WorldWideScience

Sample records for full cell ultra

  1. Evaluation of ISABELLE full cell ultra high vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; Briggs, J.; Chou, T.S.; Stattel, P.

    1980-01-01

    The ISABELLE Full Cell Vacuum System consisting of a 40 m long, by 8.8 cm diameter stainless steel tube pumped by seven pumping stations was assembled and processed for 10 -12 Torr operation. Evaluation and testing of the system and its sub-assemblies has been completed. Detail design of system components and the determination of the conditioning process was completed. The best procedure to rough pump, leak test, vacuum bake the system, condition pumps, degas gauges, turn on ion pumps and flash sublimation pumps was established. Pressures below 2 x 10 -11 Torr are now routinely achieved in normal operation of the Full Cell. This includes pump down after replacement of various components and pump down after back fill with moist unfiltered air. The techniques developed for the Full Cell will be used to build the ISABELLE Ultra High Vacuum System

  2. Can Full Duplex Boost Throughput and Delay of 5G Ultra-Dense Small Cell Networks?

    DEFF Research Database (Denmark)

    Gatnau, Marta; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2016-01-01

    Given the recent advances in system and antenna design, practical implementation of full duplex (FD) communication is becoming increasingly feasible. In this paper, the potential of FD in enhancing the performance of 5th generation (5G) ultra-dense small cell networks is investigated. The goal...... is to understand whether FD is able to boost the system performance from a throughput and delay perspective. The impact of having symmetric and asymmetric finite buffer traffic is studied for two types of FD: when only the base station is FD capable, and when both the user equipment and base station are FD nodes....... System level results indicate that there is a trade-off between multiple-input multiple-output (MIMO) spatial multiplexing and FD in achieving the optimal system performance. Moreover, results show that FD may be useful for asymmetric traffic applications where the lightly loaded link requires high level...

  3. On the Potential of Full Duplex Performance in 5G Ultra-Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Gatnau, Marta; Fleischer, Marko; Berardinelli, Gilberto

    2016-01-01

    inter-cell interference and traffic constraints. In this paper, we first study the self-interference cancellation capabilities by using a real demonstrator. Results show that achieving ~110 dB of cancellation is already possible with the current available technology, thus providing the required level...... of isolation to build an operational full duplex node. Secondly, we investigate the inter-cell interference and traffic constraints impact on the full duplex performance in 5th generation systems. System level results show that both the traffic and the inter-cell interference can significantly reduce...... the potential gain of full duplex with respect to half duplex. However, for large traffic asymmetry, full duplex can boost the performance of the lightly loaded link....

  4. Analyzing the Potential of Full Duplex in 5G Ultra-Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Gatnau, Marta; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2016-01-01

    Full duplex technology has become an attractive solution for future 5th Generation (5G) systems for accommodating the exponentially growing mobile traffic demand. Full duplex allows a node to transmit and receive simultaneously in the same frequency band, thus, theoretically, doubling the system...... throughput over conventional half duplex systems. A key limitation in building a feasible full duplex node is the self-interference, i.e., the interference generated by the transmitted signal to the desired signal received on the same node. This constraint has been overcome given the recent advances...... in the self-interference cancellation technology. However, there are other limitations in achieving the theoretical full duplex gain: residual self-interference, traffic constraints and inter-cell and intra-cell interference. The contribution of this article is twofold. Firstly, achievable levels of self...

  5. Ultra low power full adder topologies

    DEFF Research Database (Denmark)

    Moradi, Farshad; Wisland, Dag T.; Mahmoodi, Hamid

    In this paper several low power full adder topologies are presented. The main idea of these circuits is based on the sense energy recovery full adder (SERF) design and the GDI (gate diffusion input) technique. These subthreshold circuits are employed for ultra low power applications. While the pr...... the proposed circuits have some area overhead that is negligible, they have at least 62% less power dissipation when compared with existing designs. In this paper, 65 nm standard models are used for simulations....

  6. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    Energy Technology Data Exchange (ETDEWEB)

    Brakhane, Stefan, E-mail: brakhane@iap.uni-bonn.de; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea [Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, D-53115 Bonn (Germany)

    2015-12-15

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  7. Ultra high vacuum system for Isabelle full cell

    International Nuclear Information System (INIS)

    Skelton, R.; Briggs, J.; Chou, T.S.; Foerster, C.; Stattel, P.

    1979-01-01

    A vacuum system consisting of a 40 m long 8.8 cm diameter stainless steel tube, pumped by 7 pumping stations, has been assembled using automatic welding methods. All components have been fired at 950 0 C in a vacuum furnace at a pressure -4 Torr. Each pumping station contains a Ti-sublimator, a 30 liter/s ion pump and an UHV gauge. After assembly, the entire system was baked out at 250 0 C for 24 hours. A pressure -11 Torr was reached after titanium flash. Surface treatment of stainless for 10 -11 Torr operation, bake out and conditioning cycle to read 1 x 10 -11 Torr, and leak checking at low pressures are discussed

  8. Full space device optimization for solar cells.

    Science.gov (United States)

    Baloch, Ahmer A B; Aly, Shahzada P; Hossain, Mohammad I; El-Mellouhi, Fedwa; Tabet, Nouar; Alharbi, Fahhad H

    2017-09-20

    Advances in computational materials have paved a way to design efficient solar cells by identifying the optimal properties of the device layers. Conventionally, the device optimization has been governed by single or double descriptors for an individual layer; mostly the absorbing layer. However, the performance of the device depends collectively on all the properties of the material and the geometry of each layer in the cell. To address this issue of multi-property optimization and to avoid the paradigm of reoccurring materials in the solar cell field, a full space material-independent optimization approach is developed and presented in this paper. The method is employed to obtain an optimized material data set for maximum efficiency and for targeted functionality for each layer. To ensure the robustness of the method, two cases are studied; namely perovskite solar cells device optimization and cadmium-free CIGS solar cell. The implementation determines the desirable optoelectronic properties of transport mediums and contacts that can maximize the efficiency for both cases. The resulted data sets of material properties can be matched with those in materials databases or by further microscopic material design. Moreover, the presented multi-property optimization framework can be extended to design any solid-state device.

  9. The SSC full cell prototype string test

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Cromer, L.

    1994-11-01

    At the conclusion of the SSC half cell magnet string testing program. In February, 1993, the preliminary data analysis revealed that several substantive technical questions remained unresolved. These questions were: (1) could the high voltages to ground (>2 kV) measured during fault (quench) conditions be substantially reduced, (2) could the number of magnetic elements that became resistive (quenched) be controlled and (3) did the cryostats of the magnetic elements provide adequate insulation and isolation to meet designed refrigeration loads. To address these and other existing question a prototypical full cell of collider magnets (ten dipoles and two quadrupoles) was assembled and tested. At the conclusion of this testing there were definitive answers to most of the questions with numerical substantiation, the notable exception being the beat leak question. These answers and other results and issues are presented in this paper

  10. Ultra-Low Voltage Class AB Switched Current Memory Cell

    DEFF Research Database (Denmark)

    Igor, Mucha

    1996-01-01

    This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process with thr......This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process...... with threshold voltages of 0.9V. Both hand calculations and PSPICE simulations showed that the cells designed allowed a maximum signal range better than +/-13 micoamp, with a supply voltage down to 1V and a quiescent bias current of 1 microamp, resulting in a very high current efficiency and effective power...

  11. Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer.

    Science.gov (United States)

    Yan, Qiang; Yuan, Jinying; Kang, Yan; Cai, Zhinan; Zhou, Lilin; Yin, Yingwu

    2010-04-28

    A porphyrin-containing copolymer has dual-sensing in response to metal ions and temperature as a novel nanosensor. Triggered by ions, the sensor exhibits full-color tunable behavior as a cationic detector and colorimeter. Responding to temperature, the sensor displays an "isothermal" thermochromic point as an ultra-sensitive thermometer.

  12. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Prathap Pathi

    2017-01-01

    Full Text Available Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm and is slightly lower (by ~5% at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm silicon and just 1%–2% for thicker (>100 μm cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  13. Study of neural cells on organic semiconductor ultra thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bystrenova, Eva; Tonazzini, Ilaria; Stoliar, Pablo; Greco, Pierpaolo; Lazar, Adina; Dutta, Soumya; Dionigi, Chiara; Cacace, Marcello; Biscarini, Fabio [ISMN-CNR, Bologna (Italy); Jelitai, Marta; Madarasz, Emilia [IEM- HAS, Budapest (Hungary); Huth, Martin; Nickel, Bert [LMU, Munich (Germany); Martini, Claudia [Dept. PNPB, Univ. of Pisa (Italy)

    2008-07-01

    Many technological advances are currently being developed for nano-fabrication, offering the ability to create and control patterns of soft materials. We report the deposition of cells on organic semiconductor ultra-thin films. This is a first step towards the development of active bio/non bio systems for electrical transduction. Thin films of pentacene, whose thickness was systematically varied, were grown by high vacuum sublimation. We report adhesion, growth, and differentiation of human astroglial cells and mouse neural stem cells on an organic semiconductor. Viability of astroglial cells in time was measured as a function of the roughness and the characteristic morphology of ultra thin organic film, as well as the features of the patterned molecules. Optical fluorescence microscope coupled to atomic force microscope was used to monitor the presence, density and shape of deposited cells. Neural stem cells remain viable, differentiate by retinoic acid and form dense neuronal networks. We have shown the possibility to integrate living neural cells on organic semiconductor thin films.

  14. The SSC full cell prototype string test

    International Nuclear Information System (INIS)

    McInturff, A.D.; Kraushaar, P.; Burgett, W.; Cromer, L.

    1994-01-01

    At the conclusion of the SSC half cell magnet string testing program in February, 1993, the preliminary data analysis revealed that several substantive technical questions remained unresolved. These questions were: (1) could the high voltages to ground (>2 kV) measured during fault (quench) conditions be substantially reduced, (2) could the number of magnetic elements that became resistive (quenched) be controlled and 3) did the cryostats of the magnetic elements provide adequate insulation and isolation to meet designed refrigeration loads. To address these and other existing questions, a prototypical fall cell of collider magnets (ten dipoles and two quadrupoles) was assembled and tested. At the conclusion of this testing there were definitive answers to most of the questions with numerical substantiation, the notable exception being the beat leak question. These answers and other results and issues are presented in this paper

  15. Full-spectrum photon management of solar cell structures for photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin; Yang, Lili

    2015-01-01

    Highlights: • A novel photon management method is proposed for hybrid photovoltaic–thermoelectric systems. • Composite structured surfaces enable creditable ultra-broadband anti-reflection property. • Incorporation of anti-reflection and light-trapping brings spectral absorption and transmission. • The efficient photon management of the structured surface is also omnidirectional. - Abstract: In this paper, a novel ultra-broadband photon management structure is proposed for crystalline silicon thin-film solar cells used in the photovoltaic–thermoelectric hybrid system. Nanostructures are employed on both front and back side. Optical behavior of the structure in ultra-broadband (300–2500 nm) are investigated through the Finite Difference Time Domain method. By combing moth-eye and inverted-parabolic surface, a new composite surface structure is proposed for anti-reflection in the ultra-broadband wavelengths. Front metallic nanoparticles, plasmonic back reflector and metallic gratings are studied for light-trapping and the effect of plasmonic back reflector is validated by the experimental data of the external quantum efficiency. The effects of incident angle are discussed for metallic gratings. Numerical computation shows that the incorporation of anti-reflection and light-trapping can obtain high absorption in the solar cell and ensure the rest incident light transmits to the thermoelectric generator efficiently. This work shows potential full-spectrum utilization of solar energy for various photovoltaic devices related with hybrid photovoltaic–thermoelectric systems

  16. Conjugated polymer dots for ultra-stable full-color fluorescence patterning.

    Science.gov (United States)

    Chang, Kaiwen; Liu, Zhihe; Chen, Haobin; Sheng, Lan; Zhang, Sean Xiao-An; Chiu, Daniel T; Yin, Shengyan; Wu, Changfeng; Qin, Weiping

    2014-11-12

    Stable full-color fluorescence patterning are achieved by multicolor polymer-dot inks. The fluorescent patterns show extraordinary stability upon various treatments, offering a superior combination of bright fluorescence, excellent photostability, chemical resistance, and eco-friendship. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ultra-thin Polyethylene glycol Coatings for Stem Cell Culture

    Science.gov (United States)

    Schmitt, Samantha K.

    Human mesenchymal stem cells (hMSCs) are a widely accessible and a clinically relevant cell type that are having a transformative impact on regenerative medicine. However, current clinical expansion methods can lead to selective changes in hMSC phenotype resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding stem cell behavior. In particular we have developed chemically defined ultra-thin coatings that are stable over timeframes relevant to differentiation of hMSCs (several weeks). The approach employs synthesis of a copolymer with distinct chemistry in solution before application to a substrate. This provides wide compositional flexibility and allows for characterization of the orthogonal crosslinking and peptide binding groups. Characterization is done in solution by proton NMR and after crosslinking by X-ray photoelectron spectroscopy (XPS). The solubility of the copolymer in ethanol and low temperature crosslinking, expands its applicability to plastic substrates, in addition to silicon, glass, and gold. Cell adhesive peptides, namely Arg-Gly-Asp (RGD) fragments, are coupled to coating via different chemistries resulting in the urethane, amide or the thioester polymer-peptide bonds. Development of azlactone-based chemistry allowed for coupling in water at low peptide concentrations and resulted in either an amide or thioester bonds, depending on reactants. Characterization of the peptide functionalized coating by XPS, infrared spectroscopy and cell culture assays, showed that the amide linkages can present peptides for multiple weeks, while shorter-term presentation of a few days is possible using the more labile thioester bond. Regardless, coatings promoted initial adhesion and spreading of hMSCs in a peptide density dependent manner. These coatings address the following challenges in chemically defined cell culture simultaneously: (i) substrate adaptability, (ii) scalability over large areas

  18. Full-Duplex MIMO Small-Cell Networks: Performance Analysis

    OpenAIRE

    Atzeni, Italo; Kountouris, Marios

    2015-01-01

    Full-duplex small-cell relays with multiple antennas constitute a core element of the envisioned 5G network architecture. In this paper, we use stochastic geometry to analyze the performance of wireless networks with full-duplex multiple-antenna small cells, with particular emphasis on the probability of successful transmission. To achieve this goal, we additionally characterize the distribution of the self-interference power of the full-duplex nodes. The proposed framework reveals useful ins...

  19. Circuit for Full Charging of Series Lithium-Ion Cells

    Science.gov (United States)

    Ott, William E.; Saunders, David L.

    2007-01-01

    An advanced charger has been proposed for a battery that comprises several lithium-ion cells in series. The proposal is directed toward charging the cells in as nearly an optimum manner as possible despite unit-to-unit differences among the nominally identical cells. The particular aspect of the charging problem that motivated the proposal can be summarized as follows: During bulk charging (charging all the cells in series at the same current), the voltages of individual cells increase at different rates. Once one of the cells reaches full charge, bulk charging must be stopped, leaving other cells less than fully charged. To make it possible to bring all cells up to full charge once bulk charging has been completed, the proposed charger would include a number of top-off chargers one for each cell. The top-off chargers would all be powered from the same DC source, but their outputs would be DC-isolated from each other and AC-coupled to their respective cells by means of transformers, as described below. Each top-off charger would include a flyback transformer, an electronic switch, and an output diode. For suppression of undesired electromagnetic emissions, each top-off charger would also include (1) a resistor and capacitor configured to act as a snubber and (2) an inductor and capacitor configured as a filter. The magnetic characteristics of the flyback transformer and the duration of its output pulses determine the energy delivered to the lithium-ion cell. It would be necessary to equip the cell with a precise voltage monitor to determine when the cell reaches full charge. In response to a full-charge reading by this voltage monitor, the electronic switch would be held in the off state. Other cells would continue to be charged similarly by their top-off chargers until their voltage monitors read full charge.

  20. Effects of epigallocatechin gallate on ultra-violet-induced cell death in PC12 cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Seki, Sakiko; Sakamoto, Naotaka; Nakagawa, Shigeki

    2002-01-01

    We examined the effects of catechin on ultra-violet-induced cell death in PC12 cells. PC12 cells were irradiated by ultra-violet C (254 nm) (UVC). We found that the lactate dehydrogenase (LDH) activities in culture media and lipid peroxide in PC12 cells, which indicate cell death and cell membrane damage, respectively, were increased by UVC irradiation in a time-dependent manner. Cell death was gradually stimulated for 9 hours of cultivation after a UVC irradiation period of 10 or 30 min. Epigallocatechin gallate (EGCG), which is one of the main catechins found in green tea, suppressed the increase in LDH activity in culture medium and also inhibited the formation of lipid peroxide. IκB, a member of the cell death signaling system, was phosphorylated at 1 hour after 10 min of UVC irradiation. Stimulation of phosphorylation of IκB by UVC was suppressed by the addition of EGCG. We concluded that EGCG protects the PC12 cell from cell damage caused by UVC irradiation. (author)

  1. Surgical correction of cryptotia combined with an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap.

    Science.gov (United States)

    Yu, Xiaobo; Yang, Qinghua; Jiang, Haiyue; Pan, Bo; Zhao, Yanyong; Lin, Lin

    2017-11-01

    Cryptotia is a common congenital ear deformity in Asian populations. In cryptotia, a portion of the upper ear is hidden and fixed in a pocket of the skin of the mastoid. Here we describe our method for cryptotia correction by using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap. We developed a new method for correcting cryptotia by using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap. Following ear release, the full-thickness skin rotation flap is rotated into the defect, and the donor site is covered with an ultra-delicate split-thickness skin graft raised in continuity with the flap. All patients exhibited satisfactory release of cryptotia. No cases involved partial or total flap necrosis, and post-operative outcomes using this new technique for cryptotia correction have been more than satisfactory. Our method of using an ultra-delicate split-thickness skin graft in continuity with a full-thickness skin rotation flap to correct cryptotia is simple and reliable. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. NANOG priming before full reprogramming may generate germ cell tumours

    Directory of Open Access Journals (Sweden)

    I Grad

    2011-11-01

    Full Text Available Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.

  3. Ultra-soft PDMS-based magnetoactive elastomers as dynamic cell culture substrata.

    Directory of Open Access Journals (Sweden)

    Matthias Mayer

    Full Text Available Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young's modulus <100 kPa PDMS-based magnetoactive elastomers (MAE as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices.

  4. Full Duplex Communications in 5G Small Cells

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Gatnau, Marta; Berardinelli, Gilberto

    2017-01-01

    Full duplex communication promises system performance improvement over conventional half duplex communication by allowing simultaneous transmission and reception. However, such concurrent communication results in strong self interference and an increase in the overall network interference, and can...... only be exploited when traffic is available in both directions. The potential throughput gains of full duplex communication over conventional half duplex transmission in a small cell network with asymmetric traffic conditions is investigated in this contribution. The throughput performance gains...... are analysed using tools from stochastic geometry, and further confirmed through extensive system level simulations. Our findings explicitly quantify how the gains from full duplex communication depend on the traffic profile and the inter-cell interference coupling. The demonstrated throughput gains and delay...

  5. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Crovetto, Andrea; Yan, Chang

    2017-01-01

    We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed. At the ......We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed...

  6. Evaluation of CBA first string full cell vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; Briggs, J.; Christianson, C.; Stattel, P.

    1983-01-01

    The CBA (Colliding Beam Accelerator, formerly known as ISABELLE) Full Cell Magnet System consisting of six superconducting dipole magnets and two superconducting quadrupole magnets requires two separate vacuum systems. One, known as beam vacuum operates below 3 x 10 -11 Torr and the other, known as insulating vacuum, operates at less than 10 -7 Torr to isolate cryo circuits from atmosphere and from the uhv beam tubes. The uhv bore tube is isolated from the 4.0 0 K magnet by thirty-six (36) layers of superinsulation and insulating vacuum. Heat load measurements on the bore tube have been completed and found to agree with data obtained in smaller controlled experiments. Measurements of helium, accumulated on cryogenic pumped charcoal panels over many weeks, have verified sensitive helium mass spectrometer leak detection methods for vacuum integrity, providing sound design of the welded complex. The Full Cell was assembled and operated under conditions that would exist in the completed machine. Pressures below 2 x 10 -11 Torr beam vacuum requirement and below 2 x 10 -7 Torr insulating vacuum, were routinely achieved during all phases of the Full Cell operation and support systems testing

  7. Cytotoxic effects of ultra-diluted remedies on breast cancer cells.

    Science.gov (United States)

    Frenkel, Moshe; Mishra, Bal Mukund; Sen, Subrata; Yang, Peiying; Pawlus, Alison; Vence, Luis; Leblanc, Aimee; Cohen, Lorenzo; Banerji, Pratip; Banerji, Prasanta

    2010-02-01

    The use of ultra-diluted natural products in the management of disease and treatment of cancer has generated a lot of interest and controversy. We conducted an in vitro study to determine if products prescribed by a clinic in India have any effect on breast cancer cell lines. We studied four ultra-diluted remedies (Carcinosin, Phytolacca, Conium and Thuja) against two human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231) and a cell line derived from immortalized normal human mammary epithelial cells (HMLE). The remedies exerted preferential cytotoxic effects against the two breast cancer cell lines, causing cell cycle delay/arrest and apoptosis. These effects were accompanied by altered expression of the cell cycle regulatory proteins, including downregulation of phosphorylated Rb and upregulation of the CDK inhibitor p27, which were likely responsible for the cell cycle delay/arrest as well as induction of the apoptotic cascade that manifested in the activation of caspase 7 and cleavage of PARP in the treated cells. The findings demonstrate biological activity of these natural products when presented at ultra-diluted doses. Further in-depth studies with additional cell lines and animal models are warranted to explore the clinical applicability of these agents.

  8. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes.

    Directory of Open Access Journals (Sweden)

    Ankush Prasad

    Full Text Available Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non

  9. An experimental study of a hydrogen-enriched ethanol fueled Wankel rotary engine at ultra lean and full load conditions

    International Nuclear Information System (INIS)

    Amrouche, F.; Erickson, P.A.; Varnhagen, S.; Park, J.W.

    2016-01-01

    Highlights: • H_2 was added at the intake of a single-rotor ethanol fueled Wankel engine. • The engine was operating at ultra-lean condition, WOT and 3000 rpm. • H_2 enrichment helps shortening the burn duration, enhance the thermal efficiency and reduce the BSEC. • H_2 addition helps to reduce HC, CO and CO_2 emissions. - Abstract: In this paper, the effect of hydrogen addition to ethanol in a monorotor Wankel engine at wide open throttle position and in an ultra-lean operating regime was experimentally investigated. For this aim, variation of hydrogen enrichment levels on the ethanol engine performance and emissions were considered. Experiments were carried out under a constant engine speed of 3000 rpm and fixed spark timing of 15 °BTDC. The test results showed that hydrogen enrichment improved the combustion process through shortening of the flame development and flame propagation periods and reducing the cyclic variation. Furthermore, the reduction of burn duration with the increase of hydrogen fraction enhances the thermal efficiency, reducing the brake-specific energy consumption, as well as reducing the unburned hydrocarbons emissions of the Wankel engine.

  10. Interference-Robust Air Interface for 5G Ultra-dense Small Cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2016-01-01

    An ultra-dense deployment of small cells is foreseen as the solution to cope with the exponential increase of the data rate demand targeted by the 5th Generation (5G) radio access technology. In this article, we propose an interference-robust air interface built upon the usage of advanced receivers...

  11. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    International Nuclear Information System (INIS)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-01-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  12. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh)

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  13. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  14. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Directory of Open Access Journals (Sweden)

    Lena Simone Fohrmann

    2017-09-01

    Full Text Available Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  15. Development of a fine and ultra-fine group cell calculation code SLAROM-UF for fast reactor analyses

    International Nuclear Information System (INIS)

    Hazama, Taira; Chiba, Go; Sugino, Kazuteru

    2006-01-01

    A cell calculation code SLAROM-UF has been developed for fast reactor analyses to produce effective cross sections with high accuracy in practical computing time, taking full advantage of fine and ultra-fine group calculation schemes. The fine group calculation covers the whole energy range in a maximum of 900-group structure. The structure is finer above 52.5 keV with a minimum lethargy width of 0.008. The ultra-fine group calculation solves the slowing down equation below 52.5 keV to treat resonance structures directly and precisely including resonance interference effects. Effective cross sections obtained in the two calculations are combined to produce effective cross sections over the entire energy range. Calculation accuracy and improvements from conventional 70-group cell calculation results were investigated through comparisons with reference values obtained with continuous energy Monte Carlo calculations. It was confirmed that SLAROM-UF reduces the difference in k-infinity from 0.15 to 0.01% for a JOYO MK-I fuel subassembly lattice cell calculation, and from - 0.21% to less than a statistical uncertainty of the reference calculation of 0.03% for a ZPPR-10A core criticality calculation. (author)

  16. Ultra-fast stem cell labelling using cationised magnetoferritin

    Science.gov (United States)

    Correia Carreira, S.; Armstrong, J. P. K.; Seddon, A. M.; Perriman, A. W.; Hartley-Davies, R.; Schwarzacher, W.

    2016-03-01

    Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised magnetoferritin did not adversely affect the membrane integrity, proliferation and multi-lineage differentiation capacity of hMSCs, which provides the first detailed evidence for the biocompatibility of magnetoferritin. The combination of synthetic ease and flexibility, the rapidity of labelling and absence of cytotoxicity make this novel nanoparticle system an easily accessible and versatile platform for a range of cell-based therapies in regenerative medicine.Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised

  17. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  18. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  19. Ultra-fast laser microprocessing of medical polymers for cell engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, R. [Ultraprecision Processes Unit, Fundación IK4-TEKNIKER, Iñaki Goenaga 5, 20600, Eibar, Gipuzkoa (Spain); Moreno-Flores, S., E-mail: susana.moreno-flores@boku.ac.at [Biosurfaces Unit, CIC biomaGUNE, Po Miramón, 182, 20009, San Sebastián, Donostia (Spain); Quintana, I., E-mail: iban.quintana@tekniker.es [Ultraprecision Processes Unit, Fundación IK4-TEKNIKER, Iñaki Goenaga 5, 20600, Eibar, Gipuzkoa (Spain); Micro and Nanoengineering Unit, CIC microGUNE, Goiru Kalea 9, 20500, Arrasate-Mondragón, Gipuzkoa (Spain); Vivanco, MdM [Cell Biology and Stem Cells Unit, CIC bioGUNE, Technology Park of Bizkaia, Ed. 801A, 48160 Derio (Spain); Sarasua, J.R. [University of the Basque Country (EHU-UPV), School of Engineering, Department of Mining and Metallurgy Engineering and Materials Science, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Toca-Herrera, J.L. [Biosurfaces Unit, CIC biomaGUNE, Po Miramón, 182, 20009, San Sebastián, Donostia (Spain); Micro and Nanoengineering Unit, CIC microGUNE, Goiru Kalea 9, 20500, Arrasate-Mondragón, Gipuzkoa (Spain)

    2014-04-01

    Picosecond laser micromachining technology (PLM) has been employed as a tool for the fabrication of 3D structured substrates. These substrates have been used as supports in the in vitro study of the effect of substrate topography on cell behavior. Different micropatterns were PLM-generated on polystyrene (PS) and poly-L-lactide (PLLA) and employed to study cellular proliferation and morphology of breast cancer cells. The laser-induced microstructures included parallel lines of comparable width to that of a single cell (which in this case is roughly 20 μm), and the fabrication of square-like compartments of a much larger area than a single cell (250,000 μm{sup 2}). The results obtained from this in vitro study showed that though the laser treatment altered substrate roughness, it did not noticeably affect the adhesion and proliferation of the breast cancer cells. However, pattern direction directly affected cell proliferation, leading to a guided growth of cell clusters along the pattern direction. When cultured in square-like compartments, cells remained confined inside these for eleven incubation days. According to these results, laser micromachining with ultra-short laser pulses is a suitable method to directly modify the cell microenvironment in order to induce a predefined cellular behavior and to study the effect of the physical microenvironment on cell proliferation. - Highlights: • Microstructuring of biocompatible polymers by ultra-short pulsed laser technology. • Contact guidance effect on a supracellular scale along microgrooved substrates. • Cell confinement inside square compartments. • Fabrication of a 3D microenvironment that induces predefined behavior of cells.

  20. Ultra-fast laser microprocessing of medical polymers for cell engineering applications

    International Nuclear Information System (INIS)

    Ortiz, R.; Moreno-Flores, S.; Quintana, I.; Vivanco, MdM; Sarasua, J.R.; Toca-Herrera, J.L.

    2014-01-01

    Picosecond laser micromachining technology (PLM) has been employed as a tool for the fabrication of 3D structured substrates. These substrates have been used as supports in the in vitro study of the effect of substrate topography on cell behavior. Different micropatterns were PLM-generated on polystyrene (PS) and poly-L-lactide (PLLA) and employed to study cellular proliferation and morphology of breast cancer cells. The laser-induced microstructures included parallel lines of comparable width to that of a single cell (which in this case is roughly 20 μm), and the fabrication of square-like compartments of a much larger area than a single cell (250,000 μm 2 ). The results obtained from this in vitro study showed that though the laser treatment altered substrate roughness, it did not noticeably affect the adhesion and proliferation of the breast cancer cells. However, pattern direction directly affected cell proliferation, leading to a guided growth of cell clusters along the pattern direction. When cultured in square-like compartments, cells remained confined inside these for eleven incubation days. According to these results, laser micromachining with ultra-short laser pulses is a suitable method to directly modify the cell microenvironment in order to induce a predefined cellular behavior and to study the effect of the physical microenvironment on cell proliferation. - Highlights: • Microstructuring of biocompatible polymers by ultra-short pulsed laser technology. • Contact guidance effect on a supracellular scale along microgrooved substrates. • Cell confinement inside square compartments. • Fabrication of a 3D microenvironment that induces predefined behavior of cells

  1. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of); Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2010-06-15

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  2. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    International Nuclear Information System (INIS)

    Choi, Eun Seo; Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha; Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il

    2010-01-01

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  3. Intrinsic radiation tolerance of ultra-thin GaAs solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, L. C.; Yakes, M. K.; Warner, J. H.; Schmieder, K. J.; Walters, R. J.; Jenkins, P. P. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, D.C. 20375 (United States); Bennett, M. F. [Sotera Defense Solutions, Inc., Annapolis Junction, Maryland 20701-1067 (United States)

    2016-07-18

    Radiation tolerance is a critical performance criterion of photovoltaic devices for space power applications. In this paper we demonstrate the intrinsic radiation tolerance of an ultra-thin solar cell geometry. Device characteristics of GaAs solar cells with absorber layer thicknesses 80 nm and 800 nm were compared before and after 3 MeV proton irradiation. Both cells showed a similar degradation in V{sub oc} with increasing fluence; however, the 80 nm cell showed no degradation in I{sub sc} for fluences up to 10{sup 14 }p{sup +} cm{sup −2}. For the same exposure, the I{sub sc} of the 800 nm cell had severely degraded leaving a remaining factor of 0.26.

  4. Ultra Low Voltage Class AB Switched Current Memory Cells Based on Floating Gate Transistors

    DEFF Research Database (Denmark)

    Mucha, Igor

    1999-01-01

    current memory cells were designed using a CMOS process with threshold voltages V-T0n = \\V-T0p\\ = 0.9 V for the n- and p-channel devices. Both hand calculations and PSPICE simulations showed that the designed example switched current memory cell allowed a maximum signal range better than +/-18 mu......A proposal for a class AB switched current memory cell, suitable for ultra-low-voltage applications is presented. The proposal employs transistors with floating gates, allowing to build analog building blocks for ultralow supply voltage operation also in CMOS processes with high threshold voltages....... This paper presents the theoretical basis for the design of "floating-gate'' switched current memory cells by giving a detailed description and analysis of the most important impacts degrading the performance of the cells. To support the theoretical assumptions circuits based on "floating-gate'' switched...

  5. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    Science.gov (United States)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  6. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    Science.gov (United States)

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  7. Full-sky survey searching for ultra-narrow-band artificial CW signals: analysis of the results of Project META

    Science.gov (United States)

    Lemarchand, Guillermo A.

    1996-06-01

    Project META (Megachannel ExtraTerrestrial Assay), a full-sky survey for artificial narrow-band signals, has been conducted from the Harvard/Smithsonian 26 m radiotelescope at Agassiz Station and from one of the two 30 m radiotelescopes of the Instituto Argentino de Radioastronomia (IAR). The search was performed near the 1420 MHz line of neutral hydrogen, and its second harmonic, using two 8.4 X 10(superscript 6) channel Fourier spectrometers of 0.05 Hz resolution and 400 kHz of instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 6 X 10(superscript 13) spectral channels searched in the northern hemisphere, Horowitz and Sagan reported 37 candidates events exceeding the average threshold of 1.7 X 10(superscript -23) W m(superscript -2), while in the southern hemisphere among 2 X 10(superscript 13) spectral channels analyzed we found 19 events exceeding the same threshold. The strongest signals that survive culling for terrestrial interference lie in or near the Galactic Plane. The first high resolution southern target search around 71 stars (-90 degrees intelligence. It is showed that these narrow-band non-repeating 'events' found by Project META can be generated by (a) radiometer noise fluctuations, (b) a population of constant galactic sources which undergo deep fading and amplification due to interstellar scintillation, consistent with ETI transmissions and (c) real, transient signals of either terrestrial or extraterrestrial origin. The Bayesian test shows that hypothesis (b) and (c) are both highly preferred to (a), but the first two are about equally likely. Using this analysis we discuss the best observing strategies to determine the real origin of these 'events'.

  8. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Bee Luan Khoo

    Full Text Available Circulating tumor cells (CTCs are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56 (Breast cancer samples: 12-1275 CTCs/ml; Lung cancer samples: 10-1535 CTCs/ml rapidly from clinically relevant blood volumes (7.5 ml under 5 min. Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM, fluorescence in-situ hybridization (FISH (EML4-ALK or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA, and demonstrate concordance with the original tumor-biopsy samples.We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS or proteomic analysis.

  9. Systems and methods for advanced ultra-high-performance InP solar cells

    Science.gov (United States)

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  10. The changes of red blood cell viscoelasticity and sports anemia in male 24-hr ultra-marathoners

    Directory of Open Access Journals (Sweden)

    Che-Hung Liu

    2018-05-01

    Full Text Available Background: In endurance sports, stress, dehydration and release of chemical factors have been associated with red blood cell (RBC alterations of structure and function, which may contribute to sports anemia, a well-observed phenomenon during long-distance running. Until now, the investigation of the changes of viscoelastic properties of RBC membrane, a decisive factor of RBC deformability to avoid hemolysis, is lacking, especially in an Oriental population. Methods: nineteen runners were prospectively recruited into our study. Hematological parameters were analyzed before and immediately after the 2015 Taipei 24H Ultra-Marathon Festival, Taiwan. Video particle tracking microrheology was used to determine viscoelastic properties of each RBC sample by calculating the dynamic elastic modulus G′(f and the viscous modulus G″(f at frequency f = 20 Hz. Results: Haptoglobin, RBC count, hemoglobin, hematocrit, mean cell hemoglobin, plasma free hemoglobin and unsaturated iron-binding capacity values of the recruited runners showed a statistically significant drop in the post-race values. Blood concentration of reticulocyte and ferritin were significantly higher at post-race compared with pre-race. 15 out of the 19 runners had a concurrent change in the elastic and the viscous moduli of their RBCs. Changes in the elastic and the viscous moduli were correlated with changes in the RBC count, hemoglobin and hematocrit. Conclusion: Viscoelasticity properties, the elastic modulus G′(f and the viscous modulus G″(f of RBCs are associated with endurance exercise-induced anemia. Keywords: Clinical sports medicine, Red blood cell, Sports anemia, Ultra-marathon, Viscoelastic properties

  11. An ultra-sensitive biophysical risk assessment of light effect on skin cells.

    Science.gov (United States)

    Bennet, Devasier; Viswanath, Buddolla; Kim, Sanghyo; An, Jeong Ho

    2017-07-18

    The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.

  12. Ultra-high-throughput screening of an in vitro-synthesized horseradish peroxidase displayed on microbeads using cell sorter.

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    Full Text Available The C1a isoenzyme of horseradish peroxidase (HRP is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT and inactive mutant (MUT genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases.

  13. A spectroscopic study on the effect of ultra-violet solar radiation in Antarctica on the human skin fibroblast cells

    Directory of Open Access Journals (Sweden)

    Tatsuyuki Yamamoto

    2013-11-01

    Full Text Available A study on the effect of the solar ultra-violet radiation on the human skin fibroblast cells revealed that the production of matrix metalloproteinase-2 was inhibited by the radiation. A CO2 incubator connected by optical fibers to a reflector telescope for collecting the solar light was built at Syowa station by the 49th Japanese Antarctica Research Expedition. The direction of the telescope was continuously controlled by a sun-tracker to follow the movement of the Sun automatically. The intensity of the collected light was monitored by a portable spectrophotometer housed inside. The human skin fibroblast cells were incubated in the CO2 chamber to investigate the effect of the solar radiation at Syowa station and were compared with those reference experiments at a laboratory in Japan. The results showed cell damage by strong UV radiation. The production of matrix metalloproteinase-2 was prompted by the moderate UV-B, but was inhibited by the strong UV-B radiation, as studied under laboratory conditions in Japan. The effect of strong solar radiation at Syowa station involving the radiation of UV-B region was estimated to be of the same extent of the radiation caused by an artificial UV-B light with the intensity more than 50 mJ/cm2.

  14. Tc-99m Labeled Red Blood Cell by Ultra Tag RBC Kit in Patients Suspected of Gastrointestinal Bleeding

    International Nuclear Information System (INIS)

    Pusuwan, Pawana; Leaungwutiwong, Suraphong; Tocharoenchai, Chiraporn; Chaiwatanarat, Tawatchai; Sirisatipoch, Sasitorn; Rajadara, Samart; Naktong, Thanyada; Thanyarak, Sucheera

    2001-06-01

    Twenty patients suspected of gastrointestinal bleeding who underwent Tc-99m labeled red blood cell (RBC) by ultraTag RBC kit at Division of Nuclear Medicine, Bumrungrad Hospital between January 2000 and December 2002 were studied. The histories of patients together with either endoscopic results or angiographic findings or pathological reports were used as gold standards. Two by Two decision matrix was used for data analysis and the sensitivity together with specificity were calculated. The results show that the sensitivity and specificity of Tc-99m labeled RBC by ultraTag RBC kit are 87.5% and 91.7%, respectively. We conclude that Tc-99m labeled RBC by ultraTag RBC kit gives high percentages of sensitivity and specificity. Moreover, the image quality is improved because of the absence of free Tc-99m pertechnetate uptake in the stomach in all patients

  15. Survival of tumor cells after proton irradiation with ultra-high dose rates

    International Nuclear Information System (INIS)

    Auer, Susanne; Hable, Volker; Greubel, Christoph; Drexler, Guido A; Schmid, Thomas E; Belka, Claus; Dollinger, Günther; Friedl, Anna A

    2011-01-01

    Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >10 9 Gy s -1 may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly

  16. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vermang, Bart, E-mail: Bart.Vermang@angstrom.uu.se [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); ESAT-KU Leuven, University of Leuven, Leuven 3001 (Belgium); Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); Gunnarsson, Rickard; Pilch, Iris; Helmersson, Ulf [Plasma & Coatings Physics, University of Linköping, Linköping 58183 (Sweden); Kotipalli, Ratan; Henry, Frederic; Flandre, Denis [ICTEAM/IMNC, Université Catholique de Louvain, Louvain-la-Neuve 1348 (Belgium)

    2015-05-01

    Al{sub 2}O{sub 3} rear surface passivated ultra-thin Cu(In,Ga)Se{sub 2} (CIGS) solar cells with Mo nano-particles (NPs) as local rear contacts are developed to demonstrate their potential to improve optical confinement in ultra-thin CIGS solar cells. The CIGS absorber layer is 380 nm thick and the Mo NPs are deposited uniformly by an up-scalable technique and have typical diameters of 150 to 200 nm. The Al{sub 2}O{sub 3} layer passivates the CIGS rear surface between the Mo NPs, while the rear CIGS interface in contact with the Mo NP is passivated by [Ga]/([Ga] + [In]) (GGI) grading. It is shown that photon scattering due to the Mo NP contributes to an absolute increase in short circuit current density of 3.4 mA/cm{sup 2}; as compared to equivalent CIGS solar cells with a standard back contact. - Highlights: • Proof-of-principle ultra-thin CIGS solar cells have been fabricated. • The cells have Mo nano-particles (NPs) as local rear contacts. • An Al{sub 2}O{sub 3} film passivates the CIGS rear surface between these nano-particles. • [Ga]/([Ga] + [In]) grading is used to reduce Mo-NP/CIGS interface recombination.

  17. Ultra-fast repair of single-strand breaks in DNA of. gamma. -irradiated Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Leontjeva, G A; Mantzighin, Yu A; Gaziev, A I [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1976-12-01

    Studies of the effect of thermal treatment of Chinese hamster cells on sedimentation of DNA in the alkaline sucrose gradient showed that heating the cells to 68/sup 0/C for 15 min caused the same degradation as ..gamma..-irradiation with 5 to 7 krad at 37/sup 0/C. The inhibition of cellular repair enzymes by heating was therefore unacceptable. The process of ultra-fast repair is essentially determined by the DNA-ligase reaction, which is activated in the presence of Mg ions, and inhibited in mammalian cells in the presence of EDTA and pyrophosphate. Sedimentation profiles were therefore measured for the DNA of Chinese hamster cells ..gamma..-irradiated (5 krad) at 0/sup 0/C or 22/sup 0/C in the presence of Mg/sup + +/, or EDTA and pyrophosphate, and the results demonstrated ultra-fast repair only at 20 to 37/sup 0/C, in contrast to bacteria. A study was made of the temperature dependence of the activity of the DNA ligases isolated from E.coli and rabbit bone marrow. The NAD-dependent bacterial DNA ligase was active at temperatures from 0 to 40/sup 0/C, whereas ATP-dependent DNA ligase of mammals only showed activity in the range 15 to 40/sup 0/C. The differing temperature dependences of ultra-fast repair in bacterial and mammalian cells are in agreement with the temperature dependences of the activities of isolated enzymes, and the results suggest that the process of ultra-fast repair of single-strand breaks of DNA takes place in both bacterial and mammalian cells.

