WorldWideScience

Sample records for full scale separable

  1. Fate of pharmaceuticals in full-scale source separated sanitation system

    NARCIS (Netherlands)

    Butkovskyi, A.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2015-01-01

    Removal of 14 pharmaceuticals and 3 of their transformation products was studied in a full-scale source separated sanitation system with separate collection and treatment of black water and grey water. Black water is treated in an up-flow anaerobic sludge blanket (UASB) reactor followed by

  2. Fabrication of the full scale separable first wall of ITER shielding blanket

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Hatano, Toshihisa; Enoeda, Mikio; Miki, Nobuharu; Akiba, Masato

    2002-10-01

    for SS block, water jet method was demonstrated to be applicable to the complicated slit structure required in the shield block fabrication. Also, the fabrication of full scale FW panel was performed. By the destructive observation of the test pieces of HIP joints, the soundness of the fabrication was clarified. In conclusion, essential fabrication technology for the full scale separable first wall panel has been established by this work. (author)

  3. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    Science.gov (United States)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  4. Fate of pharmaceuticals in full-scale source separated sanitation system.

    Science.gov (United States)

    Butkovskyi, A; Hernandez Leal, L; Rijnaarts, H H M; Zeeman, G

    2015-11-15

    Removal of 14 pharmaceuticals and 3 of their transformation products was studied in a full-scale source separated sanitation system with separate collection and treatment of black water and grey water. Black water is treated in an up-flow anaerobic sludge blanket (UASB) reactor followed by oxygen-limited autotrophic nitrification-denitrification in a rotating biological contactor and struvite precipitation. Grey water is treated in an aerobic activated sludge process. Concentration of 10 pharmaceuticals and 2 transformation products in black water ranged between low μg/l to low mg/l. Additionally, 5 pharmaceuticals were also present in grey water in low μg/l range. Pharmaceutical influent loads were distributed over two streams, i.e. diclofenac was present for 70% in grey water, while the other compounds were predominantly associated to black water. Removal in the UASB reactor fed with black water exceeded 70% for 9 pharmaceuticals out of the 12 detected, with only two pharmaceuticals removed by sorption to sludge. Ibuprofen and the transformation product of naproxen, desmethylnaproxen, were removed in the rotating biological contactor. In contrast, only paracetamol removal exceeded 90% in the grey water treatment system while removal of other 7 pharmaceuticals was below 40% or even negative. The efficiency of pharmaceutical removal in the source separated sanitation system was compared with removal in the conventional sewage treatment plants. Furthermore, effluent concentrations of black water and grey water treatment systems were compared with predicted no-effect concentrations to assess toxicity of the effluent. Concentrations of diclofenac, ibuprofen and oxazepam in both effluents were higher than predicted no-effect concentrations, indicating the necessity of post-treatment. Ciprofloxacin, metoprolol and propranolol were found in UASB sludge in μg/g range, while pharmaceutical concentrations in struvite did not exceed the detection limits. Copyright © 2015

  5. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    Science.gov (United States)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of

  6. Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    Science.gov (United States)

    Hultgren, Lennart S.; Miles, Jeffrey H.

    2009-01-01

    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced.

  7. The full-scale process and design changes for elimination of insulation edge separations and voids in tang flap area

    Science.gov (United States)

    Danforth, Richard A.

    1991-01-01

    Qualification of the full-scale process and design changes for elimination of redesigned solid rocket motor tang nitrile butadiene rubber insulation edge separations and voids was performed from 24 March to 3 December 1990. The objectives of this test were: to qualify design and process changes on flight hardware using a tie ply between the redesigned solid rocket motor steel case and the nitrile butadiene rubber insulation over the tang capture features; to qualify the use of methyl ethyl ketone in the tang flap region to reduce voids; and to determine if holes in the separator film reduce voids in the tang flap region. The tie ply is intended to aid insulation flow during the insulation cure process, and thus reduce or eliminate edge unbonds. Methyl ethyl ketone is intended to reduce voids in the tang flap area by providing better tacking characteristics. The perforated film was intended to provide possible vertical breathe paths to reduce voids in the tang area. Tang tie ply testing consisted of 270 deg of the tang circumference using a new layup method and 90 deg of the tang circumference using the current layup methods. Tie ply process success was defined as a reduction of insulation unbonds. Lack of any insulation edge unbonds on the tang area where the new process was used, and the presence of 17 unbonds with the current process, proves the test to be a success. Successful completion of this test has qualified the new processes.

  8. Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster

    NARCIS (Netherlands)

    Oonk, H.; Woelders, H.

    1999-01-01

    At the VAM waste treatment company in Wijster a demonstration is in progress of bioreactor technology for the treatment of mechanically separated organic residue (MSOR) of a waste separation plant. This bioreactor is an in situ fermentation cell in which physical, chemical and biological processes

  9. Children's separation anxiety scale (CSAS: psychometric properties.

    Directory of Open Access Journals (Sweden)

    Xavier Méndez

    Full Text Available This study describes the psychometric properties of the Children's Separation Anxiety Scale (CSAS, which assesses separation anxiety symptoms in childhood. Participants in Study 1 were 1,908 schoolchildren aged between 8 and 11. Exploratory factor analysis identified four factors: worry about separation, distress from separation, opposition to separation, and calm at separation, which explained 46.91% of the variance. In Study 2, 6,016 children aged 8-11 participated. The factor model in Study 1 was validated by confirmatory factor analysis. The internal consistency (α = 0.82 and temporal stability (r = 0.83 of the instrument were good. The convergent and discriminant validity were evaluated by means of correlations with other measures of separation anxiety, childhood anxiety, depression and anger. Sensitivity of the scale was 85% and its specificity, 95%. The results support the reliability and validity of the CSAS.

  10. Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants

    International Nuclear Information System (INIS)

    Braendli, Rahel C.; Bucheli, Thomas D.; Kupper, Thomas; Mayer, Jochen; Stadelmann, Franz X.; Tarradellas, Joseph

    2007-01-01

    Composting and digestion are important waste management strategies. However, the resulting products can contain significant amounts of organic pollutants such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). In this study we followed the concentration changes of PCBs and PAHs during composting and digestion on field-scale for the first time. Concentrations of low-chlorinated PCBs increased during composting (about 30%), whereas a slight decrease was observed for the higher chlorinated congeners (about 10%). Enantiomeric fractions of atropisomeric PCBs were essentially racemic and stable over time. Levels of low-molecular-weight PAHs declined during composting (50-90% reduction), whereas high-molecular-weight compounds were stable. The PCBs and PAHs concentrations did not seem to vary during digestion. Source apportionment by applying characteristic PAH ratios and molecular markers in input material did not give any clear results. Some of these parameters changed considerably during composting. Hence, their diagnostic potential for finished compost must be questioned. - During field-scale composting, low molecular weight PCBs and PAHs increased and decreased, respectively, whereas high molecular weight compounds remained stable

  11. Why Online Education Will Attain Full Scale

    Science.gov (United States)

    Sener, John

    2010-01-01

    Online higher education has attained scale and is poised to take the next step in its growth. Although significant obstacles to a full scale adoption of online education remain, we will see full scale adoption of online higher education within the next five to ten years. Practically all higher education students will experience online education in…

  12. Strontium Removal: Full-Scale Ohio Demonstrations

    Science.gov (United States)

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  13. OPAL jet chamber full-scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL was tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration, and readout are described. Operating experience was gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  14. Full scale solvent extraction remedial results

    International Nuclear Information System (INIS)

    Cash, A.B.

    1992-01-01

    Sevenson Extraction Technology, Inc. has completed the development of the Soil Restoration Unit (initially developed by Terra-Kleen Corporation), a mobile, totally enclosed solvent extraction treatment facility for the removal of organic contaminated media is greater by a closed loop, counter current process that recycles all solvents. The solvents used are selected for the individual site dependant upon the contaminants, such as PCB's, oil, etc. and the soil conditions. A mixture of up to fourteen non-toxic solvents can be used for complicated sites. The full scale unit has been used to treat one superfund site, the Traband Site in Tulsa, Oklahoma, and is currently treating another superfund site, the Pinette's Salvage Yard Site in Washburn, Maine. The full scale Soil Restoration Unit has also been used at a non-superfund site, as part of a TSCA Research and Development permit. The results from these sites will be discussed in brief herein, and in more detail in the full paper

  15. OPAL jet chamber full scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL has been tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration and readout are described. Operating experience has been gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  16. OPAL jet chamber full scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstreom, R; Heuer, R D; Mazzone, L

    1986-05-22

    The concept of a jet chamber for the central detector of OPAL has been tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration and readout are described. The operating experience gathered since the summer of 1984 and the chamber performance as measured by its spatial resolution and ability to identify particles are also given.

  17. Full-scale aircraft tire pressure tests

    OpenAIRE

    FABRE, C; BALAY, Jean Maurice; LERAT, P; MAZARS, A

    2009-01-01

    This paper describes an outdoor full-scale test planned to improve experimental and theoretical knowledge related to the effects of aircraft internal tire inflation pressure on the behavior and damage of flexible pavement. Since modern aircraft can have tire pressures greater than 15 bar, the tests will focus on pressures from 15 bar to 17.5 bar. The experimental pavement located on the Toulouse-Blagnac airport in France will include up to seven al different test sections, representative of c...

  18. Full-scale aicraft tire pressure tests

    OpenAIRE

    FABRE, C; BALAY, Jean Maurice; LERAT, P; MAZARS, A

    2009-01-01

    This paper describes an outdoor full-scale test planned to improve experimental and theoretical knowledge related to the effects of aircraft internal tire inflation pressure on the behavior and damage of flexible pavement. Since modern aircraft can have tire pressures greater than 15 bar, the tests focus on pressures from 15 to 17.5 bar. The experimental pavement located on the Toulouse-Blagnac airport in France will include up to seven al different test sections, representative of current ai...

  19. Spatial scale separation in regional climate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Feser, F.

    2005-07-01

    In this thesis the concept of scale separation is introduced as a tool for first improving regional climate model simulations and, secondly, to explicitly detect and describe the added value obtained by regional modelling. The basic idea behind this is that global and regional climate models have their best performance at different spatial scales. Therefore the regional model should not alter the global model's results at large scales. The for this purpose designed concept of nudging of large scales controls the large scales within the regional model domain and keeps them close to the global forcing model whereby the regional scales are left unchanged. For ensemble simulations nudging of large scales strongly reduces the divergence of the different simulations compared to the standard approach ensemble that occasionally shows large differences for the individual realisations. For climate hindcasts this method leads to results which are on average closer to observed states than the standard approach. Also the analysis of the regional climate model simulation can be improved by separating the results into different spatial domains. This was done by developing and applying digital filters that perform the scale separation effectively without great computational effort. The separation of the results into different spatial scales simplifies model validation and process studies. The search for 'added value' can be conducted on the spatial scales the regional climate model was designed for giving clearer results than by analysing unfiltered meteorological fields. To examine the skill of the different simulations pattern correlation coefficients were calculated between the global reanalyses, the regional climate model simulation and, as a reference, of an operational regional weather analysis. The regional climate model simulation driven with large-scale constraints achieved a high increase in similarity to the operational analyses for medium-scale 2 meter

  20. ARKTOS full-scale evacuation tests

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, B.; Hatfield, P. [ARKTOS Developments Ltd., Surrey, BC (Canada); Bercha, F. [Bercha Group, Calgary, AB (Canada)

    2008-09-15

    The ARKTOS amphibious vehicle can be used for evacuation operations in both open water and ice conditions. It is approved as an evacuation system by various regulators, such as the United States Coast Guard, and is operational in several marine cold regions as an escape, evacuation, and rescue (EER) system. An EER research project was performed in 2006 that provided a general reliability evaluation of the ARKTOS system. However, the project did not have the benefit of detailed full-scale tests in order to validate the associated computer model in drill or non-life threatening evacuation conditions. This paper described a follow-up set of full-scale evacuation tests designed to provide more detailed information and validation data for the reliability that the computer model described in the 2006 research project. A description and photographic illustrations of the ARKTOS system were presented. The tests and subsequent analyses were described. Specifically, the paper described the observations, and presented the statistical results from the data collected, and compared observed results with predicted results of a probabilistic EER simulation computer model. Conclusions and recommendations for reliability improvements were also provided. It was concluded that under the benign conditions, the drill performance was satisfactory in all aspects, both in the evacuation activities and the rescue or de-boarding activities. 3 refs., 1 tab., 17 figs.

  1. Full Scale Experiment with Interactive Urban Lighting

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    and region of occupancy of persons in the town square were monitored in real time by computer vision analyses of thermal images from 3 cameras monitoring the twin square. The results of the computer vision analyses were used to control the illumination from 16 3.5 meter high RGB LED Lamps that were......This paper presents and discusses the results of a full-scale interactive urban illumination experiment. The experiment investigates how human motion intensities can be used as input for controlling the illumination of a town square in the city of Aalborg in Denmark. The trajectory, velocity...... distributed across the square in an irregular grid. The lamps were DMX controlled. Using architectural models as sketching tools, 4 different illumination designs were developed and tested for a week in January. The result shows that in general people immersed in the square did not notice that the light...

  2. Scale separation closure and Alfven wave turbulence

    International Nuclear Information System (INIS)

    Chen, C.Y.; Mahajan, S.M.

    1985-04-01

    Based on the concept of scale separation between coherent response function and incoherent source for renormalized turbulence theories, a closure scheme is proposed. A model problem dealing with shear-Alfven wave turbulence is numerically solved; the solution explicitly shows expected turbulence features such as frequency shift from linear modes, band-broadening, and a power law dependence for the turbulence spectrum

  3. Design of full scale debris washing system

    International Nuclear Information System (INIS)

    Taylor, M.L.; Dosani, M.A.; Wentz, J.A.; Patkar, A.N.; Barkley, N.P.

    1992-01-01

    Since 1987, IT Environmental Programs Inc. (ITEP, a subsidiary of International Technology Corporation) in conjunction with EPA/RREL in Cincinnati, Ohio, have been developing and conducting bench scale and pilot scale testing of a transportable debris washing system which can be used on-site for the decontamination of debris. During the initial phase of the debris decontamination project, a series of bench scale tests were performed in the laboratory to assess the ability of the system to remove contaminants from debris and to facilitate selection of the most efficient surfactant solution. Five nonionic, non-toxic, low foaming, surfactant solution (BG-5, MC-2000, LF-330, BB-100, and L-433) were selected for an experimental evaluation to determine their capacity to solubilize and remove contaminants from the surfaces of corroded steel places. The pieces of corroded steel were coated with a heavy grease mixture prepared in the laboratory and these pieces of debris were placed in a bench scale spray tank on a metal tray and subjected in a high-pressure spray for each surfactant solution for 15 minutes. At the end of the spray cycle, The tray was transferred to a second bench scale system, a high-turbulence wash tank, where the debris was washed for 30 minutes with the same surfactant solution as the used in the spray tank. After the was cycle was completed, the tray was removed from the wash tank and the debris was allowed to air-dry. Before and after treatment, surface-wipe samples were obtained from each of the six pieces of debris and were analyzed for oil and graese. Based on the results, BG-5 was selected as the solution best suited for cleaning grease-laden, metallic debris. 2 refs

  4. Beyond scale separation in gyrokinetic turbulence

    International Nuclear Information System (INIS)

    Garbet, X.; Sarazin, Y.; Grandgirard, V.; Dif-Pradalier, G.; Darmet, G.; Ghendrih, Ph.; Angelino, P.; Bertrand, P.; Besse, N.; Gravier, E.; Morel, P.; Sonnendruecker, E.; Crouseilles, N.; Dischler, J.-M.; Latu, G.; Violard, E.; Brunetti, M.; Brunner, S.; Lapillonne, X.; Tran, T.-M.; Villard, L.; Boulet, M.

    2007-01-01

    This paper presents the results obtained with a set of gyrokinetic codes based on a semi-Lagrangian scheme. Several physics issues are addressed, namely, the comparison between fluid and kinetic descriptions, the intermittent behaviour of flux driven turbulence and the role of large scale flows in toroidal ITG turbulence. The question of the initialization of full-F simulations is also discussed

  5. Composting trial with BioFoam® products in a full scale commercial composting facility

    NARCIS (Netherlands)

    Zee, van der M.

    2015-01-01

    The main objective of the trial was to be able to judge whether BioFoam® material degrades at sufficient rate to be composted together with regular source separated municipal solid biowaste in a full scale industrial composting facility.

  6. Full-scale leaching study of commercial reactor waste forms

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1984-01-01

    This paper describes a full-scale leaching experiment which has been conducted at Brookhaven National Laboratory (BNL) to study the release of radionuclides from actual commercial reactor waste forms. While many studies characterizing the leaching behavior of simulated laboratory-scale waste forms have been performed, this program represents one of the first attempts in the United States to quantify activity releases for real, full-scale waste forms. 5 references, 5 figures, 1 table

  7. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  8. Hot Firing of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, C

    2002-01-01

    This paper describes the chamber design and hot firing test results for a full-scale copper tubular combustion chamber that has future application in a high-thrust, upper-stage expander cycle engine...

  9. Passive Infrared Signature Augmentation of Full-Scale Plastic Targets

    National Research Council Canada - National Science Library

    Gebus, Lisa M; Sanders, Jeffrey S

    2002-01-01

    ... (IR), and radar signatures of threat systems. To address this need, a program was initiated by TMO to augment an existing full-scale, vacuum-formed plastic target with sufficient signature fidelity to adequately stress U.S...

  10. Bacterial communities in full-scale wastewater treatment systems

    OpenAIRE

    Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2016-01-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in...

  11. Full scale demonstration of air-purifying pavement

    NARCIS (Netherlands)

    Ballari, M.; Brouwers, H.J.H.

    2013-01-01

    Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO2 over a length of 150 m ("DeNOx street"). Another part of the street, about 100 m, was paved with

  12. Analysis of full scale impact into an abutment

    International Nuclear Information System (INIS)

    Fullard, K.; Dowler, H.J.; Soanes, T.P.T.

    1985-01-01

    A 60mph impact into a tunnel abutment, of a flask on a railway flatrol with following vehicles, is shown to be a much less severe event for the flask than a 9 metre drop test to IAEA regulations. This involves the use of mathematical models of the full scale event of the same type as were employed in studying the behaviour of quarter scale models. The latter were subject to actual impact testing as part of the validation process. (author)

  13. Full-Scale Mark II CRT Program data report, 1

    International Nuclear Information System (INIS)

    Namatame, Ken; Kukita, Yutaka; Yamamoto, Nobuo; Shiba, Masayoshi

    1979-12-01

    The Full-Scale Mark II CRT (Containment Response Test) Program was initiated in April 1976 to provide a full-scale data basis for the evaluation of the pressure suppression pool hydrodynamic loads associated with a hypothetical LOCA in a BWR Mark II Containment. The test facility, completed in March 1979, is 1/18 in volume of a typical 1100 MWe Mark II, and has a wetwell which is a full-scale replica of one 20 0 -sector of that of the reference Mark II. The present report documents experimental data from TEST 0002, a medium size (100 mm) water blowdown test, performed by Hitachi Ltd. for JAERI as the second of the four shakedown tests. Test data is provided for the vessel depressurization, the pressure and temperature responses in the test containment, and especially for the chugging phenomena associated with low flux steam condensation in the pool. (author)

  14. Full-scale load tests of Pearl-Chain arches

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2017-01-01

    -Decks: First an investigation of the system’s elastic response (maximum load of 648kN), and second a demonstration of its collapse mechanism and ultimate capacity (maximum load of 970kN). The full-scale test showed formation of plastic hinges and clear warning signs are observed at 84% of the failure load......A full-scale load test is made of two Pearl-Chain (PC) concrete arches in order to evaluate the structural response and assess the design safety. Pearl-Chain structures and Pearl-Chain arches are invented and patented at the Technical University of Denmark. PC-Arches consist of specially designed....... The ultimate, experimental load capacity is 14% higher than the calculated mainly due to the assumed static system used for the calculation. In addition to the full-scale test bridge the first ever permanent PC-Bridge is erected in Denmark in 2015....

  15. Pelamis WEC - full-scale joint system test

    Energy Technology Data Exchange (ETDEWEB)

    Yemm, R.

    2003-07-01

    This report describes the building and testing of a full-scale Pelamis Wave Energy Converter (WEC) two-axis joint system using a laboratory joint test rig. The main project objective to develop an intermediate demonstration model to confirm full scale control, hydraulic and data acquisition systems is discussed, and the key objectives of the programme are listed. Details are given of the semi-submerged articulated structure of cylindrical elements linked by hinged joints, and the integrated testing of all key components. A summary of the work programme and a description of the test rig are presented.

  16. Monitoring of full scale tensegrity skeletons under temperature change

    OpenAIRE

    KAWAGUCHI, Ken'ichi; OHYA, Shunji

    2009-01-01

    p. 224-231 Strain change in the members of full-scale tensegrity skeletons has been monitored for eight years. The one-day data of one of the tensegrity frame on the hottest and the coldest day in the record are reported and discussed. Kawaguchi, K.; Ohya, S. (2009). Monitoring of full scale tensegrity skeletons under temperature change. Symposium of the International Association for Shell and Spatial Structures. Editorial Universitat Politècnica de València. http://hdl.handle.net/10...

  17. Systems for animal exposure in full-scale fire tests

    Science.gov (United States)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  18. Fatigue Assessment of Full-Scale Retrofitted Orthotropic Bridge Decks

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    Full-scale fatigue tests were performed on two retrofitted orthotropic bridge decks (OBDs). The retrofitting systems consist of adding a second steel plate on the top of the existing deck. The aim is to reduce the stresses at the fatigue-sensitive details and therefore extend the fatigue life of

  19. Plan for 3-D full-scale earthquake testing facility

    International Nuclear Information System (INIS)

    Ohtani, K.

    2001-01-01

    Based on the lessons learnt from the Great Hanshin-Awaji Earthquake, National Research Institute for Earth Science and Disaster Prevention plan to construct the 3-D Full-Scale Earthquake Testing Facility. This will be the world's largest and strongest shaking table facility. This paper describes the outline of the project for this facility. This facility will be completed in early 2005. (author)

  20. Full-scale ANANOX (R) system performance | Garuti | Water SA

    African Journals Online (AJOL)

    This paper reports the results of the first experimental investigations carried out on the only existing full-scale plant that makes use of the biological treatment system known as ANANOX(R). This system was first set up by the Italian research staff at ENEA (Agency for New Technologies, Energy and Environment) and consists ...

  1. The latest full-scale PWR simulator in Japan

    International Nuclear Information System (INIS)

    Nishimuru, Y.; Tagi, H.; Nakabayashi, T.

    2004-01-01

    The latest MHI Full-scale Simulator has an excellent system configuration, in both flexibility and extendability, and has highly sophisticated performance in PWR simulation by the adoption of CANAC-II and PRETTY codes. It also has an instructive character to display the plant's internal status, such as RCS condition, through animation. Further, the simulation has been verified to meet a functional examination at model plant, and with a scale model test result in a two-phase flow event, after evaluation for its accuracy. Thus, the Simulator can be devoted to a sophisticated and broad training course on PWR operation. (author)

  2. Wind Farm Wake Models From Full Scale Data

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2012-01-01

    This investigation is part of the EU FP7 project “Distributed Control of Large-Scale Offshore Wind Farms”. The overall goal in this project is to develop wind farm controllers giving power set points to individual turbines in the farm in order to minimise mechanical loads and optimise power. One...... on real full scale data. The modelling is based on so called effective wind speed. It is shown that there is a wake for a wind direction range of up to 20 degrees. Further, when accounting for the wind direction it is shown that the two model structures considered can both fit the experimental data...

  3. Confirmatory tests of full-scale condensers for SBWR

    International Nuclear Information System (INIS)

    Masoni, P.; Botti, S.; Fitzsimmons, G.W.

    1993-01-01

    A full-scale isolation condenser and a full-scale passive containment cooling condenser for the Simplified Boiling Water Reactor (SBWR) will be tested to confirm the thermal-hydraulic and structural design characteristics of these components. The condensers provide vital roles in removing heat from the reactor vessel and the containment during certain design basis events. This paper describes the condensers and the test facilities which are under construction and summarizes the test objectives, the planned instrumentation, and the conditions to be tested. The results of some pre-test performance predictions, calculated with the TRACG code are presented. The results of the testing program are expected to demonstrate that the condenser designs will provide the required heat removal capacity and will survive the design basis temperature/pressure cycles without structural damage

  4. Full-scale mark II CRT program facility description report

    International Nuclear Information System (INIS)

    Namatame, Ken; Kukita, Yutaka; Ito, Hideo; Yamamoto, Nobuo; Shiba, Masayoshi

    1980-03-01

    Started in fiscal year 1977, the Full-Scale Mark II CRT (Containment Response Test) Program is proceeding for the period of five years. The primary objective of the CRT Program is to provide a data base for evaluation of the pressure suppression pool hydrodynamic loads associated with a postulated loss-of-coolant accident in the BWR Mark II containment system. The test facility was designed and constructed from fiscal year 1977 to 1978, and completed in March 1979. It is 1/18 in volume and has a wetwell which is a full-scale replica of one 20 0 -sector of that of a reference Mark II. This report describes design concepts, dimensions and constructions of the test facility, as well as specifications, locations and installation schemes of the measuring equipments. Results of soil structure inspection, vacuum breaker test and shaker test of the containment shell are given in the appendices. (author)

  5. Full scale turbine-missile casing exit tests

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Schamaun, J.T.; Sliter, G.E.

    1979-01-01

    Two full-scale tests have simulated the impact of a fragment from a failed turbine disk upon the steel casing of a low-pressure steam turbine with the objective of providing data for making more realistic assessments of turbine missile effects for nuclear power plant designers. Data were obtained on both the energy-absorbing mechanisms of the impact process and the post-impact trajectory of the fragment. (orig.)

  6. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    OpenAIRE

    Robert Petroski; Lowell Wood

    2012-01-01

    A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole d...

  7. Bacterial communities in full-scale wastewater treatment systems.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  8. Phase III (full scale) agitated mixing test plan

    International Nuclear Information System (INIS)

    Ruff, D.T.

    1994-01-01

    Waste Receiving and Processing Facility Module 2A (WRAP 2A) is the proposed second module of the WRAP facility. This facility will provide the required treatment for contact Handled (CH) Low Level (LL) Mixed Waste (MW) to allow its permanent disposal. Solidification of a portion of this waste using a cement based grout has been selected in order to reduce the toxicity and mobility of the waste in the disposal site. Mixing of the waste with the cement paste and material handling constraints/requirements associated with the mixed material is, therefore, a key process in the overall treatment strategy. This test plan addresses Phase 3, Full Scale Testing. The objectives of these tests are to determine if there are scale-up issues associated with the mixing results obtained in Phase 1 and 2 mixing tests, verify the workability of mixtures resulting from previous formulation development efforts (Waste Immobilization Development [WID]), and provide a baseline for WRAP 2A mixing equipment design. To this end, the following objectives are of particular interest: determine geometric influence of mixing blade at full scale (i.e., size, type, and location: height/offset); determine if similar results in terms of mixing effectiveness and product quality are achievable at this scale; determine if vibration is as effective at this larger scale in fluidizing the mixture and aiding in cleaning the vessel; determine if baffles or sweeping blades are needed to aid in mixing at the larger size and for cleaning the vessel; and determine quality of the poured monolithic product and investigate exotherm and filling influences at this larger size

  9. Full scale testing for investigation of wind turbine seismic response

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, I.; Veletzos, M.; Elgamal, A. [California Univ., San Diego, CA (United States). Dept. of Structural Engineering

    2008-07-01

    In 2007, much of the growth in wind energy development was concentrated in North America and Asia, two regions which periodically experience strong earthquakes that may impact the final turbine design. As such, rational prediction of seismic hazards must be considered in order to maintain and enhance the ability of wind power to compete economically with other energy sources. In response to this challenge, researchers at the University of California, San Diego (UCSD) have experimentally investigated wind turbines to gain an understanding of expected earthquake forces. This paper described the experimental setup for a full scale shake table test of a 65 kW wind turbine. The turbine was excited perpendicular to the axis of the rotor with a seismic base shaking record scaled to various levels. The data was analyzed using simple but effective procedures to provide insight into the observed structural damping of the wind turbine. The experimental investigation showed that full scale seismic testing of wind turbines is possible and can provide valuable insight into dynamic behaviour of wind turbines. The results can be used to develop a more accurate picture of how wind turbines are impacted by earthquakes. The data regarding the low observed super-structure damping provides a basis for calibration and further development of verified design procedures. 20 refs., 3 tabs.

  10. Polyethylene encapsulation full-scale technology demonstration. Final report

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental ampersand Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control

  11. A tentative programme towards a full scale energy amplifier

    CERN Document Server

    Rubbia, Carlo

    1996-01-01

    We present a proposal of a full scale demonstration plant of the Energy Amplifier (EA), following the conceptual design of Ref. [1]. Unlike the presently on going CERN experiments, reaction rates will be sufficiently massive to permit demonstrating the practical feasibility of energy generation on an industrial scale and to tackle the complete family chains of [1] the breeding process in Thorium fuel, [2] the burning of the self-generated Actinides, [3] the Plutonium (higher Actinides) burning of spent fuel from ordinary Reactors and [4] Fuel reprocessing/regeneration. The accelerator must provide a beam power which is commensurate to the rate of transformations which are sought. No existing accelerator can meet such a performance and a dedicated facility must be built. We describe an alternative based on the superconducting cavities (SC) now in standard use at the LEP \\[e^+-e^-\\] collider which is scheduled to terminate its operation by year 200 After this time, with reasonable modifications, the fully opera...

  12. Integration test of ITER full-scale vacuum vessel sector

    International Nuclear Information System (INIS)

    Nakahira, M.; Koizumi, K.; Oka, K.

    2001-01-01

    The full-scale Sector Model Project, which was initiated in 1995 as one of the Large Seven R and D Projects, completed all R and D activities planned in the ITER-EDA period with the joint effort of the ITER Joint Central Team (JCT), the Japanese, the Russian Federation (RF) and the United States (US) Home Teams. The fabrication of a full-scale 18 toroidal sector, which is composed of two 9 sectors spliced at the port center, was successfully completed in September 1997 with the dimensional accuracy of ± 3 mm for the total height and total width. Both sectors were shipped to the test site in JAERI and the integration test was begun in October 1997. The integration test involves the adjustment of field joints, automatic Narrow Gap Tungsten Inert Gas (NG-TIG) welding of field joints with splice plates, and inspection of the joint by ultrasonic testing (UT), which are required for the initial assembly of ITER vacuum vessel. This first demonstration of field joint welding and performance test on the mechanical characteristics were completed in May 1998 and the all results obtained have satisfied the ITER design. In addition to these tests, the integration with the mid plane port extension fabricated by the Russian Home Team, and the cutting and re-welding test of field joints by using full-remotized welding and cutting system developed by the US Home Team, are planned as post EDA activities. (author)

  13. Integration test of ITER full-scale vacuum vessel sector

    International Nuclear Information System (INIS)

    Nakahira, M.; Koizumi, K.; Oka, K.

    1999-01-01

    The full-scale Sector Model Project, which was initiated in 1995 as one of the Large Seven ITER R and D Projects, completed all R and D activities planned in the ITER-EDA period with the joint effort of the ITER Joint Central Team (JCT), the Japanese, the Russian Federation (RF) and the United States (US) Home Teams. The fabrication of a full-scale 18 toroidal sector, which is composed of two 9 sectors spliced at the port center, was successfully completed in September 1997 with the dimensional accuracy of - 3 mm for the total height and total width. Both sectors were shipped to the test site in JAERI and the integration test was begun in October 1997. The integration test involves the adjustment of field joints, automatic Narrow Gap Tungsten Inert Gas (NG-TIG) welding of field joints with splice plates, and inspection of the joint by ultrasonic testing (UT), which are required for the initial assembly of ITER vacuum vessel. This first demonstration of field joint welding and performance test on the mechanical characteristics were completed in May 1998 and the all results obtained have satisfied the ITER design. In addition to these tests, the integration with the mid plane port extension fabricated by the Russian Home Team, and the cutting and re-welding test of field joints by using full-remotized welding and cutting system developed by the US Home Team, are planned as post EDA activities. (author)

  14. Full-scale tornado-missile impact tests

    International Nuclear Information System (INIS)

    Stephenson, A.E.; Sliter, G.E.; Burdette, E.G.

    1978-01-01

    Full-scale poles, pipes, and rods, representing postulated tornado-borne missiles, were rocket-propelled into reinforced concrete panels with thicknesses typical of walls and roofs in the auxillary buildings of nuclear power plants. Data from the 18 tests can be used directly for structural design or for validating design and analysis techniques. The test panels, constructed with 3000-psi design strength concrete and minimum allowable reinforcement, were 12, 18 and 24 in. thick with 15 X 15-ft unsupported spans. (Auth.)

  15. Flow Induced segregation in full scale castings with SCC

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2007-01-01

    induced segregation is a major risk during casting and it is not yet clear how this phenomenon should be modelled. In this paper testing and numerical simulations of full-scale wall castings are compared. Two different SCCs and three different filling methods were applied resulting in different flow...... patterns during form filling. Results show that the flow patterns have a major influence on the risk of flow induced segregation and the surface finish of the hardened concrete. A hypothesis for the mechanism of flow induced segregation is put forth....

  16. CO{sub 2} separation by calcium looping from full and partial fuel oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Sivalingam, Senthoorselvan

    2013-06-05

    This thesis work deals with the research and development of calcium looping process for CO{sub 2} separation from full and partial fuel oxidation based power generation systems. CO{sub 2} is the main greenhouse gas and undoubtedly a major contributor to the global warming. It is estimated that more than one third of the total anthropogenic CO{sub 2} emissions come from fossil fuel based heat and power generation. Moreover, fossil fuels are unlikely to be phased out rapidly, since developing alternative energy sources not only take time but also require huge investments and infrastructure. An alternative way to reduce emissions in a medium term is to capture the CO{sub 2} from fossil fueled power plants and store it away from the atmosphere. This process system combining a bunch of technologies is called carbon capture and storage (CCS). CO{sub 2} capture is an important and costly part of CCS and an array of technologies is considered for this. Calcium looping (CaL) is one of such and seems to offer effective and efficient CO{sub 2} separation from fuel oxidation processes. CaL process involves separation of CO{sub 2} at high temperatures (600-700 C) by calcium sorbents (CaO). CO{sub 2} reacts with CaO in a carbonation process and produces CaCO{sub 3}. In a subsequent thermal regeneration (>850 C) called calcination, the CO{sub 2} is released from CaCO{sub 3}. By alternating carbonations and calcinations over multiple cycles, CO{sub 2} is separated from a gas stream. Moreover, the CaL is realised in industrial scale with dual fluidised bed reactors for CO{sub 2} capture (the carbonator) and sorbent regeneration (the calciner). As a process in the development, research is still required in many aspects from thermodynamic modeling to experimental studies. Research works have been carried out in process simulations, sorbent reactivity and optimisation studies in a controlled reactor environment and process parametric studies in a semi-pilot scale CaL test facility

  17. CO2 separation by calcium looping from full and partial fuel oxidation processes

    International Nuclear Information System (INIS)

    Sivalingam, Senthoorselvan

    2013-01-01

    This thesis work deals with the research and development of calcium looping process for CO 2 separation from full and partial fuel oxidation based power generation systems. CO 2 is the main greenhouse gas and undoubtedly a major contributor to the global warming. It is estimated that more than one third of the total anthropogenic CO 2 emissions come from fossil fuel based heat and power generation. Moreover, fossil fuels are unlikely to be phased out rapidly, since developing alternative energy sources not only take time but also require huge investments and infrastructure. An alternative way to reduce emissions in a medium term is to capture the CO 2 from fossil fueled power plants and store it away from the atmosphere. This process system combining a bunch of technologies is called carbon capture and storage (CCS). CO 2 capture is an important and costly part of CCS and an array of technologies is considered for this. Calcium looping (CaL) is one of such and seems to offer effective and efficient CO 2 separation from fuel oxidation processes. CaL process involves separation of CO 2 at high temperatures (600-700 C) by calcium sorbents (CaO). CO 2 reacts with CaO in a carbonation process and produces CaCO 3 . In a subsequent thermal regeneration (>850 C) called calcination, the CO 2 is released from CaCO 3 . By alternating carbonations and calcinations over multiple cycles, CO 2 is separated from a gas stream. Moreover, the CaL is realised in industrial scale with dual fluidised bed reactors for CO 2 capture (the carbonator) and sorbent regeneration (the calciner). As a process in the development, research is still required in many aspects from thermodynamic modeling to experimental studies. Research works have been carried out in process simulations, sorbent reactivity and optimisation studies in a controlled reactor environment and process parametric studies in a semi-pilot scale CaL test facility. ASPEN Plus power plant simulations integrating the CaL based CO 2

  18. Full scale demonstration of air-purifying pavement

    International Nuclear Information System (INIS)

    Ballari, M.M.; Brouwers, H.J.H.

    2013-01-01

    Highlights: ► The results of a demonstration project for photocatalytic pavement are shown. ► The photocatalytic performance was studied in a street as well as on lab scale. ► The outdoor monitoring was performed in different seasons and weather conditions. ► The NO x concentration was in average 19% lowered by the photocatalytic street. ► Under ideal weather conditions the NO x reduction reached up to 45%. -- Abstract: Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO 2 over a length of 150 m (“DeNO x street”). Another part of the street, about 100 m, was paved with normal paving blocks (“Control street”). The outdoor monitoring was done during 26 days for a period exceeding one year, and measured parameters included traffic intensity, NO, NO 2 and ozone concentrations, temperature, relative humidity, wind speed and direction, and the visible and UV light irradiance. Prior and parallel to these field measurements, the used blocks were also measured in the lab to assess their performance. The NO x concentration was, on average, 19% (considering the whole day) and 28% (considering only afternoons) lower than the obtained values in the Control street. Under ideal weather conditions (high radiation and low relative humidity) a NO x concentration decrease of 45% could be observed

  19. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  20. Full Scale Test of a SSP 34m boxgirder 2

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Branner, Kim; Nielsen, Per Hørlyk

    was part of a proof of concept investigation for a patent. The tests were performed at the Blaest test facility in August 2007. The tests are an important part of a research project established in cooperation between Risø National Laboratory for sustainable energy – Technical university of Denmark, SSP......This report presents the setup and result from three static full-scale tests of the reinforced glass fiber/epoxy box girder used in a 34m wind turbine blade. One test was without reinforcement one with cap reinforcement and the final test was with rib reinforcement. The cap reinforcement test......-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Mølholt Jensen’s PhD thesis. This report is the second data report containing the complete test data for the three full-scale tests. This report deals only with the test methods and the obtained results...

  1. Full Duplex Emulation via Spatial Separation of Half Duplex Nodes in a Planar Cellular Network

    DEFF Research Database (Denmark)

    Thomsen, Henning; Kim, Dong Min; Popovski, Petar

    2016-01-01

    A Full Duplex Base Station (FD-BS) can be used to serve simultaneously two Half-Duplex (HD) Mobile Stations (MSs), one working in the uplink and one in the downlink, respectively. The same functionality can be realized by having two interconnected and spatially separated Half Duplex Base Stations...... (HD-BSs), which is a scheme termed CoMPflex (CoMP for In-Band Wireless Full Duplex). A FD-BS can be seen as a special case of CoMPflex with separation distance zero. In this paper we study the performance of CoMPflex in a two-dimensional cellular scenario using stochastic geometry and compare...

  2. Design and Control of Full Scale Wave Energy Simulator System

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Hansen, Anders Hedegaard; Hansen, Rico Hjerm

    2012-01-01

    For wave energy to become feasible it is a requirement that the efficiency and reliability of the power take-off (PTO) systems are significantly improved. The cost of installing and testing PTO-systems at sea are however very high, and the focus of the current paper is therefore on the design...... of a full scale wave simulator for testing PTO-systems for point absorbers. The main challenge is here to design a system, which mimics the behavior of a wave when interacting with a given PTO-system. The paper includes a description of the developed system, located at Aalborg University......, and the considerations behind the design. Based on the description a model of the system is presented, which, along with a description of the wave theory applied, makes the foundation for the control strategy. The objective of the control strategy is to emulate not only the wave behavior, but also the dynamic wave...

  3. Full-scale mark II CRT program data report, (5)

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Namatame, Ken; Yamamoto, Nobuo; Takeshita, Isao; Shiba, Masayoshi

    1980-03-01

    The Full-Scale Mark II CRT (Containment Response Test) Program was initiated in 1977 to provide a data base for evaluation of the LOCA hydrodynamic loads for the Mark II pressure suppression system. The test facility is 1/18 in volume and has a wetwell which is a fullscale replica of one 20 0 -sector of that of a reference Mark II. This report documents test data obtained from TEST 2101, which is a medium size (74 mm) water break test performed on April 27, 1979. TEST 2101 was designed to roughly approximate an intermediate break accident in which so-called chugging phenomenon associated with low-flux steam condensation is anticipated to continue for a longer duration than in a large break accident. (author)

  4. Full scale tests of moisture buffer capacity of wall materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2005-01-01

    that are harmful such as growth of house dust mites, surface condensation and mould growth. Therefore a series of experiments has been carried out in a full scale test facility to determine the moisture buffer effect of interior walls of cellular concrete and plaster board constructions. For the cellular concrete......Moisture buffer capacity of hygroscopic materials can be used to moderate peaks in the relative humidity (RH) of indoor air as well as moisture content variations in building materials and furnishing. This can help to ensure healthier indoor environments by preventing many processes...... of the changes of moisture content in specimens of the wall composites exposed to the same environment. It was found that the finishes had a big impact on the buffer performance of the underlying materials. Even though the untreated cellular concrete had a very high buffer capacity, the effect was strongly...

