WorldWideScience

Sample records for fugitive pm emissions

  1. Contribution of Fugitive Emissions for PM10 Concentrations in an Industrial Area of Portugal

    Science.gov (United States)

    Marta Almeida, Susana; Viana Silva, Alexandra; Garcia, Silvia; Miranda, Ana Isabel

    2013-04-01

    Significant atmospheric dust arises from the mechanical disturbance of granular material exposed to the air. Dust generated from these open sources is termed "fugitive" because it is not discharged to the atmosphere in a confined flow stream. Common sources of fugitive dust include unpaved roads, agricultural tilling operations, aggregate storage piles, heavy construction and harbor operations. The objective of this work was to identify the likeliness and extend of the PM10 limit value exceedences due to fugitive emissions in a particularly zone where PM fugitive emissions are a core of environmental concerns - Mitrena, Portugal. Mitrena, is an industrial area that coexists with a high-density urban region (Setúbal) and areas with an important environmental concern (Sado Estuary and Arrábida which belongs to the protected area Natura 2000 Network). Due to the typology of industry sited in Mitrena (e.g. power plant, paper mill, cement, pesticides and fertilized productions), there are a large uncontrolled PM fugitive emissions, providing from heavy traffic and handling and storage of raw material on uncover stockyards in the harbor and industries. Dispersion modeling was performed with the software TAPM (The Air Pollution Model) and results were mapped over the study area, using GIS (Geographic Information Systems). Results showed that managing local particles concentrations can be a frustrating affair because the weight of fugitive sources is very high comparing with the local anthropogenic stationary sources. In order to ensure that the industry can continue to meet its commitments in protecting air quality, it is essential to warrant that the characteristics of releases from all fugitive sources are fully understood in order to target future investments in those areas where maximum benefit will be achieved.

  2. Fugitive emissions from nanopowder manufacturing

    Science.gov (United States)

    Trompetter, W. J.; Ancelet, T.; Davy, P. K.; Kennedy, J.

    2016-07-01

    In response to health and safety questions and concerns regarding particulate matter emissions from equipment used for synthesizing NiFe and TiO2 nanopowders, a study was undertaken to assess their impact on the air quality inside and outside a laboratory where the manufacturing equipment is operated. Elemental concentrations determined by ion beam analysis (IBA) of air particulate matter (PM) samples collected hourly with a StreakerTM sampler were used to identify possible sources and estimate contributions from nanopowder production and other sources. The fugitive nanopowder emissions were the highest at the indoor sampling location when powders were being manufactured. Average fugitive emissions of 210 ng m-3 (1-h average) (maximum 2163 ng m-3 1-h average) represented 2 % (maximum 20 %) of the average PM collected (9359 ng m-3 1-h average). The measured NiFe alloy or TiO2 PM concentrations were much smaller than the 8-h time-weighted average (TWA) workplace exposure standards (WES) for these materials (≥1,000,000 ng m-3). Most PM was found to be from infiltrated outdoor ambient sources. This suggests that nanopowder production in the laboratory is not likely to have adverse health effects on individuals using the equipment, although further improvements can be made to further limit exposure.

  3. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant.

    Science.gov (United States)

    Khaparde, V V; Bhanarkar, A D; Majumdar, Deepanjan; Rao, C V Chalapati

    2016-08-15

    Fugitive emissions of PM10 (particles blast furnace and steel manufacturing unit in an integrated iron and steel plant situated in India. Concentrations of PM10, PM10-bound total PAHs, benzo (a) pyrene, carcinogenic PAHs and combustion PAHs were found to be highest around the sintering unit. Concentrations of 3-ring and 4-ring PAHs were recorded to be highest in the coking unit whereas 5-and 6-ring PAHs were found to be highest in other units. The following indicatory PAHs were identified: indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, benzo (k) fluoranthene in blast furnace unit; indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, chrysene in sintering unit; Anthracene, fluoranthene, chrysene in coking unit and acenaphthene, fluoranthene, fluorene in steel making unit. Total-BaP-TEQ (Total BaP toxic equivalent quotient) and BaP-MEQ (Total BaP mutagenic equivalent quotient) concentration levels ranged from 2.4 to 231.7ng/m(3) and 1.9 to 175.8ng/m(3), respectively. BaP and DbA (dibenzo (a,h) anthracene) contribution to total-BaP-TEQ was found to be the highest.

  4. Emission Inventory for Fugitive Emissions in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2007. The inventory of fugitive emissions includes CO2, CH4, N2O, NOx, CO, NMVOC, SO2, dioxin, PAH and particulate matter. In 2007 the total Danish emission of greenhouse...

  5. Emission inventory for fugitive emissions from fuel in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2013. The inventory of fugitive emissions includes CO2, CH4, N2O, SO2, NOx, NMVOC, CO, particulate matter, Black carbon, heavy metals, dioxin and PAHs. In 2013 the total...... Danish emission of greenhouse gasses was 54 584 Gg CO2 equivalents. Fugitive emissions from fuels account for 387 Gg CO2 equivalents or approximately 1 %. The major part of the fugitive emissions are emitted as CO2 (61 %) mainly from flaring in upstream oil and gas production. The major source...... of fugitive CH4 emission is production of oil and gas in the North Sea, refining of oil and loading of oil onto ships both offshore and onshore. The fugitive emissions of NMVOC originate for the major part from oil and gas production, loading of ships, transmission and distribution of oil, and to a less...

  6. Emission inventory for fugitive emissions from fuel in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2013. The inventory of fugitive emissions includes CO2, CH4, N2O, SO2, NOx, NMVOC, CO, particulate matter, Black carbon, heavy metals, dioxin and PAHs. In 2013 the total...... Danish emission of greenhouse gasses was 54 584 Gg CO2 equivalents. Fugitive emissions from fuels account for 387 Gg CO2 equivalents or approximately 1 %. The major part of the fugitive emissions are emitted as CO2 (61 %) mainly from flaring in upstream oil and gas production. The major source...... of fugitive CH4 emission is production of oil and gas in the North Sea, refining of oil and loading of oil onto ships both offshore and onshore. The fugitive emissions of NMVOC originate for the major part from oil and gas production, loading of ships, transmission and distribution of oil, and to a less...

  7. Monitoring of fugitive emissions in petrochemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rozilda F. [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental

    1993-12-31

    COPENE (Petroquimica do Nordeste S/A) has been implanting a program of fugitive emissions adapted to its reality, trying to promote a continuous improvement in its employees` working conditions and in environmental protection. This paper presents the methodology for the elaboration of this program and the conclusions of some surveys which were already completed (author). 4 refs., 7 figs., 3 tabs.

  8. Quantification and Modelling of Fugitive Dust Emissions From Nickel Slag

    Science.gov (United States)

    Sanderson, R. S.; McKenna Neuman, C.

    2009-05-01

    Mining and smelting operations in Northern Ontario, and indeed worldwide, introduce a number of unique sources of fugitive dust and other aerosol pollutants into the surrounding environment from smokestacks, tailings, and slag dumps exposed to wind erosion. Fugitive dust represents a potential health hazard, and as such, mining companies are required to maintain inventories of dust emissions associated with their operations. The purpose of this study was to fully characterize the wind-induced fugitive dust emission rates of nickel slag collected from a slag dump at a smelting facility in Northern Ontario, as dependent on wind speed, surface roughness, duration of weathering, effects of mechanical disturbance, and exposure to rain. PM10 flux rates were measured through combined field monitoring and wind tunnel simulation. In both settings, airborne dust concentrations downwind of the source were measured using four vertically distributed DustTrak aerosol monitors. Wind speed was measured in the wind tunnel using a micro-pitot tube mounted on a programmable traversing slide, and in the field, using five vertically distributed cup anemometers mounted on a mast. The profiles of PM10 and wind speed were used to compute the vertical emission rate (Fv) using a finite difference method. The PM10 emission rates simulated in the laboratory were found to directly overlap those measured on site at the smelting facility over a range of wind speeds, suggesting that Fv values measured in wind tunnel simulations can be used in dispersion modelling with a reasonable degree of confidence. Although showing a strong positive correlation with wind speed, PM10 emissions from nickel slag were found to demonstrate an exponential, temporal decay immediately following any form of mechanical disturbance that resulted in exposure of the silt fraction of the material. Winnowing of this fraction left behind an armoured surface of coarse, non-erodible clasts. It was further determined that

  9. Measurement of Fugitive Dust Emissions and Visible Emissions.

    Science.gov (United States)

    McKee, Herbert C.

    The method of measuring fugitive dust emission utilized by the Texas Air Control Board is described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. The measuring procedure, precautions, expected results, and legal acceptance of the method are…

  10. A monitoring strategy to assess the fugitive emission from a steel plant

    Science.gov (United States)

    Amodio, M.; Andriani, E.; Dambruoso, P. R.; de Gennaro, G.; Di Gilio, A.; Intini, M.; Palmisani, J.; Tutino, M.

    2013-11-01

    An assessment of the fugitive emission impact on ambient air PM, PAHs and metal concentrations was performed in a residential area near the biggest European steel plant. A careful experimental design was developed to characterize fugitive emissions produced by the integrated steel plant. A PM10 and PM2.5 monitoring campaign was conducted at three sampling sites around the steel plant, in order to perform a triangulation in the area surrounding the investigated site and evaluate its impact based on wind direction. Data analysis showed that the transport of air mass, from the steelworks to one of the receptor sites, resulted in ambient air concentrations of Fe, Mn, Zn and PAHs higher than those observed in the other two sites. Principal component analysis allowed the identification of four emission sources: coke ovens stack, mineral park, a crustal source and vanadium source. The first two sources were characterized by high concentrations of PAHs and metals and related to the steelworks, while the vanadium source was probably associated with maritime traffic in the port area. This preliminary monitoring approach proved effective in identifying the fugitive emission contribution of the steel plant to the surrounding air quality.

  11. Evaluation of Uncertainties in Measuring Particulate Matter Emission Factors from Atmospheric Fugitive Sources Using Optical Remote Sensing

    Science.gov (United States)

    Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.

    2015-12-01

    Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.

  12. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  13. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  14. Capturing fugitive methane emissions from natural gas compressor buildings.

    Science.gov (United States)

    Litto, R; Hayes, R E; Liu, B

    2007-08-01

    Fugitive methane emissions account for about 50% of the greenhouse gas (GHG) emissions from the Canadian conventional oil and gas sector. Sources include leaks in natural gas transmission facilities such as pipelines and compressor stations. There are three sources of methane emissions in a compressor station. The first is emissions resulting from incomplete combustion in the engine; the second is leaks in valves, flanges and other equipment in the building; and the third results from instrument venting. Fugitive methane emissions may be in low concentration relative to air, and thus cannot be destroyed by conventional combustion (below flammability limits of about 5-16%). The present study investigates the feasibility of capturing methane emissions from a compressor station. Computer modelling of the flow patterns of lean methane emissions inside the building is used to show the influence of doors, vents and leak location. Simulations show that for a typical building most fugitive methane exits through the ridge vent provided that the main doors remain closed. When the extraction rate through the ridge vent is controlled, the methane concentration is at acceptable levels for destruction in a catalytic flow reverse reactor, that is, in the range of 0.1-1% by volume.

  15. Flux estimation of fugitive particulate matter emissions from loose Calcisols at construction sites

    Science.gov (United States)

    Hassan, Hala A.; Kumar, Prashant; Kakosimos, Konstantinos E.

    2016-09-01

    A major source of airborne pollution in arid and semi-arid environments (i.e. North Africa, Middle East, Central Asia, and Australia) is the fugitive particulate matter (fPM), which is a frequent product of wind erosion. However, accurate determination of fPM is an ongoing scientific challenge. The objective of this study is to examine fPM emissions from the loose Calcisols (i.e. soils with a substantial accumulation of secondary carbonates), owing to construction activities that can be frequently seen nowadays in arid urbanizing regions such as the Middle East. A two months field campaign was conducted at a construction site, at rest, within the city of Doha (Qatar) to measure number concentrations of PM over a size range of 0.25-32 μm using light scattering based monitoring stations. The fPM emission fluxes were calculated using the Fugitive Dust Model (FDM) in an iterative manner and were fitted to a power function, which expresses the wind velocity dependence. The power factors were estimated as 1.87, 1.65, 2.70 and 2.06 for the four different size classes of particles ≤2.5, 2.5-6, 6-10 and ≤10 μm, respectively. Fitted power function was considered acceptable given that adjusted R2 values varied from 0.13 for the smaller particles and up to 0.69 for the larger ones. These power factors are in the same range of those reported in the literature for similar sources. The outcome of this study is expected to contribute to the improvement of PM emission inventories by focusing on an overlooked but significant pollution source, especially in dry and arid regions, and often located very close to residential areas and sensitive population groups. Further campaigns are recommended to reduce the uncertainty and include more fPM sources (e.g. earthworks) and other types of soil.

  16. Diffuse and fugitive emission dose assessment on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P. [Westinghouse Hanford Co., Richland, WA (United States); Rhoads, K. [Pacific Northwest Lab., Richland, WA (United States)

    1995-01-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order requires RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and (2) continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request requires RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. The RL Compliance Plan included as one of its milestones the requirement to develop a Federal Facility Compliance Agreement (FFCA). An FFCA was negotiated between RL and the EPA, Region 10, and was entered into on February 7, 1994. One of the milestones was to provide EPA, Region 10, with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI will include an assessment of the diffuse and fugitive emissions from the Hanford Site. This assessment does not identify any diffuse or fugitive emission source that would cause an effective dose equivalent greater than 0.1 mrem/yr.

  17. Differential Absorption Lidar Measurements of Fugitive Benzene Emissions

    Science.gov (United States)

    Robinson, R. A.; Innocenti, F.; Helmore, J.; Gardiner, T.; Finlayson, A.; Connor, A.

    2016-12-01

    The Differential Absorption Lidar (DIAL) technique is based on the optical analogue of radar; lidar (light detection and ranging). It provides the capability to remotely measure the concentration and spatial distribution of compounds in the atmosphere. The ability to scan the optical measurement beam throughout the atmosphere enables pollutant concentrations to be mapped, and emission fluxes to be determined when combined with wind data. The NPL DIAL systems can operate in the UV and infrared spectral, enabling the measurement of a range of air pollutants and GHGs including hazardous air pollutants such as benzene. The mobile ground based DIAL systems developed at NPL for pollution monitoring have been used for over 25 years. They have been deployed for routine monitoring, emission factor studies, research investigations and targeted monitoring campaigns. More recently the NPL DIAL has been used in studies to validate other monitoring techniques. In support of this capability, NPL have developed a portable, configurable controlled release system (CRF) able to simulate emissions from typical sources. This has been developed to enable the validation and assessment of fugitive emission monitoring techniques. Following a brief summary of the technique, we outline recent developments in the use of DIAL for monitoring fugitive and diffuse emissions, including the development of a European Standard Method for fugitive emission monitoring. We will present the results of a number of validation exercises using the CRF presenting an update on the performance of DIAL for emission quantification and discuss the wider validation of novel technologies. We will report on recent measurements of the emissions of benzene from industrial sites including a large scale emissions monitoring study carried out by the South Coast Air Quality Management District (SCAQMD) and will report on the measurement of emissions from petrochemical facilities and examine an example of the identification

  18. Mapping Fugitive Gas Emission Sources and Severity Across Southeastern Saskatchewan

    Science.gov (United States)

    Baillie, J.; Risk, D. A.; Lavoie, M.; Williams, J. P.

    2015-12-01

    Southeastern Saskatchewan, Canada contains a 10,000 km2 region heavily developed by oil and gas activity that has been struggling with air quality issues, arising from hundreds or thousands of oil and gas leak points. The region is also very diverse in terms of oilfield operators, who use extraction techniques including conventional, enhanced oil recovery (EOR), and fracking. As regulators and operators need more knowledge about emission patterns locally, we undertook comprehensive mapping and characterization of leak sources at the regional scale using vehicle-based data collection, together with computational techniques. We measured the presence and source of fugitive emissions from infrastructure and oilfield activities in eight 100 km2 survey domains. These included two controls with no oil and gas activity, and otherwise the domains were selected to capture the diversity of development; targeting primarily conventional and EOR activities in the Weyburn-Midale beds, and unconventional activities in the Bakken play. A total of 25 unique operators fell within the survey domains. Each domain was surveyed multiple times for CO2, CH4, and H2S, allowing us to identify persistent leaks and to screen out one-time events. The multiple gas targets also provided opportunities for discriminating one type of fugitive emission from another (i.e. flares from storage tanks) using ratios of excess (above ambient) concentrations, after correcting for natural background variability with a signal-processing routine. Fugitive emissions were commonly observed in all study domains. Most emissions were associated with oil and gas infrastructure, as opposed to drilling and other short-term activities. There were obvious emissions at many well pads, storage tanks, and flares. We also observed high geochemical variability around flares, with some being very effective in combusting toxic gases, and others less so. Almost all observed concentrations fell below regulatory limits, but have a

  19. Atmospheric monitoring for fugitive emissions from geological carbon storage

    Science.gov (United States)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  20. Fugitive emission testing at the Kosovo coal gasification plant. Final task report Apr 79-Sep 81. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Honerkamp, R.L.; Dalrymple, D.A.

    1983-06-01

    The report summarizes results of a test program to characterize fugitive emissions from the Kosovo coal gasification plant in Yugoslavia, a test program implemented by the EPA in response to a need for representative data on the potential environmental impacts of Lurgi coal gasification technology. Major objectives of the fugitive emissions assessment were to: (1) determine the frequency of leak occurrence, (2) measure leak rates from leak sources, (3) estimate total fugitive emissions from leakage, and (4) compare the results to other fugitive emission test data. Study results show similarities to results of fugitive emission testing in U.S. oil refineries and organic chemical plants.

  1. Puff models for simulation of fugitive radioactive emissions in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Camila P. da, E-mail: camila.costa@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Matematica e Estatistica; Pereira, Ledina L., E-mail: ledinalentz@yahoo.com.b [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Vilhena, Marco T., E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tirabassi, Tiziano, E-mail: t.tirabassi@isac.cnr.i [Institute of Atmospheric Sciences and Climate (CNR/ISAC), Bologna (Italy)

    2009-07-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  2. Characterization of PM 10 and PM 2.5 source profiles for fugitive dust in Hong Kong

    Science.gov (United States)

    Ho, K. F.; Lee, S. C.; Chow, Judith C.; Watson, John G.

    PM 10 and PM 2.5 chemical source profiles from Hong Kong were investigated for paved road dust and soil. These profiles are needed for urban-scale speciated emissions inventories and for source apportionment by receptor modeling. Five urban soil and five paved road dust samples were collected, dried and sieved, resuspended in a laboratory chamber, air drawn through PM 10 and PM 2.5 inlet onto Teflon and quartz filters. The filter samples were submitted for both gravimetric and chemical analyses. Chemical analyses included X-ray fluorescence for elemental composition, ion chromatography for water soluble chloride, nitrate, sulfate, atomic absorption spectrophotometry for water soluble sodium and potassium, automated colorimetric analysis for ammonium and thermal/optical reflectance analysis for carbon species. The PM 2.5 constituted 11-30% of the PM 10 in all geological samples. Al, Si and organic carbon (OC) are abundant constituents in all paved road dust and soil samples. The chemical abundances of PM 2.5 and PM 10 for a given source type were similar for most species. In addition, results from resuspended soil (three sets), paved road dust (five sets), aggregate (three sets) and cement (two sets) were obtained from Hong Kong Environmental Protection Department (HKEPD) for comparison as well as mass closure analysis.

  3. Sensitivity of detection of fugitive methane emissions from coal seam gas fields

    Science.gov (United States)

    Feitz, A. J.; Berko, H.; Wilson, P.; Jenkins, C.; Loh, Z. M.; Etheridge, D.

    2013-12-01

    There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of δ13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and

  4. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    Science.gov (United States)

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  5. Monitoring fugitive methane and natural gas emissions, validation of measurement techniques.

    Science.gov (United States)

    Robinson, Rod; Innocenti, Fabrizio; Gardiner, Tom; Helmore, Jon; Finlayson, Andrew; Connor, Andy

    2017-04-01

    The detection and quantification of fugitive and diffuse methane emissions has become an increasing priority in recent years. As the requirements for routine measurement to support industry initiatives increase there is a growing requirement to assess and validate the performance of fugitive emission measurement technologies. For reported emissions traceability and comparability of measurements is important. This talk will present recent work addressing these needs. Differential Absorption Lidar (DIAL) is a laser based remote sensing technology, able to map the concentration of gases in the atmosphere and determine emission fluxes for fugitive emissions. A description of the technique and its application for determining fugitive emissions of methane from oil and gas operations and waste management sites will be given. As DIAL has gained acceptance as a powerful tool for the measurement and quantification of fugitive emissions, and given the rich data it produces, it is being increasingly used to assess and validate other measurement approaches. In addition, to support the validation of technologies, we have developed a portable controlled release facility able to simulate the emissions from area sources. This has been used to assess and validate techniques which are used to monitor emissions. The development and capabilities of the controlled release facility will be described. This talk will report on recent studies using DIAL and the controlled release facility to validate fugitive emission measurement techniques. This includes side by side comparisons of two DIAL systems, the application of both the DIAL technique and the controlled release facility in a major study carried out in 2015 by South Coast Air Quality Management District (SCAQMD) in which a number of optical techniques were assessed and the development of a prototype method validation approach for techniques used to measure methane emissions from shale gas sites. In conclusion the talk will provide an

  6. PROBLEMS WITH DETERMINATION OF FUGITIVE EMISSION OF POLYCYCLIC AROMATIC HYDROCARBONS FROM COKE OVEN BATTERY

    Directory of Open Access Journals (Sweden)

    Rafał Bigda

    2017-03-01

    Full Text Available Coke oven battery is complex and multifaceted facility in terms of air pollutant emissions. As far as stack or quenching tower does not cause major difficulties of emission measurement, the fugitive emission measurement from sources such as battery top elements (charging holes, ascension pipes or oven doors is still complicated and not fully solved problem. This article presents the discussion concerning main problems and errors likely to be made in particular stages of procedure of fugitive emissions characterization from coke oven battery (selection of sampling points, sampling itself, measurement of air velocity over battery top and laboratory analyses. In addition, results of concentrations measurements of selected substances characteristic for the coking process (naphthalene, anthracene, 4 PAHs and TSP originating from fugitive sources of coke oven battery and subjected to reporting under the E-PRTR are presented. The measurements were carried out on coke oven battery top in points selected on the basis of the preceding detailed air convection velocity measurements over battery top. Results of the velocity measurements were compared with results of numerical modelling using CFD software. The presented material is an attempt to cross-sectional presentation of issues related to the quantitative evaluation of fugitive emission from coke oven battery, discussed on the example of PAHs emission as a group of substances characteristic for coking of coal.

  7. Fugitive Emissions from Conventional and Hydraulically Fractured Natural Gas Developments in Western Canada

    Science.gov (United States)

    Atherton, E. E.; Risk, D. A.; Lavoie, M.; Marshall, A. D.; Baillie, J.; Williams, J. P.

    2015-12-01

    Presently, fugitive emissions released into the atmosphere during the completion and production of oil and gas wells are poorly regulated within Canada. Some possible upstream sources of these emissions include flowback during well completions, liquid unloading, chemical injection pumps, and equipment leaks. The environmental benefits of combusting natural gas compared to oil or coal are negated if methane leakages surpass 3.2% of total production, so it is important to have a thorough understanding of these fugitive emissions. This study compares atmospheric leakage pathways of methane and other fugitive gases in both conventional and unconventional oil and gas developments in Western Canada to help fill this knowledge gap. Over 5000 kilometers of mobile survey campaigns were completed in carefully selected developments in the Montney shale play in British Columbia, and in conventional oil fields in Alberta. These sites are developed by more than 25 different operators. High precision laser and UV fluorescence gas analyzers were used to gather geolocated trace gas concentrations at a frequency of 1 Hz while driving. These data were processed with an adaptive technique to compensate for fluctuations in background concentrations for each gas. The residual excess concentrations were compositionally fingerprinted on the basis of the expected gas ratios for potential emission sites in order to definitively attribute anomalies to infrastructural leak sources. Preliminary results from the mobile surveys of both conventional and unconventional oil and gas sites are presented here. Pathways of methane and other fugitive gases are mapped to their respective sources, identifying common causes of emissions leaks across the oil and gas industry. This is the first bottom-up study of fugitive emissions from Canadian energy developments to produce publicly available data. These findings are significant to operators interested in lowering emissions for economic benefit, as well as

  8. Estimating fugitive methane emissions from oil sands mining using extractive core samples

    Science.gov (United States)

    Johnson, Matthew R.; Crosland, Brian M.; McEwen, James D.; Hager, Darcy B.; Armitage, Joshua R.; Karimi-Golpayegani, Mojgan; Picard, David J.

    2016-11-01

    Fugitive methane emissions from oil sands mining activities are a potentially important source of greenhouse gas emissions for which there are significant uncertainties and a lack of open data. This paper investigates the potential of a control-system approach to estimating fugitive methane emissions by analyzing releasable gas volumes in core samples extracted from undeveloped mine regions. Field experiments were performed by leveraging routine winter drilling activities that are a component of normal mine planning and development, and working in conjunction with an on-site drill crew using existing equipment. Core samples were extracted from two test holes, sealed at the surface, and transported for off-site lab analysis. Despite the challenges of the on-site sample collection and the limitations of the available drilling technology, notable quantities of residual methane (mean of 23.8 mgCH4/kg-core-sample (+41%/-35%) or 779 mgCH4/kg-bitumen (+69%/-34%) at 95% confidence) were measured in the collected core samples. If these factors are applied to the volumes of bitumen mined in Alberta in 2015, they imply fugitive methane emissions equivalent to 2.1 MtCO2e (as correlated with bitumen content) or 1.4 MtCO2e (as correlated with total mined material) evaluated on a 100-year time horizon. An additional ∼0.2 Mt of fugitive CO2 emissions could also be expected. Although additional measurements at a larger number of locations are warranted to determine whether these emissions should be considered as additive to, or inclusive of, current estimates based on flux chamber measurements at the mine face, these first-of-their-kind results demonstrate an intriguing alternate method for quantifying fugitive emissions from oil sands mining and extraction.

  9. Center for Corporate Climate Leadership: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases

    Science.gov (United States)

    This guidance document focuses on several fugitive emissions sources that are common for organizations in many sectors: refrigeration and air conditioningsystems, fire suppression systems, and the purchase and release of industrial gases.

  10. Fugitive and Vented Gas Emissions Across Conventional and Unconventional Oil Developments in Southeastern Saskatchewan, Canada

    Science.gov (United States)

    Baillie, J.; Risk, D. A.; Atherton, E. E.; Fougère, C. R.; O'Connell, E.; Lavoie, M.; MacKay, K.; Marshall, A. D.; Williams, J. P.; Macintyre, C. M.

    2016-12-01

    Southeastern Saskatchewan (SK) is a major oil-producing region in central Canada. Mainly, the developed plays include the historic Weyburn-Midale unit (conventional), and Bakken unit (unconventional). Collectively, developments across these plays occupy about 10,000 km2. To help reduce fugitive emissions and venting in SK, we need a baseline understanding of emission patterns across developments, and seasons. We undertook regional-scale monitoring using vehicle-based surveys in the summer, and autumn of 2015 across 7 survey domains of 100 km2 each. Our surveys targeted 5 conventional and Enhanced Oil Recovery (EOR) sites in the Weyburn-Midale field, and 2 unconventional sites in the Bakken. We surveyed each domain 8 times for CO2, CH4, and H2S, which allowed us to identify persistent emission sources of various types. These survey domains allowed us to conduct replicate sampling of 3,000 of 25,000 wells owned by 25 operators in the study area. Persistent fugitive emissions associated with oil infrastructure were present in all 7 domains, with nearly 25% of infrastructure being flagged as a probable emission source. Producing wells were generally the main source of emissions, however facilities were also emitters. Infrastructure age played a role, as older wells tended to emit more frequently than newer wells. Fugitive emission frequency was much more variable between adjacent operators than between development types (conventional vs unconventional), suggesting that opportunity exists to better harmonize emissions management best practice. These results provide a good basis from which operators and policymakers can come together for discussions on how to improve practice and reduce emissions.

  11. Baselining Fugitive and Vented Emissions Across Canadian Energy Developments

    Science.gov (United States)

    O'Connell, L.; Risk, D. A.; Fougère, C. R.; Lavoie, M.; Atherton, E. E.; Baillie, J.; MacKay, K.; Marshall, A. D.

    2016-12-01

    A recent trilateral accord between North American governments pledges to cut energy sector methane emissions 40-45 per cent below 2012 levels by 2025. Effective methane-reduction policy relies on accurate and spatially extensive emissions data. In this study, we assessed the feasibility of bottom-up data collection for Canadian energy developments, using vehicle-based emission screening and volumetric measurement, combined with forward looking infrared (FLIR) detection for pinpointing source. We analyzed trends across many Canadian developments using an 80,000 km survey campaign conducted in 2015-16 in which CO2, CH4, H2S, and δ13CH4 were measured in proximity to over ten thousand well pads. We found that emissions varied according to infrastructure age, operator size, product, and extraction style. Using these data, we conducted an analysis across several variables to evaluate the potential success of non-exhaustive campaigns for capturing trends, and super-emitters, across the Canadian industry. We found that campaigns would be fiscally feasible, and could be statistically significant depending on scale. However, success was very sensitive to the degree of variation amongst operators and developments, for which we suggest a Monte-Carlo type optimization approach that balances survey coverage with attention to specific localized threats. Similar analyses should be conducted in other accord countries because effective and harmonized oversight could help accelerate emissions reductions.

  12. Danish emission inventory for particular matter (PM)

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Winther, M.; Illerup, J.B.; Hjort Mikkelsen, M.

    2003-11-01

    The first Danish emission inventory that was reported in 2002 was a provisional-estimate based on data presently available. This report documents methodology, emission factors and references used for an improved Danish emission inventory for particulate matter. Further results of the improved emission inventory for the year 2000 are shown. The particulate matter emission inventory includes TSP, PM,, and PM, The report covers emission inventories for transport and stationary combustion. An appendix covering emissions from agriculture is also included. For the transport sector, both exhaust and non-exhaust emission such as tyre and break wear and road abrasion are included. (au)

  13. Fugitive Felons

    Data.gov (United States)

    Social Security Administration — The Fugitive Felon Reporting and Tracking System (FRATS) houses fugitive data submitted by reporters (RIDs) and warrant agencies (WAIDs). It also controls and tracks...

  14. Methane fugitive emissions quantification using the novel 'plume camera' (spatial correlation) method

    Science.gov (United States)

    Crosson, E.; Rella, C.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide, the importance of quantifying methane emissions becomes clear. The rapidly increasing reliance on shale gas (or other unconventional sources) is only intensifying the interest in fugitive methane releases. Natural gas (which is predominantly methane) is an attractive energy source, as it emits 40% less carbon dioxide per Joule of energy generated than coal. However, if just a small percentage of the natural gas consumed is lost due to fugitive emissions during production, processing, or transport, this global warming benefit is lost (Howarth et al. 2012). It is therefore imperative, as production of natural gas increases, that the fugitive emissions of methane are quantified accurately. Traditional direct measurement techniques often involve physical access of the leak itself to quantify the emissions rate, and are generally require painstaking effort to first find the leak and then quantify the emissions rate. With over half a million natural gas producing wells in the U.S. (U.S. Energy Information Administration), not including the associated processing, storage, and transport facilities, and with each facility having hundreds or even thousands of fittings that can potentially leak, the need is clear to develop methodologies that can provide a rapid and accurate assessment of the total emissions rate on a per-well head basis. In this paper we present a novel method for emissions quantification which uses a 'plume camera' with three 'pixels' to quantify emissions using direct measurements of methane concentration in the downwind plume. By analyzing the spatial correlation between the pixels, the spatial extent of the instantaneous plume can be inferred. This information, when combined with the wind speed through the measurement plane, provides a direct

  15. Quantifying Fugitive Methane Emissions from Natural Gas Production with Mobile Technology

    Science.gov (United States)

    Tsai, T.; Rella, C.; Crosson, E.

    2013-12-01

    Quantification of fugitive methane (CH4) emissions to determine the environmental impact of natural gas production is challenging with current methods. We present a new mobile method known as the Plume Scanner that can quickly quantify CH4 emissions of point sources. The Plume Scanner is a direct measurement technique which utilizes a mobile Picarro cavity ring-down spectrometer and a gas sampling system based on AirCore technology [1]. As the Plume Scanner vehicle drives through the plume, the air is simultaneously sampled at four different heights, and therefore, the spatial CH4 distribution can be captured (Fig. 1). The flux of the plume is then determined by multiplying the spatial CH4 distribution data with the anemometer measurements. In this way, fugitive emission rates of highly localized sources such as natural gas production pads can be made quickly (~7 min). Verification with controlled CH4 releases demonstrate that under stable atmospheric conditions (Pasquill stability class is C or greater), the Plume Scanner measurements have an error of 2% and a repeatability of 15% [2]. Under unstable atmospheric conditions (Class A or B), the error is 6%, and the repeatability increases to 70% due to the variability of wind conditions. Over two weeks, 275 facilities in the Barnett Shale were surveyed from public roads by sampling the air for elevations in CH4 concentration, and 77% were found leaking. Emissions from 52 sites have been quantified with the Plume Scanner (Fig. 2), and the total emission is 4,900 liters per min (lpm) or 39,000 metric tons/yr CO2e. 1. Karion, A., C. Sweeney, P. Tans, and T. Newberger (2010), AirCore: An innovative atmospheric sampling system, J. Atmos. Oceanic Tech, 27, 1839-1853. 2. F. Pasquill (1961), The estimation of the dispersion of wind borne material, Meterol. Mag., 90(1063), 33-49 Figure 1. Plume Scanner Cartoon Figure 2. Distribution of methane fugitive emissions with error bars associated with the Pasquill stability classes

  16. A Mobile Sensing Approach for Regional Surveillance of Fugitive Methane Emissions in Oil and Gas Production.

    Science.gov (United States)

    Albertson, John D; Harvey, Tierney; Foderaro, Greg; Zhu, Pingping; Zhou, Xiaochi; Ferrari, Silvia; Amin, M Shahrooz; Modrak, Mark; Brantley, Halley; Thoma, Eben D

    2016-03-01

    This paper addresses the need for surveillance of fugitive methane emissions over broad geographical regions. Most existing techniques suffer from being either extensive (but qualitative) or quantitative (but intensive with poor scalability). A total of two novel advancements are made here. First, a recursive Bayesian method is presented for probabilistically characterizing fugitive point-sources from mobile sensor data. This approach is made possible by a new cross-plume integrated dispersion formulation that overcomes much of the need for time-averaging concentration data. The method is tested here against a limited data set of controlled methane release and shown to perform well. We then present an information-theoretic approach to plan the paths of the sensor-equipped vehicle, where the path is chosen so as to maximize expected reduction in integrated target source rate uncertainty in the region, subject to given starting and ending positions and prevailing meteorological conditions. The information-driven sensor path planning algorithm is tested and shown to provide robust results across a wide range of conditions. An overall system concept is presented for optionally piggybacking of these techniques onto normal industry maintenance operations using sensor-equipped work trucks.

  17. FUGITIVE EMISSION REDUCTIONS DUE TO THE USE OF ENCLOSED DOCTOR BLADE SYSTEMS IN THE FLEXOGRAPHIC AND ROTOGRAVURE PRINTING INDUSTRIES

    Science.gov (United States)

    The report gives results of a quantification of the level of fugitive emission reductions resulting from the use of enclosed doctor blade (EDB) systems in place of traditional ink feed systems at flexographic and rotogravure printing operations. An EDB system is an innovative ink...

  18. FUGITIVE EMISSION REDUCTIONS DUE TO THE USE OF ENCLOSED DOCTOR BLADE SYSTEMS IN THE FLEXOGRAPHIC AND ROTOGRAVURE PRINTING INDUSTRIES

    Science.gov (United States)

    The report gives results of a quantification of the level of fugitive emission reductions resulting from the use of enclosed doctor blade (EDB) systems in place of traditional ink feed systems at flexographic and rotogravure printing operations. An EDB system is an innovative ink...

  19. Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a SingleDownwind High-Frequency Gas Sensor

    Science.gov (United States)

    Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a Single Downwind High-Frequency Gas Sensor With the tremendous advances in onshore oil and gas exploration and production (E&P) capability comes the realization that new tools are needed to support env...

  20. Mobile monitoring of fugitive methane emissions from natural gas consumer industries

    Science.gov (United States)

    Zhou, X.; Albertson, J. D.; Gaylord, A.; von Fischer, J.; Rudek, J.; Thoma, E. D.

    2015-12-01

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools for estimating emission rates from mobile methane measurements, and examines results from recent field measurements conducted downwind of several industrial plants using a specialized vehicle equipped with fast response methane sensor. Using these data along with local meteorological data measured by a 3-D sonic anemometer, a Bayesian approach is applied to probabilistically infer methane emission rates based on a modified Gaussian dispersion model. Source rates are updated recursively with repeated traversals of the downwind methane plume when the vehicle was circling around the targeted facilities. Data from controlled tracer release experiments are presented and used to validate the approach. With access via public roads, this mobile monitoring method is able to quickly assess the emission strength of facilities along the sensor path. This work is developing the capacity for efficient regional coverage of potential methane emission rates in support of leak detection and mitigation efforts.

  1. Monitoring fugitive CH4 and CO2 emissions from a closed landfill at Tenerife, Canary Islands

    Science.gov (United States)

    Asensio-Ramos, María; Tompkins, Mitchell R. K.; Turtle, Lara A. K.; García-Merino, Marta; Amonte, Cecilia; Rodrígez, Fátima; Padrón, Eleazar; Melián, Gladys V.; Padilla, Germán; Barrancos, José; Pérez, Nemesio M.

    2017-04-01

    Solid waste must be managed systematically to ensure environmental best practices. One of the ways to manage this huge problem is to systematic dispose waste materials in locations such as landfills. However, landfills could face possible threats to the environment such as groundwater pollution and the release of landfill gases (CH4, volatile organic compounds, etc.) to the atmosphere. These structures should be carefully filled, monitored and maintained while they are active and for up to 30 years after they are closed. Even after years of being closed, a systematically amount of landfill gas could be released to the atmosphere through its surface in a diffuse and fugitive form. During the period 1999-2016, we have studied the spatial-temporal distribution of the surface fugitive emission of CO2 and CH4 into the atmosphere in a cell in the Arico's municipal landfill (0.3 km2) at Tenerife, Canary Islands, Spain. This cell was operative until 2004, when it was filled and closed. Monitoring these diffuse landfill emissions provides information of how the closed landfill is degassing. To do so, we have performed 9 gas emission surveys during the period 1999-2016. Surface landfill CO2 efflux measurements were carried out at around 450 sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases taken in the chamber were analyzed using a double channel VARIAN 4900 micro-GC. CH4 efflux measurements were computed combining CO2 efflux measurements and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. In general, a decrease in the CO2 emission is observed since the cell was closed (2004) to the present. The total CO2 and CH4 diffuse emissions estimated in the 2016 survey were 4.54 ± 0.14 t d-1 and 268.65 ± 17.99 t d-1, respectively

  2. Assessment for potential radionuclide emissions from stacks and diffuse and fugitive sources on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P. [Westinghouse Hanford Co., Richland, WA (United States); Rhoads, K. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    By using the six EPA-approved methods, instead of only the original back calculation method for assessing the 84 WHC registered stacks, the number of stacks requiring continuous monitoring was reduced from 32 to 19 stacks. The intercomparison between results showed that no correlation existed between back calculations and release fractions. Also the NDA, upstream air samples, and powder release fraction method results were at least three orders of magnitude lower then the back calculations results. The most surprising results of the assessment came from NDA. NDA was found to be an easy method for assessing potential emissions. For the nine stacks assessed by NDA, all nine of the stacks would have required continuous monitoring when assessed by back calculations. However, when NDA was applied all stacks had potential emissions that would cause an EDE below the > 0.1 mrem/y standard. Apparent DFs for the HEPA filter systems were calculated for eight nondesignated stacks with emissions above the detection limit. These apparent DFs ranged from 0.5 to 250. The EDE dose to the MEI was calculated to be 0.028 mrem/y for diffuse and fugitive emissions from the Hanford Sited. This is well below the > 0.1 mrem/y standard.