  18. High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Garcia-Ybarra, P.L.; Castillo, J.L. [Dept. Fisica Matematica y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-10-15

    Cathode electrodes for proton exchange membrane fuel cells (PEMFCs) with ultra-low platinum loadings as low as 0.012 mg{sub Pt}cm{sup -2} have been prepared by the electrospray method. The electrosprayed layers have nanostructured fractal morphologies with dendrites formed by clusters (about 100 nm diameter) of a few single catalyst particles rendering a large exposure surface of the catalyst. Optimization of the control parameters affecting this morphology has allowed us to overcome the state of the art for efficient electrodes prepared by electrospraying. Thus, using these cathodes in membrane electrode assemblies (MEAs), a high platinum utilization in the range 8-10 kW g{sup -1} was obtained for the fuel cell operating at 40 C and atmospheric pressure. Moreover, a platinum utilization of 20 kW g{sup -1} was attained under more suitable operating conditions (70 C and 3.4 bar over-pressure). These results substantially improve the performances achieved previously with other low platinum loading electrodes prepared by electrospraying. (author)

  19. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells.

    Science.gov (United States)

    Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis

    2014-10-01

    Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se 2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF 2 coated with a thin atomic layer deposited Al 2 O 3 layer, or direct current magnetron sputtering of Al 2 O 3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al 2 O 3 /CIGS rear interface. (MgF 2 /)Al 2 O 3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells.

  20. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells

    Science.gov (United States)

    Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis

    2014-01-01

    Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF2 coated with a thin atomic layer deposited Al2O3 layer, or direct current magnetron sputtering of Al2O3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al2O3/CIGS rear interface. (MgF2/)Al2O3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells. PMID:26300619

  1. Standardization method for measurement of hydroxyurea by Ultra High Efficiency Liquid Chromatography in plasma of patients with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Darcielle Bruna Dias Elias

    2014-09-01

    Full Text Available Sickle cell anemia (SCA is a recessively inherited disease characterized by chronic hemolytic anemia, chronic inflammation, and acute episodes of hemolysis. Hydroxyurea (HU is widely used to increase the levels of fetal hemoglobin (HbF. The objective of this study was to standardize and validate a method for the quantification of HU in human plasma by using ultra high performance liquid chromatography (UPLC in order to determine the plasma HU levels in adult patients with SCA who had been treated with HU. We used an analytical reverse phase column (Nucleosil C18 with a mobile phase consisting of acetonitrile/water (16.7/83.3. The retention times of HU, urea, and methylurea were 6.7, 7.7, and 11.4 min, respectively. All parameters of the validation process were defined. To determine the precision and accuracy of quality controls, HU in plasma was used at concentrations of 100, 740, and 1600 µM, with methylurea as the internal standard. Linearity was assessed in the range of 50-1600 µM HU in plasma, obtaining a correlation coefficient of 0.99. The method was accurate and precise and can be used for the quantitative determination of HU for therapeutic monitoring of patients with SCA treated with HU.

  2. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Science.gov (United States)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  3. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells.

    Science.gov (United States)

    Laschinsky, Lydia; Karsch, Leonhard; Leßmann, Elisabeth; Oppelt, Melanie; Pawelke, Jörg; Richter, Christian; Schürer, Michael; Beyreuther, Elke

    2016-08-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

  4. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

    International Nuclear Information System (INIS)

    Laschinsky, Lydia; Karsch, Leonhard; Schuerer, Michael; Lessmann, Elisabeth; Beyreuther, Elke; Oppelt, Melanie; Pawelke, Joerg; Richter, Christian

    2016-01-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10"1"0 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone. (orig.)

  5. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    Science.gov (United States)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-05-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  6. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    Energy Technology Data Exchange (ETDEWEB)

    Di Pendina, G., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; Zianbetov, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Beigne, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr [Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble (France)

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  7. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    International Nuclear Information System (INIS)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-01-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes

  8. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data

    Science.gov (United States)

    Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott

    Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.

  9. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy

    2014-01-01

    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In the European project SCOTAS-SOFC full ceramic cells comprising CGO...

  10. On the Potential of Full Duplex Communication in 5G Small Cell Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

    2015-01-01

    , the potential throughput gain may not be 100% as promised. In this study, we evaluate the performance of full duplex communication in a dense small cell scenario as targeted by future 5th Generation (5G) radio access technology under the ideal assumptions of a full buffer, always active traffic model...

  11. `Full fusion' is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells

    Science.gov (United States)

    Oleinick, Alexander; Svir, Irina; Amatore, Christian

    2017-01-01

    Vesicular exocytosis is an essential and ubiquitous process in neurons and endocrine cells by which neurotransmitters are released in synaptic clefts or extracellular fluids. It involves the fusion of a vesicle loaded with chemical messengers with the cell membrane through a nanometric fusion pore. In endocrine cells, unless it closes after some flickering (`Kiss-and-Run' events), this initial pore is supposed to expand exponentially, leading to a full integration of the vesicle membrane into the cell membrane-a stage called `full fusion'. We report here a compact analytical formulation that allows precise measurements of the fusion pore expansion extent and rate to be extracted from individual amperometric spike time courses. These data definitively establish that, during release of catecholamines, fusion pores enlarge at most to approximately one-fifth of the radius of their parent vesicle, hence ruling out the ineluctability of `full fusion'.

  12. The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin J

    2017-01-01

    Recent studies suggest that head and neck squamous cell carcinomas are very heterogeneous between patients; however the subclonal structure remains unexplored mainly due to studies using only a single biopsy per patient. To deconvolutethe clonal structure and describe the genomic cancer evolution......, we applied whole-exome sequencing combined with ultra-deep targeted sequencing on oral squamous cell carcinomas (OSCC). From each patient, a set of biopsies was sampled from distinct geographical sites in primary tumor and lymph node metastasis.We demonstrate that the included OSCCs show a high...

  13. Full-angle tomographic phase microscopy of flowing quasi-spherical cells.

    Science.gov (United States)

    Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro

    2017-12-19

    We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.

  14. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Ahn

    Full Text Available Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS methods have high error rates. We have established a new method termed Duplex Sequencing (DS, which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  15. Ultra-structural cell distribution of the melanoma marker iodobenzamide: improved potentiality of SIMS imaging in life sciences

    Directory of Open Access Journals (Sweden)

    Papon Janine

    2004-04-01

    Full Text Available Abstract Background Analytical imaging by secondary ion mass spectrometry (SIMS provides images representative of the distribution of a specific ion within a sample surface. For the last fifteen years, concerted collaborative research to design a new ion microprobe with high technical standards in both mass and lateral resolution as well as in sensitivity has led to the CAMECA NanoSims 50, recently introduced onto the market. This instrument has decisive capabilities, which allow biological applications of SIMS microscopy at a level previously inaccessible. Its potential is illustrated here by the demonstration of the specific affinity of a melanoma marker for melanin. This finding is of great importance for the diagnosis and/or treatment of malignant melanoma, a tumour whose worldwide incidence is continuously growing. Methods The characteristics of the instrument are briefly described and an example of application is given. This example deals with the intracellular localization of an iodo-benzamide used as a diagnostic tool for the scintigraphic detection of melanic cells (e.g. metastasis of malignant melanoma. B16 melanoma cells were injected intravenously to C57BL6/J1/co mice. Multiple B16 melanoma colonies developed in the lungs of treated animals within three weeks. Iodobenzamide was injected intravenously in tumour bearing mice six hours before sacrifice. Small pieces of lung were prepared for SIMS analysis. Results Mouse lung B16 melanoma colonies were observed with high lateral resolution. Cyanide ions gave "histological" images of the cell, representative of the distribution of C and N containing molecules (e.g. proteins, nucleic acids, melanin, etc. while phosphorus ions are mainly produced by nucleic acids. Iodine was detected only in melanosomes, confirming the specific affinity of the drug for melanin. No drug was found in normal lung tissue. Conclusion This study demonstrates the potential of SIMS microscopy, which allows the

  16. Adiabatic superconducting cells for ultra-low-power artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrey E. Schegolev

    2016-10-01

    Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

  17. Programmable full-adder computations in communicating three-dimensional cell cultures.

    Science.gov (United States)

    Ausländer, David; Ausländer, Simon; Pierrat, Xavier; Hellmann, Leon; Rachid, Leila; Fussenegger, Martin

    2018-01-01

    Synthetic biologists have advanced the design of trigger-inducible gene switches and their assembly into input-programmable circuits that enable engineered human cells to perform arithmetic calculations reminiscent of electronic circuits. By designing a versatile plug-and-play molecular-computation platform, we have engineered nine different cell populations with genetic programs, each of which encodes a defined computational instruction. When assembled into 3D cultures, these engineered cell consortia execute programmable multicellular full-adder logics in response to three trigger compounds.

  18. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage.

    Science.gov (United States)

    Zhang, Hai-Ning; Li, Lei; Leng, Ping; Wang, Ying-Zhen; Lv, Cheng-Yu

    2009-04-01

    To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects. Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro. Twenty-seven New Zealand white rabbits were divided into three groups randomly. The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint, and the defects repaired with gel or without treatment served as control groups. After 4, 8 and 12 weeks, the reconstructed tissue was evaluated macroscopically and microscopically. Histological analysis and qualitative scoring were also performed to detect the outcome. Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived tissue. The result was better in ADSCs group than the control ones. The microstructure of reconstructed tissue with ADSCs was similar to that of hyaline cartilage and contained more cells and regular matrix fibers, being better than other groups. Plenty of collagen fibers around cells could be seen under transmission electron microscopy. Statistical analysis revealed a significant difference in comparison with other groups at each time point (t equal to 4.360, P less than 0.01). These results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects.

  19. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  20. Opto-electrical approaches for high efficiency and ultra-thin c-Si solar cells

    NARCIS (Netherlands)

    Ingenito, A.; Isabella, O.; Zeman, M.

    2014-01-01

    The need for cost reduction requires using less raw material and cost-effective processes without sacrificing the conversion efficiency. For keeping high the generated photo-current, an advanced light trapping scheme for ultra-thin silicon wafers is here proposed, exhibiting absorptances up to 99%

  1. 4P-NPD ultra thin-films as efficient exciton blocking layers in DBP/C70 based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Liu, Yiming; Qamar, Talha

    2017-01-01

    Exciton blocking effects from ultra thin layers of N,N'-di-1-naphthalenyl-N,N'-diphenyl [1,1':4',1'':4'',1'''-quaterphenyl]-4,4'''-diamine (4P-NPD) was investigated in small molecule based inverted Organic Solar Cells (OSCs) using Tetraphenyldibenzoperiflanthene (DBP) as the electron donor material...... and fullerene (C70) as the electron acceptor material. The short-circuit current density (Jsc) and PCE of the optimized OSCs with 0.7 nm thick 4P-NPD were approx. 16 % and 24 % higher, respectively, compared to reference devices without exciton blocking layers. Drift diffusion based device modeling...... was conducted to model the full Current density – Voltage (JV) characteristics and EQE spectrum of the OSCs, and photoluminescence measurements was conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies...

  2. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.; Sarkar, Dabraj; Hilali, Mohamed M.; Saha, Sayan; Mathew, Leo; Rao, Rajesh A.; Smith, Ryan S.; Xu, Dewei; Jawarani, Dharmesh; Garcia, Ricardo; Ainom, Moses; Banerjee, Sanjay K.

    2014-01-01

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  3. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.

    2014-04-14

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  4. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    Science.gov (United States)

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Science.gov (United States)

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  6. Upscaling of polymer solar cell fabrication using full roll-to-roll processing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Tromholt, Thomas; Jørgensen, Mikkel

    2010-01-01

    factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated...... with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator...... to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies due to the inferior operational lifetime. The presented devices are thus competitive for consumer electronics but ill-suited for on...

  7. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin.

    Directory of Open Access Journals (Sweden)

    Sidhartha M Chafekar

    Full Text Available The molecular mechanisms by which polyglutamine (polyQ-expanded huntingtin (Htt causes neurodegeneration in Huntington's disease (HD remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1 are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis.

  8. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Janet J Sei

    Full Text Available Dendritic cells (DC are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c-. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC, and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.

  9. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  10. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  11. General method for simultaneous optimization of light trapping and carrier collection in an ultra-thin film organic photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Cheng-Chia, E-mail: ct2443@columbia.edu; Grote, Richard R.; Beck, Jonathan H.; Kymissis, Ioannis [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Osgood, Richard M. [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Englund, Dirk [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-14

    We describe a general method for maximizing the short-circuit current in thin planar organic photovoltaic (OPV) heterojunction cells by simultaneous optimization of light absorption and carrier collection. Based on the experimentally obtained complex refractive indices of the OPV materials and the thickness-dependence of the internal quantum efficiency of the OPV active layer, we analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of the cell. This approach provides a general strategy for optimizing the power conversion efficiency of a wide range of OPV structures. In particular, as an experimental trial system, the approach is applied here to a ultra-thin film solar cell with a SubPc/C{sub 60} photovoltaic structure. Using a patterned indium tin oxide (ITO) top contact, the numerically optimized designs achieve short-circuit currents of 0.790 and 0.980 mA/cm{sup 2} for 30 nm and 45 nm SubPc/C{sub 60} heterojunction layer thicknesses, respectively. These values correspond to a power conversion efficiency enhancement of 78% for the 30 nm thick cell, but only of 32% for a 45 nm thick cell, for which the overall photocurrent is actually higher. Applied to other material systems, the general optimization method can elucidate if light trapping strategies can improve a given cell architecture.

  12. Paracrine and autocrine signals promoting full chondrogenic differentiation of a mesoblastic cell line.

    Science.gov (United States)

    Locker, Morgane; Kellermann, Odile; Boucquey, Marie; Khun, Huot; Huerre, Michel; Poliard, Anne

    2004-01-01

    The pluripotent mesoblastic C1 cell line was used under serum-free culture conditions to investigate how paracrine and autocrine signals cooperate to drive chondrogenesis. Sequential addition of two systemic hormones, dexamethasone and triiodothyronine, permits full chondrogenic differentiation. The cell intrinsic activation of the BMP signaling pathway and Sox9 expression occurring on mesoblastic condensation is insufficient for recruitment of the progenitors. Dexamethasone-dependent Sox9 upregulation is essential for chondrogenesis. Differentiation of lineage stem cells relies on cell autonomous regulations modulated by external signals. We used the pluripotent mesoblastic C1 cell line under serum-free culture conditions to investigate how paracrine and autocrine signals cooperate to induce differentiation of a precursor clone along the chondrogenic lineage. C1 cells, cultured as aggregates, were induced toward chondrogenesis by addition of 10(-7) M dexamethasone in serum-free medium. After 30 days, dexamethasone was replaced by 10 nM triiodothyronine to promote final hypertrophic conversion. Mature and hypertrophic phenotypes were characterized by immunocytochemistry using specific antibodies against types II and X collagens, respectively. Type II collagen, bone morphogenetic proteins (BMPs), BMP receptors, Smads, and Sox9 expression were monitored by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and/or Western blot analysis. Once C1 cells have formed nodules, sequential addition of two systemic hormones is sufficient to promote full chondrogenic differentiation. In response to dexamethasone, nearly 100% of the C1 precursors engage in chondrogenesis and convert within 30 days into mature chondrocytes, which triggers a typical cartilage matrix. On day 25, a switch in type II procollagen mRNA splicing acted as a limiting step in the acquisition of the mature chondrocyte phenotype. On day 30, substitution of dexamethasone with

  13. The design, construction and first-phase heavy vehicle simulator testing results on full scale ultra-thin reinforced concrete test sections at Rayton, South Africa

    CSIR Research Space (South Africa)

    Du Plessis, L

    2016-09-01

    Full Text Available .J. Jordaan2, P.J. Strauss3, A. Kilian4 1. L. du Plessis, CSIR Built Environment, Meiring Naudé Street, Brummeria, Pretoria, South Africa, Phone: 012 841 2922, E-mail: lplessis@csir.co.za Corresponding author 2. G.J. Jordaan, Tshepega Engineering (Pty...) Ltd, PO Box 33783 Glenstantia 0010 Phone: 012 665 2722, and University of Pretoria, Pretoria, 0001, E-mail: jordaangj@tshepega.co.za 3. P.J. Strauss, Pieter Strauss CC, PO Box 588 La Montagne 0184, Phone: 012 807 0367, E-mail: Pieter...

  14. Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available Huntingtin (Htt is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington's disease (HD is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q and mutant (46Q and 128Q Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on "gutless" adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.

  15. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  16. Sampling versus systematic full lymphatic dissection in surgical treatment of non-small cell lung cancer.

    Science.gov (United States)

    Koulaxouzidis, Georgios; Karagkiouzis, Grigorios; Konstantinou, Marios; Gkiozos, Ioannis; Syrigos, Konstantinos

    2013-04-22

    The extent of mediastinal lymph node assessment during surgery for non-small cell cancer remains controversial. Different techniques are used, ranging from simple visual inspection of the unopened mediastinum to an extended bilateral lymph node dissection. Furthermore, different terms are used to define these techniques. Sampling is the removal of one or more lymph nodes under the guidance of pre-operative findings. Systematic (full) nodal dissection is the removal of all mediastinal tissue containing the lymph nodes systematically within anatomical landmarks. A Medline search was conducted to identify articles in the English language that addressed the role of mediastinal lymph node resection in the treatment of non-small cell lung cancer. Opinions as to the reasons for favoring full lymphatic dissection include complete resection, improved nodal staging and better local control due to resection of undetected micrometastasis. Arguments against routine full lymphatic dissection are increased morbidity, increase in operative time, and lack of evidence of improved survival. For complete resection of non-small cell lung cancer, many authors recommend a systematic nodal dissection as the standard approach during surgery, and suggest that this provides both adequate nodal staging and guarantees complete resection. Whether extending the lymph node dissection influences survival or recurrence rate is still not known. There are valid arguments in favor in terms not only of an improved local control but also of an improved long-term survival. However, the impact of lymph node dissection on long-term survival should be further assessed by large-scale multicenter randomized trials.

  17. Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell

    Science.gov (United States)

    Kwok, Y. H.; Tsang, Alpha C. H.; Wang, Yifei; Leung, Dennis Y. C.

    2017-05-01

    Platinum-decorated graphene aerogel as a porous electrode for flow-through direct methanol microfluidic fuel cell is introduced. Ultra-fine platinum nanoparticles with size ranged from diameter 1.5 nm-3 nm are evenly anchored on the graphene nanosheets without agglomeration. The electrode is characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity is confirmed by cyclic voltammetry. The electroactive surface area and catalytic activity of platinum on graphene oxide (Pt/GO) are much larger than commercial platinum on carbon black (Pt/C). A counterflow microfluidic fuel cell is designed for contrasting the cell performance between flow-over type and flow-through type electrodes using Pt/C on carbon paper and Pt/GO, respectively. The Pt/GO electrode shows 358% increment in specific power compared with Pt/C anode. Apart from catalytic activity, the effect of porous electrode conductivity to cell performance is also studied. The conductivity of the porous electrode should be further enhanced to achieve higher cell performance.

  18. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    Science.gov (United States)

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  19. Assessment of the Nucleus-to-Cytoplasmic Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics

    Science.gov (United States)

    Moore, M. J.; Strohm, E. M.; Kolios, M. C.

    2016-12-01

    The nucleus-to-cytoplasmic (N:C) ratio of a cell is often used when assessing histology for the presence of malignant disease. In this proof of concept study, we present a new, non-optical method for determination of the N:C ratio using ultra-high Frequency ultrasound (US) and photoacoustics (PA). When using transducers in the 100 MHz-500 MHz range, backscattered US pulses and emitted PA waves are encoded with information pertaining to the dimension and morphology of micron-sized objects. If biological cells are interrogated, the diameter of the scattering or absorbing structure can be assessed by fitting the power spectra of the measured US or PA signals to theoretical models for US backscatter and PA emission from a fluid sphere. In this study, the cell and nucleus diameters of 9 MCF-7 breast cancer cells were determined using a new simplified model that calculates the theoretical values of the location of the power spectra minima for both US and PA signals. These diameters were then used to calculate the N:C ratio of the measured cells. The average cell diameter determined by US pulses from a transducer with a central frequency of 375 MHz was found to be 15.5 μ m± 1.8 μ m. The PA waves emitted by the cell nuclei were used to determine an average nuclear diameter of 12.0 μ m± 1.3 μ m. The N:C ratio for these cells was calculated to be 1.9± 1.0, which agrees well with previously reported N:C values for this cell type.

  20. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel.

    Science.gov (United States)

    Zhang, Yanbo; Zhang, Jin; Chang, Fei; Xu, Weiguo; Ding, Jianxun

    2018-07-01

    Cartilage defect repair by hydrogel-based tissue engineering is becoming one of the most potential treatment strategies. In this work, a thermogel of triblock copolymer poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) was prepared as scaffold of bone marrow mesenchymal stem cells (BMMSCs) for repair of full-thickness articular cartilage defect. At first, the copolymer solution showed a reversible sol-gel transition at physiological temperature range, and the mechanical properties of such thermogel were high enough to support the repair of cartilage. Additionally, excellent biodegradability and biocompatibility of the thermogel were demonstrated. By implanting the BMMSC-encapsulated thermogel into the full-thickness articular cartilage defect (5.0 mm in diameter and 4.0 mm in depth) in the rabbit, it was found that the regenerated cartilage integrated well with the surrounding normal cartilage and subchondral bone at 12 weeks post-surgery. The upregulated expression of glycosaminoglycan and type II collagen in the repaired cartilage, and the comparable biomechanical properties with normal cartilage suggested that the cell-encapsulated PLGA-PEG-PLGA thermogel had great potential in serving as the promising scaffold for cartilage regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Full restoration of Brucella-infected dendritic cell functionality through Vγ9Vδ2 T helper type 1 crosstalk.

    Directory of Open Access Journals (Sweden)

    Ming Ni

    Full Text Available Vγ9Vδ2 T cells play an important role in the immune response to infectious agents but the mechanisms contributing to this immune process remain to be better characterized. Following their activation, Vγ9Vδ2 T cells develop cytotoxic activity against infected cells, secrete large amounts of cytokines and influence the function of other effectors of immunity, notably cells playing a key role in the initiation of the adaptive immune response such as dendritic cells. Brucella infection dramatically impairs dendritic cell maturation and their capacity to present antigens to T cells. Herein, we investigated whether V T cells have the ability to restore the full functional capacities of Brucella-infected dendritic cells. Using an in vitro multicellular infection model, we showed that: 1/Brucella-infected dendritic cells activate Vγ9Vδ2 T cells through contact-dependent mechanisms, 2/activated Vγ9Vδ2 T cells induce full differentiation into IL-12 producing cells of Brucella-infected dendritic cells with functional antigen presentation activity. Furthermore, phosphoantigen-activated Vγ9Vδ2 T cells also play a role in triggering the maturation process of dendritic cells already infected for 24 h. This suggests that activated Vγ9Vδ2 T cells could be used to modulate the outcome of infectious diseases by promoting an adjuvant effect in dendritic cell-based cellular therapies.

  2. Development of Ultra-Super Sensitive Immunohistochemistry and Its Application to the Etiological Study of Adult T-Cell Leukemia/Lymphoma

    International Nuclear Information System (INIS)

    Hasui, Kazuhisa; Wang, Jia; Tanaka, Yuetsu; Izumo, Shuji; Eizuru, Yoshito; Matsuyama, Takami

    2012-01-01

    Antigen retrieval (AR) and ultra-super sensitive immunohistochemistry (ultra-IHC) have been established for application to archival human pathology specimens. The original ultra-IHC was the ImmunoMax method or the catalyzed signal amplification system (ImmunoMax/CSA method), comprising the streptavidin-biotin complex (sABC) method and catalyzed reporter deposition (CARD) reaction with visualization of its deposition. By introducing procedures to diminish non-specific staining in the original ultra-IHC method, we developed the modified ImmunoMax/CSA method with AR heating sections in an AR solution (heating-AR). The heating-AR and modified ImmunoMax/CSA method visualized expression of the predominantly simple present form of HTLV-1 proviral DNA pX region p40Tax protein (Tax) in adult T-cell leukemia/lymphoma (ATLL) cells in archival pathology specimens in approximately 75% of cases. The simple present form of Tax detected exhibited a close relation with ATLL cell proliferation. We also established a new simplified CSA (nsCSA) system by replacing the sABC method with the secondary antibody- and horse radish peroxidase-labeled polymer reagent method, introducing the pretreatments blocking non-specific binding of secondary antibody reagent, and diminishing the diffusion of deposition in the CARD reaction. Combined with AR treating sections with proteinase K solution (enzymatic-AR), the nsCSA system visualized granular immunostaining of the complex present form of Tax in a small number of ATLL cells in most cases, presenting the possibility of etiological pathological diagnosis of ATLL and suggesting that the complex present form of Tax-positive ATLL cells were young cells derived from ATLL stem cells. The heating-AR and ultra-IHC detected physiological expression of the p53 protein and its probable phosphorylation by Tax in peripheral blood mononuclear cells of peripheral blood tissue specimens from HTLV-1 carriers, as well as physiological and pathological expression

  3. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand.

    Science.gov (United States)

    Rastogi, Anshu; Pospísil, Pavel

    2010-08-01

    All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.

  4. Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 solar cells

    International Nuclear Information System (INIS)

    Yin, Guanchao; Steigert, Alexander; Andrae, Patrick; Goebelt, Manuela; Latzel, Michael; Manley, Phillip; Lauermann, Iver; Christiansen, Silke; Schmid, Martina

    2015-01-01

    Graphical abstract: Plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 (CIGSe) solar cells are investigated. Ag diffusion is successfully passivated by reducing the substrate temperature and introducing a 50 nm atomic layer deposition (ALD) prepared Al_2O_3 film. This clears the thermal obstacle in incorporating Ag nanoparticles in CIGSe solar cells. Simulations show that Ag nanoparticles have the potential to greatly enhance the light absorption in ultra-thin CIGSe solar cells. - Highlights: • Ag nanoparticles are able to diffuse through ITO substrate into CIGSe absorber even at a low substrate temperature of 440 °C. • The direction (inserting a dielectric passivation layer) to thermally block the Ag diffusion and the requirements for the passivation layer are indicated and generalized. • An atomic layer deposited Al_2O_3 layer is experimentally proved to be able to thermally passivate the Ag nanoparticles, which clears the thermal obstacle in using Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. • It is theoretically proved that the Ag nanoparticles as a back reflector have the potential to effectively enhance the absorption in ultra-thin CIGSe solar cells. - Abstract: Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 (CIGSe) solar cells is investigated. X-ray photoelectron spectroscopy results show that Ag nanoparticles underneath a Sn:In_2O_3 back contact could not be thermally passivated even at a low substrate temperature of 440 °C during CIGSe deposition. It is shown that a 50 nm thick Al_2O_3 film prepared by atomic layer deposition is able to block the diffusion of Ag, clearing the thermal obstacle in utilizing Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. Via 3-D finite element optical simulation, it is proved that the Ag nanoparticles show the potential to contribute the effective absorption in CIGSe solar cells.

  5. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  6. Exploration of Sub-VT and Near-VT 2T Gain-Cell Memories for Ultra-Low Power Applications under Technology Scaling

    Directory of Open Access Journals (Sweden)

    Alexander Fish

    2013-04-01

    Full Text Available Ultra-low power applications often require several kb of embedded memory and are typically operated at the lowest possible operating voltage (VDD to minimize both dynamic and static power consumption. Embedded memories can easily dominate the overall silicon area of these systems, and their leakage currents often dominate the total power consumption. Gain-cell based embedded DRAM arrays provide a high-density, low-leakage alternative to SRAM for such systems; however, they are typically designed for operation at nominal or only slightly scaled supply voltages. This paper presents a gain-cell array which, for the first time, targets aggressively scaled supply voltages, down into the subthreshold (sub-VT domain. Minimum VDD design of gain-cell arrays is evaluated in light of technology scaling, considering both a mature 0.18 μm CMOS node, as well as a scaled 40 nm node. We first analyze the trade-offs that characterize the bitcell design in both nodes, arriving at a best-practice design methodology for both mature and scaled technologies. Following this analysis, we propose full gain-cell arrays for each of the nodes, operated at a minimum VDD. We find that an 0.18 μm gain-cell array can be robustly operated at a sub-VT supply voltage of 400mV, providing read/write availability over 99% of the time, despite refresh cycles. This is demonstrated on a 2 kb array, operated at 1 MHz, exhibiting full functionality under parametric variations. As opposed to sub-VT operation at the mature node, we find that the scaled 40 nm node requires a near-threshold 600mV supply to achieve at least 97% read/write availability due to higher leakage currents that limit the bitcell’s retention time. Monte Carlo simulations show that a 600mV 2 kb 40 nm gain-cell array is fully functional at frequencies higher than 50 MHz.

  7. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    Science.gov (United States)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  8. Reduced intensity versus full myeloablative stem cell transplant for advanced CLL.

    Science.gov (United States)

    Peres, E; Braun, T; Krijanovski, O; Khaled, Y; Levine, J E; Yanik, G; Kato, K; Mineishi, S

    2009-11-01

    CLL remains incurable with the standard therapy. Allogeneic hematopoietic stem cell transplant may be curative. We examined 50 patients with advanced CLL who underwent allogeneic HCT at the University of Michigan between 1996 and 2006. Twenty-one patients received reduced-intensity conditioning (RIC) and twenty-nine patients received full-intensity conditioning (FIC) consisting of CY, etoposide and BCNU (n=20) or BU and CY (n=9). RIC recipients were older than FIC recipients (median age 54 vs 51, P=0.009). There were no statistically significant differences between groups in terms of the number of earlier therapies or patients with adverse cytogenetics. There were more unrelated donors in the RIC group 62% than in the FIC group 31% (P=0.030). Despite their older age and greater use of URD, the 5-year overall survival (OS) rate was 63% in the RIC group as compared with 18% in the FIC group (P=0.006). The primary cause of inferior survival in the FIC recipients was TRM, which was twice as high at day 100 for the FIC group 27% compared with the RIC group 14% (P=0.005). The relapse rate was 15% regardless with the majority of relapses occurring after day 100. These results suggest a favorable outcome for advanced CLL who undergo a RIC regimen compared with FIC.

  9. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  10. Cellular attachment and spatial control of cells using micro-patterned ultra-violet/ozone treatment in serum enriched media.

    Science.gov (United States)

    Mitchell, S A; Poulsson, A H C; Davidson, M R; Emmison, N; Shard, A G; Bradley, R H

    2004-08-01

    Ultra-violet Ozone (UVO) modified polystyrene (PS) surfaces were analyzed by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle (CA), optical microscopy (OM) and cell culture experiments. UV/Ozone treatment up to 900 s was used to increase the surface oxygen concentration of PS surfaces from 0% to approximately 35% (unwashed) and 0% to approximately 27% (washed). The observed differences in oxygen concentration, between washed and unwashed surfaces, have been previously attributed to the removal of low molecular weight debris produced in this treatment process. Surface roughness (Rq) is known to affect cellular attachment and proliferation. AFM studies of the UV/Ozone treated PS surfaces show the surface roughness is an order of magnitude less than that expected to cause an effect. UV/Ozone treatment of PS showed a marked change in CA which decreased to approximately 60 degrees after 900 s treatment. The increased attachment and proliferation of Chinese hamster ovarian (CHO) and mouse embryo 3T3-L1 (3T3) cells on the treated surfaces compared to untreated PS were found to correlate strongly with the increase in surface oxygen concentration. Surface chemical oxidation patterns on the PS were produced using a simple masking technique and a short UV/Ozone treatment time, typically 20-45 s. The chemical patterns on PS were visualized by water condensation and the spatially selective attachment of CHO and 3T3-L1 cells cultured with 10% (v/v) serum. This paper describes an easily reproducible, one step technique to produce a well-defined, chemically heterogeneous surface with a cellular resolution using UV/Ozone modification. By using a variety of cell types, that require different media conditions, we have been able to expand the potential applications of this procedure.

  11. Ultra-deep sequencing reveals the subclonal structure and genomic evolution of oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin Jakob

    Background: Oral squamous cell carcinoma (OSCC), a subgroup of head and neck squamous cell carcinoma (HNSCC), is primarily caused by alcohol consumption and tobacco use. Recent DNA sequencing studies suggests that HNSCC are very heterogeneous between patients; however the intra-patient subclonal...

  12. Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, Salah M. [North Carolina State Univ., Raleigh, NC (United States); Hauser, John R. [North Carolina State Univ., Raleigh, NC (United States); Elmasry, Nadia [North Carolina State Univ., Raleigh, NC (United States); Colter, Peter C. [North Carolina State Univ., Raleigh, NC (United States); Bradshaw, G. [North Carolina State Univ., Raleigh, NC (United States); Carlin, C. Z. [North Carolina State Univ., Raleigh, NC (United States); Samberg, J. [North Carolina State Univ., Raleigh, NC (United States); Edmonson, Kenneth [Spectrolab, Inc., Sylmar, CA (United States)

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  13. 4P-NPD ultra-thin films as efficient exciton blocking layers in DBP/C70 based organic solar cells

    Science.gov (United States)

    Patil, Bhushan R.; Liu, Yiming; Qamar, Talha; Rubahn, Horst-Günter; Madsen, Morten

    2017-09-01

    Exciton blocking effects from ultra-thin layers of N,N‧-di-1-naphthalenyl-N,N‧-diphenyl [1,1‧:4‧,1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD) were investigated in small molecule-based inverted organic solar cells (OSCs) using tetraphenyldibenzoperiflanthene as the electron donor material and fullerene (C70) as the electron acceptor material. The short-circuit current density (J SC) and power conversion efficiency (PCE) of the optimized OSCs with 0.7 nm thick 4P-NPD were approximately 16% and 24% higher, respectively, compared to reference devices without exciton blocking layers (EBLs). Drift diffusion-based device modeling was conducted to model the full current density-voltage (JV) characteristics and external quantum efficiency spectrum of the OSCs, and photoluminescence measurements were conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies of the device behaviors and exciton generation rates and densities in the active layer for different 4P-NPD layer thicknesses were conducted, in order to gain a complete understanding of the observed increase in PCE for 4P-NPD layer thicknesses up to 1 nm, and the observed decrease in PCE for layer thicknesses beyond 1 nm. This work demonstrates a route for guiding the integration of EBLs in OSC devices.

  14. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

    Science.gov (United States)

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B.; Goldman, Jonathan; Rao, Jianyu; Sledge, George W.; Pegram, Mark D.; Sheth, Shruti; Jeffrey, Stefanie S.; Kulkarni, Rajan P.; Sollier, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  15. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Hamilton, H.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  16. Full field optical coherence tomography can identify spermatogenesis in a rodent sertoli-cell only model.

    Science.gov (United States)

    Ramasamy, Ranjith; Sterling, Joshua; Manzoor, Maryem; Salamoon, Bekheit; Jain, Manu; Fisher, Erik; Li, Phillip S; Schlegel, Peter N; Mukherjee, Sushmita

    2012-01-01

    Microdissection testicular sperm extraction (micro-TESE) has replaced conventional testis biopsies as a method of choice for obtaining sperm for in vitro fertilization for men with nonobstructive azoospermia. A technical challenge of micro-TESE is that the low magnification inspection of the tubules with a surgical microscope is insufficient to definitively identify sperm-containing tubules, necessitating tissue removal and cytologic assessment. Full field optical coherence tomography (FFOCT) uses white light interference microscopy to generate quick high-resolution tomographic images of fresh (unprocessed and unstained) tissue. Furthermore, by using a nonlaser safe light source (150 W halogen lamp) for tissue illumination, it ensures that the sperm extracted for in vitro fertilization are not photo-damaged or mutagenized. A focal Sertoli-cell only rodent model was created with busulfan injection in adult rats. Ex vivo testicular tissues from both normal and busulfan-treated rats were imaged with a commercial modified FFOCT system, Light-CT™, and the images were correlated with gold standard hematoxylin and eosin staining. Light-CT™ identified spermatogenesis within the seminiferous tubules in freshly excised testicular tissue, without the use of exogenous contrast or fixation. Normal adult rats exhibited tubules with uniform size and shape (diameter 328 ±11 μm). The busulfan-treated animals showed marked heterogeneity in tubular size and shape (diameter 178 ± 35 μm) and only 10% contained sperm within the lumen. FFOCT has the potential to facilitate real-time visualization of spermatogenesis in humans, and aid in micro-TESE for men with infertility.

  17. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    International Nuclear Information System (INIS)

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-01-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  18. Bacterial vaginosis (clue cell-positive discharge) : diagnostic, ultra-structural and therapeutic aspects

    NARCIS (Netherlands)

    W.I. van der Meijden (Willem)

    1987-01-01

    textabstractThis thesis deals with several aspects of (abnormal) vaginal discharge, focusing especially on clue cell-positive discharge (bacterial vaginosis, nonspecific vaginitis). It reports data on epidemiology and clinical features, pathogenesis, and treatment of this vaginal disease entity,

  19. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    Science.gov (United States)

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-11-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.

  20. Solution-processing of ultra-thin CdTe/ZnO nanocrystal solar cells

    International Nuclear Information System (INIS)

    MacDonald, Brandon I.; Gengenbach, Thomas R.; Watkins, Scott E.; Mulvaney, Paul; Jasieniak, Jacek J.

    2014-01-01

    We have carried out a detailed study into how modifications of the physical, chemical and optical properties of solution-processed, nanocrystalline CdTe layers influence the photovoltaic performance of sintered CdTe/ZnO nanocrystal solar cells. Such solar cells are fabricated through layer-by-layer assembly, which is enabled through an inter layer chemical and thermal treatment cycle. In this manner we are able to fabricate working solar cells with sintered CdTe layers as low as 90 nm, provided that grain size is precisely controlled. We show that the extent of grain growth achieved during the CdTe sintering process is strongly dependent on nanocrystal surface chemistry and chemical environment, with the removal of the organic capping ligands and the introduction of CdCl 2 prior to annealing leading to greatly enhanced growth. Due to the air processing involved and the nanocrystalline nature of the CdTe, the overall performance of these solar cells is shown to be strongly dependent on both annealing temperature and time, with optimal results requiring a balance between crystal growth and degradation due to oxidation. Using this simple bi-layer device structure, optimized treatment conditions result in power conversion efficiencies of up to 7.7% and peak internal quantum efficiencies in excess of 95%. - Highlights: • We study the growth of nanocrystalline CdTe thin films from colloidal nanocrystals. • We examine the CdTe growth profiles as a function of surface chemistry. • We show that nanocrystalline CdTe is susceptible to oxidation under air annealing. • We show how this oxidation influences performance in CdTe/ZnO solar cells. • We demonstrate CdTe/ZnO solar cells with an efficiency of 7.7% fabricated in air

  1. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    Science.gov (United States)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  2. Technology Enabling Ultra High Concentration Multi-Junction Cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, S. M.; Colter, Peter

    2016-03-30

    The project goal is to enable multijunction cells to operate at greater than 2000× suns intensity with efficiency above forty percent. To achieve this goal the recipients have developed a robust high-bandgap tunnel junction, reduce series resistance, and integrated a practical heat dissipation scheme.

  3. Review of thin film solar cell technology and applications for ultra-light spacecraft solar arrays

    Science.gov (United States)

    Landis, Geoffrey A.

    1991-01-01

    Developments in thin-film amorphous and polycrystalline photovoltaic cells are reviewed and discussed with a view to potential applications in space. Two important figures of merit are discussed: efficiency (i.e., what fraction of the incident solar energy is converted to electricity), and specific power (power to weight ratio).

  4. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    International Nuclear Information System (INIS)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-01-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10 −10  Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10 −10  Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment. (paper)

  5. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms.We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings.AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric strings. Our findings provide one possible molecular mechanism for clinical

  6. Ultra-high efficiency photovoltaic cells for large scale solar power generation.

    Science.gov (United States)

    Nakano, Yoshiaki

    2012-01-01

    The primary targets of our project are to drastically improve the photovoltaic conversion efficiency and to develop new energy storage and delivery technologies. Our approach to obtain an efficiency over 40% starts from the improvement of III-V multi-junction solar cells by introducing a novel material for each cell realizing an ideal combination of bandgaps and lattice-matching. Further improvement incorporates quantum structures such as stacked quantum wells and quantum dots, which allow higher degree of freedom in the design of the bandgap and the lattice strain. Highly controlled arrangement of either quantum dots or quantum wells permits the coupling of the wavefunctions, and thus forms intermediate bands in the bandgap of a host material, which allows multiple photon absorption theoretically leading to a conversion efficiency exceeding 50%. In addition to such improvements, microfabrication technology for the integrated high-efficiency cells and the development of novel material systems that realizes high efficiency and low cost at the same time are investigated.

  7. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.; Nathanson, D. [Ztek Corp., Waltham, MA (United States); Bradshaw, D.T. [Tennessee Valley Authority, Chattanooga, TN (United States)] [and others

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  8. Improving Link Robustness in 5G Ultra-Dense Small Cells by Hybrid ARQ

    DEFF Research Database (Denmark)

    Gatnau, Marta; Catania, Davide; Frederiksen, Frank

    2014-01-01

    A new 5th generation (5G) radio access technology is expected to cope with an estimated factor of x1000 growth in mobile data traffic in the upcoming years. Such system will be optimized for a massive uncoordinated deployment of small cells, where autonomous operation of the individual nodes may...... bring unpredictable and fast varying link quality. In this paper, Hybrid Automatic Repeat Request (HARQ) is studied as a solution to cope with such unpredictability. An operational mode of HARQ for our 5G system definition is proposed, and its performance is evaluated for two different scheduling...

