainly concerning to offer adequate solutions to insure against current consumers fragilities, but we also underline the vulnerabilities of the whole agro food value chain, in terms of communication strategy, which is lacking of adequate common interest coordination. The current research solution is regarding the rising awareness about the translation from consumer preferences to perceived detriment by integrating previous validated solution of agro food market analysis.

  7. Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Abdullah Al, E-mail: mamun@toki.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Morita, Masao, E-mail: masao.swimer@akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Matsuoka, Mitsuaki, E-mail: m-matsuoka@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Tokoro, Chiharu, E-mail: tokoro@waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2017-07-15

    Highlights: • Coprecipitation showed twice the sorption density of simple adsorption at pH 5. • Mechanism shift from outer- to inner-sphere surface complexation at high Cr/Fe. • In coprecipitation the mechanism shift occurs at lower Cr/Fe ratios than adsorption. • Higher-molar-ratio bidentate binuclear Cr−Fe bonds; yielded ferrihydrite expansion. - Abstract: Hexavalent chromium (Cr(VI)) attracted researchers’ interest for its toxicity, natural availability and removal difficulty. Nevertheless, its sorption mechanism is not clearly understood yet. In this work, we elucidated the sorption mechanism of the co-precipitation of chromates with ferrihydrite through quantitative analysis. The influence of Cr/Fe molar ratio on sorption was investigated by zeta potential measurements, X-ray diffraction (XRD) and X-ray adsorption fine-structure analysis (XAFS). Coprecipitation at pH 5 showed almost twice the sorption density of adsorption at pH 5. In co-precipitation, a shift of the XRD peak due to inner-sphere sorption of chromate was observed at Cr/Fe molar ratio 0.5. For adsorption, the same peak shift was confirmed at Cr/Fe molar ratio of 1. Zeta potential at pH 5 suggested that the sorption mechanism changed at Cr/Fe molar ratio 0.25 for coprecipitation and at Cr/Fe molar ratio of 1 for adsorption. Fitting of Cr and Fe K-edge extended X-ray adsorption fine-structure suggested that ferrihydrite immobilized Cr(VI) via outer sphere surface complexation for lower Cr/Fe ratios and via inner-sphere surface complexation for higher molar ratios. At higher molar ratios, bidentate binuclear Cr−Fe bonds were well established, thus resulting in the expansion of the ferrihydrite structure.

  8. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    NARCIS (Netherlands)

    Ageron, M.; Kooijman, P.

    2007-01-01

    A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion

  9. Soliton-like solutions to the ordinary Schroedinger equation

    International Nuclear Information System (INIS)

    Zamboni-Rached, Michel; Recami, Erasmo

    2011-01-01

    In recent times it has been paid attention to the fact that (linear) wave equations admit of soliton-like solutions, known as Localized Waves or Non-diffracting Waves, which propagate without distortion in one direction. Such Localized Solutions (existing also for K-G or Dirac equations) are a priori suitable, more than Gaussian's, for describing elementary particle motion. In this paper we show that, mutatis mutandis, Localized Solutions exist even for the ordinary Schroedinger equation within standard Quantum Mechanics; and we obtain both approximate and exact solutions, also setting forth for them particular examples. In the ideal case such solutions bear infinite energy, as well as plane or spherical waves: we show therefore how to obtain nite-energy solutions. At last, we briefly consider solutions for a particle moving in the presence of a potential. (author)

  10. Soliton-like solutions to the ordinary Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni-Rached, Michel [Universidade Estadual de Campinas (DMO/FEEC/UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Eletrica e de Computacao. Dept. de Microondas e Optica; Recami, Erasmo, E-mail: recami@mi.infn.i [Universita Statale di Bergamo, Bergamo (Italy). Facolta di Ingegneria

    2011-07-01

    In recent times it has been paid attention to the fact that (linear) wave equations admit of soliton-like solutions, known as Localized Waves or Non-diffracting Waves, which propagate without distortion in one direction. Such Localized Solutions (existing also for K-G or Dirac equations) are a priori suitable, more than Gaussian's, for describing elementary particle motion. In this paper we show that, mutatis mutandis, Localized Solutions exist even for the ordinary Schroedinger equation within standard Quantum Mechanics; and we obtain both approximate and exact solutions, also setting forth for them particular examples. In the ideal case such solutions bear infinite energy, as well as plane or spherical waves: we show therefore how to obtain nite-energy solutions. At last, we briefly consider solutions for a particle moving in the presence of a potential. (author)

  11. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors

    Directory of Open Access Journals (Sweden)

    Georges Kouroussis

    2015-08-01

    Full Text Available A review of recent research on structural monitoring in railway industry is proposed in this paper, with a special focus on stress-based solutions. After a brief analysis of the mechanical behaviour of ballasted railway tracks, an overview of the most common monitoring techniques is presented. A special attention is paid on strain gages and accelerometers for which the accurate mounting position on the track is requisite. These types of solution are then compared to another modern approach based on the use of optical fibres. Besides, an in-depth discussion is made on the evolution of numerical models that investigate the interaction between railway vehicles and tracks. These models are used to validate experimental devices and to predict the best location(s of the sensors. It is hoped that this review article will stimulate further research activities in this continuously expanding field.

  12. CMOS-MEMS Test-Key for Extracting Wafer-Level Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Pei-Zen Chang

    2012-12-01

    Full Text Available This paper develops the technologies of mechanical characterization of CMOS-MEMS devices, and presents a robust algorithm for extracting mechanical properties, such as Young’s modulus, and mean stress, through the external electrical circuit behavior of the micro test-key. An approximate analytical solution for the pull-in voltage of bridge-type test-key subjected to electrostatic load and initial stress is derived based on Euler’s beam model and the minimum energy method. Then one can use the aforesaid closed form solution of the pull-in voltage to extract the Young’s modulus and mean stress of the test structures. The test cases include the test-key fabricated by a TSMC 0.18 μm standard CMOS process, and the experimental results refer to Osterberg’s work on the pull-in voltage of single crystal silicone microbridges. The extracted material properties calculated by the present algorithm are valid. Besides, this paper also analyzes the robustness of this algorithm regarding the dimension effects of test-keys. This mechanical properties extracting method is expected to be applicable to the wafer-level testing in micro-device manufacture and compatible with the wafer-level testing in IC industry since the test process is non-destructive.