  3. Investigation of fugitive dust emissions from nepheline syenite mine tailings near Nephton, Ontario

    Science.gov (United States)

    Ogungbemide, Damilare Immanuel

    A set of experiments was designed to investigate the factors--atmospheric and surficial--controlling fugitive dust emissions from the tailings ponds of UNIMIN Canada, a mining company that extracts and produces nepheline syenite (feldspar) at two adjacent sites (Nephton and Blue Mountain) located north of Havelock, Ontario. Using wind tunnel measurements, the combined influence of relative humidity and temperature (represented by the absolute matric potential, |psi|) on dust emission was quantified and modeled. About 300 experimental runs were conducted under various conditions of wind speed (4.5-6.25 ms -1), temperature (0-30°C) and relative humidity (10-70%). Generally, dust flux decreased as a logarithmic function of matric potential, with dust emission strongly suppressed for RH > 60% or |psi|climate and topographic conditions found at their sites, and also serve as a source of useful information and input data for atmospheric dispersion models, such as AERMOD and CALPUFF, whose accuracy depends on the quality of the input data such as the emission rate.

  4. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments.

    Science.gov (United States)

    Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G

    2016-06-01

    Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks.

  5. Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants

    Science.gov (United States)

    Mu, Ling; Peng, Lin; Liu, Xiaofeng; Song, Chongfang; Bai, Huiling; Zhang, Jianqiang; Hu, Dongmei; He, Qiusheng; Li, Fan

    2014-02-01

    Coking is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in China. However, there is little information available on the emission characteristics of PAHs from fugitive emission during coking, especially on the specific processes dominating the gas-particle partitioning of PAHs. In this study, emission characteristics and gas-particle partitioning of PAHs from fugitive emission in four typical coke plants (CPs) with different scales and techniques were investigated. The average concentrations of total PAHs from fugitive emission at CP2, CP3 and CP4 (stamp charging) were 146.98, 31.82, and 35.20 μg m-3, which were 13.38-, 2.90- and 3.20-fold higher, respectively, than those at CP1 (top charging, 10.98 μg m-3). Low molecular weight PAHs with 2-3 rings made up 75.3% of the total PAHs on average, and the contributions of particulate PAH to the total BaP equivalent concentrations (BaPeq) in each plant were significantly higher than the corresponding contributions to the total PAH mass concentrations. The calculated total BaPeq concentrations varied from 0.19 to 10.86 μg m-3 with an average of 3.14 μg m-3, and more efficient measures to control fugitive emission in coke plants should be employed to prevent or reduce the health risk to workers. Absorption into organic matter dominated the gas-particle partitioning for most of the PAHs including PhA, FluA, Chr, BbF, BkF and BaP, while adsorption on elemental carbon appeared to play a dominant role for AcPy, AcP and Flu.

  6. Quantification of Fugitive Methane Emissions with Spatially Correlated Measurements Collected with Novel Plume Camera

    Science.gov (United States)

    Tsai, Tracy; Rella, Chris; Crosson, Eric

    2013-04-01

    Quantification of fugitive methane emissions from unconventional natural gas (i.e. shale gas, tight sand gas, etc.) production, processing, and transport is essential for scientists, policy-makers, and the energy industry, because methane has a global warming potential of at least 21 times that of carbon dioxide over a span of 100 years [1]. Therefore, fugitive emissions reduce any environmental benefits to using natural gas instead of traditional fossil fuels [2]. Current measurement techniques involve first locating all the possible leaks and then measuring the emission of each leak. This technique is a painstaking and slow process that cannot be scaled up to the large size of the natural gas industry in which there are at least half a million natural gas wells in the United States alone [3]. An alternative method is to calculate the emission of a plume through dispersion modeling. This method is a scalable approach since all the individual leaks within a natural gas facility can be aggregated into a single plume measurement. However, plume dispersion modeling requires additional knowledge of the distance to the source, atmospheric turbulence, and local topography, and it is a mathematically intensive process. Therefore, there is a need for an instrument capable of simple, rapid, and accurate measurements of fugitive methane emissions on a per well head scale. We will present the "plume camera" instrument, which simultaneously measures methane at different spatial points or pixels. The spatial correlation between methane measurements provides spatial information of the plume, and in addition to the wind measurement collected with a sonic anemometer, the flux can be determined. Unlike the plume dispersion model, this approach does not require knowledge of the distance to the source and atmospheric conditions. Moreover, the instrument can fit inside a standard car such that emission measurements can be performed on a per well head basis. In a controlled experiment

  7. Quantifying Fugitive Methane Emissions at an Underground Coal Fire Using Cavity Ring-Down Spectroscopy Technology

    Science.gov (United States)

    Fleck, D.; Gannon, L.; Kim-Hak, D.; Ide, T.

    2016-12-01

    Understanding methane emissions is of utmost importance due to its greenhouse warming potential. Methane emissions can occur from a variety of natural and anthropogenic sources which include wetlands, landfills, oil/gas/coal extraction activities, underground coal fires, and natural gas distribution systems. Locating and containing these emissions are critical to minimizing their environmental impacts and economically beneficial when retrieving large fugitive amounts. In order to design a way to mitigate these methane emissions, they must first be accurately quantified. One such quantification method is to measure methane fluxes, which is a measurement technique that is calculated based on rate of gas accumulation in a known chamber volume over methane seepages. This allows for quantification of greenhouse gas emissions at a localized level (sub one meter) that can complement remote sensing and other largescale modeling techniques to further paint the picture of emission points. High performance analyzers are required to provide both sufficient temporal resolution and precise concentration measurements in order to make these measurements over only minutes. A method of measuring methane fluxes was developed using the latest portable, battery-powered Cavity Ring-Down Spectroscopy analyzer from Picarro (G4301). In combination with a mobile accumulation chamber, the instrument allows for rapid measurement of methane and carbon dioxide fluxes over wide areas. For this study, methane fluxes that were measured at an underground coal fire near the Four Corners region using the Picarro analyzer are presented. The flux rates collected demonstrate the ability for the analyzer to detect methane fluxes across many orders of magnitude. Measurements were accompanied by simultaneously geotagging the measurements with GPS to georeferenced the data. Methane flux data were instrumental in our ability to characterize the extent and the migration of the underground fire. In the future

  8. Fugitive methane emissions from natural, urban, agricultural, and energy-production landscapes of eastern Australia

    Science.gov (United States)

    Kelly, Bryce F. J.; Iverach, Charlotte P.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.

    2015-04-01

    Modern cavity ringdown spectroscopy systems (CRDS) enable the continuous measurement of methane concentration. This allows for improved quantification of greenhouse gas emissions associated with various natural and human landscapes. We present a subset of over 4000 km of continuous methane surveying along the east coast of Australia, made using a Picarro G2301 CRDS, deployed in a utility vehicle with an air inlet above the roof at 2.2 mAGL. Measurements were made every 5 seconds to a precision of coal mines, unconventional gas developments (coal seam gas; CSG), and leaks detected in cities and country towns. In areas of dryland crops the median methane concentration was 1.78 ppm, while in the irrigation districts located on vertisol soils the concentration was as low as 1.76 ppm, which may indicate that these soils are a sink for methane. In the Hunter Valley, New South Wales, open-cut coal mining district we mapped a continuous 50 km interval where the concentration of methane exceeded 1.80 ppm. The median concentration in this interval was 2.02 ppm. Peak readings were beyond the range of the reliable measurement (in excess of 3.00 ppm). This extended plume is an amalgamation of plumes from 17 major pits 1 to 10 km in length. Adjacent to CSG developments in the Surat Basin, southeast Queensland, only small anomalies were detected near the well-heads. Throughout the vast majority of the gas fields the concentration of methane was below 1.80 ppm. The largest source of fugitive methane associated with CSG was off-gassing methane from the co-produced water holding ponds. At one location the down wind plume had a cross section of approximately 1 km where the concentration of methane was above 1.80 ppm. The median concentration within this section was 1.82 ppm, with a peak reading of 2.11 ppm. The ambient air methane concentration was always higher in urban environments compared to the surrounding countryside. Along one major road in Sydney we mapped an interval that

  9. Is Optical Gas Imaging Effective for Detecting Fugitive Methane Emissions? - A Technological and Policy Perspective

    Science.gov (United States)

    Ravikumar, A. P.; Wang, J.; Brandt, A. R.

    2016-12-01

    Mitigating fugitive methane emissions from the oil and gas industry has become an important concern for both businesses and regulators. While recent studies have improved our understanding of emissions from all sectors of the natural gas supply chain, cost-effectively identifying leaks over expansive natural gas infrastructure remains a significant challenge. Recently, the Environmental Protection Agency (EPA) has recommended the use of optical gas imaging (OGI) technologies to be used in industry-wide leak detection and repair (LDAR) programs. However, there has been little to no systematic study of the effectiveness of infrared-camera-based OGI technology for leak detection applications. Here, we develop a physics-based model that simulates a passive infrared camera imaging a methane leak against varying background and ambient conditions. We verify the simulation tool through a series of large-volume controlled release field experiments wherein known quantities of methane were released and imaged from a range of distances. After simulator verification, we analyze the effects of environmental conditions like temperature, wind, and imaging background on the amount of methane detected from a statistically representative survey program. We also examine the effects of LDAR design parameters like imaging distance, leak size distribution, and gas composition. We show that imaging distance strongly affects leak detection - EPA's expectation of a 60% reduction in fugitive emissions based on a semi-annual LDAR survey will be realized only if leaks are imaged at a distance less than 10 m from the source under ideal environmental conditions. Local wind speed is also shown to be important. We show that minimum detection limits are 3 to 4 times higher for wet-gas compositions that contain a significant fraction of ethane and propane, resulting a significantly large leakage rate. We also explore the importance of `super-emitters' on the performance of an OGI-based leak

  10. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells

    Science.gov (United States)

    Worrall, Fred; boothroyd, Ian; Almond, Sam; Davies, Richard

    2015-04-01

    The aim of this study was to consider the potential legacy of increased onshore, unconventional gas production by examining the integrity of decommissioned, onshore, oil and gas wells in the UK. In the absence of a history of unconventional hydrocarbon exploitation in the UK, conventional onshore sites were considered and an examination of pollution incidents records had suggested that only a small fraction of onshore wells could show integrity failures. In this study the fugitive emissions of methane from former oil and gas production wells onshore in the UK were considered as a measure of well integrity. The survey considered 49 decommissioned (abandoned) wells from 4 different basins that were between 8 and 78 years old; all but one of these wells would be considered as having been decommissioned properly, i.e. wells cut, sealed and buried by soil cover to the extent that the well sites were being used for agriculture. For each well site the soil gas methane was analysed multiple times and assessed relative to a nearby control site of similar land-use and soil type. The results will be expressed in terms of the proportion and extent of well integrity failure, or success, over time since decommissioning and relative to local control sites. The probability of failure and the emissions factor for decommissioned wells will be presented.

  11. PM Emissions in a Urban Context

    Directory of Open Access Journals (Sweden)

    Enrico Brizio

    2007-01-01

    Full Text Available Within a urban environment, three different sources of particulate matter should be considered: heating plants using different combustibles (natural gas, gas oil, fuel oil, wood, industrial plants placed in the surrounding area, traffic. While the effects of the first two origins can be easily calculated on the basis of existing emission factors, the PM emissions from traffic are of two types, exhaust and non-exhaust. The latter type of emission is due to vehicle components’ wear (tyres, brakes, road abrasion and dust re-suspension and its quantification is not straightforward, as the variability of the corresponding emission factors found in literature demonstrates. In this paper we tried to calculate the total PM emission factors due to traffic by means of the measured PM concentrations for a 50,000 inhabitants town in NW Italy. At the same time we tried to assess the different contributions to the air quality of the town due to the other emission sources, namely heating and industrial plants, in order to understand who is the main responsible of the existing critical situation and to get some general information on the positive effect obtainable through different intervention policy.

  12. Measurement of fugitive volatile organic compound emissions from a petrochemical tank farm using open-path Fourier transform infrared spectrometry

    Science.gov (United States)

    Wu, Chang-Fu; Wu, Tzong-gang; Hashmonay, Ram A.; Chang, Shih-Ying; Wu, Yu-Syuan; Chao, Chun-Ping; Hsu, Cheng-Ping; Chase, Michael J.; Kagann, Robert H.

    2014-01-01

    Fugitive emission of air pollutants is conventionally estimated based on standard emission factors. The Vertical Radial Plume Mapping (VRPM) technique, as described in the US EPA OTM-10, is designed to measure emission flux by directly monitoring the concentration of the plume crossing a vertical plane downwind of the site of interest. This paper describes the evaluation results of implementing VRPM in a complex industrial setting (a petrochemical tank farm). The vertical plane was constructed from five retroreflectors and an open-path Fourier transform infrared spectrometer. The VRPM configuration was approximately 189.2 m in width × 30.7 m in height. In the accompanying tracer gas experiment, the bias of the VRPM estimate was less than 2% and its 95% confidence interval contained the true release rate. Emission estimates of the target VOCs (benzene, m-xylene, o-xylene, p-xylene, and toluene) ranged from 0.86 to 2.18 g s-1 during the 14-day field campaign, while estimates based on the standard emission factors were one order of magnitude lower, possibly leading to an underestimation of the impact of these fugitive emissions on air quality and human health. It was also demonstrated that a simplified 3-beam geometry (i.e., without one dimensional scanning lines) resulted in higher uncertainties in the emission estimates.

  13. Fugitive dust emissions due to car traffic on streets in Vienna; Diffuse Staubemissionen durch den Fahrzeugverkehr auf den Strassen der Stadt Wien

    Energy Technology Data Exchange (ETDEWEB)

    Hoeflinger, W.; Koschutnig, W. [Inst. fuer Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften der Technischen Univ. Wien (Austria)

    2003-10-01

    Fugitive dust emissions resulting from street car traffic in the city of Vienna were determined over a period of 17 months. The emission factor over the measuring period was calculated by measuring the silt content (sL-value) of different selected streets and using the available traffic count data. It is shown, that strewing crushed stone on streets in winter has a major influence on fugitive dust emission. A comparison of these emission factors with ambient air measuring data over the same measuring period shows parallel curves, which shows that resuspension of the dust deposited on streets affects air quality in the city of Vienna. (orig.)

  14. Mobile sensing of point-source fugitive methane emissions using Bayesian inference: the determination of the likelihood function

    Science.gov (United States)

    Zhou, X.; Albertson, J. D.

    2016-12-01

    Natural gas is considered as a bridge fuel towards clean energy due to its potential lower greenhouse gas emission comparing with other fossil fuels. Despite numerous efforts, an efficient and cost-effective approach to monitor fugitive methane emissions along the natural gas production-supply chain has not been developed yet. Recently, mobile methane measurement has been introduced which applies a Bayesian approach to probabilistically infer methane emission rates and update estimates recursively when new measurements become available. However, the likelihood function, especially the error term which determines the shape of the estimate uncertainty, is not rigorously defined and evaluated with field data. To address this issue, we performed a series of near-source (sources, and concurrent wind and temperature data are recorded by nearby 3-D sonic anemometers. With known methane release rates, the measurements were used to determine the functional form and the parameterization of the likelihood function in the Bayesian inference scheme under different meteorological conditions.

  15. Characterizing and Quantifying Emissions and Transport of Fugitive Dust Emissions Due to Department of Defense Activities

    Science.gov (United States)

    2015-09-19

    transfer standard measurement may or may not be linear , but can be established empirically once, and then utilized to conduct a multitude of...for a range of types of wheeled vehicles due to the essentially linear nature of the relationship between dust emissions and vehicle weight and...rates of rotation of the PI-SWERL® annular blade. Forty-one roughness configurations were fitted to the viscometer-device to evaluate the

  16. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  17. Effects of Adding Corn Dried Distiller Grains with Solubles (DDGS) to the Dairy Cow Diet and Effects of Bedding in Dairy Cow Slurry on Fugitive Methane Emissions.

    Science.gov (United States)

    Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Hassanat, Fadi

    2014-12-09

    The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS) to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss) in dairy slurry on fugitive CH₄ emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29%) the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS), fat, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH₄ emissions showed a significant increase of 15% (p slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH₄ emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05) in fugitive CH₄ emissions.

  18. Effects of Adding Corn Dried Distiller Grains with Solubles (DDGS to the Dairy Cow Diet and Effects of Bedding in Dairy Cow Slurry on Fugitive Methane Emissions

    Directory of Open Access Journals (Sweden)

    Daniel I. Massé

    2014-12-01

    Full Text Available The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss in dairy slurry on fugitive CH4 emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29% the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS, fat, neutral detergent fiber (NDF, acid detergent fiber (ADF and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH4 emissions showed a significant increase of 15% (p < 0.05 for the slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH4 emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05 in fugitive CH4 emissions.

  19. Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources

    NARCIS (Netherlands)

    Bouman, Evert A.; Ramirez, Andrea; Hertwich, Edgar G.

    2015-01-01

    In this paper we investigate the influence of fugitive methane emissions from coal, natural gas, and shale gas extraction on the greenhouse gas (GHG) impacts of fossil fuel power generation through its life cycle. A multiregional hybridized life cycle assessment (LCA) model is used to evaluate

  20. Analysis of the Efficiency of Fugitive Dust Restrain Methods on Bare Land of Da-an River

    Science.gov (United States)

    CHEN, H.

    2013-12-01

    Nowadays due to the increasing severity of season fugitive dust at estuary area, the public agencies of government gradually pay more attention to various refrain works. However, it is difficult to evaluate the efficiency of various refrain methods because of lacking of appropriate quantitative index. As a consequence, the only way to understand the fundamentals and efficiency of various refrain works at current stage is to implement the constructions directly on the bare land of riverbed and perform a series of field monitoring. In this study, incorporating with construction cost a FDRE (Fugitive Dust Restrain Efficiency) value was defined to evaluate the cost/refrain-efficiency of various refrain works. Moreover, two case histories of fugitive dust emission at the estuary of Da-An river during Ka-Maegi and Fung-Wong typhoons of 2008 were used for FDRE and cost/refrain-efficiency analyses. Firstly, numerical simulations of fugitive dust emission were performed for the estuary area of Da-An river to calculate the concentration of PM2.5 and PM10 with and without installation of fugitive dust refrain works and the corresponding FDRE values. Subsequently, considering the construction cost and FDRE value one can determine the FDRB values for various refrain works. Meanwhile, the simulations of fugitive dust concentrations were converted into PSI (Pollutant Standard Index) value to evaluate the air quality during fugitive dust emission at the estuary. According to the analyses, without considering the construction cost, the water curtain method (or sprinkling method) is capable of providing the highest FDRE value and best refrain effect to fugitive dust. On the contrary, the vein-type watering covering has the highest FDRB value and is the most economic method to fugitive dust refrain. Construction layout of vein-type water covering method on bare land of riverbed sites of FDRE monitoring stations (P1~P7) and PSI evaluating central point (Q1)

  1. Selection of Valve Fugitive Emission Class%阀门微泄漏等级的选用

    Institute of Scientific and Technical Information of China (English)

    陈彦

    2016-01-01

    管阀外泄漏是化工装置最主要的 VOCs 无组织排放源之一,微泄漏阀门的应用可以在源头上控制VOCs 的产生。目前我国微泄漏阀门的选用尚缺乏明确的标准依据,设计单位主要根据物料的毒性危险属性进行阀门泄漏等级的确定,通常未考虑物料的阀门外泄露对环境的污染。针对这一问题,提出在微泄漏阀门泄漏等级的确定中,除了参考毒性危险属性外,还应该综合考虑物料的环境污染属性,即光化学臭氧生成潜势(POCP)、臭氧损耗潜势(ODP)、全球变暖潜势(GWP)三项指标,从而既保护人类健康又保护了环境。%External leak occurred in pipe valve is one of the most serious VOCs fugitive emission sources in chemical equipment, while the application of valve sealing technology can control the root causes of the generation of VOCs. At present, the selection of valve fugitive emission class is still lack of clear criteria, the fugitive emission class is determined on the basis of the toxic and hazard properties of fluids by designers, but the environmental pollution induced from external leak occurred in valve is often out of consideration. To solve this problem, it was proposed in this article that besides referring to the toxic and hazard properties of fluids, environmental pollution from the leakage of fluids should be taken into account, including photochemical ozone creation potential (POCP), ozone depleting potential (ODP) and global warming potential (GWP), then both human health and environment protection are ensured.

  2. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    Science.gov (United States)

    Bonifacio, Henry F.; Maghirang, Ronaldo G.; Trabue, Steven L.; McConnell, Laura L.; Prueger, John H.; Bonifacio, Edna R.

    2015-01-01

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentration profiles at the feedlot were measured using gravimetric samplers, and micrometeorological parameters were monitored with eddy covariance instrumentation during the nine 4- to 5-day intensive sampling campaigns from May 2010 through September 2011. Emission fluxes were determined from the measured concentration gradients and meteorological parameters using the flux-gradient technique. PM ratios based on calculated emission fluxes were 0.28 for PM2.5/PM10, 0.12 for PM2.5/TSP, and 0.24 for PM10/TSP, indicating that a large fraction of the PM emitted at the studied feedlot was in the coarse range of aerodynamic diameter, >10 μm. Median daily emission factors were 57, 21, and 11 kg 1000-head (hd)-1 d-1 for TSP (n = 20 days), PM10 (n = 19 days), and PM2.5 (n = 11 days), respectively. Cattle pen surface moisture contents of at least 20-30% significantly reduced both TSP and PM10 emissions, but moisture's effect on PM2.5 emissions was not established due to difficulty in measuring PM2.5 concentrations under low-PM conditions.

  3. Emissions of NO, NO2 and PM from inland shipping

    Science.gov (United States)

    Kurtenbach, Ralf; Vaupel, Kai; Kleffmann, Jörg; Klenk, Ulrich; Schmidt, Eberhard; Wiesen, Peter

    2016-11-01

    Particulate matter (PM) and nitrogen oxides NOx (NOx = NO2+ NO) are key species for urban air quality in Europe and are emitted by mobile sources. According to European recommendations, a significant fraction of road freight should be shifted to waterborne transport in the future. In order to better consider this emission change pattern in future emission inventories, in the present study inland water transport emissions of NOx, CO2 and PM were investigated under real world conditions on the river Rhine, Germany, in 2013. An average NO2 / NOx emission ratio of 0.08 ± 0.02 was obtained, which is indicative of ship diesel engines without exhaust gas aftertreatment systems. For all measured motor ship types and operation conditions, overall weighted average emission indices (EIs), as emitted mass of pollutant per kg burnt fuel of EINOx = 54 ± 4 g kg-1 and a lower limit EIPM1 ≥ 2.0 ± 0.3 g kg-1, were obtained. EIs for NOx and PM1 were found to be in the range of 20-161 and ≥ 0.2-8.1 g kg-1 respectively. A comparison with threshold values of national German guidelines shows that the NOx emissions of all investigated motor ship types are above the threshold values, while the obtained lower limit PM1 emissions are just under. To reduce NOx emissions to acceptable values, implementation of exhaust gas aftertreatment systems is recommended.

  4. Development of novel alternative biodiesel fuels for reducing PM emissions and PM-related genotoxicity.

    Science.gov (United States)

    Yang, Po-Ming; Wang, Chia-Chi; Lin, Ying-Chi; Jhang, Syu-Ruei; Lin, Li-Jung; Lin, Yuan-Chung

    2017-07-01

    This paper intend to investigate the effects of biodiesel fuel blends comprising of waste-cooking oil and butanol-diesel (B10W10-B10W40) under steady-state conditions. Both particulate organic carbon (OC) and PM including PM2.5 and PM10 significantly decreased with the increasing percentage of biodiesel fuel blends. The fuel blend of B10W40 also demonstrated the most effective function in reducing the emissions of PM10 and PM2.5 in the volume by 59.4% and 57.7%, respectively. Moreover, the emissions of nitrogen oxides decreased with the blending of B10W10-B10W40 (13.9-28.5%), while the brake specific fuel consumption was substantially increased (5.69-13.4%). The overall biological toxicity of PM10 generated from the fuel tested in this study was determined according to Single Cell Gel Electrophoresis assay in human alveolar basal epithelial A549 cells and micronucleus assay in CHO-K1 cells. In addition, the volume of more than 20% waste-cooking oil (B10W20 and B10W40) significantly reduced diesel-induced genotoxicity in lung cells and micronucleus formation in CHO-K1 cells. Collectively, these results indicated that biodiesel fuel blends with the butanol could be a potential alternative fuels for diesel engines because of its substantial property with a significant reduction of the PM-related genotoxicity and the emissions of PM, particulate OC, and NOX. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Enhanced PM10 bounded PAHs from shipping emissions

    Science.gov (United States)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  6. Determination of fugitive coal-dust emissions from rotary railcar dumping. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, E.T.; Carnes, D.H.; Catizone, P.A.; Kelley, K.J.

    1984-09-01

    TRC Environmental Consultants, Inc. conducted 72 field tests to determine particulate emission levels for a rotary railcar coal dumper operated by the Potomac Electric Power Company. Approximately 60 parameters were monitored as part of the testing program. These parameters related to particulate emissions, meteorology, and coal properties. The railcar dumper was situated inside of a shed. No other control devices were in operation during the test program. Emissions were measured at the entrance and exit doorways of the shed using the mass flux technique. Background levels were accounted for using the upwind/downwind technique. The amount of particulate material that deposited within the shed was also recorded. The study resulted in the determination of emission levels that were one to two orders of magnitude less than those cited in the literature. These emission levels were found to correlate the strongest with the moisture content of the coal and whether the coal was washed or unwashed.

  7. Emission reduction of NOx, PM, PM-carbon, and PAHs from a generator fuelled by biodieselhols.

    Science.gov (United States)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Chao, How-Ran; Lin, Chih-Chung; Hsieh, Lien-Te

    2014-06-15

    This investigation examines the particulate matter (PM), particulate carbon, polycyclic aromatic hydrocarbons (PAHs), and nitrogen oxides (NOx) emitted from a generator fueled by petroleum diesel blended with waste-edible-oil-biodiesel and water-containing acetone. Experimental results show that using biodieselhols with water-containing (or pure) acetone as the fuel of generator, in comparison to using petroleum diesel, significantly reduces PM emission; roughly, this reduction increased as percentage of water-containing acetone increased. When the percentages of waste-edible-oil-biodiesel were ≤ 5 vol%, adding pure or water-containing acetone (1-3 vol%) to biodieselhols generated emission reductions of NOx, PM, particle-bound organic carbon (OC), total-PAHs, and total-BaPeq. Consequently, using water-containing acetone biodieselhols as an alternative generator fuel is feasible and helps recycle and reuse waste solvents containing water-containing acetone.

  8. Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift

    Science.gov (United States)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-05-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 ± 0.07 (2σ) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  9. A comparison of PCA and PMF models for source identification of fugitive methane emissions

    Science.gov (United States)

    Assan, Sabina; Baudic, Alexia; Bsaibes, Sandy; Gros, Valerie; Ciais, Philippe; Staufer, Johannes; Robinson, Rod; Vogel, Felix

    2017-04-01

    Methane (CH_4) is a greenhouse gas with a global warming potential 28-32 times that of carbon dioxide (CO_2) on a 100 year period, and even greater on shorter timescales [Etminan, et al., 2016, Allen, 2014]. Thus, despite its relatively short life time and smaller emission quantities compared to CO_2, CH4 emissions contribute to approximately 20{%} of today's anthropogenic greenhouse gas warming [Kirschke et al., 2013]. Major anthropogenic sources include livestock (enteric fermentation), oil and gas production and distribution, landfills, and wastewater emissions [EPA, 2011]. Especially in densely populated areas multiple CH4 sources can be found in close vicinity. Thus, when measuring CH4 emissions at local scales it is necessary to distinguish between different CH4 source categories to effectively quantify the contribution of each sector and aid the implementation of greenhouse gas reduction strategies. To this end, source apportionment models can be used to aid the interpretation of spatial and temporal patterns in order to identify and characterise emission sources. The focus of this study is to evaluate two common linear receptor models, namely Principle Component Analysis (PCA) and Positive Matrix Factorisation (PMF) for CH4 source apportionment. The statistical models I will present combine continuous in-situ CH4 , C_2H_6, δ^1^3CH4 measured using a Cavity Ring Down Spectroscopy (CRDS) instrument [Assan et al. 2016] with volatile organic compound (VOC) observations performed using Gas Chromatography (GC) in order to explain the underlying variance of the data. The strengths and weaknesses of both models are identified for data collected in multi-source environments in the vicinity of four different types of sites; an agricultural farm with cattle, a natural gas compressor station, a wastewater treatment plant, and a pari-urban location in the Ile de France region impacted by various sources. To conclude, receptor model results to separate statistically the

  10. Performance Evaluations and Quality Validation System for Optical Gas Imaging Cameras That Visualize Fugitive Hydrocarbon Gas Emissions

    Science.gov (United States)

    Optical gas imaging (OGI) cameras have the unique ability to exploit the electromagnetic properties of fugitive chemical vapors to make invisible gases visible. This ability is extremely useful for industrial facilities trying to mitigate product losses from escaping gas and fac...

  11. A UAV-based gas sensing system for detecting fugitive methane emissions

    Science.gov (United States)

    Hugenholtz, C.; Barchyn, T.; Myshak, S.; Bauer, J.

    2016-12-01

    Methane is one of the most prevalent greenhouse gases emitted by human activities and is a major component of government-led initiatives to reduce GHG emissions in Canada, the USA, and elsewhere. In light of growing demand for measurements and verification of atmospheric methane concentration across the oil and gas supply chain, an autonomous airborne gas sensing system was developed that combines a small UAV and a lightweight gas monitor. This paper outlines the technology, analytics, and presents data from a case study to demonstrate the proof of concept. The UAV is a fixed-wing (2.2 m wingspan), battery-operated platform, with a flight endurance of 80-120 minutes. The gas sensor onboard the UAV is a tunable diode laser absorption spectrometer that uses an integrated transmitter/receiver unit and a remote, passive retro-reflector. The transmitter is attached to one of the winglets, while the other is coated with reflective material. The total weight of the UAV and gas sensor is 4.3 kg. During flight, the system operates autonomously, acquiring averages of raw measurements at 1 Hz, with a recorded resolution of 0.0455 ppm. The onboard measurement and control unit (MCU) for the gas sensor is integrated with the UAV autopilot in order to provide time-stamped and geotagged concentration measurements, and to provide real-time flight adjustments when concentration exceeds a pre-determined threshold. The data are retrieved from the MCU when the mission is complete. In order to demonstrate the proof of concept, we present results from a case study and outline opportunities for translating the measurements into decision making.

  12. Physical and chemical characterisation of PM emissions from two ships operating in European emission control areas

    NARCIS (Netherlands)

    Moldanová, J.; Fridell, E.; Winnes, H.; Holmin-Fridell, S.; Boman, J.; Jedynska, A.; Tishkova, V.; Demirdjian, B.; Joulie, S.; Bladt, H.; Ivleva, N.P.; Niessner, R.

    2013-01-01

    In this paper emission factors (EFs) for particulate matter (PM) and some sub-components as well as gaseous substances were investigated in two onboard measurement campaigns. Emissions from two 4-stroke main engines were measured under stable-load conditions. The impact of varying engine load on the

  13. Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas

    Directory of Open Access Journals (Sweden)

    J. Moldanová

    2013-04-01

    Full Text Available Emissions of particulate matter (PM from shipping contribute significantly to the anthropogenic burden of PM. The environmental effects of PM from shipping include negative impact on human health through increased concentrations of particles in many coastal areas and harbour cities and the climate impact. The PM emitted by ship engines consists of organic carbon (OC, elemental or black carbon (EC/BC, sulphate, inorganic compounds containing V, Ni, Ca, Zn and other metals and associated water. The chemical composition and physical properties of PM vary with type of fuel burned, type of engine and engine operation mode. While primary PM emissions of species like V, Ni and Ca are supposed to be determined by composition of fuel and lubricant oil, emissions of particulate OC, EC and sulphate are affected both by fuel quality and by operation mode of the engine. In this paper a number of parameters describing emission factors (EFs of gases and of particulate matter from ship engines were investigated during 2 on-board measurement campaigns for 3 different engines and 3 different types of fuels. The measured EFs for PM mass were in the range 0.3 to 2.7 g/kg-fuel with lowest values for emissions from combustion of marine gas oil (MGO and the highest for heavy fuel oil (HFO. Emission factors for particle numbers EF(PN in the range 5 × 1015–1 × 1017 #/kg-fuel were found, the number concentration was dominated by particles in the ultrafine mode and ca. 2/3 of particles were non-volatile. The PM mass was dominated by particles in accumulation mode. Main metal elements in case of HFO exhaust PM were V, Ni, Fe, Ca and Zn, in case of MGO Ca, Zn and P. V and Ni were typical tracers of HFO while Ca, Zn and P are tracers of the lubricant oil. EC makes up 10–38% of the PM mass, there were not found large differences between HFO and MGO fuels. EC and ash elements make up 23–40% of the PM mass. Organic matter makes up 25–60% of the PM. The measured EF

  14. Feasibility of the implementation of total enclosure systems to reduce fugitive particle emissions; Viabilidad de la implantacion de sistemas de cerramiento total para reducir las emisiones difusas de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Sanfelix, V.; Lopez-Lilao, A.; Garcia-Ten, J.; Pallares, S.; Monfort, E.

    2012-07-01

    Following the entry into force of the IPPC directive, the activities that it affects, which include the ceramic sector, have needed to control fugitive particle emissions by implementing corrective measures that often entail significant economic costs. In the most demanding cases, the Integrated Environmental Authorisations (IEA) awarded to companies in the ceramic industry require total enclosure of the raw materials handling operations. This paper evaluates the technical, economic, and environmental feasibility of the implementation of a total enclosure or containment system as a way of reducing fugitive particle emissions, as this is considered one of the Best Available Techniques (BAT). The study was carried out on the raw materials reception, handling, and storage operations at a ceramic company that manufactures spray-dried powder granules. (Author) 27 refs.

  15. HC-PM COUPLING MODEL FOR PARTICULATE MATTER EMISSION OF DIESEL ENGINES

    Institute of Scientific and Technical Information of China (English)

    Tan Piqiang; Lu Jiaxiang; Deng Kangyao

    2005-01-01

    A rapid, phenomenological model that predicts particulate matter (PM) emission of diesel engines is developed and formulated. The model is a chemical equilibrium composition model, and is based on the formation mechanisms of PM and unburned hydrocarbon (HC) emissions of diesel engines. It can evaluate the emission concentration of PM via the emission concentration of HC. To validate the model, experiments are carried out in two research diesel engines. Comparisons of the model results with the experimental data show good agreement. The model can be used to evaluate the concentration of PM emission of diesel engines under lack of PM measuring instruments. In addition, the model is useful for computer simulations of diesel engines, as well as electronic control unit (ECU) designs for electronically controlled diesel engines.

  16. Overflow system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, the Environmental Protection Agency (EPA), finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This c...

  17. Cyclone robber system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  18. Mote trash system PM2.5 emission factors and rate for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, the Environmental Protection Agency (EPA) finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This cr...

  19. Master trash system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, the Environmental Protection Agency (EPA) finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This cr...

  20. First stage mote system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions using stack sampling. In 2006, the Environmental Protection Agency (EPA) finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent n...

  1. Mote cleaner system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  2. Combined mote system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, the Environmental Protection Agency (EPA) finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This cr...

  3. Battery condenser system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  4. Combined lint cleaning system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  5. Mote cyclone robber system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, the Environmental Protection Agency (EPA) finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This cr...

  6. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China

    OpenAIRE

    2016-01-01

    Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating pr...

  7. Determination of fugitive coal-dust emissions from rotary railcar dumping. Volume 2. Appendices A-H

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, E.T.; Carnes, D.H.; Catizone, P.A.; Kelley, K.J.

    1984-09-01

    TRC Environmental Consultants, Inc. conducted 72 field tests to determine particulate emission levels for a rotary railcar coal dumper operated by the Potomac Electric Power Company. Approximately 60 parameters were monitored as part of the testing program. These parameters related to particulate emissions, meteorology, and coal properties. The railcar dumper was situated inside of a shed. No other control devices were in operation during the test program. Emissions were measured at the entrance and exit doorways of the shed using the mass flux technique. Background levels were accounted for using the upwind/downwind technique. The amount of particulate material that deposited within the shed was also recorded. The study resulted in the determination of emission levels that were one to two orders of magnitude less than those cited in the literature. These emission levels were found to correlate the strongest with the moisture content of the coal and whether the coal was washed or unwashed.

  8. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  9. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-01-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization. PMID:27956874

  10. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  11. PM EMISSIONS PRODUCED BY AIRCRAFT UNDER THE OPERATIONS AT THE AIRPORT

    Directory of Open Access Journals (Sweden)

    Oleksandr Zaporozhets

    2016-12-01

    Full Text Available Purpose: The effects of aircraft engine emissions within the planetary boundary layer under the landing/ take-off operations contribute sufficiently to deterioration of air pollution in the vicinity of the airports and nearby residential areas. Currently the primary object of airport air quality are the nitrogen oxides and particle matter (PM10, PM2.5 and ultrafine PM emissions from aircraft engine exhausts as initiators of photochemical smog and regional haze, which may further impact on human health. Analysis of PM emission inventory results at major European airports highlighted on sufficiently high contribution of aircraft engines and APU. The paper aims to summarize the knowledge on particle size distributions, particle effective density, morphology and internal structure of aircraft PM, these properties are critical for understanding of the fate and potential health impact of PM. It also aims to describe the basic methods for calculation of emission and dispersion of PM, produced by aircrafts under the LTO operations. Methods: analytical solution of the atmospheric diffusion equation is used to calculate the maximum PM concentration from point emission source. The PM concentration varies inversely proportional to the wind velocity u1 and directly proportional to the vertical component of the turbulent exchange coefficient k1/u1. The evaluation of non-volatile PM concentration includes the size and shape of PM. PolEmiCa calculates the distributions of PM fractions for aircraft and APU exhausts (height of installation was given H=4,5m like for Tupolev-154. Results: The maximum concentration of PM in exhaust from APU is higher and appropriate distance is less than in case for gas. PM polydispersity leads to the separation of maximums concentration in space for individual fractions on the wind direction and therefore it contributes to the reduction of maximum total concentration. Discussion:But although the APU has contributed significantly to

  12. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China

    Science.gov (United States)

    Yan, Shaomin; Wu, Guang

    2016-09-01

    Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating process. For PM2.5 emissions from electricity generation sector, strong locality of clusters was revealed, implying that each region had its own electricity generation system. For PM2.5 emissions from residential sector, the same pattern of 10 clusters was uncovered in both years, implicating the household energy consumption unchanged from 2008 to 2010. For PM2.5 emissions from transportation sector, the same pattern of 5 clusters with many connections in-between was unraveled, indicating the high-speed development of transportation nationalwidely. Except for the known elements, mercury (Hg) surfaced as an element for particle nucleation. To our knowledge, this is the first network study in this field.

  13. Tracing Primary PM2.5 emissions via Chinese supply chains

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Tao, Shu

    2015-05-01

    In this study, we examine a supply-chain approach to more effectively mitigate primary PM2.5 emissions in China from the perspectives of production, consumption and their linkages using structural path analysis. We identify the pattern of all supply chain paths using principal component analysis. To address the severe haze problems in China, it is important to understand how final demand purchase initiates production processes and ultimately leads to primary PM2.5 emission. We found that consumers’ demands on power and transportation mainly induce direct emissions, quite different from the demands on construction, industry and service products which largely drive emissions in upstream activities. We also found that nearly 80% of the economic sectors in China follow a similar pattern in generating primary PM2.5 emissions in electricity, cement and the ferrous metal industries; but only the construction sector increases the release of PM2.5 due to the production of non-metallic mineral products. These findings indicate that further reduction of end-of-pipe emissions in the power and transportation sectors will facilitate cleaner production in almost all the economic sectors. However, for urbanization induced emissions, China should mitigate PM2.5 emissions through the supply chain of construction, either severely reducing its life-cycle intensity or carefully planning to avoid extensive, unnecessary building activity.