  9. Full Duplex Communication Under Traffic Constraints for 5G Small Cells

    DEFF Research Database (Denmark)

    Gatnau, Marta; Catania, Davide; Berardinelli, Gilberto

    2015-01-01

    the framework of 5th generation (5G) small cell systems in order to address its effective gain in such specific scenarios. The factors that affect FD performance are analysed, and its performance is evaluated against a traditional HD communication. System level simulations show that the gain of FD over HD...

  10. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management

    Science.gov (United States)

    Grandjean, Thomas; Barai, Anup; Hosseinzadeh, Elham; Guo, Yue; McGordon, Andrew; Marco, James

    2017-08-01

    It is crucial to maintain temperature homogeneity in lithium ion batteries in order to prevent adverse voltage distributions and differential ageing within the cell. As such, the thermal behaviour of a large-format 20 Ah lithium iron phosphate pouch cell is investigated over a wide range of ambient temperatures and C rates during both charging and discharging. Whilst previous studies have only considered one surface, this article presents experimental results, which characterise both surfaces of the cell exposed to similar thermal media and boundary conditions, allowing for thermal gradients in-plane and perpendicular to the stack to be quantified. Temperature gradients, caused by self-heating, are found to increase with increasing C rate and decreasing temperature to such an extent that 13.4 ± 0.7% capacity can be extracted using a 10C discharge compared to a 0.5C discharge, both at -10 °C ambient temperature. The former condition causes an 18.8 ± 1.1 °C in plane gradient and a 19.7 ± 0.8 °C thermal gradient perpendicular to the stack, which results in large current density distributions and local state of charge differences within the cell. The implications of these thermal and electrical inhomogeneities on ageing and battery pack design for the automotive industry are discussed.

  11. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  12. Ultra-wideband RCS reduction using novel configured chessboard metasurface

    International Nuclear Information System (INIS)

    Zhuang Ya-Qiang; Wang Guang-Ming; Xu He-Xiu

    2017-01-01

    A novel artificial magnetic conductor (AMC) metasurface is proposed with ultra-wideband 180° phase difference for radar cross section (RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30° from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both full-wave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range. (paper)

  13. An air-breathing single cell small proton exchange membrane fuel cell system with AB5-type metal hydride and an ultra-low voltage input boost converter

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Kazuya; Matsumoto, Satoshi; Miyasaka, Akihiro; Shodai, Takahisa [NTT Energy and Environment System Laboratories, 3-1 Morinosato-Wakamiya Atsugi-shi, Kanagawa (Japan)

    2009-01-01

    A new strategy for increasing the power density of an air-breathing small proton exchange membrane fuel cell (PEMFC) system for the main energy source of portable consumer electronics is presented. The small PEMFC system is composed of a single cell. Utilizing the output voltage of the single cell, we introduce a newly designed ultra-low voltage input boost converter. The boost converter can generate 4.1 V output from input sources with low voltage ranges, such as under 1.0 V. The cathode plate is made from a thin SUS 316L stainless steel plate and has ribs that prevent the cathode from bending. The hydrogen is supplied by a metal hydride (MH) tank cartridge. The MH tank contains highly packed AB5-type MH. The MH tank cartridge has a volume of 13.2 cm{sup 3} and can absorb 6.7 L of hydrogen. The maximum power of the small PEMFC is 4.42 W at room temperature. Using 6.7 L of hydrogen, the small PEMFC can generate 11 Wh of electricity. The power density of the small PEMFC reaches 0.51 Wh cm{sup -3}. And the power density of the whole small PEMFC system, which contains the boost converter, a small Li-ion battery for a load absorber, and a case for the system, reaches 0.14 Wh cm{sup -3}. This value matches that of external Li-ion battery chargers for cell phones. We installed the small PEMFC system in a cell phone and confirmed the operations of calling, receiving, videophone, connecting to the Internet, and watching digital TV. And also confirmed that the small PEMFC system provides approximately 8.25 h of talk time, which is about three times as long as that for the original Li-ion battery. (author)

  14. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation.

    Science.gov (United States)

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-12

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1+MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (∼1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.

  15. Evaluation of the efficacy of cell and micrograft transplantation for full-thickness wound healing

    DEFF Research Database (Denmark)

    Kruse, Carla R.; Sakthivel, Dharaniya; Sinha, Indranil

    2018-01-01

    Background: Skin grafting is the current standard of care in the treatment of full-thickness burns and other wounds. It is sometimes associated with substantial problems, such as poor quality of the healed skin, scarring, and lack of donor-site skin in large burns. To overcome these problems...

  16. Ultra-low reflection porous silicon nanowires for solar cell applications

    KAUST Repository

    Najar, Adel

    2012-01-01

    High density vertically aligned Porous Silicon NanoWires (PSiNWs) were fabricated on silicon substrate using metal assisted chemical etching process. A linear dependency of nanowire length to the etching time was obtained and the change in the growth rate of PSiNWs by increasing etching durations was shown. A typical 2D bright-field TEM image used for volume reconstruction of the sample shows the pores size varying from 10 to 50 nm. Furthermore, reflectivity measurements show that the 35% reflectivity of the starting silicon wafer drops to 0.1% recorded for more than 10 μm long PSiNWs. Models based on cone shape of nanowires located in a circular and rectangular bases were used to calculate the reflectance employing the Transfert Matrix Formalism (TMF) of the PSiNWs layer. Using TMF, the Bruggeman model was used to calculate the refractive index of PSiNWs layer. The calculated reflectance using circular cone shape fits better the measured reflectance for PSiNWs. The remarkable decrease in optical reflectivity indicates that PSiNWs is a good antireflective layer and have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection. ©2012 Optical Society of America.

  17. Danish Ultras

    DEFF Research Database (Denmark)

    Havelund, Jonas; Joern, Lise; Rasmussen, Kristian

    2012-01-01

    It is well documented that knowledge of supporter culture is crucial when assessing the risk of disorder at football matches and thereby ensuring a balanced approach by police and stewards (Stott & Pearson 2007). Both within Denmark and internationally, there is a weak understanding of risk suppo....... The article aims to create knowledge concerning ultra supporter culture with the purpose of gaining the information necessary for building differentiated and balanced action on the part of the police and security services....

  18. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  19. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Jasper Foolen

    Full Text Available Generating and maintaining gradients of cell density and extracellular matrix (ECM components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. 'compact and adsorbed to collagen' versus 'extended and fibrillar' fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin's contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs and floxed equivalents (Fnf/f MEFs, in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments. In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen

  20. Numerical simulations of a full-scale polymer electrolyte fuel cell with analysing systematic performance in an automotive application

    International Nuclear Information System (INIS)

    Park, Heesung

    2015-01-01

    Highlights: • A 3-D full-scale fuel cell performance is numerically simulated. • Generated and consumed power in the system is affected by operating condition. • Systematic analysis predicts the net power of conceptual PEFC stack. - Abstract: In fuel cell powered electric vehicles, the net power efficiency is a critical factor in terms of fuel economy and commercialization. Although the fuel cell stack produces enough power to drive the vehicles, the transferred power to the power train could be significantly reduced due to the power consumption to operate the system components of air blower and cooling module. Thus the systematic analysis on the operating condition of the fuel cell stack is essential to predict the net power generation. In this paper numerical simulation is conducted to characterize the fuel cell performance under various operating conditions. Three dimensional and full-scale fuel cell of the active area of 355 cm 2 is numerically modelled with 47.3 million grids to capture the complexities of the fluid dynamics, heat transfer and electrochemical reactions. The proposed numerical model requires large computational time and cost, however, it can be powerful to reasonably predict the fuel cell system performance at the early stage of conceptual design without requiring prototypes. Based on the model, it has been shown that the net power is reduced down to 90% of the gross power due to the power consumption of air blower and cooling module

  1. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines

    Directory of Open Access Journals (Sweden)

    Kvalheim Gunnar

    2007-07-01

    Full Text Available Background Dendritic cells (DCs are professional antigen-presenting cells with the ability to induce primary T-cell responses and are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF for 5–7 days (Standard DC. Recently, Dauer and co-workers presented a modified protocol for differentiation of human monocytes into mature DCs within 48 hours (Fast DC. Here we report a functional comparison of the two strategies for generation of DCs from human monocytes with adaptions for large-scale clinical use. Methods The Elutra Cell Selection System was used to isolate monocytes after collection of leukapheresis product. The enriched monocytes were cultured in gas permeable Teflon bags with IL-4 and GM-CSF for 24 hours (Fast DC or 5 days (Standard DC to obtain immature DCs. The cells were then transfected with mRNA from the leukemia cell line Jurkat E6 by electroporation and incubated for additional 24 h or 2 days in the presence of pro-inflammatory cytokines (TNFα, IL-1β, IL-6 and PGE2 to obtain mature DCs. Results Mature Fast DC and Standard DC displayed comparable levels of many markers expressed on DC, including HLA-DR, CD83, CD86, CD208 and CCR7. However, compared to Standard DC, mature Fast DC was CD14high CD209low. Fast DC and Standard DC transfected with Jurkat E6-cell mRNA were equally able to elicit T cell specifically recognizing transfected DCs in vitro. IFNγ-secreting T cells were observed in both the CD4+ and CD8+ subsets. Conclusion Our results indicate that mature Fast DC are functional antigen presenting cells (APCs capable of inducing primary T-cell responses, and suggest that these cells may be valuable for generation of anti-tumor vaccines.

  2. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  3. Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application

    International Nuclear Information System (INIS)

    Fermoso, Fernando G.; Bartacek, Jan; Jansen, Stefan; Lens, Piet N.L.

    2009-01-01

    Upflow anaerobic sludge bed (UASB) bioreactors are commonly used for anaerobic wastewater treatment. Trace metals need to be dosed to these bioreactors to maintain microbial metabolism and growth. The dosing needs to balance the supply of a minimum amount of micronutrients to support a desired microbial activity or growth rate with a maximum level of micronutrient supply above which the trace metals become inhibitory or toxic. In studies on granular sludge reactors, the required micronutrients are undefined and different metal formulations with differences in composition, concentration and species are used. Moreover, an appropriate quantification of the required nutrient dosing and suitable ranges during the entire operational period has been given little attention. This review summarizes the state-of-the-art knowledge of the interactions between trace metals and cells growing in anaerobic granules, which is the main type of biomass retention in anaerobic wastewater treatment reactors. The impact of trace metal limitation as well as overdosing (toxicity) on the biomass is overviewed and the consequences for reactor performance are detailed. Special attention is given to the influence of metal speciation in the liquid and solid phase on bioavailability. The currently used methods for trace metal dosing into wastewater treatment reactors are overviewed and ways of optimization are suggested.

  4. Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application

    Energy Technology Data Exchange (ETDEWEB)

    Fermoso, Fernando G. [Sub-department of Environmental Technology, Wageningen University, ' Biotechnion' -Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen (Netherlands); Bartacek, Jan [Sub-department of Environmental Technology, Wageningen University, ' Biotechnion' -Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen (Netherlands); Pollution Prevention and Control core, UNESCO-IHE, P.O. Box 3015, 2601 DA Delft (Netherlands); Jansen, Stefan [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen (Netherlands); Lens, Piet N.L., E-mail: Piet.Lens@wur.nl [Sub-department of Environmental Technology, Wageningen University, ' Biotechnion' -Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen (Netherlands); Pollution Prevention and Control core, UNESCO-IHE, P.O. Box 3015, 2601 DA Delft (Netherlands)

    2009-06-01

    Upflow anaerobic sludge bed (UASB) bioreactors are commonly used for anaerobic wastewater treatment. Trace metals need to be dosed to these bioreactors to maintain microbial metabolism and growth. The dosing needs to balance the supply of a minimum amount of micronutrients to support a desired microbial activity or growth rate with a maximum level of micronutrient supply above which the trace metals become inhibitory or toxic. In studies on granular sludge reactors, the required micronutrients are undefined and different metal formulations with differences in composition, concentration and species are used. Moreover, an appropriate quantification of the required nutrient dosing and suitable ranges during the entire operational period has been given little attention. This review summarizes the state-of-the-art knowledge of the interactions between trace metals and cells growing in anaerobic granules, which is the main type of biomass retention in anaerobic wastewater treatment reactors. The impact of trace metal limitation as well as overdosing (toxicity) on the biomass is overviewed and the consequences for reactor performance are detailed. Special attention is given to the influence of metal speciation in the liquid and solid phase on bioavailability. The currently used methods for trace metal dosing into wastewater treatment reactors are overviewed and ways of optimization are suggested.

  5. The Importance of Solid Electrolyte Interphase Formation for Long Cycle Stability Full-Cell Na-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaolin; Yan, Pengfei; Engelhard, Mark H.; Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Wang, Chong M.; Liu, Jun; Sprenkle, Vincent L.

    2016-07-30

    Na-ion battery, as an alternative high-efficiency and low-cost energy storage device to Li-ion battery, has attracted wide interest for electrical grid and vehicle applications. However, demonstration of a full-cell battery with high energy and long cycle life remains a significant challenge. Here, we investigated the role of solid electrolyte interphase (SEI) formation on both cathodes and anodes and revealed a potential way to achieve long-term stability for Na-ion battery full-cells. Pre-cycling of cathodes and anodes leads to preformation of SEI, and hence mitigates the consumption of Na ions in full-cells. The example full-cell of Na0.44MnO2-hard carbon with pre-cycled and capacity-matched electrodes can deliver a specific capacity of ~116 mAh/g based on Na0.44MnO2 at 1C rate (1C = 120 mA/g). The corresponding specific energy is ~313 Wh/kg. Excellent cycling stability with ~77% capacity retention over 2000 cycles was demonstrated at 2C rate. Our work represents a leap forward in Na-ion battery development.

  6. Vitrification by Ultra-fast Cooling at a Low Concentration of Cryoprotectants in a Quartz Microcapillary: A Study Using Murine Embryonic Stem Cells

    Science.gov (United States)

    He, Xiaoming; Park, Eric Y.H.; Fowler, Alex; Yarmush, Martin L.; Toner, Mehmet

    2009-01-01

    Conventional cryopreservation protocols for slow-freezing or vitrification involve cell injury due to ice formation/cell dehydration or toxicity of high cryoprotectant (CPA) concentrations, respectively. In this study, we developed a novel cryopreservation technique to achieve ultra-fast cooling rates using a quartz microcapillary (QMC). The QMC enabled vitrification of murine embryonic stem (ES) cells using an intracellular cryoprotectant concentration in the range used for slowing freezing (1–2 M). The cryoprotectants used included 2 M 1,2-propanediol (PROH, cell membrane permeable) and 0.5 M extracellular trehalose (cell membrane impermeable). More than 70% of the murine ES cells post-vitrification attached with respect to non-frozen control cells, and the proliferation rates of the two groups were similar. Preservation of undifferentiated properties of the pluripotent murine ES cells post vitrification cryopreservation was verified using three different types of assays: the expression of transcription factor Oct-4, the presentation of the membrane surface glycoprotein SSEA-1, and the elevated expression of the intracellular enzyme alkaline phosphatase. These results indicate that vitrification at a low concentration (2 M) of intracellular cryoprotectants is a viable and effective approach for the cryopreservation of murine embryonic stem cells. PMID:18462712

  7. Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Bo Cai

    2016-11-01

    Full Text Available Abstract Background Elderly patients with relapsed and refractory acute lymphoblastic leukemia (ALL have poor prognosis. Autologous CD19 chimeric antigen receptor-modified T (CAR-T cells have potentials to cure patients with B cell ALL; however, safety and efficacy of allogeneic CD19 CAR-T cells are still undetermined. Case presentation We treated a 71-year-old female with relapsed and refractory ALL who received co-infusion of haplo-identical donor-derived CD19-directed CAR-T cells and mobilized peripheral blood stem cells (PBSC following induction chemotherapy. Undetectable minimal residual disease by flow cytometry was achieved, and full donor cell engraftment was established. The transient release of cytokines and mild fever were detected. Significantly elevated serum lactate dehydrogenase, alanine transaminase, bilirubin and glutamic-oxalacetic transaminase were observed from days 14 to 18, all of which were reversible after immunosuppressive therapy. Conclusions Our preliminary results suggest that co-infusion of haplo-identical donor-derived CAR-T cells and mobilized PBSCs may induce full donor engraftment in relapsed and refractory ALL including elderly patients, but complications related to donor cell infusions should still be cautioned. Trial registration Allogeneic CART-19 for Elderly Relapsed/Refractory CD19+ ALL. NCT02799550

  8. Ultra thin continuously reinforced concrete pavement research in south Africa

    CSIR Research Space (South Africa)

    Perrie, BD

    2007-08-01

    Full Text Available Ultra thin continuously reinforced concrete pavements (UTCRCP), in literature also referred to as Ultra Thin Reinforced High Performance Concrete (UTHRHPC), have been used in Europe successfully as a rehabilitation measure on steel bridge decks...

  9. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhi Qun; Lim, San Hua; Poh, Chee Kok; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Xia, Zetao [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Luo, Zhiqiang; Shen, Zexiang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, and Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2011-11-15

    A simple method was developed to prepare ultra-low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra-low Pt loading down to 35 {mu}g cm{sup -2} which was comparable to that of the commercial Pt catalyst on carbon powder with 400 {mu}g cm{sup -2}. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order-structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fyn kinase controls Fc{epsilon}RI receptor-operated calcium entry necessary for full degranulation in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Miranda, Elizabeth; Ibarra-Sanchez, Alfredo [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico); Gonzalez-Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico)

    2010-01-22

    IgE-antigen-dependent crosslinking of the high affinity IgE receptor (Fc{epsilon}RI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca{sup 2+}) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls Fc{epsilon}RI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed Fc{epsilon}RI-dependent Ca{sup 2+} mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca{sup 2+} influx after Fc{epsilon}RI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd{sup 3+}) partially blocked Fc{epsilon}RI-induced Ca{sup 2+} influx in WT cells but, in contrast, completely inhibited Ca{sup 2+} mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca{sup 2+} channels (2-aminoethoxyphenyl-borane, 2-APB) blocked Fc{epsilon}RI-induced maximal Ca{sup 2+} rise in WT but not in Fyn -/- cells. Ca{sup 2+} entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in Fc{epsilon}RI-stimulated mast cells.

  11. Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal.

    Science.gov (United States)

    Aguesse, Frederic; Manalastas, William; Buannic, Lucienne; Lopez Del Amo, Juan Miguel; Singh, Gurpreet; Llordés, Anna; Kilner, John

    2017-02-01

    All-solid-state batteries including a garnet ceramic as electrolyte are potential candidates to replace the currently used Li-ion technology, as they offer safer operation and higher energy storage performances. However, the development of ceramic electrolyte batteries faces several challenges at the electrode/electrolyte interfaces, which need to withstand high current densities to enable competing C-rates. In this work, we investigate the limits of the anode/electrolyte interface in a full cell that includes a Li-metal anode, LiFePO 4 cathode, and garnet ceramic electrolyte. The addition of a liquid interfacial layer between the cathode and the ceramic electrolyte is found to be a prerequisite to achieve low interfacial resistance and to enable full use of the active material contained in the porous electrode. Reproducible and constant discharge capacities are extracted from the cathode active material during the first 20 cycles, revealing high efficiency of the garnet as electrolyte and the interfaces, but prolonged cycling leads to abrupt cell failure. By using a combination of structural and chemical characterization techniques, such as SEM and solid-state NMR, as well as electrochemical and impedance spectroscopy, it is demonstrated that a sudden impedance drop occurs in the cell due to the formation of metallic Li and its propagation within the ceramic electrolyte. This degradation process is originated at the interface between the Li-metal anode and the ceramic electrolyte layer and leads to electromechanical failure and cell short-circuit. Improvement of the performances is observed when cycling the full cell at 55 °C, as the Li-metal softening favors the interfacial contact. Various degradation mechanisms are proposed to explain this behavior.

  12. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    Science.gov (United States)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  13. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Elisabeth Brama

    2016-12-01

    Full Text Available In-resin fluorescence (IRF protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables ‘smart collection’ of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables ‘smart tracking’ of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  14. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    International Nuclear Information System (INIS)

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.

    1991-01-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells

  15. Dispensing of very low volumes of ultra high viscosity alginate gels: a new tool for encapsulation of adherent cells and rapid prototyping of scaffolds and implants.

    Science.gov (United States)

    Gepp, Michael M; Ehrhart, Friederike; Shirley, Stephen G; Howitz, Steffen; Zimmermann, Heiko

    2009-01-01

    We present a tool for dispensing very low volumes (20 nL or more) of ultra high viscosity (UHV) medical-grade alginate hydrogels. It uses a modified piezo-driven micrometering valve, integrated into a versatile system that allows fast prototyping of encapsulation procedures and scaffold production. Valves show excellent dispensing properties for UHV alginate in concentrations of 0.4% and 0.7% and also for aqueous liquids. An optimized process flow provides excellent handling of biological samples under sterile conditions. This technique allows the encapsulation of adherent cells and structuring of substrates for biotechnology and regenerative medicine. A variety of cell lines showed at least 70% viability after encapsulation (including cell lines that are relevant in regenerative medicine like Hep G2), and time-lapse analysis revealed cells proliferating and showing limited motility under alginate spots. Cells show metabolic activity, gene product expression, and physiological function. Encapsulated cells have contact with the substrate and can exchange metabolites while being isolated from macromolecules in the environment. Contactless dispensing allows structuring of substrates with alginate, isolation and transfer of cell-alginate complexes, and the dispensing of biological active hydrogels like extracellular matrix-derived gels.

  16. Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells.

    Science.gov (United States)

    Liu, Xiaojun; Da, Yun; Xuan, Yimin

    2017-08-07

    In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.

  17. Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aeberhard, Urs, E-mail: u.aeberhard@fz-juelich.de [IEK-5 Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-07-18

    We discuss the effects of built-in fields and contact configuration on the photovoltaic characteristics of ultra-thin GaAs solar cells. The investigation is based on advanced quantum-kinetic simulations reaching beyond the standard semi-classical bulk picture concerning the consideration of charge carrier states and dynamics in complex potential profiles. The thickness dependence of dark and photocurrent in the ultra-scaled regime is related to the corresponding variation of both, the built-in electric fields and associated modification of the density of states, and the optical intensity in the films. Losses in open-circuit voltage and short-circuit current due to the leakage of electronically and optically injected carriers at minority carrier contacts are investigated for different contact configurations including electron and hole blocking barrier layers. The microscopic picture of leakage currents is connected to the effect of finite surface recombination velocities in the semi-classical description, and the impact of these non-classical contact regions on carrier generation and extraction is analyzed.

  18. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells

    Science.gov (United States)

    Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.

    2018-01-01

    In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.

  19. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Hongye; Zheng, Hua; Zhao, Gan; Tang, Chaoling; Lu, Shiyin; Cheng, Bang; Wu, Fang; Wei, Jinbin; Liang, Yonghong; Ruan, Junxiang; Song, Hui; Su, Zhiheng

    2016-03-01

    Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.

  20. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing.

    Science.gov (United States)

    Wang, Chenggui; Wang, Qingqing; Gao, Wendong; Zhang, Zengjie; Lou, Yiting; Jin, Haiming; Chen, Xiaofeng; Lei, Bo; Xu, Huazi; Mao, Cong

    2018-03-15

    EPCs can be highly maintained and promoted by the CPB scaffold. Moreover, CPB/EPC constructs effectively stimulated the regeneration of diabetic wounds with satisfactory vascularization and better healing outcomes in a full-thickness wound model, suggesting that the highly efficient delivery of EPCs to wound site facilitates angiogenesis and further leads to wound healing. The high angiogenic capacity and excellent healing ability make CPB/EPC constructs highly competitive in cell-based therapeutic products for efficient wound repair application. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Structure and function of the first full-length murein peptide ligase (Mpl cell wall recycling protein.

    Directory of Open Access Journals (Sweden)

    Debanu Das

    2011-03-01

    Full Text Available Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc. MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl, which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl. Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters. Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  2. Microbioreactor arrays for full factorial screening of exogenous and paracrine factors in human embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Drew M Titmarsh

    Full Text Available Timed exposure of pluripotent stem cell cultures to exogenous molecules is widely used to drive differentiation towards desired cell lineages. However, screening differentiation conditions in conventional static cultures can become impractical in large parameter spaces, and is intrinsically limited by poor spatiotemporal control of the microenvironment that also makes it impossible to determine whether exogenous factors act directly or through paracrine-dependent mechanisms. We detail here the development of a continuous flow microbioreactor array platform that combines full-factorial multiplexing of input factors with progressive accumulation of paracrine factors through serially-connected culture chambers, and further, the use of this system to explore the combinatorial parameter space of both exogenous and paracrine factors involved in human embryonic stem cell (hESC differentiation to a MIXL1-GFP(+ primitive streak-like population. We show that well known inducers of primitive streak (BMP, Activin and Wnt signals do not simply act directly on hESC to induce MIXL1 expression, but that this requires accumulation of surplus, endogenous factors; and, that conditioned medium or FGF-2 supplementation is able to offset this. Our approach further reveals the presence of a paracrine, negative feedback loop to the MIXL1-GFP(+ population, which can be overcome with GSK-3β inhibitors (BIO or CHIR99021, implicating secreted Wnt inhibitory signals such as DKKs and sFRPs as candidate effectors. Importantly, modulating paracrine effects identified in microbioreactor arrays by supplementing FGF-2 and CHIR in conventional static culture vessels resulted in improved differentiation outcomes. We therefore demonstrate that this microbioreactor array platform uniquely enables the identification and decoding of complex soluble factor signalling hierarchies, and that this not only challenges prevailing strategies for extrinsic control of hESC differentiation, but

  3. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    Science.gov (United States)

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  4. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    Science.gov (United States)

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  5. Isolated Full Bridge Boost DC-DC Converter Designed for Bidirectional Operation of Fuel Cells/Electrolyzer Cells in Grid-Tie Applications

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    Energy production from renewable energy sources is continuously varying, for this reason energy storage is becoming more and more important as the percentage of green energy increases. Newly developed fuel cells can operate in reverse mode as electrolyzer cells; therefore, they are becoming...... current. Dc-dc converter efficiency plays a fundamental role in the overall system efficiency since processed energy is always flowing through the converter; for this reason, loss analysis and optimization are a key component of the converter design. The paper presents an isolated full bridge boost dc...

  6. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    Science.gov (United States)

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  7. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  8. Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components

    International Nuclear Information System (INIS)

    Bakalis, Diamantis P.; Stamatis, Anastassios G.

    2012-01-01

    Highlights: ► Hybrid SOFC/GT system based on existing components. ► Exergy analysis using AspenPlus™ software. ► Greenhouse gases emission is significantly affected by SOFC stack temperature. ► Comparison with a conventional GT of similar power. ► SOFC/GT is almost twice efficient in terms of second low efficiency and CO 2 emission. - Abstract: The paper deals with the examination of a hybrid system consisting of a pre-commercially available high temperature solid oxide fuel cell and an existing recuperated microturbine. The irreversibilities and thermodynamic inefficiencies of the system are evaluated after examining the full and partial load exergetic performance and estimating the amount of exergy destruction and the efficiency of each hybrid system component. At full load operation the system achieves an exergetic efficiency of 59.8%, which increases during the partial load operation, as a variable speed control method is utilized. Furthermore, the effects of the various performance parameters such as fuel cell stack temperature and fuel utilization factor are assessed. The results showed that the components in which chemical reactions occur have the higher exergy destruction rates. The exergetic performance of the system is affected significantly by the stack temperature. Based on the exergetic analysis, suggestions are given for reducing the overall system irreversibility. Finally, the environmental impact of the operation of the hybrid system is evaluated and compared with a similarly rated conventional gas turbine plant. From the comparison it is apparent that the hybrid system obtains nearly double exergetic efficiency and about half the amount of greenhouse gas emissions compared with the conventional plant.

  9. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein.

    Science.gov (United States)

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2011-03-18

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  10. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    Science.gov (United States)

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Sun Ultra 5

    CERN Multimedia

    1998-01-01

    The Sun Ultra 5 is a 64-bit personal computer based on the UltraSPARC microprocessor line at a low price. The Ultra 5 has been declined in several variants: thus, some models have a processor with less cache memory to further decrease the price of the computer.

  12. Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells

    Science.gov (United States)

    Zhen, Hongyu; Li, Kan; Zhang, Yaokang; Chen, Lina; Niu, Liyong; Wei, Xiaoling; Fang, Xu; You, Peng; Liu, Zhike; Wang, Dongrui; Yan, Feng; Zheng, Zijian

    2018-01-01

    Printing of metal bottom back electrodes of flexible organic solar cells (FOSCs) at low temperature is of great significance to realize the full-solution fabrication technology. However, this has been difficult to achieve because often the interfacial properties of those printed electrodes, including conductivity, roughness, work function, optical and mechanical flexibility, cannot meet the device requirement at the same time. In this work, we fabricate printed Ag and Cu bottom back cathodes by a low-temperature solution technique named polymer-assisted metal deposition (PAMD) on flexible PET substrates. Branched polyethylenimine (PEI) and ZnO thin films are used as the interface modification layers (IMLs) of these cathodes. Detailed experimental studies on the electrical, mechanical, and morphological properties, and simulation study on the optical properties of these IMLs are carried out to understand and optimize the interface of printed cathodes. We demonstrate that the highest power conversion efficiency over 3.0% can be achieved from a full-solution processed OFSC with the device structure being PAMD-Ag/PEI/P3HT:PC61BM/PH1000. This device also acquires remarkable stability upon repeating bending tests. Project supported by the Research Grant Council of Hong Kong (No. PolyUC5015-15G), the Hong Kong Polytechnic University (No. G-SB06), and the National Natural Science Foundation of China (Nos. 21125316, 21434009, 51573026).

  13. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life

    Science.gov (United States)

    Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun

    2017-10-01

    To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.

  14. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells.

    Science.gov (United States)

    van Keimpema, Martine; Grüneberg, Leonie J; Schilder-Tol, Esther J M; Oud, Monique E C M; Beuling, Esther A; Hensbergen, Paul J; de Jong, Johann; Pals, Steven T; Spaargaren, Marcel

    2017-03-01

    The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5'-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients. Copyright© Ferrata Storti Foundation.

  15. Bifidobacterium longum and Bifidobacterium breve isolates from preterm and full term neonates: comparison of cell surface properties.

    Science.gov (United States)

    Andriantsoanirina, Valérie; Teolis, Anne-Claire; Xin, Liu Xin; Butel, Marie Jose; Aires, Julio

    2014-08-01

    We compared autoaggregation, surface hydrophobicity and Caco-2 cells adhesion capabilities of independent Bifidobacterium breve (n = 22) and Bifidobacterium longum (n = 25) strains isolated from preterm (n = 20) and full term neonates (n = 27). Concerning strains properties, a correlation between autoaggregation and surface hydrophobicity was found for B. longum (r = 0.40, p = 0.048), B. breve (r = 0.57, p = 0.005), and all strains independently of the species consideration (r = 0.46, p = 0.001). The absence of difference in adhesion capabilities between preterm and full term neonate strains suggests a strain-dependent property. However, B. longum strains from preterm neonates (n = 10) showed higher autoaggregation ability (p = 0.044). Additionally, independently of species consideration, preterm neonates strains showed lower surface hydrophobicity (p = 0.027). As far as species are considered, preterm neonate B. breve strains (n = 10) showed significantly lower surface hydrophobicity percentages (p = 0.043). Our results suggest the existence of variations in bifidobacteria membrane structure and/or composition that may reflect adaptation of these bacteria to the intestinal environment of either preterm or full term neonates. Such information is of interest when considering the use of bifidobacteria probiotic strains for modulation of preterm neonates gut microbiota. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ultra structure differentiation of the anterior pituitary cells of the adult female non pregnant carnivore Vulpes zerda

    Directory of Open Access Journals (Sweden)

    Atteyat Selim

    2016-05-01

    The ACTH cells are found singly, irregular with eccentric nucleus. Its secretory granules are small and spherical shaped, while the TSH cells have very small secretory granules, but the FSH and LH cells are found singly, angular shape with eccentric nuclei and the its secretary granules are spherical or ovoid shaped and exhibit variation in electron density than STH cells. The differences in shape and distribution may be related to the phylogeny.

  17. CMOS compatible fabrication of flexible and semi-transparent FeRAM on ultra-thin bulk monocrystalline silicon (100) fabric

    KAUST Repository

    Ghoneim, Mohamed T.; Hanna, Amir; Hussain, Muhammad Mustafa

    2014-01-01

    Commercialization of flexible electronics requires reliable, high performance, ultra-compact and low power devices. To achieve them, we fabricate traditional electronics on bulk mono-crystalline silicon (100) and transform the top portion into an ultra-thin flexible silicon fabric with prefabricated devices, preserving ultra-large-scale-integration density and same device performance. This can be done in a cost effective manner due to its full compatibility with standard CMOS processes. In this paper, using the same approach, for the first time we demonstrate a ferroelectric random access memory (FeRAM) cell on flexible silicon fabric platform and assess its functionality and practical potential.

  18. CMOS compatible fabrication of flexible and semi-transparent FeRAM on ultra-thin bulk monocrystalline silicon (100) fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-08-01

    Commercialization of flexible electronics requires reliable, high performance, ultra-compact and low power devices. To achieve them, we fabricate traditional electronics on bulk mono-crystalline silicon (100) and transform the top portion into an ultra-thin flexible silicon fabric with prefabricated devices, preserving ultra-large-scale-integration density and same device performance. This can be done in a cost effective manner due to its full compatibility with standard CMOS processes. In this paper, using the same approach, for the first time we demonstrate a ferroelectric random access memory (FeRAM) cell on flexible silicon fabric platform and assess its functionality and practical potential.

  19. Bridging the gap between system and cell: The role of ultra-high field MRI in human neuroscience.

    Science.gov (United States)

    Turner, Robert; De Haan, Daniel

    2017-01-01

    The volume of published research at the levels of systems and cellular neuroscience continues to increase at an accelerating rate. At the same time, progress in psychiatric medicine has stagnated and scientific confidence in cognitive psychology research is under threat due to careless analysis methods and underpowered experiments. With the advent of ultra-high field MRI, with submillimeter image voxels, imaging neuroscience holds the potential to bridge the cellular and systems levels. Use of these accurate and precisely localized quantitative measures of brain activity may go far in providing more secure foundations for psychology, and hence for more appropriate treatment and management of psychiatric illness. However, fundamental issues regarding the construction of testable mechanistic models using imaging data require careful consideration. This chapter summarizes the characteristics of acceptable models of brain function and provides concise descriptions of the relevant types of neuroimaging data that have recently become available. Approaches to data-driven experiments and analyses are described that may lead to more realistic conceptions of the competences of neural assemblages, as they vary across the brain's complex neuroanatomy. © 2017 Elsevier B.V. All rights reserved.

  20. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  1. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Full automation and validation of a flexible ELISA platform for host cell protein and protein A impurity detection in biopharmaceuticals.

    Science.gov (United States)

    Rey, Guillaume; Wendeler, Markus W

    2012-11-01

    Monitoring host cell protein (HCP) and protein A impurities is important to ensure successful development of recombinant antibody drugs. Here, we report the full automation and validation of an ELISA platform on a robotic system that allows the detection of Chinese hamster ovary (CHO) HCPs and residual protein A of in-process control samples and final drug substance. The ELISA setup is designed to serve three main goals: high sample throughput, high quality of results, and sample handling flexibility. The processing of analysis requests, determination of optimal sample dilutions, and calculation of impurity content is performed automatically by a spreadsheet. Up to 48 samples in three unspiked and spiked dilutions each are processed within 24 h. The dilution of each sample is individually prepared based on the drug concentration and the expected impurity content. Adaptable dilution protocols allow the analysis of sample dilutions ranging from 1:2 to 1:2×10(7). The validity of results is assessed by automatic testing for dilutional linearity and spike recovery for each sample. This automated impurity ELISA facilitates multi-project process development, is easily adaptable to other impurity ELISA formats, and increases analytical capacity by combining flexible sample handling with high data quality. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Do ultra-orphan medicinal products warrant ultra-high prices? A review

    Directory of Open Access Journals (Sweden)

    Picavet E

    2013-06-01

    Full Text Available Eline Picavet,1 David Cassiman,2 Steven Simoens1 1Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; 2Department of Hepatology, University Hospital Leuven, Leuven, Belgium Abstract: Ultra-orphan medicinal products (ultra-OMPs are intended for the treatment, prevention, or diagnosis of ultra-rare diseases, ie, life-threatening or chronically debilitating diseases that affect less than one per 50,000 individuals. Recently, high prices for ultra-OMPs have given rise to debate on the sustainability and justification of these prices. The aim of this article is to review the international scientific literature on the pricing of ultra-OMPs and to provide an overview of the current knowledge on the drivers of ultra-OMP pricing. The pricing process of ultra-OMPs is a complex and nontransparent issue. Evidence in the literature seems to indicate that ultra-OMPs are priced according to rarity and what the manufacturer believes the market will bear. Additionally, there appears to be a trend between the price of an ultra-OMP and the number of available alternatives. Patients, third-party payers, and pharmaceutical companies could benefit from more transparent pricing strategies. With a view to containing health care costs, it is likely that cost-sharing strategies, such as performance-based risk sharing arrangements, will become increasingly more important. However, it is vital that any measures for price control are consistent with the intended goals of the incentives to promote the development of new OMPs. Ideally, a balance must be struck between attaining affordable prices for ultra-OMPs and securing a realistic return on investment for the pharmaceutical industry. Keywords: ultra-orphan medicinal product, ultra-rare disease, pricing

  4. In vitro validation of an ultra-sensitive scanning fluorescence microscope for analysis of Circulating Tumor Cells

    DEFF Research Database (Denmark)

    Hillig, Thore; Nygaard, Ann-Britt; Nekiunaite, Laura

    2014-01-01

    Analysis of circulating tumor cells (CTC) holds promise of providing liquid biopsies from patients with cancer. However, current methods include enrichment procedures. We present a method (CytoTrack), where CTC from 7.5 mL of blood is stained, analyzed and counted by a scanning fluorescence...... microscope. The method was validated by breast cancer cells (MCF-7) spiked in blood from healthy donors. The number of cells spiked in each blood sample was exactly determined by cell sorter and performed in three series of three samples spiked with 10, 33 or 100 cells in addition with three control samples...... detect breast cancer cells in spiking experiments and should be tested on blood samples from breast cancer patients. The method could benefit from automation that could reduce the CV%, and further optimization of the procedure to increase the recovery....

  5. Ultra structure differentiation of the anterior pituitary cells of the adult female non pregnant carnivore Vulpes zerda

    OpenAIRE

    Selim, Atteyat; El Nahass, Eman

    2016-01-01

    The pituitary gland of carnivore mammals in the world was described, but that of those in Egypt may be low, so the present study is carried out on some carnivore mammals such as Vulpes zerda, to elucidate the similarities and the differences of the pituitary cells between the mammals in the world and those in Egypt. The results indicate that, the gland is pyramidal in shape. The acidophilic cells and the basophilic cells are distributed heterogeneously in the body of the gland. The STH cells ...

  6. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Chao [Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210024, Jiangsu (China); Yang, Bo [Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Yang, Zhi; Tu, Ying [Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Institute of Dermatology, Kunming 650032, Yunnan (China); Yang, Yan-li [Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210024, Jiangsu (China); He, Li, E-mail: heli2662@yahoo.com.cn [Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210024, Jiangsu (China); Bi, Zhi-Gang, E-mail: eltonbibenqhospital@yahoo.com.cn [Department of Dermatology, BenQ Medical Center, Nanjing Medical University, Nanjing 210019, Jiangsu (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. Black-Right-Pointing-Pointer NAC inhibits UVB induced Cyp-D expression, while H{sub 2}O{sub 2} facilitates it. Black-Right-Pointing-Pointer Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. Black-Right-Pointing-Pointer Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H{sub 2}O{sub 2}) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H{sub 2}O{sub 2}-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H{sub 2}O{sub 2}-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death.

  7. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    International Nuclear Information System (INIS)

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-01-01

    Highlights: ► UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. ► NAC inhibits UVB induced Cyp-D expression, while H 2 O 2 facilitates it. ► Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. ► Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H 2 O 2 ) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H 2 O 2 -induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H 2 O 2 -induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D’s critical role in UVB/oxidative stress-induced skin cell death.

  8. The Subclonal Structure and Genomic Evolution of Oral Squamous Cell Carcinoma Revealed by Ultra-deep Sequencing

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin Jakob

    Background: Oral squamous cell carcinoma (OSCC), a subgroup of head and neck squamous cell carcinoma (HNSCC), is primarily caused by alcohol consumption and tobacco use. Recent DNA sequencing studies suggests that HNSCC are very heterogeneous between patients; however the intra-patient subclonal...

  9. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway.

    Science.gov (United States)

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-09-07

    UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H(2)O(2)) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H(2)O(2)-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H(2)O(2)-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Ultras in Trnava: History, Activities and Ideology

    Directory of Open Access Journals (Sweden)

    Kušnierová Daniela

    2014-12-01

    Full Text Available The environment of football fans is unknown phenomenon for the rest of the public. This article offers basic view on formation and functioning of the most numerous and the most active ultras group in Slovakia, Trnava fans. First part of the text encompasses a history overview of ultras movement, as well as an overview of basic activities of ultras fans during a football match and also outside of it. The second part of this text deals with the most debated activity of football fans, which is violence during a football match.