  5. Design and full scale test of a sand bed filter

    International Nuclear Information System (INIS)

    Kaercher, M.

    1991-01-01

    All French pressurized water reactor plants are equipped with a containment venting system. this system is designed and implemented by Electricite de France with the technical support of safety authorities (Institute of Protection and Nuclear Safety of Atomic Energy Commission). This paper covers the following items: main assumptions, sizing and design requirements; basic design of the filter resulting from PITEAS R and D program carried out between 1983 and 1989 at Cadarache nuclear center; full scale tests performed in 1990 on FUCHIA loop at Cadarache including description of the loop using plasma torches to generate CsOH aerosols in a steam - air flow, and preliminary results concerning thermohydraulic and thermic behavior under residual power simulated filtration efficiency with CsOH aerosols and iodine; complementary design, including hydrogen risk during condensation period, radiological shieldings of the filter, and heat removal after the filter closure; and conclusion on the validation of the filter

  6. Full scale experimental analysis of wind direction changes (EOD)

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    wind direction gust amplitudes associated with the investigated European sites are low compared to the recommended IEC- values. However, these values, as function of the mean wind speed, are difficult to validate thoroughly due to the limited number of fully correlated measurements....... the magnitudes of a joint gust event defined by a simultaneously wind speed- and direction change in order to obtain an indication of the validity of the magnitudes specified in the IEC code. The analysis relates to pre-specified recurrence periods and is based on full-scale wind field measurements. The wind......A coherent wind speed and wind direction change (ECD) load case is defined in the wind turbine standard. This load case is an essential extreme load case that e.g. may be design driving for flap defection of active stall controlled wind turbines. The present analysis identifies statistically...

  7. Simple biogas desulfurization by microaeration - Full scale experience.

    Science.gov (United States)

    Jeníček, P; Horejš, J; Pokorná-Krayzelová, L; Bindzar, J; Bartáček, J

    2017-08-01

    Hydrogen sulfide in biogas is common problem during anaerobic treatment of wastewater with high sulfate concentration (breweries, distilleries, etc.) and needs to be removed before biogas utilization. Physico-chemical desulfurization methods are energetically demanding and expensive compare to biochemical methods. Microaeration, i.e. dosing of small amount of air, is suitable and cost effective biochemical method of sulfide oxidation to elemental sulfur. It has been widely used in biogas plants, but its application in anaerobic reactors for wastewater treatment has been rarely studied or tested. The lack of full-scale experience with microaeration in wastewater treatment plants has been overcome by evaluating the results of seven microaerobic digesters in central Europe. The desulfurization efficiency has been more than 90% in most of the cases. Moreover, microaeration improved the degradability of COD and volatile suspended solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Full scale demonstration of air-purifying pavement

    Energy Technology Data Exchange (ETDEWEB)

    Ballari, M.M., E-mail: ballari@santafe-conicet.gov.ar [Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Brouwers, H.J.H., E-mail: jos.brouwers@tue.nl [Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-06-15

    Highlights: ► The results of a demonstration project for photocatalytic pavement are shown. ► The photocatalytic performance was studied in a street as well as on lab scale. ► The outdoor monitoring was performed in different seasons and weather conditions. ► The NO{sub x} concentration was in average 19% lowered by the photocatalytic street. ► Under ideal weather conditions the NO{sub x} reduction reached up to 45%. -- Abstract: Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO{sub 2} over a length of 150 m (“DeNO{sub x} street”). Another part of the street, about 100 m, was paved with normal paving blocks (“Control street”). The outdoor monitoring was done during 26 days for a period exceeding one year, and measured parameters included traffic intensity, NO, NO{sub 2} and ozone concentrations, temperature, relative humidity, wind speed and direction, and the visible and UV light irradiance. Prior and parallel to these field measurements, the used blocks were also measured in the lab to assess their performance. The NO{sub x} concentration was, on average, 19% (considering the whole day) and 28% (considering only afternoons) lower than the obtained values in the Control street. Under ideal weather conditions (high radiation and low relative humidity) a NO{sub x} concentration decrease of 45% could be observed.

  9. Fire spread simulation of a full scale cable tunnel

    International Nuclear Information System (INIS)

    Huhtanen, R.

    1999-11-01

    A fire simulation of a full scale tunnel was performed by using the commercial code EFFLUENT as the simulation platform. Estimation was made for fire spread on the stacked cable trays, possibility of fire spread to the cable trays on the opposite wall of the tunnel, detection time of smoke detectors in the smouldering phase and response of sprinkler heads in the flaming phase. According to the simulation, the rise of temperature in the smouldering phase is minimal, only of the order 1 deg C. The estimates of optical density of smoke show that normal smoke detectors should give an alarm within 2-4 minutes from the beginning of the smouldering phase, depending on the distance to the detector (in this case it was assumed that the thermal source connected to the smoke source was 50 W). The flow conditions at smoke detectors may be challenging, because the velocity magnitude is rather low at this phase. At 4 minutes the maximum velocity at the detectors is 0.12 m/s. During the flaming phase (beginning from 11 minutes) fire spreads on the stacked cable trays in an expected way, although the ignition criterion seems to perform poorly when ignition of new objects is considered. The Upper cable trays are forced to ignite by boundary condition definitions according to the experience found from ti full scale experiment and an earlier simulation. After 30 minutes the hot layer in the room becomes so hot that it speeds up the fire spread and the rate of heat release of burning objects. Further, the hot layer ignites the cable trays on the opposite wall of the tunnel after 45 minutes. It is estimated that the sprinkler heads would be activated at 20-22 minutes near the fire source and at 24-28 minutes little further from the fire source when fast sprinkler heads are used. The slow heads are activated between 26-32 minutes. (orig.)

  10. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ

  11. Development of Full-Scale Ultrathin Shell Reflector

    Directory of Open Access Journals (Sweden)

    Durmuş Türkmen

    2012-01-01

    Full Text Available It is aimed that a new ultrathin shell composite reflector is developed considering different design options to optimize the stiffness/mass ratio, cost, and manufacturing. The reflector is an offset parabolic reflector with a diameter of 6 m, a focal length of 4.8 m, and an offset of 0.3 m and has the ability of folding and self-deploying. For Ku-band missions a full-scale offset parabolic reflector antenna is designed by considering different concepts of stiffening: (i reflective surface and skirt, (ii reflective surface and radial ribs, and (iii reflective surface, skirt, and radial ribs. In a preliminary study, the options are modeled using ABAQUS finite element program and compared with respect to their mass, fundamental frequency, and thermal surface errors. It is found that the option of reflective surface and skirt is more advantageous. The option is further analyzed to optimize the stiffness/mass ratio considering the design parameters of material thickness, width of the skirt, and ply angles. Using the TOPSIS method is determined the best reflector concept among thirty different designs. Accordingly, new design can be said to have some advantages in terms of mass, natural frequency, number of parts, production, and assembly than both SSBR and AstroMesh reflectors.

  12. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    International Nuclear Information System (INIS)

    Nash, C.A.; Blake, J.E.; Rush, G.C.

    1990-01-01

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m 2 ) (1.1E+6 BTU/(ft 2 hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient

  13. Full-scale and time-scale heating experiments at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, Michael; California Univ., Berkeley

    1978-01-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  14. Characterisation and full-scale production testing of multifunctional surfaces for deep drawing applications

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; De Chiffre, Leonardo

    2017-01-01

    assisted polishing. Advanced methods are employed to characterise the tools' surface topographies, detecting the surface features and analysing them separately according to their specific function. Four different multifunctional dies as well as two un-textured references are selected for testing. The tests......Full-scale deep drawing tests using tools featuring multifunctional surfaces are carried out in a production environment. Multifunctional tools display regularly spaced, transversal grooves for lubricant retention obtained by hard-turning, separated by smooth bearing plateaus realized by robot...

  15. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    OpenAIRE

    Yang, C.; Persson, B. N. J.

    2007-01-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the i...

  16. Bench-scale magnetic separation of Department of Energy wastes

    International Nuclear Information System (INIS)

    Hoegler, J.M.

    1987-07-01

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and 11 materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in an open-gradient mode with dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both open- and high-gradient modes and could be an important application of the technology

  17. Mitigating nonlinearity in full waveform inversion using scaled-Sobolev pre-conditioning

    Science.gov (United States)

    Zuberi, M. AH; Pratt, R. G.

    2018-04-01

    The Born approximation successfully linearizes seismic full waveform inversion if the background velocity is sufficiently accurate. When the background velocity is not known it can be estimated by using model scale separation methods. A frequently used technique is to separate the spatial scales of the model according to the scattering angles present in the data, by using either first- or second-order terms in the Born series. For example, the well-known `banana-donut' and the `rabbit ear' shaped kernels are, respectively, the first- and second-order Born terms in which at least one of the scattering events is associated with a large angle. Whichever term of the Born series is used, all such methods suffer from errors in the starting velocity model because all terms in the Born series assume that the background Green's function is known. An alternative approach to Born-based scale separation is to work in the model domain, for example, by Gaussian smoothing of the update vectors, or some other approach for separation by model wavenumbers. However such model domain methods are usually based on a strict separation in which only the low-wavenumber updates are retained. This implies that the scattered information in the data is not taken into account. This can lead to the inversion being trapped in a false (local) minimum when sharp features are updated incorrectly. In this study we propose a scaled-Sobolev pre-conditioning (SSP) of the updates to achieve a constrained scale separation in the model domain. The SSP is obtained by introducing a scaled Sobolev inner product (SSIP) into the measure of the gradient of the objective function with respect to the model parameters. This modified measure seeks reductions in the L2 norm of the spatial derivatives of the gradient without changing the objective function. The SSP does not rely on the Born prediction of scale based on scattering angles, and requires negligible extra computational cost per iteration. Synthetic

  18. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  19. Full-Scale Crash Test of an MD-500 Helicopter

    Science.gov (United States)

    Littell, Justin

    2011-01-01

    A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.

  20. Characterization of AGIPD1.0: The full scale chip

    Energy Technology Data Exchange (ETDEWEB)

    Mezza, D., E-mail: davide.mezza@psi.ch [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Allahgholi, A.; Arino-Estrada, G.; Bianco, L.; Delfs, A. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Dinapoli, R. [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Goettlicher, P. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Graafsma, H. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Mid Sweden University, Sundsvall (Sweden); Greiffenberg, D. [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Hirsemann, H.; Jack, S. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Klanner, R. [University of Hamburg, Hamburg (Germany); Klyuev, A. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Krueger, H. [University of Bonn, Bonn (Germany); Marras, A. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Mozzanica, A. [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Poehlsen, J. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Schmitt, B. [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Schwandt, J. [University of Hamburg, Hamburg (Germany); Sheviakov, I. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); and others

    2016-12-01

    The AGIPD (adaptive gain integrating pixel detector) detector is a high frame rate (4.5 MHz) and high dynamic range (up to 10{sup 4} ·12.4 keV photons) detector with single photon resolution (down to 4 keV taking 5σ as limit and lowest noise settings) developed for the European XFEL (XFEL.EU). This work is focused on the characterization of AGIPD1.0, which is the first full scale version of the chip. The chip is 64×64 pixels and each pixel has a size of 200×200 μm{sup 2}. Each pixel can store up to 352 images at a rate of 4.5 MHz (corresponding to 220 ns). A detailed characterization of the AGIPD1.0 chip has been performed in order to assess the main performance of the ASIC in terms of gain, noise, speed and dynamic range. From the measurements presented in this paper a good uniformity of the gain, a noise around 320 e{sup −} (rms) in standard mode and around 240 e{sup −} (rms) in high gain mode has been measured. Furthermore a detailed discussion about the non-linear behavior after the gain switching is presented with both experimental results and simulations.

  1. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  2. Full-scale testing of waste package inspection system

    International Nuclear Information System (INIS)

    Yagi, T.; Kuribayashi, H.; Moriya, Y.; Fujisawa, H.; Takebayashi, N.

    1989-01-01

    In land disposal of low-level radioactive waste (LLW) in Japan, it is legally required that the waste packages to be disposed of be inspected for conformance to applicable technical regulations prior to shipment from each existing power station. JGC has constructed a fully automatic waste package inspection system for the purpose of obtaining the required design data and proving the performance of the system. This system consists of three inspection units (for visual inspection, surface contamination/dose rate measurement and radioactivity/weight measurement), a labelling unit, a centralized control unit and a drum handling unit. The outstanding features of the system are as follows: The equipment and components are modularized and designed to be of the most compact size and the quality control functions are performed by an advanced centralized control system. The authors discuss how, as a result of the full-scale testing, it has been confirmed that this system satisfies all the performance requirements for the inspection of disposal packages

  3. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien

    2015-03-01

    The aim of this study was to assess the formation and the behavior of halogenated byproducts (regulated THMs and HAAs, as well as nitrogenous, brominated and iodinated DBPs including the emerging iodo-THMs) along the treatment train of full-scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF or RO). Desalination plants fed with good seawater quality and using intermittent chlorine injection did not show high DBP formation and discharge. One RO plant with a lower raw water quality and using continuous chlorination at the intake formed more DBPs. In this plant, some non-regulated DBPs (e.g., dibromoacetonitrile and iodo-THMs) reached the product water in low concentrations (< 1.5 μg/L). Regulated THMs and HAAs were far below their maximum contamination levels set by the US Environmental Protection Agency. Substantial amounts of DBPs are disposed to the sea; low concentrations of DBPs were indeed detected in the water on shore of the desalination plants.

  4. Full-scale fire experiments on vertical horizontal cable trays

    International Nuclear Information System (INIS)

    Mangs, J.; Keski-Rahkonen, O.

    1997-10-01

    Two full-scale fire experiments on PVC cables used in nuclear power plants were carried out, one with cables in vertical position and one with cables in horizontal position. The vertical cable bundle, 3 m high, 300 mm wide and 30 mm thick, was attached to a steel cable ladder. The vertical bundle experiment was carried out in nearly free space with three walls near the cable ladder guiding air flow in order to stabilise flames. The horizontal cable experiment was carried out in a small room with five cable bundles attached to steel cable ladders. Three of the 2 m long cable bundles were located in an array, equally spaced above each other near one long side of the room and two correspondingly near the opposite long side. The vertical cable bundle was ignited with a small propane gas burner beneath the lower edge of the bundle. The horizontal cable bundles were ignited with a small propane burner beneath the lowest bundle in an array of three bundles. Rate of heat release by means of oxygen consumption calorimetry, mass change, CO 2 , CO and smoke production rate and gas, wall and cable surface temperatures were measured as a function of time, as well as time to sprinkler operation and failure of test voltage in cables. Additionally, the minimum rate of heat release needed to ignite the bundle was determined. This paper concentrates on describing and recording the experimental set-up and the data obtained. (orig.)

  5. Full cost accounting in the analysis of separated waste collection efficiency: A methodological proposal.

    Science.gov (United States)

    D'Onza, Giuseppe; Greco, Giulio; Allegrini, Marco

    2016-02-01

    Recycling implies additional costs for separated municipal solid waste (MSW) collection. The aim of the present study is to propose and implement a management tool - the full cost accounting (FCA) method - to calculate the full collection costs of different types of waste. Our analysis aims for a better understanding of the difficulties of putting FCA into practice in the MSW sector. We propose a FCA methodology that uses standard cost and actual quantities to calculate the collection costs of separate and undifferentiated waste. Our methodology allows cost efficiency analysis and benchmarking, overcoming problems related to firm-specific accounting choices, earnings management policies and purchase policies. Our methodology allows benchmarking and variance analysis that can be used to identify the causes of off-standards performance and guide managers to deploy resources more efficiently. Our methodology can be implemented by companies lacking a sophisticated management accounting system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    Science.gov (United States)

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Large scale gas chromatographic demonstration system for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Cheh, C.H.

    1988-01-01

    A large scale demonstration system was designed for a throughput of 3 mol/day equimolar mixture of H,D, and T. The demonstration system was assembled and an experimental program carried out. This project was funded by Kernforschungszentrum Karlsruhe, Canadian Fusion Fuel Technology Projects and Ontario Hydro Research Division. Several major design innovations were successfully implemented in the demonstration system and are discussed in detail. Many experiments were carried out in the demonstration system to study the performance of the system to separate hydrogen isotopes at high throughput. Various temperature programming schemes were tested, heart-cutting operation was evaluated, and very large (up to 138 NL/injection) samples were separated in the system. The results of the experiments showed that the specially designed column performed well as a chromatographic column and good separation could be achieved even when a 138 NL sample was injected

  8. Full scale dynamic testing of Kozloduy NPP unit 5 structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1999-01-01

    As described in this report, the Kozloduy NPP western site has been subjected to low level earthquake-like ground shaking - through appropriately devised underground explosions - and the resulting dynamic response of the NPP reactor Unit 5 important structures appropriately measured and digitally recorded. In-situ free-field response was measured concurrently more than 100 m aside the main structures of interest. The collected experimental data provide reference information on the actual dynamic characteristics of the Kozloduy NPPs main structures, as well as give some useful indications on the dynamic soil-structure interaction effects for the case of low level excitation. Performing the present full-scale dynamic structural testing activities took advantage of the experience gained by ISMES during similar tests, lately performed in Italy and abroad (in particular, at the Paks NPP in 1994). The IAEA promoted dynamic testing of the Kozloduy NPP Unit 5 by means of pertinently designed buried explosion-induced ground motions which has provided a large amount of data on the dynamic structural response of its major structures. In the present report, the conducted investigation is described and the acquired digital data presented. A series of preliminary analyses were undertaken for examining in detail the ground excitation levels that were produced by these weak earthquake simulation experiments, as well as for inferring some structural characteristics and behaviour information from the collected data. These analyses ascertained the high quality of the collected digital data. Presumably due to soil-structure dynamic interaction effects, reduced excitation levels were observed at the reactor building foundation raft level with respect to the concurrent free-field ground motions. measured at a 140 m distance from the reactor building centre. Further more detailed and systematic analyses are worthwhile to be performed for extracting more complete information about the

  9. Pelamis wave energy converter. Verification of full-scale control using a 7th scale model

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Pelamis Wave Energy Converter is a new concept for converting wave energy for several applications including generation of electric power. The machine is flexibly moored and swings to meet the water waves head-on. The system is semi-submerged and consists of cylindrical sections linked by hinges. The mechanical operation is described in outline. A one-seventh scale model was built and tested and the outcome was sufficiently successful to warrant the building of a full-scale prototype. In addition, a one-twentieth scale model was built and has contributed much to the research programme. The work is supported financially by the DTI.

  10. Full scale leak test of the MEGAPIE containment hull

    Energy Technology Data Exchange (ETDEWEB)

    Samec, K

    2006-07-15

    The Full Scale Leak Test (FSLT) experiment is designed to replicate an accidental leak of Lead-Bismuth Eutectic (LBE) liquid metal from the MEGAPIE neutron spallation source. The neutron source is totally encased in an aluminum containment hull cooled by heavy water. Any liquid metal which would, in a hypothetical accident, leak into the helium-filled insulation gap between the source and the aluminum containment hull, would immediately impact the hull. Furthermore, during irradiation in the PSI SINQ facility, the LBE in the MEGAPIE Lower Liquid Metal Container (LLMC) accumulates radio-active substances which, in the event of a leak, must be cooled and contained under controlled conditions, as they may otherwise contaminate the facility. The FSLT experiment has been devised to fully test the structural integrity of the containment hull against a sudden liquid metal leak, and in addition, to resolve the peak temperature of he coolant, to validate the sensors used in detecting a leak and of proof-test the analytical methods used in predicting the consequences of a leak. The FSLT experiment has been analysed ahead of the test, and both thermal and structural aspects calculated using commercial codes. The predictions applied conservative assumptions to the analysis of the thermal shock so as to preclude the likelihood of an unforeseen failure of the hull. In this document, these initial predictions are compared to the temperature and strain data recorded in the experiment. Further analysis, to be published at a later stage, will focus on applying actual conditions realised in the experiment, as opposed to the envelope case used in the test predictions. The integrity of the containment hull under loads resulting from liquid metal-leak is therefore the focal point of the experiment described in the current document, and serves as a key reference test for the Iicensing of the facility. The data recorded during the SLT experiment shows that the MEGAPIE containment hull is

  11. Full scale leak test of the MEGAPIE containment hull

    International Nuclear Information System (INIS)

    Samec, K.

    2006-07-01

    The Full Scale Leak Test (FSLT) experiment is designed to replicate an accidental leak of Lead-Bismuth Eutectic (LBE) liquid metal from the MEGAPIE neutron spallation source. The neutron source is totally encased in an aluminum containment hull cooled by heavy water. Any liquid metal which would, in a hypothetical accident, leak into the helium-filled insulation gap between the source and the aluminum containment hull, would immediately impact the hull. Furthermore, during irradiation in the PSI SINQ facility, the LBE in the MEGAPIE Lower Liquid Metal Container (LLMC) accumulates radio-active substances which, in the event of a leak, must be cooled and contained under controlled conditions, as they may otherwise contaminate the facility. The FSLT experiment has been devised to fully test the structural integrity of the containment hull against a sudden liquid metal leak, and in addition, to resolve the peak temperature of he coolant, to validate the sensors used in detecting a leak and of proof-test the analytical methods used in predicting the consequences of a leak. The FSLT experiment has been analysed ahead of the test, and both thermal and structural aspects calculated using commercial codes. The predictions applied conservative assumptions to the analysis of the thermal shock so as to preclude the likelihood of an unforeseen failure of the hull. In this document, these initial predictions are compared to the temperature and strain data recorded in the experiment. Further analysis, to be published at a later stage, will focus on applying actual conditions realised in the experiment, as opposed to the envelope case used in the test predictions. The integrity of the containment hull under loads resulting from liquid metal-leak is therefore the focal point of the experiment described in the current document, and serves as a key reference test for the Iicensing of the facility. The data recorded during the SLT experiment shows that the MEGAPIE containment hull is

  12. Domestic Wastewater Reuse in Concrete Using Bench-Scale Testing and Full-Scale Implementation

    Directory of Open Access Journals (Sweden)

    Ayoup M. Ghrair

    2016-08-01

    Full Text Available Demand for fresh water by the construction sector is expected to increase due to the high increase in the growth of construction activities in Jordan. This study aims to evaluate the potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated Wastewater (PTW, STW and Distilled Water (DW were cast and tested after various curing ages (7, 28, 120, and 200 days. Based on wastewater quality, according to IS 456-2000, the STW is suitable for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete workability are observed. In addition, using PTW as mixing water led to a significant reduction in the compressive strength up to 19.6%. The results that came out from scaling up to real production operation of ready-mix concrete were in harmony with the lab-scale results.

  13. Vortex scale of unsteady separation on a pitching airfoil.

    Science.gov (United States)

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  14. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    Science.gov (United States)

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  15. Full-scale implementation of external nitrification biological nutrient ...

    African Journals Online (AJOL)

    driniev

    scale at the Daspoort Waste Water Treatment Works (DWWTW) in Central Pretoria, South Africa. This paper describes ..... 250 m3, with the balance of Compartment 1 as anaerobic (Fig. 2). .... cantly higher than the 140 ml/gTSS rec- ommended ...

  16. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien; Nada, Nabil A.; Khan, Muhammad; Croue, Jean-Philippe

    2015-01-01

    -scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF

  17. Scaling of rotation and isotope separation in a vacuum-arc centrifuge

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.

    1987-01-01

    Scaling is described of rotation, plasma column size and separation in a vacuum-arc centrifuge. The vacuum-arc centrifuge is a magnetized, fulled ionized, quasineutral column of plasma. The source of plasma is a vacuum-arc discharge between a negatively biased cathode and a grounded mesh anode. Rigid-body rotation, induced by the J x B force, causes radial, centrifugal separation of isotopes in the plasma column. Salient features of a fluid model that provides an understanding of rotation and the concomitant isotope separation in the vacuum-arc centrifuge are described. Scaling of rotation and plasma column size is found be consistent with the model. Measurements of isotope separation, also found to agree with the predictions of the model, are presented. Results of a parametric analysis of isotope separation in such a vacuum-arc centrifuge, using the fluid model and the observed scaling laws, are described. An analysis of the energy cost of separation of the vacuum-arc centrifuge shows that it typically requires only 70 keV/separated atom. (orig.)

  18. Scaling laws for gas–liquid flow in swirl vane separators

    International Nuclear Information System (INIS)

    Liu, Li; Bai, Bofeng

    2016-01-01

    Highlights: • Model for swirl vane separator performance is established with similarity criteria. • Scaling laws are developed to correlate downscale test with prototype separator. • Effects of key similarity criteria on separation performance are studied. • The vital role of droplet size distribution on separation performance is discussed. - Abstract: Laboratory tests on gas–liquid flow in swirl vane separators are usually carried out to help establish an experimental database for separator design and performance improvement. Such model tests are generally performed in the reduced scale and not on the actual working conditions. Though great efficiency is often obtainable in the reduced model, the performance of the full-sized prototype usually cannot be well predicted. To design downscale model tests and apply the experimental results to predict the prototype, a general relationship to correlate them is required. In this paper, the relation of the similitude-criterion concerning the pressure loss is presented by using the dimensionless analysis, and mathematical models for critical droplet diameter, grade efficiency and overall separation efficiency are established by analyzing the features of the droplet trajectory in gas swirling flow field. The essential similarity criteria accounting for pressure loss and separation efficiency are obtained, respectively. On this basis, the scaling laws which enable a comparison between the reduced model and the full-sized prototype under similar conditions are also developed. It is found that the overall separation efficiency is significantly affected by the size distribution of the small droplets, especially when the mean diameter is smaller than the critical droplet diameter.

  19. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    Science.gov (United States)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  20. Gamma scanning of full scale HTR fuel elements

    International Nuclear Information System (INIS)

    Harrison, T.A.; Simpson, J.A.H.; Nabielek, H.

    1983-04-01

    Gamma scanning for the determination of burn-up and fission product inventory has been developed at the Dragon Project, suitable for measurements on fuel elements and segments from full-sized integral block elements. This involved the design and construction of a new lead flask with sophisticated collimator design. State-of-the art gamma spectrometric equipment was set up to cope with strong variations of count-rate and high data throughput. Software efforts concentrated on the calculation of the self absorption and absorption corrections in the complicated geometry of multi-hole graphite block segments with a corrugated circumference. The techniques described here are applicable to the non-destructive examination of a wide range of fuel element designs. (author)

  1. Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

    International Nuclear Information System (INIS)

    Andraka, Charles; Bohn, Mark S.; Corey, John; Mehos, Mark; Moreno, James; Rawlinson, Scott

    1999-01-01

    We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6 th -scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750 ampersand deg;C. The air/fuel mixture was electrically preheated to 640 ampersand deg;C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6 th -scale results, we are designing a till-scale hybrid receiver. This is a fully-integrated system, including burner, pin-fin primary heat exchanger, recuperator (in place of the electrical pre-heater used in the prototype system), solar absorber, and sodium heat pipe. The major challenges of the design are to avoid pre-ignition, achieve robust heat-pipe performance, and attain long life of the burner matrix, recuperator, and flue-gas seals. We have used computational fluid dynamics extensively in designing to avoid pre-ignition and for designing the heat-pipe wick, and we have used individual component tests and results of the 1/6 th -scale test to optimize for long life. In this paper, we present our design philosophy and basic details of our design. We describe the sub-scale test rig and compare test results with predictions. Finally, we outline the evolution of our full-scale design, and present its current status

  2. Full-scale physical model of landslide triggering

    Science.gov (United States)

    Lora, M.; Camporese, M.; Salandin, P.

    2013-12-01

    Landslide triggering induced by high-intensity rainfall infiltration in hillslopes is a complex phenomenon that involves hydrological processes operating at different spatio-temporal scales. Empirical methods give rough information about landslide-prone areas, without investigating the theoretical framework needed to achieve an in-depth understanding of the involved physical processes. In this study, we tackle this issue through physical experiments developed in an artificial hillslope realized in the Department of Civil, Environmental and Architectural Engineering of the University of Padua. The structure consists of a reinforced concrete box containing a soil prism with the following maximum dimensions: 3.5 m high, 6 m long, and 2 m wide. In order to analyze and examine the triggered failure state, the experiments are carried out with intensive monitoring of pore water pressure and moisture content response. Subsurface monitoring instruments are installed at several locations and depths to measure downward infiltration and/or a rising groundwater table. We measure the unsaturated soil water pressure as well as positive pore pressures preceding failure in each experiments with six tensiometers. The volumetric water content is determined through six Time Domain Reflectometry probes. Two pressure transducers are located in observation wells to determine the position of the water table in time. Two stream gauges are positioned at the toeslope, for measuring both runoff and subsurface outflow. All data are collected and recorded by an acquisition data system from Campbell Scientific. The artificial hillslope is characterized by well-known and controlled conditions, which are designed to reproduce an ideal set-up susceptible to heavy rainfall landslide. The hydrologic forcing is generated by a rainfall simulator realized with nozzles from Sprying System and. specifically designed to produce a spatially uniform rainfall of intensity ranging from 50 to 150 mm/h. The aim

  3. Monitoring of biogas plants - experiences in laboratory and full scale

    Directory of Open Access Journals (Sweden)

    B. Habermann

    2015-04-01

    Full Text Available To control and regulate the biogas process there are online process parameters and offline process parameters, which basically don’t differ between pilot biogas plants and industrial biogas plants. Generally, temperature, pH-value, volume flow rate and sometimes redox potential are measured online. An online-measurement of the dissolved volatile fatty acids and an online-detection of dissolved hydrogen both directly in the liquid phase as well as near-infrared spectroscopy are under development. FOS/TAC-analysis is the most common offline-analysis of the biogas process and normally it is carried out by the plant operator directly at the biogas plant. For example dry matter, organic dry matter, nitrogen and fatty acids are other analyses, which are carried out but by a laboratory. Microbiological analyses of biogas plants are very expensive and time-consuming and are therefore in Germany very rare. Microbiological analyses are mainly for research purposes. For example the Fluorescence in situ Hybridiation (FISH is used for characterization of the populations. Electric-optical measurement should be established as a new method to investigate the vitality of the methane producing microorganisms. In a cooperation project, which is promoted by the German ministry for technology, between IASP and Chair of Bioprocess Engineering at TU Berlin, this method is proper investigated using a device from the firm EloSystems. The microorganisms are brought in an electrical field of different frequencies. In this field the microorganisms direct themselves differently according to their physiological state. At the end of this project an early detection of process disturbance will be possible with the help of this method. In this presentation the result of the first tests are presented.

  4. UPTF experiment: Effect of full-scale geometry on countercurrent flow behaviour in PWR downcomer

    International Nuclear Information System (INIS)

    Liebert, J.; Weiss, P.

    1989-01-01

    Four separate effects tests (13 runs) have been performed at UPTF - a 1:1 scale test facility - to investigate the thermal-hydraulic phenomena in the full-scale downcomer of a PWR during end-of-blowdown, refill and reflood phases. Special attention has been paid to the effects of geometry - cold leg arrangement - and ECC-water subcooling on downcomer countercurrent flow and ECC bypass behaviour. A synopsis of the most significant events and a comparison of countercurrent flow limitation (CCFL) data from UPTF and 1/5 scale test facility of Creare are given. The CCFL results of UPTF are compared to data predicted by an empirical correlation developed at Creare, based on the modified dimensionless Wallis parameter J * . A significant effect of cold leg arrangement on CCFL was observed leading to strongly heterogeneous flow condition in the downcomer. CCFL in front of cold leg 1 adjacent to the broken loop exists even for very low steam flow rates. Therefore the benefit of strong water subcooling is not as much as expected. The existing flooding correlation of Creare predicts the full-scale downcomer CCFL insufficiently. New flooding correlations are required to describe the CCFL process adequately. (orig.)

  5. Full-Duplex Communications in Large-Scale Cellular Networks

    KAUST Repository

    AlAmmouri, Ahmad

    2016-04-01

    In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization and efficiency. However, the penetration of FD communications to the cellular networks domain is challenging due to the imposed uplink/downlink interference. This thesis presents a tractable framework, based on stochastic geometry, to study FD communications in multi-tier cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains. The study proves the vulnerability of the uplink to the downlink interference and shows that the improved FD rate gains harvested in the downlink (up to 97%) comes at the expense of a significant degradation in the uplink rate (up to 94%). Therefore, we propose a novel fine-grained duplexing scheme, denoted as α-duplex scheme, which allows a partial overlap between the uplink and the downlink frequency bands. We derive the required conditions to harvest rate gains from the α-duplex scheme and show its superiority to both the FD and half-duplex (HD) schemes. In particular, we show that the α-duplex scheme provides a simultaneous improvement of 28% for the downlink rate and 56% for the uplink rate. We also show that the amount of the overlap can be optimized based on the network design objective. Moreover, backward compatibility is an essential ingredient for the success of new technologies. In the context of in-band FD communication, FD base stations (BSs) should support HD users\\' equipment (UEs) without sacrificing the foreseen FD gains. The results show that FD-UEs are not necessarily required to harvest rate gains from FD-BSs. In particular, the results show that adding FD-UEs to FD-BSs offers a maximum of 5% rate gain over FD-BSs and HD-UEs case, which is a marginal gain compared to the burden required to implement FD transceivers at the UEs\\' side. To this end, we shed light on practical scenarios where HD-UEs operation with FD-BSs outperforms the

  6. Bench-scale and full-scale studies of nitric oxides reduction by gaseous fuel reburning

    International Nuclear Information System (INIS)

    Su, S.; Xiang, J.; Sun, L.S.; Hu, S.; Zhu, J.M.

    2008-01-01

    Nitrogen oxides (NOx) emissions from coal-fired boilers are significant contributors to atmospheric pollution. China has specified more rigorous legal limits for NOx emissions from power plants. As a result of the need to reduce NOx emissions, cost-effective NOx reduction strategies must be explored. This paper presented detailed experimental studies on a gaseous fuel reburning process that was performed in a 36 kilowatt bench-scale down-fired furnace to define the optimal reburning operating conditions when different Chinese coals were fired in the furnace. In addition, the combustion system of a 350 megawatt full-scale boiler was retrofitted according to the experimental results. Finally, the gaseous fuel reburning was applied to the retrofitted full-scale boiler. The purpose of the study was to obtain a better understanding of the influence of the key parameters on nitric oxide (NO) reduction efficiency of the reburning process and demonstrate the gaseous fuel reburning on a 350 MWe coal-fired boiler in China. The paper described the experimental procedure with particular reference to the experimental facility and measurement; a schematic diagram of the experimental system; experimental fuels; and characteristics of coals for the reburning experiments. Results that were presented included influence of reburn zone residence time; influence of gaseous reburn fuel per cent; influence of excess air coefficient; and unburned carbon in fly ash. It was concluded that both an above 50 per cent NO reduction efficiency and low carbon loss can be obtained by the gaseous fuel reburning process under the optimal operating conditions. 20 refs., 5 tabs., 10 figs

  7. Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube

    Directory of Open Access Journals (Sweden)

    Rahbar Nader

    2015-01-01

    Full Text Available There are a few experimental and numerical studies on the behaviour of micro-scale vortex tubes. The intention of this work is to investigate the energy separation phenomenon in a micro-scale vortex tube by using the computational fluid dynamic. The flow is assumed as steady, turbulent, compressible ideal gas, and the shear-stress transport sst k-w is used for modeling of turbulence phenomenon. The results show that 3-D CFD simulation is more accurate than 2-D axisymmetric one. Moreover, optimum cold-mass ratios to maximize the refrigeration-power and isentropicefficiency are evaluated. The results of static temperature, velocity magnitude and pressure distributions show that the temperature-separation in the micro-scale vortex tube is a function of kinetic-energy variation and air-expansion in the radial direction.

  8. One-fifth-scale and full-scale fuel element rocking tests

    International Nuclear Information System (INIS)

    Nau, P.V.; Olsen, B.E.

    1978-06-01

    Using 1 / 5 -scale and 1 / 1 -scale (prototype H451) fuel elements, one, two, or three stacked elements on a clamped base element were rocked from an initial release position. Relative displacement, rock-down loads, and dowel pin shear forces were measured. A scaled comparison between 1 / 5 -scale and 1 / 1 -scale results was made to evaluate the model scaling laws, and an error analysis was performed to assess the accuracy and usefulness of the test data

  9. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    Science.gov (United States)

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  10. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    . Simultaneously, data regarding wind speed, rotational speed, and pitch angle recorded by the turbine was logged as well as data from a nearby met mast. The encouraging results of this first campaign include wind speed measurements at 20 Hz data rate along the rotor plane, acquired during the co...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...... the possibility of integrating lidar telescopes into turbine blades as well as the capability of the lidar to measure the required wind speeds and to operate in the challenging environment of a rotating spinner and vibrating blade. The use of two separate telescopes allows a direct measurement of the blade’s AOA...

  11. TESTING OF A FULL-SCALE ROTARY MICROFILTER FOR THE ENHANCED PROCESS FOR RADIONUCLIDES REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D; David Stefanko, D; Michael Poirier, M; Samuel Fink, S

    2009-01-01

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary microfilter for solid-liquid separation applications in the Department of Energy (DOE) complex. One application involves use in the Enhanced Processes for Radionuclide Removal (EPRR) at the Savannah River Site (SRS). To assess this application, the authors performed rotary filter testing with a full-scale, 25-disk unit manufactured by SpinTek Filtration with 0.5 micron filter media manufactured by Pall Corporation. The filter includes proprietary enhancements by SRNL. The most recent enhancement is replacement of the filter's main shaft seal with a John Crane Type 28LD gas-cooled seal. The feed material was SRS Tank 8F simulated sludge blended with monosodium titanate (MST). Testing examined total insoluble solids concentrations of 0.06 wt % (126 hours of testing) and 5 wt % (82 hours of testing). The following are conclusions from this testing.

  12. FULL SCALE REGENERABLE HEPA FILTER DESIGN USING SINTERED METAL FILTER ELEMENTS

    International Nuclear Information System (INIS)

    Gil Ramos; Kenneth Rubow; Ronald Sekellick

    2002-01-01

    features in its design and operation. The element bundle would be an all welded assembly, which could be removed and replaced as a unit if the elements ever needed replacement. Each element had a spray nozzle mounted above it for cleaning; it could also be cleaned by a soak and backwash technique. The inlet nozzle incorporated a cyclonic separator to initially remove large suspended material and droplets. Tests indicated a significant reduction of dirt load getting to the filter elements, which would extend the operating time between cleanings. A high capacity blower was selected to overcome the higher pressure drop of the metallic elements. The blower, having a 25 horsepower motor, would be capable of operating the system to higher pressure drops than available on the glass fiber HEPA filters. This additional capacity further increases the operating duration of the filter. Upon successful testing and acceptance of the full-scale design, Phase IIB would involve the construction and test of a full-scale prototype system on an actual HLW tank. Phase IIA was completed but for funding and priority reasons the contract was halted; thus Phase IIB would not be pursued at this time. The Mott RHFS has been proven at each stage of the development process to meet the requirements of a suitable replacement system for the glass fiber HEPA filters enabling great cost savings. It remains to test a full-scale operating system on an actual high level waste tank to fully demonstrate the performance and anticipated cost savings of the Mott RHFS. Mott is confident that the performance will be more than acceptable

  13. Modeling a full-scale primary sedimentation tank using artificial neural networks.

    Science.gov (United States)

    Gamal El-Din, A; Smith, D W

    2002-05-01

    Modeling the performance of full-scale primary sedimentation tanks has been commonly done using regression-based models, which are empirical relationships derived strictly from observed daily average influent and effluent data. Another approach to model a sedimentation tank is using a hydraulic efficiency model that utilizes tracer studies to characterize the performance of model sedimentation tanks based on eddy diffusion. However, the use of hydraulic efficiency models to predict the dynamic behavior of a full-scale sedimentation tank is very difficult as the development of such models has been done using controlled studies of model tanks. In this paper, another type of model, namely artificial neural network modeling approach, is used to predict the dynamic response of a full-scale primary sedimentation tank. The neuralmodel consists of two separate networks, one uses flow and influent total suspended solids data in order to predict the effluent total suspended solids from the tank, and the other makes predictions of the effluent chemical oxygen demand using data of the flow and influent chemical oxygen demand as inputs. An extensive sampling program was conducted in order to collect a data set to be used in training and validating the networks. A systematic approach was used in the building process of the model which allowed the identification of a parsimonious neural model that is able to learn (and not memorize) from past data and generalize very well to unseen data that were used to validate the model. Theresults seem very promising. The potential of using the model as part of a real-time process control system isalso discussed.

  14. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    Science.gov (United States)

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).

  15. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography

    Directory of Open Access Journals (Sweden)

    Nicole Riddell

    2016-11-01

    Full Text Available Hexabromocyclododecane (HBCDD is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+ and (− enantiomers of α-, β-, and γ-HBCDD were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD, was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  16. Comparison between full- and small-scale sensory assessments of air quality

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Sabikova, J.; Lagercrantz, Love Per

    2002-01-01

    Thirty-nine untrained subjects made small- and full-scale evaluations of the acceptability of the quality of air at 22 deg.C and 40% RH, polluted by either carpet, felt floor covering, painted gypsum board, linoleum or chipboard. Small-scale evaluations were made on the air extracted from 200-L......-scale sensory ratings of acceptability of air polluted by carpet and by linoleum were systematically better than small-scale assessments, but not for the other three materials. Calculated sensory emission rates from carpet and linoleum were significantly lower in full scale than in small scale. When modelling...