  14. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  15. Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines

    Science.gov (United States)

    Yu, Zhenhong; Liscinsky, David S.; Fortner, Edward C.; Yacovitch, Tara I.; Croteau, Philip; Herndon, Scott C.; Miake-Lye, Richard C.

    2017-07-01

    We determined particulate matter (PM) emissions in the exhaust plumes from two gas turbine aircraft engines: a CF34-3A1 turbofan engine and a TPE331-6-252B turboprop engine in a dedicated study on in-service general aviation aircraft. The engine power states were from 16% to 100% engine thrust. Both nucleation and soot mode particles were observed from the emission exhausts of the CF34-3A1 engine but only soot particle mode was detected from the TPE331-6-252B engine. For the CF34-3A1 engine, the contribution of soot mode to total PM emissions was dominant at high power, while at decreased engine power states nucleation mode organic PM became important. PM emissions indices of the TPE331-6-252B engine were found to be generally larger than those of the CF34-3A1 engine. For both engines, medium power conditions (40-60% of thrust) yielded the lowest PM emissions. For the TPE331-6-252B engine, volatile PM components including organic and sulfate were more than 50% in mass at low power, while non-volatile black carbon became dominant at high power conditions such as takeoff.

  16. Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines

    Science.gov (United States)

    Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji

    Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.

  17. An Enrichment Factor Analysis of the Pollution Elements in PM10 Emission Sources in Longyan City%龙岩市PM10排放源污染元素富集因子分析

    Institute of Scientific and Technical Information of China (English)

    房春生; 魏强; 杨萌尧; 王菊; 陈克华; 肖忠慎

    2012-01-01

    以福建省A层土壤元素背景值作为参考背景值,以Ti作为参考元素,应用富集因子分析方法对龙岩市内6种PM10主要排放源(道路尘、扬尘、钢铁厂尘、水泥厂尘、机动车尾气尘、燃煤尘)的污染元素进行了分析。分析结果表明,龙岩市各PM10排放源均存在着不同程度的污染元素富集污染现象,这些元素的富集污染程度易受人类活动的影响,并经过长时间的积累在城区内富集,使得城区内PM10的污染现象突出。研究结果为龙岩市大气环境治理提供了科学依据,有利于区域大气环境质量的改善。%The pollution elements of the six major emission sources in Longyan City have been analyzed by enrichment factor. These sources are road dust, fugitive dust, steel and iron plant dust, cement factory dust, vehicle exhaust dust and coal dust. The background value of the Strata A soil element in Fujian Province and Ti element are selected as reference during the analysis. It shows that the pollution elements in these emission sources are enriched to certain extent, and it is susceptible to the human activity. The accumulation of these pollution elements in a long duration makes PM10 a serious pollution in the urban center. The research provides a scientific basis for the air environment control and is helpful for improving the environmental air quality.

  18. Fugitive methane emission pinpointing and source attribution using ethane measurements in a portable cavity ring-down analyzer

    Science.gov (United States)

    Fleck, Derek; Hoffnagle, John; Yiu, John; Chong, Johnston; Tan, Sze

    2017-04-01

    Methane source pinpointing and attribution is ever more important because of the vast network of natural gas distribution which has led to a very large emission sources. Ethane can be used as a tracer to distinguish gas sources between biogenic and natural gas. Having this measurement sensitive enough can even distinguish between gas distributors, or maturity through gas wetness. Here we present data obtained using a portable cavity ring-down spectrometer weighing less than 11 kg and consuming less than 35W that simultaneously measures methane and ethane with a raw 1-σ precision of 50ppb and 4.5ppb, respectively at 2 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of right above the ground, correlations in the variations in C2H6 and CH4 are used to derive a source C2:C1. Additional hardware is needed for steady state concentration measurements to reliably measure the C2:C1 ratio instantaneously. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS to visualize horizontal plane gas propagation.

  19. Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India

    Science.gov (United States)

    Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.

    2015-12-01

    India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5­­ in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in

  20. Effect of ceramic industrial particulate emission control on key components of ambient PM10.

    Science.gov (United States)

    Minguillón, María Cruz; Monfort, Eliseo; Querol, Xavier; Alastuey, Andrés; Celades, Irina; Miró, José Vicente

    2009-06-01

    The relationship between specific particulate emission control and ambient levels of some PM(10) components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits are produced. The PM(10) emissions from the ceramic processes were calculated over the period 2000-2006, taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/EC, leading to a marked decrease in PM(10) emissions. By contrast, emissions from tile manufacture remained relatively constant because of the few changes in the implementation of corrective measures. On the other hand, ambient PM(10) levels and composition measurements were carried out from 2002 to 2006. A high correlation between PM(10) emissions from frit manufacture and ambient levels of Zn, As, Pb and Cs (R(2) from 0.61 to 0.98) was observed. On the basis of these results, the potential impact of the implementation of corrective measures to reduce emissions from tile manufacture was quantified, resulting in a possible decrease of 3-5 microg/m(3) and 2 microg/m(3) in ambient mineral PM(10) (on an annual basis) in urban and suburban areas, respectively. This relatively simple methodology allows us to estimate the direct effect of a reduction in primary particulate emissions on ambient levels of key particulate components, and to make a preliminary quantification of the possibilities of air quality improvement by means of further emission reduction. Therefore, it is a useful tool for developing future air quality plans in the study area and in other industrialised areas.

  1. Evaluation of the Contribution of the Building Sector to PM2.5 Emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-11-01

    In this study, we quantify the current and potential contribution of China’s building sector to direct primary and indirect PM2.5 emissions and co-benefits of key pollution reduction strategies of energy efficiency, fuel switching and pollution control technologies on PM2.5 emissions reduction. We use a bottom-up end-use accounting model to model residential and commercial buildings’ coal demand for heating and electricity demand in China’s Northern and Transition climate zones from 2010 to 2030. The model is then used to characterize the current coal-based heating (e.g., district heating, combined heat and power generation, small-scale coal-fired boilers) and power generation technologies to estimate direct and indirect PM2.5 emissions. Model scenarios are developed to evaluate and compare the potential co-benefits of efficiency improvements, fuel switching and pollution control technologies in reducing building-related direct and indirect PM2.5 emissions. An alternative pathway of development in which district heating is introduced to China’s Transition zone to meet growing demand for heat is also modeled to evaluate and quantify the potential impact on PM2.5 emissions.

  2. Organic marker compounds for surface soil and fugitive dust from open lot dairies and cattle feedlots

    Science.gov (United States)

    Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.

    Fugitive dust emissions from cattle feedlots and open lot dairies are substantial. In order to determine the contribution of intensive cattle operations on ambient PM levels, more knowledge besides the elemental composition is necessary in order to distinguish between airborne PM from nearby agricultural fields, barren lands, or dirt roads. Here, as part of the San Joaquin Valley Fugitive Dust Characterization Study, surface soil samples collected from feedlots and open lot dairy farms are investigated for potential source specific molecular marker compounds. More than 100 organic compounds were quantified including: n-alkanes, n-alkanoic acids, n-alkenoic acids, n-alkanols, n-alkanals, n-alkan-2-ones, steroids, triterpenoids, isoprenoids, and tocopherols (vitamin E) and metabolites. Biohydrogenation of plant lipids and sterols in the rumen results in distinctive alteration products. Animal and plant derived steroids are most abundant. Here, it is shown that 5 β-stigmastanol and epi-5 β-stigmastanol, two biohydrogenation products of sitosterol and stigmasterol, are the most distinctive molecular marker compounds. While stearic (C 18) and palmitic (C 16) acids are as individual compounds not source specific, biohydrogenation of the more abundant C 18 unsaturated fatty acids, causes the ratio of C 18/C 16 fatty acids to shift from below 0.5 for vegetation to an average of 3.0±0.7. Consequently, the C 18/C 16 fatty acid ratio is unique and can be used as well in source apportionment studies.

  3. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.

    Science.gov (United States)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-07-15

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions.

  4. BACT Fugitive Emissions of Hydrocarbons

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  5. PM2.5 pollution is substantially affected by ammonia emissions in China.

    Science.gov (United States)

    Wu, Yiyun; Gu, Baojing; Erisman, Jan Willem; Reis, Stefan; Fang, Yuanyuan; Lu, Xuehe; Zhang, Xiuming

    2016-11-01

    Urban air quality in China has been declining substantially in recent years due to severe haze episodes. The reduction of sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions since 2013 does not yet appear to yield substantial benefits for haze mitigation. As the reductions of those key precursors to secondary aerosol formation appears not to sufficient, other crucial factors need to be considered for the design of effective air pollution control strategies. Here we argue that ammonia (NH3) plays a - so far - underestimated role in the formation of secondary inorganic aerosols, a main component of urban fine particulate matter (PM2.5) concentrations in China. By analyzing in situ concentration data observed in major cities alongside gridded emission data obtained from remote sensing and inventories, we find that emissions of NH3 have a more robust association with the spatiotemporal variation of PM2.5 levels than emissions of SO2 and NOx. As a consequence, we argue that urban PM2.5 pollution in China in many locations is substantially affected by NH3 emissions. We highlight that more efforts should be directed to the reduction of NH3 emissions that help mitigate PM2.5 pollution more efficiently than other PM2.5 precursors. Such efforts will yield substantial co-benefits by improving nitrogen use efficiency in farming systems. As a consequence, such integrated strategies would not only improve urban air quality, but also contribute to China's food-security goals, prevent further biodiversity loss, reduce greenhouse gas emissions and lead to economic savings.

  6. PM2.5 and Carbon Emissions from Prescribed Fire in a Longleaf Pine Ecosystem

    Science.gov (United States)

    Strenfel, S. J.; Clements, C. B.; Hiers, J. K.; Kiefer, C. M.

    2008-12-01

    Prescribed fires are a frequently utilized land-management tool in the Southeastern US. In order to better characterize emissions and impacts from prescribed fire in longleaf pine ecosystems, in situ data were obtained within the burn perimeter using a 10-m instrumented flux tower. Turbulence and temperature data at 10-m were sampled at 10 Hz using a sonic anemometer and fine-wire thermocouples respectively. Measurements of PM2.5, CO and CO2 emissions were sampled at 10-m within the burn perimeter and PM2.5 and Black Carbon PM2.5 were sampled 0.5 km downwind of the fire front using a 2-m instrumented tripod. Preliminary results indicate PM2.5 and carbon emissions significantly increased during the fire-front passage, and downwind PM concentrations were amplified beyond pre-fire ambient concentrations. In addition, the considerable amount a heat release and flux data gathered from these prescribed fires suggests that near surface atmospheric conditions were directly impacted by increased turbulence generation.

  7. A wind-tunnel study on saltation and PM10 emission from agricultural soils

    Science.gov (United States)

    Avecilla, Fernando; Panebianco, Juan E.; Buschiazzo, Daniel E.

    2016-09-01

    PM10 emission depends on the texture and the aggregation state of a soil. A decisive but less studied factor is the saltation fraction of the soil (fraction between 100 and 500 μm). Six soils of contrasting textures were selected, and a wind tunnel study was carried out under three different saltation conditions: increased saltation, in which a sample of the saltation fraction was added to the air stream prior to the soil bed; no saltation added, in which the soil bed eroded without the addition of extra saltation fraction; and only saltation, in which the saltation fraction was injected into the air stream in the absence of the soil bed. Results indicated that the saltation efficiency for PM10 emission increased with the fine fraction content of the soil and decreased with the sand content, but this process showed a complex behavior depending on the cohesion and stability of the aggregates. An index for describing the saltation efficiency of the studied soils was proposed based on the combination of three parameters: the PM10 content, the amount of saltation fraction available in the soil surface, and an aggregation parameter (clay × organic matter content). Increasing the saltation rate increased the PM10 emission from the eroding soil bed, except for the sandy soil. Results suggest that the main mechanisms of PM10 emission under saltation conditions differ according to the soil texture: detachment of the PM10 adhered to the grains of sand predominates on sandy soils and fragmentation on finer soils, but both processes occur together on high-emitting soils of intermediate textures.

  8. Development and testing of technical measures for the abatement of PM10 emissions from poultry housings

    Energy Technology Data Exchange (ETDEWEB)

    Ogink, N.W.M.; Aarnink, A.J.A.; Mosquera, J.; Winkel, A. [Wageningen UR Livestock Research, Wageningen (Netherlands)

    2010-07-01

    In order to comply with the European Union's ambient air quality standards, the Netherlands must reduce emissions of PM10. As a contributor to PM10, the poultry industry must implement mitigation measures before 2012. An extensive research and development program was launched in 2008 to provide abatement technology for broiler and layer houses. This paper presented results from studies carried out in 2008 and 2009 by Wageningen UR Livestock Research. The supply industry and poultry farmers participated in the study in which different methods and approaches were examined, including bedding material, light schedules, oil spraying systems, ionization systems, water scrubbers, combined scrubbers, electrostatic filters, and dry filters. Most methods were first tested and optimized in small units at an experimental poultry facility Lelystad. Several methods were validated in a next step on poultry farms, where PM10 emissions were measured to establish official emission factors. The oil spraying system and ionization system were tested in broiler houses and are nearing implementation. Reductions in PM10 emissions by different methods ranged from no effect to levels of 60 per cent. An outlook on adequate dust abatement measures for poultry housings was also provided.

  9. 钢铁企业无组织排放特征污染物的监测分析%Monitoring and Analysis on Characteristic Pollutants of Fugitive Emission in Iron and Steel Enterprises

    Institute of Scientific and Technical Information of China (English)

    郭健; 马召坤; 李蕾; 吴彤

    2016-01-01

    The eastern old industrial area is the focus of pollution prevention and control in Jinan. Fugitive emissions of large enterprises in industrial areas have great impacts on air quality of regional and surrounding areas. It does not attracted much attention, because we do not know the size of emissions and types of pollutants, which makes it diffi cult to be controlled. Taking a large iron and steel enterprise of the eastern old industrial area in Jinan as an example, this paper selected five characteristic pollutants of monitoring sites, including benzene, toluene, xylene, non-methane hydrocarbons and ammonia. The variation of pollutants concentration under different weather conditions was analyzed to understand the characteristics of fugitive emissions in iron and steel enterprises. The results showed that the hourly concentration and daily average concentrations of downwind pollutants increased in varying degrees compared with upperwind area, indicating that the plant area sources had impacts on surrounding air quality. And then measures to prevent or improve air pollution were proposed, such as the tightened fugitive emissions standards, increased atmospheric monitoring sites and online monitoring projects, and recommend enterprises to strengthen the collection and processing aspects in the production process of fugitive emissions.%东部老工业区是济南市大气污染重点防控区域。工业区大型企业的无组织排放废气对区域及周边大气环境质量产生的影响,一直没有引起人们的足够重视,因对其排放量大小和污染物种类不清楚,难以进行监管。本文以济南东部老工业区一家大型钢铁企业为例,选取五项有代表性的特征污染物(苯、甲苯、二甲苯、非甲烷总烃和氨)进行布点监测,在不同气象条件下,分析特征污染物的浓度变化,了解钢铁企业无组织排放特征。经对监测数据的分析得出:与上风向相比,下风向各

  10. Estimation of anthropogenic PM2.5 emissions over Asian mega cities by integrating remote sensing and modeling

    Science.gov (United States)

    Kishi, H.; Takeuchi, W.; Sawada, H.

    2011-12-01

    Particulate matter whose aerodynamic diameter is less than 2.5 um (PM2.5) is one of the major pollutants that affect human health with causing asthma and even cancer. Emission standards for PM2.5 are establishing only in some countries and regions mainly because it is difficult to understand the atmospheric behaviors of PM2.5 spatially and temporally. This study aims to estimate atmospheric conditions focusing on PM2.5 with integrating remote sensing measurement and model estimation with bottom-up approach over global mega cities. Firstly, emitted PM2.5 is estimated by bottom-up approach modeling according to emissions sources such as exhaust emissions and biomass burning from 2000 to 2010 over global scale. They are estimated by developed model with paper review and land cover properties obtained by satellite measurements. Exhaust emission PM2.5 is estimated by total numbers of diesel vehicles in use, the number of population and emission standards regulated by governmental raw. Biomass burning PM2.5 is estimated by the number of hot spots detected by Moderate resolution imaging spectroradiometer (MODIS), fuel loading equivalent to the amount of field biomass, combustion factors estimated by vegetation moisture conditions and PM2.5 emission factors. Secondly, estimation errors of estimated PM2.5 emissions are evaluated by comparing reported PM2.5 emission inventories spatially and temporally. Black carbon and Organic carbon emissions estimated by Streets and REAS emission inventory are employed to compare model estimated PM2.5. Thirdly, integrated exhaust emissions and biomass burning PM2.5 is compared with MODIS Aerosol Optical Depth (AOD) measurement which is equivalent to total amount of PM2.5. Spatio-temporal patterns are analyzed between model estimated and satellite measured PM2.5. In case of Asian regions Easter than India, it is found that the highest PM2.5 concentration is observed in Hanoi 3.2 times higher than that in Tokyo over Asian mega cities

  11. PM2.5 from the Guanzhong Plain: Chemical composition and implications for emission reductions

    Science.gov (United States)

    Niu, Xinyi; Cao, Junji; Shen, Zhenxing; Ho, Steven Sai Hang; Tie, Xuexi; Zhao, Shuyu; Xu, Hongmei; Zhang, Ting; Huang, Rujin

    2016-12-01

    Atmospheric particulate matter (PM) affects important environmental issues including air quality, regional and global climates, and human health. A one-year sampling campaign for PM2.5 was conducted at six locations in Guanzhong Plain, including the cities of Xi'an, Weinan and Baoji, from March 2012 to March 2013. The 24-h average PM2.5 mass concentration was 134.7 μg m-3, that substantially exceeds the National Ambient Air Quality Standard level of 35 μg m-3. The highest loadings of both organic and elemental carbon (OC and EC) occurred in winter: EC co-varied with OC but showed less variability, presumably due to more stable emissions. The greatest contributions of secondary inorganic ions (SO42-, NO3- and NH4+) to the total quantified ions also were seen in winter, presumably due to gaseous precursors from coal combustion and biomass burning. Two high PM episodes occurred, one in the autumn and the other in winter. During the autumn episode, regional pollution from biomass burning raised the concentrations of secondary ions while coal combustion was a strong influence during the winter episode. Modeling simulations suggest that the control measures on both primary emissions and secondary aerosol precursors including SO2, NOx, and NH3 are needed to reduce the PM levels of the region.

  12. Assessment of emissions of PM and NOx of sea going vessels by field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Duyzer, J.; Hollander, K.; Voogt, M.; Verhagen, H.; Weststrate, H. [TNO Built Environment and Geosciences, Apeldoorn (Netherlands); Hensen, A.; Kraai, A.; Kos, G. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2007-03-15

    The factors used to estimate emissions of sea going ships to air (so called emission factors) are based upon critical evaluation of the literature. Current estimates of emission factors of sea going ships are based upon a limited number of laboratory experiments and information on fuel usage and engine power. Especially emissions of nitrogen oxides (NOx) are reported in literature, measurements of particulate matter (PM2) are scarcer. It is important to realize that large variations in results are observed especially in emissions of particulate matter by engines using HFO (Heavy Fuel Oil). These are therefore rather uncertain. In the process of developing scenarios to improve local air quality and decrease atmospheric deposition accurate data on emissions are essential.

  13. 富集因子法分析贵阳市PM2.5主要排放源污染元素%Application of the Enrichment Factor to Analyze the Pollution Elements of PM2.5 Emission Sources in Guiyang City

    Institute of Scientific and Technical Information of China (English)

    张弼; 王珍; 郭军

    2016-01-01

    The pollution elements of the seven major emission sources in Guiyang City have been analyzed by en-richment factor.These sources covered soil dust,fugitive dust,road dust,cement dust,steel and iron dust,coal dust,and vehicle exhaust dust.It showed that the pollution elements in these emission sources were enriched to a certain extent,and it was susceptible to the human activity.The accumulation of these pollutants in a long dura-tion has caused a serious PM2.5 pollution in the urban center.The research provided a scientific basis for the air pollution control and would be helpful for improving the environmental air quality.%应用富集因子分析法对贵阳市7种PM2.5主要排放源(土壤风沙尘、城市扬尘、道路尘、建筑水泥尘、钢铁尘、燃煤尘、机动车尾气尘)中的污染元素进行了分析。分析结果表明,贵阳市各PM2.5排放源中的污染元素均存在着不同程度的富集污染现象,这些元素的富集污染程度易受人类活动的影响,并经过长时间的积累在城区内富集,使得城区内PM2.5的污染现象突出。

  14. Imaging spectrometer for fugitive gas leak detection

    Science.gov (United States)

    Hinnrichs, Michele

    1999-12-01

    Under contract to the U.S. Air Force and Navy, Pacific Advanced Technology has developed a very sensitive infrared imaging spectrometer that can perform remote imaging and spectro-radiometry. One of the most exciting applications for this technology is in the remote monitoring of smoke stack emissions and fugitive leaks. To date remote continuous emission monitoring (CEM) systems have not been approved by the EPA, however, they are under consideration. If the remote sensing technology is available with the sensitivity to monitor emission at the required levels and man portable it can reduce the cost and improve the reliability of performing such measurements. Pacific Advanced Technology (PAT) believes that it currently has this technology available to industry. This paper will present results from a field test where gas vapors during a refueling process were imaged and identified. In addition images of propane from a leaking stove will be presented. We at PAT have developed a real time image processing board that enhances the signal to noise ratio of low contrast gases and makes them easily viewable using the Image Multispectral Sensing (IMSS) imaging spectrometer. The IMSS imaging spectrometer is the size of a camcorder. Currently the data is stored in a Notebook computer thus allowing the system to be easily carried into power plants to look for fugitive leaks. In the future the IMSS will have an embedded processor and DSP and will be able to transfer data over an Ethernet link.

  15. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China

    Science.gov (United States)

    Wang, Jun; Hu, Zimei; Chen, Yuanyuan; Chen, Zhenlou; Xu, Shiyuan

    2013-04-01

    From July 2009 through September 2010, PM10 and PM2.5 were collected at two different functional areas in Shanghai (Baoshan district, an industrial area, and Putuo district, a mixed-use area of residential, commercial, and educational compounds). In our analysis, 15 elements were determined using a 710-ES Inductively Coupled Plasma-Emission Spectrometer (ICP-AES). The contents of PM2.5, PM10, and metal elements at the two different sites were comparatively analyzed. The results show that the mean annual concentrations of PM10 and PM2.5 (149.22 μg m-3 and 103.07 μg m-3, respectively) in Baoshan district were significantly higher than those in Putuo district (97.44 μg m-3 and 62.25 μg m-3 respectively). The concentrations of PM10 and PM2.5 were both greatest in winter and lowest in summer, with the two different sites exhibiting the same seasonal variation. It was found that the proportions of 15 metal elements in PM10 and PM2.5 in Baoshan district were 20.49% and 20.56%, respectively, while the proportions in Putuo district were higher (25.98% and 25.93%, respectively). In addition, the proportions of eight heavy metals in PM10 and PM2.5 were 5.50% and 3.07%, respectively, for Baoshan district, while these proportions in Putuo district were 3.18% and 2.77%, respectively, indicating that heavy metal pollution is more pronounced in Baoshan district. Compared with cities in developed countries, the total levels of PM10, PM2.5 and heavy metals in Shanghai were slightly higher. Scanning electron microscopy (SEM) and principal component analysis (PCA) suggested that the possible sources of PM10 in Baoshan district were ground level fugitive dust, traffic sources, and industrial activities, whereas PM2.5 mainly originated from industrial activities, coal combustion, and traffic sources. The sources are same for PM10 and PM2.5 in Putuo region, which originate from traffic sources and ground level fugitive dust.

  16. Air Pollutant Emission Inventory and Impact of Typical Industries on PM0. 5 in Chengde%承德市大气污染源排放清单及典型行业对PM0.5的影响

    Institute of Scientific and Technical Information of China (English)

    陈国磊; 周颖; 程水源; 杨孝文; 王晓琦

    2016-01-01

    In this study, detailed activity level of typical sector in Chengde in 2013 was obtained through a full-coverage investigation. A comprehensive emission inventory with country-level resolution in 2013 was developed based on guide of atmospheric pollutant emission inventory and updated emission factors. Then, the emission inventory within 1 km × 1 km grid was generated using source-based spastial surrogates including population, road network and landuse date. Furthemore, meteorology-air quality modeling system (WRF-CMAx) including Particulate Source Apportionment Technology (PSAT) module was established in order to evaluate the impact of topical sector ( e. g. , electric power, the production of construction materials, the metallurgical industry, etc. ) on PM2. 5 concentration in January, April, July and October which were considered as the representative months of winter, spring, summer and autumn. The results showed the total emission of SO2 , NOx , TSP, PM10 , PM2. 5 , CO, VOCs and NH3 in Chengde in 2013 was respectively 81 134 t, 72 556 t, 368 750 t, 119 974 t, 51 152 t, 1 281 371 t, 170 642 t and 81 742 t. Industrial source was the main emission contributor of SO2 , NOx , CO, VOCs, accounting for 89. 5% , 51. 9% , 82. 5% and 45. 6% of total emissions, respectively. The major emission source of NOx also included on-road and non-road mobile source, respectively accounting for 26. 7% and 10. 8% . The major emission source of TSP, PM10 and PM2. 5 was fugitive dust, accounting for 76. 7% , 65. 6% and 46. 54% , respectively. Ammonia emissions from animals and farm accounted for 67. 1% and 15. 8% of total emissions, respectively. The numerical simulation result showed that the fugitive dust, the others, the metallurgical industry and boilers industry had relatively higher contributions to PM2. 5 concentration, accounting for 23. 1% , 20. 6% , 13. 3% and 11. 2% , respectively. These emission sources should be paid more attention during the decision-making with respect

  17. [Emission characteristics of PM2.5 from blast furnace iron making].

    Science.gov (United States)

    Fan, Zhen-zhen; Zhao, Ya-li; Zhao, Hao-ning; Liang, Xing-yin; Sun, Jing-wen; Wang, Bao-gui; Wang, Ya-jun

    2014-09-01

    Electrical low pressure impactor (ELPI) was used to online analyze the PM2.5 particle size and mass concentration distribution in the trapping field and ore tank of blast furnace iron-making plant. Results showed that the grain number concentration of PM2.5 in trapping field after dust removal was in the range of 10(5)-10(6)cm-3 , and the particle size was mainly below 0. 1 μm. While the grain number concentration of the PM2.5 in ore tank after dust removal was in the range of 10(4)-10(5) cm-3, the particle size was mainly below 1.0 μm, and the mass concentration distribution showed a single peak. The micro-morphology of PM2.5 monomer was mainly divided into two categories, spherical particles and irregular aggregates. Chemical composition analysis indicated that the concentrations of water soluble SO(2-)(4) , K+ , Ca2+ were higher than other ions in PM2.5, with the percentage of 10. 32% -28.55% , 10. 36% -12. 15% , 3.97% -15. 4% , respectively. The major elements was Fe, Si, Al, with 16. 8% -31. 62% , 2. 24% -8.76% , 1.24% -5. 89% of total mass, respectively; organic carbon and elementary carbon were 2. 7% -4. 6% and 0. 8% -1. 3% , respectively. The emission factors of PM2.5 in trapping field and in ore tank after dust removal were ranged from 0.045 to 0.085 kg t(-1) and 0.042 to 0.071 kg t-1, respectively.

  18. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Science.gov (United States)

    Nakanishi, Kouhei; Yamamoto, Seiichi

    2016-11-01

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  19. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  20. Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997.

    Science.gov (United States)

    Chow, Judith C; Watson, John G; Edgerton, Sylvia A; Vega, Elizabeth

    2002-03-27

    PM2.5 and PM10 were measured over 24-h intervals at six core sites and at 25 satellite sites in and around Mexico City from 23 February to 22 March 1997. In addition, four 6-h samples were taken each day at three of the core sites. Sampling locations were selected to represent regional, central city, commercial, residential, and industrial portions of the city. Mass and light transmission concentrations were determined on all of the samples, while elements, ions and carbon were measured on approximately two-thirds of the samples. PM10 concentrations were highly variable, with almost three-fold differences between the highest and lowest concentrations. Fugitive dust was the major cause of PM10 differences, although carbon concentrations were also highly variable among the sampling sites. Approximately 50% of PM10 was in the PM2.5 fraction. The majority of PM mass was comprised of carbon, sulfate, nitrate, ammonium and crustal components, but in different proportions on different days and at different sites. The largest fine-particle components were carbonaceous aerosols, constituting approximately 50% of PM2.5 mass, followed by approximately 30% secondary inorganic aerosols and approximately 15% geological material. Geological material is the largest component of PM10, constituting approximately 50% of PM10 mass, followed by approximately 32% carbonaceous aerosols and approximately 17% secondary inorganic aerosols. Sulfate concentrations were twice as high as nitrate concentrations. Sulfate and nitrate were present as ammonium sulfate and ammonium nitrate. Approximately two-thirds of the ammonium sulfate measured in urban areas appears to have been transported from regions outside of the study domain, rather than formed from emissions in the urban area. Diurnal variations are apparent, with two-fold increases in concentration from night-time to daytime. Morning samples had the highest PM2.5 and PM10 mass, secondary inorganic aerosols and carbon concentrations

  1. 40 CFR Table 2 of Subpart Bbbbbbb... - Initial Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Science.gov (United States)

    2010-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 2 Table 2 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate initial... (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less. a. Perform a PM...

  2. Emissions Inventory of Anthropogenic PM2.5 and PM10 in Mega city, Delhi, India for Air Quality Forecasting during CWG- 2010

    Science.gov (United States)

    Sahu, S.; Beig, G.; Schultz, M.; Parkhi, N.; Stein, O.

    2012-04-01

    The mega city of Delhi is the second largest urban agglomeration in India with 16.7 mio. inhabitants. Delhi has the highest per capita power consumption of electricity in India and the demand has risen by more than 50% during the last decade. Emissions from commercial, power, domestic and industrial sectors have strongly increased causing more and more environmental problems due to air pollution and its adverse impacts on human health. Particulate matter (PM) of size less than 2.5-micron (PM2.5) and 10 micron (PM10) have emerged as primary pollutants of concern due to their adverse impact on human health. As part of the System of Air quality Forecasting and Research (SAFAR) project developed for air quality forecasting during the Commonwealth Games (CWG) - 2010, a high resolution Emission Inventory (EI) of PM10 and PM2.5 has been developed for the metropolitan city Delhi for the year 2010. The comprehensive inventory involves detailed activity data and has been developed for a domain of 70km×65km with a 1.67km×1.67km resolution covering Delhi and its surrounding region (i.e. National Capital Region (NCR)). In creating this inventory, Geographical Information System (GIS) based techniques were used for the first time in India. The major sectors considered are, transport, thermal power plants, industries, residential and commercial cooking along with windblown road dust which is found to play a major role for the megacity environment. Extensive surveys were conducted among the Delhi slum dwellers (Jhuggi) in order to obtain more robust estimates for the activity data related to domestic cooking and heating. Total emissions of PM10 and PM2.5 including wind blown dust over the study area are found to be 236 Gg/yr and 94 Gg/yr respectively. About half of the PM10 emissions stem from windblown road dust. The new emission inventory has been used for regional air quality forecasts in the Delhi region during the Commonwealth games (SAFAR project), and they will soon be

  3. Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.

    Science.gov (United States)

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-09-04

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.

  4. Measurement of the direct emission and interference terms and search for CP violation in the decay $K\\pm \\to \\pi \\pm \\pi^0 \\gamma$

    CERN Document Server

    Batley, J R; Lazzeroni, C; Munday, D J; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Cabibbo, N; Ceccucci, A; Cundy, D; Falaleev, V; Fidecaro, M; Gatignon, L; Gonidec, A; Kubischta, W; Norton, A; Maier, A; Patel, M; Peters, A; Balev, S; Frabetti, P L; Goudzovski, E; Hristov, P; Kekelidze, V; Kozhuharov, V; Litov, L; Madigozhin, D; Marinova, E; Molokanova, N; Polenkevich, I; Potrebenikov, Yu; Stoynev, S; Zinchenko, A; Monnier, E; Swallow, E; Winston, R; Rubin, P; Walker, A; Baldini, W; Cotta Ramusino, A; Dalpiaz, P; Damiani, C; Fiorini, M; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Wahl, H; Bizzeti, A; Lenti, M; Veltri, M; Calvetti, M; Celeghini, E; Iacopini, E; Ruggiero, G; Behler, M; Eppard, K; Kleinknecht, K; Marouelli, P; Masetti, L; Moosbrugger, U; Morales Morales, C; Renk, B; Wache, M; Wanke, R; Winhart, A; Coward, D; Dabrowski, A; Fonseca Martin, T; Shieh, M; Szleper, M; Velasco, M; Wood, M D; Cenci, P; Petrucci, M C; Pepe, M; Anzivino, G; Imbergamo, E; Nappi, A; Piccini, M; Raggi, M; Valdata-Nappi, M; Cerri, C; Fantechi, R; Collazuol, G; DiLella, L; Lamanna, G; Mannelli, i; Michetti, A; Costantini, F; Doble, N; Fiorini, L; Giudici, S; Pierazzini, G; Sozzi, M; Venditti, S; Bloch-Devaux, B; Cheshkov, C; Chèze, J B; De Beer, M; Derré, J; Marel, G; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Ziolkowski, M; Bifani, S; Biino, C; Cartiglia, N; Clemencic, M; Goy Lopez, S; Marchetto, F; Dibon, H; Jeitler, M; Markytan, M; Mikulec, I; Neuhofer, G; Widhalm, L

    2010-01-01

    We report on the measurement of the direct emission (DE) and interference (INT) terms of the $K\\pm -> \\pi \\pm \\pi^0 \\gamma$ decay by the NA48/2 experiment at the CERN SPS. From the data collected during 2003 and 2004 about 600k such decay candidates have been selected. The relative amounts of DE and INT with respect to the internal bremsstrahlung (IB) contribution have been measured in the range 0pm 0.15_{stat} \\pm 0.14_{sys})x10^{-2} Frac_{INT} (0pm 0.35_{stat} \\pm 0.39_{sys})x10^{-2}, where T*pi is the kinetic energy of the charged pion in the kaon rest frame. This is the first observation of an interference term in T*\\pi decays. In addition, a limit on the CP violating asymmetry in the K^+ and K^- branching ratios for this channel has been determined to be less than 1.5x10^{-3} at 90% confidence level.

  5. Insights into PM10 sources in Houston, Texas: Role of petroleum refineries in enriching lanthanoid metals during episodic emission events

    Science.gov (United States)

    Bozlaker, Ayşe; Buzcu-Güven, Birnur; Fraser, Matthew P.; Chellam, Shankararaman

    2013-04-01

    Petroleum refineries may emit large quantities of pollutants during non-routine operations that include start-ups and shutdowns, planned maintenance, and unplanned equipment failures. The Texas Commission on Environmental Quality (TCEQ) tracks such events by requiring industries to self-report estimates of these emissions because they often have a detrimental impact on local air quality and potentially, public health. An inventory of non-routine episodic emission events is available via TCEQ's website. However, there is on-going concern that such episodic emissions are sometimes under-reported or even not cataloged. Herein, we present concentrations of 42 main group, transition, and lanthanoid elements in 114 time-resolved (3 or 6 h) samples collected over a 1-month period. We also develop strategies to identify aerosol sources using elemental tracers and compare source apportionment (performed by positive matrix factorization) based on ambient measurements to inventoried non-routine emission events. Through interpretation of key marker elements, five sources impacting concentrations of metals in PM10 were identified and calculated to contribute 73% of the measured PM10 mass. On average, primary emissions from fluidized-bed catalytic cracking (FCC) units negligibly contributed to apportioned PM10 mass. However, 35 samples were identified as impacted by transient PM10 emissions from FCC units because of elevated levels of lanthanoid metals and their ratios. Only 31 of these 35 samples coincided with self-reported non-routine emission events. Further, roughly half of the emission event self-reports detailed only emissions of gaseous pollutants. Based on this, we posit that not all PM10 emission events are reported and even self-reported emission events are incomplete - those that only catalog gaseous pollutants may also include unreported PM emissions.

  6. Air Pollution Control Act of Switzerland and Its Limit Emission Measures for PM10 and PM2.5%瑞士空气污染管制法及 PM10和 PM2.5的限排措施

    Institute of Scientific and Technical Information of China (English)

    叶建忠

    2013-01-01

    Based on the Air Pollution Control Act of Switzerland released in 1985 and reports on the air quality from Federal Environmental Protection Administration, this article introduces emissions of PM10 and PM2.5 in Switzerland and the related emission control measures taken by the government. The paper lists the 4 main emission sources of PM10 and PM2.5, i.e., emissions from agriculture, forestry, living and business activities, the existing data of PM10 and PM2.5 emissions in 2005 and 2010, as well as the predicted emissions data for 2020. Switzerland is committed to take measures to control PM10 and PM2.5 emissions from transportation systems, construction machinery, and industrial combustion equipments and operations, etc. For example, the sulfur in diesel exceeding 10 mg/kg is not allowed for use; all kinds of vehicles need to be equipped with efficient filters that can reduce exhaust including PM2.5. The experience of Switzerland shows that detailed regulations and advanced technologies are crucial for efficient control of PM2.5 and PM10 emissions.%瑞士的环境质量在世界上堪称一流,这得益于瑞士严格执行政府1985年出台的《空气污染管制条例》,在控制 PM10和 PM2.5排放方面,要求明确,措施得当。瑞士 PM10和 PM2.5的最大排放源分别为农林和居住与商业。瑞士在道路交通、铁路、水运和航空运输、施工机械与设备、燃烧、工业设备与生产流程以及农业等领域均采取了一系列的减排措施,如,规定柴油的含硫量不得超过10 mg/kg,各种车辆须加装可以过滤包括 PM2.5的新型高效尾气排放过滤器等等。瑞士的经验表明,有效控制 PM10和 PM2.5的排放量,一是要细化规章制度,二是要有必要的技术手段。

  7. PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E.; Whitefield, Philip D.; Raper, David

    2015-03-01

    This paper describes the results of the physical characterization of aircraft engine PM emission measurements conducted during the Delta-Atlanta Hartsfield Study at the Hartsfield-Jackson Atlanta International Airport. Engine exit plane PM emissions were sampled from on-wing engines on several in-service commercial transport aircraft from the fleet of Delta Airlines. The size distributions were lognormal in nature with a single mode. The geometric mean diameter was found to increase with increasing engine thrust, ranging from 15 nm at idle to 40 nm at takeoff. PM number- and mass-based emission indices were observed to be higher at the idle conditions (4% and 7%), lowest at 15%-30% thrust, and then increase with increasing thrust. Emissions measurements were also conducted during an advected plume study where over 300 exhaust plumes generated by a broad mix of commercial transports were sampled 100-350 m downwind from aircraft operational runways during normal airport operations. The range of values measured at take-off for the different engine types in terms of PM number-based emission index was between 7 × 1015-9 × 1017 particles/kg fuel burned, and that for PM mass-based emission index was 0.1-0.6 g/kg fuel burned. PM characteristics of aircraft engine specific exhaust were found to evolve over time as the exhaust plume expands, dilutes with ambient air, and cools. The data from these measurements will enhance the emissions inventory development for a subset of engines operating in the commercial fleet and improve/validate current environmental impact predictive tools with real world aircraft engine specific PM emissions inputs.

  8. First stage seed-cotton cleaning system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  9. Second-stage mote system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, the Environmental Protection Agencey (EPA) finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This c...

  10. Second stage seed-cotton cleaning system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  11. Second stage lint cleaning system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additional cotton gi...

  12. First stage lint cleaning system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  13. Investigation of source-emission PM-10 particulate matter field studies of candidate methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, W.E.; Williamson, A.D.; Dawes, S.S.; Martin, R.S.; Ragland, J.W.