  11. A strategy for full interrogation of prognostic gene expression patterns: exploring the biology of diffuse large B cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Lisa M Rimsza

    Full Text Available Gene expression profiling yields quantitative data on gene expression used to create prognostic models that accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL. Often, data are analyzed with genes classified by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-points might be a more powerful technique to investigate the association of gene expression with outcome.We explored gene expression profiling data using variable cut-point analysis for 36 genes with reported prognostic value in DLBCL. We plotted two-group survival logrank test statistics against corresponding cut-points of the gene expression levels and smooth estimates of the hazard ratio of death versus gene expression levels. To facilitate comparisons we also standardized the expression of each of the genes by the fraction of patients that would be identified by any cut-point. A multiple comparison adjusted permutation p-value identified 3 different patterns of significance: 1 genes with significant cut-point points below the median, whose loss is associated with poor outcome (e.g. HLA-DR; 2 genes with significant cut-points above the median, whose over-expression is associated with poor outcome (e.g. CCND2; and 3 genes with significant cut-points on either side of the median, (e.g. extracellular molecules such as FN1.Variable cut-point analysis with permutation p-value calculation can be used to identify significant genes that would not otherwise be identified with median cut-points and may suggest biological patterns of gene effects.

  12. Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    This paper presents a new zero-voltage-switching (ZVS) isolated dc-dc converter which combines a boost halfbridge (BHB) cell and a full-bridge (FB) cell, so that two different type of power sources, i.e. both current-fed and voltage-fed, can be coupled effectively by the proposed converter...... for various applications, such as fuel cell and super-capacitor hybrid energy system. By fully using two high frequency transformers and a shared leg of switches, number of the power devices and associated gate driver circuits can be reduced. With phase-shift control, the converter can achieve ZVS turn......-on of active switches and zero-current switching (ZCS) turn-off of diodes. In this paper, derivation, analysis and design of the proposed converter are presented. Finally, a 25~50 V input, 300~400 V output prototype with a 600 W nominal power rating is built up and tested to demonstrate the effectiveness...

  13. Ultra high open circuit voltage (>1 V) of poly-3-hexylthiophene based organic solar cells with concentrated light

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    to 2000 solar intensities of these photoactive blends. Comparison of solar cells based on five different fullerene derivatives shows that at both short circuit and open circuit conditions, recombination remains unchanged up to 50 suns. Determination of Voc at 2000 suns demonstrated that the same......One approach to increasing polymer solar cell efficiency is to blend poly-(3-hexyl-thiophene) with poorly electron accepting fullerene derivatives to obtain higher open circuit voltage (Voc). In this letter concentrated light is used to study the electrical properties of cell operation at up...

  14. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines.

    Science.gov (United States)

    Jarnjak-Jankovic, Silvija; Hammerstad, Hege; Saebøe-Larssen, Stein; Kvalheim, Gunnar; Gaudernack, Gustav

    2007-07-03

    Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses and are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF for 5-7 days (Standard DC). Recently, Dauer and co-workers presented a modified protocol for differentiation of human monocytes into mature DCs within 48 hours (Fast DC). Here we report a functional comparison of the two strategies for generation of DCs from human monocytes with adaptions for large-scale clinical use. The Elutra Cell Selection System was used to isolate monocytes after collection of leukapheresis product. The enriched monocytes were cultured in gas permeable Teflon bags with IL-4 and GM-CSF for 24 hours (Fast DC) or 5 days (Standard DC) to obtain immature DCs. The cells were then transfected with mRNA from the leukemia cell line Jurkat E6 by electroporation and incubated for additional 24 h or 2 days in the presence of pro-inflammatory cytokines (TNFalpha, IL-1beta, IL-6 and PGE2) to obtain mature DCs. Mature Fast DC and Standard DC displayed comparable levels of many markers expressed on DC, including HLA-DR, CD83, CD86, CD208 and CCR7. However, compared to Standard DC, mature Fast DC was CD14high CD209low. Fast DC and Standard DC transfected with Jurkat E6-cell mRNA were equally able to elicit T cell specifically recognizing transfected DCs in vitro. IFNgamma-secreting T cells were observed in both the CD4+ and CD8+ subsets. Our results indicate that mature Fast DC are functional antigen presenting cells (APCs) capable of inducing primary T-cell responses, and suggest that these cells may be valuable for generation of anti-tumor vaccines.

  15. High-Efficiency Rad-Hard Ultra-Thin Si Photovoltaic Cell Technology for Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Improvements to solar cell efficiency that is consistent with low cost, high volume fabrication techniques are critical for future NASA space missions. In this...

  16. Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide

    NARCIS (Netherlands)

    Blanco, Esther; Guerra, Beatriz; Torre, de la Beatriz; Defaus, Sira; Dekker, A.; Andreu, D.; Sobrino, Francisco

    2016-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have reported (Cubillos et al., 2008) that a synthetic dendrimeric peptide consisting of four copies of a B-cell epitope [VP1(136–154)] linked through thioether bonds to a T-cell epitope [3A(21–35)

  17. Full-length fibronectin drives fibroblast accumulation at the surface of collagen microtissues during cell-induced tissue morphogenesis

    NARCIS (Netherlands)

    Foolen, J.; Shiu, J.-Y.; Mitsi, M.; Zhang, Y.; Chen, C.; Vogel, Viola

    2016-01-01

    Generating and maintaining gradients of cell density and extracellular matrix (ECM) components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is

  18. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Science.gov (United States)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  19. High-sensitivity direct analysis of aflatoxins in peanuts and cereal matrices by ultra-performance liquid chromatography with fluorescence detection involving a large volume flow cell.

    Science.gov (United States)

    Oulkar, Dasharath; Goon, Arnab; Dhanshetty, Manisha; Khan, Zareen; Satav, Sagar; Banerjee, Kaushik

    2018-04-03

    This paper reports a sensitive and cost effective method of analysis for aflatoxins B1, B2, G1 and G2. The sample preparation method was primarily optimised in peanuts, followed by its validation in a range of peanut-processed products and cereal (rice, corn, millets) matrices. Peanut slurry [12.5 g peanut + 12.5 mL water] was extracted with methanol: water (8:2, 100 mL), cleaned through an immunoaffinity column and thereafter measured directly by ultra-performance liquid chromatography-fluorescence (UPLC-FLD) detection, within a chromatographic runtime of 5 minutes. The use of a large volume flow cell in the FLD nullified the requirement of any post-column derivatisation and provided the lowest ever reported limits of quantification of 0.025 for B1 and G1 and 0.01 μg/kg for B2 and G2. The single laboratory validation of the method provided acceptable selectivity, linearity, recovery and precision for reliable quantifications in all the test matrices as well as demonstrated compliance with the EC 401/2006 guidelines for analytical quality control of aflatoxins in foodstuffs.

  20. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max; Christensen, Lance; Kelly, James F.

    2017-05-05

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.

  1. Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders

    International Nuclear Information System (INIS)

    Montagne, Axel; Gauberti, Maxime; Jullienne, Amandine; Briens, Aurelien; Docagne, Fabian; Vivien, Denis; Maubert, Eric; Macrez, Richard; Defer, Gilles; Raynaud, Jean-Sebastien; Louin, Gaelle; Buisson, Alain; Haelewyn, Benoit

    2012-01-01

    Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can reveal CNS disorders in the absence of visible lesions and symptoms. To this aim, we optimized contrast carrying particles targeting vascular cell adhesion molecule-1 and MRI protocols through both in vitro and in vivo experiments. Although, pre-contrast MRI images failed to reveal the ongoing pathology, contrast-enhanced MRI revealed hypoperfusion-triggered CNS injury in vascular dementia, unmasked amyloid-induced cerebrovascular activation in Alzheimer's disease and allowed monitoring of disease activity during experimental autoimmune encephalomyelitis. Moreover, contrast-enhanced MRI revealed the cerebrovascular cell activation associated with known risk factors of CNS disorders such as peripheral inflammation, ethanol consumption, hyperglycemia and aging. By providing a dramatically higher sensitivity than previously reported methods and molecular contrast agents, the technology described in the present study opens new avenues of investigation in the field of neuro-inflammation. (authors)

  2. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    Science.gov (United States)

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-02-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems.

  3. Polymeric nanosensors for measuring the full dynamic pH range of endosomes and lysosomes in mammalian cells

    DEFF Research Database (Denmark)

    Sun, Honghao; Andresen, Thomas Lars; Benjaminsen, Rikke Vicki

    2009-01-01

    Polymer nanoparticle sensors have been constructed for studying pH in the endocytic pathway in mammalian cells. The pH sensors for fluorescence ratiometric measurements were prepared using inverse microemulsion polymerization with rhodamine as reference fluorophor and fluorescein and oregon green...... was used to introduce a net positive charge in the cationic particles. It was found that the positively charged particle sensors were internalized spontaneously by HepG2 cancer cells. These new pH nanosensors are potential tools in time resolved quantification of pH in the endocytic pathway of living cells....

  4. Preliminary design and analysis of aluminum-air cells providing for continuous feed and full utilization of anodes

    Science.gov (United States)

    Cooper, J. F.

    1981-08-01

    The advantages, disadvantages, and engineering problem areas of the wedge shaped cells in anodes utilization are reviewed. The importance of solution side current collection to the practicality of this approach when used with alkaline electrolytes is identified. The relationship between cell height and total anode mass is derived for this and corresponding cells of the M1 design. It is concluded that the M1-CF design may provide the basis for an automotive battery of greater simplicity, reliability, and economy than earlier designs.

  5. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines

    OpenAIRE

    Jarnjak-Jankovic, Silvija; Hammerstad, Hege; S?b?e-Larssen, Stein; Kvalheim, Gunnar; Gaudernack, Gustav

    2007-01-01

    Background Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses and are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF for 5–7 days (Standard DC). Recently, Dauer and co-workers presented a modified protocol for differentiation of human monocytes into mature DCs within 48 hours (Fast DC). Here we report a functional comparison of the two strategies for generation of DCs from human monocytes with adapt...

  6. Ultra Fast and Parsimonious Materials Screening for Polymer Solar Cells Using Differentially Pumped Slot-Die Coating

    DEFF Research Database (Denmark)

    Alstrup, Jan; Jørgensen, Mikkel; Medford, Andrew James

    2010-01-01

    and materials usage by variation of the layer thickness in small steps of 1.5−4 nm. Contrary to expectation we did not find oscillatory variation of the device performance with device thickness because of optical interference. We ascribe this to the nature of the solar cell type explored in this example...

  7. Herpes virus production as a marker of repair in ultra-violet irradiated human skin cells of different origin

    Energy Technology Data Exchange (ETDEWEB)

    Coppey, J; Nocentini, S; Menezes, S [Institut du Radium, 75 - Paris (France). Lab. Curie; Moreno, G

    1979-07-01

    Human skin fibroblast cultures were irradiated with ultraviolet light 0 to 48 hours before infection with herpes simplex virus type 1 (HSV). Different viral yields were obtained according to the origin of the host cells. Cells from normal donors showed a dose-dependent recovery of HSV production during the 36-40 hours following U.V. exposure. The recovery was maximal for a dose at which a plateau level of unscheduled DNA synthesis (UDS) was reached (24Jm/sup -2/). In a xeroderma pigmentosum (XP) heterozygote line from a mother of XP children, the level of UDS after irradiation up to 48 Jm/sup -2/ was normal whereas the extent of recovery of HSV production capacity was lower than normal. In strains from XP children, with a normal UDS (XP variants), the recovery process was slower and its extent was lower than in normal or XP heterozygote cells. Excision-deficient XP strains from XP children presented little or no recovery, the extent of which was in good agreement with the corresponding level of UDS. Measurement of this recovery seems to be a very sensitive assay for detecting differences in the repair abilities of U.V.-irradiated human skin cells of various origins.

  8. Performance of ultra high efficiency thin germanium p-n junction solar cells intended for solar thermophotovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Vera, E S; Loferski, J J; Spitzer, M; Schewchun, J

    1981-01-01

    The theoretical upper limit conversion efficiency as a function of cell thickness and junction position is calculated for a germanium p-n junction solar cell intended for solar thermophotovoltaic energy conversion which incorporates minority carrier mirrors and optical mirrors on both the front and back boundaries of the active part of the device. The optical mirrors provide light confinement reducing the thickness required for optimum performance while minority carrier mirrors diminish surface recombination of carriers which seriously reduce short circuit current and limit open circuit voltage. The role of non-ideal optical and minority carrier mirrors and the effect of resistivity variations are studied. The calculations are conducted under conditions of high incident power (2-25 W/cm/sup 2/) which are encountered in solar thermophotovoltaic energy conversion systems. 14 refs.

  9. Pros and cons of fish skin cells in culture: long-term full skin and short-term scale cell culture from rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Rakers, Sebastian; Klinger, Matthias; Kruse, Charli; Gebert, Marina

    2011-12-01

    Here, we report the establishment of a permanent skin cell culture from rainbow trout (Oncorhynchus mykiss). The cells of the fish skin cell culture could be propagated over 60 passages so far. Furthermore, we show for the first time that it is possible to integrate freshly harvested rainbow trout scales into this new fish skin cell culture. We further demonstrated that epithelial cells derived from the scales survived in the artificial micro-environment of surrounding fibroblast-like cells. Also, antibody staining indicated that both cell types proliferated and started to build connections with the other cell type. It seems that it is possible to generate an 'artificial skin' with two different cell types. This could lead to the development of a three-dimensional test system, which might be a better in vitro representative of fish skin in vivo than individual skin cell lines. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Controlling Blend Morphology for Ultra-High Current Density in Non-Fullerene Acceptor Based Organic Solar Cells

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Ye, Long; Yao, Huifeng; Hou, Jianhui; Ade, Harald; Baran, Derya

    2018-01-01

    Due to the high absorption coefficient and modulated band gap of non-fullerene small molecule acceptors (NFAs), photons can be utilized more efficiently in near-infrared (NIR) range. In this report, we highlight a system with a well-known polymer donor (PTB7-Th) blended with a narrow bandgap non-fullerene acceptor (IEICO-4F) as active layer and 1-chloronaphthalene (CN) as the solvent additive. The optimization of the photoactive layer nanomorphology yields short-circuit current density value (Jsc) of 27.3 mA/cm2, one of the highest value in OSCs reported to date, which competes with other types of solution processed solar cells such as perovskite or quantum dot devices. Along with decent open-circuit voltage (0.71V) and fill factor values (66%), a power conversion efficiency of 12.8% is achieved for the champion devices. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns and resonant soft X-ray scattering (R-SoXS) elucidate that the origin of this high photocurrent is mainly due to increased π-π coherence length of the acceptor, the domain spacing as well as the mean-square composition variation of the blend. Optoelectronic measurements confirm a balanced hole and electron mobility and reduced trap-assisted recombination for the best devices. These findings unveil the relevant solvent processing-nanostructure-electronic properties correlation in low band gap non-fullerene based solar cells, which provide a helpful guide for maximizing photocurrent that can pave the way for high efficiency organic solar cells.

  11. Controlling Blend Morphology for Ultra-High Current Density in Non-Fullerene Acceptor Based Organic Solar Cells

    KAUST Repository

    Song, Xin

    2018-01-23

    Due to the high absorption coefficient and modulated band gap of non-fullerene small molecule acceptors (NFAs), photons can be utilized more efficiently in near-infrared (NIR) range. In this report, we highlight a system with a well-known polymer donor (PTB7-Th) blended with a narrow bandgap non-fullerene acceptor (IEICO-4F) as active layer and 1-chloronaphthalene (CN) as the solvent additive. The optimization of the photoactive layer nanomorphology yields short-circuit current density value (Jsc) of 27.3 mA/cm2, one of the highest value in OSCs reported to date, which competes with other types of solution processed solar cells such as perovskite or quantum dot devices. Along with decent open-circuit voltage (0.71V) and fill factor values (66%), a power conversion efficiency of 12.8% is achieved for the champion devices. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns and resonant soft X-ray scattering (R-SoXS) elucidate that the origin of this high photocurrent is mainly due to increased π-π coherence length of the acceptor, the domain spacing as well as the mean-square composition variation of the blend. Optoelectronic measurements confirm a balanced hole and electron mobility and reduced trap-assisted recombination for the best devices. These findings unveil the relevant solvent processing-nanostructure-electronic properties correlation in low band gap non-fullerene based solar cells, which provide a helpful guide for maximizing photocurrent that can pave the way for high efficiency organic solar cells.

  12. Quaternary ammonium promoted ultra selective and sensitive fluorescence detection of fluoride ion in water and living cells.

    Science.gov (United States)

    Li, Long; Ji, Yuzhuo; Tang, Xinjing

    2014-10-21

    Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.

  13. KSHV cell attachment sites revealed by ultra sensitive tyramide signal amplification (TSA) localize to membrane microdomains that are up-regulated on mitotic cells.

    Science.gov (United States)

    Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M

    2014-03-01

    Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Assessment and optimization of theileria parva sporozoite full-length p67 antigen expression in mammalian cells

    Science.gov (United States)

    Delivery of various forms of recombinant Theileria parva sporozoite antigen (p67) has been shown to elicit antibody responses in cattle capable of providing protection against East Coast fever, the clinical disease caused by T. parva. Previous formulations of full-length and shorter recombinant vers...

  15. Full color emitting fluorescent carbon material as reversible pH sensor with multicolor live cell imaging.

    Science.gov (United States)

    Sharma, Vinay; Kaur, Navpreet; Tiwari, Pranav; Mobin, Shaikh M

    2018-05-01

    Carbon-based nano materials are developed as a cytocompatible alternative to semiconducting quantum dots for bioimaging and fluorescence-based sensing. The green alternatives for the synthesis of carbon materials are imminent. The present study demonstrates microwave based one step quick synthesis of fluorescent carbon material (FCM) having three variants: (i) un-doped fluorescent carbon material (UFCM) (ii) nitrogen doped FCM (N@FCM), and (iii) nitrogen & phosphorus co-doped FCM (N-P@FCM) using sugarcane extract as a carbon source. The N doping was performed using ethylenediamine and phosphoric acid was used for P doping. The heteroatom doped FCM were synthesized due to insolubility of UFCM in water. Unlike, UFCM, the N@FCM and N-P@FCM were found to be highly soluble in water. The N-P@FCM shows highest quantum yield among the three. The N-P@FCM was explored for alkaline pH sensing and it shows a quenching of fluorescence in the pH range 09-14. The sensing behaviour shows reversibility and high selectivity. Further, the sensor was also investigated for their biocompatibility and hence employed as a promising multicolour probe for cancer cell imaging. The generality in cell imaging was investigated by flow cytometry. The hetero-atom doped green carbon-dots may open new avenues for sensing and selective cellular targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode

    Science.gov (United States)

    Eom, KwangSup; Joshi, Tapesh; Bordes, Arnaud; Do, Inhwan; Fuller, Thomas F.

    2014-03-01

    In this study, a Si-graphene composite, which is composed of nano Si particles and nano-sized multi-layer graphene particles, and micro-sized multi-layer graphene plate conductor, was used as the anode for Li-ion battery. The Si-graphene electrode showed the high capacity and stable cyclability at charge/discharge rate of C/2 in half cell tests. Nickel cobalt aluminum material (NCA) was used as a cathode in the full cell to evaluate the practicality of the new Si-graphene material. Although the Si-graphene anode has more capacity than the NCA cathode in this designed full cell, the Si-graphene anode had a greater effect on the full-cell performance due to its large initial irreversible capacity loss and continuous SEI formation during cycling. When fluoro-ethylene carbonate was added to the electrolyte, the cyclability of the full cell was much improved due to less SEI formation, which was confirmed by the decreases in the 1st irreversible capacity loss, overpotential for the 1st lithiation, and the resistance of the SEI.

  17. DOKTRIN ULTRA VIRES DAN KONSEKUENSI PENERAPANNYA TERHADAP BADAN HUKUM PRIVAT

    Directory of Open Access Journals (Sweden)

    Johnny Ibrahim

    2011-05-01

    Full Text Available An acts is ultra vires when corporation is without authority to perform it under any circumstance or for any purpose beyond the scope of the powers of corporation, as defined by its charter or by law of incorporation. Some countries restrict the application of the doctrine of ultra vires but do not abolish it. Indonesia adopt doctrine of ultra vires in some of its law such as Law No. 40 of 2007 concerning Limited Liability Company and Law No. 25 of 2003 concerning Anti Money Laundering. The provisions of ultra vires doctrine has impact to other legal person than Limited Liability Company.

  18. Modelling of radiation losses for ion acceleration at ultra-high laser intensities

    Directory of Open Access Journals (Sweden)

    Capdessus Remi

    2013-11-01

    Full Text Available Radiation losses of charged particles can become important in ultra high intensity laser plasma interaction. This process is described by the radiation back reaction term in the electron equation of motion. This term is implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-Abraham-Dirac model. In the hole boring regime case of laser ion acceleration it is shown that radiation losses results in a decrease of the piston velocity.

  19. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    Science.gov (United States)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  20. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin.

    Science.gov (United States)

    Pellegrini, G; Ranno, R; Stracuzzi, G; Bondanza, S; Guerra, L; Zambruno, G; Micali, G; De Luca, M

    1999-09-27

    Cell therapy is an emerging therapeutic strategy aimed at replacing or repairing severely damaged tissues with cultured cells. Epidermal regeneration obtained with autologous cultured keratinocytes (cultured autografts) can be life-saving for patients suffering from massive full-thickness burns. However, the widespread use of cultured autografts has been hampered by poor clinical results that have been consistently reported by different burn units, even when cells were applied on properly prepared wound beds. This might arise from the depletion of epidermal stem cells (holoclones) in culture. Depletion of holoclones can occur because of (i) incorrect culture conditions, (ii) environmental damage of the exposed basal layer of cultured grafts, or (iii) use of new substrates or culture technologies not pretested for holoclone preservation. The aim of this study was to show that, if new keratinocyte culture technologies and/or "delivery systems" are proposed, a careful evaluation of epidermal stem cell preservation is essential for the clinical performance of this life-saving technology. Fibrin was chosen as a potential substrate for keratinocyte cultivation. Stem cells were monitored by clonal analysis using the culture system originally described by Rheinwald and Green as a reference. Massive full-thickness burns were treated with the composite allodermis/cultured autograft technique. We show that: (i) the relative percentage of holoclones, meroclones, and paraclones is maintained when keratinocytes are cultivated on fibrin, proving that fibrin does not induce clonal conversion and consequent loss of epidermal stem cells; (ii) the clonogenic ability, growth rate, and long-term proliferative potential are not affected by the new culture system; (iii) when fibrin-cultured autografts bearing stem cells are applied on massive full-thickness burns, the "take" of keratinocytes is high, reproducible, and permanent; and (iv) fibrin allows a significant reduction of the cost

  1. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    Science.gov (United States)

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  2. When Isolated at Full Receptivity, in Vitro Fertilized Wheat (Triticum aestivum, L. Egg Cells Reveal [Ca2+]cyt Oscillation of Intracellular Origin

    Directory of Open Access Journals (Sweden)

    Zsolt Pónya

    2014-12-01

    Full Text Available During in vitro fertilization of wheat (Triticum aestivum, L. in egg cells isolated at various developmental stages, changes in cytosolic free calcium ([Ca2+]cyt were observed. The dynamics of [Ca2+]cyt elevation varied, reflecting the difference in the developmental stage of the eggs used. [Ca2+]cyt oscillation was exclusively observed in fertile, mature egg cells fused with the sperm cell. To determine how [Ca2+]cyt oscillation in mature egg cells is generated, egg cells were incubated in thapsigargin, which proved to be a specific inhibitor of the endoplasmic reticulum (ER Ca2+-ATPase in wheat egg cells. In unfertilized egg cells, the addition of thapsigargin caused an abrupt transient increase in [Ca2+]cyt in the absence of extracellular Ca2+, suggesting that an influx pathway for Ca2+ is activated by thapsigargin. The [Ca2+]cyt oscillation seemed to require the filling of an intracellular calcium store for the onset of which, calcium influx through the plasma membrane appeared essential. This was demonstrated by omitting extracellular calcium from (or adding GdCl3 to the fusion medium, which prevented [Ca2+]cyt oscillation in mature egg cells fused with the sperm. Combined, these data permit the hypothesis that the first sperm-induced transient increase in [Ca2+]cyt depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and this enhanced Ca2+ influx results in [Ca2+]cyt oscillation.

  3. Preparation of ultra-thin and high-quality WO{sub 3} compact layers and comparision of WO{sub 3} and TiO{sub 2} compact layer thickness in planar perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun; Wang, Yanqing; Li, Mingqian

    2016-06-15

    In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.

  4. The effects of treatment with melatonin on the ultrastructure of mouse leydig cells: a quantitative study Efeito do tratamento com melatonina sobre a ultra-estrutura das células de Leydig do camundongo: estudo quantitativo

    Directory of Open Access Journals (Sweden)

    C. A. REDINS

    2002-08-01

    Full Text Available Both the presence of receptors for gonadal steroids in the pineal gland and in vitro observations of direct action of melatonin upon Leydig cells, inhibiting testosterone secretion, indicate a direct connection between pineal gland and gonadal function. In the present study, we used a transmission electron microscope to analyze the morphologic parameters of Leydig cells from adult Swiss outbred white mice treated with daily subcutaneous injections of 100 µg of melatonin (N-acetyl, 5-methoxytryptamine, during 22 consecutive days, compared with sham-control animals which had only received the melatonin vehicle. The melatonin group of mice showed a decrease in nuclear volume and fractional nuclear volume; smooth and rough endoplasmic reticulum; mitochondria; and Golgi complex. Our data also showed an increase in cytoplasmic volume, fractional cytoplasmic volume, and lysosomes in these same animals. The results suggest that melatonin, directly or indirectly, alters the ultrastructure of mouse Leydig cells and possibly influences their secretory activity by inhibiting their capacity to secrete steroids.No presente trabalho, utilizamos a microscopia eletrônica de transmissão para analisar os parâmetros morfológicos das células de Leydig de camundongos adultos, suíços outbred, tratados com uma injeção subcutânea diária de 100 µg de melatonina (5-metoxi-N-acetil-triptamina, durante 22 dias consecutivos, comparando-os com animais sham-controle que receberam apenas o veículo da melatonina. Os animais tratados com melatonina mostraram diminuição do volume nuclear, da fração volumétrica do núcleo, do retículo endoplasmático liso e rugoso, das mitocôndrias e do complexo de Golgi. Nos mesmos animais ocorreu, também, aumento do volume do citoplasma e da fração volumétrica do citoplasma e dos lisossomos. Esses resultados sugerem que a melatonina pode alterar, direta ou indiretamente, a ultra-estrutura das células de Leydig do

  5. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.; Takada, T.; Monma, D. [The Furukawa Battery Co., Ltd., R and D Division, 23-6 Kuidesaku, Shimofunao-machi, Joban, Iwaki-city, 972-8501 (Japan); Lam, L.T. [CSIRO Energy Technology, Bayview Avenue, Clayton South, Vic. 3169 (Australia)

    2010-02-15

    The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO{sub 2} emissions (cf., 98.8 with 96 g km{sup -1}) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack

  6. Ultrastructural characterization of bovine umbilical cord blood cells Caracterização ultra-estrutural das células sanguíneas do cordão umbilical bovino

    Directory of Open Access Journals (Sweden)

    Gustavo C Rodrigues

    2010-10-01

    Full Text Available The umbilical cord blood (UCB is an important source of pluripotent stem cells, which motivated researches on ontogeny and transplantation. The morphological characterization of umbilical cord cells is the first step to establish subsequent experiments on these areas. Although some information on humans can be found, no data on UCB is available for bovines. Therefore, this work is the first attempt to conduct an ultrastructural characterization of bovine umbilical cord blood. Blood was collected from the umbilical cord of twenty fetuses by punction of the umbilical vein. Samples were processed for whole leucocytes observation by centrifugation and the buffy coat was collected. Cells were washed and pelleted and prepared according to the standard protocol of the transmission electron microscopy. The presence of cells with morphologic characteristics compatible with the precursors from the erythrocytic, neutrophilic, eosinophilic, basophilic, and lymphocytic lineages was observed. Atypical cells with peculiar morphological features, strongly similar to apoptotic cells, were seen. Bovine neutrophils with three types of cytoplasmic granules were also found in the blood. The ultrastructural characteristics of observed bovine UCB cells where similar to those found in other species, suggesting that bovines could possibly constitute an experimental model for approaches on UCB cells research.O sangue de cordão umbilical (SCU é uma importante fonte de células progenitoras pluripotentes, que motiva pesquisas em ontogenia e transplantes. A caracterização morfológica das células de cordão umbilical é o primeiro passo para se estabelecer experimentos subsequentes nessas áreas. Embora algumas informações sobre SCU em humanos possam ser encontradas, não existe nenhuma informação disponível sobre elas em bovinos. Portanto, este trabalho é a primeira tentativa de se conduzir uma caracterização ultra-estrutural do sangue de cordão umbilical

  7. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    Directory of Open Access Journals (Sweden)

    Misako Yajima

    2018-04-01

    Full Text Available Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  8. Design and Performance Analysis of 1-Bit FinFET Full Adder Cells for Subthreshold Region at 16 nm Process Technology

    Directory of Open Access Journals (Sweden)

    ‘Aqilah binti Abdul Tahrim

    2015-01-01

    Full Text Available The scaling process of the conventional 2D-planar metal-oxide semiconductor field-effect transistor (MOSFET is now approaching its limit as technology has reached below 20 nm process technology. A new nonplanar device architecture called FinFET was invented to overcome the problem by allowing transistors to be scaled down into sub-20 nm region. In this work, the FinFET structure is implemented in 1-bit full adder transistors to investigate its performance and energy efficiency in the subthreshold region for cell designs of Complementary MOS (CMOS, Complementary Pass-Transistor Logic (CPL, Transmission Gate (TG, and Hybrid CMOS (HCMOS. The performance of 1-bit FinFET-based full adder in 16-nm technology is benchmarked against conventional MOSFET-based full adder. The Predictive Technology Model (PTM and Berkeley Shortchannel IGFET Model-Common Multi-Gate (BSIM-CMG 16 nm low power libraries are used. Propagation delay, average power dissipation, power-delay-product (PDP, and energy-delay-product (EDP are analysed based on all four types of full adder cell designs of both FETs. The 1-bit FinFET-based full adder shows a great reduction in all four metric performances. A reduction in propagation delay, PDP, and EDP is evident in the 1-bit FinFET-based full adder of CPL, giving the best overall performance due to its high-speed performance and good current driving capabilities.

  9. Anatase TiO2 hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Dapeng; Zhang, Shuo; Jiang, Shiwei; He, Jinjin; Jiang, Kai

    2015-01-01

    Graphical abstract: TiO 2 hierarchical structures assembled from ultra-thin nanosheets exposing ∼90% {0 0 1} facets were employed as photoanode materials to improve the performance of CdS/CdSe co-sensitized solar cells. - Highlights: • THSs composited of nanosheets exposing high percent {0 0 1} facets were prepared. • THSs improve the QDs loading amount and light scattering of the photoanode. • THSs suppress the carrier recombination and finally lead to ∼25% PCE improvement. - Abstract: TiO 2 hierarchical structures (THSs) composed of ultra-thin nano-sheets exposing ∼90% {0 0 1} facets were prepared via a hydrothermal method. Time dependent trails revealed the formation of THSs experienced a self-assemble process. The as-prepared product were used as the photoanode materials for CdS/CdSe co-sensitized solar cells, and the THSs/nanoparticle hybrid photoanode demonstrated a power conversion efficiency of 3.47%, indicating ∼25% improvement compared with the nanoparticle cell

  10. Anatase TiO{sub 2} hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dapeng, E-mail: dpengwu@126.com [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Henan Province for Green Motive Power and Key Materials, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Shuo; Jiang, Shiwei; He, Jinjin [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Jiang, Kai [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Henan Province for Green Motive Power and Key Materials, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan 453007 (China)

    2015-03-05

    Graphical abstract: TiO{sub 2} hierarchical structures assembled from ultra-thin nanosheets exposing ∼90% {0 0 1} facets were employed as photoanode materials to improve the performance of CdS/CdSe co-sensitized solar cells. - Highlights: • THSs composited of nanosheets exposing high percent {0 0 1} facets were prepared. • THSs improve the QDs loading amount and light scattering of the photoanode. • THSs suppress the carrier recombination and finally lead to ∼25% PCE improvement. - Abstract: TiO{sub 2} hierarchical structures (THSs) composed of ultra-thin nano-sheets exposing ∼90% {0 0 1} facets were prepared via a hydrothermal method. Time dependent trails revealed the formation of THSs experienced a self-assemble process. The as-prepared product were used as the photoanode materials for CdS/CdSe co-sensitized solar cells, and the THSs/nanoparticle hybrid photoanode demonstrated a power conversion efficiency of 3.47%, indicating ∼25% improvement compared with the nanoparticle cell.

  11. In situ synthesized Li2S@porous carbon cathode for graphite/Li2S full cells using ether-based electrolyte

    International Nuclear Information System (INIS)

    Wang, Ning; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2017-01-01

    Graphical abstract: A facile method is proposed to prepare lithium sulfide@porous carbon composites (Li 2 S@PC) by in-situ reaction of lithium sulfate (Li 2 SO 4 ) and the pyrolytic carbon from glucose. We assembled graphite-Li 2 S@PC full-cells using the obtained Li 2 S@PC composites as the cathode, graphite as the anode and DOL/DME with LiNO 3 additive as the electrolyte. Display Omitted -- Highlights: •A simple synthesis method was proposed to form Li 2 S@porous carbon composites. •Graphite-Li 2 S full-cells were constructed in DME-based electrolyte. •A novel method was proposed to activate the full cells. -- Abstract: Lithium-sulfur (Li-S) batteries have been recognized as one of the promising next-generation energy storage devices owing to their high energy density, low cost and eco-friendliness. As for cathode’s performance, the main challenges for developing highly-efficient and long-life Li-S batteries are to retard the polysulfides diffusion into electrolyte and the reaction with metallic lithium (Li). Especially, the safety issues, derived from metallic Li in anode, must be overcome. Herein, we fabricated lithium sulfide@porous carbon composites (Li 2 S@PC) by an in-situ reaction between the lithium sulfate (Li 2 SO 4 ) and the pyrolytic carbon from glucose. The nanosized Li 2 S particles were uniformly distributed in the carbon matrix, which not only significantly improve electronic conductivity of the electrode but also effectively trap the dissolved polysulfides. Furthermore, on the basis of the graphite’s electrochemical features in ether-based electrolyte, we assembled graphite-Li 2 S@PC full cells using the obtained Li 2 S@PC composites as the cathode, graphite as the anode and the DOL/DME with LiNO 3 additive as the electrolyte. A unique strategy was proposed to activate the full-cells in descending order using constant voltage and current to charge the cut-off voltage. This Li-S full cell exhibits stable cycling performance at 0.5 C over

  12. Cell-based quantification of biomarkers from an ultra-fast microfluidic immunofluorescent staining: application to human breast cancer cell lines

    Science.gov (United States)

    Migliozzi, D.; Nguyen, H. T.; Gijs, M. A. M.

    2018-02-01

    Immunohistochemistry (IHC) is one of the main techniques currently used in the clinics for biomarker characterization. It consists in colorimetric labeling with specific antibodies followed by microscopy analysis. The results are then used for diagnosis and therapeutic targeting. Well-known drawbacks of such protocols are their limited accuracy and precision, which prevent the clinicians from having quantitative and robust IHC results. With our work, we combined rapid microfluidic immunofluorescent staining with efficient image-based cell segmentation and signal quantification to increase the robustness of both experimental and analytical protocols. The experimental protocol is very simple and based on fast-fluidic-exchange in a microfluidic chamber created on top of the formalin-fixed-paraffin-embedded (FFPE) slide by clamping it a silicon chip with a polydimethyl siloxane (PDMS) sealing ring. The image-processing protocol is based on enhancement and subsequent thresholding of the local contrast of the obtained fluorescence image. As a case study, given that the human epidermal growth factor receptor 2 (HER2) protein is often used as a biomarker for breast cancer, we applied our method to HER2+ and HER2- cell lines. We report very fast (5 minutes) immunofluorescence staining of both HER2 and cytokeratin (a marker used to define the tumor region) on FFPE slides. The image-processing program can segment cells correctly and give a cell-based quantitative immunofluorescent signal. With this method, we found a reproducible well-defined separation for the HER2-to-cytokeratin ratio for positive and negative control samples.

  13. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Daniela Belotti

    2015-01-01

    Full Text Available According to the European Medicine Agency (EMA regulatory frameworks, Advanced Therapy Medicinal Products (ATMP represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs. In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM, ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106, with a viability ranged between 96,03% and 99,97% (median 99,87% and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%. Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial.

  14. Physiology and Pathophysiology in Ultra-Marathon Running

    Directory of Open Access Journals (Sweden)

    Beat Knechtle

    2018-06-01

    Full Text Available In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat and training (e.g., high volume and running speed during training characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In

  15. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  16. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo.

    Science.gov (United States)

    Mohiti-Asli, M; Saha, S; Murphy, S V; Gracz, H; Pourdeyhimi, B; Atala, A; Loboa, E G

    2017-02-01

    This article presents successful incorporation of ibuprofen in polylactic acid (PLA) nanofibers to create scaffolds for the treatment of both acute and chronic wounds. Nanofibrous PLA scaffolds containing 10, 20, or 30 wt % ibuprofen were created and ibuprofen release profiles quantified. In vitro cytotoxicity to human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) of the three scaffolds with varying ibuprofen concentrations were evaluated and compared to pure PLA nanofibrous scaffolds. Thereafter, scaffolds loaded with ibuprofen at the concentration that promoted human skin cell viability and proliferation (20 wt %) were evaluated in vivo in nude mice using a full thickness skin incision model to determine the ability of these scaffolds to promote skin regeneration and/or assist with scarless healing. Both acellular and HEK and HDF cell-seeded 20 wt % ibuprofen loaded nanofibrous bandages reduced wound contraction compared with wounds treated with Tegaderm™ and sterile gauze. Newly regenerated skin on wounds treated with cell-seeded 20 wt % ibuprofen bandages exhibited significantly greater blood vessel formation relative to acellular ibuprofen bandages. We have found that degradable anti-inflammatory scaffolds containing 20 wt % ibuprofen promote human skin cell viability and proliferation in vitro, reduce wound contraction in vivo, and when seeded with skin cells, also enhance new blood vessel formation. The approaches and results reported here hold promise for multiple skin tissue engineering and wound healing applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 327-339, 2017. © 2015 Wiley Periodicals, Inc.

  17. Purification and characterization of recombinant full-length and protease domain of murine MMP-9 expressed in Drosophila S2 cells

    DEFF Research Database (Denmark)

    Rasch, Morten G; Lund, Ida K; Illemann, Martin

    2010-01-01

    MMP-9. Constructs encoding zymogens of full-length murine MMP-9 and a version lacking the O-glycosylated linker region and hemopexin domains were therefore generated and expressed in stably transfected Drosophila S2 insect cells. After 7 days of induction the expression levels of the full......-length and truncated versions were 5 mg/l and 2 mg/l, respectively. The products were >95% pure after gelatin Sepharose chromatography and possessed proteolytic activity when analyzed by gelatin zymography. Using the purified full-length murine MMP-9 we raised polyclonal antibodies by immunizations of rabbits......Matrix metalloproteinase-9 (MMP-9) is a 92-kDa soluble pro-enzyme implicated in pathological events including cancer invasion. It is therefore an attractive target for therapeutic intervention studies in mouse models. Development of inhibitors requires sufficient amounts of correctly folded murine...

  18. Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells.

    Science.gov (United States)

    Wu, Liang; Zhang, Xiaolong; Zhao, Zhikun; Wang, Ling; Li, Bo; Li, Guibo; Dean, Michael; Yu, Qichao; Wang, Yanhui; Lin, Xinxin; Rao, Weijian; Mei, Zhanlong; Li, Yang; Jiang, Runze; Yang, Huan; Li, Fuqiang; Xie, Guoyun; Xu, Liqin; Wu, Kui; Zhang, Jie; Chen, Jianghao; Wang, Ting; Kristiansen, Karsten; Zhang, Xiuqing; Li, Yingrui; Yang, Huanming; Wang, Jian; Hou, Yong; Xu, Xun

    2015-01-01

    Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line. We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins. Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.

  19. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    Science.gov (United States)

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ultra-structural changes and expression of chondrogenic and hypertrophic genes during chondrogenic differentiation of mesenchymal stromal cells in alginate beads

    Directory of Open Access Journals (Sweden)

    Havva Dashtdar

    2016-03-01

    Full Text Available Chondrogenic differentiation of mesenchymal stromal cells (MSCs in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05 chondrogenic but lower hypertrophic (p < 0.05 gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis.

  1. Effects of enhances ultra violet irradiation on photosynthesis in ...

    African Journals Online (AJOL)

    Effects of enhances ultra violet irradiation on photosynthesis in anabaena variabilis and phormidium uncinatum. VA Donkor. Abstract. No Abstract. Journal of the Ghana Association Vol. 2 (3) 1999: pp.16-23. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  2. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  3. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras.

    Science.gov (United States)

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R; Sauer, Martin G

    2009-04-30

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cells (ETCs) mediate anti-leukemia effects only when primed on recipient-derived APCs. Loading of APCs in vitro with leukemia cell lysate, chimerism status of the recipient, and timing of adoptive transfer after HCT are important factors determining the outcome. Delayed transfer of ETCs resulted in strong GVL effects in leukemia-bearing full chimera (FC) and mixed chimera (MC) recipients, which were comparable with the GVL/GVHD rates observed after the transfer of naive donor lymphocyte infusion (DLI). Upon early transfer, GVL effects were more pronounced with ETCs but at the expense of significant GVHD. The degree of GVHD was most severe in MCs after transfer of ETCs that had been in vitro primed either on nonpulsed recipient-derived APCs or with donor-derived APCs.

  4. Bio-plasticizer production by hybrid acetone-butanol-ethanol fermentation with full cell catalysis of Candida sp. 99-125.