  17. Analysis, scale modeling, and full-scale tests of low-level nuclear-waste-drum response to accident environments

    International Nuclear Information System (INIS)

    Huerta, M.; Lamoreaux, G.H.; Romesberg, L.E.; Yoshimura, H.R.; Joseph, B.J.; May, R.A.

    1983-01-01

    This report describes extensive full-scale and scale-model testing of 55-gallon drums used for shipping low-level radioactive waste materials. The tests conducted include static crush, single-can impact tests, and side impact tests of eight stacked drums. Static crush forces were measured and crush energies calculated. The tests were performed in full-, quarter-, and eighth-scale with different types of waste materials. The full-scale drums were modeled with standard food product cans. The response of the containers is reported in terms of drum deformations and lid behavior. The results of the scale model tests are correlated to the results of the full-scale drums. Two computer techniques for calculating the response of drum stacks are presented. 83 figures, 9 tables

  18. Full scale monitoring of wind and traffic induced response of a suspension bridge

    Directory of Open Access Journals (Sweden)

    Cheynet Etienne

    2015-01-01

    Full Text Available This paper presents a full-scale analysis of wind and traffic-induced vibrations of a long-span suspension bridge in complex terrain. Several wind and acceleration sensors have been installed along the main span on Lysefjord Bridge in Norway. In the present study, three days of continuous records are analysed. Traffic-induced vibrations are dominant at low and moderated wind speed, with non-negligible effects on the overall bridge response for heavy vehicles only. Traffic and wind-induced vibrations are compared in terms of root mean square of the acceleration response, and three simples approaches are proposed to isolate records dominated by wind-induced vibration. The first one relies on the separation of nocturnal and diurnal samples. The second one is based on the evaluation of the time-varying root mean square of the acceleration response. The last one evaluates the relative importance of the high frequency domain of the acceleration bridge response. It appears that traffic-induced vibrations may have to be taken into account for the buffeting analysis of long-span bridge under moderated wind.

  19. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji; Escourbiac, Frederic; Hirai, Takeshi

    2016-01-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m 2 for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  20. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Ezato, Koichiro, E-mail: ezato.koichiro@jaea.go.jp [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Escourbiac, Frederic; Hirai, Takeshi [ITER Organization, route de vinon sur Verdon, 13067 St Paul lez Durance (France)

    2016-11-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2} for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  1. Transfer of Emission Test Data from Small Scale to Full Scale

    DEFF Research Database (Denmark)

    Jensen, Gunnar P.; Nielsen, Peter V.

    Test conditions such as temperature, relative humidity, and air velocities are chosen within the range that are found in ventilated rooms. H:owever, the difference in scale can lead to some problems and misconception of the size of the actual emission rate for a building material. This paper high...

  2. Full scale measurement of wind induced pressures : 1 configuration of wind induced pressures

    NARCIS (Netherlands)

    Geurts, C.P.W.; Wijen, H.L.M.

    1994-01-01

    A research project 10 the spectral characteristics of wind induced pressures is in progress in Eindhoven. This project includes both wind tunnel and full scale measurements. Wind induced pressures are measured in full scale at the main building of Eindhoven University of Technology. This paper

  3. Propeller efficiency at full scale : measurement system and mathematical model design

    NARCIS (Netherlands)

    Muntean, T.V.

    2012-01-01

    What is propeller efficiency at full scale? This question is asked equally by ship operators and by propeller and propulsion system manufacturers. The question reflects the need to measure propeller efficiency at full physical scale and during regular operation of the vessel. The question has a

  4. Evaluation of the airway of the SimMan full-scale patient simulator

    DEFF Research Database (Denmark)

    Hesselfeldt, R; Kristensen, M S; Rasmussen, L S

    2005-01-01

    SimMan is a full-scale patient simulator, capable of simulating normal and pathological airways. The performance of SimMan has never been critically evaluated.......SimMan is a full-scale patient simulator, capable of simulating normal and pathological airways. The performance of SimMan has never been critically evaluated....

  5. Simulation in full-scale mock-ups: an ergonomics evaluation method?

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm; Broberg, Ole

    2014-01-01

    This paper presents and exploratory study of four simulation sessions in full-scale mock-ups of future hospital facilities.......This paper presents and exploratory study of four simulation sessions in full-scale mock-ups of future hospital facilities....

  6. Pervious concrete fill in Pearl-Chain Bridges: Using small-scale results in full-scale implementation

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Truelsen, R.

    2016-01-01

    distribution and strength properties is determined for 800 mm high blocks cast in different numbers of layers, and (2) full-scale implementation in a 26 m long Pearl-Chain Bridge. With a layer thickness of 27 cm, the small-scale tests indicated homogenous results; however, for the full-scale implementation......Pearl-Chain Bridge technology is a new prefabricated arch solution for highway bridges. This study investigates the feasibility of pervious concrete as a filling material in Pearl-Chain Bridges. The study is divided into two steps: (1) small-scale tests where the variation in vertical void...

  7. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  8. Review on heavy water separation at pilot scale

    International Nuclear Information System (INIS)

    Wuryanto; Soeroto Ronodirdjo.

    1976-01-01

    The isotope exchange system ammonia-water and hydrogen sulfide water dual temperature are studied. Comparison of the two methods with water electrolysis, water distillation, hydrogen distillation and catalytic water hydrogen exchange are discussed. Water distillation is a simple method. Electrolysis of water has the highest separation factor. The isotope exchange hydrogen sulfide water dual temperature will be done in accord with the report on the operation of a dual temperature single stage for deuterium concentration written by M.L.Eidinoff and C.F. Hiskey. (authors)

  9. A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization

    NARCIS (Netherlands)

    Mohammed Ameen, M.; Peerlings, R.H.J.; Geers, M.G.D.

    2018-01-01

    Classical homogenization techniques are known to be effective for materials with large scale separation between the size and spacing of their underlying heterogeneities on the one hand and the structural problem dimensions on the other. For low scale separation, however, they generally become

  10. Copper and zinc removal from roof runoff: from research to full-scale adsorber systems.

    Science.gov (United States)

    Steiner, M; Boller, M

    2006-01-01

    Large, uncoated copper and zinc roofs cause environmental problems if their runoff is infiltrated into the underground or discharged into receiving waters. Since source control is not always feasible, barrier systems for efficient copper and zinc removal are recommended in Switzerland. During the last few years, research carried out in order to test the performance of GIH-calcite adsorber filters as a barrier system. Adsorption and mass transport processes were assessed and described in a mathematical model. However, this model is not suitable for practical design, because it does not give explicit access to design parameters such as adsorber diameter and adsorber bed depth. Therefore, for e.g. engineers, an easy to use design guideline for GIH-calcite adsorber systems was developed, mainly based on the mathematical model. The core of this guideline is the design of the depth of the GIH-calcite adsorber layer. The depth is calculated by adding up the GIH depth for sorption equilibrium and the depth for the mass transfer zone (MTZ). Additionally, the arrangement of other adsorber system components such as particle separation and retention volume was considered in the guideline. Investigations of a full-scale adsorber confirm the successful application of this newly developed design guideline for the application of GIH-calcite adsorber systems in practice.

  11. Full-scale and time-scale heating experiments at Stripa: preliminary results. Technical project report No. 11

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, M.

    1978-12-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  12. Characterization of Membrane Foulants in Full-scale and Lab-scale Membrane Bioreactors for Wastewater Treatment and Reuse

    KAUST Repository

    Matar, Gerald

    2015-01-01

    full-scale MBRs differed significantly from the source community (i.e. activated sludge), and random immigration of species from the source community was unlikely to shape the community structure of biofilms. Also, a core biofouling community was shared

  13. Resonant Wave Energy Converters: Small-scale field experiments and first full-scale prototype

    International Nuclear Information System (INIS)

    Arena, Felice; Fiamma, Vincenzo; Iannolo, Roberto; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati Federica Maria

    2015-01-01

    The Resonant Wave Energy Converter 3 (REWEC3) is a device belonging to the family of Oscillating Water Columns (OWCs), that can convert the energy of incident waves into electrical energy via turbines. In contrast to classical OWCs, it incorporates a small vertical U-shaped duct to connect the water column to the open wave field. This article shows the results of a small-scale field experiment involving a REWEC3 designed for working with a 2 kW turbine. Then, the next experimental activity on a REWEC3 installed in the NOEL laboratory with the collaboration of ENEA, is presented. Finally, the first prototype of ReWEC3 under construction in Civitavecchia (Rome, Italy) is shown. The crucial features of the construction stage are discussed and some initial performances are provided. [it

  14. Experimental facilities for large-scale and full-scale study of hydrogen accidents

    Energy Technology Data Exchange (ETDEWEB)

    Merilo, E.; Groethe, M.; Colton, J. [SRI International, Poulter Laboratory, Menlo Park, CA (United States); Chiba, S. [SRI Japan, Tokyo (Japan)

    2007-07-01

    This paper summarized some of the work that has been performed at SRI International over the past 5 years that address safety issues for the hydrogen-based economy. Researchers at SRI International have conducted experiments at the Corral Hollow Experiment Site (CHES) near Livermore California to obtain fundamental data on hydrogen explosions for risk assessment. In particular, large-scale hydrogen tests were conducted using homogeneous mixtures of hydrogen in volumes from 5.3 m{sup 3} to 300 m{sup 3} to represent scenarios involving fuel cell vehicles as well as transport and storage facilities. Experiments have focused on unconfined deflagrations of hydrogen and air, and detonations of hydrogen in a semi-open space to measure free-field blast effects; the use of blast walls as a mitigation technique; turbulent enhancement of hydrogen combustion due to obstacles within the mixture, and determination of when deflagration-to-detonation transition occurs; the effect of confined hydrogen releases and explosions that could originate from an interconnecting hydrogen pipeline; and, large and small accidental releases of hydrogen. The experiments were conducted to improve the prediction of hydrogen explosions and the capabilities for performing risk assessments, and to develop mitigation techniques. Measurements included hydrogen concentration; flame speed; blast overpressure; heat flux; and, high-speed, standard, and infrared video. The data collected in these experiments is used to correlate computer models and to facilitate the development of codes and standards. This work contributes to better safety technology by evaluating the effectiveness of different blast mitigation techniques. 13 refs., 13 figs.

  15. Small-scale phase separation in doped anisotropic antiferromagnets

    International Nuclear Information System (INIS)

    Kagan, M Yu; Kugel, K I; Rakhmanov, A L; Pazhitnykh, K S

    2006-01-01

    We analyse the possibility of nanoscale phase separation manifesting itself in the formation of ferromagnetic (FM) polarons (FM droplets) in the general situation of doped anisotropic three- and two-dimensional antiferromagnets. In these cases, we calculate the shape of the most energetically favourable droplets. We show that the binding energy and the volume of a FM droplet in the three-dimensional (3D) case depend upon only two universal parameters J-bar=(J x +J y +J z )S 2 and t eff (t x t y t z ) 1/3 , where J-bar and t eff are effective antiferromagnetic (AFM) exchange and hopping integrals, respectively. In the two-dimensional (2D) case these parameters have the form J-bar=(J x +J y )S 2 and t eff (t x t y ) 1/2 . The most favourable shape of a ferromagnetic droplet corresponds to an ellipse in the 2D case and to an ellipsoid in the 3D case

  16. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  17. Full-scale Applications of Membrane Filtration in Municipal Wastewater Treatment Plants

    Czech Academy of Sciences Publication Activity Database

    Holba, Marek; Plotěný, K.; Dvořák, L.; Gómez, M.; Růžičková, I.

    2012-01-01

    Roč. 40, č. 5 (2012), s. 479-486 ISSN 1863-0650 Institutional support: RVO:67985939 Keywords : membrane bioreactors * wastewater treatment * full-scale application Subject RIV: EF - Botanics Impact factor: 2.046, year: 2012

  18. Determination of global ice loads on the ship using the measured full-scale motion data

    Directory of Open Access Journals (Sweden)

    Jae-Man Lee

    2016-07-01

    Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7–15 MN when ship operated in heavy ice conditions.

  19. Design, Fabrication and Test of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, Christine

    2002-01-01

    This paper presents the design fabrication and test of a full scale copper tubular combustion chamber as an enabling technology for future application in a high thrust upper-stage expander-cycle engine...

  20. Radiation dose in hysterosalpingography: modern 100mm fluorography vs. full-scale radiography

    International Nuclear Information System (INIS)

    Seppaenen, S.; Lehtinen, E.; Holli, H.

    1978-01-01

    Radiation doses of modern 100 mm fluorography and full-scale radiography were compared experimentally and applied to hysterosalpingography. It was determined that 100 mm fluorography reduced the doses by 28 to 29 percent per exposure and 37 to 47 percent per examination compared with full-scale radiography performed with fast tungstate screens in identical conditions (70 to 80 kV, 400 mA). The dose during one minute of videofluoroscopy was equivalent to the doses produced by one exposure in full-scale filming and three to four exposures in 100 mm filming. Although electronic magnification in 100 mm fluorography increases the doses by two or threefold, these are still less than the doses in full-scale radiography

  1. A Limited Evaluation of Full Scale Control Surface Deflection Drag (Have FUN)

    National Research Council Canada - National Science Library

    Reinhardt, R. B; Celi, Sean A; Geraghty, Jeffrey T; Stahl, James W; Glover, Victor J; Bowman, Geoffrey G

    2007-01-01

    The Have FUN (FUll Scale Numbers) Test Management Project was conducted at the request of the USAF TPS as an investigation into the drag caused by control surface deflection during dynamic soaring techniques...

  2. Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests

    Science.gov (United States)

    2017-09-01

    AFCEC-CO-TY-TR-2018-0001 CONVERTING HANGAR HIGH EXPANSION FOAM SYSTEMS TO PREVENT COCKPIT DAMAGE: FULL-SCALE VALIDATION TESTS Gerard G...manufacturer, or otherwise does not constitute or imply its endorsement, recommendation , or approval by the United States Air Force. The views and...09-2017 Final Test Report May 2017 Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests N00173-15-D

  3. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  4. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    Science.gov (United States)

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million

  6. Large-scale separation of amino acids by continuous displacement chromatography

    Energy Technology Data Exchange (ETDEWEB)

    DeCarli, J.P. II; Carta, G.; Byers, C.H.

    1989-10-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. The technology appears, thus, to be very promising for industrial applications.

  7. Dynamic radar cross section measurements of a full-scale aircraft for RCS modelling validation

    CSIR Research Space (South Africa)

    Van Schalkwyk, Richard F

    2017-10-01

    Full Text Available In this paper the process followed in generating a high fidelity reference data set for radar cross section (RCS) modelling validation for a full-scale aircraft, is presented. An overview of two dynamic RCS measurement campaigns, involving both...

  8. Safety Performance Evaluations for the Vehicle Based Movable Barriers Using Full Scale Crash Tests

    Directory of Open Access Journals (Sweden)

    Jin Minsoo

    2017-01-01

    Full Text Available The present study aims to develop a prototype of large-size movable barriers to protect roadside workers from incoming vehicles to the road work area with the following functions: maximization of work space in the right and left directions, convenient mobility, and minimization of impact without modification of the inside of movable barriers into traffic lanes and perform safety performance assessment on passengers through full scale crash tests. The large movable barrier was divided into folder type and telescope type and the development stage was now at the prototype phase. A full scale crash test was conducted prior to certification test at a level of 90%. The full scale crash test result showed that both types of folder type movable barrier and telescope type movable barrier satisfied the standard of the passenger safety performance evaluation at a level of 90%.

  9. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Computational Study of Separation Control Using ZNMF Devices: Flow Physics and Scaling Laws

    National Research Council Canada - National Science Library

    Mittal, Rajat

    2008-01-01

    The primary objective of the proposed research was to gain a fundamental understanding of strategies, mechanisms, and scaling laws for successful control of separation using zern-net mass-flux (ZNMF) actuators...

  11. Higher-order asymptotic homogenization of periodic materials with low scale separation

    NARCIS (Netherlands)

    Ameen, M.M.; Peerlings, R.H.J.; Geers, M.G.D

    2016-01-01

    In this work, we investigate the limits of classical homogenization theories pertaining to homogenization of periodic linear elastic composite materials at low scale separations and demonstrate the effectiveness of higher-order periodic homogenization in alleviating this limitation. Classical

  12. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    Science.gov (United States)

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  13. Full-color large-scaled computer-generated holograms using RGB color filters.

    Science.gov (United States)

    Tsuchiyama, Yasuhiro; Matsushima, Kyoji

    2017-02-06

    A technique using RGB color filters is proposed for creating high-quality full-color computer-generated holograms (CGHs). The fringe of these CGHs is composed of more than a billion pixels. The CGHs reconstruct full-parallax three-dimensional color images with a deep sensation of depth caused by natural motion parallax. The simulation technique as well as the principle and challenges of high-quality full-color reconstruction are presented to address the design of filter properties suitable for large-scaled CGHs. Optical reconstructions of actual fabricated full-color CGHs are demonstrated in order to verify the proposed techniques.

  14. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  15. Full scale model studies of nuclear power stations for earthquake resistance

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Ju. K.; Kozlov, A.V.

    Behaviour of nuclear power plants and its equipments under seismic action is not well understood. In the absence of well established method for aseismic deisgn of nuclear power plants and its equipments, it is necessary to carry out experimental investigations on models, fragments and full scale structures. The present study includes experimental investigations of different scale models and on existing nuclear power stations under impulse and explosion effects simulating seismic loads. The experimental work was aimed to develop on model test procedure for nuclear power station and the evaluation of the possible range of dynamic stresses in structures and pipe lines. The results of full-scale investigations of the nuclear reactor show a good agreement of dynamic characteristics of the model and the prototype. The study confirms the feasibility of simulation of model for nuclear power plants. (auth.)

  16. Full-scale tests of spent-nuclear-fuel shipping systems

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Huerta, M.

    1976-01-01

    Sandia Laboratories will be conducting, for the U.S. Energy Research and Development Administration, a series of tests involving spent-nuclear-fuel shipping systems. Large shipping casks in the 20500 to 70000-kg range will be included in the following full-scale tests: (1) Runaway tractor-trailer crash into a solid concrete barrier while carrying a shipping cask. (2) High-speed locomotive grade-crossing impact with a truck carrying a shipping cask. (3) High-speed derailment, collision, and fire involving a special railcar and shipping cask. The hardware and testing procedures for each of the tests are described. The analysis conducted in advance of the tests addresses the modelling technique used and a description of the scale-model tests. Analytical modelling being done before running the full-scale tests is also described. (author)

  17. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia...... control strategies are effective means for providing ancillary frequency control of variable speed wind turbines with full-scale back-to-back power converters....... emulation, primary frequency control and secondary frequency control, are proposed in order to improve the frequency stability of power systems. The modified IEEE 39-bus test system with a large-scale wind power penetration is chosen as the studied power system. Simulation results show that the proposed...

  18. Hydrologic and Pollutant Removal Performance of a Full-Scale, Fully Functional Permeable Pavement Parking Lot

    Science.gov (United States)

    In accordance with the need for full-scale, replicated studies of permeable pavement systems used in their intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditions, and maintenance regimes to evaluate these systems, the EPA’s Urb...

  19. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  20. Full-Scale Approximations of Spatio-Temporal Covariance Models for Large Datasets

    KAUST Repository

    Zhang, Bohai; Sang, Huiyan; Huang, Jianhua Z.

    2014-01-01

    of dataset and application of such models is not feasible for large datasets. This article extends the full-scale approximation (FSA) approach by Sang and Huang (2012) to the spatio-temporal context to reduce computational complexity. A reversible jump Markov

  1. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    Science.gov (United States)

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  2. Impact of water quality change on corrosion scales in full and partially replaced lead service lines

    Science.gov (United States)

    BackgroundChanges in water qualities have been associated with an increase in lead release from full and partial lead service lines (LSLs), such as the cases of Washington D.C. or more recently of Flint (Mi). Water qualities affect the mineralogy of the scales. Furthermore, follo...

  3. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  4. Full-Scale Continuous Mini-Reactor Setup for Heterogeneous Grignard Alkylation of a Pharmaceutical Intermediate

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Holm, Thomas; Rahbek, Jesper P.

    2013-01-01

    A reactor setup consisting of two reactors in series has been implemented for a full-scale, heterogeneous Grignard alkylation. Solutions pass from a small filter reactor into a static mixer reactor with multiple side entries, thus combining continuous stirred tank reactor (CSTR) and plug flow...

  5. Design of full scale wave simulator for testing Power Take Off systems for wave energy converters

    DEFF Research Database (Denmark)

    Pedersen, H. C.; Hansen, R. H.; Hansen, Anders Hedegaard

    2016-01-01

    is therefore on the design and commissioning of a full scale wave simulator for testing PTO-systems for point absorbers. The challenge is to be able to design a system, which mimics the behavior of a wave when interacting with a given PTO-system – especially when considering discrete type PTO...

  6. Operational experience with a seasonally operated full-scale membrane bioreactor plant

    Czech Academy of Sciences Publication Activity Database

    Gómez, M.; Dvořák, L.; Růžičková, I.; Holba, Marek; Wanner, J.

    2012-01-01

    Roč. 121, OCT 2012 (2012), s. 241-247 ISSN 0960-8524 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : full-scale membrane bioreactor * soluble microbibal products * nutrient removal * fouling * microbiological effluent quality Subject RIV: EF - Botanics Impact factor: 4.750, year: 2012

  7. Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2012-01-01

    The objectives of the present work were to investigate the aerosol formation mechanisms during full-scale suspension firing of wood, and, to evaluate the effect of coal fly ash addition on the formation of aerosols under different ash load conditions. Tests with suspension firing of 100 % wood...

  8. Prediction of Full-Scale Propulsion Power using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction...

  9. Microbial diversity in a full-scale anaerobic reactor treating high ...

    African Journals Online (AJOL)

    Microbial characteristics in the up-flow anaerobic sludge blanket reactor (UASB) of a full-scale high concentration cassava alcohol wastewater plant capable of anaerobic hydrocarbon removal were analyzed using cultivation-independent molecular methods. Forty-five bacterial operational taxonomic units (OTUs) and 24 ...

  10. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  11. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    Science.gov (United States)

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  12. Interpersonal Transport of Droplet Nuclei among Three Manikins in a Full-Scale Test Room

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter Vilhelm; Jensen, Rasmus Lund

    2014-01-01

    This study focuses on occupants’ exposure of droplet nuclei exhaled by one susceptible in a full-scale test room. Three breathing thermal manikins are standing in the middle of room and both the process in the microenvironment and in the macroenvironment are considered. A diffusive ceiling has been...

  13. Interpersonal Transport of Expiratory Aerosols among Three Manikins in a Full-Scale Test Room

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter Vilhelm; Jensen, Rasmus Lund

    2014-01-01

    This study focuses on occupants’ exposure of aerosols exhaled by one susceptible in a full-scale test room. Three breathing thermal manikins are standing in the middle of room and both the process in the microenvironment and in the macroenvironment are considered. A diffusive ceiling has been...

  14. Assessment of beech scale resistance in full- and half-sibling American beech families

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Mary E. Mason; C. Dana Nelson

    2010-01-01

    A beech bark disease infested American beech tree (Fagus grandifolia Ehrh.) and two uninfested trees were selected in a mature natural stand in Michigan, USA, and mated to form two full-sib families for evaluating the inheritance of resistance to beech scale (Cryptococcus fagisuga Lind.), the insect element of beech bark disease....

  15. Chromatographic studies of the lanthanide element separation for the americium/curium large scale separation using ion exchange resins

    International Nuclear Information System (INIS)

    Ginisty, Claude.

    1981-06-01

    The Am/Cm large scale separations, operated by chromatography with the use of ion exchange resins, are described by numerous publications. The bibliographic studies allow to retain the followed points: use of sulfonate cationic resins, development by elution with the α-hydroxyisobutyric acid, column loadings between 1 and 30% of the capacity, possibility to use no radioactive lanthanides prior to actinides for trial purposes. The optimisation of such a process is the major part of this thesis. This point is realised by introducing a new definition for the resolution, for non symmetrical elution peaks, and a measure of this dissymmetry by introducing a shape factor F. For the separation itself and for the pressure drop in the column, the influence of the following parameters are studied: composition of the elution solution (concentration and pH), column temperature (20 to 90 0 C), resin size (9 to 27 μm), rate flow of mobile phase (70 ml.cm -2 .mn -1 ), column length and diameter. Symmetrical elution peaks may be obtained, even with a 27% loading. Elution conditions may be modified during the separation process in order to have the best recovery for the two components (1,3 [fr

  16. Multi-scale graph-cut algorithm for efficient water-fat separation.

    Science.gov (United States)

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Septic tank combined with anaerobic filter and conventional UASB: results from full scale plants

    Directory of Open Access Journals (Sweden)

    F. J. A. da Silva

    2013-03-01

    Full Text Available Anaerobic digestion is an important alternative for domestic wastewater treatment, especially in warm climate regions. Two full-scale anaerobic schemes were investigated: septic tank combined with anaerobic filter (S T A NF and conventional UASB reactors. Treated effluents from these systems were subjected to disinfection by chlorination. The operational performance of 56 full-scale plants (36 S T A NF and 20 UASB provided a realistic view. Findings showed that the plants operated with low OLR (< 2.0 kg COD/m³.day. Despite this, the removal of organic material was below values suggested by the literature (around 60% for COD. A removal of 4.0 Log10 units of total coliform and E. coli can be reached with residual chlorine (R CL of at least 2.0 Cl-Cl2/l. Although UASB plants have performed better, improvement of maintenance is needed in both treatment configurations.

  18. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  19. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    International Nuclear Information System (INIS)

    Visca, Eliseo; Roccella, S.; Candura, D.; Palermo, M.; Rossi, P.; Pizzuto, A.; Sanguinetti, G.P.; Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G.

    2015-01-01

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m 2 but the capability to remove up to 20 MW/m 2 during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  20. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  1. The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas

    2009-11-01

    HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)

  2. Design features of a full-scale high-level waste vitrification system

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bonner, W.F.

    1976-08-01

    A system has been designed and is currently under construction for vitrification of commercial high-level waste. The process consists of a spray calciner coupled to an in-can melter. Due to the high radiation levels expected, this equipment is designed for totally remote operation and maintenance. The in-cell arrangement of this equipment has been developed cooperatively with a nuclear fuel reprocessor. The system will be demonstrated both full scale with nonradioactive simulated waste and pilot scale with actual high-level waste

  3. Identification of the electroelastic coupling from full multi-physical fields measured at the micrometre scale

    DEFF Research Database (Denmark)

    Amiot, Fabien; Hild, F.; Kanoufi, F.

    2007-01-01

    Metal coated microcantilevers are used as transducers of their electrochemical environment. Using the metallic layer of these cantilevers as a working electrode allows one to modify the electrochemical state of the cantilever surface. Since the mechanical behaviour of micrometre scale objects...... is significantly surface-driven, this environment modification induces bending of the cantilever. Using a full-field interferometric measurement set-up to monitor the objects then provides an optical phase map, which is found to originate from both electrochemical and mechanical effects. The scaling...

  4. Characterization of Membrane Foulants in Full-scale and Lab-scale Membrane Bioreactors for Wastewater Treatment and Reuse

    KAUST Repository

    Matar, Gerald

    2015-12-01

    Membrane bioreactors (MBRs) offer promising solution for wastewater treatment and reuse to address the problem of water scarcity. Nevertheless, this technology is still facing challenges associated with membrane biofouling. This phenomenon has been mainly investigated in lab-scale MBRs with little or no insight on biofouling in full-scale MBR plants. Furthermore, the temporal dynamics of biofouling microbial communities and their extracellular polymeric substances (EPS) are less studied. Herein, a multidisciplinary approach was adopted to address the above knowledge gaps in lab- and full-scale MBRs. In the full-scale MBR study, 16S rRNA gene pyrosequencing with multivariate statistical analysis revealed that the early and mature biofilm communities from five full-scale MBRs differed significantly from the source community (i.e. activated sludge), and random immigration of species from the source community was unlikely to shape the community structure of biofilms. Also, a core biofouling community was shared between the five MBR plants sampled despite differences in their operating conditions. In the lab-scale MBR studies, temporal dynamics of microbial communities and their EPS products were monitored on different hydrophobic and hydrophilic membranes during 30 days. At the early stages of filtration (1 d), the same early colonizers belonging to the class Betaproteobacteria were identified on all the membranes. However, their relative abundance decreased on day 20 and 30, and sequence reads belonging to the phylum Firmicutes and Chlorobi became dominant on all the membranes on day 20 and 30. In addition, the intrinsic membrane characteristic did not select any specific EPS fractions at the initial stages of filtration and the same EPS foulants developed with time on the hydrophobic and hydrophilic membranes. Our results indicated that the membrane surface characteristics did not select for specific biofouling communities or EPS foulants, and the same early

  5. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR with 50,000 m3 d−1 for treating a town’s wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O reactor and an oxidation ditch (OD being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS. X-ray fluorescence (XRF analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  6. Full Scale Measurements of the Hydro-Elastic Response of Large Container Ships for Decision Support

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent

    scale measurements from four container ships of 4,400 TEU, 8,600 TEU, 9,400 TEU and 14,000 TEU Primarily, strains measured near the deck amidships are used. Furthermore, measurements of motions and the encountered sea state are available for one of the ships. The smallest ship is in operation...... frequency with the waves. Together with the relatively high design speed and often pronounced bow flare this makes large container ship more sensitive to slamming and, consequently, the effects of wave-induced hull girder vibrations. From full scale strain measurements of individual, measured hull girder......The overall topic of this thesis is decision support for operation of ships and several aspects are covered herein. However, the main focus is on the wave-induced hydro-elastic response of large container ships and its implications on the structural response. The analyses are based mainly on full...

  7. Experimental study on the connection property of full-scale composite member

    Science.gov (United States)

    Panpan, Cao; Qing, Sun

    2018-01-01

    The excellent properties of composite result in its increasingly application in electric power construction, however there are less experimental studies on full-scale composite member connection property. Full-scale experiments of the connection property between E-glass fiber/epoxy reinforced polymer member and steel casing in practical engineering have been conducted. Based on the axial compression test of the designed specimens, the failure process and failure characteristics were observed, the load-displacement curves and strain distribution of the specimens were obtained. The finite element analysis was used to get the tensile connection strength of the component. The connection property of the components was analyzed to provide basis of the casing connection of GFRP application in practical engineering.

  8. Full scale simulations of accidents on spent-nuclear-fuel shipping systems

    International Nuclear Information System (INIS)

    Yoshimura, H.R.

    1978-01-01

    In 1977 and 1978, five first-of-a-kind full scale tests of spent-nuclear-fuel shipping systems were conducted at Sandia Laboratories. The objectives of this broad test program were (1) to assess and demonstrate the validity of current analytical and scale modeling techniques for predicting damage in accident conditions by comparing predicted results with actual test results, and (2) to gain quantitative knowledge of extreme accident environments by assessing the response of full scale hardware under actual test conditions. The tests were not intended to validate the present regulatory standards. The spent fuel cask tests fell into the following configurations: crashes of a truck-transport system into a massive concrete barrier (100 and 130 km/h); a grade crossing impact test (130 km/h) involving a locomotive and a stalled tractor-trailer; and a railcar shipping system impact into a massive concrete barrier (130 km/h) followed by fire. In addition to collecting much data on the response of cask transport systems, the program has demonstrated thus far that current analytical and scale modeling techniques are valid approaches for predicting vehicular and cask damage in accident environments. The tests have also shown that the spent casks tested are extremely rugged devices capable of retaining their radioactive contents in very severe accidents

  9. Pseudodynamic tests on a full-scale 3-storey precast concrete building: Global response

    OpenAIRE

    Negro, Paolo; Bournas, Dionysios A.; Molina, Francisco J.

    2013-01-01

    In the framework of the SAFECAST Project, a full-scale three-storey precast building was subjected to a series of pseudodynamic (PsD) tests in the European Laboratory for Structural Assessment (ELSA). The mock-up was constructed in such a way that four different structural configurations could be investigated experimentally. Therefore, the behaviour of various parameters like the types of mechanical connections (traditional as well as innovative) and the presence or absence of shear walls alo...

  10. Full scale mock-up tests for rod bundle thermal-hydraulics in Japan

    International Nuclear Information System (INIS)

    Sugawara, S.

    1995-01-01

    This poster describes tests aimed at development and validation of principal design methodology of rod bundle thermal-hydraulics correlations. The works are based on domestic data base using the full-scale mock-up test facilities. The scope of the tests comprises DNB heat flux, transient DNB heat flux, post DNB heat transfer, pressure drop and void distribution. The works have been performed under collaboration among electric facilities, NPP vendors, universities, governmental corporations. 1 tab., 14 figs

  11. On the 'hysteresis' effect in the biological nitrogen removal :theory and full scale experimental evaluation

    International Nuclear Information System (INIS)

    Tatano, F.

    1996-01-01

    The wastewater treatments plants localized in the Ruhr River (Germany), generally present a typical wastewater temperature variation curve during the winter period. These temperature changes produce specific effects on the nitrogen removal efficiencies in the activated sludge systems. The so called 'hysteresis' phenomenon is responsible for these effects. The paper deals with some simplified theoretical considerations and with a full scale experimental evaluations of the effects caused by the hysteresis phenomenon in the biological nitrogen removal

  12. Mathematical modeling of nitrous oxide (N2O) emissions from full-scale wastewater treatment plants.

    Science.gov (United States)

    Ni, Bing-Jie; Ye, Liu; Law, Yingyu; Byers, Craig; Yuan, Zhiguo

    2013-07-16

    Mathematical modeling of N2O emissions is of great importance toward understanding the whole environmental impact of wastewater treatment systems. However, information on modeling of N2O emissions from full-scale wastewater treatment plants (WWTP) is still sparse. In this work, a mathematical model based on currently known or hypothesized metabolic pathways for N2O productions by heterotrophic denitrifiers and ammonia-oxidizing bacteria (AOB) is developed and calibrated to describe the N2O emissions from full-scale WWTPs. The model described well the dynamic ammonium, nitrite, nitrate, dissolved oxygen (DO) and N2O data collected from both an open oxidation ditch (OD) system with surface aerators and a sequencing batch reactor (SBR) system with bubbling aeration. The obtained kinetic parameters for N2O production are found to be reasonable as the 95% confidence regions of the estimates are all small with mean values approximately at the center. The model is further validated with independent data sets collected from the same two WWTPs. This is the first time that mathematical modeling of N2O emissions is conducted successfully for full-scale WWTPs. While clearly showing that the NH2OH related pathways could well explain N2O production and emission in the two full-scale plants studied, the modeling results do not prove the dominance of the NH2OH pathways in these plants, nor rule out the possibility of AOB denitrification being a potentially dominating pathway in other WWTPs that are designed or operated differently.

  13. Full-Scale Mark II CRT program data report No. 11 (TEST 1204)

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Takeshita, Isao; Yamamoto, Nobuo; Namatame, Ken; Shiba, Masayoshi

    1981-03-01

    Recorded data for TEST 1204 conducted on the Full-Scale Mark II CRT (Containment Response Test) Facility are presented. The TEST 1204 is the fourth test run of a series of steam discharge pool swell tests. The test conditions are similar to those of the TEST 1203 except for lower initial pool temperature. The test was successful and the maximum level of pool surface was fairly lower than in the TEST 1203 due to the lower pool temperature. (author)

  14. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant

    OpenAIRE

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-01-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that u...

  15. How well do 46 full-scale Danish anaerobic digesters at wastewater treatment plants perform?

    DEFF Research Database (Denmark)

    Andersen, Martin Hjorth; Kirkegaard, Rasmus Hansen; Nielsen, Per Halkjær

    (2016): Identifying the abundant and active microorganisms common to full-scale anaerobic digesters. bioRxiv.doi.org/10.1101/104620. 2. McIlroy, S.J., R.H. Kirkegaard, B. McIlroy, M. Nierychlo, J.M. Kristensen, S.M. Karst, M. Albertsen and P.H. Nielsen (2017): MiDAS 2.0: An ecosystem-specific taxonomy...

  16. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  17. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    OpenAIRE

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete d...

  18. Movable shark scales act as a passive dynamic micro-roughness to control flow separation

    International Nuclear Information System (INIS)

    Lang, Amy W; Bradshaw, Michael T; Smith, Jonathon A; Wheelus, Jennifer N; Motta, Philip J; Habegger, Maria L; Hueter, Robert E

    2014-01-01

    Shark scales on fast-swimming sharks have been shown to be movable to angles in excess of 50°, and we hypothesize that this characteristic gives this shark skin a preferred flow direction. During the onset of separation, flow reversal is initiated close to the surface. However, the movable scales would be actuated by the reversed flow thereby causing a greater resistance to any further flow reversal and this mechanism would disrupt the process leading to eventual flow separation. Here we report for the first time experimental evidence of the separation control capability of real shark skin through water tunnel testing. Using skin samples from a shortfin mako Isurus oxyrinchus, we tested a pectoral fin and flank skin attached to a NACA 4412 hydrofoil and separation control was observed in the presence of movable shark scales under certain conditions in both cases. We hypothesize that the scales provide a passive, flow-actuated mechanism acting as a dynamic micro-roughness to control flow separation. (paper)

  19. Autonomous smart sensor network for full-scale structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  20. The NET articulated boom: Preliminary investigations and justification for a full scale prototype

    International Nuclear Information System (INIS)

    Suppan, A.

    1990-12-01

    The articulated boom system is the favourite in-vessel handling system for NET which will be used to maintain or replace in-vessel components during short term interventions. The testbed EDITH is the prototype of this system and is the logical step between the proof of principle of the system, which is already performed by the JET articulated boom, and the operational equipment for NET. EDITH is required to demonstrate that maintenance of plasma facing components can be carried out with the anticipated reliability and time. To achieve this aim EDITH is based on the experience of the JET boom and will be constructed in full scale, supplemented by a full scale mock-up. A further goal of EDITH is to allow the testing of boom components and subassemblies. The results of preliminary investigations for the boom are summarized, the need of the testbed EDITH and a full scale mock-up is discussed and both EDITH and the mock-up are described. (orig.) [de

  1. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  2. Assessments of CHF correlations based on full-scale rod bundle experiments

    International Nuclear Information System (INIS)

    Sardh, K.; Becker, K.M.

    1986-02-01

    In the present study the Barnett, the Becker, the Biasi, the CISE-4, the XN-1, the EPRI and the Bezrukov burnout correlations have been compared with burnout measurements obtained with full scale 81, 64, 36 and 37-rod bundles. The total power as well as the local power hypothesis was employed for the comparisons. The results clearly indicated that the Biasi and the CISE-4 correlations do not predict the burnout conditions in full-scale rod bundles. Since, these correlations yield non-conservative results their use in computer programs as for instance RELAP, TRAC or NORA should be avoided. Considering that the effects of spacers were not included in the predictions, the Becker and the Bezrukov correlations were in excellent agreement with the experimental data. However, it should be pointed out that the Bezrukov correlation only covered the 70 and 90 bar data, while the Becker correlation agreed with the experimental data in the whole pressure range between 30 and 90 bar. The Barnett, the XN-1 and the EPRI correlations were also in satisfactory agreement with the experiments. We therefore conclude that for predictions of the burnout conditions in full-scale BWR rod bundles the Becker correlation should be employed. (author)

  3. Introducing sequential managed aquifer recharge technology (SMART) - From laboratory to full-scale application.

    Science.gov (United States)

    Regnery, Julia; Wing, Alexandre D; Kautz, Jessica; Drewes, Jörg E

    2016-07-01

    Previous lab-scale studies demonstrated that stimulating the indigenous soil microbial community of groundwater recharge systems by manipulating the availability of biodegradable organic carbon (BDOC) and establishing sequential redox conditions in the subsurface resulted in enhanced removal of compounds with redox-dependent removal behavior such as trace organic chemicals. The aim of this study is to advance this concept from laboratory to full-scale application by introducing sequential managed aquifer recharge technology (SMART). To validate the concept of SMART, a full-scale managed aquifer recharge (MAR) facility in Colorado was studied for three years that featured the proposed sequential configuration: A short riverbank filtration passage followed by subsequent re-aeration and artificial recharge and recovery. Our findings demonstrate that sequential subsurface treatment zones characterized by carbon-rich (>3 mg/L BDOC) to carbon-depleted (≤1 mg/L BDOC) and predominant oxic redox conditions can be established at full-scale MAR facilities adopting the SMART concept. The sequential configuration resulted in substantially improved trace organic chemical removal (i.e. higher biodegradation rate coefficients) for moderately biodegradable compounds compared to conventional MAR systems with extended travel times in an anoxic aquifer. Furthermore, sorption batch experiments with clay materials dispersed in the subsurface implied that sorptive processes might also play a role in the attenuation and retardation of chlorinated flame retardants during MAR. Hence, understanding key factors controlling trace organic chemical removal performance during SMART allows for systems to be engineered for optimal efficiency, resulting in improved removal of constituents at shorter subsurface travel times and a potentially reduced physical footprint of MAR installations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    Science.gov (United States)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  5. Full-scale mark II CRT program data report no. 7

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Namatame, Ken; Yamamoto, Nobuo; Takeshita, Isao; Shiba, Masayoshi

    1980-03-01

    The Full-Scale Mark II CRT (Containment Response Test) Program was initiated in 1977 to provide a data base for evaluation of the LOCA hydrodynamic loads in the BWR Mark II pressure suppression system. The test facility is 1/18 in volume and has a wetwell which is a full-scale replica of one 20 0 -sector of that of a reference Mark II. This report documents test data obtained from TEST 3102, which is a large (200 mm) water break test performed on June 29, 1979. The test was performed for a supernominal break area (approx. 160% of the scaled break area for a postulated double-ended break in the recirculation line) to obtain vent steam mass fluxes ranging up to the maximum design value of the actual plants. Before the initiation of the test more than 90% of the drywell air was replaced by steam and transferred into wetwell airspace to reduce the air content in the vent flow during the test. Because of this pre-test treatment (so-called prepurging) the test data obtained for high- and intermediate-steam-flux condensation oscillations are believed to be to a high degree on conservative side. (author)

  6. Non-machinery dialysis that achieves blood purification therapy without using full-scale dialysis machines.

    Science.gov (United States)

    Abe, Takaya; Onoda, Mistutaka; Matsuura, Tomohiko; Sugimura, Jun; Obara, Wataru; Sato, Toshiya; Takahashi, Mihoko; Chiba, Kenta; Abe, Tomiya

    2017-09-01

    An electrical or water supply and a blood purification machine are required for renal replacement therapy. There is a possibility that acute kidney injury can occur in large numbers and on a wide scale in the case of a massive earthquake, and there is the potential risk that the current supply will be unable to cope with acute kidney injury cases. However, non-machinery dialysis requires exclusive circuits and has the characteristic of not requiring the full-scale dialysis machines. We performed perfusion experiments that used non-machinery dialysis and recent blood purification machines in 30-min intervals, and the effectiveness of non-machinery dialysis was evaluated by the assessing the removal efficiency of potassium, which causes lethal arrhythmia during acute kidney injury. The non-machinery dialysis potassium removal rate was at the same level as continuous blood purification machines with a dialysate flow rate of 5 L/h after 15 min and continuous blood purification machines with a dialysate flow rate of 3 L/h after 30 min. Non-machinery dialysis required an exclusive dialysate circuit, the frequent need to replace bags, and new dialysate exchanged once every 30 min. However, it can be seen as an effective renal replacement therapy for crush-related acute kidney injury patients, even in locations or facilities not having the full-scale dialysis machines.