    1986-12-01

    The report outlines the results of four field tests of two candidate methods for source PM10 measurement. The first method involves a new sampling-train design which incorporates emission gas recycle (EGR) to avoid the anisokinetic sampling bias inherent in size-specific emissions measurement. The second technique, the simulated Method 5 (SIM-5) approach, uses existing sampling hardware with an altered traversing protocol to minimize this bias. The results of the test series suggest that both techniques are sufficiently advanced that they should be documented in more detail for potential use as sampling methods. Further, more extensive testing should be performed in order to define precision, reproducibility, and comparability of each technique as well as identify potential sources of interference or bias.

  14. INFLUENCE OF AIR HUMIDITY ON THE SUPPRESSION OF FUGITIVE DUST BY USING A WATER-SPRAYING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Peter Werner Grundnig; Wilhelm H(o)flinger; Gerd Mauschitz; Zechang Liu; Guiqin Zhang; Zhiqiang Wang

    2006-01-01

    One of the main origins of fugitive dust emission arises from bulk handling in quarries or mines, in particular, from bulk materials falling from a hopper or a conveyor belt. Water-spraying systems, using two-phase nozzles,are one of the methods to suppress such dust emission. In this work we tried to develop a mathematical model to correlate air humidity, water flux through the nozzle and the dust (in particular PM10) emission, in order to improve the application and efficiency of these systems. Sand from the Yellow River in China was dropped from a conveyor belt into a dust chamber at 1 kg·min-1, wherefrom the emitted dust was sucked off and quantified via a cascade impactor. A two-phase nozzle was installed in the dust chamber with a water flux through the nozzle of 1.2 to 3 L·h-1, whereas the relative air humidity changed between 55 and 73%. Dust emission was found to be linearly dependent on relative air humidity. Furthermore model equations were developed to describe the dependence of PM10 emission on water flux and relative air humidity.

  15. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, SeyedEhsan; Urbanski, Shawn; Dixit, P.; Qi, L.; Burling, Ian R.; Yokelson, Robert; Johnson, Timothy J.; Shrivastava, ManishKumar B.; Jung, H.; Weise, David; Miller, J. Wayne; Cocker, David R.

    2013-09-09

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. 17 fuel types during 77 controlled laboratory burns are presented. The fuels include SW 18 vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, 19 manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland as 20 well as SE vegetation types: 1-year, 2-year rough, pocosin, chipped understory, 21 understory hardwood, and pine litter. The SW fuels burned at a higher Modified 22 Combustion Efficiency (MCE) than the SE fuels resulting in lower particulate matter 23 (PM) mass emission factor (EF). Particle size distributions for six fuels and particle 24 number emission or all fuels are reported. Excellent mass closure (slope = 1.00, r2=0.94) 25 between ions, metals, and carbon with total weight was obtained. Organic carbon 26 emission factors inversely correlated (= 0.72) with MCE, while elemental carbon (EC) 27 had little correlation with MCE (=0.10). The EC/total carbon (TC) ratio sharply 28 increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total Poly 29 Aromatic Hydrocarbons (PAH) emissions factors ranged from 25-1272 mg/kg fuel and 30 1790-11300 μg/kg fuel, respectively. No correlation between MCE and emissions of 31 PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be 32 poor indicators of biomass burning. Large fuel-type and regional dependency was 33 observed in the emission rates of ammonium, nitrate, fluoride, chloride, sodium, and

  16. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implication for vehicle emission control policy

    Directory of Open Access Journals (Sweden)

    S. Dai

    2014-11-01

    Full Text Available Vehicle emission is a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce the vehicle emission. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emission in the Pearl River Delta (PRD region and to evaluate the effectiveness of control policies on vehicles emission, the emission factors of PM2.5 mass, elemental carbon (EC, organic carbon (OC, water-soluble organic carbon (WSOC, water-soluble inorganic ions (WSII, metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang Tunnel of Guangzhou, the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC, and WSOC were 92.4, 16.7, 16.4, and 1.31 mg vehicle−1 km−1 respectively. Emission factors of WSII were 0.016 (F- ~4.17 (Cl- mg vehicle−1 km−1, totally contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of the PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle−1 km−1. Emission factors of organic compounds including n-alkanes, PAHs, hopanes, and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle−1 km−1, respectively. Stable carbon isotopic composition δ13C value was measured and it was −25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared with a previous study in Zhujiang Tunnel in year 2004, emission factors of PM2.5 mass, EC, OC, WSII except Cl-, and organic compounds decreased by 16.0–93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle condition. There are no mandatory national standards to limit metal content from vehicle emission, which should be a concern of the government. A

  17. Characterisation of PM 10 emissions from woodstove combustion of common woods grown in Portugal

    Science.gov (United States)

    Gonçalves, Cátia; Alves, Célia; Evtyugina, Margarita; Mirante, Fátima; Pio, Casimiro; Caseiro, Alexandre; Schmidl, Christoph; Bauer, Heidi; Carvalho, Fernando

    2010-11-01

    A series of source tests was performed to evaluate the chemical composition of particle emissions from the woodstove combustion of four prevalent Portuguese species of woods: Pinus pinaster (maritime pine), Eucalyptus globulus (eucalyptus), Quercus suber (cork oak) and Acacia longifolia (golden wattle). Analyses included water-soluble ions, metals, radionuclides, organic and elemental carbon (OC and EC), humic-like substances (HULIS), cellulose and approximately l80 organic compounds. Particle (PM 10) emission factors from eucalyptus and oak were higher than those from pine and acacia. The carbonaceous matter represented 44-63% of the particulate mass emitted during the combustion process, regardless of species burned. The major organic components of smoke particles, for all the wood species studied, with the exception of the golden wattle (0.07-1.9% w/w), were anhydrosugars (0.2-17% w/w). Conflicting with what was expected, only small amounts of cellulose were found in wood smoke. As for HULIS, average particle mass concentrations ranged from 1.5% to 3.0%. The golden wattle wood smoke presented much higher concentrations of ions and metal species than the emissions from the other wood types. The results of the analysis of radionuclides revealed that the 226Ra was the naturally occurring radionuclide more enriched in PM 10. The chromatographically resolved organics included n-alkanes, n-alkenes, PAH, oxygenated PAH, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl ester acids.

  18. Unloading system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  19. Combined mote system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  20. Mote trash system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  1. Mote cleaner system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  2. Overflow system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  3. First stage mote system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was f...

  4. Battery condenser system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...

  5. Combined lint cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  6. Master trash system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  7. Mote cyclone robber system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  8. Second stage mote system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclone

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  9. Cyclone robber system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  10. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  11. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements – A sensitivity analysis based on multiple field surveys

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter

    2014-01-01

    Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different...... trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision...... instrument can measure methane plumes more than 1.2km away from small sources (about 5kgh−1) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1kg per hour and can...

  12. Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5-10 concentrations in a coastal city

    Science.gov (United States)

    Rodríguez, Sergio; Cuevas, Emilio; González, Yenny; Ramos, Ramón; Romero, Pedro Miguel; Pérez, Noemí; Querol, Xavier; Alastuey, Andrés

    The physical characterisation of metrics representative of ambient air particle concentration is becoming a topic of great interest for urban air quality monitoring and human exposure assessment. In this article, the influence of sea breeze circulation and primary road traffic emissions on the relationship between the urban aerosol number (N3, particles >3 nm), black carbon cycles of sea and mountain breezes (inland during daylight and seaward at night) and road traffic emissions exerted a great, and well differentiated, influence on the BC, N3 and PM x concentrations. In this scenario, the following major aerosol features were observed: (1) fresh vehicle exhaust emissions resulted in high BC and N3 concentrations, in such a way that these two metrics increased when the "road traffic intensity (vehicles h -1)/wind speed" ratio increased, (2) PM1 and PM2.5 levels were lower during daylight (due to inland entry of relatively clean marine air masses) than at night (due to the seaward drainage airflow resulting in the transport of aged particulate pollutants from the city), (3) although N3 and BC concentrations exhibited a significant correlation during the whole study period, the N3/BC ratio experienced a daily evolution with a maximum during daylight. Thus, high N3 concentrations associated with high N3/BC ratios and high solar irradiance conditions were recorded during the daylight inland breeze period due to an enhancement of processes favouring new particle formation. Data analysis points out that this enhancement in the new particle formation processes is strongly related to the nucleation of photo-oxidized vapours under the relatively low PM x (and consequently low aerosol surface area) concentrations prompted by the inland entry of clean marine air due to the daylight breeze blowing. The results obtained show that, in addition to the vehicle exhaust emissions, new particle formation in coastal urban areas due to photo-oxidation processes may significantly

  13. Chemical composition of ambient PM2. 5 over China and relationship to precursor emissions during 2005-2012

    Science.gov (United States)

    Geng, Guannan; Zhang, Qiang; Tong, Dan; Li, Meng; Zheng, Yixuan; Wang, Siwen; He, Kebin

    2017-07-01

    In this work, we presented the characteristics of PM2. 5 chemical composition over China for the period of 2005-2012 by synthesis of in situ measurement data collected from literatures and satellite-based estimates using aerosol optical depth (AOD) data and the GEOS-Chem chemical transport model. We revealed the spatiotemporal variations in PM2. 5 composition during 2005-2012 and investigated the driving forces behind the variations by examining the changes in precursor emissions using a bottom-up emission inventory. Both in situ observations and satellite-based estimates identified that secondary inorganic aerosols (i.e., sulfate, nitrate, and ammonium; SNA) ranked as the highest fraction of dust-free PM2. 5 concentrations, followed by organic matter (OM) and black carbon (BC). For instance, satellite-based estimates found that SNA, OM, and BC contributed to 59, 33, and 8 %, respectively, of national population-weighted mean dust-free PM2. 5 concentrations during 2005-2012. National population-weighted mean PM2. 5 concentration increased from 63.9 µg m-3 in 2005 to 75.2 µg m-3 in 2007 and subsequently decreased to 66.9 µg m-3 from 2007 to 2012. Variations in PM2. 5 concentrations are mainly driven by the decrease in sulfate and the increase in nitrate. Population-weighted mean sulfate concentration decreased by 2.4 % yr-1 during 2005-2012 (from 14.4 to 12.9 µg m-3), while population-weighted mean nitrate concentration increased by 3.4 % yr-1 during 2005-2012 (from 9.8 to 12.2 µg m-3), largely offsetting the decrease in sulfate concentrations. By examining the emission data from the Multi-resolution Emission Inventory for China (MEIC), we found that the changes in sulfate and nitrate concentrations were in line with the decrease in SO2 emissions and the increase in NOx emissions during the same period. The desulfurization regulation in power plants enforced around 2005 has been the primary contributor to the SO2 emission reduction since 2006. In contrast

  14. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    Energy Technology Data Exchange (ETDEWEB)

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com; Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki [Central Research Laboratory, Hitachi, Ltd., Hatoyama 350-0395 (Japan); Müller, Heiko; Haider, Maximilian [Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg (Germany); Tonomura, Akira [Central Research Laboratory, Hitachi, Ltd., Hatoyama 350-0395 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  15. Ship emission inventory and its impact on the PM2.5 air pollution in Qingdao Port, North China

    Science.gov (United States)

    Chen, Dongsheng; Wang, Xiaotong; Nelson, Peter; Li, Yue; Zhao, Na; Zhao, Yuehua; Lang, Jianlei; Zhou, Ying; Guo, Xiurui

    2017-10-01

    In this study, a first high temporal-spatial ship emission inventory in Qingdao Port and its adjacent waters has been developed using a ;bottom-up; method based on Automatic Identification System (AIS) data. The total estimated ship emissions for SO2, NOX, PM10, PM2.5, HC and CO in 2014 are 3.32 × 104, 4.29 × 104, 4.54 × 103, 4.18 × 103, 1.85 × 103 and 3.66 × 103 tonnes, respectively. Emissions of SO2 and NOX from ships account for 9% and 13% of the anthropogenic totals in Qingdao, respectively. The main contributors to the ship emissions are containers, followed by fishing ships, oil tankers and bulk carriers. The inter-monthly ship emissions varied significantly due to two reasons: stopping of the fishing ship activities during the fishing moratorium and the reduction of freight volume around the Chinese New Year Festival. Emissions from transport vessels concentrated basically along the shipping routes, while fishing ships contributed to massive irregular spatial emissions in the sea. The impact of ship emissions on the ambient air quality was further investigated using the Weather Research and Forecasting with Chemistry (WRF/Chem) model. The results reveal that the contribution of ship emissions to the PM2.5 concentrations in Qingdao is the highest in summer (13.1%) and the lowest in winter (1.5%). The impact was more evident over densely populated urban areas, where the contributions from ship emissions could be over 20% in July due to their close range to the docks. These results indicated that the management and control of the ship emissions are highly demanded considering their remarkable influence on the air quality and potential negative effects on human health.

  16. PM10 Emission, Sandblasting Efficiency and Vertical Entrainment During Successive Wind-Erosion Events: A Wind-Tunnel Approach

    Science.gov (United States)

    Panebianco, J. E.; Mendez, M. J.; Buschiazzo, D. E.

    2016-11-01

    A wind-tunnel experiment was carried out to measure saltation and PM10 (particulate matter with a mean aerodynamic diameter less than 10 μm) emission during three successive wind-erosion events on three different surfaces: an unpaved road and two different textured agricultural soils: a sandy loam and a loamy sand. The total horizontal mass transport ( Q) and the PM10 emissions ( E), were measured at two friction velocities: 0.2 and 0.3 m s^{-1}. Results indicated that Q decreased rapidly in time over all surfaces, as the Q values were only 13-17 % of the amount registered during the first event. Similar trends were detected at both wind speeds. However, E values showed a lower relative decrease in the second wind-erosion event at the lower wind speed (25-51 % of the initial amounts) than at the higher wind speed (19-28 % of the initial amounts) over all surfaces. After the second wind-erosion event, both Q and E values remained constant except for the unpaved road, where both values decreased by 50 % in relation to the second event. Emission from the agricultural soils was sustained over successive wind-erosion events even when saltation was low. The sandblasting efficiency for PM10 emission was found to be higher for agricultural soils than for the unpaved road, and increased over wind-erosion events particularly in agricultural soils, and this was also reflected in the PM10 vertical entrainment. Results suggest that sandblasting efficiency and PM10 vertical distribution can change among wind-erosion events even for the same surface. The saltation fraction to PM10 content ratio can be a simple indicator of the general behaviour of an emitting surface during successive wind-erosion events.

  17. PM10 Emission, Sandblasting Efficiency and Vertical Entrainment During Successive Wind-Erosion Events: A Wind-Tunnel Approach

    Science.gov (United States)

    Panebianco, J. E.; Mendez, M. J.; Buschiazzo, D. E.

    2016-06-01

    A wind-tunnel experiment was carried out to measure saltation and PM10 (particulate matter with a mean aerodynamic diameter less than 10 μ m) emission during three successive wind-erosion events on three different surfaces: an unpaved road and two different textured agricultural soils: a sandy loam and a loamy sand. The total horizontal mass transport (Q) and the PM10 emissions (E), were measured at two friction velocities: 0.2 and 0.3 m {s}^{-1} . Results indicated that Q decreased rapidly in time over all surfaces, as the Q values were only 13-17 % of the amount registered during the first event. Similar trends were detected at both wind speeds. However, E values showed a lower relative decrease in the second wind-erosion event at the lower wind speed (25-51 % of the initial amounts) than at the higher wind speed (19-28 % of the initial amounts) over all surfaces. After the second wind-erosion event, both Q and E values remained constant except for the unpaved road, where both values decreased by 50 % in relation to the second event. Emission from the agricultural soils was sustained over successive wind-erosion events even when saltation was low. The sandblasting efficiency for PM10 emission was found to be higher for agricultural soils than for the unpaved road, and increased over wind-erosion events particularly in agricultural soils, and this was also reflected in the PM10 vertical entrainment. Results suggest that sandblasting efficiency and PM10 vertical distribution can change among wind-erosion events even for the same surface. The saltation fraction to PM10 content ratio can be a simple indicator of the general behaviour of an emitting surface during successive wind-erosion events.

  18. Light-Duty GDI Vehicle PM and VOC Speciated Emissions at Differing Ambient Temperatures with Ethanol Blend Gasoline

    Science.gov (United States)

    With the rise in the use of ethanol-blend gasoline in the US and more manufacturers implementing gasoline direct injection (GDI) technologies, interest is increasing in how these fuel blends affect PM and VOC emissions in GDI technology vehicles. EPA conducted a study characteri...

  19. 40 CFR Table 4 of Subpart Bbbbbbb... - Continuous Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Science.gov (United States)

    2010-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 4 Table 4 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate continuous...) or an outlet concentration of 0.03 gr/dscf or less Using one of the following monitoring methods:a. A...

  20. Unloading system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....

  1. Spatial estimation of air PM2.5 emissions using activity data, local emission factors and land cover derived from satellite imagery

    Directory of Open Access Journals (Sweden)

    H. P. Gibe

    2017-09-01

    Full Text Available Exposure to particulate matter (PM is a serious environmental problem in many urban areas on Earth. In the Philippines, most existing studies and emission inventories have mainly focused on point and mobile sources, while research involving human exposures to particulate pollutants is rare. This paper presents a method for estimating the amount of fine particulate (PM2.5 emissions in a test study site in the city of Cabanatuan, Nueva Ecija, in the Philippines, by utilizing local emission factors, regionally procured data, and land cover/land use (activity data interpreted from satellite imagery. Geographic information system (GIS software was used to map the estimated emissions in the study area. The present results suggest that vehicular emissions from motorcycles and tricycles, as well as fuels used by households (charcoal and burning of agricultural waste, largely contribute to PM2.5 emissions in Cabanatuan. Overall, the method used in this study can be applied in other small urbanizing cities, as long as on-site specific activity, emission factor, and satellite-imaged land cover data are available.

  2. Spatial estimation of air PM2.5 emissions using activity data, local emission factors and land cover derived from satellite imagery

    Science.gov (United States)

    Gibe, Hezron P.; Cayetano, Mylene G.

    2017-09-01

    Exposure to particulate matter (PM) is a serious environmental problem in many urban areas on Earth. In the Philippines, most existing studies and emission inventories have mainly focused on point and mobile sources, while research involving human exposures to particulate pollutants is rare. This paper presents a method for estimating the amount of fine particulate (PM2.5) emissions in a test study site in the city of Cabanatuan, Nueva Ecija, in the Philippines, by utilizing local emission factors, regionally procured data, and land cover/land use (activity data) interpreted from satellite imagery. Geographic information system (GIS) software was used to map the estimated emissions in the study area. The present results suggest that vehicular emissions from motorcycles and tricycles, as well as fuels used by households (charcoal) and burning of agricultural waste, largely contribute to PM2.5 emissions in Cabanatuan. Overall, the method used in this study can be applied in other small urbanizing cities, as long as on-site specific activity, emission factor, and satellite-imaged land cover data are available.

  3. Intake fraction of PM2.5 and NOX from vehicle emissions in Beijing based on personal exposure data

    Science.gov (United States)

    Du, Xuan; Wu, Ye; Fu, Lixin; Wang, Shuxiao; Zhang, Shaojun; Hao, Jiming

    2012-09-01

    The intake fraction (iF) is the portion of attributable population intake of a source emissions, and is used to link pollutant emissions and population exposure. This study is the first work that reported individual intake fraction of PM2.5 and NOX from vehicle emissions based on personal exposure data in China. We employed PM2.5 and NOX measurement data from 24-h personal exposure sampling and concentration monitoring in traffic environments in the urban area of Beijing to estimate the individual intake fraction (iFi). iFi distributions are presented in microenvironments (traffic, work, home) for adults and children. The individual results are used to calculate the intake fraction for the children group and the adults group in the urban area of Beijing. The iF of PM2.5 for the whole population of these two groups in Beijing is 153 per million, which is significantly higher than those estimates in the United States (1-50 per million) and Mexico (23-120 per million). The iF of NOX is 70 per million, among which the intake in the traffic micro-environment ranks first compared to the iF in the home and office due to a high accumulation of NOX concentration in vehicles. PM2.5 and NOX intake fraction values from vehicle emissions in this study are from at least several times to one order of magnitude higher than those from other industry sources in China. This strongly suggests the health risk from vehicle emissions is significantly higher. Therefore, to protect human health, especially for the large number of people living in the cities of China, controlling vehicle emissions should be the highest priority.

  4. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe

    Science.gov (United States)

    Kistler, Magdalena; Schmidl, Christoph; Padouvas, Emmanuel; Giebl, Heinrich; Lohninger, Johann; Ellinger, Reinhard; Bauer, Heidi; Puxbaum, Hans

    2012-05-01

    In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as “common oak”), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, “garden biomass” such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ-1 for CO; 89 mg MJ-1 for NOx, 311 mg MJ-1 for CxHy, 67 mg MJ-1 for particulate matter PM10 and average odor concentration was at 2430 OU m-3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx - comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m-3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m-3 for hornbeam to 5217 OU m-3 for fir, indicating a considerable influence of the wood type on odor concentration.

  5. PM2.5 emissions from different types of heavy-duty truck: a case study and meta-analysis of the Beijing-Tianjin-Hebei region.

    Science.gov (United States)

    Song, Liying; Song, Hongqing; Lin, Jingyi; Wang, Cheng; Yu, Mingxu; Huang, Xiaoxia; Guan, Yu; Wang, Xing; Du, Li

    2017-03-14

    Beijing-Tianjin-Hebei (BTH) region in China is affected seriously by the hazy weather that has a large impact on human health. PM2.5 is one of the most important reasons for hazy weather. Understanding the PM2.5 emission characteristics from different types of heavy-duty trucks (HDTs) is valuable in policies and regulations to improve urban air quality and mitigate vehicle emission in China. The investigation and analysis on HDT population and PM2.5 emission in BTH region are carried out. The results show that the population and PM2.5 emission of HDTs in BTH has risen for the last four consecutive years, from 404 thousand and 1795 tons in 2012 to 551 thousand and 2303 tons in 2015. The PM2.5 emission from HDTs in Hebei is about 10 times more than that of Beijing and 9 times more than that of Tianjin. The proportion of natural gas HDTs is about 5%; however, its PM2.5 emission only accounts for 0.94% in 2015, which indicates the utilization of HDTs powered by natural gas facilitate PM2.5 mitigation more than diesel in BTH. The tractor and pickup trucks are the main source of PM2.5 emission from different types of HDT, while special and dump trucks are relatively clean. This study has provided insights for management method and policy-making of vehicle in terms of environmental demand.

  6. Implications of RCP emissions on future PM2.5 air quality and direct radiative forcing over China

    Science.gov (United States)

    Li, Ke; Liao, Hong; Zhu, Jia; Moch, Jonathan M.

    2016-11-01

    Severe PM2.5 air pollution in China and the First Grand National Standard (FGNS), implemented in 2016 (annual PM2.5 concentration target of less than 35 µg m-3), necessitate urgent reduction strategies. This study applied the nested-grid version of the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) to quantify 2000-2050 changes in PM2.5 air quality and related direct radiative forcing (DRF) in China, based on future emission changes under the representative concentration pathway (RCP) scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In the near term (2000-2030), a projected maximum increase in PM2.5 concentrations of 10-15 µg m-3 is found over east China under RCP6.0 and RCP8.5 and less than 5 µg m-3 under RCP2.6 and RCP4.5. In the long term (2000-2050), PM2.5 pollution clearly improves, and the largest decrease in PM2.5 concentrations of 15-30 µg m-3 is over east China under all RCPs except RCP6.0. Focusing particularly on highly polluted regions, we find that Beijing-Tianjin-Hebei (BTH) wintertime PM2.5 concentrations meeting the FGNS occur after 2040 under RCP2.6, RCP4.5, and RCP8.5, and summertime PM2.5 concentrations reach this goal by 2030 under RCP2.6 and RCP4.5. In Sichuan Basin (SCB), wintertime PM2.5 concentrations below the FGNS occur only in 2050 under RCP2.6 and RCP4.5, although future summertime PM2.5 will be well controlled. The difficulty in controlling future PM2.5 concentrations relates to unmitigated high levels of nitrate, although NOx and SO2 emissions show substantial reductions during 2020-2040. The changes in aerosol concentrations lead to positive aerosol DRF over east China (20°-45°N, 100°-125°E) by 1.22, 1.88, and 0.66 W m-2 in 2050 relative to 2000 under RCP2.6, RCP4.5, and RCP8.5, respectively. When considering both health and climate effects of PM2.5 over China, for example, PM2.5 concentrations averaged over east China under RCP4.5 (RCP2.6) decrease by 54% (43%) in 2050 relative to 2000, but at the

  7. Emission characteristics of carboxylates in PM2.5 from incense burning with the effect of light on acetate

    Science.gov (United States)

    Kuo, Su-Ching; Tsai, Ying I.; Sopajaree, Khajornsak

    2016-08-01

    Incense burning produces potentially harmful particulate matter. In this study we investigated the emissions of PM2.5 and gaseous acetic acid from four brands of traditional incense; Liao and Shang Lao Shan (SLS), sold in Taiwan, and Thai Yellow (Thai Y) and Thai Black (Thai B), sold in Thailand. Additionally, photochemical reactions of PM2.5 carboxylates emitted from incense burning were studied via a simulated light experiment. The average PM2.5 mass emission factor of each incense type was inversely correlated with the ash production of that incense. The Thailand incense carboxylate emissions were markedly higher than the Taiwan incense. Acetate accounted for 87.46% of total carboxylate emissions, with acetate emitted from the Thailand incense 1.26 times higher than from the Taiwan incense. Phthalate was detected in the PM2.5, indicating the presence of plasticizer. Concentrations of PM2.5 acetate, formate, pyruvate, glutarate, succinate, fumarate and tartarate were reduced in simulated light (51.5%-97.1% of those under dark), indicating that these seven types of carboxylate are easily photodegradable. In contrast, malonate, maleate, oxalate and phthalate concentrations in light were 1.17-1.84 times higher than in darkness, indicating photochemical reactions contribute to the formation of these species. The formation of the low-molecular weight dicarboxylates oxalate and malonate was most noticeable. Acetic acid, highly irritating to the respiratory system and skin, was present at high levels for all four incense types, as shown by the gaseous acetic acid/PM2.5 acetate ratios of 1.03-3.61. Burning incense indoors can generate high concentrations of PM2.5 acetate that increases the risks of respiratory and contact irritation, particularly when burning the Thailand incense. Moreover, burning incense in poorly ventilated, dimly lit indoor areas (e.g., temples and homes) can markedly increase the risk of irritation because the gaseous acetic acid is not degraded as

  8. Impacts of Ambient Temperature and Pressure on PM2.5 Emission Profiles of Light-Duty Diesel Vehicles

    Science.gov (United States)

    Wang, Chenyu; Wu, Ye; Li, Zhenhua; Hao, Jiming

    2012-01-01

    The impact of the environmental factors on the emissions of particulate matter (PM) number, size distribution and mass size distribution from diesel passenger cars was evaluated. Particle measurements from five modern light-duty diesel vehicles (LDDV) were performed in June and November 2011. Commercial low sulfur diesel fuel (less than 50 ppm) was used during the testing of these vehicles which were not equipped with after-treatment devices. The dynamometer test was based on the Economic Commission of Europe (ECE) 15 cycles. The results indicate that PM2.5 emissions from LDDV are significantly affected by ambient temperature and pressure. A comparison of the emissions concentration of PM2.5 in these two different months showed that the number concentration in June was (3.8 ± 0.69) × 107 cm-3 and (2.5 ± 0.66) × 107 cm-3 in November. The PM concentration of about 30 nm diameter was 25 ± 6% of the total emissions in November while only 14 ± 3% of total emissions in June. In the 60 nm to 2.5 μm test range, November data shows less of a contribution for number than data from June testing. The concentration of mass emissions in June was (325 ± 44) mg/m3 and (92 ± 30) mg/m3 in November. The contribution of the number of PM particles in November testing is lower than testing in June by 34% and the mass concentration in November is 70% lower than that in June. With the decrease of ambient temperature and the increase of ambient pressure, both the oxygen concentration in cylinder and air-fuel ratio are increased, which caused lower particle number and mass emissions during November testing. The size distribution is also altered by these changes: the more efficient in-cylinder combustion resulted in a higher proportion of particles in the 30 nm and smaller range than for other particle sizes.

  9. Metals emitted from heavy-duty diesel vehicles equipped with advanced PM and NO X emission controls

    Science.gov (United States)

    Hu, Shaohua; Herner, Jorn D.; Shafer, Martin; Robertson, William; Schauer, James J.; Dwyer, Harry; Collins, John; Huai, Tao; Ayala, Alberto

    Emission factors for elemental metals were determined from several heavy-duty diesel vehicles (HDDV) of 1998-2007 vintage, operating with advanced PM and/or NO X emissions control retrofits on a heavy-duty chassis dynamometer, under steady state cruise, transient, and idle conditions. The emission control retrofits included diesel particulate filters (DPF): catalyzed and uncatalyzed, passive and active prototype vanadium- or zeolite-based selective catalytic reduction (SCR) systems, and a catalyzed DPF fitted on a hybrid diesel electric drive vehicle. The prototype SCR systems in combination with DPF retrofits are of particular interest because they represent the expected emissions controls for compliance with PM and NO X regulations in 2010. PM samples from a full-exhaust dilution tunnel were collected on bulk filters, and on a Personal Cascade Impactor Sampler (PCIS) for total and water-soluble elemental analysis. All the DPFs significantly reduced emissions of total trace elements (>85% and >95% for cruise and for the Urban Dynamometer Driving Schedule (UDDS), respectively). However, we observed differences in the post-retrofit metals emissions due to driving cycle effects (i.e., exhaust temperature) and type of retrofit. In general, the metals emissions over cruise conditions (which leads to higher exhaust temperatures) were substantially different from the emissions over a transient cycle or while idling. For instance, during cruise, we observed higher levels of platinum (1.1 ± 0.6-4.2 ± 3.6 ng km -1) for most of the retrofit-equipped vehicle tests compared to the baseline configuration (0.3 ± 0.1 ng km -1). The vanadium-based DPF + SCR vehicle during cruise operation exhibited emissions of vanadium (562 ± 265 ng km -1) and titanium (5841 ± 3050 ng km -1), suggesting the possible release of actual SCR wash-coat (V 2O 5/TiO 2) from the catalyst under the higher temperatures characteristic of cruise operation. The vanadium emissions exhibited a bi

  10. PM2.5 and tropospheric O3 in China and an analysis of the impact of pollutant emission control

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2014-09-01

    Full Text Available This study reviewed the status of PM2.5 and tropospheric O3 observations in China (15–55°N, 72–136°E. Initially, the distribution of tropospheric O3 over the globe and China was determined based on satellite observations made during 2010–2013. The annual mean values were 29.78 DU and 33.97 DU over the globe and China, respectively. The distribution of PM2.5 and seasonal changes in concentrations in China were then simulated using an aerosol chemistry–climate coupled model system, with an annual mean value of 0.51 × 10−8 kg m−3. The contributions from five different aerosols to the simulated PM2.5 concentrations in different seasons were also determined. The relationships among the emissions of aerosols, greenhouse gases and their precursors and radiative forcings were determined with reference to the (IPCC AR5 Intergovernmental Panel on Climate Change the Fifth Assessment Report. From these relationships, the possible effects of controlling O3 precursors and (PM particulate matter on the climate were considered. The influence of the control of O3 precursors was not totally clear, and reducing emissions of short-lived greenhouse gases and black carbon was considered a secondary measure for short-term (the next 50 years climate-change mitigation. Reducing emissions of CO2 is still the best strategy for meeting the target of a global average rise in surface air temperature of less than 2 °C. Near- and short-term emission reduction strategies are important for both effective environmental protection and climate-change mitigation.

  11. Estimating PM2.5-associated mortality increase in California due to the Volkswagen emission control defeat device

    Science.gov (United States)

    Wang, Tianyang; Jerrett, Michael; Sinsheimer, Peter; Zhu, Yifang

    2016-11-01

    The Volkswagen Group of America (VW) was found by the US Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) to have installed "defeat devices" and emit more oxides of nitrogen (NOx) than permitted under current EPA standards. In this paper, we quantify the hidden NOx emissions from this so-called VW scandal and the resulting public health impacts in California. The NOx emissions are calculated based on VW road test data and the CARB Emission Factors (EMFAC) model. Cumulative hidden NOx emissions from 2009 to 2015 were estimated to be over 3500 tons. Adult mortality changes were estimated based on ambient fine particulate matter (PM2.5) change due to secondary nitrate formation and the related concentration-response functions. We estimated that hidden NOx emissions from 2009 to 2015 have resulted in a total of 12 PM2.5-associated adult mortality increases in California. Most of the mortality increase happened in metropolitan areas, due to their high population and vehicle density.

  12. Fugitive Emissions from Coal Preparation Plants

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  13. Consideration of Fugitive Emissions from Grain Elevators

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  14. Estimación de Factores de Emisión de PM10 y PM2.5, en Vías Urbanas en Mexicali, Baja California, México Estimation of PM10 and PM2.5 Emission Factors, in City Roadways of Mexicali, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    Lourdes M Meza

    2010-01-01

    Full Text Available El objetivo de esta investigación es estimar los factores de emisión (FE que permitan valorar la cantidad de material particulado de las vías pavimentadas y no pavimentadas de la ciudad de Mexicali, Baja California, México. Se empleó el modelo AP-42 de la US EPA, bajo un diseño estadístico al azar, correspondiente a 60 sitios de muestreo en un mapa georeferenciado con proyección UTM 11 Norte. Se obtuvieron los valores de carga y porcentaje de sedimento menor a 75 µm en laboratorio, velocidad y número de vehículos, en campo. La estimación de los FE corresponden a 0.92 Kg. PM10/VKT y 0.73 Kg. PM2.5 /VKT en vías pavimentadas y 2.33 Kg. PM10/VKT y 0.58 Kg. PM2.5 /VKT en vías no pavimentadas, respectivamente. El valor de FE propio determina la cantidad de material particulado a suspenderse y la relación de los factores de emisión (PM10 y PM2.5 en ambas vías indica que es necesario hacer mantenimiento y control de flujo de vehículos.The objective of this research was to estimate the emission factors (EF for evaluating the amount of particulate matter from paved and unpaved roads in the city of Mexicali, Baja California, Mexico. The model used was AP-42 of the U.S. EPA, under a random statistical design, corresponding to 60 sampling sites in a georeferenced map UTM 11 North projection. Load values were obtained and percent of sediment less than 75 µm in the laboratory, speed and number of vehicles in the field. The estimated FE correspond to 0.92 kg PM10/VKT and 0.73 kg PM2.5 / VKT on paved road and 2.33 kg PM10/VKT and 0.58 kg PM2.5 / VKT on unpaved roads, respectively. The value of FE determines the amount of particulate matter to be suspended and the relation of the emission factors (PM10 and PM2.5 in both roadways indicate that maintenance and control of vehicle flux may be needed.

  15. Using PM(2.5) lanthanoid elements and nonparametric wind regression to track petroleum refinery FCC emissions.

    Science.gov (United States)

    Du, Li; Turner, Jay

    2015-10-01

    A long term air quality study is being conducted in Roxana, Illinois, USA, at the fenceline of a petroleum refinery. Measurements include 1-in-6 day 24-hour integrated ambient fine particulate matter (PM2.5) speciation following the Chemical Speciation Network (CSN) sampling and analysis protocols. Lanthanoid elements, some of which are tracers of fluidized-bed catalytic cracker (FCC) emissions, are also measured by inductively coupled plasma-mass spectrometry (ICP-MS) after extraction from PM2.5 using hot block-assisted acid digestion. Lanthanoid recoveries of 80-90% were obtained for two ambient particulate matter standard reference materials (NIST SRM 1648a and 2783). Ambient PM2.5 La patterns could be explained by a two-source model representing resuspended soil and FCC emissions with enhanced La/Ce ratios when impacted by the refinery. Nonparametric wind regression demonstrates that when the monitoring station was upwind of the refinery the mean La/Ce ratio is consistent with soil and when the monitoring station is downwind of the refinery the mean ratio is more than four times higher for bearings that corresponds to maximum impacts. Source apportionment modeling using EPA UNMIX and EPA PMF could not reliably apportion PM2.5 mass to the FCC emissions. However, the weight of evidence is that such contributions are small with no large episodes observed for the 164 samples analyzed. This study demonstrates the applicability of a hot block-assisted digestion protocol for the extraction of lanthanoid elements as well as insights obtained from long-term monitoring data including wind direction-based analyses.

  16. Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking.

    Science.gov (United States)

    Zhang, Nan; Han, Bin; He, Fei; Xu, Jia; Zhao, Ruojie; Zhang, Yujuan; Bai, Zhipeng

    2017-08-01

    To illustrate chemical characteristic of PM2.5 emission and assess inhalational carcinogenic risk of domestic Chinese cooking, 5 sets of duplicate cooking samples were collected, using the most used 5 types of oil. The mass abundance of 14 elements, 5 water-soluble ions, organic carbon (OC), elemental carbon (EC) and 11 polycyclic aromatic hydrocarbons (PAHs) were calculated; the signature and diagnostic ratio of cooking in the domestic kitchen were analyzed; and carcinogenic risks of heavy metals and PAHs via inhalation were assessed in two scenarios. The analysis showed that OC was the primary composition in the chemical profile; Na was the most abundant element that might be due to the usage of salt; Cr and Pb, NO3(-) and SO4(2-), Phe, FL and Pyr were the main heavy metals/water-soluble ions/PAHs, respectively. Phe and FL could be used to separate cooking and stationary sources, while diagnostic ratios of BaA/(BaA + CHR), BaA/CHR, BaP/BghiP and BaP/BeP should be applied with caution, as they were influenced by various cooking conditions. Carcinogenic risks of heavy metals and PAHs were evaluated in two scenarios, simulating the condition of cooking with no ventilation and with the range hood on, respectively. The integrated risk of heavy metals and PAHs was 2.7 × 10(-3) and 5.8 × 10(-6), respectively, during cooking with no ventilation. While with the usage of range hood, only Cr(VI), As and Ni might induce potential carcinogenic risk. The difference in the chemical abundance in cooking sources found between this and other studies underlined the necessity of constructing locally representative source profiles under real conditions. The comparison of carcinogenic risk suggested that the potentially adverse health effects induced by inorganic compositions from cooking sources should not be ignored. Meanwhile, intervention methods, such as the operation of range hood, should be applied during cooking for health protection. Copyright © 2017 Elsevier Ltd

  17. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    Science.gov (United States)

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta.

  18. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet

    Directory of Open Access Journals (Sweden)

    Timothy J. Wallington

    2008-04-01

    Full Text Available Vehicles emit carbon dioxide (CO2, carbon monoxide (CO, nitrogen oxides (NOx, hydrocarbons (HC, particulate matter (PM, hydrofluorocarbon 134a (HFC-134a, methane (CH4, and nitrous oxide (N2O. An understanding of these emissions is needed in discussions of climate change and local air pollution issues. To facilitate such discussions an overview of past, present, and likely future emissions from light duty vehicles is presented. Emission control technologies have reduced the emissions of CO, VOCs, PM, HFC-134a, CH4, and N2O from modern vehicles to very low levels.

  19. 40 CFR Table 1 of Subpart Bbbbbbb... - Emission Reduction and PM Concentration Requirements

    Science.gov (United States)

    2010-07-01

    ... Concentration Requirements 1 Table 1 of Subpart BBBBBBB of Part 63 Protection of Environment ENVIRONMENTAL... Reduction and PM Concentration Requirements For each * * * You must * * * Using * * * 1. Process Vent Stream... percent reduction efficiency of 95 percent (98 percent for new sources), or b. An outlet concentration of...

  20. Fire Radiative Power (FRP)-based Emission Factors of PM2.5, CO and NOX for Remote Sensing of Biomass Burning Emissions

    Science.gov (United States)

    Karandana Gamalathge, T. D.; Chen, L. W. A.