  13. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  14. Solute strengthening effects for 316 stainless steel at elevated temperature

    International Nuclear Information System (INIS)

    Park, Nam Ju; Lee, Sang Mae

    1986-01-01

    The inelastic behavior of 316 stainless steel is studied in order to investigate the solute strengthening effects. The Arrhenius-type rate equation with inclusion of the Voce-type evolution phenomenon is extended by addition of solute strengthening term to the isotropic work hardening effect. Changing of strain rate and temperature during the tension tests, we found that the strong work hardening for the inelastic of 316 stainless steel resulted from the vacancy-interstitial pair mechanism. Thus, the calculated results using the extended constitutive equations including solute effect due to the vacancy-interstitial pair mechanism were found to be in good agreement with the stress-strain curves obtained from the tension tests. (Author)

  15. Mechanisms of Contrast-Induced Nephropathy Reduction for Saline (NaCl and Sodium Bicarbonate (NaHCO3

    Directory of Open Access Journals (Sweden)

    W. Patrick Burgess

    2014-01-01

    Full Text Available Nephropathy following contrast media (CM exposure is reduced by administration before, during, and after the contrast procedure of either isotonic sodium chloride solution (Saline or isotonic sodium bicarbonate solution (IsoBicarb. The reasons for this reduction are not well established for either sodium salt; probable mechanisms are discussed in this paper. For Saline, the mechanism for the decrease in CIN is likely related primarily to the increased tubular flow rates produced by volume expansion and therefore a decreased concentration of the filtered CM during transit through the kidney tubules. Furthermore, increased tubular flow rates produce a slight increase in tubular pH resulting from a fixed acid excretion in an increased tubular volume. The mechanism for the decreased CIN associated with sodium bicarbonate includes the same mechanisms listed for Saline in addition to a renal pH effect. Increased filtered bicarbonate anion raises both tubular pH and tubular bicarbonate anion levels toward blood physiologic levels, thus providing increased buffer for reactive oxygen species (ROS formed in the tubules as a result of exposure to CM in renal tubular fluid.

  16. Differential evolution and simulated annealing algorithms for mechanical systems design

    Directory of Open Access Journals (Sweden)

    H. Saruhan

    2014-09-01

    Full Text Available In this study, nature inspired algorithms – the Differential Evolution (DE and the Simulated Annealing (SA – are utilized to seek a global optimum solution for ball bearings link system assembly weight with constraints and mixed design variables. The Genetic Algorithm (GA and the Evolution Strategy (ES will be a reference for the examination and validation of the DE and the SA. The main purpose is to minimize the weight of an assembly system composed of a shaft and two ball bearings. Ball bearings link system is used extensively in many machinery applications. Among mechanical systems, designers pay great attention to the ball bearings link system because of its significant industrial importance. The problem is complex and a time consuming process due to mixed design variables and inequality constraints imposed on the objective function. The results showed that the DE and the SA performed and obtained convergence reliability on the global optimum solution. So the contribution of the DE and the SA application to the mechanical system design can be very useful in many real-world mechanical system design problems. Beside, the comparison confirms the effectiveness and the superiority of the DE over the others algorithms – the SA, the GA, and the ES – in terms of solution quality. The ball bearings link system assembly weight of 634,099 gr was obtained using the DE while 671,616 gr, 728213.8 gr, and 729445.5 gr were obtained using the SA, the ES, and the GA respectively.

  17. Upgraded breaking of the HLS model. A full solution on the τ-e+e- and φ decay issues and its consequences on g-2 VMD estimates

    International Nuclear Information System (INIS)

    Benayoun, M.; David, P.; DelBuono, L.

    2011-06-01

    The muon anomalous magnetic moment a μ and the hadronic vacuum polarization are examined using data analyzed within the framework of a suitably broken HLS model. The analysis relies on all available scan data samples and leaves provisionally aside the existing ISR data. Our HLS model based global fit approach allows for a better check of consistency between data sets and we investigate how results depend on different strategies which may be followed. Relying on global fit qualities, we find several acceptable solutions leading to ambiguities in the reconstructed value for (a μ ) th . Among these, the most conservative solution is a had,LO μ [HLS improved]=687.72(4.63) x 10 -10 and (a μ ) th = 11 659 175.37(5.31) x 10 -10 corresponding to a 4.1σ significance for the difference Δa μ =(a μ ) exp -(a μ ) th . It is also shown that the various contributions accessible through the model yield uniformly a factor 2 improvement of their uncertainty. The breaking procedure implemented in the HLS model is an extension of the former procedure based on the BKY mechanism. This yields a quite satisfactory simultaneous description of most e + e - annihilation channels up to and including the φ meson (π + π - , π 0 γ, ηγ, π + π - π 0 , K + K - , K 0 anti K 0 ) and of a set of 10 (mostly radiative) decay widths of light mesons. It also allows to achieve the proof of consistency between the e + e - →π + π - annihilation and the τ ± →π ± π 0 ν decay and gives a solution to the reported problem concerning the measured partial width ratio Γ(φ→K + K - )/Γ(φ→K 0 anti K 0 ). Prospects for improving the VMD based estimates of a μ are emphasized. (orig.)

  18. LIMITS IN APPLICATION OF INTERNATIONAL STANDARDS TO INNOVATIVE CERAMIC SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Cristiano Fragassa

    2015-06-01

    Full Text Available Gres Porcelain stoneware is a ceramic with a compact, hard, coloured and non-porous body. It is largely used as building materials, for a quality architecture, offering high resistance to impact, stress, wear, scratching, frost, chemical attach and stains. It is produced in flat tiles, billions of tons per year. A very prominent technology, based on a pyroclastic deformation, permits to obtain bended porcelain tiles as innovative solutions for a modern architecture. This technology is grounded on a proper combination of heavy machining by cutting tools and secondary firing in a kiln. This new element, the bended tile, can be used in several innovative applications (as steps, shelves, benches, radiators.... But, new functions require a better and in-depth knowledge of these materials, especially referring to the mechanical proprieties. This paper investigates the limits of applicability of ISO standards for the quality classification of ceramics and experimental measures of their mechanical proprieties.

  19. Mechanical Design of Innovative Electromagnetic Linear Actuators for Marine Applications

    Directory of Open Access Journals (Sweden)

    Muscia Roberto

    2017-11-01

    Full Text Available We describe an engineering solution to manufacture electromagnetic linear actuators for moving rudders and fin stabilizers of military shipsItalian Ministry of Defence, General Direction of Naval Equipments (NAVARM, Projects ISO (2012-2014 and EDDA (2015-2017.. The solution defines the transition from the conceptual design of the device initially studied from an electromagnetic point of view to mechanical configurations that really work. The structural problems that have been resolved with the proposed configuration are described. In order to validate the design choices discussed we illustrate some results of the numerical simulations performed by the structural finite elements method. These results quantitatively justify the suggested mechanical solution by evaluating stresses and deformations in a virtual prototype of the structure during its functioning. The parts of the device that have been studied are the most critical because in cases of excessive deformation/stress, they can irreparably compromise the actuator operation. These parts are the pole piece-base set and the retention cages of the permanent magnets. The FEM analysis has allowed us to identify the most stressed areas of the previous elements whose shape has been appropriately designed so as to reduce the maximum stresses and deformations. Moreover, the FEM analysis helped to find the most convenient solution to join the pole pieces to the respective bases. The good results obtained by the suggested engineering solution have been experimentally confirmed by tests on a small prototype actuator purposely manufactured. Finally, a qualitative analysis of the engineering problems that have to be considered to design electromagnetic linear actuators bigger than the one already manufactured is illustrated.