  7. Preparative-scale separation of C60 and C70 on polystyrene gel

    International Nuclear Information System (INIS)

    Guegel, A.; Becker, M.; Hammel, D.; Mindach, L.; Raeder, J.; Simon, T.; Wagner, M.; Muellen, K.

    1992-01-01

    Five grams of a mixture of C 60 /C 70 can be separated in 24 hours by gel permeation chromatography on polystyrene gel. The mobile phase can be completely recovered, and the method can be scaled up by a simple increase in the inner diameter of the column. (orig.) [de

  8. Separation Anxiety in Parents of Adolescents: Theoretical Significance and Scale Development.

    Science.gov (United States)

    Hock, Ellen; Eberly, Mary; Bartle-Haring, Suzanne; Ellwanger, Pamela; Widaman, Keith F.

    2001-01-01

    Developed and validated Parents of Adolescents Separation Anxiety Scale with parents of sixth, eighth, tenth, and twelfth graders, and college freshmen and seniors. Factor analyses supported two subscales: Anxiety about Adolescent Distancing (AAD) and Comfort with Secure Base Role (CSBR); both showed distinctive change patterns with child age.…

  9. Full-scale experimental validation of decentralized damage identification using wireless smart sensors

    International Nuclear Information System (INIS)

    Jang, Shinae; Sim, Sung-Han; Jo, Hongki; Spencer Jr, Billie F

    2012-01-01

    Wireless smart sensor networks (WSSN) facilitate a new paradigm for structural health monitoring (SHM) of civil infrastructure. Conventionally, SHM systems employing wired sensors and centralized data acquisition have been used to characterize the state of a structure; however, widespread implementation has been limited due to high costs and difficulties in installation. WSSN offer a unique opportunity to overcome such difficulties. Recent developments have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both economical and feasible. Wireless smart sensors (WSS) have shown their tremendous potential for SHM in recent full-scale bridge monitoring examples. However, structural damage identification using on-board computation capability in a WSSN, a primary objective of SHM, has yet to reach its full potential. This paper presents full-scale validation of a damage identification strategy using a decentralized network of Imote2 nodes on a historic steel truss bridge. A total of 24 WSS nodes with 144 sensor channels are deployed on the bridge to validate the developed damage identification software. The performance of this decentralized damage identification strategy is demonstrated on the WSSN by comparing its results with those from the traditional centralized approach, as well as visual inspection. (paper)

  10. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  11. Physics design of experimental metal fuelled fast reactor cores for full scale demonstration

    International Nuclear Information System (INIS)

    Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.

    2011-01-01

    Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.

  12. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  13. Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology

    International Nuclear Information System (INIS)

    Cai, Xin; Gu, Rongrong; Pan, Pan; Zhu, Jie

    2016-01-01

    Highlights: • A full-scale HAWT is simulated under operational conditions of wind shear and yaw. • The CFD method and sliding mesh are adopted to complete the calculation. • Thrust and torque of blades reach the peak and valley at the same time in wind shear. • The wind turbine produces yaw moment during the whole revolution in yaw case. • The torques and thrusts of the three blades present cyclical changes. - Abstract: The aerodynamic performance of wind turbines is significantly influenced by the unsteady flow around the rotor blades. The research on unsteady aerodynamics for Horizontal Axis Wind Turbines (HAWTs) is still poorly understood because of the complex flow physics. In this study, the unsteady aerodynamic configuration of a full-scale HAWT is simulated with consideration of wind shear, tower shadow and yaw motion. The calculated wind turbine which contains tapered tower, rotor overhang and tilted rotor shaft is constructed by making reference of successfully commercial operated wind turbine designed by NEG Micon and Vestas. A validated CFD method is utilized to analyze unsteady aerodynamic characteristics which affect the performance on such a full-scale HAWT. The approach of sliding mesh is used to carefully deal with the interface between static and moving parts in the flow field. The annual average wind velocity and wind profile in the atmospheric border are applied as boundary conditions. Considering the effects of wind shear and tower shadow, the simulation results show that the each blade reaches its maximum and minimum aerodynamic loads almost at the same time during the rotation circle. The blade–tower interaction imposes great impact on the power output performance. The wind turbine produces yaw moment during the whole revolution and the maximum aerodynamic loads appear at the upwind azimuth in the yaw computation case.

  14. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    Science.gov (United States)

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model

    Science.gov (United States)

    Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.

    2010-08-01

    The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.

  16. Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model

    International Nuclear Information System (INIS)

    Alligne, S; Maruzewski, P; Avellan, F; Dinh, T; Wang, B; Fedorov, A; Iosfin, J

    2010-01-01

    The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.

  17. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    Science.gov (United States)

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of Non Submerged Vanes on Separation Zone at Strongly-curved Channel Bends, a Laboratory Scale Study

    Directory of Open Access Journals (Sweden)

    Ali Akbar Akhtari

    2010-03-01

    Full Text Available Bends along open channels always pose difficulties for water transfer systems. One undesirable effect of bends in such channels, i.e. separation of water from inner banks, was studied. For the purposes of this study, the literature on the subject was first reviewed, and a strongly-curved open channel was designed and constructed on the laboratory scale. Several tests were performed to evaluate the accuracy of the lab model, data homogeneity, and systematic errors. The model was then calibrated and the influence of curvature on flow pattern past the curve was investigated. Also, for the first time, the influence of separation walls on flow pattern was investigated. Experimental results on three strongly-curved open channels with a curvature radius to channel width ratio of 1.5 and curvature angles of 30°, 60°, and 90° showed that, in all the cases studied, the effect of flow separation could be observed immediately after the curve. In addition, the greatest effect of flow separation was seen at a distance equal to channel width from the bend end. In the presence of middle walls and flow separation, the effect of water separation reduced at the bend, especially for a curvature of 90°.

  19. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    Science.gov (United States)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  20. Construction and test of a full-scale prototype of an ATLAS muon spectrometer tracking chamber

    International Nuclear Information System (INIS)

    Biscossa, A.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Fraternali, M.; Freddi, A.; Iuvino, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rimoldi, A.; Vercellati, F.; Vercesi, V.; Bagnaia, P.; Bini, C.; Capradossi, G.; Ciapetti, G.; Creti, P.; De Zorzi, G.; Iannone, M.; Lacava, F.; Mattei, A.; Nisati, L.; Oberson, P.; Pontecorvo, L.; Rosati, S.; Veneziano, S.; Zullo, A.; Daly, C.H.; Davisson, R.; Guldenmann, H.; Lubatti, H.J.; Zhao, T.

    1999-01-01

    We have built a full scale prototype of the precision tracking chambers (Monitored Drift Tubes, MDT) for the muon spectrometer of the Atlas Experiment at the LHC collider. This article describes in detail the procedures used in constructing the drift tubes and in assembling the chamber. It presents data showing that the required mechanical precision has been achieved as well as test beam results displaying the over all chamber performance. The article presents data demonstrating the derivation of the space-time relation of the drift tubes by the autocalibration procedure using real data from the tracks crossing the chamber. Autocalibration is the procedure which must be used during run time

  1. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)

    1993-12-31

    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  2. Calibration and validation of a phenomenological influent pollutant disturbance scenario generator using full-scale data

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Saagi, Ramesh; Lindblom, Erik Ulfson

    2014-01-01

    The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM...... rainfall patterns (climate change) or influent biodegradability (process uncertainty) on the generated time series; 2) a demonstration of how to reduce the cost/workload of measuring campaigns by filling the gaps due to missing data in the influent profiles; and, 3) a critical discussion of the presented...

  3. Full-scale mark II CRT program data report, No. 9

    International Nuclear Information System (INIS)

    Takeshita, Isao; Yamamoto, Nobuo; Kukita, Yutaka; Namatame, Ken; Shiba, Masayoshi

    1980-07-01

    Recorded data for TEST 1202 conducted on the Full-Scale Mark II CRT (Containment Responce Test) Facility are presented. The TEST 1202 is a test under the condition of steam discharge with a large break diameter (240 mm) and the second one of the steam discharge pool swell test series. It is also one of the parametric tests with different break diameters, i.e. TEST 1201 (200 mm), TEST 1202 (240 mm) and TEST 1203 (220 mm). The test was successful and a value of 225 kPa/s was obtained as the initial pressurization rate in the drywell. (author)

  4. Full-Scale Mark II CRT program data report no. 10 (TEST 1203)

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Takeshita, Isao; Yamamoto, Nobuo; Namatame, Ken; Shiba, Masayoshi

    1981-03-01

    Recorded data for TEST 1203 conducted on the Full-Scale Mark II CRT (Containment Response Test) Facility are presented. The test 1203 is the third test run of a series of steam discharge pool swell test. It is one of the tests where break diameter was varied parametrically, i.e., TEST 1201 (200 mm), TEST 1202 (240 mm) and TEST 1203 (220 mm). The test was successfully conducted. A drywell initial pressurization rate of 188 kPa/s was obtained, which is approximately equal to what is postulated for a hypothetical DBA (Design Basis Accident) LOCA in the BWR Mark II containment. (author)

  5. Investigation of the gypsum quality at three full-scale wet flue gas desulphurisation plants

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren; Johnsson, Jan Erik

    2011-01-01

    In the present study the gypsum (CaSO4·2H2O) quality at three full-scale wet flue gas desulphurisation (FGD) plants and a pilot plant were examined and compared. Gypsum quality can be expressed in terms of moisture content (particle size and morphology dependent) and the concentration of residual......, low moisture content and low impurity content). An episode concerning a sudden deterioration in the gypsum dewatering properties was furthermore investigated, and a change in crystal morphology, as well as an increased impurity content (aluminium, iron and fluoride), was detected....

  6. Effect of agitation time on nutrient distribution in full-scale CSTR biogas digesters.

    Science.gov (United States)

    Kress, Philipp; Nägele, Hans-Joachim; Oechsner, Hans; Ruile, Stephan

    2018-01-01

    The aim of this work was to study the impact of reduced mixing time in a full-scale CSTR biogas reactor from 10 to 5 and to 2min in half an hour on the distribution of DM, acetic acid and FOS/TAC as a measure to cut electricity consumption. The parameters in the digestate were unevenly distributed with the highest concentration measured at the point of feeding. By reducing mixing time, the FOS/TAC value increases by 16.6%. A reduced mixing time of 2min lead to an accumulation of 15% biogas in the digestate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  8. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)

    1994-12-31

    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  9. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Boe, Kanokwan; Ellegaard, L.

    2005-01-01

    A study on 18 full-scale centralized biogas plants was carried out in order to find significant operational factors influencing productivity and stability of the plants. It was found that the most plants were operating relatively stable with volatile fatty acids (VFA) concentration below 1.5 g....../l. VFA concentration increase was observed in occasions with dramatic overloading or other disturbances such as operational temperature changes. Ammonia was found to be a significant factor for stability. A correlation between increased residual biogas production and high ammonia was found. When ammonia...

  10. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems

    DEFF Research Database (Denmark)

    Mcllroy, Simon; Starnawska, Anna; Starnawski, Piotr

    2015-01-01

    Denitrification is essential to the removal of nitrogen from wastewater during treatment, yet an understanding of the diversity of the active denitrifying bacteria responsible in full-scale wastewater treatment plants (WWTPs) is lacking. In this study, stable-isotope probing (SIP) was applied......-labelled complex substrate was used for SIP incubations, under nitrite-reducing conditions, in order to maximize the capture of the potentially metabolically diverse denitrifiers likely present. Members of the Rhodoferax, Dechloromonas, Sulfuritalea, Haliangium and Thermomonas were represented in the 16S rRNA gene...

  11. Environmental Remediation Full-Scale Implementation: Back to Simple Microbial Massive Culture Approaches

    Directory of Open Access Journals (Sweden)

    Agung Syakti

    2010-10-01

    Full Text Available Using bioaugmentation and biostimulation approach for contaminated soil bioremediation were investigated and implemented on field scale. We combine those approaches by culturing massively the petrophilic indigenous microorganisms from chronically contaminated soil enriched by mixed manure. Through these methods, bioremediation performance revealed promising results in removing the petroleum hydrocarbons comparatively using metabolite by product such as biosurfactant, specific enzymes and other extra-cellular product which are considered as a difficult task and will impact on cost increase.

  12. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs

  13. Anaerobic digestion foaming in full-scale biogas plants: A survey on causes and solutions

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; O-Thong, Sompong

    2014-01-01

    Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times...... of foaming in this case. Moreover, no difference in bacterial communities between the foaming and non-foaming reactors was observed, showing that filamentous bacteria were not the main reason for foaming in this case. © IWA Publishing 2014....

  14. Full-Scale Mark II CRT program data report no. 12 (TEST 1205)

    International Nuclear Information System (INIS)

    Takeshita, Isao; Kukita, Yutaka; Yamamoto, Nubuo; Namatame, Ken; Shiba, Masayoshi

    1981-03-01

    Recorded data for TEST 1205 conducted on the Full-Scale Mark II CRT (Containment Response Test) Facility are presented. The TEST 1205 is the fifth test run of a series of steam discharge pool swell tests. The test conditions are similar to those of the TEST 1203 except that the vacuum breaker was locked close. The test was successful and the comparison of the TEST 1205 and the TEST 1203 results shows that the vacuum breaker may have some effects to reduce the wetwell airspace pressurization, and thus to reduce the upward force to diaphram floor during a pool swell. (author)

  15. Full-scale Mark II CRT program: dynamic response evaluation test of pressure transducers

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Namatame, Ken; Takeshita, Isao; Shiba, Masayoshi

    1982-12-01

    A dynamic response evaluation test of pressure transducers was conducted in support of the JAERI Full-Scale Mark II CRT (Containment Response Test) Program. The test results indicated that certain of the cavity-type transducers used in the early blowdown test had undesirable response characteristics. The transducer mounting scheme was modified to avoid trapping of air bubbles in the pressure transmission tubing attached to the transducers. The dynamic response of the modified transducers was acceptable within the frequency range of 200 Hz. (author)

  16. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P.

    2011-06-15

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chromatographic separation process was developed for fucose, starting from pre-processed spent sulfite liquor. The core of the process consists of three chromatographic separations with different types of ion exchange resins. Chromatographic separation of galactose was tested with three biomass hydrolysates; lactose, gum arabic and hemicellulose hydrolysates. It was demonstrated that also galactose can be separated from complex carbohydrate mixtures. A recovery process for arabinose from citrus pectin liquid residual and for mannose from wood pulp hydrolysate were also developed and experimentally verified. In addition to monosaccharides, chromatographic separation of glycinebetaine from vinasse was examined with a hydrogen form weak acid cation exchange resin. The separation involves untypical peak formation depending, for example, on the pH and the cation composition. The retention mechanism was found to be hydrogen bonding between glycinebetaine and the resin. In the experimental part, all four resin types - strong acid cation, strong base anion, weak acid cation and weak base anion exchange resins - were used. In addition, adsorption equilibria data of seven monosaccharides and sucrose were measured with the resins in sodium and sulfate forms because such data have been lacking. It was found out that the isotherms of all sugars were linear under industrial conditions. A systematic method for conceptual process design and sequencing of chromatographic separation steps were developed

  17. Basic concepts for designing renewable electricity support aiming at a full-scale transition by 2050

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Lauber, Volkmar

    2009-01-01

    Renewable electricity supply is a crucial factor in the realization of a low-carbon energy economy. The understanding is growing that a full turn-over of the electricity sectors by 2050 is an elementary condition for avoiding global average temperature increase beyond 2 C. This article adopts such full transition as Europe's target when designing renewable energy policy. An immediate corollary is that phasing-in unprecedented energy efficiency and renewable generation must be paralleled by phasing-out non-sustainable fossil fuel and nuclear power technologies. The double phasing programme assigns novel meaning to nearby target settings for renewable power as share of total power consumption. It requires organizing in the medium term EU-wide markets for green power, a highly demanding task in the present context of poorly functional markets in brown power. The EU Commission's 2007/2008 proposals of expanding tradable certificates markets were not based on solid analysis of past experiences and future necessities. The keystone of sound policies on renewable electricity development is a detailed scientific differentiation and qualification of renewable electricity sources and technologies, for measuring the huge diversity in the field. We provide but structuring concepts about such qualification, because implementation requires extensive research resources. Support for renewable electricity development is organized via feed-in prices or premiums, and via quota obligations connected to tradable green certificates. Green certificates are dependent on physical generated renewable power, but separable and no joint products. Contrary to conventional wisdom we argue their separation in cost analysis but firm linking during trade. A few graphs illustrate the importance of assigning qualities to different renewable power sources/technologies. Feed-in systems based on an acceptable qualification perform generally better than certificate markets imposing uniform approaches on a

  18. Study on the Contra-Rotating Propeller system design and full-scale performance prediction method

    Directory of Open Access Journals (Sweden)

    Keh-Sik Min

    2009-09-01

    Full Text Available A ship's screw-propeller produces thrust by rotation and, at the same time, generates rotational flow behind the propeller. This rotational flow has no contribution to the generation of thrust, but instead produces energy loss. By recovering part of the lost energy in the rotational flow, therefore, it is possible to improve the propulsion efficiency. The contra-rotating propeller (CRP system is the representing example of such devices. Unfortunately, however, neither a design method nor a full-scale performance prediction procedure for the CRP system has been well established yet. The authors have long performed studies on the CRP system, and some of the results from the authors’ studies shall be presented and discussed.

  19. Full Tensor Gradient of Simulated Gravity Data for Prospect Scale Delineation

    Directory of Open Access Journals (Sweden)

    Hendra Grandis

    2014-07-01

    Full Text Available Gravity gradiometry measurement allows imaging of anomalous sources in more detail than conventional gravity data. The availability of this new technique is limited to airborne gravity surveys using very specific instrumentation. In principle, the gravity gradients can be calculated from the vertical component of the gravity commonly measured in a ground-based gravity survey. We present a calculation of the full tensor gradient (FTG of the gravity employing the Fourier transformation. The calculation was applied to synthetic data associated with a simple block model and also with a more realistic model. The latter corresponds to a 3D model in which a thin coal layer is embedded in a sedimentary environment. Our results show the utility of the FTG of the gravity for prospect scale delineation.

  20. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-05-01

    Full Text Available Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  1. Flow and Transport in Complex Microporous Carbonates as a Consequence of Separation of Scales

    Science.gov (United States)

    Bijeljic, B.; Raeini, A. Q.; Lin, Q.; Blunt, M. J.

    2017-12-01

    Some of the most important examples of flow and transport in complex pore structures are found in subsurface applications such as contaminant hydrology, carbon storage and enhanced oil recovery. Carbonate rock structures contain most of the world's oil reserves, considerable amount of water reserves, and potentially hold a storage capacity for carbon dioxide. However, this type of pore space is difficult to represent due to complexities associated with a wide range of pore sizes and variation in connectivity which poses a considerable challenge for quantitative predictions of transport across multiple scales.A new concept unifying X-ray tomography experiment and direct numerical simulation has been developed that relies on full description flow and solute transport at the pore scale. Differential imaging method (Lin et al. 2016) provides rich information in microporous space, while advective and diffusive mass transport are simulated on micro-CT images of pore-space: Navier-Stokes equations are solved for flow in the image voxels comprising the pore space, streamline-based simulation is used to account for advection, and diffusion is superimposed by random walk.Quantitative validation has been done on analytical solutions for diffusion and by comparing the model predictions versus the experimental NMR measurements in the dual porosity beadpack. Furthermore, we discriminate signatures of multi-scale transport behaviour for a range of carbonate rock (Figure 1), dependent on the heterogeneity of the inter- and intra-grain pore space, heterogeneity in the flow field, and the mass transfer characteristics of the porous media. Finally, we demonstrate the predictive capabilities of the model through an analysis that includes a number of probability density functions flow and transport (PDFs) measures of non-Fickian transport on the micro-CT i935mages. In complex porous media separation of scales exists, leading to flow and transport signatures that need to be described by

  2. Analysis, scale modeling, and full-scale test of a railcar and spent-nuclear-fuel shipping cask in a high-velocity impact against a rigid barrier

    International Nuclear Information System (INIS)

    Huerta, M.

    1981-06-01

    This report describes the mathematical analysis, the physical scale modeling, and a full-scale crash test of a railcar spent-nuclear-fuel shipping system. The mathematical analysis utilized a lumped-parameter model to predict the structural response of the railcar and the shipping cask. The physical scale modeling analysis consisted of two crash tests that used 1/8-scale models to assess railcar and shipping cask damage. The full-scale crash test, conducted with retired railcar equipment, was carefully monitored with onboard instrumentation and high-speed photography. Results of the mathematical and scale modeling analyses are compared with the full-scale test. 29 figures

  3. Traveling-wave reactors: A truly sustainable and full-scale resource for global energy needs

    International Nuclear Information System (INIS)

    Ellis, T.; Petroski, R.; Hejzlar, P.; Zimmerman, G.; McAlees, D.; Whitmer, C.; Touran, N.; Hejzlar, J.; Weave, K.; Walter, J. C.; McWhirter, J.; Ahlfeld, C.; Burke, T.; Odedra, A.; Hyde, R.; Gilleland, J.; Ishikawa, Y.; Wood, L.; Myhrvold, N.; Gates Iii, W. H.

    2010-01-01

    Rising environmental and economic concerns have signaled a desire to reduce dependence on hydrocarbon fuels. These concerns have brought the world to an inflection point and decisions made today will dictate what the global energy landscape will look like for the next half century or more. An optimal energy technology for the future must meet stricter standards than in the past; in addition to being economically attractive, it now must also be environmentally benign, sustainable and scalable to global use. For stationary energy, only one existing resource comes close to fitting all of the societal requirements for an optimal energy source: nuclear energy. Its demonstrated economic performance, power density, and emissions-free benefits significantly elevate nuclear electricity generation above other energy sources. However, the current nuclear fuel cycle has some attributes that make it challenging to expand on a global scale. Traveling-wave reactor (TWR) technology, being developed by TerraPower, LLC, represents a potential solution to these limitations by offering a nuclear energy resource which is truly sustainable at full global scale for the indefinite future and is deployable in the near-term. TWRs are capable of offering a ∼40-fold gain in fuel utilization efficiency compared to conventional light-water reactors burning enriched fuel. Such high fuel efficiency, combined with an ability to use uranium recovered from river water or sea-water (which has been recently demonstrated to be technically and economically feasible) suggests that enough fuel is readily available for TWRs to generate electricity for 10 billion people at United States per capita levels for million-year time-scales. Interestingly, the Earth's rivers carry into the ocean a flux of uranium several times greater than that required to replace the implied rate-of-consumption, so that the Earth's slowly-eroding crust will provide a readily-accessible flow of uranium sufficient for all of

  4. Full-scale impact test data for tornado-missile design of nuclear plants

    International Nuclear Information System (INIS)

    Stephenson, A.E.; Sliter, G.E.

    1977-01-01

    It is standard practice to consider the effects of low-probability impacts of tornado-borne debris (''tornado missiles'' such as utility poles and steel pipes) in the structural design of nuclear power plants in the United States. To provide data that can be used directly in the design procedure, a series of full-scale tornado-missile impact tests was performed. This paper is a brief summary of the results and conclusions from these tests. The tests consisted of reinforced concrete panels impacted by poles, pipes, and rods propelled by a rocket sled. The panels were constructed to current minimum standards and had thicknesses typical of auxiliary buildings of nuclear power plants. A specific objective was the determination of the impact velocities below which the panels do not experience backface scabbing. Another objective was to assess the adequacy of (1) conventional design formulae for penetration and scabbing and (2) conventional design methods for overall structural response. Test missiles and velocities represented those in current design standards. Missiles included utility poles, steel pipes, and steel bars. It is important to interpret the data in this paper in recognition that the test conditions represent conservative assumptions regarding maximum wind speeds, injection of the missile into the wind stream, aerodynamic trajectory, and orientation of missile at impact. Even with the severe assumptions made, the full-scale tests described demonstrate the ability of prototypical nuclear plant walls and roofs to provide adequate protection against postulated tornado-missile impact

  5. Performance Evaluations of Three Silt Fence Practices Using a Full-Scale Testing Apparatus

    Directory of Open Access Journals (Sweden)

    R. Alan Bugg

    2017-07-01

    Full Text Available Erosion and sediment controls on construction sites minimize environmental impacts from sediment-laden stormwater runoff. Silt fence, a widely specified perimeter control practice on construction projects used to retain sediment on-site, has limited performance-based testing data. Silt fence failures and resultant sediment losses are often the result of structural failure. To better understand silt fence performance, researchers at the Auburn University-Erosion and Sediment Control Testing Facility (AU-ESCTF have evaluated three silt fence options to determine possible shortcomings using standardized full-scale testing methods. These methods subject silt fence practices to simulated, in-field conditions typically experienced on-site without the variability of field testing or the limited application of small-scale testing. Three different silt fence practices were tested to evaluate performance, which included: (1 Alabama Department of Transportation (ALDOT Trenched Silt Fence, (2 ALDOT Sliced Silt Fence, and (3 Alabama Soil and Water Conservation Committee (AL-SWCC Trenched Silt Fence. This study indicates that the structural performance of a silt fence perimeter control is the most important performance factor in retaining sediment. The sediment retention performance of these silt fence practices was 82.7%, 66.9% and 90.5%, respectively. When exposed to large impoundment conditions, both ALDOT Trench and Sliced Silt Fence practices failed structurally, while the AL-SWCC Trenched Silt Fence did not experience structural failure.

  6. Numerical forensic model for the diagnosis of a full-scale RC floor

    Directory of Open Access Journals (Sweden)

    Ahmed B. Shuraim

    Full Text Available The paper presents the results of an investigation on the diagnosis and assessment of a full-scale reinforced concrete floor utilizing a 3-D forensic model developed in the framework of plasticity-damage approach. Despite the advancement in nonlinear finite element formulations and models, there is a need to verify models on nontrivial challenging structures. Various standards on strengthening existing structures consider numerical diagnosis as a major stage involving safety and economical aspects. Accordingly, model validity is a major issue that should preferably be examined against realistic large-scale tests. This was done in this study by investigating a one-story joist floor with wide shallow beams supported on columns. The surveyed cracking patterns on the entire top side of the floor were reproduced by the forensic model to a reasonable degree in terms of orientation and general location. Concrete principal plastic tensile strain was shown to be a good indirect indicator of cracking patterns. However, identifying the underlying reasons of major cracks in the floor required correlating with other key field parameters including deflections, and internal moments. Therefore, the ability of the forensic model to reproduce the surveyed damage state of the floor provided a positive indication on the material models, spatial representation, and parameter selection. Such models can be used as forensic tools for assessing the existing conditions as required by various standards and codes.

  7. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant.

    Science.gov (United States)

    Garuti, Mirco; Langone, Michela; Fabbri, Claudio; Piccinini, Sergio

    2018-01-01

    The implementation of hydrodynamic cavitation (HC) pretreatment for enhancing the methane potential from agricultural biomasses was evaluated in a full scale agricultural biogas plant, with molasses and corn meal as a supplementary energy source. HC batch tests were run to investigate the influence on methane production, particle size and viscosity of specific energy input. 470kJ/kgTS was chosen for the full-scale implementation. Nearly 6-months of operational data showed that the HC pretreatment maximized the specific methane production of about 10%, allowing the biogas plant to get out of the fluctuating markets of supplementary energy sources and to reduce the methane emissions. HC influenced viscosity and particle size of digestate, contributing to reduce the energy demand for mixing, heating and pumping. In the light of the obtained results the HC process appears to be an attractive and energetically promising alternative to other pretreatments for the degradation of biomasses in biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Full scaled tests of the KERENA trademark containment cooling condenser at the INKA test facility

    International Nuclear Information System (INIS)

    Leyer, Stephan; Maisberger, Fabian; Lineva, Natalia; Wagner, Thomas; Doll, Mathias; Herbst, Vasilli; Wich, Michael

    2010-01-01

    KERENA trademark is a medium-capacity boiling water reactor. It combines passive safety systems with active safety equipment of service-proven design. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without any power supply or actuation by instrumentation and control (I and C) equipment. They are designed to bring the plant to a safe and stable condition without the aid of active systems. Furthermore, the passive safety features partially replace the active systems, which reduces costs significantly and provides a safe, reliable and economically competitive plant design. At the new test facility at Karlstein called INKA (Integral Test Stand Karlstein), the key components of the KERENA trademark passive safety concept - the Emergency Condenser (EC), the Containment Cooling Condenser (CCC) and the passive core flooding system (PCFS) - are presently under full-scale testing,. Integral system tests will also be performed to show how the passive safety systems interact under various anticipated accident conditions and to demonstrate the ability of the passive systems to bring the plant to a safe and stable condition without the aid of active systems or actuation by I and C signals. The passive pressure pulse transmitter (PPPT) will be included in these integral tests. In this report the experimental setup and the first test results with the full scaled Containment Cooling Condenser will be described. (orig.)

  9. Results of full scale dry injection tests at MSW-incinerators using a new active absorbent

    International Nuclear Information System (INIS)

    Felsvang, K.S.; Helvind, O.

    1991-01-01

    Worldwide incineration of municipal solid waste (MSW) has been utilized to reduce the volume of waste to be disposed of. Increasing environmental concerns over the potential air pollution impacts have led to emission limits for pollutants such as HCl, SO 2 , particulate, and more recently also for mercury and dioxins. For a certain size of incinerators, dry sorbent injection is the preferred technology for air pollution control. This paper describes the development of a new active sorbent, Scansorb, which is particularly suited for use in dry injection processes. The new sorbent is a lime based product with adjustable properties. Scansorb can be produced with a specific surface area of 30 to 100 m 2 /g. Pilot plant development work has shown that a considerable reduction in the absorbent quantity can be achieved when Scansorb is used instead of commercial hydrated lime. Full scale tests performed at four different MSW incinerators have confirmed the viability of the new active absorbent. The full scale tests have demonstrated that more than 50% SO 2 removal can be achieved with Scansorb at quantities much less than with commercial hydrated lime

  10. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

    KAUST Repository

    Gonzalez-Gil, Graciela

    2014-12-11

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32 %), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18 %) and Anaerolinea (7 %) along with heterotrophic denitrifiers Rhodocyclacea (9 %), Comamonadacea (3 %), and Shewanellacea (3 %) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  11. On the dominant noise components of tactical aircraft: Laboratory to full scale

    Science.gov (United States)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  12. Novel cost effective full scale mussel shell bioreactors for metal removal and acid neutralization.

    Science.gov (United States)

    DiLoreto, Z A; Weber, P A; Olds, W; Pope, J; Trumm, D; Chaganti, S R; Heath, D D; Weisener, C G

    2016-12-01

    Acid mine drainage (AMD) impacted waters are a worldwide concern for the mining industry and countries dealing with this issue; both active and passive technologies are employed for the treatment of such waters. Mussel shell bioreactors (MSB) represent a passive technology that utilizes waste from the shellfish industry as a novel substrate. The aim of this study is to provide insight into the biogeochemical dynamics of a novel full scale MSB for AMD treatment. A combination of water quality data, targeted geochemical extractions, and metagenomic analyses were used to evaluate MSB performance. The MSB raised the effluent pH from 3.4 to 8.3 while removing up to ∼99% of the dissolved Al, and Fe and >90% Ni, Tl, and Zn. A geochemical gradient was observed progressing from oxidized to reduced conditions with depth. The redox conditions helped define the microbial consortium that consists of a specialized niche of organisms that influence elemental cycling (i.e. complex Fe and S cycling). MSB technology represents an economic and effective means of full scale, passive AMD treatment that is an attractive alternative for developing economies due to its low cost and ease of implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    International Nuclear Information System (INIS)

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the open-quote normal close-quote configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge

  14. Full Scale 3D Preoperative Planning System of the Ankle Joint Replacement Surgery with Multimedia System

    Directory of Open Access Journals (Sweden)

    Shuh-Ping Sun

    2014-05-01

    Full Text Available This study is intended to develop a computer-aided pre-surgical planning and simulating system in a multimedia environment for ankle joint replacement surgery. This system uses full-scale 3D reverse engineering techniques in design and development of the pre-surgical planning modules for ankle joint replacement surgery. This planning system not only develops the real-scale 3D image of the artificial ankle joint but also provides a detailed interior measurement of the ankle joint from various cutting planes. In this study, we apply the multimedia user interface to integrate different software functions into a surgical planning system with integrated functions. The functions include 3D model image acquisition, cutting, horizontal shifting and rotation of related bones (tibia and talus of the ankle joint in the predetermined time. For related bones of the ankle joint, it can also be used to design artificial ankle joints for adults in Taiwan. Those planning procedures can be recorded in this system for further research and investigation. Furthermore, since this system is a multimedia user interface, surgeons can use this system to plan and find a better and more efficient surgical approach before surgery. A database is available for this system to update and expand, which can provide different users with clinical cases as per their experience and learning.

  15. Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications.

    Science.gov (United States)

    Brepols, Ch; Schäfer, H; Engelhardt, N

    2010-01-01

    Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed.

  16. Team training using full-scale reactor coolant pump seal mock-ups

    International Nuclear Information System (INIS)

    McDonald, T.J.; Hamill, R.W.

    1987-01-01

    The use of full-scale reactor coolant pump (RCP) seal mock-ups has greatly enhanced Northeast Utilities' ability to effectively utilize the team training approach to technical training. With the advent of the Institute of Nuclear Power Operations accreditation come a new emphasis and standards for the integrated training of plant engineering personnel, maintenance mechanics, quality control personnel, and health physics personnel. The results of purchasing full-scale RCP mock-ups to pilot the concept of team training have far exceeded expectations and cost-limiting factors. The initial training program analysis identified RCP seal maintenance as a task that required training for maintenance department personnel. Due to radiation exposure considerations and the unavailability of actual plant equipment for training purposes, the decision was made to procure a mock-up of an RCP seal assembly and housing. This mock-up was designed to facilitate seal cartridge removal, disassembly, assembly, and installation, duplicating all internal components of the seal cartridge and housing area in exact detail

  17. Microbial community composition and ultrastructure of granules from a full-scale anammox reactor.

    Science.gov (United States)

    Gonzalez-Gil, Graciela; Sougrat, Rachid; Behzad, Ali R; Lens, Piet N L; Saikaly, Pascal E

    2015-07-01

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32%), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18%) and Anaerolinea (7%) along with heterotrophic denitrifiers Rhodocyclacea (9%), Comamonadacea (3%), and Shewanellacea (3%) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  18. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage

    Science.gov (United States)

    Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai

    2015-06-01

    The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.

  19. Full scale trials for qualification of the manufacture of the ITER TF coils in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Kunihiro, E-mail: matsui.kunihiro@jaea.go.jp; Hemmi, Tsutomu; Kajitani, Hideki; Yamane, Minoru; Mizutani, Takumi; Nakano, Toshihide; Takano, Katsutoshi; Ando, Shinji; Koizumi, Norikiyo

    2016-11-01

    Highlights: • High accuracy conductor winding of 0.1% was achieved in TF coil fabrication. • Conductor elongation due to heat treatment satisfied with the expected value of 0.06% ± 0.02%. • Commissioning of a transfer tooling without adding strain to conductor was completed. • Commissioning of a conductor insulation and CP welding was successfully completed. - Abstract: JAEA performed full-scale trials to qualify and optimize manufacturing procedure of TF coil fabrication prior to series production. In the full-scale trials, conductor winding, heat treatment, conductor transfer, conductor insulation and cover plate (CP) welding trials were performed to resolve some technical issues and to demonstrate the fabrication procedure. The followings are major achievement. (1) High accuracy conductor winding of 0.01%, (2) the evaluation of 0.06% conductor elongation due to heat treatment, (3) conductor transfer in a radial plate (RP) groove with addition strain under 0.1%, (4) conductor insulation without breakage of the insulation tape and (5) flatness of 2 mm of the double pancake (DP) by CP welding. Then JAEA started the 1st TF coil fabrication from March 2014, and has already completed ten conductor windings and heat treatment of nine windings.

  20. Analysis of panthers full-scale heat transfer tests with RELAP5

    International Nuclear Information System (INIS)

    Parlatan, Y.; Boyer, B.D.; Jo, J.; Rohatgi, S.

    1996-01-01

    The RELAP5 code is being assessed on the full-scale Passive Containment Cooling System (PCCS) in the Performance ANalysis and Testing of HEat Removal Systems (PANTHERS) facility at Societa Informazioni Termoidrauliche (SIET) in Italy. PANTHERS is a test facility with fall-size prototype beat exchangers for the PCCS in support of the General Electric's (GE) Simplified Boiling Water Reactor (SBWR) program. PANTHERS tests with a low noncondensable gas concentration and with a high noncondensable gas concentration were analyzed with RELAP5. The results showed that beat transfer rate decreases significantly along the PCCS tubes. In the test case with a higher inlet noncondensable gas fraction, the PCCS removed 35% less heat than in the test case with the lower noncondensable gas fraction. The dominant resistance to the overall heat transfer is the condensation beat transfer resistance inside the tubes. This resistance increased by about 5-fold between the inlet and exit of the tube due to the build up of noncondensable gases along the tube. The RELAP5 calculations also predicted that 4% to 5% of the heat removed to the PCCS pool occurs in the inlet steam piping and PCCS upper and lower headers. These piping needs to be modeled for other tests systems. The full-scale PANTHERS predictions are also compared against 1/400 scale GIRAFFE tests. GIRAFFE has 33% larger heat surface area, but its efficiency is only 15% and 23% higher than PANTHERS for the two cases analyzed This was explained by the high heat transfer resistance inside the tubes near the exit

  1. Classification of intellectual disability using the Wechsler Intelligence Scale for Children: Full Scale IQ or General Abilities Index?

    Science.gov (United States)

    Koriakin, Taylor A; McCurdy, Mark D; Papazoglou, Aimilia; Pritchard, Alison E; Zabel, T Andrew; Mahone, E Mark; Jacobson, Lisa A

    2013-09-01

    We examined the implications of using the Full Scale IQ (FSIQ) versus the General Abilities Index (GAI) for determination of intellectual disability using the Wechsler Intelligence Scales for Children, fourth edition (WISC-IV). Children referred for neuropsychological assessment (543 males, 290 females; mean age 10y 5mo, SD 2y 9mo, range 6-16y) were administered the WISC-IV and the Adaptive Behavior Assessment System, second edition (ABAS-II). GAI and FSIQ were highly correlated; however, fewer children were identified as having intellectual disability using GAI (n=159) than when using FSIQ (n=196). Although the 44 children classified as having intellectual disability based upon FSIQ (but not GAI) had significantly higher adaptive functioning scores than those meeting intellectual disability criteria based upon both FSIQ and GAI, mean adaptive scores still fell within the impaired range. FSIQ and GAI were comparable in predicting impairments in adaptive functioning. Using GAI rather than FSIQ in intellectual disability diagnostic decision-making resulted in fewer individuals being diagnosed with intellectual disability; however, the mean GAI of the disqualified individuals was at the upper end of criteria for intellectual impairment (standard score 75), and these individuals remained adaptively impaired. As GAI and FSIQ were similarly predictive of overall adaptive functioning, the use of GAI for intellectual disability diagnostic decision-making may be of limited value. © 2013 Mac Keith Press.

  2. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography.