    2015-12-01

    Large-scale biomass burning such as forest fires represents an important and yet uncertain source of air pollutants and greenhouse gases on a global scale. Due to the highly accidental nature of forest fires, satellite remote sensing could be a promising method to develop regional and global fire emission inventories on a real-time basis. Reliable fire radiative power (FRP)-based fuel consumption and emission factors are critical in this approach. In an attempt to obtain the information, laboratory combustion experiments were conducted to simultaneously monitor FRP, fuel consumption, and emissions of fine particulate matter (PM2.5), carbon monoxide (CO), and reactive nitrogen oxides (NO and NO2). FRP were quantified using temperature-resolved values from a thermal imager instead of conventionally used average temperature, as the former provides more realistic estimates. For dry Ponderosa pine branches, a common fuel in the Sierra Nevada, a strong correlation (r2 ~ 0.8) between FRP and the mass reduction rate (MRR) was found. This led to a radiative energy yield (REY) of 8.5 ± 1.2 MJ/kg, assuming blackbody radiation and a flame emissivity of 0.5. Mass-based emission factors were determined with the carbon balance approach. Considering the ratio of mass-based emission factors and the REY, FRP-based emission factors: PM2.5: 11 g/MJ, CO: 8.0 g/MJ, NO: 0.33 g/MJ, and NO2: 0.07 g/MJ were quantified. The application of this approach to other fuel types and uncertainties in the measurements will be discussed.

  1. Assessment of emissions of PM and NOx of sea going vessels by field measurements

    NARCIS (Netherlands)

    Duyzer, J.; Hollander, K.; Voogt, M.; Verhagen, H.; Weststrate, H.

    2006-01-01

    The factors used to estimate emissions of sea going ships to air (so called emission factors) are based upon critical evaluation of the literature. Current estimates of emission factors of sea going ships are based upon a limited number of laboratory experiments and information on fuel usage and

  2. 亚硫酸镁清液法脱硫技术在金隆环集烟气处理中的应用%Application of desulphurization supernatant in treatment of flue gas technology using magnesium sulphite collected from fugitive emission in Jiniong

    Institute of Scientific and Technical Information of China (English)

    张晏; 梁海卫

    2012-01-01

    Application of a desulphurization technology using magnesium sulphite supernatant in treatment of flue gas collected from fugitive emission in Jinlong is described. The technology has features of low investment low energy consumption, low operating costs, moderate plot space and reasonable block layout according to actual situation. The application of this technology opened up a new avenue for high flow flue gas desulphurization.%介绍了金隆铜业环集烟气脱硫装置所使用的亚硫酸镁清液法脱硫技术,该技术具有投资省,能耗低,运行成本低,占地面积适中等特点,并能根据实际情况合理分块布局。该技术的应用为行业大烟气量脱硫开辟了新的途径。

  3. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the

  4. Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques.

    Science.gov (United States)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-03-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM10 and PM2.5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM2.5 fraction contributes 66% of PM10 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM10 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003-0.001 mg/vkm), Cars (26.1-33.4 mg/vkm), LDVs (2.4-3.0 mg/vkm), HDVs (2.2-2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM10 emission of brake wear (3.8-4.4 mg/vkm), petrol exhaust (3.9-4.5 mg/vkm), diesel exhaust (7.2-8.3 mg/vkm), re-suspension (9-10.4 mg/vkm), road surface wear (3.9-4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM10 emission factor (16.7-19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1-12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations.

  5. Modeling spatial patterns of link-based PM2.5 emissions and subsequent human exposure in a large canadian metropolitan area

    Science.gov (United States)

    Requia, Weeberb J.; Dalumpines, Ron; Adams, Matthew D.; Arain, Altaf; Ferguson, Mark; Koutrakis, Petros

    2017-06-01

    Understanding the relationship between mobile source emissions and subsequent human exposure is crucial for emissions control. Determining this relationship over space is fundamental to improve the accuracy and precision of public policies. In this study, we evaluated the spatial patterns of link-based PM2.5 emissions and subsequent human exposure in a large Canadian metropolitan area - the Greater Toronto and Hamilton Area (GTHA). This study was performed in three stages. First, we estimated vehicle emissions using transportation models and emission simulators. Then we evaluated human exposure to PM2.5 emissions using the Intake fraction (iF) approach. Finally, we applied geostatistical methods to assess spatial patterns of vehicle emissions and subsequent human exposure based on three prospective goals: i) classification of emissions (Global Moran's I test), ii) level of emission exposure (Getis-Ord General G test), and; iii) location of emissions (Anselin Local Moran's I). Our results showed that passenger vehicles accounted for the highest total amount of PM2.5 emissions, representing 57% emissions from all vehicles. Examining only the emissions from passenger vehicles, on average, each person in the GTHA inhales 2.58 × 10-3 ppm per day. Accounting the emissions from buses and trucks, on average each person inhales 0.12 × 10-3 and 1.91 × 10-3 ppm per day, respectively. For both PM2.5 emissions and human exposure using iF approach, our analysis showed Moran's Index greater than 0 for all vehicle categories, suggesting the presence of significant clusters (p-value <0.01) in the region. Our study indicates that air pollution control policy must be developed for the whole region, because of the spatial distribution of housing and businesses centers and inter-connectivity of transportation networks across the region, where a policy cannot simply be based on a municipal or other boundaries.

  6. Emissiefactoren methaan, lachgas en PM2,5 voor stalsystemen, inclusief toelichting = Emission factors for methane, nitrous oxide and PM2.5 for livestock housing, including explanation

    NARCIS (Netherlands)

    Mosquera Losada, J.; Hol, J.M.G.

    2011-01-01

    In dit rapport worden de bronnen en uitgangspunten die gehanteerd zijn bij de overname van meetcijfers en de afleiding van emissiefactoren voor CH4, N2O en PM2,5 toegelicht. De lijst met emissiefactoren CH4, N2O en PM2,5 voor stalsystemen in de veehouderij wordt per component gepresenteerd en

  7. Environmental Justice Aspects of Exposure to PM2.5 Emissions from Electric Vehicle Use in China.

    Science.gov (United States)

    Ji, Shuguang; Cherry, Christopher R; Zhou, Wenjun; Sawhney, Rapinder; Wu, Ye; Cai, Siyi; Wang, Shuxiao; Marshall, Julian D

    2015-12-15

    Plug-in electric vehicles (EVs) in China aim to improve sustainability and reduce environmental health impacts of transport emissions. Urban use of EVs rather than conventional vehicles shifts transportation's air pollutant emissions from urban areas (tailpipes) to predominantly rural areas (power plants), changing the geographic distribution of health impacts. We model PM2.5-related health impacts attributable to urban EV use for 34 major cities. Our investigation focuses on environmental justice (EJ) by comparing pollutant inhalation versus income among impacted counties. We find that EVs could increase EJ challenge in China: most (~77%, range: 41-96%) emission inhalation attributable to urban EVs use is distributed to predominately rural communities whose incomes are on average lower than the cities where EVs are used. Results vary dramatically across cities depending on urban income and geography. Discriminant analysis reveals that counties with low income and high inhalation of urban EV emissions have comparatively higher agricultural employment rates, higher mortality rates, more children in the population, and lower education levels. We find that low-emission electricity sources such as renewable energy can help mitigate EJ issues raised here. Findings here are not unique to EVs, but instead are relevant for nearly all electricity-consuming technologies in urban areas.

  8. Reduced-form modeling of public health impacts of inorganic PM2.5 and precursor emissions

    Science.gov (United States)

    Heo, Jinhyok; Adams, Peter J.; Gao, H. Oliver

    2016-07-01

    It is challenging to estimate the public health costs of fine particulate matter (PM2.5) and its precursor emissions accurately and quickly for policy research because of their complex physical and chemical processes occurring over a large downwind area. We developed a method for building statistical regressions that estimate public health cost of emissions accurately like a state-of-the-art chemical transport model (CTM) but without its high computational cost. This method achieves detailed spatial resolution according to the location of the emission source, accounting for differences in the exposed population downwind. Using tagged CTM simulations, our method builds a large dataset of air quality public health costs from marginal emissions throughout the United States. Two methods were developed to describe exposed population, one that assumes a generic downwind plume concentration profile derived from CTM outputs and a simpler method that uses the size of population within certain distances as variables. Using the former method, we parameterized marginal public health cost [/t] and intake fraction [ppm] as a function of exposed population and key atmospheric variables. We derived models for elemental carbon, sulfur dioxide, nitrogen oxides, and ammonia. Compared to estimates calculated directly using CTM outputs, our models generally show mean fractional errors of only 10%-30% and up to 50% for NOx in some seasons, which are generally similar to or less than CTM's performance. Our results show that the public health costs of emissions can be efficiently parameterized for policy analyses based on state-of-the-art CTMs.

  9. Development of sampling methods for source PM10 emissions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, A.D.; Farthing, W.E.; Dawes, S.S.; McCain, J.D.; Martin, R.S.

    1989-04-01

    This report describes an investigation of the needs and available techniques for in-stack PM-10 sampling. Discussion includes the conceptualization, development, documentation, and testing of two candidate methods. The first method, Constant Sampling Rate (CSR), is a procedural approach which adds particle-size separation to sampling hardware that has been widely used in EPA Methods 5 and 17 but modifies the sampling protocol to accomplish the PM-10 objectives. The second method, Exhaust Gas Recycle (EGR), is an equipment approach which accomplishes the PM-10 objectives by using a modified sampling train to implement the concept of exhaust-gas recirculation. Six field studies indicated that these techniques were practical and compared well with one another and with more labor-intensive approaches. Laboratory investigations with monodisperse aerosols indicated that commonly used geometries for sampling nozzles could cause a decrease in the particle size out of a closely coupled inertial sizing device. Nozzle geometries were also found which eliminated the observed shifts in particle size cut.

  10. PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation

    Science.gov (United States)

    Brewer, Eli; Li, Yang; Finken, Bob; Quartucy, Greg; Muzio, Lawrence; Baez, Al; Garibay, Mike; Jung, Heejung S.

    2016-04-01

    The generation of electricity from natural gas-fired turbines has increased more than 200% since 2003. In 2007 the South Coast Air Quality Management District (SCAQMD) funded a project to identify control strategies and technologies for PM2.5 and ultrafine emissions from natural gas-fired turbine power plants and test at pilot scale advanced PM2.5 technologies to reduce emissions from these gas turbine-based power plants. This prompted a study of the exhaust from new facilities to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine located at the Walnut Creek Energy Park in August 2013. These tests included particulate matter less than 2.5 μm in diameter (PM2.5) and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. After turbine exhaust was diluted sevenfold with filtered air, particle concentrations in the 10-300 nm size range were approximately two orders of magnitude higher than those in the ambient air and those in the 2-3 nm size range were up to four orders of magnitude higher. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. While some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings of 3.63E-04 lb/MMBtu based on Methods 5.1/201A and 1.07E-04 lb/MMBtu based on SMPS method, which are similar to those previously measured from turbines in the SCAQMD area (FERCo et al., 2014), however, the turbine

  11. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal

    Science.gov (United States)

    Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.

    2009-04-01

    A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.

  12. Mobile load simulators - A tool to distinguish between the emissions due to abrasion and resuspension of PM10 from road surfaces

    Science.gov (United States)

    Gehrig, R.; Zeyer, K.; Bukowiecki, N.; Lienemann, P.; Poulikakos, L. D.; Furger, M.; Buchmann, B.

    2010-12-01

    Mechanically produced abrasion particles and resuspension processes are responsible for a significant part of the PM10 emissions of road traffic. However, specific differentiation between PM10 emissions due to abrasion and resuspension from road pavement is very difficult due to their similar elemental composition and highly correlated variation in time. In this work Mobile Load Simulators were used to estimate PM10 emission factors for pavement abrasion and resuspension on different pavement types for light and heavy duty vehicles. From the experiments it was derived that particle emissions due to abrasion from pavements in good condition are quite low in the range of only a few mg·km -1 per vehicle if quantifiable at all. Considerable abrasion emissions, however, can occur from damaged pavements. Resuspension of deposited dust can cause high and extremely variable particle emissions depending strongly on the dirt load of the road surface. Porous pavements seem to retain deposited dust better than dense pavements, thus leading to lower emissions due to resuspension compared to pavements with a dense structure (e.g. asphalt concrete). Tyre wear seemed not to be a quantitatively significant source of PM10 emissions from road traffic.

  13. Compilation of Published PM2.5 Emission Rates for Cooking, Candles and Incense for Use in Modeling of Exposures in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tianchao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    recent analysis of health impacts from air pollutant inhalation in homes found that PM2.5 is the most damaging at the population level. Chronic exposure to elevated PM2.5 has the potential to damage human respiratory systems, and may result in premature death. PM2.5 exposures in homes can be mitigated through various approaches including kitchen exhaust ventilation, filtration, indoor pollutant source reduction and designing ventilation systems to reduce the entry of PM2.5 from outdoors. Analysis of the potential benefits and costs of various approaches can be accomplished using computer codes that simulate the key physical processes including emissions, dilution and ventilation. The largest sources of PM2.5 in residences broadly are entry from outdoors and emissions from indoor combustion. The largest indoor sources are tobacco combustion (smoking), cooking and the burning of candles and incense. Data on the magnitude of PM2.5 and other pollutant emissions from these events and processes are required to conduct simulations for analysis. The goal of this study was to produce a database of pollutant emission rates associated with cooking and the burning of candles and incense. The target use of these data is for indoor air quality modeling.

  14. Cyclone robber system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  15. Mote cyclone robber system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  16. Battery condenser system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...

  17. 长治市大气环境中可吸入颗粒物来源研究%Study on Source Appointment of PM10 in Air Environment of Changzhi,Shanxi

    Institute of Scientific and Technical Information of China (English)

    张建强; 牟玲; 白慧玲; 王莹; 刘效峰; 宋翀芳

    2012-01-01

    The samples from ambient air(PM10) and major emission sources,including coal combustion dust, vehicle exhaust dust,soil dust,urban fugitive dust and cement dust in Changzhi,Shanxi were collected. The sources of PM10 were analyzed according to the chemical mass balance(CMB) receptor model and nested chemical mass balance(NCMB) technique. The results showed that the major source of PM10 was the urban fugitive dust(31%), followed by coal combustion dust ( 24% ), cement dusts(12%) and soil dust(10%). The urban fugitive dust was mainly from soil dust,coal combustion dust and cement dust,among which the soil dust was the main provider.%采集长治市环境空气可吸入颗粒物(PM10)及其主要污染源(煤烟尘、机动车尾气尘、土壤风沙尘、城市扬尘和建筑水泥尘)样品,利用化学质量平衡(CMB)受体模型和“二重源解析”技术解析了长治城区环境空气PM10的来源.结果显示城市扬尘对环境空气中PM10的贡献最大,占31%,其次为煤烟尘、建筑水泥尘和土壤风沙尘,贡献率分别为24%,12%和10%.城市扬尘主要来源于土壤风沙尘、煤烟尘和建筑水泥尘,其中土壤风沙尘是城市扬尘的最主要提供者.

  18. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling

    Science.gov (United States)

    Zhou, Jiabin; Xiong, Ying; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2017-08-01

    From November 2012 to July 2013, a sampling campaign was completed for comprehensive characterization of PM2.5 over four key emission regions in China: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). A multi-method approach, adopting different analytical and receptor modeling methods, was employed to determine the relative abundances of region-specific air pollution constituents and contributions of emission sources. This paper is focused on organic molecular marker based source apportionment using chemical mass balance (CMB) receptor modeling. Analyses of the organic molecular markers revealed that vehicle emission, coal combustion, biomass burning, meat cooking and natural gas combustion were the major contributors to organic carbon (OC) in PM2.5. The vehicle emission dominated the sources contributing to OC in spring at four sampling sites. During wintertime, the coal combustion had highest contribution to OC at BTH site, while the major source contributing to OC at YRD and PRD sites was vehicle emission. In addition, the relative contributions of different emission sources to PM2.5 mass at a specific location site and in a specific season revealed seasonal and spatial variations across all four sampling locations. The largest contributor to PM2.5 mass was secondary sulfate (14-17%) in winter at the four sites. The vehicle emission was found to be the major source (14-21%) for PM2.5 mass at PRD site. The secondary ammonium has minor variation (4-5%) across the sites, confirming the influences of regional emission sources on these sites. The distinct patterns of seasonal and spatial variations of source apportionment observed in this study were consistent with the findings in our previous paper based upon water-soluble ions and carbonaceous fractions. This makes it essential for the local government to make season- and region-specific mitigation strategies for abating PM2.5 pollution in China.

  19. Air conditioning and source-specific particles as modifiers of the effect of PM(10) on hospital admissions for heart and lung disease.

    Science.gov (United States)

    Janssen, Nicole A H; Schwartz, Joel; Zanobetti, Antonella; Suh, Helen H

    2002-01-01

    Studies on acute effects of particulate matter (PM) air pollution show significant variability in exposure-effect relations among cities. Recent studies have shown an influence of ventilation on personal/indoor-outdoor relations and stronger associations of adverse effects with combustion-related particles. We evaluated whether differences in prevalence of air conditioning (AC) and/or the contribution of different sources to total PM(10) emissions could partly explain the observed variability in exposure-effect relations. We used regression coefficients of the relation between PM(10) and hospital admissions for chronic obstructive pulmonary disease (COPD), cardiovascular disease (CVD), and pneumonia from a recent study in 14 U.S. cities. We obtained data on the prevalence of AC from the 1993 American Housing Survey and data on PM(10) emissions by source category, vehicle miles traveled (VMT), and population density from the U.S. EPA. We analyzed data using meta-regression techniques. PM(10) regression coefficients for CVD and COPD decreased significantly with increasing percentage of homes with central AC when cities were stratified by whether their PM(10) concentrations peaked in winter or non-winter months. PM(10) coefficients for CVD increased significantly with increasing percentage of PM(10) emission from highway vehicles, highway diesels, oil combustion, metal processing, decreasing percentage of PM(10) emission from fugitive dust, and increasing population density and VMT/mile(2). In multivariate analysis, only percentage of PM(subscript)10(/subscript) from highway vehicles/diesels and oil combustion remained significant. For COPD and pneumonia, associations were less significant but the patterns of the associations were similar to that for CVD. The results suggest that air conditioning and proportion of especially traffic-related particles significantly modify the effect of PM(10) on hospital admissions, especially for CVD. PMID:11781164

  20. 燃煤电厂PM2.5减排技术与装备探讨%Probe into PM2.5 Emission Reduction Technology and Equipment in Coal-ifred Power Plant

    Institute of Scientific and Technical Information of China (English)

    云端

    2014-01-01

    Coal-ifred power plant possesses a large proportion in power industry in our country, the pol ution problems of smoke dust emission stand out. A great lot of coal-ifred smoke dust causes the serious environmental pol ution, particularly the ifne particulate PM2.5 suspend in the air for a long time, causing a long and sustaining harm to human health. Therefore, PM2.5 emission reduction technology in coal-ifred power plant bears an important signiifcance and a far reaching impact on en-vironmental protection cause. So the great development of PM2.5 emission reduction technology and equipment is the general trends in power industry.%燃煤电厂在我国电力工业中占有很大的比重,其烟尘排放污染问题也尤其突出。大量燃煤烟尘的排放造成了严重的环境污染,特别是其中的细颗粒物PM2.5,能长期悬浮于大气中,对人类的健康造成了长期持续的危害,因此燃煤电厂PM2.5减排技术对于环境保护事业具有重要的意义和深远的影响,大力发展PM2.5减排技术与装备是电力行业大势所趋。

  1. Air pollution and early deaths in the United States. Part II: Attribution of PM2.5 exposure to emissions species, time, location and sector

    Science.gov (United States)

    Dedoussi, Irene C.; Barrett, Steven R. H.

    2014-12-01

    Combustion emissions constitute the largest source of anthropogenic emissions in the US, and lead to the degradation of air quality and human health. In Part I we computed the population fine particulate matter (PM2.5) exposure and number of early deaths caused by emissions from six major sectors: electric power generation, industry, commercial and residential activities, road transportation, marine transportation and rail transportation. In Part II we attribute exposure and early deaths to sectors, emissions species, time of emission, and location of emission. We apply a long-term adjoint sensitivity analysis and calculate the four dimensional sensitivities (time and space) of PM2.5 exposure with respect to each emissions species. Epidemiological evidence is used to relate increased population exposure to premature mortalities. This is the first regional application of the adjoint sensitivity analysis method to characterize long-term air pollution exposure. (A global scale application has been undertaken related to intercontinental pollution.) We find that for the electric power generation sector 75% of the attributable PM2.5 exposure is due to SO2 emissions, and 80% of the annual impacts are attributed to emissions from April to September. In the road transportation sector, 29% of PM2.5 exposure is due to NOx emissions and 33% is from ammonia (NH3), which is a result of emissions after-treatment technologies. We estimate that the benefit of reducing NH3 emissions from road transportation is ∼20 times that of NOx per unit mass. 75% of the road transportation ammonia impacts occur during the months October to March. We publicly release the sensitivity matrices computed, noting their potential use as a rapid air quality policy assessment tool.

  2. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2004-12-02

    tended to be slightly higher. Exposure concentrations were about 249 {micro}g/m{sup 3} PM, of which 87 {micro}g/m{sup 3} was sulfate and approximately 110 {micro}g/m{sup 3} was secondary organic material ({approx}44%). Results indicated subtle differences in breathing pattern between exposed and control (sham) animals, but no differences in other endpoints (in vivo chemiluminescence, blood cytology, bronchoalveolar lavage fluid analysis). It was suspected that primary particle losses may have been occurring in the venturi aspirator/orifice sampler; therefore, the stack sampling system was redesigned. The modified system resulted in no substantial increase in particle concentration in the emissions, leading us to conclude that the electrostatic precipitator at the power plant has high efficiency, and that the sampled emissions are representative of those exiting the stack into the atmosphere. This is important, since the objective of the Project is to carry out exposures to realistic coal combustion-derived secondary PM arising from power plants. During the next reporting period, we will document and describe the remainder of the fieldwork at Plant 0, which we expect to be complete by mid-November 2004. This report will include detailed Phase I toxicological findings for all scenarios run, and Phase II toxicological findings for one selected scenario. Depending upon the outcome of the ongoing fieldwork at Plant 0 (i.e. the biological effects observed), not all the proposed scenarios may be evaluated. The next report is also expected to include preliminary field data for Plant 1, located in the Southeast.

  3. Characterization of PM2.5 Dust Emissions from Training/Testing Range Operations

    Science.gov (United States)

    2008-08-01

    and analysis. Henk Meuzelaar, Neil  Arnold and Barbara Zielinska, and Steve Kohl provided essential resources for the  pyrolysis  analysis feasibility...spores, plant proteins, and pesticide  residues associated with particular crops while dust from roads may be associated with  brake and  tire  residue...Pyrofoil F740, Japan Analytical) was used to achieve the  pyrolysis  of organic compounds from the PM10 soil particles on the quartz fiber filter. A 315

  4. Impact of emission control on PM2.5 and the chemical composition change in Beijing-Tianjin-Hebei during the APEC summit 2014.

    Science.gov (United States)

    Wen, Wei; Cheng, Shuiyuan; Chen, Xufeng; Wang, Gang; Li, Song; Wang, Xiaoqi; Liu, Xiaoyu

    2016-03-01

    The success of the emission reduction measures undertaken by authorities in the Asia-Pacific Economic Cooperation summit 2014 demonstrated that the Beijing-Tianjin-Hebei air quality can be improved by introducing integrated emission reduction measures. This paper combines observation data, emission reduction measures, and air quality simulations that were applied before, during, and after the emission control measure implement to analyze the chemical composition change and relationship between emissions and concentrations of pollutants in region. The 24-h PM2.5 samples were collected in the city Beijing, Shijiazhuang, and Tangshan during the period of 20 October to 25 November, 2014. The total PM2.5 mass was measured. PM2.5 samples were used for the analysis of inorganic elements, selected ions, and organic carbon (OC) and element carbon (EC). PM2.5 concentrations during the emission control period were decreased. Total PM2.5 concentrations were reduced by 54, 26, and 39 % when compared to non-emission control period in Beijing, Shijiazhuang, and Tangshan. The average element concentrations were reduced significantly by 75 % in Beijing, 37 % in Shijiazhuang, and 36 % in Tangshan. After the Asia-Pacific Economic Cooperation (APEC) conference, the average element concentration increased. At both cities, the concentration secondary water-soluble ions, primary carbon, and element carbon were reduced. However, the concentration of secondary carbon species increased in Beijing due to photochemical oxidants change. More stringent control of regional emissions will be needed for significant reductions of fine particulate pollution in the region to continue to improve air quality.

  5. A Modeling Study of Impact of Emission Control Strategies on PM2.5 Reductions in Zhongshan, China, Using WRF-CMAQ

    Directory of Open Access Journals (Sweden)

    Jianhua Mai

    2016-01-01

    Full Text Available A WRF-CMAQ modeling system is used to assess the impact of emission control strategies and weather conditions on haze pollution in Zhongshan, Guangdong Province, China. One-month simulations for January 2014 are completed and evaluated with the observational data. The simulations show reasonable agreement with the observations. Several sensitivity studies are completed to quantify the percentage contributions of local emissions versus regional emissions to the PM2.5 concentrations under different weather conditions. The results indicate that the contributions from local emission is higher than those of the emissions from regional transport when there is no intrusion of cold front (i.e., 58% contribution from local emission versus 42% contribution from the regional transport. The contribution of regional transport is increased to 76% when a strong cold front appears. Furthermore, the sensitivity study demonstrates that PM2.5 concentrations on the first, second, and third days are reduced by 47%, 52%, and 58%, respectively, after the local emissions are turned off when there is no intrusion of cold front. Finally, a case study shows that industrial, residential, and mobile emissions account for 24%, 22%, and 15% of the change of PM2.5, respectively, during a heavy haze pollution event in Zhongshan.

  6. 76 FR 72404 - Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM10

    Science.gov (United States)

    2011-11-23

    ... [Federal Register Volume 76, Number 226 (Wednesday, November 23, 2011)] [Notices] [Page 72404] [FR Doc No: 2011-30305] ENVIRONMENTAL PROTECTION AGENCY [FRL-9495-4] Adequacy Status of Motor Vehicle... that the Agency has found that the motor vehicle emissions budgets (MVEBs) for particulate matter...

  7. Cyclone robber system PM2.5 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....

  8. Battery condenser system PM2.5 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....

  9. A model supported by GIS for locating and quantifying PM2.5 emission originated from residential wood burning

    Institute of Scientific and Technical Information of China (English)

    ZHOU De-min; RADKE John; TIAN Yong-qian; XU Jian-chun; MU Lan

    2005-01-01

    A research method was presented for spatially quantifying and allocating the potential activity of a fine particle matter emission (PM2.5), which originated from residential wood burning (RWB) in this study. Demographic, hypsographic, climatic and topographic data were compiled and processed within a geographic information system(GIS), and as independent variables put into a linear regression model for describing spatial distribution of the potential activity of residential wood burning as primary heating source. In order to improve the estimation, the classifications of urban, suburban and rural were redefined to meet the specifications of this application. Also, several definitions of forest accessibility were tested for estimation. The results suggested that the potential activity of RWB was mostly determined by elevation of a location, forest accessibility, urban/non-urban position, climatic conditions and several demographic variables. The linear regression model could explain approximately 86% of the variation of surveyed potential activity of RWB. The analysis results were validated by employing survey data collected mainly from a WebGIS based phone interview over the study area in central California. Based on lots free public GIS data, the model provided an easy and ideal tool for geographic researchers, environmental planners and administrators to understand where and how much PM2.5 emission from RWB was contributed to air quality. With this knowledge they could identify regions of concern, and better plan mitigation strategies to improve air quality. Furthermore, it allows for future adjustment on some parameters as the spatial analysis method is implemented in the different regions or various eco-social models.

  10. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle.

    Science.gov (United States)

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-02-14

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities.

  11. Assessment of social losses of pollution's health caused by man-made pollution of atmospheric air with emissions of particulate matters (PM10

    Directory of Open Access Journals (Sweden)

    Turos Ye.I.

    2017-04-01

    Full Text Available According to available estimates, about 3% of lethal outcomes from cardiac-pulmonary pathology and 5% from lung cancer are related to the impact of patriculate matters (PM. In the course of the study there were assessed social losses of population’s health (additional death cases caused by risk conditions of atmospheric air pollution with PM of various air-dynamic diameter (PM10, proper to emissions of various industrial enterprises. It was established that 90% of population of cities under study live under high exposures (≥50 µg/m3 health and risks for population (IRM=10-3÷10-4, caused by PM10 emissions. Results showed that metallurgical industry is responsible for 7,2 to 2193 additional mortality cases. The impact of machine building enterprises – from 0.06 to 21 cases; coke and chemical – from 1.5 to 36 cases; mining – from 1.1 to 14,6 cases. The findings revealed 0.6 % increase in lifetime mortality for each 10 µg/m3 in 24-hour average PM10 concentration. Based on research outcomes, a set of instruments was developed for implementation of air pollution risk management programs aimed at mitigation of health risks from (PM10 in highly exposed groups.

  12. Source contributions of urban PM2.5 in the Beijing-Tianjin-Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology

    Science.gov (United States)

    Li, Xin; Zhang, Qiang; Zhang, Yang; Zheng, Bo; Wang, Kai; Chen, Ying; Wallington, Timothy J.; Han, Weijian; Shen, Wei; Zhang, Xiaoye; He, Kebin

    2015-12-01

    Anthropogenic emissions in China have been controlled for years to improve ambient air quality. However, severe haze events caused by atmospheric aerosols with aerodynamic diameter less than or equal to 2.5 μm (PM2.5) have continued to occur, especially in the Beijing-Tianjin-Hebei (BTH) region. The Chinese government has set an ambitious goal to reduce urban PM2.5 concentrations by 25% in BTH by 2017 relative to the 2012 levels. Source apportionment (SA) is necessary to the development of the effective emission control strategies. In this work, the Comprehensive Air Quality Model with extensions (CAMx) with the Particulate Source Apportionment Technology (PSAT) is applied to the China domain for the years 2006 and 2013. Ambient surface concentrations of PM2.5 and its components are generally well reproduced. To quantify the contributions of each emission category or region to PM2.5 in BTH, the total emissions are divided into 7 emission categories and 11 source regions. The source contributions determined in this work are generally consistent with results from previous work. In 2013, the industrial (44%) and residential (27%) sectors are the dominant contributors to urban PM2.5 in BTH. The residential sector is the largest contributor in winter; the industry sector dominates in other seasons. A slight increasing trend (+3% for industry and +6% for residential) is found in 2013 relative to 2006, necessitating more attention to these two sectors. Local emissions make the largest contribution (40%-60%) for all receptors. Change of source contribution of PM2.5 in Beijing and northern Hebei are dominate by change of local emission. However, for Tianjin, and central and southern Hebei, change of meteorology condition are as important as change of emission, because regional inflow in these areas is more important than in Beijing and northern Hebei and can increase under unfavorable weather conditions, indicating a strong need for regional joint emission control efforts

  13. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage

  14. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage

  15. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. PM10- and PM2.5-reduction potentials by package of measures for further immission reduction in Germany. Sub-report.; Strategien zur Verminderung der Feinstaubbelastung - PAREST. Bewertung von Emissionsminderungsszenarien mit Hilfe chemischer Transportberechnungen. PM10- und PM2,5-Minderungspotenziale von Massnahmenpaketen zur weiteren Reduzierung der Immissionen in Deutschland. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Rainer [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung

    2013-06-15

    This report documents the effects of additional emission control measures the PM10 and PM2.5 air quality in Germany (PM = particulate matter). The immission effects of the planned measures were calculated with the Chemistry-Aerosol-Transport Model REM CALGRID (RCG). [German] Dieser Bericht dokumentiert die Auswirkungen zusaetzlicher emissionsmindernder Massnahmen auf die PM10 und PM2.5-Luftqualitaet in Deutschland. Die immissionsseitigen Auswirkungen der geplanten Massnahmen wurden auf der Basis von Berechnungen mit dem Chemie-Aerosol-Transportmodell REM-CALGRID (RCG) bestimmt. Grundlage der Szenarienrechnungen sind die im Rahmen des F and E-Vorhabens entwickelten Emissionsabschaetzungen, die die Aenderung der Emissionen aufgrund von technischen oder nicht-technischen Massnahmen beschreiben. Die den Berechnungen zugrunde liegende horizontale Aufloesung betraegt 0.125 Laenge und 0.0625 Breite oder circa 7 km x 8 km. Das meteorologische Referenzjahr ist 2005.

  16. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem

    Directory of Open Access Journals (Sweden)

    J. H. Seinfeld

    2009-08-01

    Full Text Available Influences of specific sources of inorganic PM2.5 on peak and ambient aerosol concentrations in the US are evaluated using a combination of inverse modeling and sensitivity analysis. First, sulfate and nitrate aerosol measurements from the IMPROVE network are assimilated using the four-dimensional variational (4D-Var method into the GEOS-Chem chemical transport model in order to constrain emissions estimates in four separate month-long inversions (one per season. Of the precursor emissions, these observations primarily constrain ammonia (NH3. While the net result is a decrease in estimated US~NH3 emissions relative to the original inventory, there is considerable variability in adjustments made to NH3 emissions in different locations, seasons and source sectors, such as focused decreases in the midwest during July, broad decreases throughout the US~in January, increases in eastern coastal areas in April, and an effective redistribution of emissions from natural to anthropogenic sources. Implementing these constrained emissions, the adjoint model is applied to quantify the influences of emissions on representative PM2.5 air quality metrics within the US. The resulting sensitivity maps display a wide range of spatial, sectoral and seasonal variability in the susceptibility of the air quality metrics to absolute emissions changes and the effectiveness of incremental emissions controls of specific source sectors. NH3 emissions near sources of sulfur oxides (SOx are estimated to most influence peak inorganic PM2.5 levels in the East; thus, the most effective controls of NH3 emissions are often disjoint from locations of peak NH3 emissions. Controls of emissions from industrial sectors of SOx and NOx are estimated to be more effective than surface emissions, and changes to NH3 emissions in regions dominated by natural sources are disproportionately more effective than regions dominated by anthropogenic sources. NOx controls are most effective in

  17. Reduced PM2.5 Emissions for Military Gas Turbine Engines using Fuel Additives

    Science.gov (United States)

    2006-08-12

    Investigator) R. J. Santoro (Lead – HP Reactor) D.C. Haworth Darin J. Imschweiler Suresh Iyer Seong-Young Lee Milton J. Linevsky Matthew McKeand...b) Kahandawala, M. S., J. L. Graham and S. S. Sidhu, “Particulate Emission from Combustion of Diesel and Fischer -Tropsch Fuels: A Shock Tube Study...Litzinger, T.A., and Haworth , D.C., “Effects of oxygenated additives on aromatic species in fuel-rich, premixed ethane combustion: a modeling study

  18. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2005-09-30

    implanted telemeters and blood chemistry (complete blood count, circulating cytokines (interleukins-1 and -6), C-reactive protein (CRP), tumor necrosis factor alpha (TNF-{alpha}), and endothelin-1). Only a subset of exposure data was available at the time of preparation of this report. Continuous PM{sub 2.5} mass (TEOM) results indicate a mass concentration of 14 {micro}g/m{sup 3} for the primary particle scenario, and a range of 151 to 385 {micro}g/m{sup 3} for the oxidized emissions scenarios. Toxicological results obtained to date from Plant 1 indicate subtle biological responses to some of the exposure scenarios. We observed statistically significant changes in several breathing pattern parameters, including tidal volume and frequency. For one scenario (oxidized emissions + SOA), we observed a significant increase in Enhanced Pause (Penh), a parameter that may reflect airflow restriction. However, the respiratory changes are very subtle and do not present a clear picture of a particular respiratory effect (e.g., airway restriction, sensory irritation, or pulmonary irritation). A significant increase in lung chemiluminescence (a marker of oxidative stress in lung tissue) in exposed animals (vs. air-exposed controls) was observed in animals exposed to oxidized emissions + SOA. No changes were observed in heart tissue, nor in any other scenario. Stage II assessments were conducted to the secondary + SOA scenario; ECG and blood analysis data are pending. Planning was initiated for Plant 2, located in the Midwest. Because of the requirement for both the FGD and the SCR to be concurrently operational for appropriate reaction conditions, fieldwork at Plant 2 is scheduled for Summer 2006. During the next reporting period, we will complete all remaining exposure and toxicological analyses for Plant 1, and the next semiannual report will include a detailed description of these data and their interpretation. We are also in the process of preparing a topical report for Plant 0.

  19. Cleaner fuels to reduce emissions of CO2, NOx and PM10 by container ships: A solution or a box of Pandora?

    NARCIS (Netherlands)

    Vleugel, J.M.; Bal, F.

    2015-01-01

    Transport vehicles contribute to the on going rise in emissions of CO2 worldwide and emit large amounts of NOx and PM10. The growing demand for container transport is only sustainable if transport becomes ‘greener’. There are innovations, which unite economic and environmental interests. One example

  20. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

    Science.gov (United States)

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities.

  1. First stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  2. Second stage lint cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  3. Second stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  4. Third stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  5. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland

    Science.gov (United States)

    Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A. S. H.; Baltensperger, U.; Buchmann, B.; Gehrig, R.

    2010-06-01

    Recent studies have shown clear contributions of non-exhaust emissions to the traffic related PM10 load of the ambient air. These emissions consist of particles produced by abrasion from brakes, road wear, tire wear, as well as vehicle induced resuspension of deposited road dust. The main scope of the presented work was to identify and quantify the non-exhaust fraction of traffic related PM10 for two roadside locations in Switzerland with different traffic regimes. The two investigated locations, an urban street canyon with heavily congested traffic and an interurban freeway, are considered as being typical for Central Europe. Mass-relevant contributions from abrasion particles and resuspended road dust mainly originated from particles in the size range 1-10 μm. The results showed a major influence of vehicle induced resuspension of road dust. In the street canyon, the traffic related PM10 emissions (LDV: 24 ± 8 mg km -1 vehicle -1, HDV: 498 ± 86 mg km -1 vehicle -1) were assigned to 21% brake wear, 38% resuspended road dust and 41% exhaust emissions. Along the freeway (LDV: 50 ± 13 mg km -1 vehicle -1, HDV: 288 ± 72 mg km -1 vehicle -1), respective contributions were 3% brake wear, 56% resuspended road dust and 41% exhaust emissions. There was no indication for relevant contributions from tire wear and abrasion from undamaged pavements.

  6. Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA): Application to Power Plant-Derived PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2007-02-28

    This report documents progress made on the subject project during the period of September 1, 2007 through February 28, 2007. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 2, located in the Midwest. The following scenarios were completed: (1) July 19-22: POS (oxidized + SOA); (2) July 25-28: PONS (oxidized + neutralized + SOA); (3) August 8-13: P (primary); (4) August 14-15: POS; (5) August 16-17: POS (MI rats); (6) August 28-31: OS (oxidized + SOA, without primary particles); (7) September 1-4: O (oxidized, no primary particles); (8) September 6-9: S (SOA, no primary particles); and (9) September 19-22: PO (oxidized). Results indicated some biological effects with some scenarios. Also during this reporting period, the annual meeting of the TERESA Technical Advisory Committee was held at the Harvard School of Public Health in Boston. During the next reporting period, data analyses will continue for Plant 2 as well as for pooled data from all three plants. Manuscripts documenting the overall

  7. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWDER PLANT-DERIVED PM 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2006-08-31

    This report documents progress made on the subject project during the period of March 1, 2006 through August 31, 2006. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, data processing and analyses were completed for exposure and toxicological data collected during the field campaign at Plant 1, located in the Southeast. Toxicological results indicate some pulmonary, oxidative stress, and cardiovascular responses to certain exposure scenarios. Fieldwork at Plant 2, located in the Midwest, began on July 19, 2006. The following scenarios were completed: July 19-22: POS (oxidized + SOA); July 25-28: PONS (oxidized + neutralized + SOA); August 8-13: P (primary); August 14-15: POS; August 16-17: POS (MI rats); August 28-31: OS (oxidized + SOA, without primary particles); September 1-4: O (oxidized, no primary particles); and September 6-9: S (SOA, no primary particles). During the next reporting period, we will report complete exposure and toxicological results for Plant 2. Planning will begin for the mobile source component of the

  8. Inter-annual trend of the primary contribution of ship emissions to PM2.5 concentrations in Venice (Italy): Efficiency of emissions mitigation strategies

    Science.gov (United States)

    Contini, Daniele; Gambaro, Andrea; Donateo, Antonio; Cescon, Paolo; Cesari, Daniela; Merico, Eva; Belosi, Franco; Citron, Marta

    2015-02-01

    Ships and harbour emissions are currently increasing, due to the increase of tourism and trade, with potential impact on global air pollution and climate. At local scale, in-port ship emissions influence air quality in coastal areas impacting on health of coastal communities. International legislations to reduce ship emissions, both at Worldwide and European levels, are mainly based on the use of low-sulphur content fuel. In this work an analysis of the inter-annual trends of primary contribution, ε, of tourist shipping to the atmospheric PM2.5 concentrations in the urban area of Venice has been performed. Measurements have been taken in the summer periods of 2007, 2009 and 2012. Results show a decrease of ε from 7% (±1%) in 2007 to 5% (±1%) in 2009 and to 3.5% (±1%) in 2012. The meteorological and micrometeorological conditions of the campaigns were similar. Tourist ship traffic during measurement campaigns increased, in terms of gross tonnage, of about 25.4% from 2007 to 2009 and of 17.6% from 2009 to 2012. The decrease of ε was associated to the effect of a voluntary agreement (Venice Blue Flag) for the use of low-sulphur content fuel enforced in the area between 2007 and 2009 and to the implementation of the 2005/33/CE Directive in 2010. Results show that the use of low-sulphur fuel could effectively reduce the impact of shipping to atmospheric primary particles at local scale. Further, voluntary agreement could also be effective in reducing the impact of shipping on local air quality in coastal areas.