  20. Forward kinematics solutions of a special six-degree-of-freedom parallel manipulator with three limbs

    Directory of Open Access Journals (Sweden)

    Jianxun Fu

    2015-05-01

    Full Text Available This article presents a special 6-degree-of freedom parallel manipulator, and the mechanical structure of this robot has been introduced; with this structure, the kinematic constrain equations are decoupled. Based on this character, the polynomial solutions of the forward kinematics problem are also presented. In this method, the closed-loop kinematic chain of the manipulator is divided into two parts, the solution forward position kinematics is obtained by a first-degree polynomial equation first, and then an eighth-degree polynomial equation in a single variable for the forward orientation kinematics is obtained. Based on those solutions, the configurations of the robot, including position and orientation of the end-effector, are graphically displayed. A numerical simulation is given to verify the algorithm, and the result implies that for a given set of input values, the manipulator can be assembled in eight different configurations at most. And a set of experiments illustrate the motion ability for forward kinematics of the prototype of this manipulator.

  1. Finite Volume Scheme for Double Convection-Diffusion Exchange of Solutes in Bicarbonate High-Flux Hollow-Fiber Dialyzer Therapy

    Directory of Open Access Journals (Sweden)

    Kodwo Annan

    2012-01-01

    Full Text Available The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers.

  2. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel.

    Science.gov (United States)

    Zhang, Yanbo; Zhang, Jin; Chang, Fei; Xu, Weiguo; Ding, Jianxun

    2018-07-01

    Cartilage defect repair by hydrogel-based tissue engineering is becoming one of the most potential treatment strategies. In this work, a thermogel of triblock copolymer poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) was prepared as scaffold of bone marrow mesenchymal stem cells (BMMSCs) for repair of full-thickness articular cartilage defect. At first, the copolymer solution showed a reversible sol-gel transition at physiological temperature range, and the mechanical properties of such thermogel were high enough to support the repair of cartilage. Additionally, excellent biodegradability and biocompatibility of the thermogel were demonstrated. By implanting the BMMSC-encapsulated thermogel into the full-thickness articular cartilage defect (5.0 mm in diameter and 4.0 mm in depth) in the rabbit, it was found that the regenerated cartilage integrated well with the surrounding normal cartilage and subchondral bone at 12 weeks post-surgery. The upregulated expression of glycosaminoglycan and type II collagen in the repaired cartilage, and the comparable biomechanical properties with normal cartilage suggested that the cell-encapsulated PLGA-PEG-PLGA thermogel had great potential in serving as the promising scaffold for cartilage regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    Science.gov (United States)

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  4. Mixed Solutions of Electrical Energy Storage

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents electrical energy storage solutions using electricbatteries and supercapacitors powered from photovoltaic solarmodules, with possibilities of application in electric and hybrid vehicles.The future development of electric cars depends largely on electricalenergy storage solutions that should provide a higher range of roadand operating parameters comparable to those equipped with internalcombustion engines, that eliminate pollution.

  5. Reactive Spark Plasma Sintering and Mechanical Properties of Zirconium Diboride–Titanium Diboride Ultrahigh Temperature Ceramic Solid Solutions

    Directory of Open Access Journals (Sweden)

    Karthiselva N. S.

    2016-09-01

    Full Text Available Ultrahigh temperature ceramics (UHTCs such as diborides of zirconium, hafnium tantalum and their composites are considered to be the candidate materials for thermal protection systems of hypersonic vehicles due to their exceptional combination of physical, chemical and mechanical properties. A composite of ZrB2-TiB2 is expected to have better properties. In this study, an attempt has been made to fabricate ZrB2-TiB2 ceramics using mechanically activated elemental powders followed by reactive spark plasma sintering (RSPS at 1400 °C. Microstructure and phase analysis was carried out using X-ray diffractometer (XRD and electron microscopy to understand microstructure evolution. Fracture toughness and hardness were evaluated using indentation methods. Nanoindentation was used to measure elastic modulus. Compressive strength of the composites has been reported.

  6. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida

    Science.gov (United States)

    Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.

    2005-01-01

    Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant‐rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open‐ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one‐dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the “main flow zone”). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h−1, respectively. Storage processes decreased the depth‐averaged velocity of surface water by 50% relative to the water velocity in the open part of the water

  7. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Tao, N [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hong, Y [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Lu, J [LASMIS, University of Technology of Troyes, 10000, Troyes (France); Lu, K [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2005-11-21

    Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

  8. Extended LaSalle's Invariance Principle for Full-Range Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Mauro Di Marco

    2009-01-01

    Full Text Available In several relevant applications to the solution of signal processing tasks in real time, a cellular neural network (CNN is required to be convergent, that is, each solution should tend toward some equilibrium point. The paper develops a Lyapunov method, which is based on a generalized version of LaSalle's invariance principle, for studying convergence and stability of the differential inclusions modeling the dynamics of the full-range (FR model of CNNs. The applicability of the method is demonstrated by obtaining a rigorous proof of convergence for symmetric FR-CNNs. The proof, which is a direct consequence of the fact that a symmetric FR-CNN admits a strict Lyapunov function, is much more simple than the corresponding proof of convergence for symmetric standard CNNs.

  9. Pricing Mechanism in Information Goods

    OpenAIRE

    Li, Xinming; Wang, Huaqing

    2018-01-01

    We study three pricing mechanisms' performance and their effects on the participants in the data industry from the data supply chain perspective. A win-win pricing strategy for the players in the data supply chain is proposed. We obtain analytical solutions in each pricing mechanism, including the decentralized and centralized pricing, Nash Bargaining pricing, and revenue sharing mechanism.

  10. Full structure assignments of pyrrolizidine alkaloid DNA adducts and mechanism of tumor initiation.

    Science.gov (United States)

    Zhao, Yuewei; Xia, Qingsu; Gamboa da Costa, Gonçalo; Yu, Hongtao; Cai, Lining; Fu, Peter P

    2012-09-17

    Pyrrolizidine alkaloid-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids are among the first chemical carcinogens identified in plants. Previously, we determined that metabolism of pyrrolizidine alkaloids in vivo and in vitro generated a common set of DNA adducts that are responsible for tumor induction. Using LC-ESI/MS/MS analysis, we previously determined that four DNA adducts (DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4) were formed in rats dosed with riddelliine, a tumorigenic pyrrolizidine alkaloid. Because of the lack of an adequate amount of authentic standards, the structures of DHP-dA-3 and DHP-dA-4 were not elucidated, and the structural assignment for DHP-dG-4 warranted further validation. In this study, we developed an improved synthetic methodology for these DNA adducts, enabling their full structural elucidation by mass spectrometry and NMR spectroscopy. We determined that DHP-dA-3 and DHP-dA-4 are a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl) dehydrosupinidine, while DHP-dG-4 is 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine, an epimer of DHP-dG-3. With the structures of these DNA adducts unequivocally elucidated, we conclude that cellular DNA preferentially binds dehydropyrrolizidine alkaloid, for example, dehydroriddelliine, at the C9 position of the necine base, rather than at the C7 position. We also determined that DHP-dA-3 and DHP-dA-4, as well as DHP-dG-3 and DHP-dG-4, are interconvertible. This study represents the first report with detailed structural assignments of the DNA adducts that are responsible for pyrrolizidine alkaloid tumor induction on the molecular level. A mechanism of tumor initiation by pyrrolizidine alkaloids is consequently fully determined.