    Science.gov (United States)

    Chen, Changjing; Cai, Di; Qin, Peiyong; Chen, Biqiang; Wang, Zheng; Tan, Tianwei

    2018-06-01

    Hybrid process that integrated fermentation, pervaporation and esterification was established aiming to improve the economic feasibility of the conventional acetone-butanol-ethanol (ABE) fermentation process. Candida sp 99-125 cells were used as full-cell catalyst. The feasibility of batch and fed-batch esterification using the ABE permeate of pervaporation (ranging from 286.9 g/L to 402.9 g/L) as substrate were compared. Valuable butyl oleate was produced along with ethyl oleate. For the batch esterification, due to severe inhibition of substrate to lipase, the yield of butyl oleate and ethyl oleate were only 24.9% and 3.3%, respectively. In contrast, 75% and 11.8% of butyl oleate and ethyl oleate were obtained, respectively, at the end of the fed-batch esterification. The novel integration process provides a promising strategy for in situ upgrading ABE products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Serial section scanning electron microscopy (S3EM on silicon wafers for ultra-structural volume imaging of cells and tissues.

    Directory of Open Access Journals (Sweden)

    Heinz Horstmann

    Full Text Available High resolution, three-dimensional (3D representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM, complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3EM, for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  6. [Effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats].

    Science.gov (United States)

    Zhao, B; Wu, G F; Zhang, Y J; Zhang, W; Yang, F F; Xiao, D; Zeng, K X; Shi, J H; Su, L L; Hu, D H

    2017-01-20

    Objective: To investigate the effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats. Methods: (1) Human amniotic epithelial stem cells were isolated from the amnion tissue of 5 full-term pregnant women in Department of Obstetrics of our hospital by the method of trypsin digestion, and their morphology was observed. The third passage of cells were stained with rhodamine-phalloidin for cytoskeleton observation. The third passage of cells were identified with flow cytometry through the detection of expressions of cell surface markers CD29, CD31, CD34, CD90, CD105, SSEA3, SSEA4 and immunity-related marker human leukocyte antigen-D related site (HLA-DR). The third passage of cells were also assessed the ability of adipogenic and osteogenic differentiation. (2) The third passage of human amniotic epithelial stem cells were cultured in DMEM medium supplemented with 10% exosome-free fetal bovine serum. Exosomes were isolated from culture supernatant by the method of ultracentrifugation and represented with scanning electron microscope for morphologic observation. (3) Six adult SD rats were anesthetized, and four 1 cm×1 cm sized wounds with full-thickness skin defect were made on the back of each rat. The wounds on the back of each rat were divided into control group, 25 μg/mL exosomes group, 50 μg/mL exosomes group, and 100 μg/mL exosomes group according to the random number table (with 6 wounds in each group), and a total volume of 100 μL phosphate buffered saline, 25 μg/mL exosomes, 50 μg/mL exosomes, and 100 μg/mL exosomes were evenly injected around the wound through multiple subcutaneous sites, respectively. The wound healing rate was calculated based on measurement on post injury day (PID) 7, 14, and 21. On PID 21, the healed wound tissue of each group was collected and stained with HE to observe and count skin accessories, and the arrangement of collagen fibers was observed with Masson

  7. Using the Rapid-Scanning, Ultra-Portable, Canopy Biomass Lidar (CBL) Alone and In Tandem with the Full-Waveform Dual-Wavelength Echidna® Lidar (DWEL) to Establish Forest Structure and Biomass Estimates in a Variety of Ecosystems

    Science.gov (United States)

    Schaaf, C.; Paynter, I.; Saenz, E. J.; Li, Z.; Strahler, A. H.; Peri, F.; Erb, A.; Raumonen, P.; Muir, J.; Howe, G.; Hewawasam, K.; Martel, J.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Schaefer, M.; Newnham, G.; Jupp, D. L. B.; van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; Faulring, J.

    2014-12-01

    Terrestrial lidars are increasingly being deployed in a variety of ecosystems to calibrate and validate large scale airborne and spaceborne estimates of forest structure and biomass. While these lidars provide a wealth of high resolution information on canopy structure and understory vegetation, they tend to be expensive, slow scanning and somewhat ponderous to deploy. Therefore, frequent deployments and characterization of larger areas of a hectare or more can still be challenging. This suggests a role for low cost, ultra-portable, rapid scanning (but lower resolution) instruments -- particularly in scanning extreme environments and as a way to augment and extend strategically placed scans from the more highly capable lidars. The Canopy Biomass Lidar (CBL) is an inexpensive, highly portable, fast-scanning (33 seconds), time-of-flight, terrestrial laser scanning (TLS) instrument, built in collaboration with RIT, by U Mass Boston. The instrument uses a 905nm SICK time of flight laser with a 0.25o resolution and 30m range. The higher resolution, full-waveform Dual Wavelength Echidna® Lidar (DWEL), developed by Boston University, U Mass Lowell and U Mass Boston, builds on the Australian CSIRO single wavelength, full-waveform Echidna® Validation Instrument (EVI), but utilizes two simultaneous laser pulses at 1064 and 1548 nm to separate woody returns from those of foliage at a range of up to 100m range. The UMass Boston CBL has been deployed in rangelands (San Joaquin Experimental Range, CA), high altitude conifers (Sierra National Forest, CA), mixed forests (Harvard Forest LTER MA), tropical forests (La Selva and Sirena Biological Stations, Costa Rica), eucalypts (Karawatha, Brisbane TERN, Australia), and woodlands (Alice Holt Forest, UK), frequently along-side the DWEL, as well as in more challenging environments such as mangrove forests (Corcovado National Park, Costa Rica) and Massachusetts salt marshes and eroding bluffs (Plum Island LTER, and UMass Boston

  8. Repair of large full-thickness articular cartilage defects in the rabbit: the effects of joint distraction and autologous bone-marrow-derived mesenchymal cell transplantation.

    Science.gov (United States)

    Yanai, T; Ishii, T; Chang, F; Ochiai, N

    2005-05-01

    We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p distraction, collagen gel and ACBMT.

  9. Analysis of ultra-narrow ferromagnetic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  10. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Dequan; Liu, Zheng Jiao; Li, Xiuwan; Xie, Wenhe; Wang, Qi; Liu, Qiming; Fu, Yujun; He, Deyan

    2017-12-01

    To satisfy the increasing energy demands of portable electronics, electric vehicles, and miniaturized energy storage devices, improvements to lithium-ion batteries (LIBs) are required to provide higher energy/power densities and longer cycle lives. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes are promising candidates for use as electrodes in next-generation LIBs owing to their extremely high gravimetric and volumetric capacities, low working voltages, and natural abundances. However, due to the violent volume changes that occur during lithium-ion insertion/extraction and the formation of an unstable solid electrolyte interface, the use of Group IVA element-based anodes in commercial LIBs is still a great challenge. Evaluating the electrochemical performance of an anode in a full-cell configuration is a key step in investigating the possible application of the active material in LIBs. In this regard, the recent progress and important approaches to overcoming and alleviating the drawbacks of Group IVA element-based anode materials are reviewed, such as the severe volume variations during cycling and the relatively brittle electrode/electrolyte interface in full-cell LIBs. Finally, perspectives and future challenges in achieving the practical application of Group IVA element-based anodes in high-energy and high-power-density LIB systems are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells

    Science.gov (United States)

    Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi

    2017-07-01

    Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.

  12. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  13. Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues.

    Science.gov (United States)

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  14. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter

  15. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Wu Minjuan

    2016-01-01

    Full Text Available Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs onto the human acellular amniotic membrane (AAM. The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration.

  16. Ultra-orthodox Jewish Women Go to Work

    Directory of Open Access Journals (Sweden)

    Foscarini, Giorgia

    2014-12-01

    Full Text Available In the last three decades the ultra-orthodox community in Israel has experienced great changes in its internal social functioning. More specifically, these developments were linked to the education of ultra-orthodox women. Through an accurate review of the existing literature and a series of in-depth interviews with Israeli scholars, rabbis, educators and women of the ultra-orthodox community in Jerusalem, it was found that the introduction of new vocational and academic training tracks in women's education, is gradually changing the internal social structure of the ultra-orthodox family and community. The main consequence is expressed in a renegotiation of gender roles within the ultra-orthodox community and in a subversion of the traditional patriarchal framework. As a result of their participation in the labor market and in higher education institutions, women are more and more exposed to the Israeli secular culture, introducing in the traditional and segregated ultra-orthodox community customs typically modern, narrowing the gap between the ultra-orthodox community and the mainstream Israeli society.

  17. Culturing of primary rat neurons and glia on ultra-thin parylene-C

    International Nuclear Information System (INIS)

    Unsworth, C.P.; Delivopoulos, E.; Murray, A.F.

    2010-01-01

    Full text: In this article, we will describe how we have successfully cultured dissociated embryonic cortical neurons and glia from the postnatal rat hippocampus on extremely thin layers (up to 10 nm) of Parylene-C on a silicon dioxide substrate. Silicon wafers were oxidised, deposited with the biomaterial, Parylene-C, photo-lithographically patterned and plasma etched to produce chips that consisted of lines of Paryl ene-C with varying widths, thickness and lengths. The chips produced were then immersed in Horse Serum and plated with the cells. Ratios of Neurons; Glia; Cell Body were measured on, adjacent to and away from the Parylene-C. Our initial results show how these ratios remained roughly constant for ultra-thin Parylene-C thicknesses of 10 nm as compared to a benchmark thickness of 100 nm (where such cells are known to grow well). Thus, our findings demonstrate that it is possible to culture primary rat neurons and glia to practically cell membrane thicknesses of Parylene-C. Being able to culture cells on such ultra thin levels of Parylene-C will open up the possibility to develop Multi-Electrode Arrays (MEA) that can capacitively couple embedded electrodes through the parylene to the cells on its surface. Thus, providing a neat, insulated passive electrode. Only the ultra-thin thicknesses of Parylene demonstrated here would allow for the rea isation of such a technology. Hence, the outcome of this work, will be of great interest to the Neuroengineering and the Multi-Electrode Array (MEA) community, as an alternative material for the fabric tion of passive electrodes, used in capacitive coupling mode.

  18. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor {beta}{sub 1} gene

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Liu Kai [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Quan Daping [Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-12-15

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-{beta}{sub 1}) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-{beta}{sub 1} that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-{beta}{sub 1} gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA{sub 3}-TGF-{beta}{sub 1} gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA{sub 3} gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of

  19. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Yang Shuhua; Shao Zengwu; Yuan Quan; Pan Zhengqi; Tang Shuo; Liu Kai; Quan Daping

    2006-01-01

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-β 1 ) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-β 1 that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-β 1 gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA 3 -TGF-β 1 gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA 3 gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The

  20. Effects of Cd{sub 1-x}Zn{sub x}S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, A.J., E-mail: Andrew.J.Clayton@Swansea.ac.uk [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom); Baker, M.A.; Babar, S.; Grilli, R. [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Gibson, P.N. [Institute for Health and Consumer Protection, Joint Research Centre of the European Commission, 21027, Ispra, VA (Italy); Kartopu, G.; Lamb, D.A. [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom); Barrioz, V. [Engineering and Environment, Department of Physics and Electrical Engineering, Northumbria University, Newcastle, NE1 8ST (United Kingdom); Irvine, S.J.C. [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom)

    2017-05-01

    Ultra-thin CdTe:As/Cd{sub 1-x}Zn{sub x}S photovoltaic solar cells with an absorber thickness of 0.5 μm were deposited by metal-organic chemical vapour deposition on indium tin oxide coated boro-aluminosilicate substrates. The Zn precursor concentration was varied to compensate for Zn leaching effects after CdCl{sub 2} activation treatment. Analysis of the solar cell composition and structure by X-ray photoelectron spectroscopy depth profiling and X-ray diffraction showed that higher concentrations of Zn in the Cd{sub 1-x}Zn{sub x}S window layer resulted in suppression of S diffusion across the CdTe/Cd{sub 1-x}Zn{sub x}S interface after CdCl{sub 2} activation treatment. Excessive Zn content in the Cd{sub 1-x}Zn{sub x}S alloy preserved the spectral response in the blue region of the solar spectrum, but increased series resistance for the solar cells. A modest increase in the Zn content of the Cd{sub 1-x}Zn{sub x}S alloy together with a post-deposition air anneal resulted in an improved blue response and an enhanced open circuit voltage and fill factor. This device yielded a mean efficiency of 8.3% over 8 cells (0.25 cm{sup 2} cell area) and best cell efficiency of 8.8%. - Highlights: • CdCl{sub 2} anneal treatment resulted in S diffusing to the back contact. • High Zn levels created mixed cubic/hexagonal structure at the p-n junction. • Increased Zn in Cd{sub 1-x}Zn{sub x}S supressed S diffusion into CdTe. • Device V{sub oc} was enhanced overall with an additional back surface air anneal.

  1. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  2. Ultra Scale-Down Characterization of the Impact of Conditioning Methods for Harvested Cell Broths on Clarification by Continuous Centrifugation—Recovery of Domain Antibodies from rec E. coli

    Science.gov (United States)

    Chatel, Alex; Kumpalume, Peter; Hoare, Mike

    2014-01-01

    The processing of harvested E. coli cell broths is examined where the expressed protein product has been released into the extracellular space. Pre-treatment methods such as freeze–thaw, flocculation, and homogenization are studied. The resultant suspensions are characterized in terms of the particle size distribution, sensitivity to shear stress, rheology and solids volume fraction, and, using ultra scale-down methods, the predicted ability to clarify the material using industrial scale continuous flow centrifugation. A key finding was the potential of flocculation methods both to aid the recovery of the particles and to cause the selective precipitation of soluble contaminants. While the flocculated material is severely affected by process shear stress, the impact on the very fine end of the size distribution is relatively minor and hence the predicted performance was only diminished to a small extent, for example, from 99.9% to 99.7% clarification compared with 95% for autolysate and 65% for homogenate at equivalent centrifugation conditions. The lumped properties as represented by ultra scale-down centrifugation results were correlated with the basic properties affecting sedimentation including particle size distribution, suspension viscosity, and solids volume fraction. Grade efficiency relationships were used to allow for the particle and flow dynamics affecting capture in the centrifuge. The size distribution below a critical diameter dependant on the broth pre-treatment type was shown to be the main determining factor affecting the clarification achieved. Biotechnol. Bioeng. 2014;111: 913–924. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:24284936

  3. Identification of a truncated nucleoprotein in avian metapneumovirus-infected cells encoded by a second AUG, in-frame to the full-length gene

    Directory of Open Access Journals (Sweden)

    Alvarez Rene

    2005-04-01

    Full Text Available Abstract Background Avian metapneumoviruses (aMPV cause an upper respiratory disease with low mortality, but high morbidity primarily in commercial turkeys. There are three types of aMPV (A, B, C of which the C type is found only in the United States. Viruses related to aMPV include human, bovine, ovine, and caprine respiratory syncytial viruses and pneumonia virus of mice, as well as the recently identified human metapneumovirus (hMPV. The aMPV and hMPV have become the type viruses of a new genus within the Metapneumovirus. The aMPV nucleoprotein (N amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. Based on predicted antigenicity of consensus protein sequences, five aMPV-specific N peptides were synthesized for development of peptide-antigens and antisera. Results The presence of two aMPV nucleoprotein (N gene encoded polypeptides was detected in aMPV/C/US/Co and aMPV/A/UK/3b infected Vero cells. Nucleoprotein 1 (N1 encoded from the first open reading frame (ORF was predicted to be 394 amino acids in length for aMPV/C/US/Co and 391 amino acids in length for aMPV/A/UK/3b with approximate molecular weights of 43.3 kilodaltons and 42.7 kilodaltons, respectively. Nucleoprotein 2 (N2 was hypothesized to be encoded by a second downstream ORF in-frame with ORF1 and encoded a protein predicted to contain 328 amino acids for aMPV/C/US/Co or 259 amino acids for aMPV/A/UK/3b with approximate molecular weights of 36 kilodaltons and 28.3 kilodaltons, respectively. Peptide antibodies to the N-terminal and C-terminal portions of the aMPV N protein confirmed presence of these products in both aMPV/C/US/Co- and aMPV/A/UK/3b-infected Vero cells. N1 and N2 for aMPV/C/US/Co ORFs were molecularly cloned and expressed in Vero cells utilizing eukaryotic expression vectors to confirm identity of the aMPV encoded proteins. Conclusion This is the first reported identification of potential, accessory in-frame N2 ORF gene products among

  4. Use of focused acoustics for cell disruption to provide ultra scale-down insights of microbial homogenization and its bioprocess impact--recovery of antibody fragments from rec E. coli.

    Science.gov (United States)

    Li, Qiang; Aucamp, Jean P; Tang, Alison; Chatel, Alex; Hoare, Mike

    2012-08-01

    An ultra scale-down (USD) device that provides insight of how industrial homogenization impacts bioprocess performance is desirable in the biopharmaceutical industry, especially at the early stage of process development where only a small quantity of material is available. In this work, we assess the effectiveness of focused acoustics as the basis of an USD cell disruption method to mimic and study high-pressure, step-wise homogenization of rec Escherichia coli cells for the recovery of an intracellular protein, antibody fragment (Fab'). The release of both Fab' and of overall protein follows first-order reaction kinetics with respect to time of exposure to focused acoustics. The rate constant is directly proportional to applied electrical power input per unit volume. For nearly total protein or Fab' release (>99%), the key physical properties of the disruptate produced by focused acoustics, such as cell debris particle size distribution and apparent viscosity show good agreement with those for homogenates produced by high-pressure homogenization operated to give the same fractional release. The only key difference is observed for partial disruption of cells where focused acoustics yields a disruptate of lower viscosity than homogenization, evidently due to a greater extent of polynucleic acids degradation. Verification of this USD approach to cell disruption by high-pressure homogenization is achieved using USD centrifugation to demonstrate the same sedimentation characteristics of disruptates prepared using both the scaled-down focused acoustic and the pilot-scale homogenization methods for the same fraction of protein release. Copyright © 2012 Wiley Periodicals, Inc.

  5. Production ultra propre

    CERN Document Server

    Morvan, Gilles

    2011-01-01

    L'ultra propreté se caractérise par l'absence de particules et la maîtrise de la contamination dans un environnement défini. Largement appliquée dans diverses industries (pharmacie, cosmétiques, dispositifs médicaux, chimie fine, biotechnologies, électronique et secteurs de pointe, agroalimentaire, plasturgie…), la technicité dans ce domaine est élevée, car principalement liée à la maîtrise des différentes sources de contaminations (eau, air ambiant, fluides, etc.). Véritable guide pratique, cet ouvrage détaille les points techniques essentiels pour permettre à l’ingénieur de trouver des solutions adéquates à chaque type de projet. La démarche passe par la rédaction de spécifications rigoureuses pour : - l’eau, essentielle à toutes productions, - les équipements de production ultra propre, - la démarche qualité et environnementale, - la démarche de suivi du projet.

  6. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  7. Ultra-Wideband Transceivers for Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Reisenzahn Alexander

    2005-01-01

    Full Text Available Ultra-wideband (UWB radio offers low power consumption, low power spectral density, high immunity against interference, and other benefits, not only for consumer electronics, but also for medical devices. A cochlear implant (CI is an electronic hearing apparatus, requiring a wireless link through human tissue. In this paper we propose an UWB link for a data rate of Mbps and a propagation distance up to 500 mm. Transmitters with step recovery diode and transistor pulse generators are proposed. Two types of antennas and their filter characteristics in the UWB spectrum will be discussed. An ultra-low-power back tunnel diode receiver prototype is described and compared with conventional detector receivers.

  8. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    Science.gov (United States)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  9. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Science.gov (United States)

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin

    2014-02-01

    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  10. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries

    Directory of Open Access Journals (Sweden)

    Meng Qin

    2017-06-01

    Full Text Available This work reports on the synthesis of rare earth-doped Li4Ti5O12 nanosheets with high electrochemical performance as anode material both in Li half and Li4Ti5O12/LiFePO4 full cell batteries. Through the combination of decreasing the particle size and doping by rare earth atoms (Ce and La, Ce and La doped Li4Ti5O12 nanosheets show the excellent electrochemical performance in terms of high specific capacity, good cycling stability and excellent rate performance in half cells. Notably, the Ce-doped Li4Ti5O12 shows good electrochemical performance as anode in a full cell which LiFePO4 was used as cathode. The superior electrochemical performance can be attributed to doping as well as the nanosized particle, which facilitates transportation of the lithium ion and electron transportation. This research shows that the rare earth doped Li4Ti5O12 nanosheets can be suitable as a high rate performance anode material in lithium-ion batteries.

  11. Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology.

    Directory of Open Access Journals (Sweden)

    Rodrigo Pessôa

    Full Text Available BACKGROUND: Here, we report on the partial and full-length genomic (FLG variability of HTLV-1 sequences from 90 well-characterized subjects, including 48 HTLV-1 asymptomatic carriers (ACs, 35 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP and 7 adult T-cell leukemia/lymphoma (ATLL patients, using an Illumina paired-end protocol. METHODS: Blood samples were collected from 90 individuals, and DNA was extracted from the PBMCs to measure the proviral load and to amplify the HTLV-1 FLG from two overlapping fragments. The amplified PCR products were subjected to deep sequencing. The sequencing data were assembled, aligned, and mapped against the HTLV-1 genome with sufficient genetic resemblance and utilized for further phylogenetic analysis. RESULTS: A high-throughput sequencing-by-synthesis instrument was used to obtain an average of 3210- and 5200-fold coverage of the partial (n = 14 and FLG (n = 76 data from the HTLV-1 strains, respectively. The results based on the phylogenetic trees of consensus sequences from partial and FLGs revealed that 86 (95.5% individuals were infected with the transcontinental sub-subtypes of the cosmopolitan subtype (aA and that 4 individuals (4.5% were infected with the Japanese sub-subtypes (aB. A comparison of the nucleotide and amino acids of the FLG between the three clinical settings yielded no correlation between the sequenced genotype and clinical outcomes. The evolutionary relationships among the HTLV sequences were inferred from nucleotide sequence, and the results are consistent with the hypothesis that there were multiple introductions of the transcontinental subtype in Brazil. CONCLUSIONS: This study has increased the number of subtype aA full-length genomes from 8 to 81 and HTLV-1 aB from 2 to 5 sequences. The overall data confirmed that the cosmopolitan transcontinental sub-subtypes were the most prevalent in the Brazilian population. It is hoped that this valuable genomic data

  12. High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition

    International Nuclear Information System (INIS)

    Saha, Madhu Sudan; Gulla, Andrea F.; Allen, Robert J.; Mukerjee, Sanjeev

    2006-01-01

    Ultra-low pure Pt-based electrodes (0.04-0.12 mg Pt /cm 2 ) were prepared by dual ion-beam assisted deposition (dual IBAD) method on the surface of a non-catalyzed gas diffusion layer (GDL) substrate. Film thicknesses ranged between 250 and 750 A, these are compared with a control, a conventional Pt/C (1.0 mg Pt(MEA) /cm 2 , E-TEK). The IBAD electrode constituted a significantly different morphology, where low density Pt deposits (largely amorphous) were formed with varying depths of penetration into the gas diffusion layer, exhibiting a gradual change towards increasing crystalline character (from 250 to 750 A). Mass specific power density of 0.297 g Pt /kW is reported with 250 A IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V. This is contrasted with the commercial MEA with a loading of 1 mg Pt(MEA) /cm 2 where mass specific power density obtained was 1.18 g Pt /kW (at 0.65 V), a value typical of current state of the art commercial electrodes containing Pt/C. The principal shortcoming in this effort is the area specific power density which was in the range of 0.27-0.43 W/cm 2 (for 250-750 A IBAD) at 0.65 V, hence much below the automotive target value of 0.8-0.9 W/cm 2 (at 0.65 V). An attempt to mitigate these losses is reported with the use of patterning. In this context a series of patterns ranging from 45 to 80% Pt coverage were used in conjunction with a hexagonal hole geometry. Up to 30% lowering of mass transport losses were realized

  13. Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology.

    Science.gov (United States)

    Pessôa, Rodrigo; Watanabe, Jaqueline Tomoko; Nukui, Youko; Pereira, Juliana; Casseb, Jorge; Kasseb, Jorge; de Oliveira, Augusto César Penalva; Segurado, Aluisio Cotrim; Sanabani, Sabri Saeed

    2014-01-01

    Here, we report on the partial and full-length genomic (FLG) variability of HTLV-1 sequences from 90 well-characterized subjects, including 48 HTLV-1 asymptomatic carriers (ACs), 35 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and 7 adult T-cell leukemia/lymphoma (ATLL) patients, using an Illumina paired-end protocol. Blood samples were collected from 90 individuals, and DNA was extracted from the PBMCs to measure the proviral load and to amplify the HTLV-1 FLG from two overlapping fragments. The amplified PCR products were subjected to deep sequencing. The sequencing data were assembled, aligned, and mapped against the HTLV-1 genome with sufficient genetic resemblance and utilized for further phylogenetic analysis. A high-throughput sequencing-by-synthesis instrument was used to obtain an average of 3210- and 5200-fold coverage of the partial (n = 14) and FLG (n = 76) data from the HTLV-1 strains, respectively. The results based on the phylogenetic trees of consensus sequences from partial and FLGs revealed that 86 (95.5%) individuals were infected with the transcontinental sub-subtypes of the cosmopolitan subtype (aA) and that 4 individuals (4.5%) were infected with the Japanese sub-subtypes (aB). A comparison of the nucleotide and amino acids of the FLG between the three clinical settings yielded no correlation between the sequenced genotype and clinical outcomes. The evolutionary relationships among the HTLV sequences were inferred from nucleotide sequence, and the results are consistent with the hypothesis that there were multiple introductions of the transcontinental subtype in Brazil. This study has increased the number of subtype aA full-length genomes from 8 to 81 and HTLV-1 aB from 2 to 5 sequences. The overall data confirmed that the cosmopolitan transcontinental sub-subtypes were the most prevalent in the Brazilian population. It is hoped that this valuable genomic data will add to our current understanding of the

  14. Mesoporous Tin-Based Oxide Nanospheres/Reduced Graphene Composites as Advanced Anodes for Lithium-Ion Half/Full Cells and Sodium-Ion Batteries.

    Science.gov (United States)

    He, Yanyan; Li, Aihua; Dong, Caifu; Li, Chuanchuan; Xu, Liqiang

    2017-10-04

    The large volume variations of tin-based oxides hinder their extensive application in the field of lithium-ion batteries (LIBs). In this study, structure design, hybrid fabrication, and carbon-coating approaches have been simultaneously adopted to address these shortcomings. To this end, uniform mesoporous NiO/SnO 2 @rGO, Ni-Sn oxide@rGO, and SnO 2 @rGO nanosphere composites have been selectively fabricated. Among them, the obtained NiO/SnO 2 @rGO composite exhibited a high capacity of 800 mAh g -1 at 1000 mA g -1 after 400 cycles. The electrochemical mechanism of NiO/SnO 2 as an anode for LIBs has been preliminarily investigated by ex situ XRD pattern analysis. Furthermore, an NiO/SnO 2 @rGO-LiCoO 2 lithium-ion full cell showed a high capacity of 467.8 mAh g -1 at 500 mA g -1 after 100 cycles. Notably, the NiO/SnO 2 @rGO composite also showed good performance when investigated as an anode for sodium-ion batteries (SIBs). It is believed that the unique mesoporous nanospherical framework, synergistic effects between the various components, and uniform rGO wrapping of NiO/SnO 2 shorten the Li + ion diffusion pathways, maintain sufficient contact between the active material and the electrolyte, mitigate volume changes, and finally improve the electrical conductivity of the electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries

    Science.gov (United States)

    Qin, Meng; Li, Yueming; Lv, Xiao-Jun

    2017-01-01

    This work reports on the synthesis of rare earth-doped Li4Ti5O12 nanosheets with high electrochemical performance as anode material both in Li half and Li4Ti5O12/LiFePO4 full cell batteries. Through the combination of decreasing the particle size and doping by rare earth atoms (Ce and La), Ce and La doped Li4Ti5O12 nanosheets show the excellent electrochemical performance in terms of high specific capacity, good cycling stability and excellent rate performance in half cells. Notably, the Ce-doped Li4Ti5O12 shows good electrochemical performance as anode in a full cell which LiFePO4 was used as cathode. The superior electrochemical performance can be attributed to doping as well as the nanosized particle, which facilitates transportation of the lithium ion and electron transportation. This research shows that the rare earth doped Li4Ti5O12 nanosheets can be suitable as a high rate performance anode material in lithium-ion batteries. PMID:28632167

  16. Fowl plague virus replication in mammalian cell-avian erythrocyte heterokaryons: studies concerning the actinomycin D and ultra-violet lig sensitive phase in influenza virus replication

    International Nuclear Information System (INIS)

    Kelly, D.C.; Dimmock, N.J.

    1974-01-01

    The replication of fowl plague virus in BHK and L cells specifically blocked prior to infection with inhibitors of influenza virus replication (actinomycin D and ultraviolet light irradiation) has been studied by the introduction of a metabolically dormant avian erythrocyte nucleus. This permits the synthesis of just the influenza virus nucleoprotein in actinomycin D (but not ultraviolet light) blocked cells. The NP antigen is first detected in the avian erythrocyte nucleus and subsequently in the heterokaryon cytoplasm

  17. Ultra Low Concentration Adsorption Equilibria

    National Research Council Canada - National Science Library

    Mahle, John J; Buettner, Leonard C; LeVan, M. D; Schindler, Bryan J

    2006-01-01

    .... Specifically this work focuses on novel experimental and modeling methods to characterize and predict at ultra-low chemical vapor concentrations the protection afforded by adsorption-based vapor filtration systems...

  18. Determination of 21 antibiotics in sea cucumber using accelerated solvent extraction with in-cell clean-up coupled to ultra-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhu, Minghua; Zhao, Hongxia; Xia, Deming; Du, Juan; Xie, Huaijun; Chen, Jingwen

    2018-08-30

    An accelerated solvent extraction (ASE) with in-cell clean-up method coupled to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to determine 21 antibiotics in sea cucumber. The analytes include 10 sulfonamides, 4 fluoroquinolones, 3 amphenicols, 2 beta-lactams, 1 lincosamide and trimethoprim. Optimal parameters of ASE method were obtained at 80 °C, 1 static cycle of 5 min with methanol/acetonitrile (1/1, v/v) using 2 g of C18 as adsorbent. Recoveries at 50.1-129.2% were achieved with RSD under 20%. Method detection limits ranged from 0.03 to 2.9 μg kg -1 . Compared to the reported ultrasound-assisted extraction method, the proposed method offered comparable extraction efficiency for sulfonamides from sea cucumber, but higher for other categories of antibiotics. This validated method was then successfully applied to sea cucumber samples and 9 antibiotics were detected with the highest concentration up to 57.7 μg kg -1 for norfloxacin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    Science.gov (United States)

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  20. LMFBR Ultra Long Life Cores

    International Nuclear Information System (INIS)

    Schmidt, J.E.; Doncals, R.A.; Porter, C.A.; Gundy, L.M.

    1986-01-01

    The Ultra Long Life Core is an attractive and innovative design approach with several extremely beneficial attributes. Long Life cores are applicable to the full range of LMR plant sizes resulting in lifetimes up to 30 years. Core life is somewhat limited for smaller plant sizes, however significant benefits of this approach still exist for all plant sizes. The union of long life cores and the complementary inherent safety technology offer a means of utilizing the well-proven oxide fuel in a system with unsurpassed safety capability. A further benefit is that the uranium fuel cycle can be used in long life cores, especially for initial LMR plant deployment, thereby eliminating the need for reprocessing prior to starting LMR plant construction in the U.S. Finally the long life core significantly reduces power costs. With inherent safety capability designed into an LMR and with the ULLC fuel cycle, power costs competitive with light water plants are achievable while offering improved operational flexibility derived through extending refueling intervals

  1. Interfacial Energy Alignment at the ITO/Ultra-Thin Electron Selective Dielectric Layer Interface and Its Effect on the Efficiency of Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi

    2016-04-01

    We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.

  2. Defectively N-glycosylated and non-O-glycosylated aminopeptidase N (CD13) is normally expressed at the cell surface and has full enzymatic activity

    DEFF Research Database (Denmark)

    Norén, K; Hansen, Gert Helge; Clausen, H

    1997-01-01

    In order to study the effects of the absence of O-glycosylation and modifications of N-glycosylation on a class II membrane protein, pig and human aminopeptidase N (CD13) were stably expressed in the ldl(D) cell line. This cell line carries a UDP-Gal/UDP-GalNAc-epimerase deficiency which blocks...... the conversion of glucose into galactose derivatives. Thus it is possible in the ldl(D) cell line to selectively block O-glycosylation by the omission of N-acetylgalactoseamine from the culture medium and to alter N-glycosylation by the omission of galactose. In this way selectively altered glycosylated forms...

  3. The Contradiction Between the Half-Cell and Full-Battery Evaluations on the Tungsten-Coating LiNi_0_._5Co_0_._2Mn_0_._3O_2 Cathode

    International Nuclear Information System (INIS)

    Yang, Xinhe; Zuo, Zicheng; Wang, Haiyan; Chen, Quanbin; Zhang, Hui; Huang, Zhenlei; Wu, Borong; Zhou, Henghui

    2015-01-01

    A one-step synthesis method is developed to prepare the Li[Ni_0_._5Co_0_._2Mn_0_._3]O_2 (NCM 523) cathode with uniform tungsten-coating layer for lithium-ion battery. Such modified material shows similar properties with the bare NCM 523 in terms of the primary particles, secondary structure, and specific capacity. With W coating layer, the NCM 523 gives remarkable improvement in the long-term capacity retention in the half-cell testing, which is sharply inconsistent with the result from the full-battery tests, indicating a contradiction between the half-cell and full-battery tests in some case. After further investigations, such conflict between the half-cell and full-cell tests in evaluating the W-coating strategy is attributed to the dissolution of Li_2WO_4 layer in the electrolyte, which probably destroys the solid electrolyte interface (SEI) on the graphite anode and irreversibly consumes the active lithium ions for renovating SEI in full-cell testing. These results will benefit researchers in the area of lithium-ion batteries to fully understand the differences between the half-cell and full-cell testing, and develop the effective strategies for cathode modifications.

  4. Cancer : A reproductive strategy of "ultra-selfish" genes?

    NARCIS (Netherlands)

    Schuiling, GA

    2004-01-01

    A hypothesis is presented in which the process of "malignant transformation" which ultimately results in the rapidly dividing tumor(s)(cells) causing "cancer", is regarded as an evolved reproductive strategy of "ultra-selfish" (proto-)(onco-) genes, already present in the genome, or introduced by a

  5. Cancer: a reproductive strategy of "ultra-selfish" genes?

    Science.gov (United States)

    Schuiling, G A

    2004-01-01

    A hypothesis is presented in which the process of "malignant transformation" which ultimately results in the rapidly dividing tumor(s)(cells) causing "cancer", is regarded as an evolved reproductive strategy of "ultra-selfish" (proto-)(onco-) genes, already present in the genome, or introduced by a virus.

  6. Ultra Efficient CHHP Using a High Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, Fred C. [Fuelcell Energy, Inc., Danbury, CT (United States)

    2015-06-30

    FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the research program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.

  7. Molecular and ultra-structural insight into the enrichment of Glioblastoma and Neuroblastoma stem-like cells

    OpenAIRE

    Farace, Cristiano

    2014-01-01

    Cancer stem cells (CSC) and tumor micro-environments play a significant role in malignant cancer initiation and progression. Metastasis in vivo involves a stem-like, epithelial-mesenchymal transition (EMT). Serum-free cultures of 3-D neurospheres represent the gold standard in CSC-like enrichment. The aim of the thesis was to explore the induction of stem-like phenotypes in Glioblastoma (GBM) and Neuroblastoma (NBL) cell lines, in order to assess common stem/oncogenic related marks. CSC chara...

  8. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras

    OpenAIRE

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R.; Sauer, Martin G.

    2009-01-01

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cel...

  9. Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues.

    Science.gov (United States)

    Cohen, Shahar; Leshansky, Lucy; Zussman, Eyal; Burman, Michael; Srouji, Samer; Livne, Erella; Abramov, Natalie; Itskovitz-Eldor, Joseph

    2010-10-01

    The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.

  10. Full GMP-compliant validation of bone marrow-derived human CD133(+) cells as advanced therapy medicinal product for refractory ischemic cardiomyopathy.

    Science.gov (United States)

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133(+) cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 10(6) of CD133(+) cells (range 2.85 × 10(6)-30.84 × 10(6)), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133(+) cells of 90,60% (range 81,40%-96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 10(6) cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial).

  11. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    Science.gov (United States)

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial). PMID:26495296

  12. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Van Deelen, J.; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the

  13. The ultra-sensitive Nodewalk technique identifies stochastic from virtual, population-based enhancer hubs regulating MYC in 3D: Implications for the fitness of cancer cells

    KAUST Repository

    Sumida, Noriyuki

    2018-03-27

    The relationship between stochastic transcriptional bursts and dynamic 3D chromatin states is not well understood due to poor sensitivity and/or resolution of current chromatin structure-based assays. Consequently, it is not well established if enhancers operate individually and/or in clusters to coordinate gene transcription. In the current study, we introduce Nodewalk, which uniquely combines high sensitivity with high resolution to enable the analysis of chromatin networks in minute input material. The >10,000-fold increase in sensitivity over other many-to-all competing methods uncovered that active chromatin hubs identified in large input material, corresponding to 10 000 cells, flanking the MYC locus are primarily virtual. Thus, the close agreement between chromatin interactomes generated from aliquots corresponding to less than 10 cells with randomly re-sampled interactomes, we find that numerous distal enhancers positioned within flanking topologically associating domains (TADs) converge on MYC in largely mutually exclusive manners. Moreover, when comparing with several enhancer baits, the assignment of the MYC locus as the node with the highest dynamic importance index, indicates that it is MYC targeting its enhancers, rather than vice versa. Dynamic changes in the configuration of the boundary between TADs flanking MYC underlie numerous stochastic encounters with a diverse set of enhancers to depict the plasticity of its transcriptional regulation. Such an arrangement might increase the fitness of the cancer cell by increasing the probability of MYC transcription in response to a wide range of environmental cues encountered by the cell during the neoplastic process.

  14. The ultra-sensitive Nodewalk technique identifies stochastic from virtual, population-based enhancer hubs regulating MYC in 3D: Implications for the fitness of cancer cells

    KAUST Repository

    Sumida, Noriyuki; Sifakis, Emmanouil; Scholz, Barbara A; Fernandez Woodbridge, Alejandro; Kiani, Narsis A.; Gomez-Cabrero, David; Svensson, J Peter; Tegner, Jesper; Gondor, Anita; Ohlsson, Rolf

    2018-01-01

    The relationship between stochastic transcriptional bursts and dynamic 3D chromatin states is not well understood due to poor sensitivity and/or resolution of current chromatin structure-based assays. Consequently, it is not well established if enhancers operate individually and/or in clusters to coordinate gene transcription. In the current study, we introduce Nodewalk, which uniquely combines high sensitivity with high resolution to enable the analysis of chromatin networks in minute input material. The >10,000-fold increase in sensitivity over other many-to-all competing methods uncovered that active chromatin hubs identified in large input material, corresponding to 10 000 cells, flanking the MYC locus are primarily virtual. Thus, the close agreement between chromatin interactomes generated from aliquots corresponding to less than 10 cells with randomly re-sampled interactomes, we find that numerous distal enhancers positioned within flanking topologically associating domains (TADs) converge on MYC in largely mutually exclusive manners. Moreover, when comparing with several enhancer baits, the assignment of the MYC locus as the node with the highest dynamic importance index, indicates that it is MYC targeting its enhancers, rather than vice versa. Dynamic changes in the configuration of the boundary between TADs flanking MYC underlie numerous stochastic encounters with a diverse set of enhancers to depict the plasticity of its transcriptional regulation. Such an arrangement might increase the fitness of the cancer cell by increasing the probability of MYC transcription in response to a wide range of environmental cues encountered by the cell during the neoplastic process.

  15. PAC-Car I - A highly efficient vehicle with hydrogen fuel cell; PAC-Car I - Vehicule ultra efficient a pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, L.; Paganelli, G. [Swiss Federal Institute of Technology (EPFZ), Institut fuer Mess- und Regeltechnik, ETH Zentrum, Zuerich (Switzerland); Santin, J.-J. [UVHC - Campus du Mont Houy, Valenciennes (France)

    2003-07-01

    This report presents a very low energy consumption vehicle developed for the 2003 edition of the Shell Eco-marathon race. Innovating developments were needed for most of its components, which are not yet available on the market. The chemical energy of hydrogen gas is first converted into electrical energy by a 900 W Proton Exchange Membrane Fuel Cell (PEMFC). The car is driven by two DC powered electrical motors, which get their energy from a power electronic converter supplied by the fuel cell. Hydrogen is stored as metal hydride, in the solid state. The report gives a detailed description of the fuel cell, the control system principles as well as a presentation of the hydrogen tank. Various pictures show the vehicle and some of its mechanical details. Performance monitoring indicated a fuel consumption of only 15.9 grams of hydrogen per 100 km; this corresponds to an equivalent of 1694 km for the consumption of one litre of lead-free 95 gasoline in a usual internal combustion engine. However, as the vehicle used for the race had not been specifically developed for the fuel cell based equipment and the research efforts were focused on the advanced propulsion systems, the overall performance could still be significantly improved by optimising the vehicle itself.

  16. Integration of solid oxide fuel cell (SOFC) and chemical looping combustion (CLC) for ultra-high efficiency power generation and CO2 production

    NARCIS (Netherlands)

    Spallina, Vincenzo; Nocerino, Pasquale; Romano, Matteo C.; van Sint Annaland, Martin; Campanari, Stefano; Gallucci, Fausto

    2018-01-01

    This work presents a thermodynamic analysis of the integration of solid oxide fuel cells (SOFCs) with chemical looping combustion (CLC) in natural gas power plants. The fundamental idea of the proposed process integration is to use a dual fluidized-bed CLC process to complete the oxidation of the

  17. Inhibition of X-ray-induced protection of Escherichia coli K-12 cells against the lethal effects of ultra-violet light by nitrofurantoin

    Energy Technology Data Exchange (ETDEWEB)

    Martignoni, K D [Muenchen Univ. (Germany, F.R.). Strahlenbiologisches Inst.