  9. Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions.

    Science.gov (United States)

    Sillapapiromsuk, Sopittaporn; Chantara, Somporn; Tengjaroenkul, Urai; Prasitwattanaseree, Sukon; Prapamontol, Tippawan

    2013-11-01

    Biomass samples including agricultural waste (rice straw and maize residue) and forest leaf litter were collected from Chiang Mai Province, Thailand for the burning experiment in the self-designed stainless steel chamber to simulate the emissions of PM10. The burning of leaf litter emitted the highest PM10 (1.52±0.65 g kg(-1)). The PM10-bound ions emitted from the burning of rice straw and maize residue showed the same trend, which was K(+)>Cl(-)>SO4(2-)>NH4(+)>NO3(-). However, the emissions from maize residue burning were ~1.5-2.0 times higher than those from the rice straw burning. The ion content emitted from leaf litter burning was almost the same for all ion species. Noticeably, K(+) and Cl(-) concentrations were ~2-4 times lower than those emitted from agricultural waste burning. It can be deduced that K(+) and Cl(-) were highly emitted from agricultural waste burning due to the use of fertilizer and herbicides in the field, respectively. Based on emission values obtained from the chamber, the pollutant emission rate from open burning was calculated. Burned areas in Chiang Mai Province were 3510 and 866 km(2) in 2010 and 2011, respectively. Forest burning was 71-88%, while agricultural land burning accounted for 12-29% (rice field: crop field=1:3) of total burned area. Therefore, emissions of PM10 from open burning in Chiang Mai were 3051 ton (2010) and 705 ton (2011). Major ions emitted from agricultural waste burning were found to be K(+) and Cl(-), while those from forest burning were SO4(2-) and K(+).

  10. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions

    Science.gov (United States)

    Zhou, Jiabin; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2016-06-01

    During the past decade, huge research resources have been devoted into studies of air pollution in China, which generated abundant datasets on emissions and pollution characterization. Due to the complex nature of air pollution as well as the limitations of each individual investigating approach, the published results were sometimes perplexing and even contradicting. This research adopted a multi-method approach to investigate region-specific air pollution characteristics and sources in China, results obtained using different analytical and receptor modeling methods were inter-compared for validation and interpretation. A year-round campaign was completed for comprehensive characterization of PM2.5 over four key emission regions: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). Atmospheric PM2.5 samples were collected from 10/2012 to 08/2013 at four regional sites, located on the diffusion paths of air masses from their corresponding megacities (i.e., Beijing, Shanghai, Guangzhou, and Chengdu). The annual average PM2.5 mass concentrations showed distinct regional difference, with the highest observed at BTH and lowest at PRD site. Nine water-soluble ions together contributed 33-41% of PM2.5 mass, with three dominant ionic species being SO42-, NO3-, NH4+, and carbonaceous particulate matter contributed 16-23% of PM2.5 mass. This implied that combustion and secondary formation were the main sources for PM2.5 in China. In addition, SO42-, NO3-, NH4+, and carbonaceous components (OC, EC) showed clear seasonal patterns with the highest concentration occurring in winter while the lowest in summer. Principal component analysis performed on aerosol data revealed that vehicular emissions, coal/biomass combustion, industry source, soil dust as well as secondary formation were the main potential sources for the ionic components of PM2.5. The characteristic chemical species combined with back trajectory analysis indicated

  11. Deconvoluting Mixtures ofEmissions Sources to Investigate PM2.5's Ability to Generate Reactive Oxygen Species and its Associations with Cardiorespiratory Effects

    Science.gov (United States)

    Weber, R. J.; Bates, J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.

    2015-12-01

    It is hypothesized that fine particulate matter (PM2.5) inhalation can catalytically generate reactive oxygen species (ROS) in excess of the body's antioxidant capacity, leading to oxidative stress and ultimately adverse health. PM2.5 emissions from different sources vary widely in chemical composition, with varied effects on the body. Here, the ability of mixtures of different sources of PM2.5 to generate ROS and associations of this capability with acute health effects were investigated. A dithiothreitol (DTT) assay that integrates over different sources was used to quantify ROS generation potential of ambient water-soluble PM2.5 in Atlanta from June 2012 - June 2013. PM2.5 source impacts, estimated using the Chemical Mass Balance method with ensemble-averaged source impact profiles, were related to DTT activity using a linear regression model, which provided information on intrinsic DTT activity (i.e., toxicity) of each source. The model was then used to develop a time series of daily DTT activity over a ten-year period (1998-2010) for use in an epidemiologic study. Light-duty gasoline vehicles exhibited the highest intrinsic DTT activity, followed by biomass burning and heavy-duty diesel vehicles. Biomass burning contributed the largest fraction to total DTT activity, followed by gasoline and diesel vehicles (45%, 20% and 14%, respectively). These results suggest the importance of aged oxygenated organic aerosols and metals in ROS generation. Epidemiologic analyses found significant associations between estimated DTT activity and emergency department visits for congestive heart failure and asthma/wheezing attacks in the 5-county Atlanta area. Estimated DTT activity was the only pollutant measure out of PM2.5, O3, and PM2.5 constituents elemental carbon and organic carbon) that exhibited a significant link to congestive heart failure. In two-pollutant models, DTT activity was significantly associated with asthma/wheeze and congestive heart failure while PM2

  12. Relative roles of emissions and meteorology in the diurnal pattern of urban PM10: analysis of the daylight saving time effect.

    Science.gov (United States)

    Muñoz, Ricardo C

    2012-06-01

    Daylight saving time (DST) is a common practice in many countries, in which Official Time (OT) is abruptly shifted 1 hour with respect to solar time on two occasions every year (in fall and spring). All anthropogenic emitting processes tied to OT like job and school commuting traffic, abruptly change in this moment their timing with respect to solar time, inducing a sudden shift between emissions and the meteorological factors that control the dispersion and transport of air pollutants. Analyzing 13 years of hourly particulate matter (PM10) concentrations measured in Santiago, Chile, we demonstrate that the DST practice has observable non-trivial effects in the PM10 diurnal cycle. The clearest impact is in the morning peak of PM10 during the fall DST change, which occurs later and has on average a significant smaller magnitude in the days after the DST change as compared to the days before it. This decrease in magnitude is most remarkable because it occurs in a period of the year when overall PM10 concentrations increase due to generally worsening of the dispersion conditions. Results are shown for seven monitoring stations around the city, and for the fall and spring DST changes. They show clearly the interplay of emissions and meteorology in conditioning urban air pollution problems, highlighting the role of the morning and evening transitions of the atmospheric boundary layer in shaping the diurnal pattern of urban air pollutant concentrations.

  13. Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits

    Science.gov (United States)

    Biswas, Subhasis; Verma, Vishal; Schauer, James J.; Sioutas, Constantinos

    Four heavy-duty diesel vehicles (HDDVs) in six retrofitted configurations (CRT ®, V-SCRT ®, Z-SCRT ®, Horizon, DPX and CCRT ®) and a baseline vehicle operating without after--treatment were tested under cruise (50 mph), transient UDDS and idle driving modes. As a continuation of the work by Biswas et al. [Biswas, S., Hu, S., Verma, V., Herner, J., Robertson, W.J., Ayala, A., Sioutas, C., 2008. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced emission control technologies. Atmospheric Environment 42, 5622-5634.] on particle physical parameters, this paper focuses on PM chemical characteristics (Total carbon [TC], Elemental carbon [EC], Organic Carbon [OC], ions and water-soluble organic carbon [WSOC]) for cruise and UDDS cycles only. Size-resolved PM collected by MOUDI-Nano-MOUDI was analyzed for TC, EC and OC and ions (such as sulfate, nitrate, ammonium, potassium, sodium and phosphate), while Teflon coated glass fiber filters from a high volume sampler were extracted to determine WSOC. The introduction of retrofits reduced PM mass emissions over 90% in cruise and 95% in UDDS. Similarly, significant reductions in the emission of major chemical constituents (TC, OC and EC) were achieved. Sulfate dominated PM composition in vehicle configurations (V-SCRT ®-UDDS, Z-SCRT ®-Cruise, CRT ® and DPX) with considerable nucleation mode and TC was predominant for configurations with less (Z-SCRT ®-UDDS) or insignificant (CCRT ®, Horizon) nucleation. The transient operation increases EC emissions, consistent with its higher accumulation PM mode content. In general, solubility of organic carbon is higher (average ˜5 times) for retrofitted vehicles than the baseline vehicle. The retrofitted vehicles with catalyzed filters (DPX, CCRT ®) had decreased OC solubility (WSOC/OC: 8-25%) unlike those with uncatalyzed filters (SCRT ®s, Horizon; WSOC/OC ˜ 60-100%). Ammonium was present predominantly in the

  14. Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China

    Science.gov (United States)

    Wang, Jiandong; Wang, Shuxiao; Voorhees, A. Scott; Zhao, Bin; Jang, Carey; Jiang, Jingkun; Fu, Joshua S.; Ding, Dian; Zhu, Yun; Hao, Jiming

    2015-12-01

    Air pollution is a major environmental risk to health. In this study, short-term premature mortality due to particulate matter equal to or less than 2.5 μm in aerodynamic diameter (PM2.5) in the Yangtze River Delta (YRD) is estimated by using a PC-based human health benefits software. The economic loss is assessed by using the willingness to pay (WTP) method. The contributions of each region, sector and gaseous precursor are also determined by employing brute-force method. The results show that, in the YRD in 2010, the short-term premature deaths caused by PM2.5 are estimated to be 13,162 (95% confidence interval (CI): 10,761-15,554), while the economic loss is 22.1 (95% CI: 18.1-26.1) billion Chinese Yuan. The industrial and residential sectors contributed the most, accounting for more than 50% of the total economic loss. Emissions of primary PM2.5 and NH3 are major contributors to the health-related loss in winter, while the contribution of gaseous precursors such as SO2 and NOx is higher than primary PM2.5 in summer.

  15. The impact of particulate matter (PM and nitric oxides (NOx on human health and an analysis of selected sources accounting for their emission in Poland

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2016-10-01

    Full Text Available Introduction and objective: This paper is concerned with the harmful impact of nitric oxides (NOx and particulate matter (PM on humans. The objective was to determine which source of emission is the most urgent in terms of its reduction.Abbreviated description of the state of knowledge: In published epidemiological studies multiple notifications indicating the harmful impact of particulate matter on human health can be found. The harmful impact is underscored by the increase in the number of hospitalisations owing to diseases of respiratory and cardio-vascular systems, as well as by the rise in general fatality rate. The analysis of the PM impact on the human body is prompted by the fact that its detrimental effects are not clearly defined. Additionally, nitric oxides contribute to the increased number of exacerbations of respiratory disease and are a factor increasing susceptibility to development of local inflammation. Conclusions: The following study is meant to show that the air pollution which derives from vehicles (NOx and PM has a significant impact on human health. This applies particularly to residents of cities and big towns. This issue has gained special importance in Poland. According to the data from the Central Statistical Office, the increasing number of vehicles in use and their age lead to increased emission of the pollutants considered.

  16. Large-Scale Land Development, Fugitive Dust, and Increased Coccidioidomycosis Incidence in the Antelope Valley of California, 1999-2014.

    Science.gov (United States)

    Colson, Aaron J; Vredenburgh, Larry; Guevara, Ramon E; Rangel, Natalia P; Kloock, Carl T; Lauer, Antje

    2017-06-01

    Ongoing large-scale land development for renewable energy projects in the Antelope Valley, located in the Western Mojave Desert, has been blamed for increased fugitive dust emissions and coccidioidomycosis incidence among the general public in recent years. Soil samples were collected at six sites that were destined for solar farm construction and were analyzed for the presence of the soil-borne fungal pathogen Coccidioides immitis which is endemic to many areas of central and southern California. We used a modified culture-independent nested PCR approach to identify the pathogen in all soil samples and also compared the sampling sites in regard to soil physical and chemical parameters, degree of disturbance, and vegetation. Our results indicated the presence of C. immitis at four of the six sites, predominantly in non-disturbed soils of the Pond-Oban complex, which are characterized by an elevated pH and salt bush communities, but also in grassland characterized by different soil parameters and covered with native and non-native annuals. Overall, we were able to detect the pathogen in 40% of the soil samples (n = 42). Incidence of coccidioidomycosis in the Antelope Valley was positively correlated with land use and particulate matter in the air (PM10) (Pearson correlation coefficient >0.5). With the predicted population growth and ongoing large-scale disturbance of soil in the Antelope Valley in coming years, incidence of coccidioidomycosis will likely further increase if policy makers and land developers continue to ignore the risk of grading land without implementing long-term dust mitigation plans in Environmental Impact Reports.

  17. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    Science.gov (United States)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  18. Third stage seed-cotton cleaning system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....

  19. Particle Reduction Strategies - PAREST. PM10-cause analysis based on hypothetical emissions scenarios. Sub-report; Strategien zur Verminderung der Feinstaubbelastung - PAREST. PM10-Ursachenanalyse auf der Basis hypothetischer Emissionsszenarien. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Rainer [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung

    2013-06-15

    In this report, a PM10 cause analysis is presented, which provides an estimation of the extent to which the emitted substances from ten different source sectors are responsible for the calculated PM10 concentrations in Germany (PM = particulate matter). [German] In diesem Bericht wird eine PM10-Ursachenanalyse vorgestellt, die eine Abschaetzung liefert, in welchem Umfang die in Deutschland von den verschiedenen Verursachergruppen emittierten Stoffe fuer die in Deutschland berechneten PM10-Konzentrationen verantwortlich sind.

  20. Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: analyses of emitted PM, particulate carbon, and PAHs.

    Science.gov (United States)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Lin, Chih-Chung; Hsieh, Lien-Te; Chiu, Juei-Yu; Kuo, Wen-Chien

    2014-01-01

    Biodiesel is one of alternative energies that have been extensively discussed and studied. This research investigates the characteristics of particulate matter (PM), particulate carbon, and polycyclic aromatic hydrocarbons (PAHs) emitted from a generator fueled by waste-edible-oil-biodiesel with acetone and isopropyl alcohol (IPA) addition. The tested biodieselhols consisted of pure diesel oil (D100) with 1-3 vol.% pure acetone (denoted as A), 1-70 vol.% waste-edible-oil-biodiesel (denoted as W), and 1 vol.% pure isopropyl alcohol (the stabilizer, denoted as P). The results show that in comparison to W1D99, W3D97, W5D95, W10D90, and W20D80, the use of biodieselhols achieved additional reduction of PM and particulate organic carbon (OC) emission, and such reduction increased as the addition percentage of pure acetone increased. Regardless of the percentages of added waste-edible-oil-biodiesel, acetone, and isopropyl alcohol, the use of biodieselhol in place of D100 could reduce the emissions of Total-PAHs (by 6.13-42.5% (average = 24.1%)) and Total-BaPeq (by 16.6-74.8% (average = 53.2%)) from the diesel engine generator. Accordingly, the W/D blended fuels (W<20 vol.%) containing acetone (1-3 vol.%) and isopropyl alcohol (1 vol.%) are a potential alternative fuel for diesel engine generators because they substantially reduce emissions of PM, particulate OC, Total-PAHs, and Total-BaPeq. © 2013. Published by Elsevier B.V. All rights reserved.

  1. Time-Based Readout of a Silicon Photomultiplier (SiPM) for Time of Flight Positron Emission Tomography (TOF-PET)

    CERN Document Server

    Powolny, F; Brunner, S E; Hillemanns, H; Meyer, T; Garutti, E; Williams, M C S; Auffray, E; Shen, W; Goettlich, M; Jarron, P; Schultz-Coulon, H C

    2011-01-01

    Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision. We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter. The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 Omega input resistance. Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports. The leading edge of the output signal provides the time information, while the trailing edge provides the energy information. Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 x 3 mm(2) SiPM-model, read out with a differential current amplifier. The results of these simulations are presented here and compared with experimental data obtained with a 3 x 3 x 15 mm(3) LSO crystal coupled to a SiPM. The measured time coi...

  2. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2016-09-01

    found in the WP1627 project report and several journal manuscripts [25,32, 33]. 3.2.4.1 VPS Validation Experiments in Laboratory Conditions The vapor...certification process. Due to the cleaner burning engines and lack of compliance-type quantitative information, the smoke number is inadequate for...PM samples from diluted engine exhaust from the DC, CDP or plume for elemental and organic carbon (EC/OC) and sulfur product analysis. The EPA mobile

  3. Distillation-Based Droplet Modeling of Non-Ideal Oxygenated Gasoline Blends: Investigating the Role of Droplet Evaporation on PM Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Stephen C.; Ratcliff, Matthew; McCormick, Robert; Rhoads, Robert; Windom, Bret

    2017-03-28

    In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol's effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, with non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments. Detailed hydrocarbon analysis was applied to fuel samples and to distillate fractions, and used as input for the initial droplet composition. With composition calculated throughout the distillation, the changing HOV and other physical properties can be found using reference data. The droplet can thus be modeled in terms of energy transfer, which in turn provides the transient mass transfer, droplet temperature, and droplet diameter. Model predictions suggest that non-ideal vapor-liquid equilibrium along with an increase in HOV can alter the droplet composition evolution. Results predict that the presence of ethanol causes enrichment of the higher boiling fractions (T90+) in the aromatic components as well as lengthens the droplet lifetime. A simulation of the evaporation process in a transient environment as experienced within an engine cylinder predicts a decrease in mixing time of the heaviest fractions of the fuel prior to spark initiation, possibly explaining observations linking ethanol to PM.

  4. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China.

    Science.gov (United States)

    Shen, Guofeng; Tao, Shu; Wei, Siye; Chen, Yuanchen; Zhang, Yanyan; Shen, Huizhong; Huang, Ye; Zhu, Dan; Yuan, Chenyi; Wang, Haochen; Wang, Yafei; Pei, Lijun; Liao, Yilan; Duan, Yonghong; Wang, Bin; Wang, Rong; Lv, Yan; Li, Wei; Wang, Xilong; Zheng, Xiaoying

    2013-03-19

    Air pollutants from residential solid fuel combustion are attracting growing public concern. Field measured emission factors (EFs) of various air pollutants for solid fuels are close to the reality and urgently needed for better emission estimations. In this study, emission factors of particulate matter (PM), organic carbon (OC), elemental carbon (EC), and various polycyclic aromatic hydrocarbons (PAHs) from residential combustions of coal briquette, coal cake, and wood were measured in rural Heshun County, China. The measured EFs of PM, OC, and EC were 8.1-8.5, 2.2-3.6, 0.91-1.6 g/kg for the wood burnt in a simple metal stove, 0.54-0.64, 0.13-0.14, 0.040-0.0041 g/kg for the briquette burned in an improved stove with a chimney, and 3.2-8.5, 0.38-0.58, 0.022-0.052 g/kg for the homemade coal cake combusted in a brick stove with a flue, respectively. EFs of 28 parent PAHs, 4 oxygenated PAHs, and 9 nitro-PAHs were 182-297, 7.8-10, 0.14-0.55 mg/kg for the wood, 14-16, 1.7-2.6, 0.64-0.83 mg/kg for the briquette, and 168-223, 4.7-9.5, 0.16-2.4 mg/kg for the coal cake, respectively. Emissions from the wood and coal cake combustions were much higher than those for the coal briquette, especially true for high molecular weight PAHs. Most EFs measured in the field were higher than those measured in stove combustions under laboratory conditions.

  5. 78 FR 7340 - Approval and Promulgation of Implementation Plans; Idaho: Sandpoint PM10 Nonattainment Area...

    Science.gov (United States)

    2013-02-01

    ... residential wood combustion program, controls on fugitive road dust, and emission limitations on industrial... Sandpoint NAA LMP submittal describes the control measures relied on to address industrial source emissions... source emission control measures, monitoring and reporting; provisions for modeling; and provisions...

  6. First stage lint cleaning systems emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  7. 75 FR 26749 - Adequacy Status of Motor Vehicle Emissions Budgets In Submitted San Joaquin Valley PM2.5

    Science.gov (United States)

    2010-05-12

    ... 3.0 74.2 Kings 0.7 17.9 0.6 14.6 Madera 0.6 14.1 0.5 11.4 Merced 1.5 33.6 1.2 26.7 San Joaquin 1.6... day] 2014 PM2.5 NOX Fresno 1.1 26.0 Kern (SJV) 1.4 41.6 Kings 0.3 8.1 Madera 0.3 6.7 Merced 0.6 14.8...

  8. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    Directory of Open Access Journals (Sweden)

    Camilla Geels

    2015-03-01

    Full Text Available Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

  9. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    Science.gov (United States)

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E.; Ambelas Skjøth, Carsten; Brandt, Jørgen

    2015-01-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  10. Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA.

    Science.gov (United States)

    Liacos, James W; Kam, Winnie; Delfino, Ralph J; Schauer, James J; Sioutas, Constantinos

    2012-10-01

    On-road particulate matter (PM) was collected during a sampling campaign in March-April of 2011 on two major Los Angeles freeways, I-710 and Route 110. I-710 is a major route for heavy-duty vehicles (HDVs) traveling to and from the Ports of Long Beach and Los Angeles, while Route 110 has a much lower HDV fraction -3.9% versus 11.4%. Two sets of samples were collected for each roadway, each set representing approximately 50°h of on-road sampling. Concurrent sampling at a fixed site at the University of Southern California's (USC) downtown Los Angeles campus provided estimates of urban background levels. Chemical analysis was performed for elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes, and metals and trace elements. Freeway-based emission rates (ERs) - mass per kilometer of freeway per hour - were calculated using mass concentrations, fuel characteristics, and traffic flow rates. These ERs are presented such that freeways could be treated as a line source of emissions for use in predictive models of population exposure for nearby communities. This data could also be used to assess the exposure of commuters to traffic-related PM2.5 emissions. ERs are compared to data from a previous fixed-site roadside study of I-710 as well as to reconstructed values from a tunnel study. ERs were generally lower (or comparable) on the gasoline-vehicle dominated freeway (Route 110) than the freeway with more diesel trucks (I-710), with EC and pyrene being notably lower on Route 110, findings consistent with the Route 110's lower HDV fraction. We found EC emission rates decreased over time suggesting that efforts to reduce diesel emissions from HDVs at the Ports of Los Angeles and Long Beach have been successful. While ERs for most of the organic species were within the range of values reported by previous studies, the present study found much higher ERs for metals and trace elements. This suggests that the sampling methods

  11. Identifying the sources driving observed PM2.5 variability over Halifax, Nova Scotia, during BORTAS-B

    Directory of Open Access Journals (Sweden)

    A. J. Wheeler

    2013-02-01

    Full Text Available The source attribution of observed variability of total PM2.5 concentrations over Halifax, Nova Scotia was investigated between 11 July–26 August 2011 using measurements of PM2.5 mass and PM2.5 chemical composition (black carbon, organic matter, anions, cations and 33 elements. This was part of the BORTAS-B (quantifying the impact of BOReal forest fires on Tropospheric oxidants using aircraft and satellites experiment, which investigated the atmospheric chemistry and transport of seasonal boreal wild fire emissions over eastern Canada in 2011. The US EPA Positive Matrix Factorization (PMF receptor model was used to determine the average mass (percentage source contribution over the 45 days, which was estimated to be: Long-Range Transport (LRT Pollution 1.75 μg m−3 (47%, LRT Pollution Marine Mixture 1.0 μg m−3 (27.9%, Vehicles 0.49 μg m−3 (13.2%, Fugitive Dust 0.23 μg m−3 (6.3%, Ship Emissions 0.13 μg m−3 (3.4% and Refinery 0.081 μg m−3 (2.2%. The PMF model describes 87% of the observed variability in total PM2.5 mass (bias = 0.17 and RSME = 1.5 μg m−3. The factor identifications are based on chemical markers, and they are supported by air mass back trajectory analysis and local wind direction. Biomass burning plumes, found by other surface and aircraft measurements, were not significant enough to be identified in this analysis. This paper presents the results of the PMF receptor modelling, providing valuable insight into the local and upwind sources impacting surface PM2.5 in Halifax during the BORTAS-B mission.

  12. Identifying the sources driving observed PM2.5 temporal variability over Halifax, Nova Scotia, during BORTAS-B

    Directory of Open Access Journals (Sweden)

    M. D. Gibson

    2013-07-01

    Full Text Available The source attribution of observed variability of total PM2.5 concentrations over Halifax, Nova Scotia, was investigated between 11 July and 26 August 2011 using measurements of PM2.5 mass and PM2.5 chemical composition (black carbon, organic matter, anions, cations and 33 elements. This was part of the BORTAS-B (quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites experiment, which investigated the atmospheric chemistry and transport of seasonal boreal wildfire emissions over eastern Canada in 2011. The US EPA Positive Matrix Factorization (PMF receptor model was used to determine the average mass (percentage source contribution over the 45 days, which was estimated to be as follows: long-range transport (LRT pollution: 1.75 μg m−3 (47%; LRT pollution marine mixture: 1.0 μg m−3 (27.9%; vehicles: 0.49 μg m−3 (13.2%; fugitive dust: 0.23 μg m−3 (6.3%; ship emissions: 0.13 μg m−3 (3.4%; and refinery: 0.081 μg m−3 (2.2%. The PMF model describes 87% of the observed variability in total PM2.5 mass (bias = 0.17 and RSME = 1.5 μg m−3. The factor identifications are based on chemical markers, and they are supported by air mass back trajectory analysis and local wind direction. Biomass burning plumes, found by other surface and aircraft measurements, were not significant enough to be identified in this analysis. This paper presents the results of the PMF receptor modelling, providing valuable insight into the local and upwind sources impacting surface PM2.5 in Halifax and a vital comparative data set for the other collocated ground-based observations of atmospheric composition made during BORTAS-B.

  13. Improving PM2. 5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter

    Science.gov (United States)

    Peng, Zhen; Liu, Zhiquan; Chen, Dan; Ban, Junmei

    2017-04-01

    In an attempt to improve the forecasting of atmospheric aerosols, the ensemble square root filter algorithm was extended to simultaneously optimize the chemical initial conditions (ICs) and emission input. The forecast model, which was expanded by combining the Weather Research and Forecasting with Chemistry (WRF-Chem) model and a forecast model of emission scaling factors, generated both chemical concentration fields and emission scaling factors. The forecast model of emission scaling factors was developed by using the ensemble concentration ratios of the WRF-Chem forecast chemical concentrations and also the time smoothing operator. Hourly surface fine particulate matter (PM2. 5) observations were assimilated in this system over China from 5 to 16 October 2014. A series of 48 h forecasts was then carried out with the optimized initial conditions and emissions on each day at 00:00 UTC and a control experiment was performed without data assimilation. In addition, we also performed an experiment of pure assimilation chemical ICs and the corresponding 48 h forecasts experiment for comparison. The results showed that the forecasts with the optimized initial conditions and emissions typically outperformed those from the control experiment. In the Yangtze River delta (YRD) and the Pearl River delta (PRD) regions, large reduction of the root-mean-square errors (RMSEs) was obtained for almost the entire 48 h forecast range attributed to assimilation. In particular, the relative reduction in RMSE due to assimilation was about 37.5 % at nighttime when WRF-Chem performed comparatively worse. In the Beijing-Tianjin-Hebei (JJJ) region, relatively smaller improvements were achieved in the first 24 h forecast but then no improvements were achieved afterwards. Comparing to the forecasts with only the optimized ICs, the forecasts with the joint adjustment were always much better during the night in the PRD and YRD regions. However, they were very similar during daytime in both

  14. PM2.5 Emission Control of Bag Hose Precipitator with Covering Membrane and Filtering Materials in Industrial Dust%覆膜滤料袋除尘器对工业粉尘中PM2.5的排放控制

    Institute of Scientific and Technical Information of China (English)

    黄斌香; 舒家华; 陈璀君; 冷瑞娟

    2013-01-01

      提出以覆膜滤料袋式除尘器来控制工业烟尘中PM2.5的排放,探讨了检测、计算的方法,分析了过滤元件的缺陷对排放效果的影响.%The paper puts forward to use the bag hose precipitator with covering membrane and filtering materials and to control PM2.5 emission in industrial dust; discusses the examination and calculational methods; analyzes the impact of filtering element limitation on emission effect.

  15. Production-based emissions, consumption-based emissions and consumption-based health impacts of PM2.5 carbonaceous aerosols in Asia

    Science.gov (United States)

    Takahashi, Kei; Nansai, Keisuke; Tohno, Susumu; Nishizawa, Masato; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2014-11-01

    This study determined the production-based emissions, the consumption-based emissions, and the consumption-based health impact of primary carbonaceous aerosols (black carbon: BC, organic carbon: OC) in nine countries and regions in Asia (Indonesia, Malaysia, the Philippines, Singapore, Thailand, China, Taiwan, South Korea, and Japan) in 2008. For the production-based emissions, sectoral emissions inventory of BC and OC for the year of 2008 based on the Asian international input-output tables (AIIOT) was compiled including direct emissions from households. Then, a multiregional environmental input-output analysis with the 2008 AIIOT which was originally developed by updating the table of 2000 was applied for calculating the consumption-based emissions for each country and region. For the production-based emissions, China had the highest BC and OC emissions of 4520 Gg-C in total, which accounted for 75% of the total emissions in the nine countries and regions. For consumption-based emissions, China was estimated to have had a total of 4849 Gg-C of BC and OC emissions, which accounted for 77% of the total emissions in the Asia studied. We also quantified how much countries and regions induced emissions in other countries and regions. Furthermore, taking account of the source-receptor relationships of BC and OC among the countries and regions, we converted their consumption-based emissions into the consumption-based health impact of each country and region. China showed the highest consumption-based health impact of BC and OC totaling 111 × 103 premature deaths, followed by Indonesia, Japan, Thailand and South Korea. China accounted for 87% of the sum total of the consumption-based health impacts of the countries/regions, indicating that China's contribution to consumption-based health impact in Asia was greater than its consumption-based emissions. By elucidating the health impacts that each country and region had on other countries and from which country the impacts

  16. Fugitive Dust Emissions: Development of a Real-time Monitor

    Science.gov (United States)

    2011-10-01

    from a few nanometers to > 100 μm. Combustion-generated particles can be as small as 0.003 μm and wind-blown dust, pollens , plant fragments, and...was characterized in the laboratory, in a wind-tunnel and in a series of intensive field experiments at Fort Drum, a U.S. Army military reservation in...convoy route near a water treament plant and water. Most of the vehicles that passed this site (Site 2) were military trucks; no tracked vehicles

  17. Step change approaches in coal technology and fugitive emissions research

    Institute of Scientific and Technical Information of China (English)

    Aminossadati S.M.; Amanzadeh M.; Prochon E.; Kok J.; Adam S.

    2014-01-01

    Multi-factor productivity (MFP) in underground coal mining has been on the decline for the last decade. The mining industry requires a viable and sustainable approach to overcome the current downtrend. This is only possible by concurrently focussing on productivity improvement and operating costs reduction, delivered through both incremental and step change technology development. Four technologies are pre-sented in this paper:fibre optic borehole sensing has been demonstrated to reveal detailed information about gas flow influx, water level and borehole blockage events occurring along the length of a surface-to-inseam lateral. Fibre optic gas sensing has also been investigated, and this technology promises a remote, intrinsically safe, distributed solution. Recent developments in continuous water jet drilling tech-nology have demonstrated a step change increase in drilling rates and flexibility for coal seam degassing, applicable in both surface-to-inseam and underground in-seam applications. The application of water jet technology to the cable bolt drilling problem offers potential to address a serious health and safety and productivity issue in the roadway development process.

  18. Consideration of Fugitive Emissions in Major Source Determinations

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  19. Consideration of Fugitive Emissions at Oilseed Processing Plants

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  20. Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from beef cattle feedlots

    Science.gov (United States)

    Reverse dispersion modeling has been used to determine air emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research compared AERMOD, a Gaussian-based and currently the U.S. Environmental Protection Agency (EPA) preferred regulatory dispersion model, and ...

  1. Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille

    Science.gov (United States)

    El Haddad, I.; Marchand, N.; Wortham, H.; Piot, C.; Besombes, J.-L.; Cozic, J.; Chauvel, C.; Armengaud, A.; Robin, D.; Jaffrezo, J.-L.

    2011-03-01

    Marseille, the most important port of the Mediterranean Sea, represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. This paper presents a Chemical Mass Balance (CMB) approach based on organic markers and metals to apportion the primary sources of organic aerosol in Marseille, with a special focus on industrial emissions. Overall, the CMB model accounts for the major primary anthropogenic sources including motor vehicles, biomass burning and the aggregate emissions from three industrial processes (heavy fuel oil combustion/shipping, coke production and steel manufacturing) as well as some primary biogenic emissions. This source apportionment exercise is well corroborated by 14C measurements. Primary OC estimated by the CMB accounts on average for 22% of total OC and is dominated by the vehicular emissions that contribute on average for 17% of OC mass concentration (vehicular PM contributes for 17% of PM2.5). Even though industrial emissions contribute only 2.3% of the total OC (7% of PM2.5), they are associated with ultrafine particles (Dp<80 nm) and high concentrations of Polycyclic Aromatic Hydrocarbons (PAH) and heavy metals such as Pb, Ni and V. On one hand, given that industrial emissions governed key primary markers, their omission would lead to substantial uncertainties in the CMB analysis performed in areas heavily impacted by such sources, hindering accurate estimation of non-industrial primary sources and secondary sources. On the other hand, being associated with bursts of submicron particles and carcinogenic and mutagenic components such as PAH, these emissions are most likely related with acute ill-health outcomes and should be regulated despite their small contributions to OC. Another important result is the fact that 78% of OC mass cannot be attributed to the major primary sources and, thus, remains un

  2. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2006-03-31

    This report documents progress made on the subject project during the period of September 1, 2005 through February 28, 2006. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, data processing and analyses were completed for exposure and toxicological data collected during the field campaign at Plant 1, located in the Southeast. To recap from the previous progress report, Stage I toxicological assessments were carried out in normal Sprague-Dawley rats, and Stage II assessments were carried out in a compromised model (myocardial infarction-MI-model). Normal rats were exposed to the following atmospheric scenarios: (1) primary particles; (2) oxidized emissions; (3) oxidized emissions + SOA--this scenario was repeated; and (4) oxidized emissions + ammonia + SOA. Compromised animals were exposed to oxidized emissions + SOA (this scenario was also conducted in replicate). Mass concentrations in exposure atmospheres ranged from 13.9 {micro}g/m{sup 3} for the primary particle scenario (P) to 385 {micro}g/m{sup 3} for one of the oxidized

  3. 不同工况对高压共轨燃油喷射柴油机排放PM2.5组分浓度的影响%Effect on Emission of Diesel Engine Component Concentration of PM2.5 in Different Conditions

    Institute of Scientific and Technical Information of China (English)

    许庆峰; 沈晴; 李轲; 张静; 张伟

    2012-01-01

    The using of dynamometer test, studying of the concentrations, tape ions, elements and the emission concentra- tion of carbon components in PM2.5 emitted from a Euro 4 diesel engine under 11 steady operation conditions were conduc- ted. The results show that the concentration of the highest quality were the OC and ion in PM2.5, followed by the elements and EC; A1, Mg, Ca, Ti, Fe, Si, Na and K were higher elements concentration. At rated speed, Si, Na, A1, K, Mg, Ca, Fe and Ti, increased with load increasing in PM2.5. The concentrations of anions were higher than cations in PM2.5 and the anions in PM2.5 were higher than that in PM10 indicating the DPM were acidity especially for fine particles. Mass closure analysis shows that OM was most abundant in PM2.5.%利用台架试验法,对1台符合欧Ⅳ排放标准的柴油机在稳态工况下排放PM2.5及其载带离子、元素和碳组分的排放浓度进行了试验研究,结果表明:PM2.5中质量浓度最高的为OC和离子,其次为元素和EC;元素浓度较高的几种为A1,Mg,Ca,Ti,Fe,Si,Na和K,在额定转速下,PM2.5中si,Na,Al,K,Mg,Ca,Fe和rri随着负载增加而增:大;PM2.5阴离子的含量要高于阳离子的含量且PM2.5中阴离子含量要高于粗颗粒,可得出发动机排放的颗粒物表现为酸性;闭合分析表明PM2.5的主要组分为有机物。

  4. Directional passive ambient air monitoring of ammonia for fugitive source attribution; a field trial with wind tunnel characteristics

    Science.gov (United States)

    Solera García, M. A.; Timmis, R. J.; Van Dijk, N.; Whyatt, J. D.; Leith, I. D.; Leeson, S. R.; Braban, C. F.; Sheppard, L. J.; Sutton, M. A.; Tang, Y. S.

    2017-10-01

    Atmospheric ammonia is a precursor for secondary particulate matter formation, which harms human health and contributes to acidification and eutrophication. Under the 2012 Gothenburg Protocol, 2005 emissions must be cut by 6% by 2020. In the UK, 83% of total emissions originate from agricultural practices such as fertilizer use and rearing of livestock, with emissions that are spatially extensive and variable in nature. Such fugitive emissions make resolving and tracking of individual site performance challenging. The Directional Passive Air quality Sampler (DPAS) was trialled at Whim Bog, an experimental site with a wind-controlled artificial release of ammonia, in combination with CEH-developed ammonia samplers. Whilst saturation issues were identified, two DPAS-MANDE (Mini Annular Denuder) systems, when deployed in parallel, displayed an average relative deviation of 15% (2-54%) across all 12 directions, with the directions exposed to the ammonia source showing ∼5% difference. The DPAS-MANDE has shown great potential for directional discrimination and can contribute to the understanding and management of fugitive ammonia sources from intensive agriculture sites.

  5. Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion

    Institute of Scientific and Technical Information of China (English)

    Guofeng Shen; Miao Xue; Siye Wei; Yuanchen Chen; Qiuyue Zhao; Bing Li; Haisuo Wu

    2013-01-01

    Controlled combustion experiments were conducted to investigate the influence of fuel charge size,moisture,air ventilation and feeding rate on the emission factors (EFs) of carbonaceous particulate matter,parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives from residential wood combustion in a typical brick cooking stove.Measured EFs were found to be independent of fuel charge size,but increased with increasing fuel moisture.Pollution emissions from the normal burning under an adequate air supply condition were the lowest for most pollutants,while more pollutants were emitted when an oxygen deficient atmosphere was formed in the stove chamber during fast burning.The impacts of these factors on the size distribution of emitted particles was also studied.Modified combustion efficiency and the four investigated factors explained 68%,72%,and 64% of total variations in EFs of PM,organic carbon,and oxygenated PAHs,respectively,but only 36%,38% and 42% of the total variations in EFs of elemental carbon,pPAHs and nitro-PAHs,respectively.