    Science.gov (United States)

    Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock

    2016-11-10

    Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  3. Full scale BWR containment LOCA response test at the INKA test facility

    International Nuclear Information System (INIS)

    Wagner, Thomas; Leyer, Stephan

    2015-01-01

    KERENA is an innovative boiling water reactor concept with passive safety systems (Generation III+) of AREVA. The reactor is an evolutionary design of operating BWRs (Generation II). In order to verify the functionality and performance of the KERENA safety concept required for the transient and accident management, the test facility “Integral Teststand Karlstein” (INKA) was built at Karlstein (Germany). It is a mock-up of the KERENA boiling water reactor containment, with integrated pressure suppression system. The complete chain of passive safety components is available. The passive components and the levels are represented in full scale. The volume scaling of the containment compartments is approximately 1:24. The reactor pressure vessel (RPV) is simulated via the steam accumulator of the Karlstein Large Valve Test Facility. This vessel provides an energy storage capacity of approximately 1/6 of the KERENA RPV and is supplied by a Benson boiler with a thermal power of 22 MW. With respect to the available power supply, the containment- and system-sizing of the facility is by far the largest one of its kind worldwide. From 2009 to 2012, several single component tests were conducted (Emergency Condenser, Containment Cooling Condenser, Core Flooding System etc.). On March 21st, 2013, the worldwide first large-scale only passively managed integral accident test of a boiling water reactor was simulated at INKA. The integral test measured the combined response of the KERENA passive safety systems to the postulated initiating event was the “Main Steam Line Break” (MSLB) inside the Containment with decay heat simulation. The results of the performed integral test (MSLB) showed that the passive safety systems alone are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them as response to an anticipated accident scenario

  4. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  5. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    Science.gov (United States)

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  6. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  7. Disintegration of excess activated sludge--evaluation and experience of full-scale applications.

    Science.gov (United States)

    Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J

    2006-01-01

    Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.

  8. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    -commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis...

  9. Full scale validation of helminth ova (Ascaris suum) inactivation by different sludge treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulsrud, B.; Gjerde, B.; Lundar, A.

    2003-07-01

    The Norwegian sewage sludge regulation requires disinfection (hygienisation) of all sludges for land application, and one of the criteria is that disinfected sludge should not contain viable helminth ova. All disinfection processes have to be designed and operated in order to comply with this criteria, and four processes employed in Norway (thermophilic aerobic pre-treatment, pre-pasteurisation, thermal vacuum drying in membrane filter presses and lime treatment) have been tested in full scale by inserting semipermeable bags of Ascaris suum eggs into the processes for certain limes. For lime treatment supplementary laboratory tests have been conducted. The paper presents the results of the experiments, and it could be concluded that all processes, except lime treatment, could be operated at less stringent time-temperature regimes than commonly experienced at Norwegian plants today. (author)

  10. Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    Science.gov (United States)

    Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.

    2001-01-01

    Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  11. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-01

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it--this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  12. Full-scale operating experience of deep bed denitrification filter achieving phosphorus.

    Science.gov (United States)

    Husband, Joseph A; Slattery, Larry; Garrett, John; Corsoro, Frank; Smithers, Carol; Phipps, Scott

    2012-01-01

    The Arlington County Wastewater Pollution Control Plant (ACWPCP) is located in the southern part of Arlington County, Virginia, USA and discharges to the Potomac River via the Four Mile Run. The ACWPCP was originally constructed in 1937. In 2001, Arlington County, Virginia (USA) committed to expanding their 113,500 m³/d, (300,000 pe) secondary treatment plant to a 151,400 m³/d (400,000 pe) to achieve effluent total nitrogen (TN) to phosphorus (TP) phosphorus, to very low concentrations. This paper will review the steps from concept to the first year of operation, including pilot and full-scale operating data and the capital cost for the denitrification filters.

  13. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    Science.gov (United States)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  14. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  15. Mechanical Pretreatment to Increase the Bioenergy Yield for Full-scale Biogas Plants

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Angelidaki, Irini

    % compared to the untreated one. The digestion of meadow grass as an alternative co-substrate had positive impact on the energy yield of full-scale biogas reactors operating with cattle manure, pig manure or mixture of both. A preliminary analysis showed that the addition of meadow grass in a manure based...... biogas reactor was possible with biomass share of 10%, leading to energy production of 280 GJ/day. The digestion of pretreated meadow grass as alternative co-substrate had clearly positive impact in all the examined scenarios, leading to increased biogas production in the range of 10%-20%.......This study investigated the efficiency of commercially available harvesting machines for mechanical pretreatment of meadow grass, in order to enhance the energy yield per hectare. Excoriator was shown to be the most efficient mechanical pretreatment increasing the biogas yield of grass by 16...

  16. Electrical testing of the full-scale model of the NSTX HHFW antenna array

    International Nuclear Information System (INIS)

    Ryan, P. M.; Swain, D. W.; Wilgen, J. B.; Fadnek, A.; Sparks, D. O.

    1999-01-01

    The 30 MHz high harmonic fast wave (HHFW) antenna array for NSTX consists of 12 current straps, evenly spaced in the toroidal direction. Each pair of straps is connected as a half-wave resonant loop and will be driven by one transmitter, allowing rapid phase shift between transmitters. A decoupling network using shunt stub tuners has been designed to compensate for the mutual inductive coupling between adjacent current straps, effectively isolating the six transmitters from one another. One half of the array, consisting of six full-scale current strap modules, three shunt stub decouplers, and powered by three phase-adjustable rf amplifiers had been built for electrical testing at ORNL. Low power testing includes electrical characterization of the straps, operation and performance of the decoupler system, and mapping of the rf fields in three dimensions

  17. Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators

    Science.gov (United States)

    Kovalovs, A.; Barkanov, E.; Ruchevskis, S.; Wesolowski, M.

    2017-05-01

    An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.

  18. Structural degradation of a large composite wind turbine blade in a full-scale fatigue test

    DEFF Research Database (Denmark)

    Chen, Xiao

    carried out at a coupon level to characterize fatigue degradation of composite materials, there is no much study focusing on fatigue degradation of rotor blades at a fullscale structural level. Do structural properties of composite blades degrade in a similar manner to what has been observed in material...... tests at a coupon level? What might be the concerns one should take into account when predicting residual structural properties of rotor blades? To answer, at least to a partial extent, these questions, this study conducts a full-scale fatigue test on a 47m composite rotor blade according to IEC 61400......Wind turbine blades are expected to sustain a high number of loading cycles typically up to a magnitude of 1,000 million during their targeted service lifetime of 20-25 years. Structural properties of composite blades degrade with the time. Although substantial studies, such as [1,2], have been...

  19. Controlling Urban Lighting by Human Motion Patterns results from a full Scale Experiment

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    This paper presents a full-scale experiment investigating the use of human motion intensities as input for interactive illumination of a town square in the city of Aalborg in Denmark. As illuminators sixteen 3.5 meter high RGB LED lamps were used. The activity on the square was monitored by three...... thermal cameras and analysed by computer vision software from which motion intensity maps and peoples trajectories were estimated and used as input to control the interactive illumination. The paper introduces a 2-layered interactive light strategy addressing ambient and effect illumination criteria...... totally four light scenarios were designed and tested. The result shows that in general people immersed in the street lighting did not notice that the light changed according to their presence or actions, but people watching from the edge of the square noticed the interaction between the illumination...

  20. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  1. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    Existing wastewater treatment plants (WWTP) need retrofitting in order to better handle changes in the wastewater flow and composition, reduce operational costs as well as meet newer and stricter regulatory standards on the effluent discharge limits. In this study, we use an optimization based...... technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...... framework to manage the multi-criteria WWTP design/retrofit problem for domestic wastewater treatment. The design space (i.e. alternative treatment technologies) is represented in a superstructure, which is coupled with a database containing data for both performance and economics of the novel alternative...

  2. USB environment measurements based on full-scale static engine ground tests

    Science.gov (United States)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.

  3. Secondary clarifier hybrid model calibration in full scale pulp and paper activated sludge wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sreckovic, G.; Hall, E.R. [British Columbia Univ., Dept. of Civil Engineering, Vancouver, BC (Canada); Thibault, J. [Laval Univ., Dept. of Chemical Engineering, Ste-Foy, PQ (Canada); Savic, D. [Exeter Univ., School of Engineering, Exeter (United Kingdom)

    1999-05-01

    The issue of proper model calibration techniques applied to mechanistic mathematical models relating to activated sludge systems was discussed. Such calibrations are complex because of the non-linearity and multi-model objective functions of the process. This paper presents a hybrid model which was developed using two techniques to model and calibrate secondary clarifier parts of an activated sludge system. Genetic algorithms were used to successfully calibrate the settler mechanistic model, and neural networks were used to reduce the error between the mechanistic model output and real world data. Results of the modelling study show that the long term response of a one-dimensional settler mechanistic model calibrated by genetic algorithms and compared to full scale plant data can be improved by coupling the calibrated mechanistic model to as black-box model, such as a neural network. 11 refs., 2 figs.

  4. Full-Scale Approximations of Spatio-Temporal Covariance Models for Large Datasets

    KAUST Repository

    Zhang, Bohai

    2014-01-01

    Various continuously-indexed spatio-temporal process models have been constructed to characterize spatio-temporal dependence structures, but the computational complexity for model fitting and predictions grows in a cubic order with the size of dataset and application of such models is not feasible for large datasets. This article extends the full-scale approximation (FSA) approach by Sang and Huang (2012) to the spatio-temporal context to reduce computational complexity. A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is proposed to select knots automatically from a discrete set of spatio-temporal points. Our approach is applicable to nonseparable and nonstationary spatio-temporal covariance models. We illustrate the effectiveness of our method through simulation experiments and application to an ozone measurement dataset.

  5. Properties important to mixing and simulant recommendations for WTP full-scale vessel testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-01

    Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assigned to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.

  6. Bacterial community structure of a full-scale biofilter treating pig house exhaust air

    DEFF Research Database (Denmark)

    Kristiansen, Anja; Pedersen, Kristina Hadulla; Nielsen, Per Halkjær

    2011-01-01

    Biological air filters represent a promising tool for treating emissions of ammonia and odor from pig facilities. Quantitative fluorescence in situ hybridization (FISH) and 16S rRNA gene sequencing were used to investigate the bacterial community structure and diversity in a full-scale biofilter ...... consisting of two consecutive compartments (front and back filter). The analysis revealed a highly specialized bacterial community of limited diversity, dominated by a few groups of Betaproteobacteria (especially Comamonas) and diverse Bacteroidetes. Actinobacteria, Gammaproteobacteria......, and betaproteobacterial ammoniaoxidizers (Nitrosomonas eutropha/Nitrosococcus mobilis-lineage) were also quantitatively important. Only a few quantitative differences existed between the two filter compartments at the group level, with a lower relative abundance of Actinobacteria and a higher relative abundance...

  7. Report on full-scale horizontal cable tray fire tests, FY 1988

    International Nuclear Information System (INIS)

    Riches, W.M.

    1988-09-01

    In recent years, there has been much discussion throughout industry and various governmental and fire protection agencies relative to the flammability and fire propagation characteristics of electrical cables in open cable trays. It has been acknowledged that under actual fire conditions, in the presence of other combustibles, electrical cable insulation can contribute to combustible fire loading and toxicity of smoke generation. Considerable research has been conducted on vertical cable tray fire propagation, mostly under small scale laboratory conditions. In July 1987, the Fermi National Accelerator Laboratory initiated a program of full scale, horizontal cable tray fire tests, in the absence of other building combustible loading, to determine the flammability and rate of horizontal fire propagation in cable tray configurations and cable mixes typical of those existing in underground tunnel enclosures and support buildings at the Laboratory. The series of tests addressed the effects of ventilation rates and cable tray fill, fire fighting techniques, and effectiveness and value of automatic sprinklers, smoke detection and cable coating fire barriers in detecting, controlling or extinguishing a cable tray fire. This report includes a description of the series of fire tests completed in June 1988, as well as conclusions reached from the test results

  8. Full-scale experimentations on alternative materials in roads: analysis of study practices.

    Science.gov (United States)

    François, D; Jullien, A; Kerzreho, J P; Chateau, L

    2009-03-01

    In France beginning in the 1990s, the topic of road construction using various alternative materials has given rise to several studies aimed at clarifying the technical and environmental feasibility of such an option. Although crucial to understanding and forecasting their behaviour in the field, an analysis of feedback from onsite experiences (back analysis) of roads built with alternative materials has not yet been carried out. The aim of the CAREX project (2003-2005) has been to fill this gap at the national scale. Based on a stress-response approach applied to both the alternative material and the road structure and including the description of external factors, a dedicated standardised framework for field data classification and analysis was adopted. To carry out this analysis, a set of 17 documented field experiments was identified through a specific national survey. It appears that a great heterogeneity exists in data processing procedures among studies. The description of material is acceptable while it is generally poor regarding external factors and structure responses. Structure monitoring is usually brief and mechanical loads too weak, which limits the significance of field testing. For future full-scale experiments, strengthening the realism within the testing conditions would be appropriate.

  9. Constor registered full-scale prototype drop test and measuring program

    International Nuclear Information System (INIS)

    Koenig, S.; Diersch, R.; Quercetti, T.

    2004-01-01

    The CONSTOR registered steel-sandwich cask was developed as a cost-effective design by using conventional mechanical engineering technologies and commonly available materials. The CONSTOR registered consists of a cask body with an outer and an inner liner made of steel. At the upper end, the liners are welded to a ring made of forged steel. The space between the two liners is filled with heavy concrete named CONSTORIT for additional gamma and neutron shielding. The CONSTORIT consists of an iron aggregate frame and hardened cement paste. The liners of the cask and the forged head ring form the basis for the structural integrity, the CONSTORIT bears only a menial part of accident loads. The CONSTOR registered concept fulfils both the internationally valid IAEA criteria for transportation and the requirements for long-term intermediate storage in the US and various European countries. Since the beginning of the development of the CONSTOR registered design in the early nineties, two drop test series with half-scale models have already been performed. A full-scale model of a CONSTOR registered V for BWR inventory has been manufactured for the third drop test program starting in 2004, and will be presented in a first 9-meter drop test on the BAM drop test facility at Horstwalde near Berlin during the PATRAM 2004 Symposium. The transport package consists of a cask with a dummy basket, a puncture-resistant jacket and two impact limiters

  10. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.

    Science.gov (United States)

    Straub, Anthony P; Lin, Shihong; Elimelech, Menachem

    2014-10-21

    We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings.

  11. Calibration of Airframe and Occupant Models for Two Full-Scale Rotorcraft Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta, Lucas G.; Polanco, Michael A.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. Accelerations and kinematic data collected from the crash tests were compared to a system integrated finite element model of the test article. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the second full-scale crash test. This combination of heuristic and quantitative methods was used to identify modeling deficiencies, evaluate parameter importance, and propose required model changes. It is shown that the multi-dimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and co-pilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. This approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and test planning guidance. Complete crash simulations with validated finite element models can be used

  12. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  13. On the ASR and ASR thermal residues characterization of full scale treatment plant.

    Science.gov (United States)

    Mancini, G; Viotti, P; Luciano, A; Fino, D

    2014-02-01

    In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste. Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC - European Waste Catalogue - code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bacteriophage removal in a full-scale membrane bioreactor (MBR) - Implications for wastewater reuse.

    Science.gov (United States)

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2015-04-15

    The aim of this study was to assess the potential removal efficacy of viruses in a full-scale membrane bioreactor (MBR) wastewater reuse system, using a range of indigenous and 'spiked' bacteriophages (phages) of known size and morphology. Samples were taken each week for three months from nine locations at each treatment stage of the water recycling plant (WRP) and tested for a range of microbiological parameters (n = 135). Mean levels of faecal coliforms were reduced to 0.3 CFU/100 ml in the MBR product and were undetected in samples taken after the chlorination stage. A relatively large reduction (5.3 log) in somatic coliphages was also observed following MBR treatment. However, F-specific and human-specific (GB124) phages were less abundant at all stages, and demonstrated log reductions post-MBR of 3.5 and 3.8, respectively. In 'spiking' experiments, suspended 'spiked' phages (MS2 and B-14) displayed post-MBR log reductions of 2.25 and 2.30, respectively. The removal of these suspended phages, which are smaller than the membrane pore size (0.04 μm), also highlights the possible role of the membrane biofilm as an effective additional barrier to virus transmission. The findings from this study of a full-scale MBR system demonstrate that the enumeration of several phage groups may offer a practical and conservative way of assessing the ability of MBR to remove enteric viruses of human health significance. They also suggest that phage removal in MBR systems may be highly variable and may be closely related on the one hand to both the size and morphology of the viruses and, on the other, to whether or not they are attached to solids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Experimental investigation on full scale RC beam-column joint of NPP structures

    International Nuclear Information System (INIS)

    Thandavamoorthy, T.S.; Lakshmanan, N.; Reddy, G.R.; Kushwaha, H.S.

    2003-01-01

    The Nuclear Power Plant (NPP) structures in India are constructed using reinforced concrete. The beam-column joint in these structures are critical sub-assemblages because they ensure continuity of a structure and transfer forces from one element to another. Under seismic excitation, the beam-column joint region is subjected to horizontal and vertical shear forces whose magnitudes are typically many times higher than those within the adjacent beams and columns. In view of the increased incidence of seismicity in the country, the safety of these structures against earthquake loading assumes greater significance. There is a growing need to look into the seismic safety aspect of existing RC frame type structures in NPPs, which have been designed as per codes prevalent at the time of their construction. Seismic performance of such joints has not been studied extensively in India. Therefore experimental testing of full scale joint identical to those available in the existing NPP structures, was carried out to study its behaviour and evaluate its capacity. The size of the beam of the joint was 2000 mm x 610 mm x 915 mm and column 2915 mm x 610 mm x 915 mm. The percentage reinforcement of the beam was 4.95 and column 1.5. Such full scale and heavily reinforced concrete joint was cast successfully in the laboratory and tested under monotonic loading. The paper presents a complete description of the experimental testing, observations made during testing as for cracking, deflection and rotation of joint, discussion of results obtained, etc. Conclusions drawn from the investigation are also presented. (author)

  16. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    Energy Technology Data Exchange (ETDEWEB)

    Gelis, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wiedmeyer, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO42- from the fission products, since most of the interfering anions (e.g., CO32-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retain and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.

  17. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.

    Science.gov (United States)

    Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish

    2018-06-12

    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2  h -1  bar -1  compared with 4-7 L m -2  h -1  bar -1 ) over similarly rated commercial membranes.

  18. Performance evaluation of full scale UASB reactor in treating stillage wastewater

    Directory of Open Access Journals (Sweden)

    A.Mirsepasi , H. R. Honary , A. R. Mesdaghinia, A. H. Mahvi , H. Vahid , H. Karyab

    2006-04-01

    Full Text Available Upflow anaerobic sludge blanket (UASB reactors have been widely used for treatment of industrial wastewater. In this study two full-scale UASB reactors were investigated. Volume of each reactor was 420 m3. Conventional parameters such as pH, temperature and efficiency of COD, BOD, TOC removal in each reactor were investigated. Also several initial parameters in designing and operating of UASB reactors, such as upflow velocity, organic loading rate (OLR and hydraulic retention time were investigated. After modifying in operation conditions in UASB-2 reactor, average COD removal efficiency at OLR of 10–11 kg COD / m3 day was 55 percent. In order to prevent solids from settling, upflow velocity was increased to 0.35 m/h. Also to prevent solids from settling, the hydraulic retention time of wastewater in UASB-2 reactor was increased from 200 to 20 hours. This was expected that with good operation of UASB-2 reactor and with expanding of granules in the bed of the reactor, COD removal efficiency will be increased to more than 80 percent. But, because of deficiency on granulation and operation in UASB-2 reactor, this was not achieved. COD removal efficiency in the UASB-1 reactor was little. To enhance COD efficiency of UASB-1 reactor, several parameters were needed to be changed. These changes included enhancing of OLRs and upflow velocity, decreasing hydraulic retention time and operating with new sludge.

  19. Full scale monitoring of the twin chimneys of the rovinari power plant

    Directory of Open Access Journals (Sweden)

    Bayati I.

    2015-01-01

    Full Text Available The presented paper deals with the structural identification and monitoring of two twin chimneys in very close arrangement. Due to twin arrangement, important interference effects are expected to modify the chimney response to wind action, causing vortex shedding and state-dependent excitation associated to the oscillatory motion of the leeward chimney, in and out of the windward chimney wake. The complexity of the physics of this problem is increased by the dependency of the aerodynamics of circular cylinders on Reynolds number; however, there is a weakness of literature about cylinders behaviour at critical and super-critical range of Reynolds number, due to experimental limitations. Also the International Committee on Industrial Chimneys (CICIND does not provide, at present, any specific technical guideline about twin chimneys whose interaxis distance is less or equal two times the diameter, as in this case. For this reason a Tuned Mass Damper (TMD has been installed in order to increase the damping of the chimney, as merely suggested. This work aims at assessing the effectiveness of the installed TMD and characterizing the tower dynamic behaviour itself due to the wind excitation, as well as providing full scale measurements for twin cylinders configuration at high Reynolds numbers.

  20. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  1. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    International Nuclear Information System (INIS)

    Chen, L-C; Huang, Y-T; Chang, P-B

    2006-01-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  2. Static and fatigue experimental tests on a full scale fuselage panel and FEM analyses

    Directory of Open Access Journals (Sweden)

    Raffaele Sepe

    2016-02-01

    Full Text Available A fatigue test on a full scale panel with complex loading condition and geometry configuration has been carried out using a triaxial test machine. The demonstrator is made up of two skins which are linked by a transversal butt-joint, parallel to the stringer direction. A fatigue load was applied in the direction normal to the longitudinal joint, while a constant load was applied in the longitudinal joint direction. The test panel was instrumented with strain gages and previously quasi-static tests were conducted to ensure a proper load transferring to the panel. In order to support the tests, geometric nonlinear shell finite element analyses were conducted to predict strain and stress distributions. The demonstrator broke up after about 177000 cycles. Subsequently, a finite element analysis (FEA was carried out in order to correlate failure events; due to the biaxial nature of the fatigue loads, Sines criterion was used. The analysis was performed taking into account the different materials by which the panel is composed. The numerical results show a good correlation with experimental data, successfully predicting failure locations on the panel.

  3. Flame spread and smoke temperature of full-scale fire test of car fire

    Directory of Open Access Journals (Sweden)

    Dayan Li

    2017-09-01

    Full Text Available Full-scale experiments using two 4-door sedan passenger cars, placed side by side in the reverse direction, were carried out to establish the burning behavior and describe the spread of fire to adjacent car. The temperature was measured by thermocouples. Radiant heat flux was measured with heat flux gauge placed at a distance of 5 m, at the right side of the car. Four cameras were placed inside the car and in the fire test room recording burning behavior during the test. Engine compartment was ignited by a sponge dipped with little gasoline. During the experiment, the ignition was initiated in the engine compartment of car I and approximately 20 min were enough time for fire to spread into the second car. Fully-developed burning of two cars occurred at 29 min. It was observed that the flame spread through car roof faster than through the bottom of car compartment. The fire followed a slow rate spread from engine compartment to car cab. The temperature inside the car peaked at the point of 900 °C. The peak smoke temperatures at every location were measured at the range of 89–285 °C. The smoke production at the time of 11 min to 15 min 50 s of fire was 1.76 m3/s, which was obtained through indirect calculation method.

  4. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  5. Full-scale measurements of smoke transport and deposition in ventilation system ductwork

    International Nuclear Information System (INIS)

    Martin, R.A.; Fenton, D.L.

    1985-07-01

    This study is part of an effort to obtain experimental data in support of the fire accident analysis computer code FIRAC, which was developed at the Los Alamos National Laboratory. FIRAC can predict the transient movement of aerosolized or gaseous material throughout the complex ventilation systems of nuclear fuel cycle facilities. We conducted a preliminary set of full-scale material depletion/modification experiments to help assess the accuracy of the code's aerosol depletion model. Such tests were performed under realistic conditions using real combustion products in full-sized ducts at typical airflow rates. To produce a combustion aerosol, we burned both polystyrene and polymethyl methacrylate, the most and least smoky fuels typically found in fuel cycle plants, under varied ventilation (oxygen-lean and oxygen-rich) conditions. Aerosol mass deposition, size, and concentration measurements were performed. We found that as much as approx.25% of polystyrene smoke mass and as little as 2% of the polymethyl methacrylate generated at the entrance to a 15.2-m duct is deposited on the duct walls. We also compared our experimental results with theoretical equations currently used in FIRAC. 28 refs., 8 figs., 5 tabs

  6. Hydrodynamic parameters estimation from self-potential data in a controlled full scale site

    Science.gov (United States)

    Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore

    2015-03-01

    A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.

  7. Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Müller, H.R.; Garitte, B.; Vogt, T.; and others

    2017-04-15

    Opalinus Clay is currently being assessed as the host rock for a deep geological repository for high-level and low- and intermediate-level radioactive wastes in Switzerland. Within this framework, the 'Full-Scale Emplacement' (FE) experiment was initiated at the Mont Terri rock laboratory close to the small town of St-Ursanne in Switzerland. The FE experiment simulates, as realistically as possible, the construction, waste emplacement, backfilling and early post-closure evolution of a spent fuel/vitrified high-level waste disposal tunnel according to the Swiss repository concept. The main aim of this multiple heater test is the investigation of repository-induced thermo-hydro-mechanical (THM) coupled effects on the host rock at this scale and the validation of existing coupled THM models. For this, several hundred sensors were installed in the rock, the tunnel lining, the bentonite buffer, the heaters and the plug. This paper is structured according to the implementation timeline of the FE experiment. It documents relevant details about the instrumentation, the tunnel construction, the production of the bentonite blocks and the highly compacted 'granulated bentonite mixture' (GBM), the development and construction of the prototype 'backfilling machine' (BFM) and its testing for horizontal GBM emplacement. Finally, the plug construction and the start of all 3 heaters (with a thermal output of 1350 Watt each) in February 2015 are briefly described. In this paper, measurement results representative of the different experimental steps are also presented. Tunnel construction aspects are discussed on the basis of tunnel wall displacements, permeability testing and relative humidity measurements around the tunnel. GBM densities achieved with the BFM in the different off-site mock-up tests and, finally, in the FE tunnel are presented. Finally, in situ thermal conductivity and temperature measurements recorded during the first heating months

  8. Evaluation Criteria and Results of Full Scale Testing of Bridge Abutment Made from Reinforced Soil

    Science.gov (United States)

    Hildebrand, Maciej; Rybak, Jarosław

    2017-10-01

    Structures made of reinforced soil can be evaluated for their safety based on a load testing. Measurement results are essentially evaluated by displacements of surcharge (mainly in vertical direction) and facing elements (mainly in horizontal direction). Displacements are within several tenths to several millimetres and they can be taken by common geodetic equipment. Due to slow soil consolidation (progress of displacements) under constant load, observations should be made over several days or even weeks or months. A standard procedure of heating of geotextiles, used in laboratory conditions to simulate long term behaviour cannot be used in a natural scale. When the load is removed, the soil unloading occurs. Both the progress of displacements and soil unloading after unloading of the structure are the key presumptions for evaluating its safety (stability). Assessment of measuring results must be preceded by assuming even the simplest model of the structure, so as it could be possible to estimate the expected displacements under controlled load. In view of clearly random nature of soil parameters of retaining structure composed of reinforced soil and due to specific erection technology of reinforced soil structure, the assessment of its condition is largely based on expert’s judgment. It is an essential and difficult task to interpret very small displacements which are often enough disturbed by numerous factors like temperature, insolation, precipitation, vehicles, etc. In the presented paper, the authors tried to establish and juxtapose some criteria for a load test of a bridge abutment and evaluate their suitability for decision making. Final remarks are based on authors experience from a real full scale load test.

  9. Evaluation of Thermal and Thermo-mechanical Behavior of Full-scale Energy Foundations

    Science.gov (United States)

    Murphy, Kyle D.

    This study focuses on the thermo-mechanical and thermal behavior of full-scale energy foundations installed as part of two buildings recently constructed in Colorado. The soil stratigraphy at each of the sites differed, but both foundations were expected to function as primarily end-bearing elements with a tip socketed into rock. The heat exchanger configurations were also different amongst the foundations at both sites, permitting evaluation of the role of heat exchange. A common thread for both energy foundation case histories was the monitoring of the temperature and axial strain within the foundations during heat exchange operations. The first case study involves an evaluation of the long-term thermo-mechanical response of two full-scale energy foundations installed at the new Denver Housing Authority (DHA) Senior Living Facility at 1099 Osage St. in Denver, Colorado. Due to the construction schedule for this project, the thermal properties of the foundations and surrounding subsurface could not be assessed using thermal response tests. However, instrumentation was incorporated into the foundations to assess their long-term heat exchange response as well as the thermo-mechanical strains, stresses, and displacements that occurred during construction and operation of the ground-source heat pump system. The temperature changes within the foundations during heating and cooling operations over a period of approximately 600 days ranged from 9 to 32 °C, respectively. The thermal axial stresses in the foundations were calculated from the measured strains, and ranged from 3.1 MPa during heating to --1.0 MPa during cooling. These values are within reasonable limits for reinforced concrete structures. The maximum thermal axial stress was observed near the toe of both foundations, which is consistent with trends expected for end-bearing toe boundary conditions. The greatest thermal axial strains were observed near the top of the foundations (upward expansion during

  10. The full-scale Emplacement (FE) Experiment at the Mont Terri URL

    International Nuclear Information System (INIS)

    Mueller, H.R.; Weber, H.P.; Koehler, S.; Vogt, T.; Vietor, T.

    2012-01-01

    Document available in extended abstract form only. The Full-Scale Emplacement (FE) Experiment at the Mont Terri underground research laboratory (URL) is a full-scale heater test in a clay-rich formation. It simulates the construction, waste emplacement and backfilling of a spent fuel (SF) / vitrified high-level waste (HLW) repository tunnel as realistically as possible. The entire experiment implementation as well as the post-closure THM(C) evolution will be monitored using several hundred sensors. These are distributed in the host rock in the near- and far-field, the tunnel lining, the engineered barrier system and on the heaters. The aim of this experiment is to investigate HLW repository-induced thermo-hydro-mechanical (THM) coupled effects on the host rock and the validation of existing coupled THM models. A further aim is the verification of the technical feasibility of constructing a 50 m repository section at full scale with all relevant components using standard industrial equipment. Finally, the experiment will demonstrate the canister and buffer emplacement procedures for underground conditions based on the Swiss disposal concept. Experimental layout The FE experiment is based on the Swiss disposal concept for SF / HLW. The 50 m long test gallery, at the end of the former MB test tunnel in the Mont Terri URL, will be realised with a diameter of approx. 3 m. In the experiment gallery, 3 heaters with dimensions similar to those of waste canisters will be emplaced on top of abutments built of bentonite blocks. The remaining space will be backfilled with compacted bentonite pellets. The experiment will be sealed off towards the start niche with a concrete plug holding the buffer in place and reducing air and water fluxes. The first scoping calculations and design modelling for the 'far-field' instrumentation have been completed; these works have been carried out using CodeBRIGHT and the multiphase flow simulator TOUGH2. With an initial heat output of 1500 W

  11. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

    2012-07-01

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National

  12. Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Wolfgang Wagner

    2011-03-01

    Full Text Available Roughness is an important input parameter for modeling of natural hazards such as floods, rock falls and avalanches, where it is basically assumed that flow velocities decrease with increasing roughness. Seeing roughness as a multi-scale level concept (i.e., ranging from fine-scale soil characteristics to description of understory and lower tree layer various roughness raster products were derived from the original full-waveform airborne laser scanning (FWF-ALS point cloud using two different types of roughness parameters, the surface roughness (SR and the terrain roughness (TR. For the calculation of the SR, ALS terrain points within a defined height range to the terrain surface are considered. For the parameterization of the SR, two approaches are investigated. In the first approach, a geometric description by calculating the standard deviation of plane fitting residuals of terrain points is used. In the second one, the potential of the derived echo widths are analyzed for the parameterization of SR. The echo width is an indicator for roughness and the slope of the target. To achieve a comparable spatial resolution of both SR layers, the calculation of the standard deviation of detrended terrain points requires a higher terrain point density than the SR parameterization using the echo widths. The TR describes objects (i.e., point clusters close but explicitly above the terrain surface, with 20 cm defined as threshold height value for delineation of the surface layer (i.e., forest floor layer. Two different empirically defined vegetation layers below the canopy layer were analyzed (TR I: 0.2 m to 1.0 m; TR II: 0.2 m to 3.0 m. A 1 m output grid cell size was chosen for all roughness parameters in order to provide consistency for further integration of high-resolution optical imagery. The derived roughness parameters were then jointly classified, together with a normalized Digital Surface Model (nDSM showing the height of objects (i

  13. Investigation of the velocity field in a full-scale model of a cerebral aneurysm

    International Nuclear Information System (INIS)

    Roloff, Christoph; Bordás, Róbert; Nickl, Rosa; Mátrai, Zsolt; Szaszák, Norbert; Szilárd, Szabó; Thévenin, Dominique

    2013-01-01

    Highlights: • We investigate flow fields inside a phantom model of a full-scale cerebral aneurysm. • An artificial blood fluid is used matching viscosity and density of real blood. • We present Particle Tracking results of fluorescent tracer particles. • Instantaneous model inlet velocity profiles and volume flow rates are derived. • Trajectory fields at three of six measurement planes are presented. -- Abstract: Due to improved and now widely used imaging methods in clinical surgery practise, detection of unruptured cerebral aneurysms becomes more and more frequent. For the selection and development of a low-risk and highly effective treatment option, the understanding of the involved hemodynamic mechanisms is of great importance. Computational Fluid Dynamics (CFD), in vivo angiographic imaging and in situ experimental investigations of flow behaviour are powerful tools which could deliver the needed information. Hence, the aim of this contribution is to experimentally characterise the flow in a full-scale phantom model of a realistic cerebral aneurysm. The acquired experimental data will then be used for a quantitative validation of companion numerical simulations. The experimental methodology relies on the large-field velocimetry technique PTV (Particle Tracking Velocimetry), processing high speed images of fluorescent tracer particles added to the flow of a blood-mimicking fluid. First, time-resolved planar PTV images were recorded at 4500 fps and processed by a complex, in-house algorithm. The resulting trajectories are used to identify Lagrangian flow structures, vortices and recirculation zones in two-dimensional measurement slices within the aneurysm sac. The instantaneous inlet velocity distribution, needed as boundary condition for the numerical simulations, has been measured with the same technique but using a higher frame rate of 20,000 fps in order to avoid ambiguous particle assignment. From this velocity distribution, the time

  14. Graduate Student WAIS-III Scoring Accuracy Is a Function of Full Scale IQ and Complexity of Examiner Tasks

    Science.gov (United States)

    Hopwood, Christopher J.; Richard, David C. S.

    2005-01-01

    Research on the Wechsler Adult Intelligence Scale-Revised and Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) suggests that practicing clinical psychologists and graduate students make item-level scoring errors that affect IQ, index, and subtest scores. Studies have been limited in that Full-Scale IQ (FSIQ) and examiner administration,…

  15. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  16. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  17. Full scale demonstration of shotcrete sealing plug under realistic working conditions

    International Nuclear Information System (INIS)

    Barcena, Ignacio; Garcia-Sineriz, Jose-Luis

    2008-01-01

    shotcrete formulated to obtain a final low-pH prod uct and, therefore, testing of this specific material under realistic conditions is needed. The research activities carried out in this sense within the IP ESDRED have provided a low-pH concrete formulation suitable of being shotcreted. In a series of field tests, this concrete fulfilled the established functional requirements in terms of low pH, long distance pumpability and sprayability. Thereafter, a short low-pH shotcrete plug was successfully constructed and tested (load test to determine its bearing capacity) at the Aespoe URL. The feasibility of the construction in accordance to the established requirements was demonstrated, and the plug behaved as expected, showing a good enduring capacity under mechanical load. The results from the test provided valuable information on the mechanical behaviour of confined granite-shotcrete interfaces, which has been used for improving the plug design calculations. As a final step, a full-scale low-pH shotcrete plug has been constructed in the Grimsel URL to check the feasibility and performance of this type of plug construction under realistic conditions - swelling pressure exerted by the saturated bentonite and the local hydraulic gradient. The construction was successfully carried out in winter time, with no access by road to the Laboratory, and producing the concrete 'in situ', within a restricted space, what demonstrated its feasibility in the toughest conditions. The proposed paper is mainly focused on the construction of the full-scale tests and the results obtained. (author)

  18. A Comparative Analysis of Two Full-Scale MD-500 Helicopter Crash Tests

    Science.gov (United States)

    Littell, Justin D.

    2011-01-01

    Two full scale crash tests were conducted on a small MD-500 helicopter at NASA Langley Research Center fs Landing and Impact Research Facility. One of the objectives of this test series was to compare airframe impact response and occupant injury data between a test which outfitted the airframe with an external composite passive energy absorbing honeycomb and a test which had no energy absorbing features. In both tests, the nominal impact velocity conditions were 7.92 m/sec (26 ft/sec) vertical and 12.2 m/sec (40 ft/sec) horizontal, and the test article weighed approximately 1315 kg (2900 lbs). Airframe instrumentation included accelerometers and strain gages. Four Anthropomorphic Test Devices were also onboard; three of which were standard Hybrid II and III, while the fourth was a specialized torso. The test which contained the energy absorbing honeycomb showed vertical impact acceleration loads of approximately 15 g, low risk for occupant injury probability, and minimal airframe damage. These results were contrasted with the test conducted without the energy absorbing honeycomb. The test results showed airframe accelerations of approximately 40 g in the vertical direction, high risk for injury probability in the occupants, and substantial airframe damage.

  19. Full scale test platform for European TBM systems integration and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Vála, Ladislav, E-mail: ladislav.vala@cvrez.cz; Reungoat, Mathieu; Vician, Martin

    2016-11-01

    Highlights: • A platform for EU-TBS maintenance and integration tests is described. • Its modular design allows adaptation to non-EU TBSs. • Assembling of the facility will be followed by initial tests in 2016. - Abstract: This article deals with description and current status of a project of a non-nuclear, full size (1:1 scale) test platform dedicated to tests, optimization and validation of integration and maintenance operations for the European TBM systems in the ITER port cell #16. The facility called TBM platform reproduces the ITER port cell #16 and port interspace with all the relevant interfaces and mock-ups of the corresponding main components. Thanks to the modular design of the platform, it is possible to adapt or change completely the interfaces in the future if needed or required according to the updated configuration of TBSs. In the same way, based on customer requirements, it will be possible to adapt the interfaces and piping inside the mock-ups in order to represent also the other, non-EU configurations of TBM systems designed for port cells #02 and #18. Construction of this test platform is realized and funded within the scope of the SUSEN project.

  20. Quick-start of full-scale anaerobic digestion (AD) using aeration

    Energy Technology Data Exchange (ETDEWEB)

    Lagerkvist, Anders, E-mail: al@ltu.se; Pelkonen, Markku; Wikström, Tommy

    2015-04-15

    Highlights: • A fast, and original, start up procedure for anaerobic digestors has been applied at full scale. • The development of a methanogenic culture has been documented using fluorescent in situ hybridization. • The technique can be widely applied. - Abstract: A conventional 1300 m{sup 3} continuously stirred anaerobic tank reactor at the city of Boden, north Sweden, which was receiving a feed of both sewage sludge and food waste, was put out of operation due to the build-up of a float phase. The reactor was emptied and cleaned. At start-up there was no methanogenic sludge available, so an unconventional start-up procedure was applied: The reactor was rapidly (8 days with 1200 kg of total solids (TS) added daily) filled with thickened, and slightly acidic sewage sludge, showing only slight methane generation, which was subsequently heated to 55 °C. Then compressed air was blown into the digester and within a month a fully functional methanogenic culture was established. The transfer from acidogenic to methanogenic conditions happened in about one week. As a start-up technique this is fast and cost efficient, it only requires the access of a compressor, electricity and a source of air. In total, about 16 tonnes of oxygen were used. It is proposed that this method may also be used as an operational amendment technique, should a reactor tend to acidify.

  1. Quick-start of full-scale anaerobic digestion (AD) using aeration

    International Nuclear Information System (INIS)

    Lagerkvist, Anders; Pelkonen, Markku; Wikström, Tommy

    2015-01-01

    Highlights: • A fast, and original, start up procedure for anaerobic digestors has been applied at full scale. • The development of a methanogenic culture has been documented using fluorescent in situ hybridization. • The technique can be widely applied. - Abstract: A conventional 1300 m 3 continuously stirred anaerobic tank reactor at the city of Boden, north Sweden, which was receiving a feed of both sewage sludge and food waste, was put out of operation due to the build-up of a float phase. The reactor was emptied and cleaned. At start-up there was no methanogenic sludge available, so an unconventional start-up procedure was applied: The reactor was rapidly (8 days with 1200 kg of total solids (TS) added daily) filled with thickened, and slightly acidic sewage sludge, showing only slight methane generation, which was subsequently heated to 55 °C. Then compressed air was blown into the digester and within a month a fully functional methanogenic culture was established. The transfer from acidogenic to methanogenic conditions happened in about one week. As a start-up technique this is fast and cost efficient, it only requires the access of a compressor, electricity and a source of air. In total, about 16 tonnes of oxygen were used. It is proposed that this method may also be used as an operational amendment technique, should a reactor tend to acidify

  2. Assembly of a Full-Scale External Tank Barrel Section Using Friction Stir Welding

    Science.gov (United States)

    Jones, Chip; Adams, Glynn

    1999-01-01

    A full-scale pathfinder barrel section of the External Tank for the National Aeronautics and Space Administration (NASA) Space Transport System (Space Shuttle) has been assembled at Marshall Space Flight Center (MSFC) via a collaborative effort between NASA/MSFC and Lockheed Martin Michoud Space Systems. The barrel section is 27.5 feet in diameter and 15 feet in height. The barrel was assembled using Super-Light-Weight (SLWT), orthogrid, Al-Li 2195 panel sections and a single longeron panel. A vertical weld tool at MSFC was modified to accommodate FSW and used to assemble the barrel. These modifications included the addition of a FSW weld head and new controller hardware and software, the addition of a backing anvil and the replacement of the clamping system with individually actuated clamps. Weld process 4evelopment was initially conducted to optimize the process for the welds required for completing the assembly. The variable thickness welds in the longeron section were conducted via both two-sided welds and with the use of a retractable pin tool. The barrel assembly was completed in October 1998. Details of the vertical weld tool modifications and the assembly process are presented.