    1978-06-01

    Wild-type cells of E.coli K-12 showed increasing U.V. resistance if they were X-irradiated and incubated at 37/sup 0/C in growth medium before the U.V. exposure. Development of higher U.V. resistance could be inhibited by incubating the X-irradiated cells either at temperatures below 15/sup 0/C, or in the presence of 0.01 M KCN. Nitrofurantoin (NF), which was recently found specifically to inhibit inducible enzyme synthesis, had only a transient inhibitory effect on X-ray-induced U.V. resistance. Cells grown in glucose medium showed less inhibition by NF of X-radiation-induced resistance to U.V.-radiation than did cells grown in glycerol, or in glucose medium with added cyclic AMP. It is suggested that X-ray-induced U.V. resistance requires active cellular metabolism, but it is not subject to catabolite repression. The following hypothesis is offered to explain the action of NF : Under de-repressed conditions (without catabolite repression by glucose) nitrofurantoin could counteract the radiation-induced inhibition of a repair inhibitor (such as post-irradiation DNA degradation).

  18. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  19. Ultra-estrutura dos mastócitos de diferentes tipos histológicos de mastocitoma em cães Mast cell ultrastructure in different types of canine mast cell tumor

    Directory of Open Access Journals (Sweden)

    F.A.R. Sueiro

    2002-06-01

    Full Text Available Este trabalho teve por objetivo estudar as diferenças ultraestruturais de mastócitos neoplásicos de diferentes tipos histológicos de mastocitoma em cães, usando microscopia eletrônica de transmissão Os resultados mostraram que o núcleo e os grânulos citoplasmáticos são as estruturas mais indicadas para se avaliar o grau de anaplasia celular e o estádio de indiferenciação do tumor.The objective of this work was study the ultrastructural differences among the different histologic types of mast cell tumors in dogs collected in vivo. The ultrastructural analyses showed that the nuclei and cytoplasmic granules characteristics are the best structures to be appointed on evaluating the undifferentiation stage of this tumor.

  20. Microscopic tomography with ultra-HVEM and applications

    International Nuclear Information System (INIS)

    Takaoka, Akio; Hasegawa, Toshiaki; Yoshida, Kiyokazu; Mori, Hirotaro

    2008-01-01

    The ultra-HVEM with an accelerating voltage of 3 MV at Osaka University is capable of achieving excellent penetration and resolution for thick specimens. We obtained images of 5-μm-thick slices tilted at angles of up to 70 o for biological samples and observed stick-shaped samples of Si devices free from missing zone. These features make the ultra-HVEM an invaluable extension of 3D observation by electron tomography. In this paper, we introduce aspects of ultra-HVEM tomography; specifically, the magnification, the amount of image blurring for thick samples and the electron staining method. Finally, we give some typical applications in the fields of cell biology, pathology and electrical engineering

  1. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform | Office of Cancer Genomics

    Science.gov (United States)

    The vast datasets generated by next generation gene sequencing and expression profiling have transformed biological and translational research. However, technologies to produce large-scale functional genomics datasets, such as high-throughput detection of protein-protein interactions (PPIs), are still in early development. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform featured with both high sensitivity and robustness in a mammalian cell environment remains to be established.

  2. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  3. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  4. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Annual Subcontract Report, 1 April 2002--30 September 2003 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Shea, S. P.

    2004-04-01

    The goal of BP Solar's Crystalline PVMaT program is to improve the present polycrystalline silicon manufacturing facility to reduce cost, improve efficiency, and increase production capacity. Key components of the program are: increasing ingot size; improving ingot material quality; improving material handling; developing wire saws to slice 100 ..mu..m thick silicon wafers on 200 ..mu..m centers; developing equipment for demounting and subsequent handling of very thin silicon wafers; developing cell processes using 100 ..mu..m thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%; expanding existing in-line manufacturing data reporting systems to provide active process control; establishing a 50 MW (annual nominal capacity) green-field Mega plant factory model template based on this new thin polycrystalline silicon technology; and facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock.

  5. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Annual Subcontract Report, 1 October 2003--30 September 2004

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Narayanan, M.

    2005-03-01

    The major objectives of this program are to continue the advancement of BP Solar polycrystalline silicon manufacturing technology. The program includes work in the following areas: Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations; developing wire saws to slice 100- m-thick silicon wafers on 290- m centers; developing equipment for demounting and subsequent handling of very thin silicon wafers; developing cell processes using 100- m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%; expanding existing in-line manufacturing data reporting systems to provide active process control; establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology; facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock.

  6. A full genomic characterization of the development of a stable Small Colony Variant cell-type by a clinical Staphylococcus aureus strain.

    Science.gov (United States)

    Bui, Long M G; Kidd, Stephen P

    2015-12-01

    A key to persistent and recurrent Staphylococcus aureus infections is its ability to adapt to diverse and toxic conditions. This ability includes a switch into a biofilm or to the quasi-dormant Small Colony Variant (SCV). The development and molecular attributes of SCVs have been difficult to study due to their rapid reversion to their parental cell-type. We recently described the unique induction of a matrix-embedded and stable SCV cell-type in a clinical S. aureus strain (WCH-SK2) by growing the cells with limiting conditions for a prolonged timeframe. Here we further study their characteristics. They possessed an increased viability in the presence of antibiotics compared to their non-SCV form. Their stability implied that there had been genetic changes; we therefore determined both the genome sequence of WCH-SK2 and its stable SCV form at a single base resolution, employing Single Molecular Real-Time (SMRT) sequencing that enabled the methylome to also be determined. The genetic features of WCH-SK2 have been identified; the SCCmec type, the pathogenicity and genetic islands and virulence factors. The genetic changes that had occurred in the stable SCV form were identified; most notably being in MgrA, a global regulator, and RsbU, a phosphoserine phosphatase within the regulatory pathway of the sigma factor SigB. There was a shift in the methylomes of the non-SCV and stable SCV forms. We have also shown a similar induction of this cell-type in other S. aureus strains and performed a genetic comparison to these and other S. aureus genomes. We additionally map RNAseq data to the WCH-SK2 genome in a transcriptomic analysis of the parental, SCV and stable SCV cells. The results from this study represent the unique identification of a suite of epigenetic, genetic and transcriptional factors that are implicated in the switch in S. aureus to its persistent SCV form. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Transplantation of an LGR6+ Epithelial Stem Cell-Enriched Scaffold for Repair of Full-Thickness Soft-Tissue Defects: The In Vitro Development of Polarized Hair-Bearing Skin.

    Science.gov (United States)

    Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W

    2016-02-01

    Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.

  8. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  9. An Analog Correlator for Ultra-Wideband Receivers

    Directory of Open Access Journals (Sweden)

    Tu Chunjiang

    2005-01-01

    Full Text Available We present a new analog circuit exhibiting high bandwidth and low distortion, specially designed for signal correlation in an ultra-wideband receiver front end. The ultra-wideband short impulse signals are correlated with a local pulse template by the correlator. A comparator then samples the output for signal detection. A typical Gilbert mixer core is adopted for multiplication of broadband signals up to . As a result of synchronization of the received signal and the local template, the output voltage level after integration and sampling can reach up to , which is sufficient for detection by the comparator. The circuit dissipates about from double voltage supplies of and using SiGe BiCMOS technology. Simulation results are presented to show the feasibility of this circuit design for use in ultra-wideband receivers.

  10. On the crush behavior of an ultra light multi-cell foam-filled composite structures for energy absorption: Part 2-Numerical simulation

    International Nuclear Information System (INIS)

    Taher, Siavash T.; Rizal Zahari; Faizal Mustapha; Ataollahi, Simin

    2010-01-01

    The present paper is dealing with the implementation of the finite element explicit dynamic analysis code module incorporated ANSYS/ LS-DYNA computer software to the simulation of the crash behavior and energy adsorption characteristics of a novel multi-cell cost-effective crash worthy composite sandwich structure. In a previous paper, the authors developed the concept of the triple-layered foam-filled block and submitted experimental results of the crash behaviour and crash worthiness characteristics of such structure. The obtained numerical results of axial compression model of composite blocks are compared with actual experimental data of crash energy adsorption, load-displacement history and crush zone characteristics, showing very good agreement. Theoretical and experimental results showed good similarities in peak load, average load and energy absorption with and without use of two types of collapse trigger mechanism. (author)

  11. Purification and characterization of recombinant full-length and protease domain of murine MMP-9 expressed in Drosophila S2 cells

    DEFF Research Database (Denmark)

    Rasch, Morten G; Lund, Ida K.; Illemann, Martin

    2010-01-01

    -length and truncated versions were 5 mg/l and 2 mg/l, respectively. The products were >95% pure after gelatin Sepharose chromatography and possessed proteolytic activity when analyzed by gelatin zymography. Using the purified full-length murine MMP-9 we raised polyclonal antibodies by immunizations of rabbits...

  12. Atividade de plasmina e plasminogênio no leite longa vida com alta e baixa contagem de células somáticas durante o armazenamento Activity of plasmin and plasminogen in ultra high temperature milk with high and low somatic cell counts during storage

    Directory of Open Access Journals (Sweden)

    Carlos Humberto Corassin

    2010-12-01

    Full Text Available O objetivo deste estudo foi avaliar o efeito da contagem de células somáticas (CCS do leite na atividade de plasmina e plasminogênio durante o período de armazenamento do leite longa vida integral. Os leites crus foram categorizados em grupos de CCS de baixa (342.000-487.000 células mL-1 e alta contagem (603.000-808.000 células mL-1. Dois lotes de leite longa vida em cada categoria de CCS foram analisados para determinação de plasmina e plasminogênio após 10, 30, 60, 90 e 120 dias de armazenamento em temperatura ambiente. Para a fabricação do leite longa vida, o leite cru foi submetido à pasteurização rápida seguida da esterilização industrial do leite por injeção de vapor pelo método direto e embalagem asséptica do produto. A CCS não apresentou efeitos sobre as características físico-químicas do leite cru, e nem sobre a atividade de plasmina e plasminogênio nos leites cru e longa vida, armazenados por 120 dias. Entretanto, independentemente da CCS, a atividade de plasmina e plasminogênio aumentou no leite longa vida ao longo do armazenamento, indicando a possibilidade de aumento da proteólise no produto durante sua vida de prateleira.This study aimed to evaluate the effect of somatic cell counts (SCC in milk on plasmin and plasminogen activities of ultra high temperature (UHT milk during storage. Raw milks were categorized in SCC groups of low (342,000-487,000 cells mL-1 and high cells (603,000-808,000 cells mL-1. Two replicates of UHT milks within each SCC category were analyzed for plasmin and plasminogen activities after 10, 30, 60, 90 and 120 days of storage at room temperature. For manufacture of UHT milk, raw milk was pasteurized and sterilized by direct vapor injection process, followed by aseptic packaging. SCC had no effect on physical-chemical characteristics of raw milk, and on plasmin or plasminogen activities in raw and UHT milks during 120 days of storage. However, independently of the SCC in raw milk

  13. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    Science.gov (United States)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  14. DEVELOPMENT OF OTM SYNGAS PROCESS AND TESTING OF SYNGAS-DERIVED ULTRA-CLEAN FUELS IN DIESEL ENGINES AND FUEL CELLS; TOPICAL

    International Nuclear Information System (INIS)

    E.T. Robinson; James P. Meagher; Ravi Prasad

    2001-01-01

    This topical report summarizes work accomplished for the Program from January 1 through September 15, 2001 in the following task areas: Task 1--materials development; Task 2--composite element development; Task 3--tube fabrication; Task 4--reactor design and process optimization; Task 5--catalyst development; Task 6--P-1 operation; Task 8--fuels and engine testing; and Task 10--project management. OTM benchmark material, LCM1, exceeds the commercial oxygen flux target and was determined to be sufficiently robust to carry on process development activities. Work will continue on second-generation OTM materials that will satisfy commercial life targets. Three fabrication techniques for composite elements were determined to be technically feasible. These techniques will be studied and a lead manufacturing process for both small and large-scale elements will be selected in the next Budget Period. Experiments in six P-0 reactors, the long tube tester (LTT) and the P-1 pilot plant were conducted. Significant progress in process optimization was made through both the experimental program and modeling studies of alternate reactor designs and process configurations. Three tailored catalyst candidates for use in OTM process reactors were identified. Fuels for the International diesel engine and Nuvera fuel cell tests were ordered and delivered. Fuels testing and engine development work is now underway

  15. 3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation.

    Science.gov (United States)

    Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans

    2017-08-01

    To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The chemistry of ultra-low concentrations

    International Nuclear Information System (INIS)

    Vertes, Attila; Kiss, Istvan

    1987-01-01

    Methods for the separation and enrichment of radionuclides in the ultra-low concentration range (coprecipitation, adsorption of radioactive substances on crystals) are disscussed in this chapter of the textbook. The properties and behaviour of ultra-dilute solutions, radiocolloids and the electrochemistry of ultra-dilute solution are also overviewed

  17. Tula hantavirus isolate with the full-length ORF for nonstructural protein NSs survives for more consequent passages in interferon-competent cells than the isolate having truncated NSs ORF.

    Science.gov (United States)

    Jääskeläinen, Kirsi M; Plyusnina, Angelina; Lundkvist, Ake; Vaheri, Antti; Plyusnin, Alexander

    2008-01-11

    The competitiveness of two Tula hantavirus (TULV) isolates, TULV/Lodz and TULV/Moravia, was evaluated in interferon (IFN) -competent and IFN-deficient cells. The two isolates differ in the length of the open reading frame (ORF) encoding the nonstructural protein NSs, which has previously been shown to inhibit IFN response in infected cells. In IFN-deficient Vero E6 cells both TULV isolates survived equally well. In contrast, in IFN-competent MRC5 cells TULV/Lodz isolate, that possesses the NSs ORF for the full-length protein of 90 aa, survived for more consequent passages than TULV/Moravia isolate, which contains the ORF for truncated NSs protein (66-67 aa). Our data show that expression of a full-length NSs protein is beneficial for the virus survival and competitiveness in IFN-competent cells and not essential in IFN-deficient cells. These results suggest that the N-terminal aa residues are important for the full activity of the NSs protein.

  18. Full closure strategic analysis.

    Science.gov (United States)

    2014-07-01

    The full closure strategic analysis was conducted to create a decision process whereby full roadway : closures for construction and maintenance activities can be evaluated and approved or denied by CDOT : Traffic personnel. The study reviewed current...

  19. Identification of a truncated nucleoprotein in avian metapneumovirus-infected cells encoded by a second AUG, in-frame to the full-length gene

    Science.gov (United States)

    Alvarez, Rene; Seal, Bruce S

    2005-01-01

    Background Avian metapneumoviruses (aMPV) cause an upper respiratory disease with low mortality, but high morbidity primarily in commercial turkeys. There are three types of aMPV (A, B, C) of which the C type is found only in the United States. Viruses related to aMPV include human, bovine, ovine, and caprine respiratory syncytial viruses and pneumonia virus of mice, as well as the recently identified human metapneumovirus (hMPV). The aMPV and hMPV have become the type viruses of a new genus within the Metapneumovirus. The aMPV nucleoprotein (N) amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. Based on predicted antigenicity of consensus protein sequences, five aMPV-specific N peptides were synthesized for development of peptide-antigens and antisera. Results The presence of two aMPV nucleoprotein (N) gene encoded polypeptides was detected in aMPV/C/US/Co and aMPV/A/UK/3b infected Vero cells. Nucleoprotein 1 (N1) encoded from the first open reading frame (ORF) was predicted to be 394 amino acids in length for aMPV/C/US/Co and 391 amino acids in length for aMPV/A/UK/3b with approximate molecular weights of 43.3 kilodaltons and 42.7 kilodaltons, respectively. Nucleoprotein 2 (N2) was hypothesized to be encoded by a second downstream ORF in-frame with ORF1 and encoded a protein predicted to contain 328 amino acids for aMPV/C/US/Co or 259 amino acids for aMPV/A/UK/3b with approximate molecular weights of 36 kilodaltons and 28.3 kilodaltons, respectively. Peptide antibodies to the N-terminal and C-terminal portions of the aMPV N protein confirmed presence of these products in both aMPV/C/US/Co- and aMPV/A/UK/3b-infected Vero cells. N1 and N2 for aMPV/C/US/Co ORFs were molecularly cloned and expressed in Vero cells utilizing eukaryotic expression vectors to confirm identity of the aMPV encoded proteins. Conclusion This is the first reported identification of potential, accessory in-frame N2 ORF gene products among members of the

  20. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

    CSIR Research Space (South Africa)

    Jonah, EO

    2012-10-01

    Full Text Available The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle...

  1. Chemical bath deposition route for the synthesis of ultra-thin CuIn(S,Se){sub 2} based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, S. [Universidad Autónoma de Nuevo León (UANL), Fac. de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de Los Garza, Nuevo León C.P. 66451 (Mexico); Sánchez, Y.; Neuschitzer, M.; Xie, H.; Insignares-Cuello, C.; Izquierdo-Roca, V. [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona (Spain); Peña, Y. [Universidad Autónoma de Nuevo León (UANL), Fac. de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de Los Garza, Nuevo León C.P. 66451 (Mexico); Saucedo, E., E-mail: esaucedo@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona (Spain)

    2015-05-01

    CuIn(S,Se){sub 2} (CISSe) photovoltaic grade thin films are usually grown by expensive vacuum based methods or chemical routes that require highly toxic precursors. In this work, we present the synthesis of CISSe absorbers by a simple chemical bath deposition (CBD) route. In the first step, In{sub 2}S{sub 3}/Cu{sub 2−x}S stack was deposited as a precursor by CBD on Mo-coated soda lime glass substrates, using respectively thioacetamide and N,N′-dimethylthiourea as S source. Then the CISSe thin films were synthesized by the precursor's selenization at 450 °C. The obtained films were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The tetragonal chalcopyrite structure of CISSe was identified by XRD and Raman, confirming that the major part of S was replaced by Se. SEM images show a compact and homogeneous film and by cross-section the thickness was estimated to be around 700 nm. Solar cells prepared with these absorbers exhibit an open circuit voltage of 369 mV, a short circuit current density of 13.7 mA/cm{sup 2}, a fill factor of 45% and an efficiency of 2.3%. - Highlights: • Deposition of In{sub 2}S{sub 3}/Cu{sub 2−x}S multi-stacks by chemical bath deposition • Synthesis of CuIn(S,Se){sub 2} via a two stage process • Demonstration of the viability of this low cost method to produce photovoltaic grade CuIn(S,Se){sub 2}.

  2. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  3. Synthesis of Cu Doped ZnO Nanostructures for Ultra Violet Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas SHAH

    2015-03-01

    Full Text Available This paper mainly focused on the synthesis of zinc oxide nanostructures, their characterization and their ultra violet light sensing response at room temperature. Nanowires, nanobelts and nanosheets were synthesized by varying doping material copper by using vapor transport technique governed by the vapor-liquid-solid or vapor-solid mechanisms. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray and ultra violet visible spectroscopy techniques. Finally the ultra violet light sensing response of these nanostructures was observed by using Keithley meter. The high ultra violet photosensitivity and fast response time justifies the effective utilization of these ZnO nanostructures as ultra violet sensors in different areas.

  4. Troublesome Thugs or Respectable Rebels? Class, Martyrdom and Cairo’s Revolutionary Ultras

    Directory of Open Access Journals (Sweden)

    Carl Rommel

    2016-05-01

    Full Text Available This ethnographic article explores the politics of Egypt’s Ultras football supporters. The Ultras have frequently been heralded as some of the Egyptian Revolution’s most prominent rebels, in particular, after the Port Said stadium massacre in February 2012, when 72 Ultras members were killed. However, this essay focuses on the earlier phase of violent clashes in central Cairo when the Ultras were highly ambivalent about the ongoing protests. As the article shows, the fan groups were hesitant to join the demonstrations, which at the time were heavily associated with “thuggery” (balṭaga. Only after the death of one of its members did the Ultras whole-heartedly take on their rebellious subjectivity.

  5. Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo.

    Science.gov (United States)

    Quarta, Alessandra; Bernareggi, Davide; Benigni, Fabio; Luison, Elena; Nano, Giuseppe; Nitti, Simone; Cesta, Maria Candida; Di Ciccio, Luciano; Canevari, Silvana; Pellegrino, Teresa; Figini, Mariangela

    2015-02-14

    Efficient targeting in tumor therapies is still an open issue: systemic biodistribution and poor specific accumulation of drugs weaken efficacy of treatments. Engineered nanoparticles are expected to bring benefits by allowing specific delivery of drug to the tumor or acting themselves as localized therapeutic agents. In this study we have targeted epithelial ovarian cancer with inorganic nanoparticles conjugated to a human antibody fragment against the folate receptor over-expressed on cancer cells. The conjugation approach is generally applicable. Indeed several types of nanoparticles (either magnetic or fluorescent) were engineered with the fragment, and their biological activity was preserved as demonstrated by biochemical methods in vitro. In vivo studies with mice bearing orthotopic and subcutaneous tumors were performed. Elemental and histological analyses showed that the conjugated magnetic nanoparticles accumulated specifically and were retained at tumor sites longer than the non-conjugated nanoparticles.

  6. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  7. Ultra-trace determination of Strontium-90 in environmental soil samples from Qatar by collision/reaction cell-inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Meer, S. H.; Amr, M. A. [Central Laboratories Unit, Qatar University, Doha (Qatar); Helal, A.I. [Atomic Energy Authority, Cairo (Egypt); Al-Kinani, A.T. [Minstery of Environment, Doha (Qatar)

    2013-07-01

    Because of the very low level of {sup 90}Sr in the environmental soil samples and its determination by beta counting may take several weeks, we developed a procedure for ultra-trace determination of {sup 90}Sr using collision reaction cell-inductively coupled plasma tandem mass spectrometry (CRC-ICP-MS/MS, Agilent 8800). Soil samples were dried at 105 deg. C and then heated in a furnace at 550 deg. C to remove any organics present. 500 g of each soil samples were aliquoted into 2000 ml glass beakers. Each Soils samples were soaked in 2 ppm Sr solution carrier to allow determination of chemical yield. The solid to liquid ratio was 1:1. Finally the soil samples were dried at 105 deg. C. Five hundred milliliters concentrated nitric acid and 250 ml hydrochloric acid volumes were added on 500 g soil samples. The samples were digested on hot plate at 80 deg. C to prevent spraying with continuous manual mixing. The leachate solution was separated. The solids were rinsed with 500 ml deionized water, warmed on a hot plate and the leachate plus previous leachate were filtered and the total volume was reduced to 500 ml by evaporation. Final leachate volume was transferred to a centrifuge tubes. The centrifuge tubes were centrifuged at 3,500 rpm for 10 min. The leachate was transferred to a 1 L beaker and heated on a hot plate to evaporate the leachate to dryness. The reside was re-dissolved in 100 ml of 2% HNO{sub 3} and reduced by evaporation to 10 mL. The solution was measured directly by CRC-ICP-MS/MS by setting the first quadruple analyzer to m/z 90 and introducing oxygen gas into the reaction cell for elimination isobar interference from zirconium-90. The method was validated by measurements of standard reference materials and applied on environmental soil samples. The overall time requirement for the measurement of strontium-90 by CRC-ICP-MS/MS is 2 days, significantly shorter than any radioanalytical protocol currently available. (authors)

  8. Influence of CdCl{sub 2} activation treatment on ultra-thin Cd{sub 1−x}Zn{sub x}S/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, A.J., E-mail: a.clayton@glyndwr.ac.uk [Centre for Solar Energy Research, Glyndŵr University, OpTIC, St. Asaph LL17 0JD (United Kingdom); Baker, M.A.; Babar, S. [Faculty of Engineering & Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Gibson, P.N. [Institute for Health & Consumer Protection, Joint Research Centre, 21020 Ispra, VA (Italy); Irvine, S.J.C.; Kartopu, G.; Lamb, D.A.; Barrioz, V. [Centre for Solar Energy Research, Glyndŵr University, OpTIC, St. Asaph LL17 0JD (United Kingdom)

    2015-09-01

    Ultra-thin CdTe photovoltaic solar cells with an absorber thickness of 0.5 μm were produced by metal organic chemical vapour deposition onto indium tin oxide coated boroaluminosilicate glass. A wide band gap Cd{sub 1−x}Zn{sub x}S alloy window layer was employed to improve spectral response in the blue region of the solar spectrum. X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy were used to monitor changes in the chemical composition and microstructure of the Cd{sub 1−x}Zn{sub x}S/CdTe solar cell after varying the post-deposition CdCl{sub 2} activation treatment time and annealing temperature. The CdCl{sub 2} treatment leached Zn from the Cd{sub 1−x}Zn{sub x}S layer causing a redshift in the spectral response onset of window absorption. S diffusion occurred across the Cd{sub 1−x}Zn{sub x}S/CdTe interface, which was more pronounced as the CdCl{sub 2} treatment was increased. A CdTe{sub 1−y}S{sub y} alloy was formed at the interface, which thickened with CdCl{sub 2} treatment time. Small concentrations of S (up to 2 at.%) were observed throughout the CdTe layer as the degree of CdCl{sub 2} treatment was increased. Greater S diffusion across the Cd{sub 1−x}Zn{sub x}S/CdTe interface caused the device open-circuit voltage (V{sub oc}) to increase. The higher V{sub oc} is attributed to enhanced strain relaxation and associated reduction of defects in the interface region as well as the increase in CdTe grain size. - Highlights: • Increased CdCl{sub 2} activation treatment resulted in loss of Zn from Cd{sub 1−x}Zn{sub x}S. • Sulphur diffusion into CdTe was enhanced with greater CdCl{sub 2} activation treatment. • Improvement to V{sub oc} correlated with increased sulphur diffusion into CdTe.

  9. Development of Micro-sized Microbial Fuel Cells as Ultra-Low Power Generators Using Nano-engineered Materials and Sustainable Designs

    KAUST Repository

    Mink, Justine E.

    2013-12-01

    Many of the most pressing global challenges today and in the future center around the scarcity of sustainable energy and water sources. The innovative microbial fuel cell (MFC) technology addresses both as it utilizes bacteria to convert wastewaters into electricity. Advancing this technology requires a better understanding of the optimal materials, designs and conditions involved. The micro-sized MFC was recently developed to serve this need by providing a rapid testing device requiring only a fraction of the materials. Further, development of micro-liter scale MFCs has expanded into potential applications such as remote and self-sustained power sources as well as on-chip energy generators. By using microfabrication, the fabrication and assembly of microsized MFCs is potentially inexpensive and mass produced. The objective of the work within this dissertation was to explore and optimize the micro-sized MFC to maximize power and current generation towards the goal of a usable and application-oriented device. Micro-sized MFCs were examined and developed using four parameters/themes considered most important in producing a high power generating, yet usable device: Anode- The use of nano-engineered carbon nanomaterials, carbon nanotubes and graphene, as anode as well as testing semiconductor industry standard anode contact area materials for enhanced current production. 5 Cathode- The introduction of a membrane-less air cathode to eliminate the need for continuous chemical refills and making the entire device mobile. Reactor design- The testing of four different reactor designs (1-75 μLs) with various features intended to increase sustainability, cost-effectiveness, and usability of the microsized MFC. Fuels- The utilization of real-world fuels, such as industrial wastewaters and saliva, to power micro-sized MFCs. The micro-sized MFC can be tailored to fit a variety of applications by varying these parameters. The device with the highest power production here was

  10. Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a Rat Sciatic Nerve Crush Injury Model

    Directory of Open Access Journals (Sweden)

    Hozo Matsuoka

    2018-05-01

    Full Text Available Ultra-fine bubbles (<200 nm in diameter have several unique properties and have been tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUBs on a sciatic nerve crush injury (SNC model rats. Rats were intraperitoneally injected with 1.5 mL saline, OUBs diluted in saline, or nitrogen ultra-fine bubbles (NUBs diluted in saline three times per week for 4 weeks in four groups: (1 control, (sham operation + saline; (2 SNC, (crush + saline; (3 SNC+OUB, (crush + OUB-saline; (4 SNC+NUB, (crush + NUB-saline. The effects of the OUBs on dorsal root ganglion (DRG neurons and Schwann cells (SCs were examined by serial dilution of OUB medium in vitro. Sciatic functional index, paw withdrawal thresholds, nerve conduction velocity, and myelinated axons were significantly decreased in the SNC group compared to the control group; these parameters were significantly improved in the SNC+OUB group, although NUB treatment did not affect these parameters. In vitro, OUBs significantly promoted neurite outgrowth in DRG neurons by activating AKT signaling and SC proliferation by activating ERK1/2 and JNK/c-JUN signaling. OUBs may improve nerve dysfunction in SNC rats by promoting neurite outgrowth in DRG neurons and SC proliferation.

  11. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response

    DEFF Research Database (Denmark)

    Embregts, Carmen W. E.; Rigaudeau, Dimitri; Veselý, Tomas

    2017-01-01

    Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 μg...... DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using...... this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described...

  12. Full page insight

    DEFF Research Database (Denmark)

    Cortsen, Rikke Platz

    2014-01-01

    Alan Moore and his collaborating artists often manipulate time and space by drawing upon the formal elements of comics and making alternative constellations. This article looks at an element that is used frequently in comics of all kinds – the full page – and discusses how it helps shape spatio......, something that it shares with the full page in comics. Through an analysis of several full pages from Moore titles like Swamp Thing, From Hell, Watchmen and Promethea, it is made clear why the full page provides an apt vehicle for an apocalypse in comics....

  13. Ultra-clean

    International Nuclear Information System (INIS)

    Hergenroether, K.

    1987-01-01

    No other method guarantees such a thorough cleaning of contaminated materials' surfaces. Only ultrasound can reach those cavities crevices and corners where any manual cleaning fails. Furthermore there is no cumbersome and time-consuming manual decontamination which often has to be carried out in glove boxes and hot cells. Depending on the design the cleaning effect can reach from removing adhering dirt particles to removing complete surface layers. (orig./PW) [de

  14. Application of a new ultra-microculture system. II. Stimulation of human B lymphocytes.

    Science.gov (United States)

    Ulmer, A J; Gruber, M; Flad, H D

    1988-07-22

    An ultra-microtechnique for culturing human B-lymphocytes in glass capillary tubes using a volume of 2 microliter is described. The advantage of this ultra-microculture system is that only a small number of lymphocytes and minute amounts of culture medium (or test factors) are required. Optimal culture conditions for the formation of Ig-secreting plaque-forming cells (PFC) after stimulation of mononuclear cells with pokeweed mitogen are given. Furthermore it is shown that immunoglobulin secreted into culture supernatants by purified B cells in the presence of T cell subsets can be measured in a microELISA.

  15. Ultra-fast ipsilateral DPOAE adaptation not modulated by attention?

    Science.gov (United States)

    Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.

    2018-05-01

    Efferent stimulation of outer hair cells is supposed to attenuate cochlear amplification of sound waves and is accompanied by reduced DPOAE amplitudes. Recently, a method using two subsequent f2 pulses during presentation of a longer f1 pulse was introduced to measure fast ipsilateral adaptation effects on separated DPOAE components. Compensating primary-tone onsets for their latencies at the f2-tonotopic place, the average adaptation measured in four normal-hearing subjects was 5.0 dB with a time constant below 5 ms. In the present study, two experiments were performed to determine the origin of this ultra-fast ipsilateral adaptation effect. The first experiment measured ultra-fast ipsilateral adaptation using a two-pulse paradigm at three frequencies in the four subjects, while controlling for visual attention of the subjects. The other experiment also controlled for visual attention, but utilized a sequence of f2 short pulses in the presence of a continuous f1 tone to sample ipsilateral adaptation effects with longer time constants in eight subjects. In the first experiment, no significant change in the ultra-fast adaptation between non-directed attention and visual attention could be detected. In contrast, the second experiment revealed significant changes in the magnitude of the slower ipsilateral adaptation in the visual-attention condition. In conclusion, the lack of an attentional influence indicates that the ultra-fast ipsilateral DPOAE adaptation is not solely mediated by the medial olivocochlear reflex.

  16. Development of a Novel, Ultra-rapid Biosensor for the Qualitative Detection of Hepatitis B Virus-associated Antigens and Anti-HBV, Based on “Membrane-engineered” Fibroblast Cells with Virus-Specific Antibodies and Antigens

    Directory of Open Access Journals (Sweden)

    Antonios Perdikaris

    2009-03-01

    Full Text Available A novel miniature cell biosensor detection system for the detection of Hepatis B virus (HBV-associated antigens and anti-HBV is described. The biosensor is based on “membrane-engineered” Vero fibroblast cells immobilized in an alginate matrix. The membrane-engineering process involved the electroinsertion of anti-HBV specific antibodies (anti-HBs, anti-HBe or antigens (HBsAg in the membranes of the Vero cells. The attachment of a homologous antigen to the electroinserted antibody (or, respectively, of the antibody to the electroinserted antigen triggered specific changes to the cell membrane potential that were measured by appropriate microelectrodes, according to the principle of the Bioelectric Recognition Assay (BERA. The sensor was used for screening 133 clinical blood serum samples according to a double-blind protocol. Considerably higher sensor responses were observed against HBV-positive samples, compared with responses against negative samples or samples positive for heterologous hepatitis viruses such as Hepatitis C (HCV virus. Detection of anti-HBs antibodies was made possible by using a biosensor based on immobilized Vero cells bearing the respective antigen (HBsAg. The observed response was rapid (45 sec and quite reproducible. Fluorescence microscopy observations showed that attachment of HBV particles to cells membrane-engineered with anti-HBs was associated with a decrease of [Ca2+]cyt. The perspectives for using the novel biosensor as a qualitative, rapid screening, high throughput assay for HBV antigens and anti-HBs in clinical samples is discussed.

  17. Full Service Leasing

    OpenAIRE

    Richter, Ján

    2009-01-01

    Aim of this master thesis is to describe the service of Full Service Leasing, as a modern form of financing and management of assets, primarily automobile fleet. Description of full service leasing is designed as a comprehensive and complete guide to support reader's position when deciding to finance and manage a fleet by this service. Whether the reader is an entrepreneur, CFO, fleet manager, new employee of leasing company, or anyone who is interested in this service, this master thesis wil...

  18. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers.

    Directory of Open Access Journals (Sweden)

    Gero Steinberg

    Full Text Available The Transfersome® is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome® an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome® vesicles has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome® vesicles (TFVs. When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T(1/2~2 min. Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome® degradation and neutralized the cytotoxic effect of Transfersome®-delivered terbinafine. These data suggest that (a Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c fungal lipases digest the invading Transfersome® vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the

  19. Polarization preserving ultra fast optical shutter for quantum information processing

    OpenAIRE

    Spagnolo, Nicolo'; Vitelli, Chiara; Giacomini, Sandro; Sciarrino, Fabio; De Martini, Francesco

    2008-01-01

    We present the realization of a ultra fast shutter for optical fields, which allows to preserve a generic polarization state, based on a self-stabilized interferometer. It exhibits high (or low) transmittivity when turned on (or inactive), while the fidelity of the polarization state is high. The shutter is realized through two beam displacing prisms and a longitudinal Pockels cell. This can represent a useful tool for controlling light-atom interfaces in quantum information processing.

  20. Ultra-small-angle neutron scattering. History, developments and applications

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Yamaguchi, Daisuke

    2011-01-01

    Ultra-small-angle neutron scattering (USANS), which is a scattering method observing in a q-region of q=10 -3 nm -1 , was initiated by double crystal (Bonse-Hart) method. Recently, a focusing USANS method was developed by combining a pin-hole type spectrometer and focusing lenses. These two methods, which are complementary to each other, were employed to achieve wide q-observations on microbial cellulose, actin cytoskeleton, tire, and membrane-electrolyte assembly of fuel cell. (author)

  1. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    Science.gov (United States)

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  2. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  3. A coordination model for ultra-large scale systems of systems

    Directory of Open Access Journals (Sweden)

    Manuela L. Bujorianu

    2013-11-01

    Full Text Available The ultra large multi-agent systems are becoming increasingly popular due to quick decay of the individual production costs and the potential of speeding up the solving of complex problems. Examples include nano-robots, or systems of nano-satellites for dangerous meteorite detection, or cultures of stem cells for organ regeneration or nerve repair. The topics associated with these systems are usually dealt within the theories of intelligent swarms or biologically inspired computation systems. Stochastic models play an important role and they are based on various formulations of the mechanical statistics. In these cases, the main assumption is that the swarm elements have a simple behaviour and that some average properties can be deduced for the entire swarm. In contrast, complex systems in areas like aeronautics are formed by elements with sophisticated behaviour, which are even autonomous. In situations like this, a new approach to swarm coordination is necessary. We present a stochastic model where the swarm elements are communicating autonomous systems, the coordination is separated from the component autonomous activity and the entire swarm can be abstracted away as a piecewise deterministic Markov process, which constitutes one of the most popular model in stochastic control. Keywords: ultra large multi-agent systems, system of systems, autonomous systems, stochastic hybrid systems.

  4. Scattering Fields Control by Metamaterial Device Based on Ultra-Broadband Polarization Converters

    Directory of Open Access Journals (Sweden)

    Si-Jia Li

    2016-12-01

    Full Text Available We proposed a novel ultra-broadband meta¬material screen with controlling the electromagnetic scat¬tering fields based on the three layers wideband polariza¬tion converter (TLW-PC. The unit cell of TLW-PC was composed of a three layers substrate loaded with double metallic split-rings structure and a metal ground plane. We observed that the polarization converter primarily per¬formed ultra-broadband cross polarization conversion from 5.71 GHz to 14.91 GHz. Furthermore, a metamaterial screen, which contributed to the low scattering charac¬teristics, had been exploited with the orthogonal array based on TLW-PC. The near scattering electronic fields are controlled due to the change of phase and amplitude for incident wave. The metamaterial screen significantly exhibited low scattering characteristics from 5.81 GHz to 15.06 GHz. To demonstrate design, a metamaterial device easily implemented by the common printed circuit board method has been fabricated and measured. Experimental results agreed well with the simulated results.

  5. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  6. Full faith in myself

    Indian Academy of Sciences (India)

    Lawrence

    Full faith in myself. Meenakshi Banerjee. 12. Ihad my schooling at the Irish Convent, Loreto, in Asansol,. West Bengal. Perhaps the earliest memories I have are of myself as a very determined child with a deep appreciation of and inquisitiveness regarding nature although not understanding most of it at that tender age.

  7. Plate Full of Color

    Centers for Disease Control (CDC) Podcasts

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.

  8. Influence of subinhibitory concentrations of antimicrobials on hydrophobicity, adherence and ultra-structure of Fusobacterium nucleatum

    Directory of Open Access Journals (Sweden)

    Okamoto Ana C.

    2002-01-01

    Full Text Available Fusobacterium nucleatum is considered a bridge organism between earlier and later colonizers in dental biofilms and a putative periodontopathogen. In Dentistry, antimicrobial agents are used for treatment and control of infectious diseases associated with dental plaque. Antiseptics have been used in association with antibiotics to reduce infections after oral surgeries. In this study, the influence of subinhibitory concentrations (SC of chlorhexidine, triclosan, penicillin G and metronidazole, on hydrophobicity, adherence to oral epithelial cells, and ultra-structure of F. nucleatum was examined. All isolates were susceptible to chlorhexidine, triclosan, and metronidazole; however, most of the isolates were susceptible to penicillin G, and all of them were hydrophilic when grown with or without antimicrobials. Adherence was decreased by all antimicrobials. Results suggest that adherence of F. nucleatum was influenced by adhesins because structures such as fimbries or capsule were not observed by transmission electronic microscope.

  9. Stochastic Geometry Analysis of Ultra Dense Network and TRSC Green Communication Strategy

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2017-12-01

    Full Text Available In recent years, with the rapid development of wireless communication, the traditional cellular with isomorphic and regular structure has been unable to meet the increasing number of users and business needs involving data of big volume. The trend is evolving into Ultra Dense Network (UDN architecture which is covered by cellular of irregular complex structure. In UDN, the spatial distribution of the base station plays an important role in the interference and performance evaluation of the whole cellular network, and the concept of green communication has also been put on agenda. In this paper, stochastic geometry theory is used to model UDN and to analyze the key performance of interference and wireless network. Moreover, a green communication strategy called TRSC is proposed, which is aimed at saving energy and reducing the signal interference among cells to a certain extent.

  10. Plate Full of Color

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  11. Pion interferometry of ultra-relativistic hadronic collisions

    International Nuclear Information System (INIS)

    Kolehmainen, K.

    1986-05-01

    Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs

  12. Ultra-high energy cosmic rays: Setting the stage

    Directory of Open Access Journals (Sweden)

    Sokolsky P.

    2013-06-01

    Full Text Available The history of ultra-high energy cosmic ray physics is reviewed from the post-war era of arrays such as Volcano Ranch, Haverah Park and Akeno to the development of air-fluorescence and current hybrid arrays. The aim of this paper is to present the background information needed for a better understanding of the current issues in this field that are discussed in much greater depth in the rest of this conference.

  13. Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study

    Directory of Open Access Journals (Sweden)

    J. Jilkova

    2008-04-01

    Full Text Available The paper provides an experimental comparison of four types of ultra-wideband coplanar-fed planar monopole antennas. Parameters of the open stub completed by an L-shaped monopole and the cross monopole were adopted from the literature. The forked monopole and the coplanar monopole were fabricated and measured. Monopoles were compared from the viewpoint of the impedance bandwidth, gain, directivity patterns and dimensions.

  14. Reconfigurable Full-Page Braille Displays

    Science.gov (United States)

    Garner, H. Douglas

    1994-01-01

    Electrically actuated braille display cells of proposed type arrayed together to form full-page braille displays. Like other braille display cells, these provide changeable patterns of bumps driven by digitally recorded text stored on magnetic tapes or in solid-state electronic memories. Proposed cells contain electrorheological fluid. Viscosity of such fluid increases in strong electrostatic field.