  6. On the morphology of $\\gamma-$ray emission induced by $e^{\\pm}$ from annihilating self-interacting dark matter

    CERN Document Server

    Cui, Ming-Yang; Zong, Hong-Shi

    2016-01-01

    With the Fermi-LAT data quite a few research groups have reported a spatially extended GeV $\\gamma$-ray excess surrounding the Galactic Center (GC). The physical origin of such a GeV excess is still unclear and one interesting possibility is the inverse Compton scattering of the electrons/positrons from annihilation of self-interacting dark matter (SIDM) particles with the interstellar optical photons. In this work we calculate the morphology of such a kind of $\\gamma$-ray emission. For the annihilation channel of $\\bar{\\chi}\\chi\\rightarrow \\phi\\phi\\rightarrow e^{+}e^{-}e^{+}e^{-}$, the inverse Compton scattering (ICS) dominates over the bremsstrahlung on producing the GeV $\\gamma$-ray emission. For the SIDM particles with a rest mass $m_\\chi \\sim $ tens GeV that may be favored by the modeling of the Galactic GeV excess, the ICS radiation at GeV energies concentrates along the Galactic plane. The degrees of asymmetry high up to $\\geq 0.3$ are found in some regions of interest, which in turn proposes a plausib...

  7. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    Science.gov (United States)

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  8. Trends in multi-pollutant emissions from a technology-linked inventory for India: I. Industry and transport sectors

    Science.gov (United States)

    Sadavarte, Pankaj; Venkataraman, Chandra

    2014-12-01

    Emissions estimation, for research and regulatory applications including reporting to international conventions, needs treatment of detailed technology divisions and high-emitting technologies. Here we estimate Indian emissions, for 1996-2015, of aerosol constituents (PM2.5, BC and OC) and precursor gas SO2, ozone precursors (CO, NOx, NMVOC and CH4) and greenhouse gases (CO2 and N2O), using a common fuel consumption database and consistent assumptions. Six source categories and 45 technologies/activities in the industry and transport sectors were used for estimating emissions for 2010. Mean emission factors, developed at the source-category level, were used with corresponding fuel consumption data, available for 1996-2011, projected to 2015. New activities were included to account for fugitive emissions of NMVOC from chemical and petrochemical industries. Dynamic emission factors, reflecting changes in technology-mix and emission regulations, were developed for thermal power plants and on-road transport vehicles. Modeled emission factors were used for gaseous pollutants for on-road vehicles. Emissions of 2.4 (0.6-7.5) Tg y-1 PM2.5, 0.23 (0.1-0.7) Tg y-1 BC, 0.15 (0.04-0.5) Tg y-1 OC, 7.3 (6-10) Tg y-1 SO2, 19 (7.5-33) Tg y-1 CO, 1.5 (0.1-9) Tg y-1 CH4, 4.3 (2-9) Tg y-1 NMVOC, 5.6 (1.7-15.9) Tg y-1 NOx, 1750 (1397-2231) Tg y-1 CO2 and 0.13 (0.05-0.3) Tg y-1 N2O were estimated for 2015. Significant emissions of aerosols and their precursors were from coal use in thermal power and industry (PM2.5 and SO2), and on-road diesel vehicles (BC), especially superemitters. Emissions of ozone precursors were largely from thermal power plants (NOx), on-road gasoline vehicles (CO and NMVOC) and fugitive emissions from mining (CH4). Highly uncertain default emission factors were the principal contributors to uncertainties in emission estimates, indicating the need for region specific measurements.

  9. 38 CFR 3.666 - Incarcerated beneficiaries and fugitive felons-pension.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Incarcerated beneficiaries and fugitive felons-pension. 3.666 Section 3.666 Pensions, Bonuses, and Veterans' Relief... Adjustments and Resumptions § 3.666 Incarcerated beneficiaries and fugitive felons—pension. If any...

  10. Impact on surface ozone by fugitive emissons of ethylene and propylene from a petrochemical plant cluster

    Science.gov (United States)

    Hsieh, H.; Chang, J.; Chen, S.; Wang, J.

    2010-12-01

    Ethylene and propylene are two most produced organic compounds in the world which are mainly produced from the cracking process in the oil refinery industry. In a large petrochemical plant cluster a large variety of petrochemical products are derived from these two compounds used as starting reagents. Fugitive emissions of these two compounds from storage tanks and pipelines are often inevitable, which could pose a great burden on the formation of surface ozone and thus deteriorate air quality if leakage is significant. In this study, a photochemical assessment monitoring station (PAMS) was deployed 7 kilometers south of a large petrochemical plant cluster. Concentration spikes of ethylene and propylene were frequently observed by the on-line gas chromatographic system whenever northerly prevailed. The impact of ethylene and propylene’s leakage on ozone formation was simulated by an air quality model (i.e., PAMS-AQM), of which emission inventory of non-methane hydrocarbons (NMHCs) were speciated and calibrated by the PAMS measurements. Contribution to ozone formation by these two compounds in the downwind areas was able to be assessed by turning off the emissions of ethylene and propylene from this plant cluster while maintaining those of other precursors in the model. Scenarios of precursor (NMHC and NOx) reduction or increase were also simulated from the perspectives of ozone control strategies.

  11. Attributing risk burden of PM2.5-bound polycyclic aromatic hydrocarbons to major emission sources: Case study in Guangzhou, south China

    Science.gov (United States)

    Yu, Qingqing; Gao, Bo; Li, Guanghui; Zhang, Yanli; He, Quanfu; Deng, Wei; Huang, Zhonghui; Ding, Xiang; Hu, Qihou; Huang, Zuzhao; Wang, Yujun; Bi, Xinhui; Wang, Xinming

    2016-10-01

    Polycyclic aromatic hydrocarbons (PAHs) have attracted an increasing concern in China's megacities. However, rare information is available on the spatial and seasonal variations of inhalation cancer risk (ICR) due to PAH exposure and their relations to specific sources. In this study, year-round PM2.5 samples were collected from 2013 to 2014 by high-volume samplers at four sites (one urban, two rural and one roadside station) in Guangzhou in the highly industrialized and densely populated Pearl River Delta (PRD) region and analyzed for 26 polycyclic aromatic hydrocarbons (PAHs) together with molecular tracers including levoglucosan, hopanes and elemental carbon. Higher molecular weight PAHs (5-ring or above) accounted for 64.3-87.5% of total PAHs. Estimated annual averages of benzo(a)pyrene-equivalent carcinogenic potency (BaPeq) were 1.37, 2.31 and 1.56 ng/m3 at urban SZ, rural JL and rural WQS, respectively, much higher than that at the roadside station YJ in an urban street canyon. ICR of PAHs in wintertime reached 2.2 × 10-4, nearly 3 times that in summer; and cancer risk of PAHs was surprisingly higher at the rural site than at other sites. Source contributions by positive matrix factorization (PMF) in the aid of molecular tracers revealed that overall coal combustion and biomass burning altogether contributed 73.8% of total PAHs and 85.2% of BaPeq, and particularly in winter biomass burning became the most significant source of total PAHs and BaPeq (51.8% and 52.5%), followed by coal combustion (32.0% and 39.1%) and vehicle emission (16.2% and 8.4%). The findings of this work suggest that even in China's megacities like Guangzhou, limiting biomass burning may benefit PAHs pollution control and cancer risk reduction.

  12. Differential Absorption Lidar (DIAL) in Alberta: A New Remote Sensing Tool for Wide Area Measurement of Particulates, CO2, and CH4 Emissions from Energy Extraction and Production Sites

    Science.gov (United States)

    Wojcik, M.; Lemon, R.; Crowther, B. G.; Valupadas, P.; Fu, L.; Yang, Z.; Huda, Q.; Leung, B.; Chambers, A.

    2014-12-01

    Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA) in cooperation with the Space Dynamics Laboratory (SDL) of Utah State University, have developed a mobile DIAL sensor designed specifically for particle, CO2 and CH4 emissions measurement. Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as differential absorption lidar (DIAL) to help assess the impact of energy development and industrial operations. This instrument is housed inside a 36' trailer and can be quickly staged and used to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 1.5 m. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation, DIAL can create images of emissions concentrations and ultimately can be used to determine emission factors, locate fugitive leaks, assess plume dispersion and confirm air dispersion modeling. The DIAL system has been deployed at a landfill, a coal-fired power plant, and an oil sands production area. A system overview of the DIAL instrument and recent results will be discussed.

  13. Emission factors for PM2.5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE.

    Science.gov (United States)

    Cereceda-Balic, Francisco; Toledo, Mario; Vidal, Victor; Guerrero, Fabian; Diaz-Robles, Luis A; Petit-Breuilh, Ximena; Lapuerta, Magin

    2017-04-15

    The objective of this research was to determine emission factors (EF) for particulate matter (PM2.5), combustion gases and particle size distribution generated by the combustion of Eucalyptus globulus (EG), Nothofagus obliqua (NO), both hardwoods, and Pinus radiata (PR), softwood, using a controlled combustion chamber (3CE). Additionally, the contribution of the different emissions stages associated with the combustion of these wood samples was also determined. Combustion experiments were performed using shaving size dried wood (0% humidity). The emission samples were collected with a tedlar bag and sampling cartridges containing quartz fiber filters. High reproducibility was achieved between experiment repetitions (CVcombustion smoldering have also very significant contributions. This demonstrates that particle concentrations measured only in stationary state during flame stage may cause underestimation of emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Multiscale predictions of aviation-attributable PM2.5 for U.S. airports modeled using CMAQ with plume-in-grid and an aircraft-specific 1-D emission model

    Science.gov (United States)

    Woody, M. C.; Wong, H.-W.; West, J. J.; Arunachalam, S.

    2016-12-01

    Aviation activities represent an important and unique mode of transportation, but also impact air quality. In this study, we aim to quantify the impact of aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few kilometers) to continental (spanning hundreds of kilometers) using the Community Multiscale Air Quality-Advanced Plume Treatment (CMAQ-APT) model. In our CMAQ-APT simulations, a plume scale treatment is applied to aircraft emissions from 99 major U.S. airports over the contiguous U.S. in January and July 2005. In addition to the plume scale treatment, we account for the formation of non-traditional secondary organic aerosols (NTSOA) from the oxidation of semivolatile and intermediate volatility organic compounds (S/IVOCs) emitted from aircraft, and utilize alternative emission estimates from the Aerosol Dynamics Simulation Code (ADSC). ADSC is a 1-D plume scale model that estimates engine specific PM and S/IVOC emissions at ambient conditions, accounting for relative humidity and temperature. We estimated monthly and contiguous U.S. average aviation-attributable PM2.5 to be 2.7 ng m-3 in January and 2.6 ng m-3 in July using CMAQ-APT with ADSC emissions. This represents an increase of 40% and 12% in January and July, respectively, over impacts using traditional modeling approaches (traditional emissions without APT). The maximum fine scale (subgrid scale) hourly impacts at a major airport were 133.6 μg m-3 in January and 165.4 μg m-3 in July, considerably higher than the maximum grid-based impacts at the airport of 4.3 μg m-3 in January and 0.5 μg m-3 in July.

  15. Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies.

    Science.gov (United States)

    Biswas, Subhasis; Verma, Vishal; Schauer, James J; Cassee, Flemming R; Cho, Arthur K; Sioutas, Constantinos

    2009-05-15

    Advanced exhaust after-treatment devices for diesel vehicles are less effective in controlling semivolatile species than the refractory PM fractions. This study investigated the oxidative potential (OP) of PM from vehicles with six retrofitted technologies (vanadium and zeolite based selective catalytic reduction (V-SCRT, Z-SCRT), Continuously regenerating technology (CRT), catalyzed DPX filter, catalyzed continuously regenerating trap (CCRT), and uncatalyzed Horizon filter) in comparison to a "baseline" vehicle (without any control device). Vehicles were tested on a chassis dynamometer atthree driving conditions, i.e., cruise, transient urban dynamometer driving schedule (UDDS), and idle. The consumption rate of dithiothreitol (DTT), one of the surrogate measures of OP, was determined for PM samples collected at ambient and elevated temperatures (thermally denuded of semivolatile species). Control devices reduced the OP expressed per vehicle distance traveled by 60-98%. The oxidative potential per unit mass of PM however, was highest for the Horizon followed by CRT, DPX -Idle, SCRTs, and baseline vehicles. Significant reduction in OP (by 50-100%) was observed forthermally denuded PM from vehicles with retrofitted technologies (PM with significant semivolatile fraction), whereas particles emitted bythe baseline vehicle (with insignificant semivolatile fraction) did not demonstrate any measurable changes in oxidative activity. This suggests that the semivolatile fraction of particles are far more oxidative in nature than refractory particles-a conclusion further supported by previous tunnel and ambient studies, demonstrating a decline in PM oxidative activity with increasing atmospheric dilution. Correlation analysis performed between all the species, showed that OP is moderately associated (R = 0.76) with organic carbon (OC) and strongly associated (R = 0.94) with the water-soluble organic carbon (WSOC).

  16. High-Resolution Atmospheric Emission Inventory of the Argentine Enery Sector

    Science.gov (United States)

    Puliafito, Salvador Enrique; Castesana, Paula; Allende, David; Ruggeri, Florencia; Pinto, Sebastián; Pascual, Romina; Bolaño Ortiz, Tomás; Fernandez, Rafael Pedro

    2017-04-01

    This study presents a high-resolution spatially disaggregated inventory (2.5 km x 2.5 km), updated to 2014, of the main emissions from energy activities in Argentina. This inventory was created with the purpose of improving air quality regional models. The sub-sectors considered are public electricity and heat production, cement production, domestic aviation, road and rail transportation, inland navigation, residential and commercial, and fugitive emissions from refineries and fuel expenditure. The pollutants considered include greenhouse gases and ozone precursors: CO2, CH4, NOx, N2O VOC; and other gases specifically related to air quality including PM10, PM2.5, SOx, Pb and POPs. The uncertainty analysis of the inventories resulted in a variability of 3% for public electricity generation, 3-6% in the residential, commercial sector, 6-12% terrestrial transportation sector, 10-20% in oil refining and cement production according to the considered pollutant. Aviation and maritime navigation resulted in a higher variability reaching more than 60%. A comparison with the international emission inventory EDGAR shows disagreements in the spatial distribution of emissions, probably due to the finer resolution of the map presented here, particularly as a result of the use of new spatially disaggregated data of higher resolution that is currently available.

  17. Particulate matter (PM 2.5 levels in ETS emissions of a Marlboro Red cigarette in comparison to the 3R4F reference cigarette under open- and closed-door condition

    Directory of Open Access Journals (Sweden)

    Mueller Daniel

    2012-06-01

    Full Text Available Abstract Introduction Potential health damage by environmental emission of tobacco smoke (environmental tobacco smoke, ETS has been demonstrated convincingly in numerous studies. People, especially children, are still exposed to ETS in the small space of private cars. Although major amounts of toxic compounds from ETS are likely transported into the distal lung via particulate matter (PM, few studies have quantified the amount of PM in ETS. Study aim The aim of this study was to determine the ETS-dependent concentration of PM from both a 3R4F reference cigarette (RC as well as a Marlboro Red brand cigarette (MRC in a small enclosed space under different conditions of ventilation to model car exposure. Method In order to create ETS reproducibly, an emitter (ETSE was constructed and mounted on to an outdoor telephone booth with an inner volume of 1.75 m3. Cigarettes were smoked under open- and closed-door condition to imitate different ventilation scenarios. PM2.5 concentration was quantified by a laser aerosol spectrometer (Grimm; Model 1.109, and data were adjusted for baseline values. Simultaneously indoor and outdoor climate parameters were recorded. The time of smoking was divided into the ETS generation phase (subset “emission” and a declining phase of PM concentration (subset “elimination”; measurement was terminated after 10 min. For all three time periods the average concentration of PM2.5 (Cmean-PM2.5 and the area under the PM2.5 concentration curve (AUC-PM2.5 was calculated. The maximum concentration (Cmax-PM2.5 was taken from the total interval. Results For both cigarette types open-door ventilation reduced the AUC-PM2.5 (RC: from 59 400 ± 14 600 to 5 550 ± 3 900 μg*sec/m3; MRC: from 86 500 ± 32 000 to 7 300 ± 2 400 μg*sec/m3; p mean-PM2.5 (RC: from 600 ± 150 to 56 ± 40 μg/m3, MRC from 870 ± 320 to 75 ± 25 μg/m3; p max-PM2.5 was reduced by about 80% (RC: from 1 050 ± 230 to

  18. Duri Indonesia air emission inventory and dispersion modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Soetjiptono, T.E.; Nugraha, S.; VanDerZanden, D.F. [and others

    1996-11-01

    The Caltex Pacific Indonesia production field located in Duri, Indonesia, is the world`s largest steam flood. Because of the large scale of these operations, there is an interest in understanding the emissions into the atmosphere from the various sources in the field as well as the possible impact on the air quality resulting from these emissions. To be proactive and to fulfill this need, a study was done to inventory emissions from the facilities in the field and to use air dispersion models to estimate impacts on the air quality using the inventory results. This paper will discuss methods and procedures used in & study to quantify the emissions from the following sources in the Duri field: process vents, production impoundments and wastewater canals, roads, fugitive emissions, storage links, and combustion sources. Emissions of the following pounds were addressed in the study: non-methane hydrocarbons (NMHC) and aromatic hydrocarbons (BTEX), hydrogen sulfide, nitrogen oxides, sulfur oxides, particulate matter (PM), and carbon monoxide. Because of the diverse nature of the sources in the field, a wide range of emission estimating procedures were used including direct measurement methods, empirical methods based on mass transfer principles, and standard emission factors or procedures available from the United States Environmental Protection Agency (U.S. EPA). To quantify and track the emissions data generated, a computerized emissions inventory was developed. This paper will also discuss the dispersion modeling methods that were used to estimate the ground level concentrations in the surrounding areas using the data developed in the emission inventory. These discussions are based upon the results of a preliminary study which is limited to a portion of the Duri production field.

  19. Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces

    Science.gov (United States)

    Gillies, J. A.; Etyemezian, V.; Kuhns, H.; McAlpine, J. D.; King, J.; Uppapalli, S.; Nikolich, G.; Engelbrecht, J.

    2010-03-01

    There is a dearth of information on dust emissions from sources that are unique to U.S. Department of Defense testing and training activities. Dust emissions of PM 10 and PM 2.5 from low-level rotary-winged aircraft travelling (rotor-blade ≈7 m above ground level) over two types of desert surfaces (i.e., relatively undisturbed desert pavement and disturbed desert soil surface) were characterized at the Yuma Proving Ground (Yuma, AZ) in May 2007. Fugitive emissions are created by the shear stress of the outflow of high speed air created by the rotor-blade. The strength of the emissions was observed to scale primarily as a function of forward travel speed of the aircraft. Speed affects dust emissions in two ways: 1) as speed increases, peak shear stress at the soil surface was observed to decline proportionally, and 2) as the helicopter's forward speed increases its residence time over any location on the surface diminishes, so the time the downward rotor-generated flow is acting upon that surface must also decrease. The state of the surface over which the travel occurs also affects the scale of the emissions. The disturbed desert test surface produced approximately an order of magnitude greater emission than the undisturbed surface. Based on the measured emission rates for the test aircraft and the established scaling relationships, a rotary-winged aircraft similar to the test aircraft traveling 30 km h -1 over the disturbed surface would need to travel 4 km to produce emissions equivalent to one kilometer of travel by a light wheeled military vehicle also traveling at 30 km h -1 on an unpaved road. As rotary-winged aircraft activity is substantially less than that of off-road vehicle military testing and training activities it is likely that this source is small compared to emissions created by ground-based vehicle movements.

  20. Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside.

    Science.gov (United States)

    Srimuruganandam, B; Shiva Nagendra, S M

    2012-09-01

    The 24-h average ambient particulate matter (PM(10) and PM(2.5)) concentrations are sampled concurrently during November 2008-April 2009 at a busy roadside in Chennai City, India. The elemental (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Se, Sr, Te, Tl, V and Zn) and ionic (Na(+), NH(4)(+), K(+), Ca(2+), Mg(2+), F(-), Cl(-), NO(2)(-), NO(3)(-) and SO(4)(2-)) composition of PM(10) and PM(2.5) are determined using an inductively coupled plasma-optical emission spectrometer (ICP-OES) and an ion chromatograph (IC), respectively. The emission inventory at the study area is also carried out to identify the likely PM emission sources. The U.S. EPA's-CMB (chemical mass balance) version 8.2 is applied to identify the source contribution of ambient PM(10) and PM(2.5) concentrations at the study area. Results indicated that diesel exhausts (43-52% in PM(10) and 44-65% in PM(2.5)) and gasoline exhausts (6-16% in PM(10) and 3-8% in PM(2.5)) are found to be the major source contributors at the study site followed by the paved road dusts (PM(10)=PM(2.5)=0.-2.3%), brake lining dusts (0.1% in PM(10) and 0.2% in PM(2.5)), brake pad wear dusts (0.1% in PM(10) and 0.01% in PM(2.5)), marine aerosols (PM(10)=PM(2.5)=0.1%) and cooking (~0.8% in PM(10) and ~1.5% in PM(2.5)). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. OTM 33 Geospatial Measurement of Air Pollution, Remote Emissions Quantification (GMAP-REQ) and OTM33A Geospatial Measurement of Air Pollution-Remote Emissions Quantification-Direct Assessment (GMAP-REQ-DA)

    Science.gov (United States)

    Background: Next generation air measurement (NGAM) technologies are enabling new regulatory and compliance approaches that will help EPA better understand and meet emerging challenges associated with fugitive and area source emissions from industrial and oil and gas sectors. In...

  2. New field-based agricultural biomass burning trace gas, PM2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China

    Science.gov (United States)

    Zhang, Tianran; Wooster, Martin J.; Green, David C.; Main, Bruce

    2015-11-01

    Despite policy attempts to limit or prevent agricultural burning, its use to remove crop residues either immediately after harvest (e.g. field burning of wheat stubble) or after subsequent crop processing (e.g. "bonfires" of rice straw and rapeseed residues) appears to remain widespread across parts of China. Emission factors for these types of small but highly numerous fire are therefore required to fully assess their impact on atmospheric composition and air pollution. Here we describe the design and deployment of a new smoke measurement system for the close-range sampling of key gases and particles within smoke from crop residue fires, using it to assess instantaneous mixing ratios of CO and CO2 and mass concentrations of black carbon (BC) and PM2.5 from wheat stubble, rice straw, and rapeseed residue fires. Using data of our new smoke sampling system, we find a strong linear correlation between the PM2.5 mass and BC, with very high PM2.5 to BC emission ratios found in the smouldering phase (up to 80.7 mg m-3.(mg m-3)-1) compared to the flaming phase (2.0 mg m-3.(mg m-3)-1). We conclude that the contribution of BC to PM2.5 mass was as high as 50% in the flaming phase of some burns, whilst during smouldering it sometimes decreased to little over one percent. A linear mixing model is used to quantify the relative contribution of each combustion phase to the overall measured smoke composition, and we find that flaming combustion dominated the total emission of most species assessed. Using time series of trace gas concentrations from different fire cases, we calculated 'fire integrated' trace gas emission factors (EFs) for wheat, rice and rapeseed residue burns as 1739 ± 19 g kg-1, 1761 ± 30 g kg-1and 1704 ± 27 g kg-1 respectively for CO2, and 60 ± 12 g kg-1, 47 ± 19 g kg-1 and 82 ± 17 g kg-1 respectively for CO. Where comparisons were possible, our EFs agreed well with those derived via a simultaneously-deployed open path Fourier transform infrared (OP

  3. 75 FR 53907 - Revisions to the Arizona State Implementation Plan, Maricopa County

    Science.gov (United States)

    2010-09-02

    ... Operations. MCAQD 310.01 Fugitive Dust From Non- 01/27/10 04/12/10 Traditional Sources of Fugitive Dust... particulate matter (PM) emissions from fugitive dust sources such as construction sites and related activities... regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act). We are...

  4. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... affect the heart and lungs and cause serious health effects. December 1, 2016 - EPA proposes air quality determinations for eleven areas designated "nonattainment" for the 24-hour fine particle standards. Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  5. Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010

    Science.gov (United States)

    Tong, D.; Qiang, Z.; Davis, S. J.

    2016-12-01

    There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from 1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.

  6. An Experimental Study on the PM and NOx Emission Characteristics of Public Bus in Real Driving Condition in Beijing%北京道路工况下公交车PM和NOx排放特性试验研究

    Institute of Scientific and Technical Information of China (English)

    高继东; 秦孔建; 梁荣亮; 李孟良

    2011-01-01

    利用综合性车载排放测试系统完成北京典型柴油公交车在道路工况下排放特性的试验研究.结果表明,匀速行驶工况下的NOx排放率与车速呈正线性相关;平均车速为13.3km/h的低速拥堵工况的NOx排放因子是平均车速为41.1km/h的高速畅通工况的近两倍;研究表明,在低速加速的起步过程和低负荷工况下出现较严重的PM排放,须针对这两种工况优化发动机的燃烧品质.%An experimental study is conducted on the emission characteristics of typical public diesel bus in real driving condition in Beijing by using integrated portable emission measurement system. The results show that the emission rates of NOX exhibit a linear relationship with vehicle speed in cruising condition; while the emission factor of NO, in low-speed traffic jam condition with an average speed of 13. 3 km/h is nearly twice higher than that in high speed clear road condition with an average speed of 41. 1 km/h. The study also indicates that relatively severe PM emission appears in low-speed starting acceleration period and low load condition so the combustion quality of engine in these both conditions must be optimized.

  7. Establishment and Comparison of Evaluation Methods for Fugitive Road Dust%道路扬尘评估方法的建立和比较

    Institute of Scientific and Technical Information of China (English)

    黄玉虎; 李钢; 杨涛; 秦建平; 田刚

    2011-01-01

    In this article, we set up two methods for evaluation of fugitive road dust: the dust fall method and the AP-42 method.The two methods use relative road dust fall after subtracting background dust fall (△DFr) and the emission intensity of fugitive road dust (Elr) as the evaluation indices. Three conclusions have been drawn through comparing evaluation results of these two methods. First, △DFr and Elr are positively correlated, with a correlation coefficient R2 of 0.708. Second, △DFr can simultaneously measure the fugitive dust generated by vehicles and wind erosion of the road surface silt, while Elr can only measure fugitive dust generated by vehicles. Third, the single index of silt loading (sL) does not reflect the degree of pollution from fugitive road dust, but can be applied to quantitatively evaluate the quality of city road sweeping and cleaning. Compared with the AP-42 method, the dust fall method is safer and easier to use with only small errors, but it does not provide fast results and has slightly higher costs. The two methods both indicate that the policies of Guaranteeing Measures of the 2008 Olympic Games had an obvious effect on controlling fugitive road dust. Comparing the period of the 2008 Olympic Games with the same period in 2007 shows that △DFr on freeways, major arterial, minor arterial and collector roads was reduced by 65% , 55% , 65% and 84% , respectively.%建立了降尘法和AP-42法2种道路扬尘评估方法,它们分别以减去背景降尘的道路自身降尘(ΔDFr)和道路扬尘排放强度(EIr)作为评估指标.通过对这2种方法评估结果的比较与分析发现:①ΔDFr和EIr有很好的正相关关系,相关系数(R2)为0.708;②ΔDFr能同时反映车辆激发扬尘和路面风蚀扬尘,而EIr只反映车辆激发扬尘;③积尘负荷大小不代表评估道路扬尘污染程度,但适用于定量评价道路清扫保洁质量.降尘法相比AP-42法,其实施安全、简单易行、误差小,但不

  8. Comparison of life-cycle energy and emissions footprints of passenger transportation in metropolitan regions

    Science.gov (United States)

    Chester, Mikhail V.; Horvath, Arpad; Madanat, Samer

    2010-03-01

    A comparative life-cycle energy and emissions (greenhouse gas, CO, NO X, SO 2, PM 10, and VOCs) inventory is created for three U.S. metropolitan regions (San Francisco, Chicago, and New York City). The inventory captures both vehicle operation (direct fuel or electricity consumption) and non-operation components (e.g., vehicle manufacturing, roadway maintenance, infrastructure operation, and material production among others). While urban transportation inventories have been continually improved, little information exists identifying the particular characteristics of metropolitan passenger transportation and why one region may differ from the next. Using travel surveys and recently developed transportation life-cycle inventories, metropolitan inventories are constructed and compared. Automobiles dominate total regional performance accounting for 86-96% of energy consumption and emissions. Comparing system-wide averages, New York City shows the lowest end-use energy and greenhouse gas footprint compared to San Francisco and Chicago and is influenced by the larger share of transit ridership. While automobile fuel combustion is a large component of emissions, diesel rail, electric rail, and ferry service can also have strong contributions. Additionally, the inclusion of life-cycle processes necessary for any transportation mode results in significant increases (as large as 20 times that of vehicle operation) for the region. In particular, emissions of CO 2 from cement production used in concrete throughout infrastructure, SO 2 from electricity generation in non-operational components (vehicle manufacturing, electricity for infrastructure materials, and fuel refining), PM 10 in fugitive dust releases in roadway construction, and VOCs from asphalt result in significant additional inventory. Private and public transportation are disaggregated as well as off-peak and peak travel times. Furthermore, emissions are joined with healthcare and greenhouse gas monetized

  9. Development of a method for estimating emissions from oil and gas production sites utilizing remote observations

    Science.gov (United States)

    There is a lack of information on emissions of ozone precursors, hazardous air pollutants, and greenhouse gases from oil and gas production operations, and measurement of these emissions presents many challenges. Assessment is complicated by the fugitive nature ofthe emissions, v...

  10. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China

    Science.gov (United States)

    Zhou, Haijun; He, Jiang; Zhao, Boyi; Zhang, Lijun; Fan, Qingyun; Lü, Changwei; Dudagula; Liu, Tao; Yuan, Yinghui

    2016-09-01

    Particulate matter (PM), including PM10 and PM2.5, is one of the major impacts on air quality, visibility, climate change, earth radiation balance, and public health. Organic carbon (OC) and elemental carbon (EC) are the major components of PM. 804 samples (PM10 and PM2.5) were simultaneously collected from six urban sites covering 3 districts in Baotou, in January, April, September, and November 2014. As to a long-term study on the effects of carbonaceous aerosol, data were collected annually at Environmental Protection Agency of Baotou (EPB). The concentrations of PM10 and PM2.5, the spatial distribution and content of OC and EC, the relationship between OC and EC, and the formation of secondary organic carbon (SOC) have been investigated. The findings indicated that the concentrations of these particle matter are higher than that in US or European standards. The average concentrations of OC in PM10 and PM2.5 follow the order: January > November > April > September; and for EC in PM10 and PM2.5 follow the order: January > November > September > April. Affected by metrological factors, it was indicated that high wind speed and low relative humidity were beneficial for removal of OC and EC in January and November. Pearson correlations and cluster analysis on OC and EC concentrations in PM10 and PM2.5 with gaseous pollutants (SO2, NO2, and CO) suggested that OC shared the same emission sources with SO2 and CO from combustion, while EC's sources mainly came from vehicles exhaust and combustion which contributed to NO2 as well. The OC concentration is mainly primary in warm months, while it appears secondary in cold months in Baotou. There is a common characteristic among the cities with higher SOC in winter, wherever the coal combustion can lead to the severe pollution. This work is important for the construction of the database of OC and EC concentrations in PM10 and PM2.5 at spatial and time intervals, and it can provide scientific suggestion for similar PM

  11. Estimating U.S. Methane Emissions from the Natural Gas Supply Chain. Approaches, Uncertainties, Current Estimates, and Future Studies

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Warner, Ethan [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Steinberg, Daniel [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Brandt, Adam [Stanford Univ., CA (United States)

    2015-08-01

    A growing number of studies have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain. In particular, a number of measurement studies have suggested that actual levels of CH4 emissions may be higher than estimated by EPA" tm s U.S. GHG Emission Inventory. We reviewed the literature to identify the growing number of studies that have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain.

  12. 40 CFR 63.1445 - What work practice standards must I meet for my fugitive dust sources?

    Science.gov (United States)

    2010-07-01

    ... include, but are not limited to, transfer of material from one conveyor belt to another and transfer of... transporting bulk quantities of fugitive dust materials. Paved roads and parking areas that are not used by...

  13. Multifaceted health impacts of Particulate Matter (PM and its management: An overview

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-03-01

    Full Text Available Urban air quality is becoming a serious public health concern at global scale. Particulate matter (PM pollution is intimately linked with human health. Present review describes the different human health implications associated with PM pollution. PM may derive its origin from natural and anthropogenic sources. Vehicle derived pollutants as well as industrial emissions simultaneously release deleterious fine-grained PM into the atmosphere. Fine PM especially PM2.5 and PM10 are particularly deleterious to human health. Air pollution PM is an important environmental health risk factor for several respiratory and cardiovascular morbidity and mortality. Further, PM is inextricably linked with genotoxicity and mutations. Literature review of the cellular and molecular basis of adverse effects associated with PM is presented in this paper. Finally, management, existing technologies and policy options to reduce or mitigate the adverse health impacts of PM pollution is discussed as an eco-sustainable approach.

  14. PM 10 Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for PM 10 and have been...

  15. The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust.

    Science.gov (United States)

    Gelencsér, András; Kováts, Nóra; Turóczi, Beatrix; Rostási, Ágnes; Hoffer, András; Imre, Kornélia; Nyirő-Kósa, Ilona; Csákberényi-Malasics, Dorottya; Tóth, Ádám; Czitrovszky, Aladár; Nagy, Attila; Nagy, Szabolcs; Ács, András; Kovács, Anikó; Ferincz, Árpád; Hartyáni, Zsuzsanna; Pósfai, Mihály

    2011-02-15

    As a result of a tragic industrial accident, a highly alkaline red mud sludge inundated settlements and agricultural areas near Ajka, Hungary on October 4, 2010. One of the major concerns about the aftermaths of the accident is the potential health effects of vast amounts of fugitive dust from red mud sediment. Thus, we studied the chemical and physical properties of particles of red mud and its respirable fugitive dust, and performed toxicity measurements. Under unfavorable meteorological conditions dry red mud sediment could emit very high amounts of respirable alkaline particles into the air. The number size distribution of fugitive dust peaks above 1 μm aerodynamic diameter; therefore, its inhalation is unlikely to affect the deep regions of the lungs. No significant mineralogical or elemental fractionation was observed between the sediment and dust, with the major minerals being hematite, cancrinite, calcite, and hydrogarnet. Although the high resuspension potential and alkalinity might pose some problems such as the irritation of the upper respiratory tract and eyes, based on its size distribution and composition red mud dust appears to be less hazardous to human health than urban particulate matter.

  16. Where is PM gone? Trends and variability of atmospheric PM10, PM2.5 and PM10-2.5 in the Po valley over the last decade (and more).

    Science.gov (United States)

    Bigi, Alessandro; Ghermandi, Grazia

    2017-04-01

    The Po Valley is one of the largest European regions with a remarkably high concentration level of atmospheric pollutants, both for particulate and gaseous compounds. In the last decade stringent regulations on air quality standards and on anthropogenic emissions have been set by the European Commission, leading to an overall improvement in air quality across Europe. In order to assess the decadal pattern and variability in PM across the Po valley we thoroughly investigated the time series of PM10, PM2.5 and PM10-2.5 from 41, 44 and 15 sites respectively (Bigi & Ghermandi 2014, 2016). PM2.5 and PM10-2.5 (PM10) series with a 7 (10) year or longer record have been analysed for long term trend in deseasonalized monthly means, annual quantiles and in monthly frequency distribution by robust statistical methods. A widespread and significant decreasing trend was observed at several sites for all size fractions, with the drop, up to a few percent per year, occurring mainly in winter for PM2.5 and throughout the year for PM10. All series were tested for a significant weekly periodicity (a proxy to estimate the impact of primary anthropogenic emissions) by 3 different statistical methods, yielding positive results for summer PM2.5 and PM10, and for both summer and winter PM10-2.5. Hierarchical cluster analysis showed larger variability for PM10 than for PM2.5. The former was split in five clusters: two encompassing the metropolitan areas of Turin and Milan and their respective nearby sites and the other three clusters gathering northeast, northwest and central Po Valley sites respectively. PM2.5 clusters divide the valley in western, eastern and southern/Apennines foothill sectors. The trend in atmospheric concentration was compared with the time series of local primary and precursor emissions, vehicular fleet details and fuel sales. A significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to primary emissions of PM10 and PM2.5, whose drop was

  17. Asthma and PM10

    Directory of Open Access Journals (Sweden)

    Gilmour M Ian

    2000-07-01

    Full Text Available Abstract PM10 (the mass of particles present in the air having a 50% cutoff for particles with an aerodynamic diameter of 10 μm is the standard measure of particulate air pollution used worldwide. Epidemiological studies suggest that asthma symptoms can be worsened by increases in the levels of PM10. Epidemiological evidence at present indicates that PM10 increases do not raise the chances of initial sensitisation and induction of disease, although further research is warranted. PM10 is a complex mixture of particle types and has many components and there is no general agreement regarding which component(s could lead to exacerbations of asthma. However pro-inflammatory effects of transition metals, hydrocarbons, ultrafine particles and endotoxin, all present to varying degrees in PM10, could be important. An understanding of the role of the different components of PM10 in exacerbating asthma is essential before proper risk assessment can be undertaken leading to advice on risk management for the many asthmatics who are exposed to air pollution particles.

  18. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  19. 北京PM1中的化学组成及其控制对策思考%Aerosol Chemical Compositions of Beijing PM1and Its Control Countermeasures

    Institute of Scientific and Technical Information of China (English)

    张小曳; 张养梅; 曹国良

    2012-01-01

    通过分析北京城区2007年夏季和秋季、2008年冬季和春季4个季节PM1中硫酸盐、硝酸盐、铵盐、有机物和黑碳等气溶胶化学组成,结合对我国及全球主要区域PM10中上述气溶胶组分及矿物气溶胶组成的评估,发现因受干旱区产生的沙尘和城市逸散性粉尘的共同影响,整个亚洲大陆,尤其是我国的矿物气溶胶浓度与欧美国家城市区域气溶胶总和的平均值相当或更高.我国在重视控制PM2.5等细粒子污染的同时,不应忽视对PM2.5~PM10之间粗粒子的控制力度;北京城区春、夏、秋、冬的PM1平均质量浓度分别约为94,74,66 μg· m-3和91 μg·m-3,全年平均约为81 μg·m-3,其中有机物气溶胶约占41%,硫酸盐占16 %,硝酸盐占13%,铵盐占8%,黑碳和氯化物分别占11%和3%,细矿物气溶胶约贡献7%.对于PM2.5污染的控制,关键是消减PM1中主要气溶胶粒子的排放与转化,其中对有机物的控制更为重要,尽管对于北京而言进一步污染控制的难度已经很大.从科学上来说,即使我国的控制措施能百分之百实现,也很难稳定地达到欧美国家的空气质量水平,因为我国本底矿物气溶胶的浓度较高.应进一步评估各项控制措施的适用性,并制定考虑我国人群健康状况的PM2.5空气质量标准.%The mass concentrations of sulfate, nitrate, ammonium products, organic matter and black carbon are measured at urban Beijing during summer, autumn of 2007 and winter, spring of 2008. Combining assessment of major chemical compositions in less than 10 micron particles with at least an entire year data from various rural and urban sites in 16 areas of the world, the concentration level of mineral aerosol in China, which is partially a result of sand and dust transported from desert areas and contributions from urban fugitive dust/fly ash sources, is found to be almost equivalent to or even higher than the sum of all kind of aerosols in

  20. Highly Stable PM Raman Fiber Laser at 1680 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Liu, Xiaomin; Rottwitt, Karsten

    2013-01-01

    We demonstrate thermal stabilization of a Raman fiber laser. At 1680 nm the laser emission exceeds 500 mW with a power variation below 0.5 %, both linewidth and wavelength variations are under 1 pm.......We demonstrate thermal stabilization of a Raman fiber laser. At 1680 nm the laser emission exceeds 500 mW with a power variation below 0.5 %, both linewidth and wavelength variations are under 1 pm....