  11. The formation mechanism of mechanically alloyed Fe-20 at% Al powder

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, F., E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Otmani, A. [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Universite 20 Aout 1955, BP 26, Route d' El-Hadaiek, Skikda 21000 (Algeria); Djekoun, A. [Laboratoire de Magnetisme et Spectroscopie des Solides, LM2S, Universite Badji Mokhtar, BP 12 Annaba 23000 (Algeria); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans (France)

    2013-01-15

    The formation mechanism of the mechanically alloyed Fe-20 at% Al, from elemental Fe and Al powders, has been investigated. The experimental results indicate the formation of a nanocrystalline bcc {alpha}-Fe(Al) solid solution with a lattice parameter close to a{sub {alpha}-Fe(Al)}=0.2890 nm, where each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere. The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Aluminum particles undergo an important refinement to the nanometer scale and then they stick on Fe particles of large sizes. A large number of clear Al/Fe interface areas were generated. The short diffusion path and the presence of high concentration of defects accelerated the solid state reaction. - Highlights: Black-Right-Pointing-Pointer A nanocrystalline bcc {alpha}-Fe(Al) solid solution is formed from elemental Fe and Al powders. Black-Right-Pointing-Pointer The reaction mechanism of MA process seems to be controlled by a diffusion phenomenon. Black-Right-Pointing-Pointer Each Fe atom is surrounded by (6Fe+2Al) in the first coordination sphere.

  12. Business Intelligence Integrated Solutions

    Directory of Open Access Journals (Sweden)

    Cristescu Marian Pompiliu

    2017-12-01

    Full Text Available A Business Intelligence solution concerns the simple, real-time access to complete information about the business shown in a relevant format of the report, graphic or dashboard type in order help the taking of strategic decisions regarding the direction in which the company goes. Business Intelligence does not produce data, but uses the data produced by the company’s applications. BI solutions extract their data from ERP (Enterprise Resource Planning, CRM (Customer Relationship Management, HCM (Human Capital Management, and Retail, eCommerce or other databases used in the company.

  13. The etching of InP in HCl solutions : a chemical mechanism

    NARCIS (Netherlands)

    Notten, P.H.L.

    1984-01-01

    The etch rate of InP in solutions of high HCl concentration was shown to be independent of the applied potential ina wide potential range negative with respect to the flatband value. Dissolution of the solid led to the formation of PH3.The etch rate, which was not mass-transport controlled, was

  14. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  15. Mechanisms to explain the reverse perivascular transport of solutes out of the brain.

    Science.gov (United States)

    Schley, D; Carare-Nnadi, R; Please, C P; Perry, V H; Weller, R O

    2006-02-21

    Experimental studies and observations in the human brain indicate that interstitial fluid and solutes, such as amyloid-beta (Abeta), are eliminated from grey matter of the brain along pericapillary and periarterial pathways. It is unclear, however, what constitutes the motive force for such transport within blood vessel walls, which is in the opposite direction to blood flow. In this paper the potential for global pressure differences to achieve such transport are considered. A mathematical model is constructed in order to test the hypothesis that perivascular drainage of interstitial fluid and solutes out of brain tissue is driven by pulsations of the blood vessel walls. Here it is assumed that drainage occurs through a thin layer between astrocytes and endothelial cells or between smooth muscle cells. The model suggests that, during each pulse cycle, there are periods when fluid and solutes are driven along perivascular spaces in the reverse direction to the flow of blood. It is shown that successful drainage may depend upon some attachment of solutes to the lining of the perivascular space, in order to produce a valve-like effect, although an alternative without this requirement is also postulated. Reduction in pulse amplitude, as in ageing cerebral vessels, would prolong the attachment time, encourage precipitation of Abeta peptides in vessel walls, and impair elimination of Abeta from the brain. These factors may play a role in the pathogenesis of cerebral amyloid angiopathy and in the accumulation of Abeta in the brain in Alzheimer's disease.

  16. Solution of Full Wave Equation for Global Modes in Small Aspect Ratio Tokamaks with Non-Circular Cross-Section

    International Nuclear Information System (INIS)

    Burma, C.; Cuperman, S.; Komoshvili, K.

    1998-01-01

    The wave equation for strongly toroidal small aspect ratio (spherical) tokamaks with non-circular cross-section is properly formulated and solved for global waves, in the Alfven frequency range. The current-carrying toroidal plasma is surrounded by a helical sheet-current antenna, which is enclosed within a perfectly conducting wall. The problem is formulated in terms of the vector and scalar potentials (A,Φ), thus avoiding the numerical solution occurring in the case of (E,B) formulation. Adequate boundary conditions are applied at the vacuum - metallic wall interface and the magnetic axis. A recently derived dielectric tensor-operator, able to describe the anisotropic plasma response in spherical tokamaks, is used for this purpose; except for its linear character, no physical or geometrical limitations are imposed on it. The equilibrium profiles (magnetic field, pressure and current) are obtained from a numerical solution of the Grad-Shafranov equation. Specifically, the wave equation is solved by the aid of a numerical code we developed for the present problem, based on the well documented 2(1/2)D finite element solver proposed by E.G. Sewell. With the definitions V i (θ,ρ) = U i (-θ,ρ) (V i U i = A j , Φ; j = ρ,φ,θ), our code solves simultaneously 16 second order partial differential equations (eight equations for each of real and imaginary set of functions V i , U i ). A systematic analysis of the solutions obtained for various values and combinations of wavenumbers and frequencies in the Alfven range is presented

  17. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  18. Influence of container structures and content solutions on dispensing time of ophthalmic solutions

    Directory of Open Access Journals (Sweden)

    Keiji Yoshikawa

    2010-05-01

    Full Text Available Keiji Yoshikawa1, Hiroshi Yamada21Yoshikawa Eye Clinic, Tokyo, Japan; 2Santen Pharmaceutical Co., Ltd., Osaka, JapanPurpose: To investigate the influence of container structures and content solutions on the time of dispensing from eye dropper bottles.Methods: Eye dropper bottle models, solution models (filtrate water/surfactant solution and a dispensing time measuring apparatus were prepared to measure the dispensing time.Results: With filtrate water and pressure thrust load of 0.3 MPa, the dispensing time significantly increased from 1.1 ± 0.5 seconds to 4.6 ± 1.1 seconds depending on the decrease of inner aperture diameters from 0.4 mm to 0.2 mm (P < 0.0001. When using the bottle models with inner aperture diameters of 0.4 mm or larger, the dispensing time became constant. The dispensing time using surfactant solution showed the same tendency as above. When pressure thrust load was large (0.07 MPa, the solution flew out continuously with inner aperture diameters of 0.4 mm or larger and the dispensing time could not be measured. The inner aperture diameter most strongly explained the variation of the dispensing time in both the content solutions in the multiple linear regression analysis (filtrate water: 46%, R2 = 0.462, surfactant solution: 56%, R2 = 0.563.Conclusions: Among content solutions and container structures, the dispensing time was mostly influenced by the diameter of the inner aperture of bottles.Keywords: dispensing time, model eye dropper bottle, model ophthalmic solution, nozzle internal space volume, nozzle inner aperture diameter

  19. Possible Time-Dependent Effect of Ions and Hydrophilic Surfaces on the Electrical Conductivity of Aqueous Solutions

    Science.gov (United States)