  15. Ultra-sensitive detection of leukemia by graphene

    Science.gov (United States)

    Akhavan, Omid; Ghaderi, Elham; Hashemi, Ehsan; Rahighi, Reza

    2014-11-01

    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs diagnosis.Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/C4NR04589K

  16. Emptiness and Fullness

    DEFF Research Database (Denmark)

    Bregnbæk, Susanne; Bunkenborg, Mikkel

    As critical voices question the quality, authenticity, and value of people, goods, and words in post-Mao China, accusations of emptiness render things open to new investments of meaning, substance, and value. Exploring the production of lack and desire through fine-grained ethnography, this volume...... examines how diagnoses of emptiness operate in a range of very different domains in contemporary China: In the ostensibly meritocratic exam system and the rhetoric of officials, in underground churches, housing bubbles, and nationalist fantasies, in bodies possessed by spirits and evaluations of jade......, there is a pervasive concern with states of lack and emptiness and the contributions suggest that this play of emptiness and fullness is crucial to ongoing constructions of quality, value, and subjectivity in China....

  17. Prevalence of Injury in Ultra Trail Running

    Directory of Open Access Journals (Sweden)

    Malliaropoulos Nikolaos

    2015-06-01

    Full Text Available Purpose. The purpose of the study was to find the rate of musculoskeletal injuries in ultra-trail runners, investigate the most sensitive anatomical areas, and discover associated predicting factors to aid in the effective prevention and rapid rehabilitation of trail running injuries. Methods. Forty ultra trail runners responded to an epidemiological questionnaire. Results. At least one running injury was reported by 90% of the sample, with a total of 135 injuries were reported (111 overuse injuries, 24 appeared during competing. Lower back pain was the most common source of injury (42.5%. Running in the mountains (p = 0.0004 and following a personalized training schedule (p = 0.0995 were found to be protective factors. Runners involved in physical labor are associated with more injuries (p = 0.058. Higher-level runners are associated with more injuries than lower-level cohorts (p = 0.067, with symptoms most commonly arising in the lower back (p = 0.091, hip joint (p = 0.083, and the plantar surface of the foot (p = 0.054. Experienced runners (> 6 years are at greater risk of developing injuries (p = 0.001, especially in the lower back (p = 0.012, tibia (p = 0.049, and the plantar surface of the foot (p = 0 .028. Double training sessions could cause hip joint injury (p = 0.060. Conclusions. In order to avoid injury, it is recommended to train mostly on mountain trails and have a training program designed by professionals.

  18. Ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  19. Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto's thyroiditis

    DEFF Research Database (Denmark)

    Kristensen, B; Hegedüs, Laszlo; Madsen, H O

    2015-01-01

    cells from healthy donors and patients with Hashimoto's thyroiditis (HT) or Graves' disease (GD) to polyclonal stimulation, or stimulation with human thyroglobulin (TG), human thyroid peroxidase (TPO), or Esherichia coli lipopolysaccharide (LPS). TPO and LPS induced increased differentiation of naive CD...

  20. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. Development of technologies to manufacture ultra-high efficiency crystalline compound solar cells; 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development has been performed on laminated cells comprising of GaInP/GaAs//GaInAs using poly-element compound semiconductors. This paper summarizes the achievements in fiscal 1999. In developing the technology to manufacture large-area ultra-high efficiency cells, fabrication of 5-cm square GaAs cells was worked on, and a conversion efficiency of 24.7%, which is equivalent or better than that for 1-cm square cell, was achieved by using the epitaxial growth temperature for the GaAs cell structure of 600 degrees C, by adopting the p-on-p structure and by making the electrode thicker by using the plating method. Furthermore, trial fabrication was performed on 5-cm square cells also on GaInAs as the bottom cell. A conversion efficiency of 4.6% was obtained in a 5-cm square cell as a result of high level homogenization of film thickness and composition by optimizing the gas flow in growing GaInAs onto an InP substrate, and using a growth temperature of 550 degrees C. In developing the technology to form GaInP/GaAs laminated cells, discussions were given by using 5-mm square cells on especially improving the GaInP crystallinity and reducing the series resistance in the window layer. GaInP/GaAs-2 bonded lamination cells were fabricated, whereas a conversion efficiency of 19.63% was obtained without using a reflection preventing film. (NEDO)

  1. Full metal jacket!

    CERN Document Server

    Laëtitia Pedroso

    2011-01-01

    Ten years ago, standard issue clothing only gave CERN firemen partial protection but today our fire-fighters are equipped with state-of-the-art, full personal protective equipment.   CERN's Fire Brigade team. For many years, the members of CERN's Fire Brigade went on call-outs clad in their work trousers and fire-rescue coats, which only afforded them partial protection. Today, textile manufacturing techniques have moved on a long way and CERN's firemen are now kitted out with state-of-the-art personal protective equipment. The coat and trousers are three-layered, comprising fire-resistant aramide, a protective membrane and a thermal lining. The CERN Fire Brigade' new state-of-the-art personal protection equipment. "This equipment is fully compliant with the standards in force and is therefore resistant to cuts, abrasion, electrical arcs with thermal effects and, of course, fire," explains Patrick Berlinghi, the CERN Fire Brigade's Logistics Officer. You might think that su...

  2. Policies for full employment

    DEFF Research Database (Denmark)

    de Koning, Jaap; Layard, Richard; Nickel, Stephen

    European unemployment is too high, and employment is too low. Over 7½ per cent of Europe's workforce is unemployed, and only two thirds of people aged 15-64 are in work. At the Lisbon summit two years ago the heads of government set the target that by 2010 the employment rate should rise from 64...... per cent to at least 70 per cent. And for older workers between 55 and 64 the employment rate should rise from 38 per cent to at least one half. These are ambitious targets. They will require two big changes: more people must seek work, and among those seeking work a higher proportion must get a job....... So we need higher participation, and (for full employment) we need a much lower unemployment rate. Can it be done? A mere glance at the experience of different European countries shows that it can. As Table 1 shows, four E.U. countries already exceed the overall target for 2010 (Britain, Denmark...

  3. Ultra-thin chip technology and applications

    CERN Document Server

    2010-01-01

    Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

  4. Ultra-Deepwater Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ken L. Smith; Marc E. Leveque

    2005-05-31

    The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

  5. Production of enzymatically active recombinant full-length barley high pI alpha-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification

    DEFF Research Database (Denmark)

    Næsted, Henrik; Kramhøft, Birte; Lok, F.

    2006-01-01

    Recombinant barley high pI alpha-glucosidase was produced by high cell-density fermentation of Pichia pastoris expressing the cloned full-length gene. The gene was amplified from a genomic clone and exons (coding regions) were assembled by overlap PCR. The resulting cDNA was expressed under contr...... nM x s(-1), and 85 s(-1) using maltose as substrate. This work presents the first production of fully active recombinant alpha-glucosidase of glycoside hydrolase family 31 from higher plants. (c) 2005 Elsevier Inc. All rights reserved....

  6. Consumers' conceptualization of ultra-processed foods.

    Science.gov (United States)

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pixelated Checkerboard Metasurface for Ultra-Wideband Radar Cross Section Reduction.

    Science.gov (United States)

    Haji-Ahmadi, Mohammad-Javad; Nayyeri, Vahid; Soleimani, Mohammad; Ramahi, Omar M

    2017-09-12

    In this paper we designed and fabricated a metasurface working as a radar cross section (RCS) reducer over an ultra wide band of frequency from 3.8 to 10.7 GHz. The designed metasurface is a chessboard-like surface made of alternating tiles, with each tile composed of identical unit cells. We develop a novel, simple, highly robust and fully automated approach for designing the unit cells. First, a topology optimization algorithm is used to engineer the shape of the two unit cells. The area of each unit cell is pixelated. A particle swarm optimization algorithm is applied wherein each pixel corresponds to a bit having a binary value of 1 or 0 indicating metallization or no metallization. With the objective of reducing the RCS over a specified frequency range, the optimization algorithm is then linked to a full wave three-dimensional electromagnetic simulator. To validate the design procedure, a surface was designed, fabricated and experimentally tested showing significantly enhanced performance than previous works. Additionally, angular analysis is also presented showing good stability and wide-angle behavior of the designed RCS reducer. The automated design procedure has a wide range of applications and can be easily extended to design surfaces for antennas, energy harvesters, noise mitigation in electronic circuit boards amongst others.

  8. Integrin-binding elastin-like polypeptide as an in situ gelling delivery matrix enhances the therapeutic efficacy of adipose stem cells in healing full-thickness cutaneous wounds.

    Science.gov (United States)

    Choi, Seong-Kyoon; Park, Jin-Kyu; Kim, Jung-Hee; Lee, Kyeong-Min; Kim, Enjoo; Jeong, Kyu-Shik; Jeon, Won Bae

    2016-09-10

    One crucial issue in stem cell therapy used for tissue repair is often the lack of selective carriers to deliver stem cells to the site of injury where the native extracellular matrix is pathologically damaged or lost. Therefore, it is necessary to develop a biomaterial that is permissive to stem cells and is suitable to replace injured or missing matrix. The major aim of this study is to investigate the potential of an RGD-containing elastin-like polypeptide (REP) with the structure TGPG[VGRGD(VGVPG)6]20WPC to engraft adipose stem cells (ASC) to full-thickness excisional wounds in mice. We implanted REP into the wound defects via body temperature-induced in situ aggregation. Engrafted REP exhibited a half-life of 2.6days in the wounds and did not elicit any pathological immune responses. REP itself significantly accelerated wound closure and reepithelialization and upregulated the expression of dermal tissue components. A combined administration of REP and ASC formed a hydrogel-like ASC/REP composite, which provided better neovascularization than the use of ASCs alone and increased the viability of transplanted ASC, improving overall wound healing. In vitro and in vivo mechanistic investigations suggested that REP enhances ASC survival at least in part via the Fak/Src adhesion-induced upregulation of Mek/Erk and PI3K/Akt survival pathways. We conclude that REP is a promising therapeutic agent for the improvement of stem cell-based therapy for enhanced tissue regeneration and repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. PFC Performance Improvement of Ultra-supercritical Secondary Reheat Unit

    Directory of Open Access Journals (Sweden)

    Li Jun

    2018-01-01

    Full Text Available Ultra-supercritical secondary reheat unit has been widely used in the world because of its advantages of large capacity, low consumption and high efficiency etc., but rapid load change ability of the turbines to be weakened which caused by its system organization, cannot meet the requirements of power grid frequency modulation. Based on the analysis of the control characteristics of ultra-supercritical once-through reheat unit, the primary frequency control based on feed-water flow overshoot compensation is proposed. The main steam pressure generated by the feed-water is changed to improve the primary frequency control capability. The relevant control strategy has been applied to the 1000MW secondary reheating unit. The results show that the technology is feasible and has high economical efficiency.

  10. Evaluation of Ultra Clean Fuels from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  11. Ultra-long Fe nanowires by pulsed electrodeposition with full filling of alumina templates

    International Nuclear Information System (INIS)

    Azevedo, J; Sousa, C T; Ventura, J; Apolinario, A; Araujo, J P; Mendes, A

    2014-01-01

    With the increasing demand for high quality methods for the fast fabrication of extremely high aspect ratio nanoparticles, the research for efficient, low-cost and simple techniques has become fundamental. A promising approach on the synthesis of these materials is here addressed. Pulsed electrodeposition in porous anodic alumina templates was improved enabling, for the first time, a simple and cost effective fabrication method for vertically aligned nanomaterials with aspect ratios never reported with this method. Iron nanowires were electrodeposited and the effect of electrolyte molar concentration, temperature and stirring, pulse shape and barrier layer thickness on the deposition quality was investigated to potentially increase the template filling and the nanowires length. The electrodeposition temperature and current density were also found to be determinant parameters affecting NWs crystallography. A methodology of surface response design of experiment was conducted to retrieve the optimum values for the deposition parameters. With the determined optimized process, we were able to obtain filling ratios up to 93% and aspect ratios over 10 times higher than previous reports for an alternating current method. The high deposition homogeneity combined with the simplicity of the pulsed deposition method, can open new opportunities for the nanofabrication of nanowires. (paper)

  12. Ultra-high Density SNParray in Neuroblastoma Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Inge M. Ambros

    2014-08-01

    Full Text Available Neuroblastoma serves as a paradigm for applying tumor genomic data for determining patient prognosis and thus for treatment allocation. MYCN status, i.e. amplified vs. non-amplified, was one of the very first biomarkers in oncology to discriminate aggressive from less aggressive or even favorable clinical courses of neuroblastoma. However, MYCN amplification is by far not the only genetic change associated with unfavorable clinical courses: so called segmental chromosomal aberrations, i.e. gains or losses of chromosomal fragments, can also indicate tumor aggressiveness. The clinical use of these genomic aberrations has, however, been hampered for many years by methodical and interpretational problems. Only after reaching worldwide consensus on markers, methodology, and data interpretation, information on SCAs has recently been implemented in clinical studies. Now, a number of collaborative studies within COG, GPOH and SIOPEN use genomic information to stratify therapy for patients with localized and metastatic disease. Recently, new types of DNA based aberrations influencing the clinical behavior of neuroblastomas have been described. Deletions or mutations of genes like ATRX and a phenomenon referred to as chromothripsis are all assumed to correlate with an unfavorable clinical behavior. However, these genomic aberrations need to be scrutinized in larger studies applying the most appropriate techniques. Single nucleotide polymorphism (SNP arrays have proven successful in deciphering genomic aberrations of cancer cells; these techniques, however, are usually not applied in the daily routine. Here, we present an ultra-high density (UHD SNParray technique which is, because of its high specificity and sensitivity and the combined copy number and allele information, highly appropriate for the genomic diagnosis of neuroblastoma and other malignancies.

  13. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix

    2016-09-16

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  14. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix; Fu, Qiang; Peng, Yifan; Heidrich, Wolfgang

    2016-01-01

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  15. Efeitos do ultra-som terapêutico contínuo sobre a proliferação e viabilidade de células musculares C2C12 Effects of continuous therapeutic ultrasound on proliferation and viability of C2C12 muscle cells

    Directory of Open Access Journals (Sweden)

    Paola Pelegrineli Artilheiro

    2010-06-01

    Full Text Available O ultra-som terapêutico (US é um recurso bioestimulante utilizado para propiciar reparo muscular de melhor qualidade e menor duração, mas o potencial terapêutico do US contínuo não está totalmente estabelecido. O objetivo deste trabalho foi avaliar o efeito do US contínuo sobre a proliferação e viabilidade de células musculares precursoras (mioblastos C2C12. Mioblastos C2C12 foram cultivados em meio de cultura contendo 10% de soro fetal bovino e irradiados com US contínuo nas freqüências de 1 e 3 MHz nas intensidades de 0,2 e 0,5 W/cm2, durante 2 e 5 minutos. A viabilidade e proliferação celular foram avaliadas após 24, 48 e 72 h de incubação. Grupos não-irradiados serviram como controle. Foram realizados experimentos independentes em cada condição acima, e os dados obtidos submetidos à análise estatística. Os resultados mostram que não houve diferença estatisticamente significativa na proliferação e viabilidade celular entre os mioblastos tratados com US e as culturas controles após os diferentes períodos de incubação, em todos os parâmetros avaliados. Conclui-se que o US contínuo, nos parâmetros avaliados, não foi capaz de alterar a proliferação e viabilidade dos mioblastos.Therapeutic ultrasound (US is a biophysical stimulation resource widely used in order to promote better, faster muscle repair, but the effectiveness of continuous US in treating injuries is not fully established. The aim of the present in vitro study was to assess the effects of continuous ultrasound on viability and proliferation of skeletal muscle precursor cells (C2C12 myoblasts. C2C12 myoblasts were cultured in a medium containing 10% foetal bovine serum and irradiated with continuous ultrasound at 1 and 3 MHz frequencies, at intensities of 0.2 and 0.5 W/cm² for 2 and 5 minutes. Cell viability and proliferation were assessed after different incubation periods (24, 48 and 72 h. Non-irradiated groups served as control and data were

  16. Ultra-cold molecule production

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-01-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled

  17. Performance Improvement of Receivers Based on Ultra-Tight Integration in GNSS-Challenged Environments

    Directory of Open Access Journals (Sweden)

    Feng Qin

    2013-12-01

    Full Text Available Ultra-tight integration was first proposed by Abbott in 2003 with the purpose of integrating a global navigation satellite system (GNSS and an inertial navigation system (INS. This technology can improve the tracking performances of a receiver by reconfiguring the tracking loops in GNSS-challenged environments. In this paper, the models of all error sources known to date in the phase lock loops (PLLs of a standard receiver and an ultra-tightly integrated GNSS/INS receiver are built, respectively. Based on these models, the tracking performances of the two receivers are compared to verify the improvement due to the ultra-tight integration. Meanwhile, the PLL error distributions of the two receivers are also depicted to analyze the error changes of the tracking loops. These results show that the tracking error is significantly reduced in the ultra-tightly integrated GNSS/INS receiver since the receiver’s dynamics are estimated and compensated by an INS. Moreover, the mathematical relationship between the tracking performances of the ultra-tightly integrated GNSS/INS receiver and the quality of the selected inertial measurement unit (IMU is derived from the error models and proved by the error comparisons of four ultra-tightly integrated GNSS/INS receivers aided by different grade IMUs.

  18. Ultra-processed food products and obesity in Brazilian households (2008-2009.

    Directory of Open Access Journals (Sweden)

    Daniela Silva Canella

    Full Text Available BACKGROUND: Production and consumption of industrially processed food and drink products have risen in parallel with the global increase in overweight and obesity and related chronic non-communicable diseases. The objective of this study was to analyze the relationship between household availability of processed and ultra-processed products and the prevalence of excess weight (overweight plus obesity and obesity in Brazil. METHODS: The study was based on data from the 2008-2009 Household Budget Survey involving a probabilistic sample of 55,970 Brazilian households. The units of study were household aggregates (strata, geographically and socioeconomically homogeneous. Multiple linear regression models were used to assess the relationship between the availability of processed and ultra-processed products and the average of Body Mass Index (BMI and the percentage of individuals with excess weight and obesity in the strata, controlling for potential confounders (socio-demographic characteristics, percentage of expenditure on eating out of home, and dietary energy other than that provided by processed and ultra-processed products. Predictive values for prevalence of excess weight and obesity were estimated according to quartiles of the household availability of dietary energy from processed and ultra-processed products. RESULTS: The mean contribution of processed and ultra-processed products to total dietary energy availability ranged from 15.4% (lower quartile to 39.4% (upper quartile. Adjusted linear regression coefficients indicated that household availability of ultra-processed products was positively associated with both the average BMI and the prevalence of excess weight and obesity, whereas processed products were not associated with these outcomes. In addition, people in the upper quartile of household consumption of ultra-processed products, compared with those in the lower quartile, were 37% more likely to be obese. CONCLUSION: Greater

  19. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  20. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    Science.gov (United States)

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  1. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  2. Structural studies on Langmuir-Blodgett ultra-thin films on tin (IV) stearate using X-ray diffraction technique

    International Nuclear Information System (INIS)

    Mohamad Deraman; Muhamad Mat Salleh; Mohd Ali Sulaiman; Mohd Ali Sufi

    1991-01-01

    X-ray diffraction measurements were carried out on Langmuir-Blodgett (LB) ultra-thin films of tin (IV) stearate for different numbers of layers. The structural information such as interplanar spacing, unit cells spacing, molecular length and orientation of molecular chains were obtained from the diffraction data. This information is discussed and compared with that previously published for LB ultra-thin films of manganese stearate and cadmium stearate

  3. Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits

    Directory of Open Access Journals (Sweden)

    Soghra Bahmanpour

    2016-11-01

    Full Text Available Background: The purpose of this study was to create biomaterial scaffolds like platelet-rich plasma (PRP and platelet-rich fibrin (PRF containing stromal cell-derived factor-1 (SDF1 as a chemokine to induce hyaline cartilage regeneration of rabbit knee in a full thickness defect. Methods: We created a full thickness defect in the trochlear groove of thirty-six bilateral knees of eighteen mature male rabbits. The knees were randomly divided into six groups (group I: untreated control, group II: PRP, group III: PRF, group IV: Gelatin+SDF1, group V: PRP+SDF1, and group VI: PRF+SDF1. After four weeks, the tissue specimens were evaluated by macroscopic examination and histological grading, immunofluorescent staining for collagen type II, and analyzed for cartilage marker genes by real-time PCR. The data were compared using statistical methods (SPSS 20, Kruskal-Wallis test, Bonferroni post hoc test and P<0.05. Results: Macroscopic evaluations revealed that international cartilage repair society (ICRS scores of the PRF+SDF1 group were higher than other groups. Microscopic analysis showed that the ICRS score of the PRP group was significantly lower than other groups. Immunofluorescent staining for collagen II demonstrated a remarkable distribution of type II collagen in the Gel+SDF1, PRP+SDF1 and PRF+SDF1 groups compared with other groups. Real-time PCR analysis revealed that mRNA expression of SOX9 and aggrecan were significantly greater in the PRF+SDF1, PRP+SDF1, Gel+SDF1 and PRF groups than the control group (P<0.05. Conclusion: Our results indicate that implantation of PRF scaffold containing SDF1 led to the greatest evaluation scores of full-thickness lesions in rabbits.

  4. The Combined Use of Autoradiographic and Electron Microscopic Techniques for Studies on Ultra-Thin Sections of Tritium-Labelled Cells of the Intestinal Epithelium; Emploi Combine de l'Autoradiographie et du Microscope Electronique pour L'Etude de Coupes Ultra-Fines de Cellules Tritiees de l'Epithelium Intestinal; 0421 043e 0432 043c 0435 0414 ; Empleo Combinado de Tecnicas de Autorradiografia y de MicroscopiA Electronica para Estudiar Cortes Ultrafinos de Celulas Tritiadas del Epitelio Intestinal

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, J. C. [Division of Experimental Biology, Baylor University College of Medicine, TX (United States); Quastler, H. [Brookhaven National Laboratory, Upton, Long Island, NY (United States)

    1962-02-15

    The high resolution now obtainable in sectioned cells studied in the electron microscope offers some promise of visualizing some of the intracellular events leading to the synthesis of proteins. The specificity of incorporation of tritiated thymidine into DNA provides a system which can be accurately followed with respect to time and localization within the cell. The work to be reported here demonstrates that it is possible to study ultra-thin sections of labelled cells in the electron microscope, to remove the specimen after suitable electron micrographs have been taken, to apply a coating of emulsion sufficiently thick to obtain an autoradiograph but still thin enough' to permit re-examination of the specimen in the electron microscope and to obtain electron micrographic images of autoradiography of cells previously recorded. The autoradiographic emulsion was applied as follows: a thin film was formed by dipping a small wire loop into liquid emulsion and transferring the film by passing the loop over the mounted specimen which was fixed to the top of a small plastic peg. Adequate control can be achieved by taking a one-half micron section after each ultra-thin section during sectioning, mounting it on a glass slide and applying conventional autoradiographic techniques. Because of the fragile nature of ultra-thin sections, the yield of successful autoradiographs is quite low. In spite of this objection it is expected that with improvements in skill and techniques the method will facilitate a better understanding of vital cell processes. (author) [French] Le haut degre de resolution que l'on peut maintenant obtenir dans l'etude des coupes de cellules au microscope electronique offre quelque possiblite d'observer certains des processus intracellulaires qui menent a la synthese des proteines. Le fait que la thymidine tritiee s'incorpore a l'ADN de facon specifique permet de suivre avec precision le deroulement d'un autre processus dans le temps et leur localisation

  5. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...

  6. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon

  7. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    International Nuclear Information System (INIS)

    MCLERRAN, L.

    1999-01-01

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities

  8. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  9. Computational Modeling Develops Ultra-Hard Steel

    Science.gov (United States)

    2007-01-01

    Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.

  10. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  11. [Treatment of postburn and postoperative cicatrices using karipaine cream preparations and karipaine ultra gel].

    Science.gov (United States)

    Zhernov, O A; Osadcha, O I; Zhernov, A O; Nazarenko, V M; Staskevych, S V

    2011-07-01

    Peculiarities of the burn wound course and the cicatricial tissue formation are shown. Clinical efficacy of application of cream Karipaine and gel Karipaine Ultra was proved, witnessed by improvement of the cell to tissue interaction as well as the connective tissue metabolism and the cicatricial tissue reconstruction.

  12. Tracking biochemical changes correlated with ultra-weak photon emission using metabolomics

    Czech Academy of Sciences Publication Activity Database

    Burgos, R.C.R.; Červinková, Kateřina; van der Laan, T.; Ramautar, R.; van Wijk, E.P.A.; Cifra, Michal; Koval, S.; Berger, R.; Hankemeier, T.; van der Greef, J.

    -, č. 163 (2016), s. 237-245 ISSN 1011-1344 R&D Projects: GA ČR GA13-29294S Institutional support: RVO:67985882 Keywords : Ultra-weak photon emission * Capillary electrophoresis-mass spectrometry * HL-60 cells Subject RIV: BO - Biophysics Impact factor: 2.673, year: 2016

  13. Incapacity of β - carotene to protect Escherichia coli J-5 against ultra violet lethal action

    International Nuclear Information System (INIS)

    Passos Junior, G.A.S.; Zucchi, T.M.A.D.

    1982-01-01

    The ultra violet light survival of Escherichia coli J-5 cell population was not modified when it was β-carotene treated. It was found that this carotenoid does not confer radioprotection to the u.v. light effects in this bacterial strain. (author) [pt

  14. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Alexander J. Casson

    2015-12-01

    Full Text Available Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g m C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram and EEG (electroencephalogram signals recorded from humans.

  15. Portoan Ultra Group Members’ Social Representation of Lisbon and Sport Lisboa and Benfica and Its Influence on the Discourses and Practices of the Portoan Ultra Groups and Their Members

    Directory of Open Access Journals (Sweden)

    Seabra Daniel

    2017-03-01

    Full Text Available The following text relates to a more recent approach to the problem of hooliganism and the Ultra Movement. It does not focus on a broad theory aimed to explain these two phenomena, but rather concentrates on the use of concepts that are relevant for a multifaceted understanding of them. Therefore, this text is the result of an investigation carried out on the four Ultra groups who support clubs in Oporto.

  16. Stimulatory and protective effects of alkylating agents applied in ultra-low concentrations.

    Science.gov (United States)

    Pukhalsky, A L; Shmarina, G V

    2001-01-01

    Alkylating drugs belonging to the nitrogen mustard family are known as cytostatic and immunosuppressive agents. Ultra-low doses of these drugs may demonstrate pharmacological effects unlike this category of drugs. In the case of a gradual dose decrease, the number of targets for alkylation is also reduced and the drug switches from cytostatic to cell growth modifier. We postulate that application of ultra-low doses of alkylating drugs may result in a beneficial effect in the therapy of diseases associated with chronic inflammation of the mucosa, especially with the signs of epithelial atrophy. Copyright 2001 S. Karger AG, Basel

  17. Ultra-Fast Hadronic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.

  18. Subsonic Ultra Green Aircraft Research

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  19. Plasma Cell Dyscrasia; LCDD vs Immunotactoid glomerulopathy

    Directory of Open Access Journals (Sweden)

    Jabur Wael

    2008-01-01

    Full Text Available Light chain deposit disease is a plasma cell disorder characterized by production of a large amount of monoclonal immunoglobulin light chain or part of it, which is usually deposited as an amorphous substance in the kidneys. Immunotactoid glomerulopathy is an uncommon disease, which might be related to plasma cell dyscrasia, and characteristically manifest as organized glomerular ultra structural fibrils or microtubules. In this article, we report a case of a combined presentation of light chain disease and immunotactoid glomerulopathy in a patient with multiple myeloma and reversible advanced renal failure.

  20. ATLAS and ultra high energy cosmic ray physics

    Directory of Open Access Journals (Sweden)

    Pinfold James

    2017-01-01

    Full Text Available After a brief introduction to extended air shower cosmic ray physics the current and future deployment of forward detectors at ATLAS is discussed along with the various aspects of the current and future ATLAS programs to explore hadronic physics. The emphasis is placed on those results and future plans that have particular relevance for high-energy, and ultra high-energy, cosmic ray physics. The possible use of ATLAS as an “underground” cosmic muon observatory is briefly considered.

  1. Monostatic ultra-wideband GPR antenna for through wall detection

    Directory of Open Access Journals (Sweden)

    Ali Jawad

    2017-01-01

    Full Text Available The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  2. Thermal power blocks with ultra-super-critical steam parameters

    Directory of Open Access Journals (Sweden)

    Aličić Merim M.

    2016-01-01

    Full Text Available New generation of thermal power plants are required to have increased utilization rates, in addition to reduced emissions of pollutants, in order to reach optimal solutions, from both technical and economic point of view. One way to achieve greater utilization efficiency is operation of the plant at super critical (SC or ultra super critical steam parameters (USC. However, achieving high parameters depends on use of new materials, which have better properties at high temperatures and pressures, use of new welding technologies and by solving the problem of corrosion. The paper gives an overview of some of the plants with these parameters.

  3. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  4. Ultra-Wideband Notched Characteristic Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Rastanto Hadinegoro

    2015-02-01

    Full Text Available In this paper, a novel Ultra-Wide Band (UWB notch patch antenna with co-planar waveguide (CPW fed is presented. This antenna only used one layer and the patch antenna is constructed on the first layer and back to back with CPW fed and bottom part is ground plane. The width notch is used to achieve the UWB characteristic. The results shown that the impedance bandwidth is 1130 MHz (1.662–2.792 GHz or about 50.7% for VSWR <2.

  5. Optical properties of vacuum deposited polyaniline ultra-thin film

    International Nuclear Information System (INIS)

    Wahab, M. R. A.; Din, M.; Yunus, W. M. M.; Hasan, Z. A.; Kasim, A.

    2005-01-01

    Full text: Ultra-thin films of emeraldine base (EB) and emeraldine salt (ES) form of polyaniline (PANi) were prepared using electron-gun vacuum deposition. Thickness range studied was between 100AA and 450AA. Dielectric permittivity of the films determined from Kretchmann Configuration Surface Plasmon Resonance (SPR) angles-scanning set-up show shifts and narrowing of the SPR dip. Absorbance spectra of S-polarized and P-polarized light show the aging effect on orientation of the film. The effect of aging on its conductivity and photoluminescence is also correlated to the surface morphology

  6. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  7. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  8. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    Science.gov (United States)

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  9. Ultra Deep Wave Equation Imaging and Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  10. PDGF-induced migration of synthetic vascular smooth muscle cells through c-Src-activated L-type Ca2+ channels with full-length CaV1.2 C-terminus.

    Science.gov (United States)

    Guo, Xiaoguang; Kashihara, Toshihide; Nakada, Tsutomu; Aoyama, Toshifumi; Yamada, Mitsuhiko

    2018-06-01

    In atherosclerosis, vascular smooth muscle cells (VSMC) migrate from the media toward the intima of the arteries in response to cytokines, such as platelet-derived growth factor (PDGF). However, molecular mechanism underlying the PDGF-induced migration of VSMCs remains unclear. The migration of rat aorta-derived synthetic VSMCs, A7r5, in response to PDGF was potently inhibited by a Ca V 1.2 channel inhibitor, nifedipine, and a Src family tyrosine kinase (SFK)/Abl inhibitor, bosutinib, in a less-than-additive manner. PDGF significantly increased Ca V 1.2 channel currents without altering Ca V 1.2 protein expression levels in A7r5 cells. This reaction was inhibited by C-terminal Src kinase, a selective inhibitor of SFKs. In contractile VSMCs, the C-terminus of Ca V 1.2 is proteolytically cleaved into proximal and distal C-termini (PCT and DCT, respectively). Clipped DCT is noncovalently reassociated with PCT to autoinhibit the channel activity. Conversely, in synthetic A7r5 cells, full-length Ca V 1.2 (Ca V 1.2FL) is expressed much more abundantly than truncated Ca V 1.2. In a heterologous expression system, c-Src activated Ca V 1.2 channels composed of Ca V 1.2FL but not truncated Ca V 1.2 (Ca V 1.2Δ1763) or Ca V 1.2Δ1763 plus clipped DCT. Further, c-Src enhanced the coupling efficiency between the voltage-sensing domain and activation gate of Ca V 1.2FL channels by phosphorylating Tyr1709 and Tyr1758 in PCT. Compared with Ca V 1.2Δ1763, c-Src could more efficiently bind to and phosphorylate Ca V 1.2FL irrespective of the presence or absence of clipped DCT. Therefore, in atherosclerotic lesions, phenotypic switching of VSMCs may facilitate pro-migratory effects of PDGF on VSMCs by suppressing posttranslational Ca V 1.2 modifications.

  11. Induced Mitogenic Activity in AML-12 Mouse Hepatocytes Exposed to Low-dose Ultra-Wideband Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    P. B. Tchounwou

    2005-04-01

    Full Text Available Ultra–wideband (UWB technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5-20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8-24 h post exposure. UWBR exerted a statistically significant (p < 0.05 dose-dependent response in cell viability in both serum-treated and serum free medium (SFM -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma.

  12. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  13. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  14. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes

    Science.gov (United States)

    Bordes, Arnaud; Eom, KwangSup; Fuller, Thomas F.

    2014-07-01

    When fluoroethylene carbonate (FEC) is added to the ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte, the capacity and cyclability of full-cells employing Si-graphene anode and lithium nickel cobalt aluminum oxide cathode (NCA) cathode are improved due to formation of a thin (30-50 nm) SEI layer with low ionic resistance (∼2 ohm cm2) on the surface of Si-graphene anode. These properties are confirmed with electrochemical impedance spectroscopy and a cross-sectional image analysis using Focused Ion Beam (FIB)-SEM. Approximately 5 wt.% FEC in EC:DEC (1:1 wt.%) shows the highest capacity and most stability. This high capacity and low capacity fade is attributed to a more stable SEI layer containing less CH2OCO2Li, Li2CO3 and LiF compounds, which consume cyclable Li. Additionally, a greater amount of polycarbonate (PC), which is known to form a more robust passivation layer, thus reducing further reduction of electrolyte, is confirmed with X-ray photoelectron spectroscopy (XPS).

  15. Metallization and biopatterning on ultra-flexible substrates via dextran sacrificial layers.

    Directory of Open Access Journals (Sweden)

    Peter Tseng

    Full Text Available Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS layers (elastic moduli down to 3 kPa utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials.

  16. Ultra-small superparamagnetic particles of iron oxide in magnetic resonance imaging of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Stirrat CG

    2014-10-01

    Full Text Available Colin G Stirrat,1 Alex T Vesey,1 Olivia MB McBride,1 Jennifer MJ Robson,1 Shirjel R Alam,1 William A Wallace,2 Scott I Semple,1,3 Peter A Henriksen,1 David E Newby1 1British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 2Department of Pathology, University of Edinburgh, Edinburgh, UK; 3Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK Abstract: Ultra-small superparamagnetic particles of iron oxide (USPIO are iron-oxide based contrast agents that enhance and complement in vivo magnetic resonance imaging (MRI by shortening T1, T2, and T2* relaxation times. USPIO can be employed to provide immediate blood pool contrast, or to act as subsequent markers of cellular inflammation through uptake by inflammatory cells. They can also be targeted to specific cell-surface markers using antibody or ligand labeling. This review will discuss the application of USPIO contrast in MRI studies of cardiovascular disease. Keywords: cardiac, aortic, MRI, USPIO, carotid, vascular, molecular imaging

  17. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients.

    Science.gov (United States)

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-10-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  19. Development and implementation of ultra-thin concrete road technology for suburban streets in South Africa

    CSIR Research Space (South Africa)

    Louw, MR

    2011-01-01

    Full Text Available Louw, FC Rust, AO Bergh and AH McKay DEVELOPMENT AND IMPLEMENTATIONN OF ULTRA- THIN CONCRETE ROAD TECHNOLOGY FOR SUBURBAN STREETS IN SOUTH AFRICA MR Louw, FC Rust, AO Bergh and AH McKay CSIR, Republic of South Africa rlouw...

  20. Using ultra-rapid insulin analogs in children and adolescents with type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    О.V. Bolshova

    2017-11-01

    Full Text Available Background. The purpose of the study was a retrospective comparative analysis of using insulin analogues of the prolonged and ultra-short action and human genetically engineered insulins of middle and short action in children and adolescents with type 1 diabetes mellitus (DM. Materials and methods. The influence of ultra-rapid insulin analog in comparison with human rapid-action insulin on the course of type 1 DM in 100 children and adolescents was studied. It was applied as basal-bolus regimen of insulin therapy. Analysis of parameters which reflect criteria of insulin therapy effectiveness, positive effect of ultra-rapid insulin analog on the course of DM has been performed. Results. Application of ultra-rapid insulin analog before each meal improved parameters of pre- and postprandial glycemia, decreased the range of fluctuations of blood sugar during the day, reduced and maintained HbA1c level without augmentation of frequency and intensity of hypoglycaemia, and also decreased the level of noctural hypoglycaemia. Conclusions. The ultra-rapid insulin analog is the drug of choice for the effective use in insulin pumps.

  1. Full-scope training simulators

    International Nuclear Information System (INIS)

    Ugedo, E.

    1986-01-01

    The following topics to be covered in this report are: Reasons justifying the use of full-scope simulators for operator qualification. Full-scope simulator description: the control room, the physical models, the computer complex, the instructor's console. Main features of full-scope simulators. Merits of simulator training. The role of full-scope simulators in the training programs. The process of ordering and acquiring a full-scope simulator. Maintaining and updating simulator capabilities. (orig./GL)

  2. A New Ultra-lightweight Authentication Protocol for Low Cost RFID Tags

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2013-05-01

    Full Text Available The Radio Frequency Identification (RFID system has been widely used in almost every aspects of the society. At present, the problem of security and privacy become a key factor of severely blocking the widespread of its usage. However, due to restraints on RFID tag’s manufacturing cost, the traditional methods of encryption are not good candidate to defend the security of wireless communication channel between reader and tag. Designing lightweight or ultra-lightweight RFID authentication protocol has become a hot research topic recently. This paper proposes a new ultra-lightweight RFID authentication protocol with high robustness and execution efficiency. The proposed protocol requires only simple bit-wise operations, it has the characteristics of low storage requirement and communication cost. At the same time, through elaborate mechanism design, avoid the vulnerability of the existing ultra-lightweight authentication protocols.

  3. A New Time-Hopping Multiple Access Communication System Simulator: Application to Ultra-Wideband

    Directory of Open Access Journals (Sweden)

    José M. Páez-Borrallo

    2005-03-01

    Full Text Available Time-hopping ultra-wideband technology presents some very attractive features for future indoor wireless systems in terms of achievable transmission rate and multiple access capabilities. This paper develops an algorithm to design time-hopping system simulators specially suitable for ultra-wideband, which takes advantage of some of the specific characteristics of this kind of systems. The algorithm allows an improvement of both the time capabilities and the achievable sampling rate and can be used to research into the influence of different parameters on the performance of the system. An additional result is the validation of a new general performance formula for time-hopping ultra-wideband systems with multipath channels.

  4. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  5. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    Science.gov (United States)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  6. Effects of two doses of anti-T lymphocyte globulin-Fresenius given after full-match sibling stem cell transplantation in acute myeloblastic leukemia patients who underwent myeloablative fludarabine/busulfan conditioning.

    Science.gov (United States)

    Boga, Can; Yeral, Mahmut; Gereklioglu, Ciğdem; Asma, Suheyl; Maytalman, Erkan; Aytan, Pelin; Kozanoglu, Ilknur; Sariturk, Cagla; Ozdogu, Hakan

    2018-02-20

    Anti-T lymphocyte globulin Fresenius (rATG-F; ATG-Fresenius) and antithymocyte globulin (thymoglobulin), which are included in transplant protocols, are used to reduce the risk of chronic graft-versus-host disease (cGVHD) or suppress allograft rejection. Available clinical studies have been conducted in heterogenous patient populations and with different administration protocols including stem cell sources. Additionally, the pharmacokinetics of ATG is variable, and the clinically effective dose of rATG-F, in particular, is not exactly known. The aim of the study was to investigate the clinical outcomes of acute myeloid leukemia (AML) patients who underwent hemopoietic peripheral stem cell transplantation from full-matched sibling donors and given two different doses of r-ATG-F. This was a single-center, retrospective chart review conducted between July 2005 and July 2016. Sixty-nine consecutive AML patients who underwent transplant with fludarabine- and busulfan-based conditioning were included in the study. Patients in Group 1 received 15 mg/kg body weight rATG-F to 2013 (n = 46), and Group 2 received 30 mg/kg of rATG-F dose begining in 2013 to reduce to cGVHD (n = 23). Cyclosporine and methotrexate were used to treat acute GVHD (aGVHD) prophylaxis. Outcome parameters were compared between the groups. Although the recommended dose r-ATG-F had led to a decrease in the cumulative incidence of cGVHD (27 [58.7%] vs. 8 [34.8%]; p = .03), it also increased the infection rate at 1 year (3 [6.5%] vs. 4 [17.4%]; p = .02). The two groups were similar in terms of engraftment time, aGVHD, relapse, nonrelapse mortality, and rATG-F-related toxicity. A Cox regression model revealed that aGVHD III-IV was associated with increased nonrelapse mortality at 1 year (hazard ratio = 18.2; 95% confidence interval, 1.667-199.255; p = <.02). No patients developed rATG-F-related severe adverse events (Common Terminology Criteria grade 4 or 5). Dose difference of

  7. Li-Ion, Ultra-capacitor Based Hybrid Energy Module

    National Research Council Canada - National Science Library

    Daboussi, Zaher; Paryani, Anil; Khalil, Gus; Catherino, Henry; Gargies, Sonya

    2007-01-01

    .... To determine the optimum utilization of ultra-capacitors in applications where high power density and high energy density are required, an optimized Li-Ion/Ultra-capacitor Hybrid Energy Module (HEM...