  3. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    Science.gov (United States)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  4. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    Science.gov (United States)

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. CFD analysis of a full-scale ceramic kiln module under actual operating conditions

    Science.gov (United States)

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Venturelli, Matteo

    2017-11-01

    The paper focuses on the CFD analysis of a full-scale module of an industrial ceramic kiln under actual operating conditions. The multi-dimensional analysis includes the real geometry of a ceramic kiln module employed in the preheating and firing sections and investigates the heat transfer between the tiles and the burners' flame as well as the many components that comprise the module. Particular attention is devoted to the simulation of the convective flow field in the upper and lower chambers and to the effects of radiation on the different materials is addressed. The assessment of the radiation contribution to the tiles temperature is paramount to the improvement of the performance of the kiln in terms of energy efficiency and fuel consumption. The CFD analysis is combined to a lumped and distributed parameter model of the entire kiln in order to simulate the module behaviour at the boundaries under actual operating conditions. Finally, the CFD simulation is employed to address the effects of the module operating conditions on the tiles' temperature distribution in order to improve the temperature uniformity as well as to enhance the energy efficiency of the system and thus to reduce the fuel consumption.

  6. Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building.

    Science.gov (United States)

    Wang, Xiang; Hutchinson, Tara C; Astroza, Rodrigo; Conte, Joel P; Restrepo, José I; Hoehler, Matthew S; Ribeiro, Waldir

    2017-03-01

    This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design.

  7. Full-scale laboratory drilling tests on sandstone and dolomite. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Black, A. D.; Green, S. J.; Rogers, L. A.

    1977-08-01

    Full-scale laboratory drilling experiments were performed under simulated downhole conditions to determine what effect changing various drilling parameters has on penetration rate. The two rock types, typical of deep oil and gas reservoirs, used for the tests were Colton Sandstone and Bonne Terre Dolomite. Drilling was performed with standard 7/sup 7///sub 8/ inch rotary insert bits and water base mud. The results showed the penetration rate to be strongly dependent on bit weight, rotary speed and borehole mud pressure. There was only a small dependence on mud flow rate. The drilling rate decreased rapidly with increasing borehole mud pressure for borehole pressures up to about 2,000 psi. Above this pressure, the borehole pressure and rotary speeds had a smaller effect on penetration rate. The penetration rate was then dependent mostly on the bit weight. Penetration rate per horsepower input was also shown to decrease at higher mud pressures and bit weights. The ratio of horizontal confining stress to axial overburden stress was maintained at 0.7 for simulated overburden stresses between 0 and 12,800 psi. For this simulated downhole stress state, the undrilled rock sample was within the elastic response range and the confining pressures were found to have only a small or negligible effect on the penetration rate. Visual examination of the bottomhole pattern of the rocks after simulated downhole drilling, however, revealed ductile chipping of the Sandstone, but more brittle behavior in the Dolomite.

  8. Full scale test results for ship ice impact forces and pressures

    International Nuclear Information System (INIS)

    Ghoneim, G.A.

    1993-01-01

    A set of full scale impact tests were carried out for the icebreakers Canmar Kigoriak and Robert LeMeur in first and multi-year ice conditions in the southern Beaufort Sea. Preliminary results of the testing program were published in Ghoneim et al. (1984). This paper presents some salient results of further analysis of the data. This includes a description of the different types of ice ramming mechanisms and the corresponding ice force time histories and ship response. A comparison between the bow force peak values for the kigoriak and the Robert LeMeur is made and the reasons for the difference are evaluated. The question of dynamic magnification of the response is investigated. The relationship between the peak impact force and the ramming velocity is evaluated for both ships and compared with theoretical and empirical formulations. Other parametric relationships are presented, including such parameters as force duration and relative magnitude of the impact and beaching bow forces. The added mass is evaluated from measured accelerations and calculated bow forces and are shown to be time dependent. The relationship between ice pressure and corresponding contact area is discussed. Finally, conclusions and recommendations are presented

  9. Comparative performance evaluation of full-scale anaerobic and aerobic wastewater treatment processes in Brazil.

    Science.gov (United States)

    von Sperling, M; Oliveira, S C

    2009-01-01

    This article evaluates and compares the actual behavior of 166 full-scale anaerobic and aerobic wastewater treatment plants in operation in Brazil, providing information on the performance of the processes in terms of the quality of the generated effluent and the removal efficiency achieved. The observed results of effluent concentrations and removal efficiencies of the constituents BOD, COD, TSS (total suspended solids), TN (total nitrogen), TP (total phosphorus) and FC (faecal or thermotolerant coliforms) have been compared with the typical expected performance reported in the literature. The treatment technologies selected for study were: (a) predominantly anaerobic: (i) septic tank + anaerobic filter (ST + AF), (ii) UASB reactor without post-treatment (UASB) and (iii) UASB reactor followed by several post-treatment processes (UASB + POST); (b) predominantly aerobic: (iv) facultative pond (FP), (v) anaerobic pond followed by facultative pond (AP + FP) and (vi) activated sludge (AS). The results, confirmed by statistical tests, showed that, in general, the best performance was achieved by AS, but closely followed by UASB reactor, when operating with any kind of post-treatment. The effluent quality of the anaerobic processes ST + AF and UASB reactor without post-treatment was very similar to the one presented by facultative pond, a simpler aerobic process, regarding organic matter.

  10. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  11. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  12. A novel full scale experimental characterization of wind turbine aero-acoustic noise sources - preliminary results

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas

    2016-01-01

    of the blade and the noise on the ground in a distance of about one rotor diameter. In total six surface microphones were used to measure the SP at the leading edge (LE) and trailing edge (TE) of the blade. In parallel noise was measured by eight microphones placed on plates on the ground around the turbine......The paper describes a novel full scale experiment on a 500 kW wind turbine with the main objective to characterize the aero-acoustic noise sources. The idea behind the instrumentation is to study the link and correlation between the surface pressure (SP) fluctuations in the boundary layer...... in equidistant angles on a circle with a radius of about one rotor diameter. The data were analyzed in segments of 2.2 s which is the time for one rotor revolution. The spectra for the TE microphones on the suction side of the blade show a characteristic roll-off pattern around a frequency of 600-700 Hz...

  13. Performance of a full-scale ITER metal hydride storage bed in comparison with requirements

    International Nuclear Information System (INIS)

    Beloglazov, S.; Glugla, M.; Fanghaenel, E.; Perevezentsev, A.; Wagner, R.

    2008-01-01

    The storage of hydrogen isotopes as metal hydride is the technique chosen for the ITER Tritium Plant Storage and Delivery System (SDS). A prototype storage bed of a full-scale has been designed, manufactured and intensively tested at the Tritium Laboratory, addressing main performance parameters specified for the ITER application. The main requirements for the hydrogen storage bed are a strict physical limitation of the tritium storage capacity (currently 70 g T 2 ), a high supply flow rate of hydrogen isotopes, in-situ calorimetry capabilities with an accuracy of 1 g and a fully tritium compatible design. The pressure composition isotherm of the ZrCo hydrogen system, as a reference material for ITER, is characterised by significant slope. As a result technical implementation of the ZrCo hydride bed in the SDS system requires further considerations. The paper presents the experience from the operation of ZrCo getter bed including loading/de-loading operation, calorimetric loop performance, and active gas cooling of the bed for fast absorption operation. The implications of hydride material characteristics on the SDS system configuration and design are discussed. (authors)

  14. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Arvin, Erik; Corfitzen, Charlotte B.

    2014-01-01

    and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters — removal was the greatest in the sand filters in the filter line with the highest contact time (63min). In these secondary sand...... in the full-scale system. Therefore, microcosms were set up with filter sand, water and 14C-labelled MCPP at an initial concentration of 0.2μg/L. After 24h, 79–86% of the initial concentration of MCPP was removed. Sorption removed 11–15%, while the remaining part was removed by microbial processes, leading...... to a complete mineralisation of 13–18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer...

  15. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  16. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters.

    Science.gov (United States)

    Sundberg, Carina; Al-Soud, Waleed A; Larsson, Madeleine; Alm, Erik; Yekta, Sepehr S; Svensson, Bo H; Sørensen, Søren J; Karlsson, Anna

    2013-09-01

    The microbial community of 21 full-scale biogas reactors was examined using 454 pyrosequencing of 16S rRNA gene sequences. These reactors included seven (six mesophilic and one thermophilic) digesting sewage sludge (SS) and 14 (ten mesophilic and four thermophilic) codigesting (CD) various combinations of wastes from slaughterhouses, restaurants, households, etc. The pyrosequencing generated more than 160,000 sequences representing 11 phyla, 23 classes, and 95 genera of Bacteria and Archaea. The bacterial community was always both more abundant and more diverse than the archaeal community. At the phylum level, the foremost populations in the SS reactors included Actinobacteria, Proteobacteria, Chloroflexi, Spirochetes, and Euryarchaeota, while Firmicutes was the most prevalent in the CD reactors. The main bacterial class in all reactors was Clostridia. Acetoclastic methanogens were detected in the SS, but not in the CD reactors. Their absence suggests that methane formation from acetate takes place mainly via syntrophic acetate oxidation in the CD reactors. A principal component analysis of the communities at genus level revealed three clusters: SS reactors, mesophilic CD reactors (including one thermophilic CD and one SS), and thermophilic CD reactors. Thus, the microbial composition was mainly governed by the substrate differences and the process temperature. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    Science.gov (United States)

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  18. Full scale vibration test on nuclear power plant auxiliary building: Part I

    International Nuclear Information System (INIS)

    Langer, V.; Tinic, S.; Berger, E.; Zwicky, P.; Prater, E.G.

    1987-01-01

    In connection with the construction of the reinforced concrete auxiliary building housing the two boric water tanks (so-called BOTA building) of the Beznau Nuclear Power Plant in Switzerland the opportunity was given to carry out full scale vibration tests in November 1985. The overall aim of the tests was to validate computational models and parameters widely used in the seismic analysis of the structures and critical components of nuclear power plants. The scope of the experimental investigation was the determination of the eigenfrequencies and damping values for the fundamental soil-structure interaction (SSI) modes. The excitation level was aimed to be as high as feasibly possible. A working group was formed of representatives of the owner, NOK, the consulting firm Basler and Hofmann and the ETH to supervise the project. The project's main phases were the planning and execution of the tests, the evaluation of recorded data, numerical simulation of the tests using different computer models and finally the comparison and interpretation of measured and computed results

  19. Full Scale Test of a SSP 34m box girder 1. Data report

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Branner, Kim; Nielsen, Per Hørlyk

    This report presents the setup and result of a full-scale test of a reinforced glass fibre/epoxy box girder used in 34m wind turbine blade. The tests were performed at the Blaest test facility in August 2006. The test is an important part of a research project established in cooperation between...... Risø DTU, the National Laboratory for Sustainable Energy at the Technical University of Denmark -, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Mølholt Jensen‟s PhD study. This report contains the complete test data for the final test, in which...... the box girder was loaded until failure. A comprehensive description of the test setup is given. This report deals only with tests and results. There are no conclusions on the data in this report, but references are given to publications, where the data are used and compared with FEM etc. Various kinds...

  20. Comparison of organic emissions from laboratory and full-scale thermal degradation of sewage sludge

    International Nuclear Information System (INIS)

    Tirey, D.A.; Striebich, R.C.; Dellinger, B.; Bostian, H.E.

    1991-01-01

    Samples of sewage sludge burned at one fluidized-bed and three multiple-hearth incinerators were subjected to laboratory flow reactor thermal decomposition testing in both pyrolytic and oxidative atmospheres. The time/temperature conditions of the laboratory testing were established to simulate as closely as possible full-scale incineration conditions so that a direct comparison of results could be made. The laboratory test results indicated that biomass decomposition products, not toxic industrial contaminants, comprised the majority of the emissions. Benzene, toluene, ethylbenzene, acrylonitrile, and acetonitrile were consistently the most environmentally significant products of thermal degradation. Comparison of the results from this study with those obtained in field tests was complicated by an apparent loss of volatile chlorocarbons from the sludge samples received for laboratory testing. However, qualitative comparison of emission factors derived from lab and field results for those compounds observed in both studies, showed reasonably good correlation for the pyrolysis testing. Results suggested that the upper stages of multiple-hearth units may vaporize many volatile components of the sludge before they enter the combustion stages of the incinerator and thus represent a direct source of introduction of pollutants into the atmosphere

  1. Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests

    Science.gov (United States)

    Annett, Martin; Littell, Justin

    2015-01-01

    The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  2. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters

    Science.gov (United States)

    Jesussek, Mathias; Ellermann, Katrin

    2014-12-01

    Reliability and dependability in complex mechanical systems can be improved by fault detection and isolation (FDI) methods. These techniques are key elements for maintenance on demand, which could decrease service cost and time significantly. This paper addresses FDI for a railway vehicle: the mechanical model is described as a multibody system, which is excited randomly due to track irregularities. Various parameters, like masses, spring- and damper-characteristics, influence the dynamics of the vehicle. Often, the exact values of the parameters are unknown and might even change over time. Some of these changes are considered critical with respect to the operation of the system and they require immediate maintenance. The aim of this work is to detect faults in the suspension system of the vehicle. A Kalman filter is used in order to estimate the states. To detect and isolate faults the detection error is minimised with multiple Kalman filters. A full-scale train model with nonlinear wheel/rail contact serves as an example for the described techniques. Numerical results for different test cases are presented. The analysis shows that for the given system it is possible not only to detect a failure of the suspension system from the system's dynamic response, but also to distinguish clearly between different possible causes for the changes in the dynamical behaviour.

  3. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    International Nuclear Information System (INIS)

    Nelson, E; John Gladden, J

    2007-01-01

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments

  4. Practical research of free standing rack. Seismic experiment study on full scale free standing rack

    International Nuclear Information System (INIS)

    Iwasaki, Akihisa; Nekomoto, Yoshitsugu; Morita, Hideyuki; Taniguchi, Katsuhiko; Okuno, Daisaku; Matsuoka, Toshihiro; Chigusa, Naoki

    2015-01-01

    The spent fuel taken out of a plant reactor is temporarily stored in a spent fuel rack. This fuel will often have to be stored in the rack for long periods before it can be moved to a reprocessing facility. Therefore, the spent fuel rack must have a high tolerance against big seismic loads. The free standing spent fuel rack has been developed as the optimal equipment meeting these requirements. It can be placed on the spent fuel pool floor without fixation to any support structure. Response of the free standing rack is reduced by the effect of the water and friction force on the spent fuel pool floor. For nuclear plant safety, it is necessary to understand the free standing rack behavior under earthquake in pools to verify the design of free standing racks and peripheral components. Several tests on a shaking table have been conducted on full-scale one free standing rack in air and in water, and sliding and rocking have been measured. The rack response is very complex and the study necessitates to take into account the sliding, the rocking, the effect of the water and of the arrangement of the fuel assemblies inside. (author)

  5. Long-term interactions of full-scale cemented waste simulates with salt brines

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, B.; Borkel, C.; Metz, V.; Schlieker, M.

    2016-07-01

    Since 1967 radioactive wastes have been disposed of in the Asse II salt mine in Northern Germany. A significant part of these wastes originated from the pilot reprocessing plant WAK in Karlsruhe and consisted of cemented NaNO{sub 3} solutions bearing fission products, actinides, as well as process chemicals. With respect to the long-term behavior of these wastes, the licensing authorities requested leaching experiments with full scale samples in relevant salt solutions which were performed since 1979. The experiments aimed at demonstrating the transferability of results obtained with laboratory samples to real waste forms and at the investigation of the effects of the industrial cementation process on the properties of the waste forms. This research program lasted until 2013. The corroding salt solutions were sampled several times and after termination of the experiments, the solid materials were analyzed by various methods. The results presented in this report cover the evolution of the solutions and the chemical and mineralogical characterization of the solids including radionuclides and waste components, and the paragenesis of solid phases (corrosion products). The outcome is compared to the results of model calculations. For safety analysis, conclusions are drawn on radionuclide retention, evolution of the geochemical environment, evolution of the density of solutions, and effects of temperature and porosity of the cement waste simulates on cesium mobilization.

  6. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure.

    Science.gov (United States)

    Monfardini, Linda; Minelli, Fausto

    2016-08-30

    Alkali Activated Concrete (AAC) is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam's length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0-4 mm and coarse aggregate 6-10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC) based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.

  7. Investigation of Bearing Axial Cracking: Benchtop and Full-Scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gould, Benjamin [Argonne National Lab. (ANL), Argonne, IL (United States); Greco, Aaron [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-16

    The most common failure mode in wind turbine gearboxes is axial cracking in intermediate and high-speed-stage bearings, also commonly called white-etching cracks (WECs). Although these types of cracks have been reported for over a decade, the conditions leading to WECs, the process by which this failure culminates, and the reasons for their apparent prevalence in wind turbine gearboxes are all highly debated. This paper summarizes the state of a multipronged research effort to examine the causes of WECs in wind turbine gearbox bearings. Recent efforts have recreated WECs on a benchtop test rig in highly loaded sliding conditions, wherein it was found that the formation of a dark etching microstructure precedes the formation of a crack, and a crack precedes the formation of white-etching microstructure. A cumulative frictional sliding energy criterion has been postulated to predict the presence of WECs. Bearing loads have also been measured and predicted in steady state and transient drivetrain operations in dynamometer testing. In addition, both loads and sliding at full scale will be measured in planned uptower drivetrain testing. If the cumulative frictional sliding energy is the dominant mechanism that causes WECs, understanding the amount of frictional sliding energy that wind turbine bearings are subjected to in typical operations is the next step in the investigation. If highly loaded sliding conditions are found uptower, similar to the examined benchtop levels, appropriate mitigation solutions can be examined, ranging from new bearing coatings and improved lubricants to changes in gearbox designs and turbine operations.

  8. Full-scale HDR blowdown experiments as a tool for investigating dynamic fluid-structural coupling

    International Nuclear Information System (INIS)

    Krieg, R.; Schlechtendahl, E.G.; Scholl, K.-H.; Schumann, U.

    1977-01-01

    As an answer to rigorous safety requirements in reactor technology an experimental-theoretical program has been established to investigate safety-relevant mechanical aspects of LWR-blowdown accidents. Part of the program are several full-scale blowdown experiments which will be performed in the former HDR-reactor. As the conceptional study confirms, the primary goal is to find out, how big the safety margins of present LWR's in the case of a blowdown actually are, rather than simply to show that essential parts of the reactor will withstand such an accident. However, to determine the safety margins, the physical phenomena involved in the blowdown process must be understood and appropriate wave of description must be found. Therefore the experimental program is accompanied by the development of theoretical models and computer codes. A survey is given over existing methods for coupled fluid structural dynamics. The following approaches are used: - Specific finite difference-code for integrated treatment of both fluid and structure in 3D-geometry using the fast cyclic reduction scheme for solving Poisson's equation. - Modification of mass and stiffness matrices of FEM-models for shell dynamics by reducing the 3D incompressible fluid problem to 2D with the boundary integral equation method. This presently developed method has the capacity to deal with general problems in fluid-structural coupling. (Auth.)

  9. Long-term interactions of full-scale cemented waste simulates with salt brines

    International Nuclear Information System (INIS)

    Kienzler, B.; Borkel, C.; Metz, V.; Schlieker, M.

    2016-01-01

    Since 1967 radioactive wastes have been disposed of in the Asse II salt mine in Northern Germany. A significant part of these wastes originated from the pilot reprocessing plant WAK in Karlsruhe and consisted of cemented NaNO 3 solutions bearing fission products, actinides, as well as process chemicals. With respect to the long-term behavior of these wastes, the licensing authorities requested leaching experiments with full scale samples in relevant salt solutions which were performed since 1979. The experiments aimed at demonstrating the transferability of results obtained with laboratory samples to real waste forms and at the investigation of the effects of the industrial cementation process on the properties of the waste forms. This research program lasted until 2013. The corroding salt solutions were sampled several times and after termination of the experiments, the solid materials were analyzed by various methods. The results presented in this report cover the evolution of the solutions and the chemical and mineralogical characterization of the solids including radionuclides and waste components, and the paragenesis of solid phases (corrosion products). The outcome is compared to the results of model calculations. For safety analysis, conclusions are drawn on radionuclide retention, evolution of the geochemical environment, evolution of the density of solutions, and effects of temperature and porosity of the cement waste simulates on cesium mobilization.

  10. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    International Nuclear Information System (INIS)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-01-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report

  11. Active vibration control of a full scale aircraft wing using a reconfigurable controller

    Science.gov (United States)

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.

    2016-01-01

    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  12. Three dimensional numerical simulation of a full scale CANDU reactor moderator to study temperature fluctuations

    International Nuclear Information System (INIS)

    Sarchami, Araz; Ashgriz, Nasser; Kwee, Marc

    2014-01-01

    Highlights: • 3D model of a Candu reactor is modeled to investigate flow distribution. • The results show the temperature distribution is not symmetrical. • Temperature contours show the hot regions at the top left-hand side of the tank. • Interactions of momentum flows and buoyancy flows create circulation zones. • The results indicate that the moderator tank operates in the buoyancy driven mode. -- Abstract: Three dimensional numerical simulations are conducted on a full scale CANDU Moderator and transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified. Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows in the center region of the tank, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold; (ii) low amplitude are in the core of the tank; (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities

  13. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    International Nuclear Information System (INIS)

    Xie, Q.; Bai, S.; Li, Y.; Liu, L.; Wang, S.; Xi, J.

    2016-01-01

    This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  14. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  15. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    Science.gov (United States)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  16. Full scale lightning surge tests of distribution transformers and secondary systems

    International Nuclear Information System (INIS)

    Goedde, G.L.; Dugan, R.C. Sr.; Rowe, L.D.

    1992-01-01

    This paper reports that low-side surges are known to cause failures of distribution transformers. They also subject load devices to overvoltages. A full-scale model of a residential service has been set up in a laboratory and subjected to impulses approximating lightning strokes. The tests were made to determine the impulse characteristics of the secondary system and to test the validity of previous analyses. Among the variables investigated were stroke location, the balance of the surges in the service cable, and the effectiveness of arrester protection. Low-side surges were found to consist of two basic components: the natural frequency of the system and the inductive response of the system to the stoke current. The latter component is responsible for transformer failures while the former may be responsible for discharge spots often found around secondary bushings. Arresters at the service entrance are effective in diverting most of the energy from a lightning strike, but may not protect sensitive loads. Additional local protection is also needed. The tests affirmed previous simulations and uncovered additional phenomena as well

  17. Characterization of the Boundary Layer on Full-Scale Bluefin Tuna

    Science.gov (United States)

    Amaral, Brian; Cipolla, Kimberly; Henoch, Charles

    2014-11-01

    The physics that enable tuna to cross large expanses of ocean while feeding and avoiding predators is not presently understood, and could involve complex control of turbulent boundary layer transition and drag reduction. Typical swimming speeds of Bluefin tuna are 1-2 m/s, but can be higher during strong accelerations. The goal of this work is to experimentally determine the approximate lateral location at which transition to turbulence occurs on the tuna for various speeds. The question is whether laminar flow or an advanced propulsion mechanism (or both) allows them to swim at high speeds. Uncertainties include the surface roughness of the skin, local favorable and adverse pressure gradients, and discontinuities such as the open mouth or juncture at the fins. Historically, much of the fluid mechanics work in the area of fish locomotion has focused on vortex shedding issues rather than the boundary layer. Here, the focus is obtaining information on the boundary layer characteristics of a rigid tuna model. A full scale model of a Pacific Bluefin tuna was fabricated using a mold made from an actual deceased tuna, preserving the surface features and details of the appendages. The model was instrumented with 32 wall pressure sensors and experiments performed in a tow tank. Results from flow visualization, drag and wall pressure measurements over a range of speeds and varying angles of attack will be presented.

  18. Linear and Non-linear Numerical Sea-keeping Evaluation of a Fast Monohull Ferry Compared to Full Scale Measurements

    DEFF Research Database (Denmark)

    Wang, Zhaohui; Folsø, Rasmus; Bondini, Francesca

    1999-01-01

    , full-scale measurements have been performed on board a 128 m monohull fast ferry. This paper deals with the results from these full-scale measurements. The primary results considered are pitch motion, midship vertical bending moment and vertical acceleration at the bow. Previous comparisons between...

  19. Design and testing of small scale fish meat bone separator useful for fish processing.

    Science.gov (United States)

    Ali Muhammed, M; Manjunatha, N; Murthy, K Venkatesh; Bhaskar, N

    2015-06-01

    The present study relates to the food processing machinery and, more specifically machine for producing boneless comminuted meat from raw fish fillet. This machine is of belt and drum type meat bone separator designed for small scale fish processing in a continuous mode. The basic principal involved in this machine is compression force. The electric geared motor consists of 1HP and the conveyor belt has a linear velocity of 19 to 22 m min(-1), which was sufficient to debone the fish effectively. During the meat bone separation trials an efficiency up to 75 % on dressed fish weight basis was observed and with a capacity to separate 70 kg h(-1) of meat from fish at the machine speed of 25 rpm. During the trials, it was demonstrated that there was no significant change in the proximate composition of comminuted fish meat when compared to unprocessed fish meat. This design has a greater emphasis on hygiene, provision for cleaning-in-place (CIP) and gives cost effective need and reliability for small scale industries to produce fish meat in turn used for their value added products.

  20. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry

    Science.gov (United States)

    Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae

    2018-01-01

    Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.

  1. The DOPAS full scale seal experiment (FSS): An industrial prototype for Cigeo

    International Nuclear Information System (INIS)

    Bosgiraud, J.M.; Bourbon, X.; Pineau, F.; Foin, R.

    2015-01-01

    The Full Scale Seal (FSS) Experiment is one of different experiments implemented by ANDRA to demonstrate the technical construction feasibility and assess the performance of the horizontal seals to be built underground, at time of the progressive closure of the French Deep Geological Repository (Cigeo). FSS is built inside a reinforced concrete drift model (at scale 1:1 of a Cigeo drift) constructed for the purpose. The test site location is a warehouse in Saint-Dizier, France. The drift model has a 7.60 m long internal diameter and is 36 m long. Representative underground ambient conditions (temperature and hygrometry) are maintained within the drift during the seal construction operations. The seal per se is made of 3 components: a 14 m long bentonitic swelling core between 2 low pH self-compacting concrete/shotcrete 5 m long containment walls. The low pH self-compacting concrete (SCC) containment wall (some 240 m 3 ) is cast in one continuous pass (to avoid discontinuities), while the low pH shotcrete containment wall (some 240 m 3 ) is applied in multiple layers, with minimum curing time between two layers. The swelling clay core (some 750 m 3 ) is made of a bentonite pulverulent admixture, emplaced by using 2 augers working at a time in a continuous mode (the objective is to obtain a bentonite core as compact and homogeneous as possible before the re-saturation process start-up). On the drift model periphery, polycarbonate windows are provided for observation needs and reservations are integrated to the model structure for monitoring and coring needs. All the work sequences are video-taken and a timetable of operations is established to assess the overall time needed for building a complete seal at Cigeo. The present paper focuses on the construction story of the first low pH SCC containment wall as developed for FSS, the first technical outcomes and on the planned investigations to assess its construction compliance (via monitoring, coring and dismantling

  2. Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes.

    Science.gov (United States)

    Rodríguez-Chueca, J; Laski, E; García-Cañibano, C; Martín de Vidales, M J; Encinas, Á; Kuch, B; Marugán, J

    2018-07-15

    The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H 2 O 2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H 2 O 2 /UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H 2 O 2 /UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m 3 ·order). Even H 2 O 2 /UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H 2 O 2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+

    Science.gov (United States)

    Herath, Narmada; Del Vecchio, Domitilla

    2018-03-01

    Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.

  4. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  5. Multidisciplinary approach and multi-scale elemental analysis and separation chemistry

    International Nuclear Information System (INIS)

    Mariet, Clarisse

    2014-01-01

    The development of methods for the analysis of trace elements is an important component of my research activities either for a radiometric measure or mass spectrometric detection. Many studies raise the question of the chemical signature of a sample or a process: eruptive behavior of a volcano, indicator of pollution, ion exchange in vectors vesicles of active principles,... Each time, highly sensitive analytical procedures, accurate and multi-elementary as well as the development of specific protocols were needed. Neutron activation analysis has often been used as reference procedure and allowed to validate the chemical lixiviation and the measurement by ICP-MS. Analysis of radioactive samples requires skills in analysis of trace but also separation chemistry. Two separation methods occupy an important place in the separation chemistry of radionuclides: chromatography and liquid-liquid extraction. The study of extraction of Lanthanide (III) by the oxide octyl (phenyl)-n, N-diisobutyl-carbamoylmethyl phosphine (CMPO) and a calixarene-CMPO led to better understand and quantify the influence of operating conditions on their performance of extraction and selectivity. The high concentration of salts in aqueous solutions required to reason in terms of thermodynamic activities in relying on a comprehensive approach to quantification of deviations from ideality. In order to reduce the amount of waste generated and costs, alternatives to the hydrometallurgical extraction processes were considered using ionic liquids at low temperatures as alternative solvents in biphasic processes. Remaining in this logic of effluent reduction, miniaturization of the liquid-liquid extraction is also study so as to exploit the characteristics of microscopic scale (very large specific surface, short diffusion distances). The miniaturization of chromatographic separations carries the same ambitions of gain of volumes of wastes and reagents. The miniaturization of the separation Uranium

  6. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  7. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Directory of Open Access Journals (Sweden)

    E I Prest

    Full Text Available Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP effluent and at one fixed location in the drinking water distribution network (NET. The samples were analysed for heterotrophic plate counts (HPC, Aeromonas plate counts, adenosine-tri-phosphate (ATP concentrations, and flow cytometric (FCM total and intact cell counts (TCC, ICC, water temperature, pH, conductivity, total organic carbon (TOC and assimilable organic carbon (AOC. Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time and in bacterial ATP concentrations (<1-3.6 ng L-1, which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35, and positively correlated with water temperature (r = 0.49. Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  8. Manufacturing and testing of full scale prototype for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Duck-Hoi; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Sung-Ki [WONIL Co., Ltd., Haman (Korea, Republic of); Kang, Sung-Chan [POSCO Specialty Steel Co., Ltd., Changwon (Korea, Republic of); Zhang, Fu; Kim, Byoung-Yoon [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ahn, Hee-Jae; Lee, Hyeon-Gon; Jung, Ki-Jung [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-04-15

    Highlights: • 316L(N)-IG forged steel was successfully fabricated and qualified. • Related R&D activities were implemented to resolve the fabrication issues. • SB #8 FSP was successfully manufactured with conventional fabrication techniques. • All of the validation tests were carried out and met the acceptance criteria. - Abstract: Based on the preliminary design of the ITER blanket shield block (SB) #8, the full scale prototype (FSP) has been manufactured and tested in accordance with pre-qualification program, and related R&D was performed to resolve the technical issues of fabrication. The objective of the SB pre-qualification program is to demonstrate the acceptable manufacturing quality by successfully passing the formal test program. 316L(N)-IG stainless steel forging blocks with 1.80L × 1.12W × 0.43t (m) were developed by using an electric arc furnace, and as a result, the material properties were satisfied with technical specification. In the course of applying conventional fabrication techniques such as cutting, milling, drilling and welding of the forged stainless steel block for the manufacturing of the SB #8 FSP, several technical problems have been addressed. And also, the hydraulic connector of cross-forged material re-melted by electro slag or vacuum arc requires the application of advanced joining techniques such as automatic bore TIG and friction welding. Many technical issues – drilling, welding, slitting, non-destructive test and so on – have been raised during manufacturing. Associated R&D including the computational simulation and coupon testing has been done in collaboration with relevant industries in order to resolve these engineering issues. This paper provides technical key issues and their possible resolutions addressed during the manufacture and formal test of the SB #8 FSP, and related R&D.

  9. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    Science.gov (United States)

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    International Nuclear Information System (INIS)

    Berger, E.; Tinic, S.

    1988-01-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system

  11. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2018-05-15

    Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary

  12. Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

    Directory of Open Access Journals (Sweden)

    Jianfeng Wen

    2015-02-01

    Full Text Available With stringent wastewater discharge limits on nitrogen and phosphorus, membrane bioreactor (MBR technology is gaining popularity for advanced wastewater treatment due to higher effluent quality and smaller footprint. However, higher energy intensity required for MBR plants and increased operational costs for nutrient removal limit wide application of the MBR technology. Conventional nitrogen removal requires intensive energy inputs and chemical addition. There are drivers to search for new technology and process control strategies to treat wastewater with lower energy and chemical demand while still producing high quality effluent. The NPXpress is a patented technology developed by American Water engineers. This technology is an ultra-low dissolved oxygen (DO operation for wastewater treatment and is able to remove nitrogen with less oxygen requirements and reduced supplemental carbon addition in MBR plants. Jefferson Peaks Water Reuse Facility in New Jersey employs MBR technology to treat municipal wastewater and was selected for the implementation of the NPXpress technology. The technology has been proved to consistently produce a high quality reuse effluent while reducing energy consumption and supplemental carbon addition by 59% and 100%, respectively. Lab-scale kinetic studies suggested that NPXpress promoted microorganisms with higher oxygen affinity. Process modelling was used to simulate treatment performance under NPXpress conditions and develop ammonia-based aeration control strategy. The application of the ammonia-based aeration control at the plant further reduced energy consumption by additional 9% and improved treatment performance with 35% reduction in effluent total nitrogen. The overall energy savings for Jefferson Peaks was $210,000 in four years since the implementation of NPXpress. This study provided an insight in design and operation of MBR plants with NPXpress technology and ultra-low DO operations.

  13. Full-scale horizontal cable-tray tests: Fire-propagation characteristics

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    At the Fermi National Accelerator Center (Fermilab), as at any high-energy physics laboratory, the experimental program depends on complex arrays of equipment that require years to assemble and place in service. These equipment arrays are typically located in enclosed tunnels or experimental halls and could be destroyed by rapidly propagating, uncontrolled fire. Cable trays, both vertical and horizontal, are an integral and ubiquitous component of these installations. Concurrently, throughout industry and within the professional fire-fighting community, there has been concern over the flammability and fire propagation characteristics of electrical cables in open cable trays. While some information was available concerning fire propagation in vertical cable trays, little was known about fires in horizontal cable trays. In view of the potential for loss of equipment and facilities, not to mention the programmatic impact of a fire, Fermilab initiated a program of full-scale, horizontal cable-tray fire tests to determine the flammability and rate of horizontal fire propagation in cable-tray configurations and cable mixed typical of those existing in underground tunnel enclosures and support buildings as Fermilab. This series of tests addressed the effects of ventilation rates and cable-tray fill, fire-fighting techniques, and the effectiveness and value of automatic sprinklers, smoke detection, and cable-coating fire barriers in detecting, controlling, or extinguishing a cable-tray fire. Detailed descriptions of each fire test, including sketches of cable-tray configuration and contents, instrumentation, ventilation rates, Fermilab Fire Department personnel observations, photographs, and graphs of thermocouple readings are available in a report of these tests prepared by the Fermilab Safety Section

  14. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E [Basler and Hofmann AG, Consulting Engineers, Zurich (Switzerland); Tinic, S [Nordostschweizerische Kraftwerke AG, Baden (Switzerland)

    1988-07-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system.

  15. Assessment of virus removal by managed aquifer recharge at three full-scale operations.

    Science.gov (United States)

    Betancourt, Walter Q; Kitajima, Masaaki; Wing, Alexandre D; Regnery, Julia; Drewes, Jörg E; Pepper, Ian L; Gerba, Charles P

    2014-01-01

    Managed aquifer recharge (MAR) systems such as riverbank filtration and soil-aquifer treatment all involve the use of natural subsurface systems to improve the quality of recharged water (i.e. surface water, stormwater, reclaimed water) before reuse. During MAR, water is either infiltrated via basins, subsurface injected or abstracted from wells adjacent to rivers. The goal of this study was to assess the removal of selected enteric viruses and a potential surrogate for virus removal at three full-scale MAR systems located in different regions of the United States (Arizona, Colorado, and California). Samples of source water (i.e., river water receiving treated wastewater and reclaimed water) before recharge and recovered groundwater at all three sites were tested for adenoviruses, enteroviruses, Aichi viruses and pepper mild mottle virus (PMMoV) by quantitative polymerase chain reaction (qPCR). Samples of groundwater positive for any virus were also tested for the presence of infectious virus by cell culture. PMMoV was the most commonly detected virus in the groundwater samples. Infectious enteric viruses (reovirus) were only detected in one groundwater sample with a subsurface residence time of 5 days. The results suggested that in groundwater with a residence time of greater than 14 days all of the viruses are removed below detection indicating a 1 to greater than 5 log removal depending upon the type of virus. Given its behavior, PMMoV may be suitable to serve as a conservative tracer of enteric virus removal in managed aquifer treatment systems.

  16. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  17. Enhanced sealing project (ESP): design, construction and monitoring of a full-scale shaft seal

    International Nuclear Information System (INIS)

    Dixon, D.; Martino, J.; Kim, C.S.; Holowick, B.; Kwong, G.; Jonsson, E.; Palonen, E.; DeCombarieu, M.

    2010-01-01

    Document available in extended abstract form only. The Enhanced Sealing Project (ESP) consists of instrumenting and monitoring a full-scale shaft seal installed to permanently close the access shaft for Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) at the intersection of an ancient low dipping thrust fault. The URL was built to provide a facility where concepts for long-term management of Canada's nuclear fuel waste in a deep geological repository could be studied. Operated since the early 1980's, this facility provided much of the technical information used in developing the deep geological repository concept submitted by AECL to the Government of Canada in 1994 and continued to provide valuable technical data after that submission. In 2003, a decision was made to discontinue operation of the URL and ultimately decommission and permanently close the underground portion of this facility. As part of the Nuclear Legacy Liability Program (NLLP) being funded by Natural Resources Canada (NRCan), facilities including the URL that are no longer part of AECL's mandate or operations are being decommissioned. Included in this work is the installation of seals at the intersection of the access shaft and ventilation raise with a deep fracture zone in order to limit the potential for mixing of deeper saline and shallower less saline groundwater. The funding available from NRCan was limited to the seal installation, with no mandate to provide any more than basic hydrological monitoring of the rock mass at a considerable distance from these seals, and so the opportunity to monitor a full-scale shaft seal similar to one for a deep geological repository would have been lost. The ESP arose from the recognition by a number of organizations that the URL closure presented a unique opportunity to monitor the evolution of a full-scale repository-type shaft seal in a very well-characterized and otherwise undisturbed rock mass. As

  18. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test

    Science.gov (United States)

    Ping, Ping; Wang, QingSong; Huang, PeiFeng; Li, Ke; Sun, JinHua; Kong, DePeng; Chen, ChunHua

    2015-07-01

    A full-scale burning test is conducted to evaluate the safety of large-size and high-energy 50 Ah lithium-iron phosphate/graphite battery pack, which is composed of five 10 Ah single cells. The complex fire hazards associated with the combustion process of the battery are presented. The battery combustion behavior can be summarized into the following stages: battery expansion, jet flame, stable combustion, a second cycle of a jet flame followed by stable combustion, a third cycle of a jet flame followed by stable combustion, abatement and extinguishment. The multiple jets of flame indicate serious consequences for the battery and pose a challenge for battery safety. The battery ignites when the battery temperature reaches approximately 175-180 °C. This critical temperature is related to an internal short circuit of the battery, which results from the melting of the separator. The maximum temperature of the flame can reach 1500 °C. The heat release rate (HRR) varies based on the oxygen generated by the battery and the Joule effect of the internal short circuit. The HRR and heat of combustion can reach 49.4 kW and 18,195.1 kJ, respectively. The state of charge of the battery has a significant effect on the maximum HRR, the overall heat generation and the mass loss of the battery.

  19. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  20. Cubic scaling algorithms for RPA correlation using interpolative separable density fitting

    Science.gov (United States)

    Lu, Jianfeng; Thicke, Kyle

    2017-12-01

    We present a new cubic scaling algorithm for the calculation of the RPA correlation energy. Our scheme splits up the dependence between the occupied and virtual orbitals in χ0 by use of Cauchy's integral formula. This introduces an additional integral to be carried out, for which we provide a geometrically convergent quadrature rule. Our scheme also uses the newly developed Interpolative Separable Density Fitting algorithm to further reduce the computational cost in a way analogous to that of the Resolution of Identity method.

  1. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  2. Full Scale Model Test of Consolidation Acceleration on Soft Soil deposition with Combination of Timber Pile and PVD (Hybrid Pile)

    OpenAIRE

    Sandyutama, Y.; Samang, L.; Imran, A. M.; Harianto4, T.

    2015-01-01

    This research aims to analyze the effect of composite pile-PVD (hybrid pile) as the reinforcement in embankment on soft soil by the means of numerical simulation and Full-Scale Trial Embankment. The first phase cunducted by numerical analysis and obtained 6-8 meters hybrid pile length effective. Full-Scale trial embankment. was installed hybrid pile of 6 m and preloading of 4,50 height. Full-scale tests were performed to investigate the performances of Hybrid pile reinforcement. This research...

  3. Full-scale turbine-missile concrete impact experiments. Final report

    International Nuclear Information System (INIS)

    Woodfin, R.L.