    Verdel, Nada; Jerman, Igor; Krasovec, Rok; Bukovec, Peter; Zupancic, Marija

    2012-01-01

    The purpose of this work was to determine the influence of mechanical and electrical treatment on the electrical conductivity of aqueous solutions. Solutions were treated mechanically by iteration of two steps: 1:100 dilution and vigorous shaking. These two processes were repeated until extremely dilute solutions were obtained. For electrical treatment the solutions were exposed to strong electrical impulses. Effects of mechanical (as well as electrical) treatment could not be demonstrated using electrical conductivity measurements. However, significantly higher conductivity than those of the freshly prepared chemically analogous solutions was found in all aged solutions except for those samples stored frozen. The results surprisingly resemble a previously observed weak gel-like behavior in water stored in closed flasks. We suggest that ions and contact with hydrophilic glass surfaces could be the determinative conditions for the occurrence of this phenomenon. PMID:22605965

  20. The effect of cation:anion ratio in solution on the mechanism of barite growth at constant supersaturation: Role of the desolvation process on the growth kinetics

    Science.gov (United States)

    Kowacz, M.; Putnis, C. V.; Putnis, A.

    2007-11-01

    The mechanism of barite growth has been investigated in a fluid cell of an Atomic Force Microscope by passing solutions of constant supersaturation ( Ω) but variable ion activity ratio ( r=a/a) over a barite substrate.The observed dependence of step-spreading velocity on solution stoichiometry can be explained by considering non-equivalent attachment frequency factors for the cation and anion. We show that the potential for two-dimensional nucleation changes under a constant thermodynamic driving force due to the kinetics of barium integration into the surface, and that the growth mode changes from preexisting step advancement to island spreading as the cation/anion activity ratio increases. Scanning electron microscopy studies of crystals grown in bulk solutions support our findings that matching the ion ratio in the fluid to that of the crystal lattice does not result in maximum growth and nucleation rates. Significantly more rapid rates correspond to solution stoichiometries where [Ba 2+] is in excess with respect to [ SO42-]. Experiments performed in dilute aqueous solutions of methanol show that even 0.02 molar fraction of organic cosolvent in the growth solution significantly accelerates step growth velocity and nucleation rates (while keeping Ω the same as in the reference solution in water). Our observations suggest that the effect of methanol on barite growth results first of all from reduction of the barrier that prevents the Ba 2+ from reaching the surface and corroborate the hypothesis that desolvation of the cation and of the surface is the rate limiting kinetic process for two-dimensional nucleation and for crystal growth.

  1. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ghoneim

    2014-01-01

    Full Text Available The present study aimed to evaluate the efficiency of marine algae for removal of metals from the aqueous solution. The green alga, Ulva lactuca, collected from the intertidal zone of the Suez Bay, northern part of the Red Sea was used to reduce cadmium levels from the aqueous solutions. The biosorption mechanisms of Cd2+ ions onto the algal tissues were examined using various analytical techniques: Fourier-transform infrared spectroscopy (FT-IR and Scanning electron microscopy (SEM. Results indicated that at the optimum pH value of 5.5; about 0.1 g of U. lactuca was enough to remove 99.2% of 10 mg L−1 Cd2+ at 30 °C in the aqueous solutions. The equilibrium data were well fitted with the Langmuir and Freundlich isotherms. The monolayer adsorption capacity was 29.1 mg g−1. The calculated RL and ‘n’ values have proved the favorability of cadmium adsorption onto U. lactuca. The desorption test revealed that HCl was the best for the elution of metals from the tested alga. In conclusion, the seaweed U. lactuca was the favorable alternative of cadmium removal from water.

  2. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  3. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  4. On a full Bayesian inference for force reconstruction problems

    Science.gov (United States)

    Aucejo, M.; De Smet, O.

    2018-05-01

    In a previous paper, the authors introduced a flexible methodology for reconstructing mechanical sources in the frequency domain from prior local information on both their nature and location over a linear and time invariant structure. The proposed approach was derived from Bayesian statistics, because of its ability in mathematically accounting for experimenter's prior knowledge. However, since only the Maximum a Posteriori estimate was computed, the posterior uncertainty about the regularized solution given the measured vibration field, the mechanical model and the regularization parameter was not assessed. To answer this legitimate question, this paper fully exploits the Bayesian framework to provide, from a Markov Chain Monte Carlo algorithm, credible intervals and other statistical measures (mean, median, mode) for all the parameters of the force reconstruction problem.

  5. On Analytic Solution of resonant Mixing for Solar Neutrino Oscillations

    OpenAIRE

    Masatoshi, ITO; Takao, KANEKO; Masami, NAKAGAWA; Department of Physics, Meijo University; Department of Physics, Meijo University; Department of Physics, Meijo University

    1988-01-01

    Behavior of resonant mixing in matter-enhancing region for solar neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein mechanism, is reanalyzed by means of an analytic treatment recently proposed. We give solutions in terms of confluent hypergeometric functions, which agree with "exact" solutions of coupled differential equations.

  6. Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)

    2010-05-15

    In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)

  7. Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Ling; Wang, Yong; Jin, SuWan; Lu, QunZan; Ji, Jiang

    2017-10-01

    The adsorption of sulfadiazine from water by expanded graphite (EG), a low cost and environmental-friendly adsorbent, was investigated. Several adsorption parameters (including the initial sulfadiazine concentration, contact time, pH of solution, ionic strength and temperature) were studied. Results of equilibrium experiments indicated that adsorption of sulfadiazine onto EG were better described by the Langmuir and Tempkin models than by the Freundlich model. The maximum adsorption capacity is calculated to be 16.586 mg/g at 298 K. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and intraparticle models. The results indicated that the adsorption process followed pseudo-second-order kinetics and may be controlled by two steps. Moreover, the pH significantly influenced the adsorption process, with the relatively high adsorption capacity at pH 2-10. The electrostatic and hydrophobic interactions are manifested to be two main mechanisms for sulfadiazine adsorption of EG. Meanwhile, the ionic concentration of Cl - slightly impacted the removal of sulfadiazine. Results of thermodynamics analysis showed spontaneous and exothermic nature of sulfadiazine adsorption on EG. In addition, regeneration experiments imply that the saturated EG could be reused for sulfadiazine removal by immersing sodium hydroxide.

  8. Improving Mechanical Properties of PVPPA Welded Joints of 7075 Aluminum Alloy by PWHT

    Directory of Open Access Journals (Sweden)

    Guowei Li

    2018-03-01

    Full Text Available In this study, 7075 aluminum alloy with a thickness of 10 mm was successfully welded with no obvious defects by pulsed variable polarity plasma arc (PVPPA welding. The mechanical properties of PVPPA welded joints have been researched by post weld heat treatment (PWHT. The results indicate that the heat treatment strongly affects the mechanical properties of the welded joints. The tensile strength and the microhardness of the welded joints gradually improved with the increase of the solution temperature. With the increase of the solution time, the tensile strength, and microhardness first dramatically increased and then decreased slightly. The best tensile strength of 537.5 MPa and the microhardness of 143.7 HV were obtained after 490 °C × 80 min + 120 °C × 24 h, and the strength was nearly 91.2% of that of the parent metal, and increased about 35% compared with as-welded. The improvement of strength and microhardness was mainly due to the precipitation of η′ phase.