  8. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete ... Knight (2012) investigated the dynamic behaviour of steel fibre reinforced concrete plates under impact loading with ...

  9. Effects of Dissociation/Recombination on the Day–Night Temperature Contrasts of Ultra-hot Jupiters

    Science.gov (United States)

    Komacek, Thaddeus D.; Tan, Xianyu

    2018-05-01

    Secondary eclipse observations of ultra-hot Jupiters have found evidence that hydrogen is dissociated on their daysides. Additionally, full-phase light curve observations of ultra-hot Jupiters show a smaller day-night emitted flux contrast than that expected from previous theory. Recently, it was proposed by Bell & Cowan (2018) that the heat intake to dissociate hydrogen and heat release due to recombination of dissociated hydrogen can affect the atmospheric circulation of ultra-hot Jupiters. In this work, we add cooling/heating due to dissociation/recombination into the analytic theory of Komacek & Showman (2016) and Zhang & Showman (2017) for the dayside-nightside temperature contrasts of hot Jupiters. We find that at high values of incident stellar flux, the day-night temperature contrast of ultra-hot Jupiters may decrease with increasing incident stellar flux due to dissociation/recombination, the opposite of that expected without including the effects of dissociation/recombination. We propose that a combination of a greater number of full-phase light curve observations of ultra-hot Jupiters and future General Circulation Models that include the effects of dissociation/recombination could determine in detail how the atmospheric circulation of ultra-hot Jupiters differs from that of cooler planets.

  10. Ultra-short laser pulses. Petawatt and femtosecond

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with a series of new results obtained thanks to the use of ultra-short laser pulses. This branch of physics has made incredible progresses during the last 25 years. Ultra-short laser pulses offer the opportunity to explore the domain of ultra-high energies and of ultra-short duration events. Applications are various, from controlled nuclear fusion to eye surgery and to more familiar industrial applications such as electronics. (J.S.)

  11. 1-bit sub threshold full adders in 65nm CMOS technology

    DEFF Research Database (Denmark)

    Moradi, Farshad; Wisland, Dag T.; Tuan Vu, Cao

    In this paper a new full adder (FA) circuit optimized for ultra low power operation is proposed. The circuit is based on modified XOR gates operated in the subthreshold region to minimize the power consumption. Simulated results using 65 nm standarad CMOS models are provided. The simulation results...

  12. In Situ Encapsulating α-MnS into N,S-Codoped Nanotube-Like Carbon as Advanced Anode Material: α → β Phase Transition Promoted Cycling Stability and Superior Li/Na-Storage Performance in Half/Full Cells.

    Science.gov (United States)

    Liu, Dai-Huo; Li, Wen-Hao; Zheng, Yan-Ping; Cui, Zheng; Yan, Xin; Liu, Dao-Sheng; Wang, Jiawei; Zhang, Yu; Lü, Hong-Yan; Bai, Feng-Yang; Guo, Jin-Zhi; Wu, Xing-Long

    2018-04-02

    Incorporation of N,S-codoped nanotube-like carbon (N,S-NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α-MnS nanoparticles (NPs) are in situ encapsulated into N,S-NTC, preparing an advanced anode material (α-MnS@N,S-NTC) for lithium-ion/sodium-ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li-storage properties, which is deduced by the studies of ex situ X-ray diffraction/high-resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α-MnS@N,S-NTC electrode delivers a high Li-storage capacity (1415 mA h g -1 at 50 mA g -1 ), excellent rate capability (430 mA h g -1 at 10 A g -1 ), and long-term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g -1 ) with retained morphology. In addition, the N,S-NTC-based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α-MnS@N,S-NTC also delivers high Na-storage capacity (536 mA h g -1 at 50 mA g -1 ) without the occurrence of such α → β phase transition and excellent full-cell performances as coupling with commercial LiFePO 4 and LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathodes in LIBs as well as Na 3 V 2 (PO 4 ) 2 O 2 F cathode in SIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Amenability of European silver fir (Abies alba Mill.) to preservative treatment by the full-cell process in longitudinal, tangential, radial and triplex flow pathways on the base of wood drying

    Energy Technology Data Exchange (ETDEWEB)

    Usta, Ilker [Wood Products Industrial Engineering, Hacettepe University, 06532-Beytepe, Ankara (Turkey)

    2006-08-15

    This paper discusses the effects of wood drying upon treatability (as determined by preservative uptake and gain-in-weight retention) of European silver fir on the two moisture content (MC) levels which were designed to be above and below the fibre saturation point (FSP). The treatability behaviour was investigated for individual flow pathways: longitudinal (L, along the stem), tangential (T, along the growth rings) and radial (R, along the rays), and also for the triplex (t, cumulative of all three directions: all faces left open). As the FSP was observed 32.7%, MC of the experimental samples-for each flow path-nominated to around 50% and 9% by recommended kiln drying schedule using a conventional kiln. The samples were then treated with a 2.5% concentration of commercial Tanalith C of CCA (chromium/copper/arsenic) via a mild schedule of full-cell impregnation process using a model pressure treatment plant. Treatability of European silver fir was noticed in different behaviour in either flow paths before and after drying. According to the experimental results, MC regulate the preservative uptake (as the percentage of void volume filled with preservative, VVF%) along the grain (L) and VVF% was improved by kiln drying process effectively, however, it was seemed to be contradictory across the grain (in both T and R). In the cumulative form (t), treatability-in either above or below the FSP-was appeared to be slightly greater than that for L due to support of the longitudinal flow. Therefore, it could be suggested that wood material which is subjected to be used in constructional purposes has to be initially dried to below the FSP, and - for efficient preservative treatment - it has to be treated with all faces unsealed (free from any pre-coating and/or painting). This shall be more ideal which in turn influences the quality of treated wood allowing better performance in its service life. (author)

  14. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    Science.gov (United States)

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  15. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    Science.gov (United States)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  16. Full Employment in Industrialized Countries.

    Science.gov (United States)

    Britton, Andrew

    1997-01-01

    Argues that full employment must be acceptable on both social and economic grounds. Examines profound changes in industrialized economies since the 1970s and the diversity of employment contracts. Suggests that difficult policy decisions surround full employment. (SK)

  17. 21 CFR 177.2910 - Ultra-filtration membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultra-filtration membranes. 177.2910 Section 177... Components of Articles Intended for Repeated Use § 177.2910 Ultra-filtration membranes. Ultra-filtration membranes identified in paragraphs (a)(1), (a)(2), (a)(3), and (a)(4) of this section may be safely used in...

  18. 7 CFR 58.144 - Pasteurization or ultra-pasteurization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurization or ultra-pasteurization. 58.144 Section... Service 1 Operations and Operating Procedures § 58.144 Pasteurization or ultra-pasteurization. When pasteurization or ultra-pasteurization is intended or required, or when a product is designated “pasteurized” or...

  19. Substrate use of Pseudovibrio sp. growing in ultra-oligotrophic seawater.

    Directory of Open Access Journals (Sweden)

    Anne Schwedt

    Full Text Available Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM. To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC, total dissolved nitrogen (TDN, free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The DOC concentration of the artificial seawater we used for cultivation was 4.4 μmol C L(-1, which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 μmol C L(-1. During the three-week duration of the experiment, cell numbers increased from 40 cells mL(-1 to 2x10(4 cells mL(-1 in artificial and to 3x10(5 cells mL(-1 in natural seawater. No nitrogen fixation and minor CO2 fixation (< 1% of cellular carbon was observed. Our data show that in both media, amino acids were not the main substrate for growth. Instead, FT-ICR-MS analysis revealed usage of a variety of different dissolved organic molecules, belonging to a wide range of chemical compound groups, also containing nitrogen. The present study shows that marine heterotrophic bacteria are able to proliferate with even lower DOC concentrations than available in natural ultra-oligotrophic seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements.

  20. Neuromuscular consequences of an extreme mountain ultra-marathon.

    Directory of Open Access Journals (Sweden)

    Guillaume Y Millet

    Full Text Available We investigated the physiological consequences of one of the most extreme exercises realized by humans in race conditions: a 166-km mountain ultra-marathon (MUM with 9500 m of positive and negative elevation change. For this purpose, (i the fatigue induced by the MUM and (ii the recovery processes over two weeks were assessed. Evaluation of neuromuscular function (NMF and blood markers of muscle damage and inflammation were performed before and immediately following (n = 22, and 2, 5, 9 and 16 days after the MUM (n = 11 in experienced ultra-marathon runners. Large maximal voluntary contraction decreases occurred after MUM (-35% [95% CI: -28 to -42%] and -39% [95% CI: -32 to -46%] for KE and PF, respectively, with alteration of maximal voluntary activation, mainly for KE (-19% [95% CI: -7 to -32%]. Significant modifications in markers of muscle damage and inflammation were observed after the MUM as suggested by the large changes in creatine kinase (from 144 ± 94 to 13,633 ± 12,626 UI L(-1, myoglobin (from 32 ± 22 to 1,432 ± 1,209 µg L(-1, and C-Reactive Protein (from <2.0 to 37.7 ± 26.5 mg L(-1. Moderate to large reductions in maximal compound muscle action potential amplitude, high-frequency doublet force, and low frequency fatigue (index of excitation-contraction coupling alteration were also observed for both muscle groups. Sixteen days after MUM, NMF had returned to initial values, with most of the recovery process occurring within 9 days of the race. These findings suggest that the large alterations in NMF after an ultra-marathon race are multi-factorial, including failure of excitation-contraction coupling, which has never been described after prolonged running. It is also concluded that as early as two weeks after such an extreme running exercise, maximal force capacities have returned to baseline.

  1. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2nanorods: Detailed study on the annealing temperature

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-07-01

    Full Text Available Applications of ultra-highly sensitive and selective methane (CH(sub4)) room temperature gas sensors are important for various operations especially in underground mining environment. Therefore, this study is set out to investigate the effect...

  2. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  3. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    International Nuclear Information System (INIS)

    Wu Jia-Liang; Lin Bao-Qin; Da Xin-Yu

    2016-01-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x - or y -polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. (paper)

  4. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  5. Ultra high-energy cosmic ray composition

    International Nuclear Information System (INIS)

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  6. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  7. Basic physics with ultra cold neutrons

    International Nuclear Information System (INIS)

    Protasov, K.

    2007-01-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  8. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  9. Selective silencing of full-length CD80 but not IgV-CD80 leads to impaired clonal deletion of self-reactive T cells and altered regulation of immune responses.

    Science.gov (United States)

    Bugeon, L; Hargreaves, R E; Crompton, T; Outram, S; Rahemtulla, A; Porter, A C; Dallman, M J

    2001-01-01

    Co-stimulation provided by the B7 family of proteins underpins the development of protective immunity. There are three identified members of this family: CD80, its splice variant IgV-CD80 and CD86. It has hitherto been difficult to analyze the expression and function of IgV-CD80 since there are no appropriate reagents capable of distinguishing it from CD80. We have generated mice, by gene targeting, the lack CD80 whilst maintaining expression of IgV-CD80. Mutant animals did not delete T cells bearing mammary tumor virus-reactive TCR as efficiently as wild-type animals. We also demonstrate the importance of IgV-CD80 in the responses of recently activated cells and reveal a role for CD80 in sustaining T cell responses. CD86, whilst critical to primary T cell activation, made only a minor contribution to re-activation of normal cells.

  10. Magnetic resonance imaging and spectroscopy at ultra high fields

    International Nuclear Information System (INIS)

    Neuberger, Thomas

    2009-01-01

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  11. Magnetic resonance imaging and spectroscopy at ultra high fields

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Thomas

    2009-06-23

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  12. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    Science.gov (United States)

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  13. How Full is Full Employment? : How Tools and Not Theory Explained Full Employment

    NARCIS (Netherlands)

    Rodenburg, P.

    2016-01-01

    The post-war debate on full employment policy was blurred and unclear since the concept of full employment itself was theoretically unclear and un-operational. Unable to theoretically determine the unemployment level of full employment, economists tried to find more empirically based ways to

  14. Astrofood, Priorities and Pandemics: Reflections of an Ultra-Processed Breakfast Program and Contemporary Dysbiotic Drift

    Directory of Open Access Journals (Sweden)

    Alan C. Logan

    2017-09-01

    Full Text Available Recognizing the importance of nutrition as part of the grand challenges faced by humanity—the current epidemic of non-communicable diseases (NCDs, sustainability and maintenance of Planetary Health—the United Nations (UN has declared 2016–2025 the Decade of Nutrition. Research continues to underscore the extent to which ultra-processed foods dominate the contemporary nutritional landscape. Moreover, the dual role played by food technology and marketing in the expansion of ultra-processed foods is under increased scrutiny. As public health experts and clinicians contend with a crisis of NCDs, attempting to untangle a knotted assortment of interrelated strands of causation, an examination of the early origins of highly-marketed ultra-processed foods can provide valuable lessons. Here, we illuminate a little-known piece of history in the annals of ultra-processed nutritional science and childhood welfare. Astrofood was a commercially-marketed, collaborative government-industry effort that brought soy protein-enriched Twinkies as a nutritive breakfast cake to disadvantaged children; its concept and delivery demonstrated an unwillingness to deal with root-cause challenges. Although its official tenure was only about 7 years, we argue that Astrofood and its total food engineering still resonate throughout the global ultra-processed nutritional landscape. New scientific advances in nutritional psychiatry and the microbiome are on a collision course with the profits, marketing and intellectual dishonesty of the ultra-processed food industry. Solutions to the grand challenges of the Decade of Nutrition may be found in lessons from Astrofood. They provide clues to undoing the tangled knots which otherwise maintain an untenable status quo.

  15. Ultra-wideband spectral analysis using S2 technology

    International Nuclear Information System (INIS)

    Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.

    2007-01-01

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed

  16. Ultra-Long-Distance Hybrid BOTDA/Ф-OTDR

    Directory of Open Access Journals (Sweden)

    Yun Fu

    2018-03-01

    Full Text Available In the distributed optical fiber sensing (DOFS domain, simultaneous measurement of vibration and temperature/strain based on Rayleigh scattering and Brillouin scattering in fiber could have wide applications. However, there are certain challenges for the case of ultra-long sensing range, including the interplay of different scattering mechanisms, the interaction of two types of sensing signals, and the competition of pump power. In this paper, a hybrid DOFS system, which can simultaneously measure temperature/strain and vibration over 150 km, is elaborately designed via integrating the Brillouin optical time-domain analyzer (BOTDA and phase-sensitive optical time-domain reflectometry (Ф-OTDR. Distributed Raman and Brillouin amplifications, frequency division multiplexing (FDM, wavelength division multiplexing (WDM, and time division multiplexing (TDM are delicately fused to accommodate ultra-long-distance BOTDA and Ф-OTDR. Consequently, the sensing range of the hybrid system is 150.62 km, and the spatial resolution of BOTDA and Ф-OTDR are 9 m and 30 m, respectively. The measurement uncertainty of the BOTDA is ± 0.82 MHz. To the best of our knowledge, this is the first time that such hybrid DOFS is realized with a hundred-kilometer length scale.

  17. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  18. A New Ultra Fast Conduction Mechanism in Insulating Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Xu

    2011-01-01

    Full Text Available A brand new phenomenon, namely, electrical conduction via soliton-like ultra fast space charge pulses, recently identified in unfilled cross-linked polyethylene, is shown for the first time to occur in insulating polymer nanocomposites and its characteristics correlated with the electromechanical properties of nanostructured materials. These charge pulses are observed to cross the insulation under low electrical field in epoxy-based nanocomposites containing nanosilica particles with relative weights of 1%, 5%, 10%, and 20% at speeds orders of magnitude higher than those expected for carriers in insulating polymers. The characteristics of mobility, magnitude and repetition rate for both positive and negative charge pulses are studied in relation to nanofiller concentration. The results show that the ultra fast charge pulses (packets are affected significantly by the concentration of nanoparticles. An explanation is presented in terms of a new conduction mechanism where the mechanical properties of the polymer and movement of polymer chains play an important role in the injection and transport of charge in the form of pulses. Here, the charge transport is not controlled by traps. Instead, it is driven by the contribution of polarization and the resultant electromechanical compression, which is substantially affected by the introduction of nanoparticles into the base polymer.

  19. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  20. Measurement of Ultra-Short Solitary Electromagnetic Pulses

    Directory of Open Access Journals (Sweden)

    Eva Gescheidtova

    2004-01-01

    Full Text Available In connection with the events of the last few years and with the increased number of terrorist activities, the problem of identification and measurement of electromagnetic weapons or other systems impact occurred. Among these are also microwave sources, which can reach extensive peak power of up to Pmax = 100 MW. Solitary, in some cases several times repeated, impulses lasting from tp E <1, 60>ns, cause the destruction of semiconductor junctions. These days we can find scarcely no human activity, where semiconductor structures are not used. The problem of security support of the air traffic, transportation, computer nets, banks, national strategic data canter’s, and other applications crops up. Several types of system protection from the ultra-short electromagnetic pulses present itself, passive and active protection. The analysis of the possible measuring methods, convenient for the identification and measurement of the ultra-short solitary electromagnetic pulses in presented in this paper; some of the methods were chosen and used for practical measurement. This work is part of Research object MSM262200022 "Research of microelectronic systems".

  1. Sex Difference in Draft-Legal Ultra-Distance Events - A Comparison between Ultra-Swimming and Ultra-Cycling.

    Science.gov (United States)

    Salihu, Lejla; Rüst, Christoph Alexander; Rosemann, Thomas; Knechtle, Beat

    2016-04-30

    Recent studies reported that the sex difference in performance in ultra-endurance sports such as swimming and cycling changed over the years. However, the aspect of drafting in draft-legal ultra-endurance races has not yet been investigated. This study investigates the sex difference in ultra-swimming and ultra-cycling draft-legal races where drafting - swimming or cycling behind other participants to save energy and have more power at the end of the race to overtake them, is allowed. The change in performance of the annual best and the annual three best in an ultra-endurance swimming race (16-km 'Faros Swim Marathon') over 38 years and in a 24-h ultra-cycling race ('World Cycling Race') over 13 years were compared and analysed with respect to sex difference. Furthermore, performances of the fastest female and male finishers ever were compared. In the swimming event, the sex difference of the annual best male and female decreased non-significantly (P = 0.262) from 5.3% (1976) to 1.0% (2013). The sex gap of speed in the annual three fastest swimmers decreased significantly (P = 0.043) from 5.9 ± 1.6% (1979) to 4.7 ± 3.1% (2013). In the cycling event, the difference in cycling speed between the annual best male and female decreased significantly (P = 0.026) from 33.31% (1999) to 10.89% (2011). The sex gap of speed in the annual three fastest decreased significantly (P = 0.001) from 32.9 ± 0.6% (1999) to 16.4 ± 5.9% (2011). The fastest male swimmer ever (swimming speed 5.3 km/h, race time: 03:01:55 h:min:s) was 1.5% faster than the fastest female swimmer (swimming speed 5.2 km/h, race time: 03:04:09 h:min:s). The three fastest male swimmers ever (mean 5.27 ± 0.13 km/h) were 4.4% faster than the three fastest female swimmers (mean 5.05 ± 0.20 km/h) (P swimming and cycling, the sex difference in the annual top and annual top three swimmers and cyclists decreased (i.e. non-linearly in swimmers and linearly in cyclists) over the years. The sex difference of the

  2. Renal cell carcinoma in childhood

    International Nuclear Information System (INIS)

    Zanier, J.F.C.; Ramos, C.O.P.; Pereira, A.A.

    1990-01-01

    The authors present five cases of renal cell carcinoma in children, describing its aspects on excretory urography, ultra-sonography and computerized tomography. The clinical, pathological and radiological features are compared with those of the literature. (author)

  3. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  4. Miniature CRLH-based ultra wideband antenna with gain enhancement for wireless communication applications

    Directory of Open Access Journals (Sweden)

    Mohammad Alibakhshi-Kenari

    2016-06-01

    Full Text Available A novel miniaturized ultra wideband (UWB antenna based on composite right/left-handed (CRLH metamaterial unit cells for modern wireless communication applications is presented. The physical size of the small and compact antenna is 15×7.87×1.6 mm3 or 0.15λo×0.07λo×0.01λo in terms of the free-space wavelength at 3 GHz. The proposed antenna covers an impedance bandwidth of 3–10.6 GHz, which is equivalent to a fractional bandwidth of 111%. The gain and efficiency of the antenna are greater than 2.89 dBi and 38.54%, respectively, with a peak gain of 9.41 dBi and a peak efficiency of 99.93%. The characteristics of the antenna were validated with measured results obtained from a fabricated prototype to establish the proof of concept.

  5. Artificial Material Integrated Ultra-wideband Tapered Slot Antenna for Gain Enhancement with Band Notch Characteristics

    Directory of Open Access Journals (Sweden)

    R. Singha

    2018-04-01

    Full Text Available The gain of the ultra-wideband tapered slot antenna (TSA is enhanced by using broadband artificial material with band notch characteristics. The proposed artificial material unit cell is designed by fabricating non-resonant three S-shaped parallel metallic line on single side of the dielectric substrate which provides a longer current path compared to the parallel-line structure. The proposed S-shaped structure is printed on the top side of the tapered slot antenna in the extended substrate periodically. The effective refractive index of the artificial material is lower than antenna substrate and phase velocity in the region of artificial material is much higher than the other region. Therefore, the proposed artificial material acts like a beam focusing lens. The band notch at 5.5 GHz is achieved by creating a split ring resonator (SRR slot near the balun. The basic and artificial material loaded TSAs are fabricated and the measurement results show that the gain of the basic antenna has been increased by 1.6 dBi. At the same time, the proposed antenna achieves a VSWR below 2 from 3 to 11 GHz except at 5.5 GHz with a notch band from 5.1 to 5.8 GHz for band rejection of wireless local area network (WLAN application.

  6. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    Directory of Open Access Journals (Sweden)

    Domanski Jaroslaw

    2018-01-01

    Full Text Available One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  7. Combined sequencing of mRNA and DNA from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Florian Mertes

    2016-06-01

    Full Text Available Combined transcriptome and whole genome sequencing of the same ultra-low input sample down to single cells is a rapidly evolving approach for the analysis of rare cells. Besides stem cells, rare cells originating from tissues like tumor or biopsies, circulating tumor cells and cells from early embryonic development are under investigation. Herein we describe a universal method applicable for the analysis of minute amounts of sample material (150 to 200 cells derived from sub-colony structures from human embryonic stem cells. The protocol comprises the combined isolation and separate amplification of poly(A mRNA and whole genome DNA followed by next generation sequencing. Here we present a detailed description of the method developed and an overview of the results obtained for RNA and whole genome sequencing of human embryonic stem cells, sequencing data is available in the Gene Expression Omnibus (GEO database under accession number GSE69471.

  8. Synthesis of ultra-long cadmium telluride nanotubes via combinational chemical transformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kee-Ryung; Cho, Hong-Baek; Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr

    2017-03-01

    Synthesis of high-throughput cadmium telluride (CdTe) nanotubes with an ultra-long aspect ratio is presented via a combination process concept combined with electrospinning, electrodeposition, and cationic exchange reaction. Ultra-long sacrificial silver (Ag) nanofibers were synthesized by electrospinning involving two-step calcination, and were then electrodeposited to create silver telluride nanotubes. These nanotubes underwent cationic exchange reaction in cadmium nitrate tetrahydrate solution with the aid of a ligand, tributylphosphine (TBP). Analysis showed that ultra-long pure zinc blende CdTe nanotubes were obtained with controlled dimension and uniform morphology. The thermodynamic driving force induced by the coordination of methanol solvent and TBP attributed to overcome the kinetic barrier between Ag{sub 2}Te and CdTe nanotubes, facilitating the synthesis of CdTe nanotubes. This synthetic process involving a topotactic reaction route paves a way for high-throughput extended synthesis of new chalcogenide hollow nanotubes for application in photodetectors and solar cells. - Highlights: • High throughput synthetic route of hollow CdTe nanotubes with ultra-long aspect ratio. • Chemical combination of electrospinning, electrodeposition & cation exchange reaction. • Pure zinc blende CdTe by controlled dimension & structural variation of Ag nanofibers. • Potential for the high throughput synthesis of new exotic chalcogenide nanotubes.

  9. Collective hydrodynamic communication through ultra-fast contractions

    Science.gov (United States)

    Bhamla, Saad; Mathijssen, Arnold; Prakash, Manu

    2017-11-01

    The biophysical relationships between physiological sensors and actuators were fundamental to the development of early life forms, as responding to external stimuli promptly is key to survival. We study an unusual protist Spirostomum ambiguum, a single-celled organism that can grow up to 4mm in size, visible to the naked eye, as a model system for impulsive systems. Coiling its cytoskeleton, this ciliate can contract its long body within milliseconds, one of the fastest accelerations known in cell biology. We demonstrate that these rapid contractions generate long-ranged vortex flows that can trigger other cells to contract, repeatedly, which collectively leads to an ultra-fast hydrodynamic signal transduction across a colony that moves hundreds of times faster than the swimming speed. By combining high-speed PIV experiments and analytical modelling we determine the critical rheosensitivity required to sustain these signal waves. Whereas the biological motive is not fully understood, contractions are known to release toxins from membrane-bound extrusomes, thus we hypothesize that synchronised discharges could facilitate the repulsion of large-scale predators cooperatively. Please also see our other talk ``Rheosensing by impulsive cells at intermediate Reynolds numbers''.

  10. Developed Turbulence: From Full Simulations to Full Mode Reductions

    NARCIS (Netherlands)

    Grossmann, Siegfried; Lohse, Detlef; Reeh, Achim

    1996-01-01

    Developed Navier-Stokes turbulence is simulated with varying wave-vector mode reductions. The flatness and the skewness of the velocity derivative depend on the degree of mode reduction. They show a crossover towards the value of the full numerical simulation when the viscous subrange starts to be

  11. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    International Nuclear Information System (INIS)

    Buyanosvsky, G.; Gale, J.; Degani, N.

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm -2 h -1 ) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10 3 to 10-50 x 10 3 cells per ml. (orig.)

  12. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Buyanosvsky, G; Gale, J [Ben-Gurion Univ. of the Negev, Beersheva (Israel). Jacob Blaustein Inst. for Desert Research; Degani, N [Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm/sup -2/h/sup -1/) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10/sup 3/ to 10-50 x 10/sup 3/ cells per ml.

  13. Effect of LOS/NLOS Propagation on 5G Ultra-Dense Networks

    DEFF Research Database (Denmark)

    Galiotto, Carlo; Pratas, Nuno; Doyle, Linda

    2017-01-01

    The combined presence of Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) components in the radio propagation environment can severely degrade the Ultra-Dense Networks (UDNs) performance. Backed by a stochastic geometry model, we show that when the LOS/NLOS propagation components are taken into a...... and to take advantage of extreme cell densification in the upcoming 5G wireless networks....

  14. Instability of ultra-spinning black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Myers, Robert C.

    2003-01-01

    It has long been known that, in higher-dimensional general relativity, there are black hole solutions with an arbitrarily large angular momentum for a fixed mass. We examine the geometry of the event horizon of such ultra-spinning black holes and argue that these solutions become unstable at large enough rotation. Hence we find that higher-dimensional general relativity imposes an effective 'Kerr-bound' on spinning black holes through a dynamical decay mechanism. Our results also give indications of the existence of new stationary black holes with 'rippled' horizons of spherical topology. We consider various scenarios for the possible decay of ultra-spinning black holes, and finally discuss the implications of our results for black holes in braneworld scenarios. (author)

  15. Ultra low bit-rate speech coding

    CERN Document Server

    Ramasubramanian, V

    2015-01-01

    "Ultra Low Bit-Rate Speech Coding" focuses on the specialized topic of speech coding at very low bit-rates of 1 Kbits/sec and less, particularly at the lower ends of this range, down to 100 bps. The authors set forth the fundamental results and trends that form the basis for such ultra low bit-rates to be viable and provide a comprehensive overview of various techniques and systems in literature to date, with particular attention to their work in the paradigm of unit-selection based segment quantization. The book is for research students, academic faculty and researchers, and industry practitioners in the areas of speech processing and speech coding.

  16. Hydrodynamics of ultra-relativistic bubble walls

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo, E-mail: lleitao@mdp.edu.ar; Mégevand, Ariel, E-mail: megevand@mdp.edu.ar

    2016-04-15

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  17. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  18. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  19. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  20. Physics with ultra-low energy antiprotons

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Holzscheiter, M.H.; Hughes, R.J.

    1989-01-01

    The experimental observation that all forms of matter experience the same gravitational acceleration is embodied in the weak equivalence principle of gravitational physics. However no experiment has tested this principle for particles of antimatter such as the antiproton or the antihydrogen atom. Clearly the question of whether antimatter is in compliance with weak equivalence is a fundamental experimental issue, which can best be addressed at an ultra-low energy antiproton facility. This paper addresses the issue. 20 refs

  1. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  2. ULTRA SCWR+: Practical advanced water reactor concepts

    International Nuclear Information System (INIS)

    Duffey, Romney; Khartabil, Hussam; Kuran, Sermet; Zhou, Tracy; Pioro, Igor

    2008-01-01

    Modern thermal power plants now utilize supercritical steam cycles with thermal efficiencies of over 45%. Recent developments have lead to Ultra-SuperCritical (USC) systems, which adopt reheat turbines that can attain efficiencies of over 50%. Because these turbines are already developed, demonstrated and deployed worldwide, and use existing and traditional steam cycle technology, the simplest nuclear advance is to utilize these proven thermal cycle conditions by coupling this turbine type to a reactor. This development direction is fundamentally counter to the usual approach of adopting high-temperature gas-cooled (helium-cooled) reactor cycles, for which turbines have yet to be demonstrated on commercial scale unlike the supercritical steam turbines. The ULTRA (Ultra-supercritical Light water Thermal ReActor) SCWR+ concept adopts the fundamental design approach of matching a water and steam-cooled reactor to the ultra-supercritical steam cycle, adopting the existing and planned thermal power plant turbines. The HP and IP sections are fed with conditions of 25 MPa/625degC and 7 MPa/700degC, respectively, to achieve operating plant thermal efficiencies in excess of 50%, with a direct turbine cycle. By using such low-pressure reheated steam, this concept also adopts technology that was explored and used many years ago in existing water reactors, with the potential to produce large quantities of low cost heat, which can be used for other industrial and district processes. Pressure-Tube (PT) reactors are suitable for adoption of this design approach and, in addition, have other advantages that will significantly improve water-cooled reactor technology. These additional advantages include enhanced safety and improved resource utilization and proliferation resistance. This paper describes the PT-SCWR+ concept and its potential enhancements. (author)

  3. Scaling violations at ultra-high energies

    International Nuclear Information System (INIS)

    Tung, W.K.

    1979-01-01

    The paper discusses some of the features of high energy lepton-hadron scattering, including the observed (Bjorken) scaling behavior. The cross-sections where all hadron final states are summed over, are examined and the general formulas for the differential cross-section are examined. The subjects of scaling, breaking and phenomenological consequences are studied, and a list of what ultra-high energy neutrino physics can teach QCD is given

  4. Full-F gyrofluid model

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    variables. The fluid moment hierarchy is closed by approximating the gyrokinetic distribution function as a finite order Hermite-Laguerre polynomial and by determining closure approximations for terms involving the gyrokinetic gyro-averaging operator. The model exactly conserves the gyrokinetic full......A global electromagnetic gyrofluid model based on the full-F gyrokinetic model is derived. The gyrofluid moment variables are not split into fluctuating and equilibrium parts. Profiles are evolved freely, and gyro-averaging operators are not parametrized, but are functions of the gyrofluid moment...

  5. Inertial fusion with ultra-powerful lasers

    International Nuclear Information System (INIS)

    Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

    1993-10-01

    Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel

  6. Ultra high field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lethimonnier, F.; Vedrine, P.

    2007-01-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  7. Use of full recovery hydrolasing equipment for facility decommissioning - 16325

    International Nuclear Information System (INIS)

    Martin, Scott A.; Adams, Scott R.

    2009-01-01

    The removal of surface contamination is a major challenge for nearly all nuclear facilities undergoing, or awaiting, decommissioning. Conventional means of surface decontamination can expose workers to unnecessary hazards, and are often not fit-for-purpose due to size constraints or weight restrictions. Additionally, conventional methods are not always easily deployed remotely due to their complexity or required services. The use of ultra high pressure water for surface decontamination, known as hydrolasing, is recognized as a technology which can be used in various applications requiring surface removal. Hydrolasing is an advantageous technology for many reasons including its versatility, overall simplicity and relative ease of remote deployment. For the nuclear industry, one of the largest challenges with regards to the use of hydrolasing is the requirement for the full recovery of the injected water and removed solids. For nonnuclear applications, there is often no requirement for recovery of the liquid and solid waste, which has led to few system designs which will recover the waste in full. S.A. Robotics' experience with the deployment of ultra high pressure water systems for nuclear applications has shown that full recovery of injected water and removed solids is achievable in both underwater and in-air applications. Innovative equipment and system design have allowed S.A. Robotics' hydrolasing systems to achieve near 100% solid and liquid recovery during concrete hydrolasing. This technology has been deployed for Fluor Hanford at Hanford's K-Basins, as well as for UKAEA as part of the Windscale Piles decommissioning project. The purpose of this paper is to provide a short description of the hydrolasing process and the associated waste issues, describe the unique design features of S.A. Robotics' hydrolasing systems which combat these issues, and provide an overview of two of the hydrolasing projects that S.A. Robotics has completed. (authors)

  8. The Fiction of Full BEKK

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2017-01-01

    textabstractThe purpose of the paper is to show that univariate GARCH is not a special case of multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-diagonal elements of the random coefficient autoregressive coefficient matrix, provides the regularity

  9. Empty calories and phantom fullness

    NARCIS (Netherlands)

    Camps, Guido; Mars, Monica; Graaf, de Kees; Smeets, Paul A.M.

    2016-01-01

    Background: Stomach fullness is a determinant of satiety. Although both the viscosity and energy content have been shown to delay gastric emptying, their relative importance is not well understood. Objective: We compared the relative effects of and interactions between the viscosity and energy

  10. Toward full MOX core design

    International Nuclear Information System (INIS)

    Rouviere, G.; Guillet, J.L.; Bruna, G.B.; Pelet, J.

    1999-01-01

    This paper presents a selection of the main preliminary results of a study program sponsored by COGEMA and currently carried out by FRAMATOME. The objective of this study is to investigate the feasibility of full MOX core loading in a French 1300 MWe PWR, a recent and widespread standard nuclear power plant. The investigation includes core nuclear design, thermal hydraulic and systems aspects. (authors)

  11. Rectilinear Full Steiner Tree Generation

    DEFF Research Database (Denmark)

    Zachariasen, Martin

    1999-01-01

    The fastest exact algorithm (in practice) for the rectilinear Steiner tree problem in the plane uses a two-phase scheme: First, a small but sufficient set of full Steiner trees (FSTs) is generated and then a Steiner minimum tree is constructed from this set by using simple backtrack search, dynamic...

  12. Full autonomy; Autarkie im Komplettpaket

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Eva

    2011-05-31

    Normally, those who talk of full solar autonomy refer to the annual balance of a house. Now, architect Timo Leukefeld and Helma Eigenheimbau AG presented a really autonomous solar house which is available on a turnkey basis for 363,000 Euros.

  13. [Endoscopic full-thickness resection].

    Science.gov (United States)

    Meier, B; Schmidt, A; Caca, K

    2016-08-01

    Conventional endoscopic resection techniques such as endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) are powerful tools for the treatment of gastrointestinal (GI) neoplasms. However, those techniques are limited to the superficial layers of the GI wall (mucosa and submucosa). Lesions without lifting sign (usually arising from deeper layers) or lesions in difficult anatomic positions (appendix, diverticulum) are difficult - if not impossible - to resect using conventional techniques, due to the increased risk of complications. For larger lesions (>2 cm), ESD appears to be superior to the conventional techniques because of the en bloc resection, but the procedure is technically challenging, time consuming, and associated with complications even in experienced hands. Since the development of the over-the-scope clips (OTSC), complications like bleeding or perforation can be endoscopically better managed. In recent years, different endoscopic full-thickness resection techniques came to the focus of interventional endoscopy. Since September 2014, the full-thickness resection device (FTRD) has the CE marking in Europe for full-thickness resection in the lower GI tract. Technically the device is based on the OTSC system and combines OTSC application and snare polypectomy in one step. This study shows all full-thickness resection techniques currently available, but clearly focuses on the experience with the FTRD in the lower GI tract.

  14. Achieving Mixtures of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Mircea POPA

    2013-07-01

    Full Text Available Ultra-High Performance Concrete (UHPC is a relatively new concrete. According to [11] UHPC is that concrete which features compressive strength over C100/115 class. Up to this point standards for this type of concrete were not adopted, although its characteristic strength exceeds those specified in [33]. Its main property is high compressive strength. This provides the possibility of reducing the section of elements (beams or columns made of this type of concrete, while the load capacity remains high. The study consists in blending mixtures of UHPC made of varying proportions of materials. The authors have obtained strengths of up to 160 MPa. The materials used are: Portland cement, silica fume, quartz powder, steel fibers, superplasticiser, sand and crushed aggregate for concrete - andesite.

  15. Update on wide- and ultra-widefield retinal imaging

    Directory of Open Access Journals (Sweden)

    Samir S Shoughy

    2015-01-01

    Full Text Available The peripheral retina is the site of pathology in many ocular diseases and ultra-widefield (UWF imaging is one of the new technologies available to ophthalmologists to manage some of these diseases. Currently, there are several imaging systems used in practice for the purpose of diagnostic, monitoring disease progression or response to therapy, and telemedicine. These include modalities for both adults and pediatric patients. The current systems are capable of producing wide- and UWF color fundus photographs, fluorescein and indocyanine green angiograms, and autofluorescence images. Using this technology, important clinical observations have been made in diseases such as diabetic retinopathy, uveitides, retinal vascular occlusions and tumors, intraocular tumors, retinopathy of prematurity, and age-related macular degeneration. Widefield imaging offers excellent postoperative documentation of retinal detachment surgery. New applications will soon be available to integrate this technology into large volume routine clinical practice.

  16. The Babel of football: intercultural athletes and the ultra fans

    Directory of Open Access Journals (Sweden)

    José Paulo Fiorenzano

    2010-12-01

    Full Text Available The crisis concerning the lack of credibility among referees, scenes of urban guerrilla warfare in the stadiums, financial parameters for managing the teams that have fallen by the wayside, together with the so-called "foreign invasion", mostly represented by African athletes, were inter-woven into an explosive formula for the calcio of the dawn of the Third Millennium. Using a theoretical perspective informed by the framework of sociological and anthropological references for the sport, the text discusses this historical crossroads and underscores interrelated questions of the racist imagination of the extreme right "ultras" (exacerbated by the advancement of global football, and the symbolic dexterity of black players, reflected in their dual ability to extricate themselves from negative representations and articulate new social meanings for the game

  17. Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant

    Directory of Open Access Journals (Sweden)

    Lingnan Wu

    2012-09-01

    Full Text Available In this paper, the exergoeconomic analysis was conducted to an existing ultra-supercritical coal-fired power plant in China to understand the cost-formation process, to evaluate the economic performance of each component and to find possible solutions for more cost-effective designs. The total revenue requirement (TRR and the specific exergy costing (SPECO methods were applied for economic analysis and exergy costing, respectively. Quantitative balances of exergy and exergetic costs as well as necessary auxiliary equations for both individual component and the overall system were established. The results show that the exergoeconomic factors of the furnace and heat exchangers at low temperature levels, including air preheater and low-pressure feedwater preheaters, are rather small; while those of other components are relatively large. Moving more heat absorption into furnace to use the effective radiation heat transfer, increasing the air preheating temperature and adding more low pressure feedwater preheaters can be promising solutions for future design.

  18. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  19. Ultra-processed products are becoming dominant in the global food system.

    Science.gov (United States)

    Monteiro, C A; Moubarac, J-C; Cannon, G; Ng, S W; Popkin, B

    2013-11-01

    The relationship between the global food system and the worldwide rapid increase of obesity and related diseases is not yet well understood. A reason is that the full impact of industrialized food processing on dietary patterns, including the environments of eating and drinking, remains overlooked and underestimated. Many forms of food processing are beneficial. But what is identified and defined here as ultra-processing, a type of process that has become increasingly dominant, at first in high-income countries, and now in middle-income countries, creates attractive, hyper-palatable, cheap, ready-to-consume food products that are characteristically energy-dense, fatty, sugary or salty and generally obesogenic. In this study, the scale of change in purchase and sales of ultra-processed products is examined and the context and implications are discussed. Data come from 79 high- and middle-income countries, with special attention to Canada and Brazil. Results show that ultra-processed products dominate the food supplies of high-income countries, and that their consumption is now rapidly increasing in middle-income countries. It is proposed here that the main driving force now shaping the global food system is transnational food manufacturing, retailing and fast food service corporations whose businesses are based on very profitable, heavily promoted ultra-processed products, many in snack form. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  20. SOCIOLOGICAL ASPECTS OF THE ULTRAS PHENOMENON IN THE CITY OF TIMISOARA

    Directory of Open Access Journals (Sweden)

    IONESCU Simona

    2010-04-01

    Full Text Available The ultras phenomenon in Timisoara has been represented by the gallery of the PolitehnicaTimisoara football team and has identified itself as „Commando Viola Ultra Curva Sud”. It is not at all a newphenomenon and its analysis implies radiography of the white-violet group.The aim of the present paper is the research on the model of the Timisoara supporter, his or hercharacteristic features and peculiarities, both as an individual and as a group. The investigation method used inorder to collect the research data has consisted of observation and questionnaire. It has been noticed that there are two types of supporters within the group: mere supporters, present at the games in order to encourage their team and the ultras, active membersin Commando Viola. The main differences between the two categories of supporters being defined at the identification level: to the ultras, the local team means everything, while to the supporters it means to identify themselves to the concept “to be born in the Banat region”.