    1983-02-01

    Four full-scale experiments were conducted at Sandia National Laboratories' rocket sled facility to provide data on the response of reinforced concrete containment walls to impact and penetration by postulated turbine-produced missiles. The missiles' mass, velocity, and attitude, and the steel liner thickness, were varied. A 1476-kg, 120 0 segment cut from a shrunk-on turbine disc was used for three experiments, and a 2100-kg, 137 0 segment of another disc was used for one experiment. The targets were concrete panels fabricated of commercial ready-mix concrete of strength 24 to 28 MPa at 28 days and heavily reinforced (approx. = 5% by volume) with No. 18 (57-mm-dai) bars. Impacts were perpendicular to the targets at their centers. Three impacts were with the sharp corner of the missile forward (piercing) and one was with the rounded side forward (blunt). Rebar strains, liner strains, and rear face kinematic quantities were recorded for each test. Internal pressure pulses generated by the impacts were recorded on two tests. High-speed camera coverage was extensive. Depth of penetration was the primary measure diameter. Penetration depths into the 1.37-m-thick panels ranged from 33 cm for the blunt impact of the 1476-kg missile at 92 m/s to 65 cm for the piercing impact of the 2100-kg missile at 115m/s. Impact at the piercing attitude caused significantly more severe rear face cracking than did impact at the blunt attitude, but since rear face panel displacements in excess of 6 cm and velocities greater than 7 m/s were measured, results suggested that impact at a blunt attitude might cause scabbing at lower velocities than impact at a piercing attidude. In these tests, the presence of a 9.5-mm-thick steel liner on the rear face of the panel in the latter two tests precluded scabbing. Results also indicated that design formulas in common use give conservative results

  4. Full-scale flight tests of aircraft morphing structures using SMA actuators

    Science.gov (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  5. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; Van Loosdrecht, M. C M; Vrouwenvelder, Johannes S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  6. Tests on full-scale prototypical passive containment condenser for SBWR's application

    International Nuclear Information System (INIS)

    Masoni, P.; Bianchini, G.; Billig, P.F.; Fitch, J.R.; Botti, S.; Cattadori, G.; Silverii, R.

    1995-01-01

    The paper gives a brief description of the experimental program Performance ANalysis and Testing of HEat Removal Systems (PANTHERS) aimed to demonstrate the thermal-hydraulic and structural performance of a full scale prototype of the Passive Containment Cooling (PCC) heat exchanger. Preliminary results of the experimental tests are given. These results show the thermal-hydraulic performance of the heat exchanger as a function of inlet pressure and of the air mass fraction for some steady-state performance tests and for a test in which the water level in the PCC pool is allowed to drop and the PCC tubes to uncover and for a test with non-condensable build-up. The experimental results are very positive and show a very good repeatability. The structural design of the heat exchanger is very robust: the unit has survived ten loss-of-coolant accident (LOCA) cycles and more than 100 thermal-hydraulic performance tests. A detailed GE proprietary version of the Transient Reactor Analysis Code (TRACG) model of the PANTHERS tests facility was developed and verified solely on the basis of as-designed test facility drawings and engineering judgement. No PANTHERS test data, including shakedown data, was used to guide the development of this model. Using the PANTHERS TRACG model, pre-test calculations of Tests No.15-1 and 23-1 from the Test group 3 of the PANTHERS test matrix were made. The key results from these calculations have been documented in this paper. For comparison, a second set of calculations was made using the simplified PCC representation from the SBWR containment TRACG input model used for containment performance evaluations. The results from the simplified model have been compared with those from the detailed PANTHERS model and with those from the tests; the reasons for the observed differences have been discussed. Given the limitation in the double-blind pre-test calculations, the results are very satisfying for both the heat removal and the total pressure drop

  7. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution

  8. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.

    2016-10-28

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  9. Near-infrared spectroscopy for process and substrate supervision of a full-scale biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Jacobi, Hans Fabian

    2012-07-01

    Aim of this study was to investigate the possible use of near-infrared spectroscopy in the supervision of the biogas production process or parts thereof. It was examined, whether the surveillance of (a) the process and (b) substrate was feasible. The following tasks were accomplished to this end: 1. Development, construction and assembly of suitable NIRS-metrology, development of proper control-software as well as of strategies for data acquisition and data handling, 2. calculation and validation of regression models on the basis of acquired spectra and reference data for (a) suitable parameters of the biogas process, (b) composition and biogas potential of the substrate, 3. calculation of continuous time series of all parameters in order to prove the possibility of continuous surveillance, 4. integrated processing of continuously calculated biogas potentials together with plant data for the prediction of the biogas production behavior of the biogas plant. A near-infrared spectrometer was installed and equipped with NIR-measuring heads of own design and construction on a full-scale agricultural biogas plant. For 500 days spectra were continuously logged at (a) a pipe flowed through by fermenter slurry and (b) the feeding station, where silage passed. Based on regularly withdrawn reference samples and the corresponding spectra regression models were calibrated for the several constituents. Continuously logged spectra were used to calculate time series with the aid of the regression models for each constituent. Models and time series were established for the following parameters: (a) process parameters: volatile fatty acids, acetic acid, propionic acid, dry matter, volatile solids; (b) substrate parameters: dry matter, volatile solids, crude fiber, crude fat, crude protein, nitrogen-free extracts, experimentally assessed biogas potential, theoretically assessed biogas potential. Despite the partially low quality of the models it was possible to follow the course of

  10. Pilot scale harvesting, separation and drying of microalgae biomass from compact photo-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Alberto Tadeu Martins; Luz Junior, Luiz Fernando de Lima [Dept. de Engenharia Quimica. Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mail: luzjr@ufpr.br; Mariano, Andre Bellin; Ghidini, Luiz Francisco Correa; Gnoatto, Victor Eduardo; Locatelli Junior, Vilson; Mello, Thiago Carvalho de; Vargas, Jose Viriato Coelho [Nucleo de Pesquisa e Desenvolvimento em Energia Autossustentavel (NPDEAS). Dept. de Engenharia Mecanica. Universidade Federal do Parana, Curitiba (Brazil)], E-mail: jvargas@demec.ufpr.br

    2010-07-01

    Bio diesel produced from microalgae lipids is gaining a substantial ground in the search for renewable energy sources. In order to optimize the operating conditions of a continuous process, several experiments were realized, both in laboratory and pilot scale. The microalgae cultivation can be conducted in a photo-bioreactor, a closed system which allows parameters control and necessarily involves the aquatic environment. Because of that, the use of separation unit operations is required. The process starts in a proposed compact photo-bioreactor, which consist of a chain of transparent tubes with 6 cm of diameter arranged in parallel where the cultivation media circulate with the help of a pump. This arrangement offers a closed culture with less risk of contamination and maintains a minimum contact with the environment. The microalgae grow inside the pipes under incidence of ambient light. In this paper, harvesting, separation and drying were studied, as part of the processes of a sustainable energy plant under construction at UFPR, as shown in Fig. 1. To control the production in a photo-bioreactor in continuous system, it is necessary to monitor the concentration of microalgae growth in suspension. To measure the cell concentration in this equipment, an optic sensor has been developed. The microalgae biomass separation from the culture media is achieved by microalgae flocculation. Several cultivation situations have been tested with different NaOH concentrations, increasing the pH to 10. The system was kept under agitation during the addition by an air pump into the tank. Thereafter the system was maintained static. After a short time, it was observed that the microalgae coagulated and settled. The clarified part water was removed, remaining a concentrated microalgae suspension. Our results suggest that pH increase is a suitable methodology for microalgae separation from the growth suspension. The microalgae sedimentation time was recorded, which allowed the

  11. Pre-Flight Ground Testing of the Full-Scale HIFiRE-1 at Fully Duplicated Flight Conditions

    National Research Council Canada - National Science Library

    Wadhams, Tim P; MacLean, Matthew G; Holden, Michael S; Mundy, Erik

    2008-01-01

    As part of an experimental study to obtain detailed heating and pressure data over the full-scale HIFiRE-1 flight geometry, CUBRC has completed a 30-run matrix of ground tests, sponsored by the AFOSR...

  12. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

    International Nuclear Information System (INIS)

    González Sánchez, Armando; Flores Márquez, Trinidad Eliseo; Revah, Sergio; Morgan Sagastume, Juan Manuel

    2014-01-01

    Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H 2 S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process. - Highlights: • A simple method for reaching high amounts of specialized sulfide-oxidizing bacterial consortium from activated sludge was developed. • The full-scale desulfurization process can be continuously monitored by respirometry allowing fast decision making if problems arise. • The dissolved sulfide concentration was estimated with an empirical correlation between measurements of ORP, dissolved oxygen and pH

  13. Full-scale tank car rollover tests - survivability of top fittings and top fittings protective structures : final report.

    Science.gov (United States)

    2016-05-01

    Full-scale rollover crash tests were performed on three non-pressure tank carbodies to validate previous analytical work and : determine the effectiveness of two different types of protective structures in protecting the top fittings. The tests were ...

  14. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    Science.gov (United States)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  15. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    Science.gov (United States)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  16. Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors

    Science.gov (United States)

    Hultgren, Lennart S.

    2012-01-01

    Noise-source separation techniques, using three engine-internal sensors, are applied to existing static-engine test data to determine the turbine transfer function for the currently subdominant combustion noise. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP) and an improvement to the combustion-noise module GECOR is suggested. The work was carried out in response to the NASA Fundamental Aeronautics Subsonic Fixed Wing Program s Reduced-Perceived-Noise Technical Challenge.

  17. A full scale approximation of covariance functions for large spatial data sets

    KAUST Repository

    Sang, Huiyan

    2011-10-10

    Gaussian process models have been widely used in spatial statistics but face tremendous computational challenges for very large data sets. The model fitting and spatial prediction of such models typically require O(n 3) operations for a data set of size n. Various approximations of the covariance functions have been introduced to reduce the computational cost. However, most existing approximations cannot simultaneously capture both the large- and the small-scale spatial dependence. A new approximation scheme is developed to provide a high quality approximation to the covariance function at both the large and the small spatial scales. The new approximation is the summation of two parts: a reduced rank covariance and a compactly supported covariance obtained by tapering the covariance of the residual of the reduced rank approximation. Whereas the former part mainly captures the large-scale spatial variation, the latter part captures the small-scale, local variation that is unexplained by the former part. By combining the reduced rank representation and sparse matrix techniques, our approach allows for efficient computation for maximum likelihood estimation, spatial prediction and Bayesian inference. We illustrate the new approach with simulated and real data sets. © 2011 Royal Statistical Society.

  18. Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges

    Science.gov (United States)

    2017-06-01

    beams retained residual deformations after each load cycle. Therefore, a large capacity-reduction factor is advisable for future strength designs...3 Figure 3. Nominal beam dimensions (not to scale...Figure 39. Nominal dimension of machine-cut dog-bone tension specimens. .................. 43 Figure 40. Dog-bone specimen for tensile strength

  19. Control of hydrogen sulphide in full-scale anaerobic digesters using ...

    African Journals Online (AJOL)

    scale anaerobic digesters (ADs) at a largescale municipal wastewater treatment plant (WWTP). Iron (III) ('ferric') chloride was applied at a range of 24–105 mg FeCl3/L with and without alkali solution using different strategies. Introduction points ...

  20. Validation of Simulation Model for Full Scale Wave Simulator and Discrete Fuild Power PTO System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Hansen, Rico Hjerm

    2014-01-01

    In controller development for large scale machinery a good simulation model may serve as a time and money saving factor as well as a safety precaution. Having good models enables the developer to design and test control strategies in a safe and possibly less time consuming environment. For applic...

  1. Comparison of WAIS-III Short Forms for Measuring Index and Full-Scale Scores

    Science.gov (United States)

    Girard, Todd A.; Axelrod, Bradley N.; Wilkins, Leanne K.

    2010-01-01

    This investigation assessed the ability of the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) short forms to estimate both index and IQ scores in a large, mixed clinical sample (N = 809). More specifically, a commonly used modification of Ward's seven-subtest short form (SF7-A), a recently proposed index-based SF7-C and eight-subtest…

  2. Development and pilot testing of full-scale membrane distillation modules for deployment of waste heat

    NARCIS (Netherlands)

    Jansen, A.E.; Assink, J.W.; Hanemaaijer, J.H.; Medevoort, J. van; Sonsbeek, E. van

    2013-01-01

    Membrane distillation is an attractive technology for extracting fresh water from seawater. Newly developed modules have been used in pilot tests and bench scale tests to demonstrate the potential of producing excellent product water quality in a single step, little need for water pretreatment and a

  3. A full scale approximation of covariance functions for large spatial data sets

    KAUST Repository

    Sang, Huiyan; Huang, Jianhua Z.

    2011-01-01

    Gaussian process models have been widely used in spatial statistics but face tremendous computational challenges for very large data sets. The model fitting and spatial prediction of such models typically require O(n 3) operations for a data set of size n. Various approximations of the covariance functions have been introduced to reduce the computational cost. However, most existing approximations cannot simultaneously capture both the large- and the small-scale spatial dependence. A new approximation scheme is developed to provide a high quality approximation to the covariance function at both the large and the small spatial scales. The new approximation is the summation of two parts: a reduced rank covariance and a compactly supported covariance obtained by tapering the covariance of the residual of the reduced rank approximation. Whereas the former part mainly captures the large-scale spatial variation, the latter part captures the small-scale, local variation that is unexplained by the former part. By combining the reduced rank representation and sparse matrix techniques, our approach allows for efficient computation for maximum likelihood estimation, spatial prediction and Bayesian inference. We illustrate the new approach with simulated and real data sets. © 2011 Royal Statistical Society.

  4. Reduction of methane emission from landfills using bio-mitigation systems – from lab tests to full scale implementation

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    , or open or closed bed biofilter systems. The objective of this paper is to describe the relationship between research on process understanding of the oxidation of landfill gas contained methane and the up-scale to full bio-mitigation systems implemented at landfills. The oxidation of methane is controlled...... for implementing a bio-mitigation system is presented, and the reported landfill-implemented bio-mitigation systems either established as full-scale or pilot-scale systems are reviewed. It is concluded that bio-mitigation systems have a large potential for providing cost-efficient mitigation options for reducing...

  5. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  6. Full scale model push-off test of reinforced concrete block with 51 mm dia. deformed steel bars

    International Nuclear Information System (INIS)

    Aoyagi, Y.

    1981-01-01

    The conclusions of this study are as follows; (1) The equation previously derived from small scale specimens, to predict the shear strength of push-off specimens including both initially cracked and uncracked, can conservatively estimate the experimental data of full scale specimens to the same extent as small scale ones. (2) The equation previously derived from small scale specimens, to predict the shear strength of initially cracked push-off specimens with reinforcements inclined to the shear plane, agrees reasonably well with the experimental data of full scale speciemens. (3) The concrete strength and yield strength of reinforcement theoretically set the balanced reinforcement ratio of the shear area above which the shear strength of specimens is constant. (4) The theoretical shear strength of push-off specimens overestimates the experimental data by about 25%. (orig./HP)

  7. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators.

    Science.gov (United States)

    Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu

    2017-11-01

    Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. FEBEX: Full-Scale engineered barriers experiment in crystalline host-rock: preoperational phase. Synthesized report

    International Nuclear Information System (INIS)

    1997-01-01

    The FEBEX project is being cofinanced by the EC under contract F 14WCT950006. In addition to the EC, seven partners from three countries of the EU. (France, Germany, and Spain) as well as one from EFTA (Switzerland) are participating in the project. ENRESA is the coordinating partner with NAGRA assisting in coordinating some aspects. The project consists of two large-scale tests and a series of complimentary laboratory tests. The work is being executed by the following organizations: CIEMAT, AITEMIN, UP-DIT (CIMNE), ULC, CSIC-Zaidin, and UPM (SPAIN) ANDRA and G.3S (FRANCE) GRS (GERMANY). This report includes a synthesized description of the experiment from its conception through the installation of the two large-scale tests (from the middle of 1994 to the beginning of 1997, preoperation stage). The experiment is described in detail in a series of specific reports. (Author)

  9. Full-scale borehole sealing test in salt under simulated downhole conditions. Volume 2

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Licastro, P.H.; Roy, D.M.

    1986-05-01

    Large-scale testing of the permeability by brine of a salt/grout sample designed to simulate a borehole plug was conducted. The results of these tests showed that a quantity of fluid equivalent to a permeability of 3 microdarcys was collected during the course of the test. This flow rate was used to estimate the smooth bore aperture. Details of this test ware presented in Volume 1 of this report. This report, Volume 2, covers post-test characterization including a detailed study of the salt/grout interface, as well as determination of the physical/mechanical properties of grout samples molded at Terra Tek, Inc. at the time of the large-scale test. Additional studies include heat of hydration, radial stress, and longitudinal volume changes for an equivalent grout mixture

  10. Full-scale multi-ejector module for a carbon dioxide supermarket refrigeration system: Numerical study of performance evaluation

    International Nuclear Information System (INIS)

    Bodys, Jakub; Palacz, Michal; Haida, Michal; Smolka, Jacek; Nowak, Andrzej J.; Banasiak, Krzysztof; Hafner, Armin

    2017-01-01

    Highlights: • A numerical study of the full-scale multi-ejector module performance was presented. • The module was characterised by stable operation in each considered configuration. • The module showed a high total efficiency for all the operating conditions. - Abstract: The performance of fixed ejectors installed in a multi-ejector module in a carbon dioxide refrigeration system is discussed in this paper. To analyse the module operation, three-dimensional ejector models including the inlet and outlet collecting ducts were considered. The tests were performed for three of four vapour ejectors of different sizes that compose the multi-ejector pack. The testing modes included the serial and parallel operation of the fixed units in operating conditions that are characteristic for the supermarket refrigeration unit working at high ambient temperatures. All numerical simulations were performed using the validated Homogeneous Equilibrium Model implemented on the ejectorPL computational tool for typical transcritical parameters at the motive nozzle port. The detailed analysis was executed separately for the ejectors and the ducts of the module collectors. The results discussion concerned the crucial parameters for such an installation like the pressure and vapour quality distribution. Negligible influence of the motive nozzle collector and a crucial influence of the outlet collector shape was indicated. The global performance analysis showed that the multi-ejector pack provides high and stable performance of all installed ejectors over the entire range of the considered operating conditions for supermarket application. Areas of the possible pressure loss reduction and the uniformity growth in the vapour quality distribution were presented. Finally, according to the multi-ejector pack ducts analysis, the potential areas for module shape optimisation were indicated as well.

  11. Calibration of full-scale accelerated pavement testing data using long-term pavement performance data

    CSIR Research Space (South Africa)

    VdM Steyn, WJ

    2012-09-01

    Full Text Available Accelerated Pavement Testing (APT) has always been conducted with the objective of improving the understanding of real pavements under real traffic and environmental conditions. While APT provides an accelerated view of some of the major structural...

  12. Separating different scales of motion in time series of meteorological variables

    International Nuclear Information System (INIS)

    Eskridge, R.E.; Rao, S.T.; Porter, P.S.

    1997-01-01

    In this study, four methods are evaluated for detecting and tracking changes in time series of climate variables. The PEST algorithm and the monthly anomaly technique are shown to have shortcomings, while the wavelet transform and Kolmogorov-Zurbenko (KZ) filter methods are shown to be capable of separating time scales with minimal errors. The behavior of the filters are examined by transfer functions. The KZ filter, anomaly technique, and PEST were also applied to temperature data to estimate long-term trends. The KZ filter provides estimates with about 10 times higher confidence than the other methods. Advantages of the KZ filter over the wavelet transform method are that it may be applied to datasets containing missing observations and is very easy to use. 10 refs., 8 figs., 1 tab

  13. Alkali/chloride release during refuse incineration on a grate: Full-scale experimental findings

    DEFF Research Database (Denmark)

    Bøjer, Martin; Jensen, Peter Arendt; Frandsen, Flemming

    2008-01-01

    in waste cause relatively high super heater corrosion rates. The Cl-content in waste is one of the key-factors for volatilisation of alkali and heavy metals in WtE plants. Little is known about the release of Cl, Na, K, Zn, Pb, and S along grate of waste incineration plants. The 26 t h(-1) WtE plant......Waste to energy (WtE) plants are utilised for the production of heat and electricity. However, due to corrosion at super heater surfaces a relatively low 25% of the waste lower heating value can with the present technology be converted to electricity. High contents of Cl, Na, K, Zn, Pb and S...... of the grate near port 3 with a high temperature, that contains relatively low amounts of corrosive elements, and lead to a separate high temperature super heater and thus increase the electrical efficiency....

  14. Full Scale Experiences with Didactic Changes in Distance Education in Master of Industrial Information Technology (MII)

    DEFF Research Database (Denmark)

    Helbo, Jan; Knudsen, Morten Haack; Borch, Ole M.

    2005-01-01

    students. For the first time we have deviated from the normal Aalborg University Problem Based Learning model by separating course study and project work. The feedback from the students was very positive but we did expect that the collaboration and discussion on the internet would increase as well......-campus engineering program based on project organized collaborative learning to the technology supported distance education program failed. Despite of many miner didactic changes we did not obtain the same self regulating learning effect in the group work among the off-campus students as is the case for oncampus....... Questionnaires, discussions and measurements of the internet activities show results which are contradictory compared to expectations....

  15. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 2; CFD RSRM Full-Scale Analyses

    Science.gov (United States)

    2001-01-01

    This document presents the full-scale analyses of the CFD RSRM. The RSRM model was developed with a 20 second burn time. The following are presented as part of the full-scale analyses: (1) RSRM embedded inclusion analysis; (2) RSRM igniter nozzle design analysis; (3) Nozzle Joint 4 erosion anomaly; (4) RSRM full motor port slag accumulation analysis; (5) RSRM motor analysis of two-phase flow in the aft segment/submerged nozzle region; (6) Completion of 3-D Analysis of the hot air nozzle manifold; (7) Bates Motor distributed combustion test case; and (8) Three Dimensional Polysulfide Bump Analysis.

  16. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    International Nuclear Information System (INIS)

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner

  17. 3D full-loop simulation of an industrial-scale circulating fluidized boiler

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bona; Zhang, Nan; Wang, Wei; Li, Jinghai [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Multi-phase Complex Systems

    2013-07-01

    In this study, 3D full-loop simulations of a CFB boiler are carried out. FLUENT {sup registered} 6.3 is used as the solver, where an Eulerian multiphase model with EMMS-based drag model is employed. The wide particle size distribution are considered and divided into several groups to better represent the polydisperse behavior of ash particles. The simulation shows that, compared to the conventional drag model, EMMS-based model predicts more reasonable pressure drop of furnace and larger slip velocity at the lower elevations of the furnace. Further work is under way to improve the full-loop simulation.

  18. Need to plan for a full-scale lns-physics program at the SSC

    International Nuclear Information System (INIS)

    White, A.R.

    1984-03-01

    Arguments for a full lns physics program at the SSC are enumerated and elaborated on. They are: first - the inadequacy of data from a minimal program, second - the potential fundamental significance of a high-energy soft physics collective phenomenon and third - the possible diffractive production of much of the interesting new physics that will be searched for

  19. Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation.

    Science.gov (United States)

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.

  20. Industrial scale production of stable isotopes employing the technique of plasma separation

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Bigelow, T.S.; Tarallo, F.J.

    2003-01-01

    Calutrons, centrifuges, diffusion and distillation processes are some of the devices and techniques that have been employed to produce substantial quantities of enriched stable isotopes. Nevertheless, the availability of enriched isotopes in sufficient quantities for industrial applications remains very restricted. Industries such as those involved with medicine, semiconductors, nuclear fuel, propulsion, and national defense have identified the potential need for various enriched isotopes in large quantities. Economically producing most enriched (non-gaseous) isotopes in sufficient quantities has so far eluded commercial producers. The plasma separation process is a commercial technique now available for producing large quantities of a wide range of enriched isotopes. Until recently, this technique has mainly been explored with small-scale ('proof-of-principle') devices that have been built and operated at research institutes. The new Theragenics TM facility at Oak Ridge, TN houses the only existing commercial scale PSP system. This device, which successfully operated in the 1980's, has recently been re-commissioned and is planned to be used to produce a variety of isotopes. Progress and the capabilities of this device and it's potential for impacting the world's supply of stable isotopes in the future is summarized. This technique now holds promise of being able to open the door to allowing new and exciting applications of these isotopes in the future. (author)

  1. Full scale amendment of a contaminated wood impregnation site with iron water treatment residues

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Kjeldsen, Peter; Jakobsen, Rasmus

    2016-01-01

    amendment a 100 m2 test site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr...... by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and pore water concentrations of arsenic was generally higher. Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our...... field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu.With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching of Cu, Cr and As constitutes a risk for groundwater...

  2. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network.

    Science.gov (United States)

    El-Chakhtoura, Joline; Prest, Emmanuelle; Saikaly, Pascal; van Loosdrecht, Mark; Hammes, Frederik; Vrouwenvelder, Hans

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network

    KAUST Repository

    El Chakhtoura, Joline

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic.

  4. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S; Cook, J; Juratovac, J; Goodwillie, J; Burke, T

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities

  5. An Improved Scale-Adaptive Simulation Model for Massively Separated Flows

    Directory of Open Access Journals (Sweden)

    Yue Liu

    2018-01-01

    Full Text Available A new hybrid modelling method termed improved scale-adaptive simulation (ISAS is proposed by introducing the von Karman operator into the dissipation term of the turbulence scale equation, proper derivation as well as constant calibration of which is presented, and the typical circular cylinder flow at Re = 3900 is selected for validation. As expected, the proposed ISAS approach with the concept of scale-adaptive appears more efficient than the original SAS method in obtaining a convergent resolution, meanwhile, comparable with DES in visually capturing the fine-scale unsteadiness. Furthermore, the grid sensitivity issue of DES is encouragingly remedied benefiting from the local-adjusted limiter. The ISAS simulation turns out to attractively represent the development of the shear layers and the flow profiles of the recirculation region, and thus, the focused statistical quantities such as the recirculation length and drag coefficient are closer to the available measurements than DES and SAS outputs. In general, the new modelling method, combining the features of DES and SAS concepts, is capable to simulate turbulent structures down to the grid limit in a simple and effective way, which is practically valuable for engineering flows.

  6. Create full-scale predictive economic models on ROI and innovation with performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Earl C. [IDC Research, Inc., Framingham, MA (United States); Conway, Steve [IDC Research, Inc., Framingham, MA (United States)

    2017-10-27

    The U.S. Department of Energy (DOE), the world's largest buyer and user of supercomputers, awarded IDC Research, Inc. a grant to create two macroeconomic models capable of quantifying, respectively, financial and non-financial (innovation) returns on investments in HPC resources. Following a 2013 pilot study in which we created the models and tested them on about 200 real-world HPC cases, DOE authorized us to conduct a full-out, three-year grant study to collect and measure many more examples, a process that would also subject the methodology to further testing and validation. A secondary, "stretch" goal of the full-out study was to advance the methodology from association toward (but not all the way to) causation, by eliminating the effects of some of the other factors that might be contributing, along with HPC investments, to the returns produced in the investigated projects.

  7. Beam test results of the first full-scale prototype of CMS RE 1/2 resistive plate chamber

    International Nuclear Information System (INIS)

    Ying Jun; Ban Yong; Ye Yanlin; Cai Jianxin; Qian Sijin; Wang Quanjin; Liu Hongtao

    2005-01-01

    The authors reported the muon beam test results of the first full-scale prototype of CMS RE 1/2 Resistive Plate Chamber (RPC). The bakelite surface is treated using a special technology without oil to make it smooth enough. The full scale RE 1/2 RPC with honeycomb supporting frame is strong and thin enough to be fitted to the limited space of CMS design for the inner Forward RPC. The muon beam test was performed at CERN Gamma Irradiation Facility (GIF). The detection efficiency of this full scale RPC prototype is >95% even at very high irradiation background. The time resolution (less than 1.2 ns) and spatial resolution are satisfactory for the muon trigger device in future CMS experiments. The noise rate is also calculated and discussed

  8. A study on the effect of flat plate friction resistance on speed performance prediction of full scale

    Directory of Open Access Journals (Sweden)

    Park Dong-Woo

    2015-01-01

    Full Text Available Flat plate friction lines hare been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study- was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996, and the curve developed by Katsui et al (2005. In the second part, change in the form factor by three kinds of

  9. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...... operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used...... to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway...

  10. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    Directory of Open Access Journals (Sweden)

    Loïc Petigny

    2014-04-01

    Full Text Available Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC from non-Volatile Organic Compounds (NVOC of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant.

  11. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    Science.gov (United States)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  12. Testing a technical-scale counterflow compact heat exchanger for the separation of uranium hexafluoride from hydrogen

    International Nuclear Information System (INIS)

    Hornberger, P.; Seidel, D.; Steinhaus, H.

    1981-07-01

    When enriching the light uranium isotope U-235 according to the separation nozzle method, UF 6 and light auxiliary gas (H 2 ) must be separated from each other at the head as well as at the shoulder of the cascade. After pre-separation at a special separation nozzle stage, fine separation is planned by means of a low-temperature separator made as a compact heat exchanger. This report describes first testing under process conditions of a representative section of the separator blocks intended for technical-scale operation. It is proved that the rated loading capacity is attained while the residual UF 6 concentration contained in the escaping hydrogen can be lowered down to values less than 1 ppm. It is further shown that the requirement of constant pressure drop at the separator, which is decisive for the smooth interplay of preseparator stage and low-temperature separator, can be imposed by direct control of the supply of the refrigerating medium through the variable to be kept constant. A concept of control is proposed for industrial application necessitating the operation of several low-temperature separators staggered in terms of time. This concept allows the relatively simple optimum utilization of the separator capacity even under variable operating conditions. (orig.) [de

  13. Geomaterial characterizations of full scale pavement test sections for mechanistic analysis and design

    CSIR Research Space (South Africa)

    Kwon, J

    2007-02-01

    Full Text Available roller compactor. The compaction effort was monitored with nuclear density gauge and DCP measurements taken from each pavement test section. As-built density of each subgrade lift obtained using the nuclear gauge satisfied a minimum relative density... was monitored with a nuclear gauge to maintain a minimum 95% relative compaction in the field. 0 100 200 300 400 500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CBR (%) Pe n et ra tio n (m m ) Pe n et ra tio n (m m ) Figure 2...

  14. Boring of full scale deposition holes using a novel dry blind boring method

    International Nuclear Information System (INIS)

    Autio, J.; Kirkkomaeki, T.

    1996-11-01

    As a part of the Finnish radioactive waste disposal research three holes (the size of deposition holes) were bored in the research tunnel at Olkiluoto in Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string an the purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of charges in operating parameters on the performance of the boring machine and the quality of the hole. (refs.)

  15. Boring of full scale deposition holes using a novel dry blind boring method

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland)

    1996-11-01

    As a part of the Finnish radioactive waste disposal research three holes (the size of deposition holes) were bored in the research tunnel at Olkiluoto in Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string an the purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of charges in operating parameters on the performance of the boring machine and the quality of the hole. (refs.).

  16. A full-scale porous reactive wall for prevention of acid mine drainage

    International Nuclear Information System (INIS)

    Benner, S.G.; Blowes, D.W.; Ptacek, C.J.

    1997-01-01

    The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problems is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years

  17. Technology status of spray calcination--vitrification of high-level liquid waste for full-scale application

    International Nuclear Information System (INIS)

    Keeley, R.B.; Bonner, W.F.; Larson, D.E.

    1977-01-01

    Spray calcination and vitrification technology for stabilization of high-level nuclear wastes has been developed to the point that initiation of technology transfer to an industrial-sized facility could begin. This report discusses current process and equipment development status together with additional R and D studies and engineering evaluations needed. Preliminary full-scale process and equipment descriptions are presented. Technology application in a full-scale plant would blend three distinct maintenance design philosophies, depending on service life anticipated: (1) totally remote maintenance with limited viewing and handling equipment, (2) totally remote maintenance with extensive viewing and handling equipment, and (3) contact maintenance

  18. The DSM-5 Dimensional Anxiety Scales in a Dutch non-clinical sample: psychometric properties including the adult separation anxiety disorder scale.

    Science.gov (United States)

    Möller, Eline L; Bögels, Susan M

    2016-09-01

    With DSM-5, the American Psychiatric Association encourages complementing categorical diagnoses with dimensional severity ratings. We therefore examined the psychometric properties of the DSM-5 Dimensional Anxiety Scales, a set of brief dimensional scales that are consistent in content and structure and assess DSM-5-based core features of anxiety disorders. Participants (285 males, 255 females) completed the DSM-5 Dimensional Anxiety Scales for social anxiety disorder, generalized anxiety disorder, specific phobia, agoraphobia, and panic disorder that were included in previous studies on the scales, and also for separation anxiety disorder, which is included in the DSM-5 chapter on anxiety disorders. Moreover, they completed the Screen for Child Anxiety Related Emotional Disorders Adult version (SCARED-A). The DSM-5 Dimensional Anxiety Scales demonstrated high internal consistency, and the scales correlated significantly and substantially with corresponding SCARED-A subscales, supporting convergent validity. Separation anxiety appeared present among adults, supporting the DSM-5 recognition of separation anxiety as an anxiety disorder across the life span. To conclude, the DSM-5 Dimensional Anxiety Scales are a valuable tool to screen for specific adult anxiety disorders, including separation anxiety. Research in more diverse and clinical samples with anxiety disorders is needed. © 2016 The Authors International Journal of Methods in Psychiatric Research Published by John Wiley & Sons Ltd. © 2016 The Authors International Journal of Methods in Psychiatric Research Published by John Wiley & Sons Ltd.

  19. Qualification testing and full-scale demonstration of titanium-treated zeolite for sludge wash processing

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, W.J.

    1997-06-30

    Titanium-treated zeolite is a new ion-exchange material that is a variation of UOP (formerly Union Carbide) IONSIV IE-96 zeolite (IE-96) that has been treated with an aqueous titanium solution in a proprietary process. IE-96 zeolite, without the titanium treatment, has been used since 1988 in the West Valley Demonstration Project`s (WVDP) Supernatant Treatment System (STS) ion-exchange columns to remove Cs-137 from the liquid supernatant solution. The titanium-treated zeolite (TIE-96) was developed by Battelle-Pacific Northwest Laboratory (PNL). Following successful lab-scale testing of the PNL-prepared TIE-96, UOP was selected as a commercial supplier of the TIE-96 zeolite. Extensive laboratory tests conducted by both the WVDP and PNL indicate that the TIE-96 will successfully remove comparable quantities of Cs-137 from Tank 8D-2 high-level radioactive liquid as was done previously with IE-96. In addition to removing Cs-137, TIE-96 also removes trace quantities of Pu, as well as Sr-90, from the liquid being processed over a wide range of operating conditions: temperature, pH, and dilution. The exact mechanism responsible for the Pu removal is not fully understood. However, the Pu that is removed by the TIE-96 remains on the ion-exchange column under anticipated sludge wash processing conditions. From May 1988 to November 1990, the WVDP processed 560,000 gallons of liquid high-level radioactive supernatant waste stored in Tank 8D-2. Supernatant is an aqueous salt solution comprised primarily of soluble sodium salts. The second stage of the high-level waste treatment process began November 1991 with the initiation of sludge washing. Sludge washing involves the mixing of Tank 8D-2 contents, both sludge and liquid, to dissolve the sulfate salts present in the sludge. Two sludge washes were required to remove sulfates from the sludge.

  20. Fatigue Design Evaluation of Railway Bogie with Full-Scale Fatigue Test

    Directory of Open Access Journals (Sweden)

    Jung-Won Seo

    2017-01-01

    Full Text Available The bogie frame of a railway is an important structural member for the support of vehicle loading. In general, more than 25 years’ durability is necessary. Much study has been carried out in experimental and theoretical domains on the prediction of the structural integrity of the bogie frame. The objective of this paper is to estimate the structural integrity of the bogie frame of an electric railcar. Strength analysis has been performed by finite element analysis. From this analysis, stress concentration areas were investigated. To evaluate the loading conditions, dynamic stress was measured by strain gauge. It has been found that the stress and strain due to the applied loads were multiaxial conditions according to the location of the strain gauge. Fatigue strength evaluations of the bogie frame were performed to investigate the effect of a multiaxial load through the employment of a critical plane approach.

  1. Large-scale extraction of gene interactions from full-text literature using DeepDive.

    Science.gov (United States)

    Mallory, Emily K; Zhang, Ce; Ré, Christopher; Altman, Russ B

    2016-01-01

    A complete repository of gene-gene interactions is key for understanding cellular processes, human disease and drug response. These gene-gene interactions include both protein-protein interactions and transcription factor interactions. The majority of known interactions are found in the biomedical literature. Interaction databases, such as BioGRID and ChEA, annotate these gene-gene interactions; however, curation becomes difficult as the literature grows exponentially. DeepDive is a trained system for extracting information from a variety of sources, including text. In this work, we used DeepDive to extract both protein-protein and transcription factor interactions from over 100,000 full-text PLOS articles. We built an extractor for gene-gene interactions that identified candidate gene-gene relations within an input sentence. For each candidate relation, DeepDive computed a probability that the relation was a correct interaction. We evaluated this system against the Database of Interacting Proteins and against randomly curated extractions. Our system achieved 76% precision and 49% recall in extracting direct and indirect interactions involving gene symbols co-occurring in a sentence. For randomly curated extractions, the system achieved between 62% and 83% precision based on direct or indirect interactions, as well as sentence-level and document-level precision. Overall, our system extracted 3356 unique gene pairs using 724 features from over 100,000 full-text articles. Application source code is publicly available at https://github.com/edoughty/deepdive_genegene_app russ.altman@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  2. Membrane biofilm communities in full-scale membrane bioreactors are not randomly assembled and consist of a core microbiome

    KAUST Repository

    Matar, Gerald Kamil

    2017-06-21

    Finding efficient biofouling control strategies requires a better understanding of the microbial ecology of membrane biofilm communities in membrane bioreactors (MBRs). Studies that characterized the membrane biofilm communities in lab-and pilot-scale MBRs are numerous, yet similar studies in full-scale MBRs are limited. Also, most of these studies have characterized the mature biofilm communities with very few studies addressing early biofilm communities. In this study, five full-scale MBRs located in Seattle (Washington, U.S.A.) were selected to address two questions concerning membrane biofilm communities (early and mature): (i) Is the assembly of biofilm communities (early and mature) the result of random immigration of species from the source community (i.e. activated sludge)? and (ii) Is there a core membrane biofilm community in full-scale MBRs? Membrane biofilm (early and mature) and activated sludge (AS) samples were collected from the five MBRs, and 16S rRNA gene sequencing was applied to investigate the bacterial communities of AS and membrane biofilms (early and mature). Alpha and beta diversity measures revealed clear differences in the bacterial community structure between the AS and biofilm (early and mature) samples in the five full-scale MBRs. These differences were mainly due to the presence of large number of unique but rare operational taxonomic units (∼13% of total reads in each MBR) in each sample. In contrast, a high percentage (∼87% of total reads in each MBR) of sequence reads was shared between AS and biofilm samples in each MBR, and these shared sequence reads mainly belong to the dominant taxa in these samples. Despite the large fraction of shared sequence reads between AS and biofilm samples, simulated biofilm communities from random sampling of the respective AS community revealed that biofilm communities differed significantly from the random assemblages (P < 0.001 for each MBR), indicating that the biofilm communities (early

  3. Boring of full scale deposition holes using a novel dry blind boring method

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Kirkkomaeki, T. [Saanio and Riekkola Oy, Helsinki (Finland)

    1996-10-01

    Three holes the size of deposition holes (depth 7.5 m and diameter 1.5 m) were bored in the Research Tunnel at Olkiluoto, Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string. The purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of changes in operating parameters on the performance of the boring machine and the quality of the hole. The boring method was found to be technically feasible and efficient. Evaluation of the quality of the hole included studies of the geometry of the hole, measurements of the surface roughness using a laser profilometer and study of excavation disturbances in the zone adjacent to the surface of the holes using two novel methods, He-gas diffusion and the {sup 14}C-polymethylmethacrylate methods. 43 refs.

  4. Large superconductors and joints for fusion magnets: From conceptual design to testing at full scale

    Science.gov (United States)

    Ciazynski, D.; Duchateau, J. L.; Decool, P.; Libeyre, P.; Turck, B.

    2001-02-01

    A new kind of superconductor, using the cable-in-conduit concept, is emerging, mainly in the context of fusion activity. At present no large Nb3Sn magnet in the world is operating using this concept. The difficulty of this technology, which has now been studied for 20 years, is that it requires major advances in several interconnected new fields, such as handling a large number (1000) of superconducting strands, high current conductors (50 kA), forced flow cryogenics, Nb3Sn technology, low loss conductors in pulsed operation, high current connections and high voltage insulation (10 kV), as well as demonstration of its economical and industrial feasibility. CEA has been very much involved, during the past ten years, in this development, which took place in the framework of the NET and ITER technological programmes. One major milestone was reached in 1998-1999 with the successful tests by Euratom-CEA of three full size conductor and connection samples in the SULTAN facility in Switzerland.

  5. Full Scale Reinforced Concrete Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Directory of Open Access Journals (Sweden)

    Alessandro De Vita

    2017-07-01

    Full Text Available This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy in order to investigate the seismic performance of reinforced concrete (RC beam-column joints strengthened with steel reinforced polymer (SRP systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP, and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by carbon fiber-reinforced polymer (CFRP systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems, the performances and the failure modes experienced in the several cases studied are provided.