  9. Analysis of Parallelogram Mechanism used to Preserve Remote Center of Motion for Surgical Telemanipulator

    Directory of Open Access Journals (Sweden)

    Trochimczuk R.

    2017-02-01

    Full Text Available This paper presents an analysis of a parallelogram mechanism commonly used to provide a kinematic remote center of motion in surgical telemanipulators. Selected types of parallel manipulator designs, encountered in commercial and laboratory-made designs described in the medical robotics literature, will serve as the research material. Among other things, computer simulations in the ANSYS 13.0 CAD/CAE software environment, employing the finite element method, will be used. The kinematics of the solution of manipulator with the parallelogram mechanism will be determined in order to provide a more complete description. These results will form the basis for the decision regarding the possibility of applying a parallelogram mechanism in an original prototype of a telemanipulator arm.

  10. Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms

    Directory of Open Access Journals (Sweden)

    Betania Hernández-Ocaña

    2016-01-01

    Full Text Available This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.

  11. Mechanical behavior of novel W alloys produced by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, J.Y.; Martin, A.; Llorca, J. [Madrid Univ. Politecnica, Dept de Ciencia de Materiales (Spain); Monge, M.A.; Pareja, R. [Madrid Univ. Carlos 3, Dept. de Fisica (Spain)

    2007-07-01

    Full text of publication follows: W appears to be one of the candidate materials being considered for making plasma-facing components (PFCs) in a future fusion power reactor because of its refractory characteristics, low tritium retention and low sputtering yielding. However, its use in PFCs requires the development of W materials that, in addition to these properties, maintains good mechanical properties at high temperatures. In W, high temperature strength and creep resistance may be effectively increased by solid-solution and dispersion strengthening. Sintering could be a suitable method to produce solid-solution and dispersion strengthening in W alloys for these applications if their recrystallization temperature is high enough and the grain growth is restrained. The aim of the present work is to investigate the mechanical properties of W materials produced by liquid phase sintering using Ti as sintering activator and nanoparticles of Y{sub 2}O{sub 3} as strengthening dispersoids. The mechanical behaviour of pure W and W alloys, having 0.5 wt % Y{sub 2}O{sub 3}, X Wt % Ti and 0.5 wt % Y{sub 2}O{sub 3} + X wt % Ti prepared by powder metallurgy have been studied (0{<=}X{<=}4). Three point bending tests have been performed on 2 x 2 x 25 mm{sup 3} specimens cut from ingots consolidated by a two-stage hot isostatic pressing process. The bending strength, fracture toughness and elastic modulus have been determined as a function of temperature. The fracture surfaces have been analyzed to find the fracture mode and investigate the temperature dependence of the mechanical properties and fracture mechanisms. The effect of the Y{sub 2}O{sub 3} dispersion and Ti content on the mechanical properties is also investigated. (authors)

  12. Adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution

    International Nuclear Information System (INIS)

    Tatsuya Suzuki

    2013-01-01

    The adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution were investigated. The adsorbed amounts of lanthanides and the degree of mutual separation of lanthanides increased with an increase in the concentration of lithium chloride in aqueous solution. The group separation of the trivalent actinides and lanthanides was observed. This separation phenomenon is similar in a hydrochloric acid solution. However, the adsorption behavior of lanthanides in lithium chloride is different from their behavior in a hydrochloric acid solution. This fact shows that the adsorption mechanisms of lanthanides in a lithium chloride aqueous solution and in a hydrochloric acid solution are different; the adsorption mechanisms are attributed to the ion exchange in a hydrochloric acid solution, and to the complex formation with pyridine group in a lithium chloride solution. (author)

  13. On soliton solutions of the Wu-Zhang system

    Directory of Open Access Journals (Sweden)

    Inc Mustafa

    2016-01-01

    Full Text Available In this paper, the extended tanh and hirota methods are used to construct soliton solutions for the WuZhang (WZ system. Singular solitary wave, periodic and multi soliton solutions of the WZ system are obtained.

  14. Perturbation Solutions of the Quintic Duffing Equation with Strong Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mehmet Pakdemirli

    Full Text Available The quintic Duffing equation with strong nonlinearities is considered. Perturbation solutions are constructed using two different techniques: The classical multiple scales method (MS and the newly developed multiple scales Lindstedt Poincare method (MSLP. The validity criteria for admissible solutions are derived. Both approximate solutions are contrasted with the numerical solutions. It is found that MSLP provides compatible solution with the numerical solution for strong nonlinearities whereas MS solution fail to produce physically acceptable solution for large perturbation parameters.

  15. Molecular thermodynamics using fluctuation solution theory

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela

    . The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application......Properties of chemicals and their mutual phase equilibria are critical variables in process design. Reliable estimates of relevant equilibrium properties, from thermodynamic models, can form the basis of good decision making in the development phase of a process design, especially when access...... to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained...

  16. Role of field testing and shaking table test on full scale structure for NPP seismic-safety, and its relation to computational mechanics

    International Nuclear Information System (INIS)

    Shibata, Heki

    1988-01-01

    Field testing on the dynamic behavior of actual structures is significant for the seismic safety of nuclear power plants. For their mechanical components and piping systems, the full scale testings are also important as well as the in-situ test of buildings. In general, it is often observed that they don't behave as that of analytical model for the design. This article tries to discuss how such discrepancy is occurring, and how to overcome it. (author)

  17. Role of field testing and shaking table test on full scale structure for NPP seismic-safety, and its relation to computational mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Heki [Institute of Industrial Science, University of Tokyo (Japan)

    1988-07-01

    Field testing on the dynamic behavior of actual structures is significant for the seismic safety of nuclear power plants. For their mechanical components and piping systems, the full scale testings are also important as well as the in-situ test of buildings. In general, it is often observed that they don't behave as that of analytical model for the design. This article tries to discuss how such discrepancy is occurring, and how to overcome it. (author)

  18. Topological soliton solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-03-01

    Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.

  19. Full revivals in 2D quantum walks

    International Nuclear Information System (INIS)

    Stefanak, M; Jex, I; Kollar, B; Kiss, T

    2010-01-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  20. Analysis of the Block-Grid Method for the Solution of Laplace's Equation on Polygons with a Slit

    Directory of Open Access Journals (Sweden)

    S. Cival Buranay

    2013-01-01

    Full Text Available The error estimates obtained for solving Laplace's boundary value problem on polygons by the block-grid method contain constants that are difficult to calculate accurately. Therefore, the experimental analysis of the method could be essential. The real characteristics of the block-grid method for solving Laplace's equation on polygons with a slit are analysed by experimental investigations. The numerical results obtained show that the order of convergence of the approximate solution is the same as in the case of a smooth solution. To illustrate the singular behaviour around the singular point, the shape of the highly accurate approximate solution and the figures of its partial derivatives up to second order are given in the “singular” part of the domain. Finally a highly accurate formula is given to calculate the stress intensity factor, which is an important quantity in fracture mechanics.

  1. Factors contributing to troponin exchange in myofibrils and in solution.

    Science.gov (United States)

    She, M; Trimble, D; Yu, L C; Chalovich, J M

    2000-01-01

    The troponin complex in a muscle fiber can be replaced with exogenous troponin by using a gentle exchange procedure in which the actin-tropomyosin complex is never devoid of a full complement of troponin (Brenner et al. (1999) Biophys J 77: 2677-2691). The mechanism of this exchange process and the factors that influence this exchange are poorly understood. In this study, the exchange process has now been examined in myofibrils and in solution. In myofibrils under rigor conditions, troponin exchange occurred preferentially in the region of overlap between actin and myosin when the free Ca2+ concentration was low. At higher concentrations of Ca2+, the exchange occurred uniformly along the actin. Ca2+ also accelerated troponin exchange in solution but the effect of S1 could not be confirmed in solution experiments. The rate of exchange in solution was insensitive to moderate changes in pH or ionic strength. Increasing the temperature resulted in a two-fold increase in rate with each 10 degrees C increase in temperature. A sequential two step model of troponin binding to actin-tropomyosin could simulate the observed association and dissociation transients. In the absence of Ca2+ or rigor S1, the following rate constants could describe the binding process: k1 = 7.12 microM(-1) s(-1), k(-1) = 0.65 s(-1), k2 = 0.07 s(-1), k(-2) = 0.0014 s(-1). The slow rate of detachment of troponin from actin (k(-2)) limits the rate of exchange in solution and most likely contributes to the slow rate of exchange in fibers.

  2. Utilization of poplar wood sawdust for heavy metals removal from model solutions

    Directory of Open Access Journals (Sweden)

    Demcak Stefan

    2017-06-01

    Full Text Available Some kinds of natural organic materials have a potential for removal of heavy metal ions from wastewater. It is well known that cellulosic waste materials or by-products can be used as cheap adsorbents in chemical treatment process. In this paper, poplar wood sawdust were used for removal of Cu(II, Zn(II and Fe(II ions from model solutions with using the static and dynamic adsorption experiments. Infrared spectrometry of poplar wood sawdust confirmed the presence of the functional groups which correspond with hemicelluloses, cellulose and lignin. At static adsorption was achieved approximately of 80 % efficiency for all treated model solutions. Similar efficiency of the adsorption processes was reached after 5 min at dynamic condition. The highest efficiency of Cu(II removal (98 % was observed after 30 min of dynamic adsorption. Changes of pH values confirmed a mechanism of ion exchange on the beginning of the adsorption process.

  3. Eletromagnetic radiation and the mechanical reactions arising from it

    CERN Document Server

    Schott, G A

    1912-01-01

    Fundamental equations of the electron theory ; transformation of the potentials ; other types of solution ; physical interpretation of the solutions obtained ; illustrative examples ; remarks on the solutions obtained and on the methods of calculating the potentials in general ; periodic motions ; on the distant field due to a moving charge ; pseudo-periodic and aperiodic motions ; on the field near the orbit of a moving charge or group ; the mechanical forces acting on electric charges in motion ; the motion of groups of electric charges ; on the Doppler effect ; on the disturbed motion of a ring of electrons ; on the field close to a point charge in motion ; the mechanical force exterted by an electron on itself ; the mechanical explanation of the electron ; the mechanics of the Lorentz electron ; problems illustrative of the motion of the Lorentz electron.

  4. Vertical structures in vibrated wormlike micellar solutions

    Science.gov (United States)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  5. Direct and indirect effects of radiation on polar solid solutions

    International Nuclear Information System (INIS)

    Ershov, V.G.; Gaponova, I.S.

    1982-01-01

    Radiation-chemical decomposition of a solute is due to the direct effect of ionizing radiation on it and also to its reaction with radical-ion products of radiolysis of the solution. At low temperature, the movement of the reagents is limited, and thus it is possible to isolate and evaluate the contribution of direct and indirect effects of radiation on the solute. The present paper is devoted to an investigation of the mechanism of formation of radicals from a solute (LiNO 2 ) in a polar solid solution (CH 3 OH) under the effect of γ-radiation

  6. Kinetics and mechanism of photoaccelerated isotope exchange between U(VI) and U(IV) in oxalate solutions

    International Nuclear Information System (INIS)

    Shaban, I.S.; Owreit, M.F.; Nikitenko, S.I.

    1992-01-01

    A kinetic study of thermal and photoaccelerated U(IV)-U(VI) isotope exchange has been carried out in oxalate solutions at 11-40 deg C. The rate and quantum yield were determined as a function of U(IV), U(VI) and oxalate concentration, wavelength of incident light, temperature and absorbed dose of γ-radiation. The kinetic equations for thermal and photoaccelerated exchange have been obtained. It was assumed that the mechanism of exchange involves formation of U(V) as an intermediate, followed by slow exchange between U(V) and U(IV). The isokinetic dependence confirms the identity of limiting stages for thermal and photostimulated exchange. The upper component of photoexcited T 1 level of uranyl is supposed to be the most reactive in the process of U(V) generation. It was observed that the small doses of γ-radiation evoke the acceleration of isotope exchange, however, at D>100 krad the rate of exchange is reduced to the level of thermal exchange. (author) 8 refs.; 4 figs.; 2 tabs

  7. A review of irradiation induced re-solution in oxide fuels

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1980-01-01

    The paper reviews the existing experimental evidence for irradiation induced re-solution and also possible explanations for the mechanism. The importance of re-solution is considered with regard to intragranular bubbles and the accumulation of gas on grain boundaries. It is concluded that re-solution is most effective at low temperatures and could account for the present concern over gas release in high burn-up water reactor fuel assemblies. (author)

  8. Time Asymmetric Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Arno R. Bohm

    2011-09-01

    Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.

  9. Semi-analytic solution to planar Helmholtz equation

    Directory of Open Access Journals (Sweden)

    Tukač M.

    2013-06-01

    Full Text Available Acoustic solution of interior domains is of great interest. Solving acoustic pressure fields faster with lower computational requirements is demanded. A novel solution technique based on the analytic solution to the Helmholtz equation in rectangular domain is presented. This semi-analytic solution is compared with the finite element method, which is taken as the reference. Results show that presented method is as precise as the finite element method. As the semi-analytic method doesn’t require spatial discretization, it can be used for small and very large acoustic problems with the same computational costs.

  10. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.

    2009-01-01

    Radiation-induced nitration of organic compounds in aqueous solutions was studied. It was found that γ-irradiation of solutions containing acetic and nitric acid and/or their salts gives nitromethane. Dependences of the product yield on the absorbed dose and the contents of components were established. The mechanism of radiation nitration involving radicals is discussed. (author)

  11. Unified connected theory of few-body reaction mechanisms in N-body scattering theory

    Science.gov (United States)

    Polyzou, W. N.; Redish, E. F.

    1978-01-01

    A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.

  12. Semianalytic Solution of Space-Time Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    A. Elsaid

    2016-01-01

    Full Text Available We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM. Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.