  6. A FULL-SCALE MEASUREMENT OF WIND ACTIONS AND EFFECTS ON A SEA-CROSSING BRIDGE

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    2017-10-01

    Full Text Available Wind loading is critical for the large-span and light-weight structures, and field measurement is the most effective way to evaluate the wind resistance performance of a specific structure. This study investigates the wind characteristics and wind-induced vibration on a sea-crossing bridge in China, namely Donghai Bridge, based on up to six years of monitoring data. It is found that: (1 there exists obvious discrepancy between the measured wind field parameters and the values suggested by the design code; and the wind records at the bridge site is easily interfered by the bridge structure itself, which should be considered in interpreting the measurements and designing structural health monitoring systems (SHMS; (2 for strong winds with high non-stationarity, a shorter averaging time than 10-min is preferable to obtain more stable turbulent wind characteristics; (3 the root mean square (RMS of the wind-induced acceleration of the girder may increase in an approximately quadratic curve relationship with the mean wind speed; and (4 compared to traffic load, the wind dominates the girder’s lateral vibration amplitude, while the heavy-load traffic might exert more influence on the girder’s vertical and torsional vibrations than the high winds. This study provides field evidence for the wind-resistant design and evaluation of bridges in similar operational conditions.

  7. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  8. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  9. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Kuhn, William L.; Rector, David R.; Heredia-Langner, Alejandro

    2015-01-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to ''address uncertainties and increase confidence in the projected, full-scale mixing performance and operations'' in the Waste Treatment and Immobilization Plant (WTP).

  10. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cooley, Scott K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuhn, William L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rector, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heredia-Langner, Alejandro [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to “address uncertainties and increase confidence in the projected, full-scale mixing performance and operations” in the Waste Treatment and Immobilization Plant (WTP).

  11. A life cycle approach to the management of household food waste - A Swedish full-scale case study

    International Nuclear Information System (INIS)

    Bernstad, A.; Cour Jansen, J. la

    2011-01-01

    Research highlights: → The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. → The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. → Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the

  12. Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system.

    Science.gov (United States)

    Younger, Paul L; Henderson, Robin

    2014-05-15

    Wetland systems are now well-established unit processes in the treatment of diverse wastewater streams. However, the development of wetland technology for sewage treatment followed an entirely separate trajectory from that for polluted mine waters. In recent years, increased networking has led to recognition of possible synergies which might be obtained by hybridising approaches to achieve co-treatment of otherwise distinct sewage and mine-derived wastewaters. As polluted discharges from abandoned mines often occur in or near the large conurbations to which the former mining activities gave rise, there is ample scope for such co-treatment in many places worldwide. The first full-scale co-treatment wetland anywhere in the world receiving large inflows of both partially-treated sewage (∼100 L s(-)(1)) and mine water (∼300 L s(-1)) was commissioned in Gateshead, England in 2005, and a performance evaluation has now been made. The evaluation is based entirely on routinely-collected water quality data, which the operators gather in fulfillment of their regulatory obligations. The principal parameters of concern in the sewage effluent are suspended solids, BOD5, ammoniacal nitrogen (NH4-N) and phosphate (P); in the mine water the only parameter of particular concern is total iron (Fe). Aerobic treatment processes are appropriate for removal of BOD5, NH4-N and Fe; for the removal of P, reaction with iron to form ferric phosphate solids is a likely pathway. With these considerations in mind, the treatment wetland was designed as a surface-flow aerobic system. Sample concentration level and daily flow rate date from April 2007 until March 2011 have been analyzed using nonparametric statistical methods. This has revealed sustained, high rates of absolute removal of all pollutants from the combined wastewater flow, quantified in terms of differences between influent and effluent loadings (i.e. mass per unit time). In terms of annual mass retention rates, for instance

  13. Comparing Two Operating Configurations in a Full-Scale Arsenic Removal Plant. Case Study: Guatemala

    Directory of Open Access Journals (Sweden)

    Sofía E. Garrido Hoyos

    2013-06-01

    Full Text Available The present study was conducted in Naranjo County located in the municipality of Mixco, Guatemala. The water supply source comes from two wells with a maximum flow of 25.24 and 33.44 L·s−1. The main problem with this source is the high arsenic concentration—between 0.1341 and 0.1671 mg·L−1. The aim of this study was to conduct laboratory tests, basic engineering and supervision of the construction and evaluation of an operations plant using two configurations, A (low-rate sedimentation and ceramic filter and B (high-rate sedimentation and clinoptilolite filter, to remove arsenic present in water for human use and consumption. This plant supplies water to Naranjo County in Mixco, Guatemala (5000 inhabitants. First, a laboratory Jar Test was performed to evaluate arsenic removal efficiency. And second, a conventional clarification plant was then built (design flow: 25.24 L·s−1. The best results were achieved with configuration B, with the following reagents and dosage as defined by the laboratory tests: 10 mg L−1 ferric chloride as coagulant; 1.8 mg·L−1 CH-polyfocal as flocculant and 0.4 mg L−1 MIT03 as color removal; 1 mg L−1 sodium hypochlorite as oxidant and adjusting pH to ≈7.0 with sodium hydroxide. Once the plant began operating, the efficiency of the treatment process was evaluated. The maximum elimination efficiencies were obtained 100% for turbidity (0 UTN, 89.54% (3.66 UPt-Co for color and 96.80% (0.005 mg L−1 for arsenic, values that comply with Guatemalan standards. For this case, the relation between Fe(III dosage/mg and As(V removal was 1:46.

  14. Hydrologic and Pollutant Removal Performance of a Full-Scale, Fully Functional Permeable Pavement Parking Lot - paper

    Science.gov (United States)

    To meet the need for long-term, full-scale, replicated studies of permeable pavement systems used in their intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditions, and maintenance regimes to evaluate these systems, the EPA’s Urb...

  15. Experience with the design and start up of two full-scale UASB plants in Brazil: enhancements and drawbacks.

    Science.gov (United States)

    Chernicharo, C A L; Almeida, P G S; Lobato, L C S; Couto, T C; Borges, J M; Lacerda, Y S

    2009-01-01

    This paper discusses the main drawbacks and enhancements experienced with the design and start up of two full-scale UASB plants in Brazil. The topics addressed are related to blockage of inlet pipes, scum accumulation, seed sludge for the start-up, corrosion and gas leakage, odour generation and sludge management. The paper describes the main improvements achieved.

  16. Genome based analysis of a novel Chloroflexi in full-scale anaerobic digesters treating waste activated sludge

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; Albertsen, Mads

    Key to optimised design and operation of full-scale anaerobic digesters is an understanding of the organisms responsible. As one of the most abundant phyla in these systems, the Chloroflexi likely make a substantial contribute to system function. Here we apply state-of-the-art molecular methods t...

  17. Damage Assessment of a Full-Scale Six-Story wood-frame Building Following Triaxial shake Table Tests

    Science.gov (United States)

    John W. van de Lindt; Rakesh Gupta; Shiling Pei; Kazuki Tachibana; Yasuhiro Araki; Douglas Rammer; Hiroshi Isoda

    2012-01-01

    In the summer of 2009, a full-scale midrise wood-frame building was tested under a series of simulated earthquakes on the world's largest shake table in Miki City, Japan. The objective of this series of tests was to validate a performance-based seismic design approach by qualitatively and quantitatively examining the building's seismic performance in terms of...

  18. Operations and Maintenance Manual for Full-Scale Bioventing System at FSA-1, Air Force Plant 4, Fort Worth, Texas

    National Research Council Canada - National Science Library

    1996-01-01

    This Operations and Maintenance (O&M) Manual has been created as a guide for monitoring and maintaining the performance of the full-scale bioventing blower system and vent well plumbing at FSA-1 at Air Force Plant 4 (AFP4), Texas...

  19. Long-term performance and fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic groundwater

    NARCIS (Netherlands)

    Beyer, F.; Rietman, B.M.; Zwijnenburg, A.; Brink, van den P.; Vrouwenvelder, J.S.; Jarzembowska, M.; Laurinonyte, J.; Stams, A.J.M.; Plugge, C.M.

    2014-01-01

    Long-term performance and fouling behavior of four full-scale nanofiltration (NF) plants, treating anoxic groundwater at 80% recovery for drinking water production, were characterized and compared with oxic NF and reverse osmosis systems. Plant operating times varied between 6 and 10 years and

  20. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    NARCIS (Netherlands)

    Belila, A.; El-Chakhtoura, J.; Otaibi, N.; Muyzer, G.; Gonzalez-Gil, G.; Saikaly, P.E.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking

  1. Development of Experimental Icing Simulation Capability for Full-Scale Swept Wings: Hybrid Design Process, Years 1 and 2

    Science.gov (United States)

    Fujiwara, Gustavo; Bragg, Mike; Triphahn, Chris; Wiberg, Brock; Woodard, Brian; Loth, Eric; Malone, Adam; Paul, Bernard; Pitera, David; Wilcox, Pete; hide

    2017-01-01

    This report presents the key results from the first two years of a program to develop experimental icing simulation capabilities for full-scale swept wings. This investigation was undertaken as a part of a larger collaborative research effort on ice accretion and aerodynamics for large-scale swept wings. Ice accretion and the resulting aerodynamic effect on large-scale swept wings presents a significant airplane design and certification challenge to air frame manufacturers, certification authorities, and research organizations alike. While the effect of ice accretion on straight wings has been studied in detail for many years, the available data on swept-wing icing are much more limited, especially for larger scales.

  2. Small scale separation of isoxazole structurally related analogues by chiral supercritical fluid chromatography.

    Science.gov (United States)

    Zehani, Yasmine; Lemaire, Lucas; Millet, Regis; Lipka, Emmanuelle

    2017-07-07

    Chromatographic preparative enantioseparation is now the preferred method to obtain milligram amounts of pure enantiomers in the first step of the development of a therapeutic molecule. Supercritical fluid chromatography has many advantages over liquid chromatography and was therefore chosen for the small scale enantioseparation of four original 3-carboxamido-5-aryl isoxazole molecules, ligands of the CB2 cannabinoid receptors. The preparation of about 10mg of each of the eight enantiomers was achieved successfully on a Chiralpak ® AD-H (tris-3,5-dimethylphenylcarbamate of amylose) polysaccharide based stationary phase with various percentages of ethanol as a co-solvent, through mixed-stream injections and touching-band approach. For the all compounds, no peak distortion is observed during the volume overloading, in spite of the injection mode. Production rate (mgmin -1 ), productivity (kilogram of racemate separated per kilogram of CSP per day (kkd)) and solvent usage were found higher and environmental factors (E Factor) were found lower for compounds 1 and 3. The yields of each purified enantiomer were comprised between 60 and 94%. In order to improve the limit of detection calculated with the diode array detector, the hyphenation with an evaporating light scattering detector was explored and a factor of ten was won. Lastely, the enantiomeric excess and achiral purity of each of the eight individual enantiomer generated was determined and found higher than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Physicians' attitudes towards ePrescribing – evaluation of a Swedish full-scale implementation

    Directory of Open Access Journals (Sweden)

    Montelius Emelie

    2009-08-01

    Full Text Available Abstract Background The penetration rate of Electronic Health Record (EHR systems in health care is increasing. However, many different EHR-systems are used with varying ePrescription designs and functionalities. The aim of the present study was to evaluate experienced ePrescribers' attitudes towards ePrescribing for suggesting improvements. Methods Physicians (n = 431 from seven out of the 21 Swedish health care regions, using one of the six most widely implemented EHR-systems with integrated electronic prescribing modules, were recruited from primary care centers and hospital clinics of internal medicine, orthopaedics and surgery. The physicians received a web survey that comprised eight questions on background data and 19 items covering attitudes towards ePrescribing. Forty-two percent (n = 199 of the physicians answered the questionnaire; 90% (n = 180 of the respondents met the inclusion criteria and were included in the final analysis. Results A majority of the respondents regarded their EHR-system easy to use in general (81%, and for the prescribing of drugs (88%. Most respondents believed they were able to provide the patients better service by ePrescribing (92%, and regarded ePrescriptions to be time saving (91% and to be safer (83%, compared to handwritten prescriptions. Some of the most frequently reported weaknesses were: not clearly displayed price of drugs (43%, complicated drug choice (21%, and the perception that it was possible to handle more than one patient at a time when ePrescribing (13%. Moreover, 62% reported a lack of receipt from the pharmacy after successful transmission of an ePrescription. Although a majority (73% of the physicians reported that they were always or often checking the ePrescription a last time before transmitting, 25% declared that they were seldom or never doing a last check. The respondents suggested a number of improvements, among others, to simplify the drug choice and the cancellation of e

  4. Full-scale demonstration of EBS construction technology I. Block, pellet and in-situ compaction method

    International Nuclear Information System (INIS)

    Toguri, Satohito; Asano, Hidekazu; Takao, Hajime; Matsuda, Takeshi; Amemiya, Kiyoshi

    2008-01-01

    (i) Bentonite Block: Applicability of manufacturing technology of buffer material was verified by manufacturing of full scale bentonite ring which consists of one-eight (1/8) dividing block (Outside Diameter (OD): 2.220 mm H: 300 mm). Density characteristic, dimension and scale effect, which were considered the tunnel environment under transportation, were evaluated. Vacuum suction technology was selected as handling technology for the ring. Hoisting characteristic of vacuum suction technology was presented through evaluation of the mechanical property of buffer material, the friction between blocks, etc. by using a full-scale bentonite ring (OD 2.200 mm, H 300 mm). And design of bentonite block and emplacement equipment were presented in consideration of manufacturability of the block, stability of handling and improvement of emplacement efficiency. (ii) Bentonite Pellet Filling: Basic characteristics such as water penetration, swelling and thermal conductivity of various kinds of bentonite pellet were collected by laboratory scale tests. Applicability of pellet filling technology was evaluated by horizontal filling test using a simulated full-scale drift tunnel (OD 2.200 mm, L 6 m) . Filling density, grain size distribution, etc. were also measured. (iii) In-Situ Compaction of Bentonite: Dynamic compaction method (heavy weight fall method) was selected as in-situ compaction technology. Compacting examination which used a full scale disposal pit (OD 2.360 mm) was carried out. Basic specification of compacting equipment and applicability of in-situ compaction technology were presented. Density, density distribution of buffer material and energy acted on the wall of the pit, were also measured. (author)

  5. Recovery of N and P from Urine by Struvite Precipitation Followed by Combined Stripping with Digester Sludge Liquid at Full Scale

    Directory of Open Access Journals (Sweden)

    Hansruedi Siegrist

    2013-08-01

    Full Text Available A novel ammonia stripping method, including a CO2 pre-stripper was used to treat a mix of supernatant liquor from an anaerobic digester and urine in order to recycle nitrogen as ammonium sulfate at full-scale in the WWTP Kloten/Opfikon. Waste streams were not generated, since the ammonia was recovered as a marketable nitrogen fertilizer, turning a waste product into a valuable product. The efficiency of this system was increased by means of the addition of pre-treated urine collected separately at EAWAG building. The separation step was performed by the use of water free urinals and urine diversion flush toilets. An increase of 10% in the liquid flux with the addition of the urine translated into a 40% increase of the ammonia concentration in the inlet of the stripping unit. The achievement of these percentages generated a proportional increase in the fertilizer production. The urine pre-treatment was carried out by adding magnesium to produce a precipitate of struvite. The first experiments with the combined treatment showed the feasibility of the combination of the separation and pre-treatment steps.

  6. Production of U3O8 by uranyl formate precipitation and calcination in a full-scale pilot facility

    International Nuclear Information System (INIS)

    Kendrick, L.S.; Wilson, W.A.; Mosley, W.C.

    1984-08-01

    The uranyl formate process for the production of U 3 O 8 with a controlled particle size has been extensively studied on a laboratory scale. Based on this study, a pilot-scale facility (the Uranyl Formate Facility) was built to investigate the key steps of the process on a larger scale. These steps were the precipitation of a uranyl formate monohydrate salt and the calcination of this salt to U 3 O 8 . Tests of the facility and process were conducted at conditions recommended by the laboratory-scale studies for a full-scale production facility. These tests demonstrated that U 3 O 8 of the required particle size for the PM process can be produced on a plant scale by the calcination of uranyl formate crystals. The performance of the U 3 O 8 produced by the uranyl formate process in fuel tube fabrication was also investigated. Small-scale extrusion tests of U 3 O 8 -Al cores which used the U 3 O 8 produced in the Uranyl Formate Facility were conducted. These tests demonstrated that the U 3 O 8 quality was satisfactory for the PM process

  7. Assessment of online monitoring strategies for measuring N2O emissions from full-scale wastewater treatment systems.

    Science.gov (United States)

    Marques, Ricardo; Rodriguez-Caballero, A; Oehmen, Adrian; Pijuan, Maite

    2016-08-01

    Clark-Type nitrous oxide (N2O) sensors are routinely used to measure dissolved N2O concentrations in wastewater treatment plants (WWTPs), but have never before been applied to assess gas-phase N2O emissions in full-scale WWTPs. In this study, a full-scale N2O gas sensor was tested and validated for online gas measurements, and assessed with respect to its linearity, temperature dependence, signal saturation and drift prior to full-scale application. The sensor was linear at the concentrations tested (0-422.3, 0-50 and 0-10 ppmv N2O) and had a linear response up to 2750 ppmv N2O. An exponential correlation between temperature and sensor signal was described and predicted using a double exponential equation while the drift did not have a significant influence on the signal. The N2O gas sensor was used for online N2O monitoring in a full-scale sequencing batch reactor (SBR) treating domestic wastewater and results were compared with those obtained by a commercial online gas analyser. Emissions were successfully described by the sensor, being even more accurate than the values given by the commercial analyser at N2O concentrations above 500 ppmv. Data from this gas N2O sensor was also used to validate two models to predict N2O emissions from dissolved N2O measurements, one based on oxygen transfer rate and the other based on superficial velocity of the gas bubble. Using the first model, predictions for N2O emissions agreed by 98.7% with the measured by the gas sensor, while 87.0% similarity was obtained with the second model. This is the first study showing a reliable estimation of gas emissions based on dissolved N2O online data in a full-scale wastewater treatment facility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Qualification of a full plant nodalization for the prediction of the core exit temperature through a scaling methodology

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu; Martínez-Quiroga, V., E-mail: victor.martinez.quiroga@upc.edu; Reventós, F., E-mail: francesc.reventos@upc.edu

    2016-11-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Qualification of full scale nuclear reactors by means of a scaling methodology. • Scaling of RELAP5 calculations to full scale power plants. - Abstract: System codes and their necessary power plant nodalizations are an essential step in thermal hydraulic safety analysis. In order to assess the safety of a particular power plant, in addition to the validation and verification of the code, the nodalization of the system needs to be qualified. Since most existing experimental data come from scaled-down facilities, any qualification process must therefore address scale considerations. The Group of Thermal Hydraulic Studies at Technical University of Catalonia has developed a scaling-up methodology (SCUP) for the qualification of full-scale nodalizations through a systematic procedure based on the extrapolation of post-test simulations of Integral Test Facility experiments. In the present work, the SCUP methodology will be employed to qualify the nodalization of the AscóNPP, a Pressurized Water Reactor (PWR), for the reproduction of an important safety phenomenon which is the effectiveness of the Core Exit Temperature (CET) as an Accident Management (AM) indicator. Given the difficulties in placing measurements in the core region, CET measurements are used as a criterion for the initiation of safety operational procedures during accidental conditions in PWR. However, the CET response has some limitation in detecting inadequate core cooling simply because the measurement is not taken in the position where the cladding exposure occurs. In order to apply the SCUP methodology, the OECD/NEA ROSA-2 Test 3, an SBLOCA in the hot leg, has been selected as a starting point. This experiment was conducted at the Large Scale Test Facility (LSTF), a facility operated by the Japanese Atomic Energy Agency (JAEA) and was focused on the assessment of the effectiveness of AM actions triggered by

  9. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained

  10. Performance evaluation of a full-scale ABS resin manufacturing wastewater treatment plant: a case study in Tabriz Petrochemical Complex

    Directory of Open Access Journals (Sweden)

    Mohammad Shakerkhatibi

    2016-08-01

    Full Text Available Background: The measurement data regarding the influent and effluent of wastewater treatment plant (WWTP provides a general overview, demonstrating an overall performance of WWTP. Nevertheless, these data do not provide the suitable operational information for the optimization of individual units involved in a WWTP. A full-scale evolution of WWTP was carried out in this study via a reconciled data. Methods: A full-scale evolution of acrylonitrile, butadiene and styrene (ABS resin manufacturing WWTP was carried out. Data reconciliation technique was employed to fulfil the mass conservation law and also enhance the accuracy of the flow measurements. Daily average values from long-term measurements by the WWTP library along with the results of four sampling runs, were utilized for data reconciliation with further performance evaluation and characterization of WWTP. Results: The full-scale evaluation, based on balanced data showed that removal efficiency based on chemical oxygen demand (COD and biochemical oxygen demand (BOD5 through the WWTP were 80% and 90%, respectively, from which only 28% of COD and 20% of BOD5 removal had occurred in biological reactor. In addition, the removal efficiency of styrene and acrylonitrile, throughout the plant, was approximately 90%. Estimation results employing Toxchem model showed that 43% of acrylonitrile and 85% of styrene were emitted into the atmosphere above water surfaces. Conclusion: It can be concluded that the volatilization of styrene and acrylonitrile is the main mechanism for their removal along with corresponded COD elimination from the WWTP.

  11. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  12. Assistance in MSD Research and Development: Part 2, Full scale field testing at mining operations: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Worsey, P.N.; Canon, C.

    1988-06-01

    Full scale and field testing of a simple mechanical stemming aid is described. The aid comprises a solid unit placed in the stemming above the explosive column and is designed to improve blasting efficiency and reduce drilling and blasting costs. It is designed to work with back filled drill cuttings or any other suitable stemming material. The results of Phase I testing were highly successful, indicating that the stemming aid has technically an extremely good chance of success at full scale when constructed of low cost materials. Phase II of the stemming aid research and development program comprised of the testing of various forms of the stemming is at full scale in non-research oriented i.e. field settings. The stemming aid was field tested at 4 different sites for a variety of mining application: First in underground workings at the UMR experimental mine in one and three quarter inch diameter horizontal blast holes incorporated into full blast patterns; three and three and a half inch blast holes at two crushed rock/limestone quarries in the Rolla area and at a surface coal mine operation run by Peabody Coal Company at Lynnville, Indiana in which nine and seven eighths, ten and five eighths and fifteen and a quarter inch diameter blast holes were used for parting and overburden removal. 2 refs., 37 figs., 11 tabs.

  13. Co-firing of Coal with Biomass and Waste in Full-scale Suspension-fired Boilers

    DEFF Research Database (Denmark)

    Dam-Johansen, Kim; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2013-01-01

    and boiler manufacturers to optimize design and operation and minimize cost and environmental impact using alternative fuels in suspension fired boilers. Our contribution has been made via a combination of full-scale measuring campaigns, pilot-scale studies, lab-scale measurements and modeling tools....... The research conducted has addressed many issues important for co-firing, i.e. fuel processing, ash induced boiler deposit formation and corrosion, boiler chamber fuel conversion and emission formation, influence on flue gas cleaning equipment and the utilization of residual products. This paper provides...... research has provided results with implications for operation of milling and burner equipment, appropriate fuel mixing strategies, minimization of ash deposit formation and corrosion, minimization of NO formation, appropriate operation of SCR catalyst equipment and utilization of residual products...

  14. Feasibility and Performance of Full-Scale In-situ Remediation of TCE by ERD in Clay Tills

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia

    The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE-contamin......The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE......-contaminated clay till. An integrated investigative approach consisting of water and clay core sample analysis, including stable isotopes and specific degraders, as well as analysis for chlorinated solvents, degradation products, donor fermentation products and redox-sensitive parameters combined with modelling has...

  15. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  16. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Bikeev, Artem S.; Bolshagin, Sergey N.; Kalugin, Mikhail A.; Kosourov, Evgeniy K.; Pavlovichev, Aleksandr M.; Pryanichnikov, Aleksandr V.; Sukhino-Khomenko, Evgenia A.; Shcherenko, Anna I.; Shcherenko, Anastasia I.; Shkarovskiy, Denis A. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    Two types of calculations were made to compare BIPR-7A and MCU results for 3D full-scale models. First EPS (emergency protection system) efficiency and in-core power distributions were analyzed for an equilibrium fuel load of VVER-1000 assuming its operation within an 18-month cycle. Computations were performed without feedbacks and with fuel burnup distributed over the core. After 3D infinite lattices of full-scale VVER-1000 fuel assemblies (A's) with uranium fuel 4.4% enrichment and uranium-erbium fuel 4.4% enrichment and Er{sub 2}O{sub 3} 1 % wt were considered. Computations were performed with feedbacks and fuel burnup at the constant power level. For different time moments effective multiplication factor and power distribution were obtained. EPS efficiency and reactivity effects at chosen time moments were analyzed.

  17. A method for projecting full-scale performance of CO/sub 2/ flooding in the Willard Unit

    International Nuclear Information System (INIS)

    Bilhartz, H.L.; Charlson, G.S.; Stalkup, F.I.; Miller, C.C.

    1985-01-01

    A non-producing CO/sub 2/ flood tertiary recovery test was recently completed in the Willard Unit of Wasson Field. Flood responses during waterflood and alternate injection of CO/sub 2/ and water were monitored at a logging observation well using compensated neutron and pulsed neutron logs. A pressure core was taken to measure residual oil saturations at the test conclusion. The overall objective of the testing was to obtain information for evaluating the potential for full-scale CO/sub 2/ flooding in the unit. Out method for making this evaluation involves: (1) defining CO/sub 2/ flood displacement efficiency and representing this efficiency in a miscible flood reservoir simulator; (2) defining a representative average reservoir description; and (3) projecting full-scale CO/sub 2/ flood performance with the simulator. The paper provides a status report on progress to assess CO/sub 2/ flooding potential for the Willard Unit in this manner

  18. Results and analysis of high heat flux tests on a full-scale vertical target prototype of ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Bobin-Vastra, I.; Schlosser, J.; Durocher, A.

    2005-01-01

    After an extensive R and D development program, a full-scale divertor target prototype, manufactured with all the main features of the corresponding ITER divertor, was intensively tested in the high heat flux FE200 facility. The prototype consists of four units having a full monoblock geometry. The lower part (CFC armour) and the upper part (W armour) of each monoblock were joined to the solution annealed, quenched and cold worked CuCrZr tube by HIP technique. This paper summarises and analyses the main test results obtained on this prototype

  19. Experimental assessment of a three storey full-scale precast structure. SAFECAST Project: Work Package 4, Technical Report

    OpenAIRE

    NEGRO Paolo; BOURNAS DIONYSIOS; MOLINA RUIZ Francisco Javier; VIACCOZ Bernard; MAGONETTE Georges; CAPERAN Philippe

    2012-01-01

    In the framework of the SAFECAST Project, a full-scale three-storey precast building was subjected to a series of pseudodynamic (PsD) tests in the European Laboratory for Structural Assessment (ELSA) at the Joint Research Centre of the European Commission. The mock-up was constructed in such a way that four different structural configurations could be investigated experimentally. Therefore, the behaviour of various parameters like the types of mechanical connections (traditional as well as in...

  20. Full-scale demonstration of EBS construction technology II. Design, manufacturing and transportation of pre-fabricated EBS module (PEM)

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Toguri, Satohito; Iwata, Yumiko; Kawakami, Susumu; Nagasawa, Yuji; Yoshida, Takeshi

    2008-01-01

    PEM was investigated as a full-scale demonstration for the design, manufacturing and construction by using simulated buffer material and overpack in consideration of horizontal emplacement. Also near full-scale tests were conducted to examine the applicability of air-bearing system which can be used to transport a heavy load at the drift tunnel as for PEM. With regard to PEM casing, design requirements were selected from the viewpoints of EBS performance and operation safety issues. The construction procedure was examined in consideration of the shapes of buffer material, which are previously positioned inside the casing. And design procedure of the casing was also examined and presented. A full-scale PEM casing as a longitudinally two-part divided cylinder type with connection flanges was manufactured by using carbon steel plate. The wall thickness of this non-leak tight type PEM casing was evaluated its mechanical integrity by 2-dimensional stress analysis in consideration of the emplacement condition on the drift tunnel basement. Mechanical integrity of a percolated type casing was also examined its mechanical integrity. Air-bearing unit, which originally apply to a flat/smooth surface, was modified to fit a curved surface of the drift tunnel. Two units were aligned with two parallel lines, which estimate to be able to lift 12 tons, about two-fifth of the total weight of full scale PEM. On the conducted transportation tests of the air-bearing units, considering the surface roughness of the drift tunnel, especially for its unevenness, capability and availability of the run-over such gaps were investigated. And effect of covering sheets which can improve the gapped surface into relatively smooth was also examined by using several candidate materials. Through these tests, combination of the covering sheets and the maximum available height difference were evaluated and identified. Also the maximum traction force to toe the loading was measured to design the air

  1. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks--full-scale operational results.

    Science.gov (United States)

    Vestner, R J; Günthert, F Wolfgang

    2004-01-01

    Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.

  2. Full Wafer Redistribution and Wafer Embedding as Key Technologies for a Multi-Scale Neuromorphic Hardware Cluster

    OpenAIRE

    Zoschke, Kai; Güttler, Maurice; Böttcher, Lars; Grübl, Andreas; Husmann, Dan; Schemmel, Johannes; Meier, Karlheinz; Ehrmann, Oswin

    2018-01-01

    Together with the Kirchhoff-Institute for Physics(KIP) the Fraunhofer IZM has developed a full wafer redistribution and embedding technology as base for a large-scale neuromorphic hardware system. The paper will give an overview of the neuromorphic computing platform at the KIP and the associated hardware requirements which drove the described technological developments. In the first phase of the project standard redistribution technologies from wafer level packaging were adapted to enable a ...

  3. Thermal-hydraulic model of the primary coolant circuits for the full-scale training facility with WWER-1000

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Zhukavin, A.P.; Pryakhin, V.N.

    1992-01-01

    The mathematical model realized in the full-scale educational facility for NPP operator training is described. The RETACT computational complex providing real time process simulation for all regimes including the maximum credible accident is used for calculation of thermohydraulic parameters of the primary coolant circuits and steam generator under stationary and transient conditions. The two-velocity two-temperature model of one-dimensional steam-water flow containing uncondensed gases is realized in the program

  4. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan-Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.

    2017-08-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  5. Test program of the drop tests with full scale and 1/2.5 scale models of spent nuclear fuel transport and storage cask

    International Nuclear Information System (INIS)

    Kuri, S.; Matsuoka, T.; Kishimoto, J.; Ishiko, D.; Saito, Y.; Kimura, T.

    2004-01-01

    MHI have been developing 5 types of spent nuclear fuel transport and storage cask (MSF cask fleet) as a cask line-up. In order to demonstrate their safety, a representative cask model for the cask fleet have been designed for drop test regulated in IAEA TS-R-1. The drop test with a full and a 1/2.5 scale models are to be performed. It describes the test program of the drop test and manufacturing process of the scale models used for the tests

  6. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    Science.gov (United States)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  7. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    Science.gov (United States)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Aérospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model

  8. What scaling means in wind engineering: Complementary role of the reduced scale approach in a BLWT and the full scale testing in a large climatic wind tunnel

    Science.gov (United States)

    Flamand, Olivier

    2017-12-01

    Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.

  9. Single and two-phase similarity analysis of a reduced-scale natural convection loop relative to a full-scale prototype

    International Nuclear Information System (INIS)

    Botelho, David A.; Faccini, Jose L.H.

    2002-01-01

    The main topic in this paper is a new device being considered to improve nuclear reactor safety employing the natural circulation. A scaled experiment used to demonstrate the performance of the device is also described. We also applied a similarity analysis method for single and two-phase natural convection loop flow to the IEN CCN experiment and to an APEX like experiment to verify the degree of similarity relative to a full-scale prototype like the AP600. Most of the CCN similarity numbers that represent important single and two-phase similarity conditions are comparable to the APEX like loop non-dimensional numbers calculated employing the same methodology. Despite the much smaller geometric, pressure, and power scales, we conclude that the IEN CCN has single and two-phase natural circulation similarity numbers that represent fairly well the full-scale prototype. even lacking most complementary primary and safety systems, this IEN circuit provided a much valid experience to develop human, experimental, and analytical resources, besides its utilization as a training tool. (author)

  10. Decontamination factor Improvement and Waste Reduction of Full-scaled Evaporation System for Liquid Radioactive Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Ju, Young Jong; Seol, Jeung Gun; Cho, Nam Chan [KNF, Daejeon (Korea, Republic of); Ha, Dong Hwan; Kim, Yun Kwan [Jeontech Co., Suwon (Korea, Republic of)

    2016-05-15

    Liquid radioactive waste is produced from nuclear power plants, nuclear research centers, radiopharmaceuticals and nuclear fuel fabrication plants, etc. Ion-exchange, chemical precipitation, evaporation, filtration, liquid/solid extraction and centrifugal are applied to treat the liquid waste. Chemical precipitation requires low capital and operation cost. However, it produces large amount of secondary waste and has low DF (decontamination factor). Evaporation process removes variety of radionuclides in high DF. But, it also has problems in scaling and foaming [3, 4]. In this study, it is investigated that the effect of switching lime precipitation and centrifugal processes to evaporation system for improvement of removal efficiency and decrease of waste in full-scaled radioactive wastewater treatment plant. By swapping full-scaled wastewater treatment system from the centrifugal and the lime precipitation to the evaporator and the crystallizer in the nuclear fuel fabrication plant, it was possible to increase removal efficiency and to minimize waste productivity. Radioactivity concentration of effluent is decreased from 0.01 Bq/mL to ND level. Besides, waste production was reduced from 15 drums/yr to 2 drums/yr (87%).

  11. Separation nozzle: an aerodynamic device for large-scale enrichment of uranium-235

    International Nuclear Information System (INIS)

    Becker, E.W.; Bley, P.; Ehrfeld, U.; Ehrfeld, W.

    1977-01-01

    This paper gives a review of the flow and diffusion phenomena in the separation nozzle. It is shown that admixing of a light auxiliary gas offers inherent advantages for the separation of heavy isotopic molecules in a centrifugal flow. The UF 6 is accelerated to a high speed ratio by the light gas already at a low expansion of the mixture--i.e., favorable conditions for centrifugal separation are obtained while aerodynamic losses are kept low. In addition, isotope separation is enhanced because of the different diffusion velocities of the isotopes relative to the light gas. Typical rarefaction phenomena are observed in the curved jet; the molecular velocity distribution is bimodal in large regions of the flow, and a velocity slip between the heavy UF 6 and the light auxiliary gas occurs

  12. Economical feasibility of zeolite membranes for industrial scale separations of aromatic hydrocarbons

    NARCIS (Netherlands)

    Meindersma, G.W.; de Haan, A.B.

    2002-01-01

    Naphtha cracker feedstocks contain 10–25 wt% aromatic hydrocarbons, which are not converted into the desired products ethylene and propylene. The conventional processes for the separation of aromatic and aliphatic hydrocarbons are extraction, extractive distillation and azeotropic distillation.

  13. Methane Production of Full-Scale Anaerobic Digestion Plants Calculated from Substrate’s Biomethane Potentials Compares Well with the One Measured On-Site

    International Nuclear Information System (INIS)

    Holliger, Christof; Fruteau de Laclos, Hélène; Hack, Gabrielle

    2017-01-01

    Biomethane potential (BMP) tests are used to determine the amount of methane that can be produced from organic materials in order to design different components of full-scale anaerobic digestion (AD) plants such as size of the digesters and units exploiting the produced biogas. However, little is known on how well BMPs compare with biogas production from the same organic materials in full-scale installations. In this study, two AD plants were chosen to carry out such comparisons, a dry AD plant treating green waste from urban areas and food waste from restaurants and supermarkets, and a liquid AD plant treating waste sludge from wastewater treatment and seven additional organic wastes. The BMPs of multiple samples of the individual organic materials collected during a period of 7–9 months were determined. Separate tests of mixtures of organic materials confirmed that the BMP of the mixtures can be calculated by adding the BMPs of the individual materials. The weekly methane production during the investigated periods was calculated from the full-scale installation data on the feeding of the digesters and the BMPs of each substrate fed into the digesters and compared with the weekly methane production measured on-site. The latter was calculated from the most accurately measured entity, either the electricity or the volume of purified biomethane injected into the grid. The weekly methane production rates calculated from BMPs and the one measured on-site were very similar and followed the same pattern. Some exceptions could be explained by, e.g., an overload of the full-scale installation. The measured weekly methane production accounted for 94.0 ± 6.8 and 89.3 ± 5.7% of the calculated weekly methane production for the wet and dry AD plant, respectively. For 26 out of 29 weeks, the calculated weekly methane production overestimated the measured one in the case of the wet AD plant and for 37 out of 39 weeks for the dry AD plant. Based on these results, it is

  14. Methane Production of Full-Scale Anaerobic Digestion Plants Calculated from Substrate’s Biomethane Potentials Compares Well with the One Measured On-Site

    Energy Technology Data Exchange (ETDEWEB)

    Holliger, Christof, E-mail: christof.holliger@epfl.ch [Laboratory for Environmental Biotechnology, School for Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Fruteau de Laclos, Hélène [Methaconsult, Préverenges (Switzerland); Hack, Gabrielle [Laboratory for Environmental Biotechnology, School for Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2017-06-09

    Biomethane potential (BMP) tests are used to determine the amount of methane that can be produced from organic materials in order to design different components of full-scale anaerobic digestion (AD) plants such as size of the digesters and units exploiting the produced biogas. However, little is known on how well BMPs compare with biogas production from the same organic materials in full-scale installations. In this study, two AD plants were chosen to carry out such comparisons, a dry AD plant treating green waste from urban areas and food waste from restaurants and supermarkets, and a liquid AD plant treating waste sludge from wastewater treatment and seven additional organic wastes. The BMPs of multiple samples of the individual organic materials collected during a period of 7–9 months were determined. Separate tests of mixtures of organic materials confirmed that the BMP of the mixtures can be calculated by adding the BMPs of the individual materials. The weekly methane production during the investigated periods was calculated from the full-scale installation data on the feeding of the digesters and the BMPs of each substrate fed into the digesters and compared with the weekly methane production measured on-site. The latter was calculated from the most accurately measured entity, either the electricity or the volume of purified biomethane injected into the grid. The weekly methane production rates calculated from BMPs and the one measured on-site were very similar and followed the same pattern. Some exceptions could be explained by, e.g., an overload of the full-scale installation. The measured weekly methane production accounted for 94.0 ± 6.8 and 89.3 ± 5.7% of the calculated weekly methane production for the wet and dry AD plant, respectively. For 26 out of 29 weeks, the calculated weekly methane production overestimated the measured one in the case of the wet AD plant and for 37 out of 39 weeks for the dry AD plant. Based on these results, it is

  15. Report on the design and operation of a full-scale anaerobic dairy manure digester. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coppinger, E.; Brautigam, J.; Lenart, J.; Baylon, D.

    1979-12-01

    A full-scale anaerobic digester on the Monroe State Dairy Farm was operated and monitored for 24 months with funding provided by the United States Department of Energy, Fuels from Biomass Systems Branch. During the period of operation, operating parameters were varied and the impact of those changes is described. Operational experiences and system component performance are discussed. Internal digester mixing equipment was found to be unnecessary, and data supporting this conclusion are given. An influent/effluent heat exchanger was installed and tested, and results of the tests are included. Recommendations for digester design and operation are presented. Biological stability was monitored, and test results are given. Gas production rates and system net energy are analyzed. The economics of anaerobic digestion are evaluated based on various financing options, design scales, and expected benefits. Under many circumstances digesters are feasible today, and a means of analysis is given.

  16. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Flores Alsina, Xavier; Batstone, Damien John

    2016-01-01

    approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation...... plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts......The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust...

  17. Submission of the First Full Scale Prototype Chip for Upgraded ATLAS Pixel Detector at LHC, FE-I4A

    CERN Document Server

    Barbero, M; The ATLAS collaboration; Beccherle, R; Darbo, G; Dube, S; Elledge, D; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Gensolen, F; Gnani, D; Gromov, V; Jensen, F; Hemperek, T; Karagounis, M; Kluit, R; Kruth, A; Mekkaoui, A; Menouni, M; Schipper, JD; Wermes, N; Zivkovic, V

    2010-01-01

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 250nm CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80x336 pixels, each 50x250um^2, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences b...

  18. Full-Scale Measurements and System Identification on Sutong Cable-Stayed Bridge during Typhoon Fung-Wong

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available The structural health monitoring system (SHMS provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT combined with the random decrement technique (RDT. The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.

  19. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    Science.gov (United States)

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  20. Application of the Hybrid Simulation Method for the Full-Scale Precast Reinforced Concrete Shear Wall Structure

    Directory of Open Access Journals (Sweden)

    Zaixian Chen

    2018-02-01

    Full Text Available The hybrid simulation (HS testing method combines physical test and numerical simulation, and provides a viable alternative to evaluate the structural seismic performance. Most studies focused on the accuracy, stability and reliability of the HS method in the small-scale tests. It is a challenge to evaluate the seismic performance of a twelve-story pre-cast reinforced concrete shear-wall structure using this HS method which takes the full-scale bottom three-story structural model as the physical substructure and the elastic non-linear model as the numerical substructure. This paper employs an equivalent force control (EFC method with implicit integration algorithm to deal with the numerical integration of the equation of motion (EOM and the control of the loading device. Because of the arrangement of the test model, an elastic non-linear numerical model is used to simulate the numerical substructure. And non-subdivision strategy for the displacement inflection point of numerical substructure is used to easily realize the simulation of the numerical substructure and thus reduce the measured error. The parameters of the EFC method are calculated basing on analytical and numerical studies and used to the actual full-scale HS test. Finally, the accuracy and feasibility of the EFC-based HS method is verified experimentally through the substructure HS tests of the pre-cast reinforced concrete shear-wall structure model. And the testing results of the descending stage can be conveniently obtained from the EFC-based HS method.