  13. On Concurrent Solutions in Differential Games

    Directory of Open Access Journals (Sweden)

    Romar Correa

    2011-01-01

    Full Text Available We examine solutions in which neither player is worse off from the leadership of one in a policy maker-public game. The loop model of dynamic games is used. Outcome space is dotted with equivalence classes of solutions. The Dynamic Stochastic General Equilibrium (DSGE results and their New Keynesian variants might represent one category. The economy is the neighborhood of a market-clearing equilibrium with Pareto-optimal properties modulo frictions. Our interest lies in the ‘old’ Keynesian genus where the representative state is one of involuntary unemployment. Two information sets are relevant. In the first case, agents look to the past and the present. In the second, they are bound by the information provided in the present. The standard analysis pertains to DSGE models under full information. We show, in contrast, that in a situation of structural disequilibrium and feedback information, all parties are better off reneging on the social compact to achieve a superior class of solutions.

  14. The Antioxidant Activity of Quercetin in Water Solution

    Directory of Open Access Journals (Sweden)

    Riccardo Amorati

    2017-06-01

    Full Text Available Abstract: Despite its importance, little is known about the absolute performance and the mechanism for quercetin’s antioxidant activity in water solution. We have investigated this aspect by combining differential oxygen-uptake kinetic measurements and B3LYP/6311+g (d,p calculations. At pH = 2.1 (30 °C, quercetin had modest activity (kinh = 4.0 × 103 M−1 s−1, superimposable to catechol. On raising the pH to 7.4, reactivity was boosted 40-fold, trapping two peroxyl radicals in the chromen-4-one core and two in the catechol with kinh of 1.6 × 105 and 7.0 × 104 M−1 s−1. Reaction occurs from the equilibrating mono-anions in positions 4′ and 7 and involves firstly the OH in position 3, having bond dissociation enthalpies of 75.0 and 78.7 kcal/mol, respectively, for the two anions. Reaction proceeds by a combination of proton-coupled electron-transfer mechanisms: electron–proton transfer (EPT and sequential proton loss electron transfer (SPLET. Our results help rationalize quercetin’s reactivity with peroxyl radicals and its importance under biomimetic settings, to act as a nutritional antioxidant.

  15. Optimal resource allocation solutions for heterogeneous cognitive radio networks

    Directory of Open Access Journals (Sweden)

    Babatunde Awoyemi

    2017-05-01

    Full Text Available Cognitive radio networks (CRN are currently gaining immense recognition as the most-likely next-generation wireless communication paradigm, because of their enticing promise of mitigating the spectrum scarcity and/or underutilisation challenge. Indisputably, for this promise to ever materialise, CRN must of necessity devise appropriate mechanisms to judiciously allocate their rather scarce or limited resources (spectrum and others among their numerous users. ‘Resource allocation (RA in CRN', which essentially describes mechanisms that can effectively and optimally carry out such allocation, so as to achieve the utmost for the network, has therefore recently become an important research focus. However, in most research works on RA in CRN, a highly significant factor that describes a more realistic and practical consideration of CRN has been ignored (or only partially explored, i.e., the aspect of the heterogeneity of CRN. To address this important aspect, in this paper, RA models that incorporate the most essential concepts of heterogeneity, as applicable to CRN, are developed and the imports of such inclusion in the overall networking are investigated. Furthermore, to fully explore the relevance and implications of the various heterogeneous classifications to the RA formulations, weights are attached to the different classes and their effects on the network performance are studied. In solving the developed complex RA problems for heterogeneous CRN, a solution approach that examines and exploits the structure of the problem in achieving a less-complex reformulation, is extensively employed. This approach, as the results presented show, makes it possible to obtain optimal solutions to the rather difficult RA problems of heterogeneous CRN.

  16. An SDN-Based Authentication Mechanism for Securing Neighbor Discovery Protocol in IPv6

    Directory of Open Access Journals (Sweden)

    Yiqin Lu

    2017-01-01

    Full Text Available The Neighbor Discovery Protocol (NDP is one of the main protocols in the Internet Protocol version 6 (IPv6 suite, and it provides many basic functions for the normal operation of IPv6 in a local area network (LAN, such as address autoconfiguration and address resolution. However, it has many vulnerabilities that can be used by malicious nodes to launch attacks, because the NDP messages are easily spoofed without protection. Surrounding this problem, many solutions have been proposed for securing NDP, but these solutions either proposed new protocols that need to be supported by all nodes or built mechanisms that require the cooperation of all nodes, which is inevitable in the traditional distributed networks. Nevertheless, Software-Defined Networking (SDN provides a new perspective to think about protecting NDP. In this paper, we proposed an SDN-based authentication mechanism to verify the identity of NDP packets transmitted in a LAN. Using the centralized control and programmability of SDN, it can effectively prevent the spoofing attacks and other derived attacks based on spoofing. In addition, this mechanism needs no additional protocol supporting or configuration at hosts and routers and does not introduce any dedicated devices.

  17. Effect of surface treatment of carbon nanotubes on mechanical properties of cement composite

    Directory of Open Access Journals (Sweden)

    KONDAKOV Alexander Igorevich

    2014-08-01

    Full Text Available The aim of the paper is to explore the influence of the carbon nanotubes functionalized by oxygen groups on the physical and mechanical properties of cement composites. Advantages and disadvantages of the main methods for the homogeneous distribution of carbon nanotubes (CNTs in solution are discussed. A method for covalent functionalization of CNTs is described. An acid-base titration and dispersion analysis of solutions containing functionalized carbon nanotubes (f-CNTs was performed. The research data made it possible to propose new technology of preparation of modified concrete. The results of the work can be used for designing of the additives commonly used in the construction industry, as well as for further studies of the effects of CNTs on the physical and mechanical and structural properties of building materials. Efficient modification of cement composite with f-CNTs was achieved at the concentration of f-CNTs ranging from 0.0004% to 0.0008% by weight of the binder. The observed increase of the concrete mechanical properties is explained by the fact that the CNTs act as nucleation centers for the cement hydration products.

  18. On a stabilization mechanism for low-velocity detonations

    KAUST Repository

    Sow, Aliou; Semenko, Roman E.; Kasimov, Aslan R.

    2017-01-01

    We use numerical simulations of the reactive Lula equations to analyse the nonlinear stability of steady-state one-dimensional solutions for gaseous detonations in the presence of both momentum and heat losses. Our results point to a possible stabilization mechanism for the low-velocity detonations in such systems. The mechanism stems from the existence of a one-parameter family of solutions found in Semenko el al.

  19. On a stabilization mechanism for low-velocity detonations

    KAUST Repository

    Sow, Aliou

    2017-03-08

    We use numerical simulations of the reactive Lula equations to analyse the nonlinear stability of steady-state one-dimensional solutions for gaseous detonations in the presence of both momentum and heat losses. Our results point to a possible stabilization mechanism for the low-velocity detonations in such systems. The mechanism stems from the existence of a one-parameter family of solutions found in Semenko el al.

  20. Fracture mechanics model of fragmentation

    International Nuclear Information System (INIS)

    Glenn, L.A.; Gommerstadt, B.Y.; Chudnovsky, A.

    1986-01-01

    A model of the fragmentation process is developed, based on the theory of linear elastic fracture mechanics, which predicts the average fragment size as a function of strain rate and material properties. This approach permits a unification of previous results, yielding Griffith's solution in the low-strain-rate limit and Grady's solution at high strain rates