  1. Characteristics and Seasonal Variations of PM2.5, PM10,and TSP Aerosol in Beijing

    Institute of Scientific and Technical Information of China (English)

    WEN-JIE ZHANG; YE-LE SUN; GUO-SHUN ZHUANG; DONG-QUN XU

    2006-01-01

    Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2.5), PM10, and total suspended particle (TSP)aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble ions by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ion chromatography (IC), respectively. Results The samples were divided into four categories: spring non-dust, spring dust, summer dust, and winter dust. TSP, PM10, and PM2.5 were most abundant in the spring dust, and the least in summer dust. The average mass ratios of PM>10, PM2.5-10, and PM2.5 to TSP confirmed that in the spring dust both the large coarse (PM>10) and fine particles (PM2.5) contributed significantly in summer PM2.5, PM2.5-10, and PM>10 contributed similar fractions to TSP, and in winter much PM2.5. The seasonal variation characteristics of the elements and ions were used to divide them into four groups: crustal, pollutant, mixed, and secondary. The highest levels of crustal elements, such as Al, Fe, and Ca, were found in the dust season, the highest levels of pollutant elements and ions,such as As, F, and C1-, were observed in winter, and the highest levels of secondary ions (SO42-, NO3-, and NH4+) were seen both in summer and in winter. The mixed group (Eu, Ni, and Cu) showed the characteristics of both crustal and pollutant elements. The mineral aerosol from outside Beijing contributed more than that from the local part in all the reasons but summer, estimated using a newly developed element tracer technique.

  2. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain).

    Science.gov (United States)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-05-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM10-PM2.5-PM1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM10. Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM1, one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM1.

  3. Source apportionment for urban PM10 and PM2.5 in the Beijing area

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; GUO JingHua; SUN YeLe; YUAN Hui; ZHUANG GuoShun; ZHUANG YaHui; HAO ZhengPing

    2007-01-01

    Airborne particulate matter (PM2.5 and PM10) samples were collected at the Beijing Normal University sampling site in the urban area of Beijing, China in dry and wet seasons during 2001―2004. Concentrations of 23 elements and 14 ions in particulate samples were determined by ICP-AES and IC, respectively. Source apportionment results derived from both Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) models indicate that the major contributors of PM2.5 and PM10 in Beijing are: soil dust, fossil fuel combustion, vehicle exhausts, secondary particulate, biomass burning and some industrial sources. We have identified both regional common sources, such as vehicular emissions, particulate of secondary origin and biomass burning, as well as country-specific problems, such as sand storms and soil dust that should be addressed for effective air quality control.

  4. PM Wind Generator Topologies

    Directory of Open Access Journals (Sweden)

    Viorica Spoială

    2008-05-01

    Full Text Available The objective of this paper is to provide a comparisonamong permanent magnet (PM wind generators of differenttopologies. Seven configurations are chosen for the comparison,consisting of both radial-flux and axial-flux machines. Thecomparison is done at seven power levels ranging from 1 to 200kW. The basis for the comparison is discussed and implementedin detail in the design procedure. The criteria used forcomparison are considered to be critical for the efficientdeployment of PM wind generators. The design data areoptimized and verified by finite-element analysis andcommercial generator test results. For a given application, theresults provide an indication of the best-suited machine.

  5. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment.

    Science.gov (United States)

    Qiao, Ting; Zhao, Mengfei; Xiu, Guangli; Yu, Jianzhen

    2016-07-01

    A year-long simultaneous observation of PM1 and PM2.5 were conducted at ECUST campus in Shanghai, the compositions were analyzed and compared. Results showed that PM2.5 was dominated by PM1 on clear days while the contribution of PM1-2.5 to PM2.5 increased on haze days, indicating that PM2.5 should be given priority to characterize or predict haze pollution. On haze days, accumulation of organic carbon (OC), elemental carbon (EC) and primary organic carbon (POC) in PM1-2.5 was faster than that in PM1. Humic-like substances carbon (Hulis-C) in both PM2.5 and PM1 formed faster than water soluble organic carbon (WSOC) on haze days, hence Hulis-C/WSOC increased with the intensification of haze pollution. In terms of water soluble ions, NO3(-)/SO4(2-) in PM1 increased with the aggravation of haze pollution, implying that mobile sources dominated on haze days, so is nitrogen oxidation ratio (NOR). Liquid water content (LWC) in both PM1 and PM2.5 had positive correlations with relative humidity (RH) but negative correlations with visibility, implying that hygroscopic growth might be a factor for visibility impairment, especially LWC in PM1. By comparison with multi-linear equations of LWC in PM1 and PM2.5, NO3(-) exerted a higher influence on hygroscopicity of PM1 than PM2.5, while RH, WSOC, SO4(2-) and NH4(+) had higher effects on PM2.5, especially WSOC. Source apportionment of PM2.5 was also investigated to provide reference for policy making. Cluster analysis by HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model showed that PM2.5 originated from marine aerosols, middle-scale transportation and large-scale transportation. Furthermore, PM2.5 on haze days was dominated by middle-scale transportation. In line with source apportionment by positive matrix factorization (PMF) model, PM2.5 was attributed to secondary inorganics, aged sea salt, combustion emissions, hygroscopic growth and secondary organics. Secondary formation was the principle source of

  6. SIMULATION OF ECOLOGICALLY CONSCIOUS CHEMICAL PROCESSES: FUGITIVE EMISSIONS VERSUS OPERATING CONDITIONS

    Science.gov (United States)

    Catalytic reforming is an important refinery process for the conversion of low-octane naphtha (mostly paraffins) into high-octane motor fuels (isoparaffins, naphthenes and aromatics), light gases and hydrogen. In this study the catalytic reforming process is analyzed under differ...

  7. Interpretation of the Definition of Fugitive Emissions in Parts 70 and 71

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  8. Atmospheric LiDAR coupled with point measurement air quality samplers to measure fineparticulate matter (PM) emissions from agricultural operations. Part 2 of the California 2007 - 2008 Tillage Campaigns: Spring 2008 Data Analysis

    Science.gov (United States)

    Concern with health effects resulting from PM10 exposure is drawing increased regulatory scrutiny and research toward local agricultural tillage operations. To investigate the control effectiveness of one of the current Conservation Management Practices (CMPs) written for agricul...

  9. Atmospheric LiDAR coupled with point measurement air quality samplers to measure fineparticulate matter (PM) emissions from agricultural operations. Part 2 of the California 2007 - 2008 Tillage Campaigns: Spring 2008 Data Analysis

    Science.gov (United States)

    Concern with health effects resulting from PM10 exposure is drawing increased regulatory scrutiny and research toward local agricultural tillage operations. To investigate the control effectiveness of one of the current Conservation Management Practices (CMPs) written for agricul...

  10. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard.

    Science.gov (United States)

    Zhou, Xuehua; Cao, Zhaoyu; Ma, Yujie; Wang, Linpeng; Wu, Ruidong; Wang, Wenxing

    2016-02-01

    Particulate matter (PM) has been of great concern in China due to the increasing haze pollution in recent years. In 2012, the Chinese national ambient air quality standard (NAAQS) was amended with a "more strict" regulation on the PM concentrations, i.e., 35 and 70 µg/m(3) for annual PM2.5 and PM10 averages, respectively (Grade-Ⅱ, GB3095-2012). To evaluate the potential of China to attain such new NAAQS and provide a more generalized chemical profile of PM in China, a comprehensive statistical analysis was carried out based on the published data of parallel PM2.5 and PM10 mass concentrations and chemical compositions of PM2.5 and PM10. The results show that most of the measured concentrations far exceed the new NAAQS. PM2.5 and PM10 show a strong positive correlation (R(2) = 0.87, p China. Organic carbon (OC), sulfate and crustal species are the three major components of PM. The NO3(-)/SO4(2-) ratios are 0.43 ± 0.26 in PM2.5 and 0.56 ± 0.29 in PM10, and the OC/EC ratios are 3.63 ± 1.73 in PM2.5 and 4.17 ± 2.09 in PM10, signifying that the stationary emissions from coal combustion remain the main PM source. An evaluation of PM2.5 situation in current China was carried out and the results show that it would take about 27 years to meet the limit value of 35 µg/m(3) in the revised standard, implying a rigorous challenge in PM2.5 control in China in the future.

  11. Historical Trends in Pm2.5-Related Premature Mortality ...

    Science.gov (United States)

    Background: Air quality across the northern hemisphere over the past two decades has witnessed dramatic changes, with continuous improvement in developed countries in North America and Europe, but a contrasting sharp deterioration in developing regions of Asia. Objective: This study investigates the historical trend in the long-term exposure to PM2.5 and PM2.5-related premature mortality (PM2.5-mortality) and its response to changes in emission that occurred during 1990-2010 across the northern hemisphere. Implications for future trends in human exposure to air pollution in both developed and developing regions of the world are discussed. Methods: We employed the integrated exposure-response model developed by Health Effects Institute to estimate the PM2.5-mortality. The 1990-2010 annual-average PM2.5 concentrations were obtained from the simulations using WRF-CMAQ model. Emission mitigation efficiencies of SO2, NOx, NH3 and primary PM are estimated from the PM2.5-mortality responses to the emission variations. Results: Estimated PM2.5-mortalities in East Asia and South Asia increased by 21% and 85% respectively, from 866,000 and 578,000 in 1990, to 1,048,000 and 1,068,000 in 2010. PM2.5-mortalities in developed regions, i.e., Europe and high-income North America decreased substantially by 67% and 58% respectively. Conclusions: Over the past two decades, correlations between population and PM2.5 have become weaker in Europe and North America due to air pollu

  12. Procedures for identifying reasonably available control technology for stationary sources of PM-10. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, M.J.; Ellefson, R.

    1992-09-01

    The guidance document sets forth procedures and identifies sources of information that will assist State and local air pollution control agencies in determining Reasonably Available Control Technology (RACT) for PM-10 (particulate matter having a nominal aerometric diameter of 10 microns or less) emission from existing stationary sources on a case-by-case basis. It provides an annotated bibliography of documents to aid in identifying the activities that cause PM-10 emissions as well as applicable air pollution control measures and their effectiveness in reducing emissions. The most stringent state total particulate matter (PM) emission limits are identified for several categories of PM-10 sources and compared to available emission test data. Finally, guidance is provided on procedures for estimating total capital investment and total annual cost of the control measures which are generally used to control PM-10 emissions.

  13. Inter-comparison between HERMESv2.0 and TNO-MACC-II emission data using the CALIOPE air quality system (Spain)

    Science.gov (United States)

    Guevara, Marc; Pay, María Teresa; Martínez, Francesc; Soret, Albert; Denier van der Gon, Hugo; Baldasano, José M.

    2014-12-01

    This work examines and compares the performance of two emission datasets on modelling air quality concentrations for Spain: (i) the High-Elective Resolution Modelling Emissions System (HERMESv2.0) and (ii) the TNO-MACC-II emission inventory. For this purpose, the air quality system CALIOPE-AQFS (WRF-ARW/CMAQ/BSC-DREAM8b) was run over Spain for February and June 2009 using the two emission datasets (4 km × 4 km and 1 h). Nitrogen dioxide (NO2), sulphur dioxide (SO2), Ozone (O3) and particular matter (PM10) modelled concentrations were compared with measurements at different type of air quality stations (i.e. rural background, urban, suburban industrial). A preliminary emission comparison showed significant discrepancies between the two datasets, highlighting an overestimation of industrial emissions in urban areas when using TNO-MACC-II. However, simulations showed similar performances of both emission datasets in terms of air quality. Modelled NO2 concentrations were similar between both datasets at the background stations, although TNO-MACC-II presented lower underestimations due to differences in industrial, other mobile sources and residential emissions. At Madrid urban stations NO2 was significantly underestimated in both cases despite the fact that HERMESv2.0 estimates traffic emissions using a more local information and detailed methodology. This NO2 underestimation problem was not found in Barcelona due to the influence of international shipping emissions located in the coastline. An inadequate characterization of some TNO-MACC-II's point sources led to high SO2 biases at industrial stations, especially in northwest Spain where large facilities are grouped. In general, surface O3 was overestimated regardless of the emission dataset used, depicting the problematic of CMAQ on overestimating low ozone at night. On the other hand, modelled PM10 concentrations were less underestimated in urban areas when applying HERMESv2.0 due to the inclusion of road dust

  14. Characteristics of vertical profiles and sources of PM 2.5, PM 10 and carbonaceous species in Beijing

    Science.gov (United States)

    Chan, C. Y.; Xu, X. D.; Li, Y. S.; Wong, K. H.; Ding, G. A.; Chan, L. Y.; Cheng, X. H.

    In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM 10 and PM 2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM 2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m -3) and the overall daily average PM 10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m -3). The maximum daily PM 2.5 and PM 10 concentrations reached 178.7 and 368.1 μg m -3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m -3 in PM 2.5 and 30.0 and 13.0 μg m -3 in PM 10, respectively. PM, especially PM 2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8-5.1 for PM 2.5 and 2.0-4.3 for PM 10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28.1% of OC in PM 2.5 and PM 10, respectively, with higher percentages at the higher levels of the tower.

  15. Estimación de emisiones difusas de PM10 y rendimiento de MTD’s en el sector cerámico

    Directory of Open Access Journals (Sweden)

    Monfort, E.

    2009-02-01

    Full Text Available Particle emission into the atmosphere is one of the major impacts of the ceramic industry from both channelled sources (stacks and fugitive sources. The latter give rise to so-called diffuse or fugitive emissions, which have traditionally received little regulatory attention and have been the focus of few technical studies. However, this situation is changing in view of the importance of the relative contribution of these emissions in certain industrial activities, such as the ceramic industry, which is leading to specific requirements for fugitive emission control in environmental authorisations, as well as in the recent introduction of the need to quantify these emissions in the emissions declarations required by the European Union (EPER-PRTR. One of the current issues in fugitive particle emission control is, in fact, the quantification of fugitive particle emissions. In this study, an instrument for estimating these emissions has been developed, based on methodologies proposed in the literature, which is applicable to ceramics manufacturing processes in different technological scenarios. Two estimation methods have been used: an analytical method, based on the use of equations and emission factors, and a completely experimental method. Appropriate combination of both methods has allowed estimation of the mass flow in fugitive particle emissions at two industrial facilities, in two technological scenarios. The treatment of the results has enabled the efficiencies achieved in reducing the fugitive emissions of particulate matter at the studied facilities to be estimated.La emisión de partículas a la atmósfera constituye uno de los mayores impactos de la industria cerámica, tanto por focos canalizados (chimeneas como por focos difusos. Estos últimos producen las denominadas emisiones difusas o fugitivas, a las que tradicionalmente se les ha prestado poca atención, tanto por la normativa legal como por los estudios técnicos. No obstante

  16. 76 FR 29031 - National Emissions Standards for Hazardous Air Pollutants: Secondary Lead Smelting

    Science.gov (United States)

    2011-05-19

    ... those sources. ``Major sources'' are those that emit or have the potential to emit 10 tons per year (tpy... composed primarily of metal HAP. Fugitive dust emissions result from the entrainment of HAP in ambient air... the maximum target organ-specific hazard index (TOSHI) for chronic exposures to HAP with the...

  17. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emission

    Science.gov (United States)

    Recently, the U.S. Environmental Protection Agency (USEPA) posted a ground-based optical remote sensing method on its website called OTM 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to c...

  18. Health endpoints caused by PM10 Exposure in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2014-10-01

    Full Text Available PM10 emissions are defined as PM emissions that are less than ten microns in diameter. Long exposure of suspended particles as showed in his personal life. PM10 can cause harmful health effects such as the prevalence of bronchitis and reduced lung function in children and adults. Major sources of emissions are causing by human intervention particulate road traffic, stationary combustion and industrial processes. The aim of this study was to evaluate health- effects of carbon monoxide exposure in Ahvaz city (located in south-western Iran, during 2012. PM10 data were collected through Ahvaz Meteorological Organization and the Department of Environment. Raw data processing by Excel software includes (instruction set correction of averaging, coding and filtering and after the impact of meteorological parameters was converted as input file to the Air Q model. Finally, respiratory mortality, cardiovascular death and hospital admissions respiratory disease of PM10 exposure was calculated. The results showed that the approximately 17% of total respiratory mortality, cardiovascular death and hospital admissions respiratory disease happened when the PM10 concentrations were more than 30μg/m3. The results showed that the concentration of PM10 was related to Ahvaz with an annual average 321 μg/m3. Sum of cardiovascular and respiratory death attributed to PM10 were 1055 and 189 cases in 2012. The higher percentage of these deaths perhaps could be the result of higher average PM10 or because of sustained high concentration days in Ahvaz. Therefore, the higher relative risk value can depict mismanagement in urban air quality.

  19. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels

    Science.gov (United States)

    Sosa, Beatriz S.; Porta, Andrés; Colman Lerner, Jorge Esteban; Banda Noriega, Roxana; Massolo, Laura

    2017-07-01

    WHO (2012) reports that chronic exposure to air pollutants, including particulate matter (PM), causes the death of 7 million people, constituting the most important environmental risk for health in the world. IARC classifies contaminated outdoor air as carcinogenic, Group 1 category. However, in our countries there are few studies regarding air pollution levels and possible associated effects on public health. The current study determined PM and associated polycyclic aromatic hydrocarbons (PAHs) levels in outdoor air, identified their possible emission sources and analysed health risks in the city of Tandil (Argentina). PM10 and PM2.5 samples were collected using a low volume sampler (MiniVol TAS) in three areas: city centre, industrial and residential. Concentrations were determined by gravimetric methods and the content of the US EPA 16 priority PAHs was found by high performance liquid chromatography (HPLC). Description of the main emission sources and selection of monitoring sites resulted from spatial analysis and the IVE (International Vehicle Emissions) model was used in the characterisation of the traffic flow. Median values of 35.7 μgm-3 and 9.6 μgm-3 in PM10 and PM2.5 respectively and characteristic profiles were found for each area. Local values PAHs associated to PM10 and PM2.5, in general, were lower than 10ngm-3. The estimated Unit Risk for the three areas exceeds US EPA standards (9 × 10-5). The number of deaths attributable to short term exposure to outdoor PM10 was 4 cases in children under 5 years of age, and 21 cases in total population, for a relative risk of 1.037.

  20. LHCb: Evidence of CP violation in charmless three-body decays $B^\\pm\\rightarrow K^\\pm\\pi^+\\pi^-$, $B^\\pm\\rightarrow K^\\pm K^+K^-$, $B^\\pm\\rightarrow K^+ K^-\\pi^\\pm$ and $B^\\pm\\rightarrow \\pi^\\pm\\pi^+\\pi^-$

    CERN Multimedia

    Lopes, J H

    2013-01-01

    Evidence of CP violation in charmless three-body decays $B^\\pm\\rightarrow K^\\pm\\pi^+\\pi^-$, $B^\\pm\\rightarrow K^\\pm K^+K^-$, $B^\\pm\\rightarrow K^+ K^-\\pi^\\pm$ and $B^\\pm\\rightarrow \\pi^\\pm\\pi^+\\pi^-$

  1. Elemental composition of current automotive braking materials and derived air emission factors

    NARCIS (Netherlands)

    Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C.

    2014-01-01

    Wear-related PM emissions are an important constituent of total PM emissions from road transport. Due to ongoing (further) exhaust emission reduction wear emissions may become the dominant PM source from road transport in the near future. The chemical composition of the wear emissions is crucial inf

  2. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  3. Quantifying the Movement and Dissolution of Fugitive Methane in Shallow Aquifers: Visualization Experiments

    Science.gov (United States)

    Van De Ven, C. J. C.; Mumford, K. G.

    2016-12-01

    The environmental impact and potential human health implications, specifically from the contamination of groundwater sources, has sparked controversy around shale gas extraction in North America. It is clear that understanding the effects of hydraulic fracturing on shallow fresh water aquifers is of great importance, including the threat of stray gas (also referred to as fugitive methane) on groundwater quality. Faulty wells provide a preferential pathway for free gas phase (mostly methane) to migrate from deeper gas-bearing formations of natural gas to shallow aquifers, followed by its dissolution into the surrounding groundwater. An increased understanding of the fate of fugitive methane in shallow aquifers is required to assess the potential risks associated with current and future operations, as well as to better link gas migration, dissolution and the deterioration of groundwater quality. In this study, a series of laboratory experiments were performed using carbon dioxide (CO2) gas as a surrogate for methane to improve our understanding of gas dissolution in groundwater systems. Using CO2, a novel laboratory technique was developed that allows the measurement of dissolved CO2 concentrations using image analysis alongside visualization of free gas mobilization. The technique is based on the acidification of water during CO2 dissolution, which causes a colour change in an indicator dye. The colour change is recorded using a visual light transmission technique, in which digital images are used to track dissolved concentrations at high spatial (1 mm) and temporal (5 s) resolutions in a two-dimensional (25 × 25 × 1 cm3) flow cell. The experiments were completed in both homogeneous sand packs and sand packs containing layered heterogeneities to investigate the dissolution of both gas fingers and gas pools. The results demonstrate the potential of this novel technique for investigating gas dissolution, and showed significant tailing of dissolved CO2 and

  4. Inventory of primary particulates emissions; Inventaire des emissions de particules primaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    CITEPA carried out a national inventory on particulate emissions. This report presents the results of this study for a great number of sectors and it covers a larger number of sources than the previous CITEPA inventories on particles and some other inventories carried out by International organisms (TNO, IIASA). In particular, at the present time, fugitive dust emissions for some sources are rarely taken into account in inventories because of poor knowledge and they are still the subject of researches in order to validate the emission results. (author)

  5. Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination

    Directory of Open Access Journals (Sweden)

    Samek Lucyna

    2016-03-01

    Full Text Available Samples of PM10 and PM2.5 fractions were collected between the years 2010 and 2013 at the urban area of Krakow, Poland. Numerous types of air pollution sources are present at the site; these include steel and cement industries, traffic, municipal emission sources and biomass burning. Energy dispersive X-ray fluorescence was used to determine the concentrations of the following elements: Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, As and Pb within the collected samples. Defining the elements as indicators, airborne particulate matter (APM source profiles were prepared by applying principal component analysis (PCA, factor analysis (FA and multiple linear regression (MLR. Four different factors identifying possible air pollution sources for both PM10 and PM2.5 fractions were attributed to municipal emissions, biomass burning, steel industry, traffic, cement and metal industry, Zn and Pb industry and secondary aerosols. The uncertainty associated with each loading was determined by a statistical simulation method that took into account the individual elemental concentrations and their corresponding uncertainties. It will be possible to identify two or more sources of air particulate matter pollution for a single factor in case it is extremely difficult to separate the sources.

  6. Influence of tobacco smoke on carcinogenic PAH composition in indoor PM 10 and PM 2.5

    Science.gov (United States)

    Slezakova, K.; Castro, D.; Pereira, M. C.; Morais, S.; Delerue-Matos, C.; Alvim-Ferraz, M. C.

    2009-12-01

    Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM 10 and PM 2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE-LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM 10, and 720% for PM 2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600-21 000% and 5100-20 800% higher than at the reference site for PM 10 and PM 2.5, respectively, accounting for 49% of total PAH (Σ PAH). Higher molecular weight PAH (5-6 rings) reached concentrations 300-1300% and 140-1700% higher for PM 10 and PM 2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM 10 and PM 2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of Σ PAH in PM 10 and PM 2.5, respectively, and at the smoking site 56% and 55% of Σ PAH in PM 10 and PM 2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk

  7. Fugitive Justice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China hopes the new international anticorruption convention will help it nab corrupt officials who have fled abroad The end of 2005 saw the birth of the UN Anticorruption Convention. Because many Chinese officials who have fled overseas with state funds are still at large, China hopes that the first UN legal document to provide guidelines for international campaigns against corruption will help to bring these

  8. Elemental characterization and source apportionment of PM{sub 10} and PM{sub 2.5} in the western coastal area of central Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chin-Yu; Chiang, Hung-Che [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Lin, Sheng-Lun [Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840, Chengcing Rd., Kaohsiung 83347, Taiwan (China); Chen, Mu-Jean; Lin, Tzu-Yu [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Chen, Yu-Cheng, E-mail: yucheng@nhri.org.tw [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2016-01-15

    ABSTRACT: This study investigated seasonal variations in PM{sub 10} and PM{sub 2.5} mass and associated trace metal concentrations in a residential area in proximity to the crude oil refinery plants and industrial parks of central Taiwan. Particle measurements were conducted during winter, spring and summer in 2013 and 2014. Twenty-six trace metals in PM{sub 10} and PM{sub 2.5} were analyzed using ICP-MS. Multiple approaches of the backward trajectory model, enrichment factor (EF), Lanthanum enrichment and positive matrix fraction (PMF) were used to identify potential sources of particulate metals. Mean concentrations of PM{sub 10} in winter, spring and summer were 76.4 ± 22.6, 33.2 ± 9.9 and 37.4 ± 17.0 μg m{sup −3}, respectively, while mean levels of PM{sub 2.5} in winter, spring and summer were 47.8 ± 20.0, 23.9 ± 11.2 and 16.3 ± 8.2 μg m{sup −3}, respectively. The concentrations of carcinogenic metals (Ni, As and adjusted Cr(VI)) in PM{sub 10} and PM{sub 2.5} exceeded the guideline limits published by WHO. The result of EF analysis confirmed that Mo, Sb, Cd, Zn, Mg, Cr, As, Pb, Cu, Ni and V were attributable to anthropogenic emission. PMF analysis demonstrated that trace metals in PM{sub 10} and PM{sub 2.5} were from the similar sources, such as coal combustion, oil combustion and traffic-related emission, except for soil dust and crustal element emissions only observed in PM{sub 10} and secondary aluminum smelter only observed in PM{sub 2.5}. Considering health-related particulate metals, the traffic-related emission and coal combustion for PM{sub 10} and PM{sub 2.5}, respectively, are important to control for reducing potential carcinogenic risk. The results could aid efforts to clarify the impact of source-specific origins on human health. - Highlights: • Multiple approaches to identify sources of PM{sub 10} and PM{sub 2.5} metals were used. • Four similar sources contributed to metals in PM{sub 10} and PM{sub 2.5} in the study area. • Six

  9. Characterization and Cytotoxicity of PM<0.2, PM0.2–2.5 and PM2.5–10 around MSWI in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Lingling Cao

    2015-05-01

    Full Text Available Background: The potential impact of municipal solid waste incineration (MSWI, which is an anthropogenic source of aerosol emissions, is of great public health concern. This study investigated the characterization and cytotoxic effects of ambient ultrafine particles (PM<0.2, fine particles (PM0.2–2.5 and coarse particles (PM2.5–10 collected around a municipal solid waste incineration (MSWI plant in the Pudong district of Shanghai. Methods: Mass concentrations of trace elements in particulate matter (PM samples were determined using ICP-MS (Inductively Coupled Plasma Mass Spectrometry. The cytotoxicity of sampled atmospheric PM was evaluated by cell viability and reactive oxygen species (ROS levels in A549 cells. Result: The mass percentage of PM0.2–2.5 accounted for 72.91% of the total mass of PM. Crustal metals (Mg, Al, and Ti were abundant in the coarse particles, while the anthropogenic elements (V, Ni, Cu, Zn, Cd, and Pb were dominant in the fine particles. The enrichment factors of Zn, Cd and Pb in the fine and ultrafine particles were extremely high (>100. The cytotoxicity of the size-resolved particles was in the order of coarse particles < fine particles < ultrafine particles. Conclusions: Fine particles dominated the MSWI ambient particles. Emissions from the MSWI could bring contamination of anthropogenic elements (Zn, Cd and Pb into ambient environment. The PM around the MSWI plant displayed an additive toxic effect, and the ultrafine and fine particles possessed higher biological toxicity than the coarse particles.

  10. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles E. Kolb

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  11. Fabrication of porous titanium scaffold materials by a fugitive filler method.

    Science.gov (United States)

    Hong, T F; Guo, Z X; Yang, R

    2008-12-01

    A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.

  12. Isotopically constrained lead sources in fugitive dust from unsurfaced roads in the southeast Missouri mining district

    Science.gov (United States)

    Witt, Emitt C.; Pribil, Michael; Hogan, John P; Wronkiewicz, David

    2016-01-01

    The isotopic composition of lead (Pb) in fugitive dust suspended by a vehicle from 13 unsurfaced roads in Missouri was measured to identify the source of Pb within an established long-term mining area. A three end-member model using 207Pb/206Pb and concentration as tracers resulted in fugitive dust samples plotting in the mixing field of well characterized heterogeneous end members. End members selected for this investigation include the 207Pb/206Pb for 1) a Pb-mixture representing mine tailings, 2) aerosol Pb-impacted soils within close proximity to the Buick secondary recycling smelter, and 3) an average of soils, rock cores and drill cuttings representing the background conditions. Aqua regia total concentrations and 207Pb/206Pb of mining area dust suggest that 35.4–84.3% of the source Pb in dust is associated with the mine tailings mixture, 9.1–52.7% is associated with the smelter mixture, and 0–21.6% is associated with background materials. Isotope ratios varied minimally within the operational phases of sequential extraction suggesting that mixing of all three Pb mixtures occurs throughout. Labile forms of Pb were attributed to all three end members. The extractable carbonate phase had as much as 96.6% of the total concentration associated with mine tailings, 51.8% associated with smelter deposition, and 34.2% with background. The next most labile geochemical phase (Fe + Mn Oxides) showed similar results with as much as 85.3% associated with mine tailings, 56.8% associated with smelter deposition, and 4.2% associated with the background soil.

  13. Isotopically constrained lead sources in fugitive dust from unsurfaced roads in the southeast Missouri mining district.

    Science.gov (United States)

    Witt, Emitt C; Pribil, Michael J; Hogan, John P; Wronkiewicz, David J

    2016-09-01

    The isotopic composition of lead (Pb) in fugitive dust suspended by a vehicle from 13 unsurfaced roads in Missouri was measured to identify the source of Pb within an established long-term mining area. A three end-member model using (207)Pb/(206)Pb and concentration as tracers resulted in fugitive dust samples plotting in the mixing field of well characterized heterogeneous end members. End members selected for this investigation include the (207)Pb/(206)Pb for 1) a Pb-mixture representing mine tailings, 2) aerosol Pb-impacted soils within close proximity to the Buick secondary recycling smelter, and 3) an average of soils, rock cores and drill cuttings representing the background conditions. Aqua regia total concentrations and (207)Pb/(206)Pb of mining area dust suggest that 35.4-84.3% of the source Pb in dust is associated with the mine tailings mixture, 9.1-52.7% is associated with the smelter mixture, and 0-21.6% is associated with background materials. Isotope ratios varied minimally within the operational phases of sequential extraction suggesting that mixing of all three Pb mixtures occurs throughout. Labile forms of Pb were attributed to all three end members. The extractable carbonate phase had as much as 96.6% of the total concentration associated with mine tailings, 51.8% associated with smelter deposition, and 34.2% with background. The next most labile geochemical phase (Fe + Mn Oxides) showed similar results with as much as 85.3% associated with mine tailings, 56.8% associated with smelter deposition, and 4.2% associated with the background soil.

  14. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Science.gov (United States)

    2010-07-01

    ... ratio of future to current traffic and the ratio of future to current emission factors. (3) Hot-spot... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of... concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by §...

  15. Search for $CP$ violation in $D^{\\pm}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow K^0_S \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves Jr, A.A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J.E.; Appleby, R.B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J.J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R.J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P.M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T.J.V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N.H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L.Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chen, S.; Cheung, S.F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P.E.L.; Clemencic, M.; Cliff, H.V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G.A.; Craik, D.C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P.N.Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J.M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, T.; Falabella, A.; Farber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V.V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gandara, M.; Graciani Diaz, R.; Granado Cardoso, L.A.; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grunberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S.C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S.T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J.A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C.R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T.M.; Karodia, S.; Kelsey, M.; Kenyon, I.R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R.F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V.N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R.W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.

    2014-10-03

    A search for $CP$ violation in Cabibbo-suppressed $D^{\\pm}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow K^0_S \\pi^{\\pm}$ decays is performed using $pp$ collision data, corresponding to an integrated luminosity of 3~fb$^{-1}$, recorded by the LHCb experiment. The individual $CP$-violating asymmetries are measured to be \\begin{eqnarray*} \\mathcal{A}_{CP}^{D^{\\pm}\\rightarrow K^0_S K^{\\pm}} & = & (+0.03 \\pm 0.17 \\pm 0.14) \\% \\\\ \\mathcal{A}_{CP}^{D^{\\pm}_s\\rightarrow K^0_S \\pi^{\\pm}} & = & (+0.38 \\pm 0.46 \\pm 0.17) \\%, \\end{eqnarray*} assuming that $CP$ violation in the Cabibbo-favoured decays is negligible. A combination of the measured asymmetries for the four decay modes $D^{\\pm}_{(s)}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{(s)}\\rightarrow K^0_S \\pi^{\\pm}$ gives the sum \\[ \\mathcal{A}_{CP}^{D^{\\pm}\\rightarrow K^0_S K^{\\pm}}+ \\mathcal{A}_{CP}^{D^{\\pm}_s\\rightarrow K^0_S \\pi^{\\pm}} = (+0.41 \\pm 0.49 \\pm 0.26) \\%. \\] In all cases, the first uncertainties are statistical and the second sys...

  16. Search for $CP$ violation in $D^{\\pm}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow K^0_S \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves Jr, A.A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J.E.; Appleby, R.B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J.J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R.J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P.M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T.J.V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N.H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L.Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chen, S.; Cheung, S.F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P.E.L.; Clemencic, M.; Cliff, H.V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G.A.; Craik, D.C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P.N.Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J.M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, T.; Falabella, A.; Farber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V.V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gandara, M.; Graciani Diaz, R.; Granado Cardoso, L.A.; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grunberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S.C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S.T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J.A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C.R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T.M.; Karodia, S.; Kelsey, M.; Kenyon, I.R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R.F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V.N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R.W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J.H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I.V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J.F.; Marconi, U.; Benito, C.Marin; Marino, P.; Marki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin Sanchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D.A.; Minard, M.N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M.J.; Moron, J.; Morris, A.B.; Mountain, R.; Muheim, F.; Muller, K.; Muresan, R.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A.D.; Nguyen, T.D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D.P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J.M.; Owen, P.; Oyanguren, A.; Pal, B.K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C.J.; Passaleva, G.; Patel, G.D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J.H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M.S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M.M.; Reis, A.C. dos; Ricciardi, S.; Richards, A.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D.A.; Robbe, P.; Rodrigues, A.B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Vidal, A.Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Valls, P.Ruiz; Sabatino, G.; Saborido Silva, J.J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R.Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N.A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M.D.; Soler, F.J.P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V.K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M.T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M.Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Voss, H.; de Vries, J.A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D.R.; Watson, N.K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M.P.; Williams, M.; Wilson, F.F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S.A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W.C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-01-01

    A search for $CP$ violation in Cabibbo-suppressed $D^{\\pm}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow K^0_S \\pi^{\\pm}$ decays is performed using $pp$ collision data, corresponding to an integrated luminosity of 3~fb$^{-1}$, recorded by the LHCb experiment. The individual $CP$-violating asymmetries are measured to be \\begin{eqnarray*} \\mathcal{A}_{CP}^{D^{\\pm}\\rightarrow K^0_S K^{\\pm}} & = & (+0.03 \\pm 0.17 \\pm 0.14) \\% \\\\ \\mathcal{A}_{CP}^{D^{\\pm}_s\\rightarrow K^0_S \\pi^{\\pm}} & = & (+0.38 \\pm 0.46 \\pm 0.17) \\%, \\end{eqnarray*} assuming that $CP$ violation in the Cabibbo-favoured decays is negligible. A combination of the measured asymmetries for the four decay modes $D^{\\pm}_{(s)}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{(s)}\\rightarrow K^0_S \\pi^{\\pm}$ gives the sum \\[ \\mathcal{A}_{CP}^{D^{\\pm}\\rightarrow K^0_S K^{\\pm}}+ \\mathcal{A}_{CP}^{D^{\\pm}_s\\rightarrow K^0_S \\pi^{\\pm}} = (+0.41 \\pm 0.49 \\pm 0.26) \\%. \\] In all cases, the first uncertainties are statistical and the second sys...

  17. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  18. Measurements of PM1, PM2.5 and PM10 at Nordic background stations using low-cost equipment

    DEFF Research Database (Denmark)

    Ferm, Martin; Areskoug, Hans; Makkonen, Ulla

    Mass concentrations of PM1, PM2.5 and PM10 in air were measured at four EMEP stations in the Nordic countries during 2006. All stations used the same low-cost equipment for sampling PM1, but used different techniques for the other size fractions. The PM1 filters were analysed for inorganic ions...... on a daily basis. The PM2.5 concentration, which is the parameter that should be measured within EU, correlated fairly well with the concentration of accumulation mode particles (PM1). In June only a minor fraction of PM1 consisted of inorganic ions. Only ammonium and sulphate ions of the measured ions in PM...

  19. PM10 source measurement methodology: Field studies

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, W.E.; Martin, R.S.; Dawes, S.S.; Williamson, A.D.

    1989-05-01

    Two candidate measurement methods, Constant Sampling Rate (CSR) and Exhaust Gas Recycle (EGR), have been developed to measure emissions of in-stack PM-10 particulate matter with aerodynamic diameter less than 10 micrometers. Two field tests were performed at the clinker cooler exhaust of a Portland cement plant to quantify precision and comparability of these techniques. In addition, accuracy was determined for total particulate measurement by comparison to Method 17. Collocated sampling trains were operated parallel with two Method 17 trains. In the second test, two CSR and one EGR trains were operated parallel to two Method 17 trains. The operating procedures used for the CSR and EGR trains are described in detail. In measurement of PM-10 and total particulate matter, the precision of both the CSR and EGR techniques was found to be of the same magnitude as Method 17 (approximately 5%). A small bias was found between CSR and EGR PM-10 results (15%) and between EGR and Method 17 total particulate matter (10%). Although small, these observed differences, combined with the results of laboratory studies reported elsewhere, led to a recommendation for an increase in the length of sampling nozzles. This modification improved cyclone performance and is incorporated into the nozzle geometries described in the application guides for CSR and EGR.

  20. Particle Size Spectra and Chemical Composition Analysis of Some Typical Emission Source from PM2.5 in Guilin%桂林市细颗粒物部分典型排放源的粒径谱及成分分析

    Institute of Scientific and Technical Information of China (English)

    杜娟; 张志朋; 宋韶华; 易春盛; 计晓梅; 黎泳珊

    2016-01-01

    采用在线单颗粒气溶胶质谱技术源解析方法,对桂林市PM2.5典型排放源的粒径和化学成分进行质谱分析,采集燃煤/燃气源、工业工艺源、扬尘源、油烟源4类共计7个典型排放源。结果表明,桂林市4类排放源细颗粒物的粒径分布为0.25~1.25μm,80%以上的细颗粒分布在0.2~1.0μm的小粒径范围,峰值约0.68μm。细颗粒物离子成分含有Na+、Mg+、K+、NH4+、Fe+、Pb+、Cd+、V+、Mn+、Li+、Al+、Ca+、Cu+、Zn+、Cr+、CN-、PO3-、NO2-、NO3-、Cl-、SO2-4、SiO3-等成分,桂林市细颗粒物为元素碳、有机碳元素碳、有机碳、富锰颗粒、富铁颗粒、富钾颗粒、矿物质、左旋葡聚糖以及其他金属等9类。%PM2.5 of four categories were collected from seven typical emission sources in Guilin , such as coal-fired/gas source, in-dustrial process source, dust source, and soot source.The particle size and chemical composition of PM 2.5 were analyzed using source apportionment of on-line single-particle aerosol mass spectrometry .The results showed that the particle size distribution of PM2.5 of four category emission sources was between 0.25 μm and 1.25 μm, and more than 80%of PM2.5 distributed in the range of 0.2 ~1.0 μm, which peaks at about 0.68 μm.Ionic components of PM2.5 contained Na +, Mg+, K+, NH4 +, Fe+, Pb+, Cd+, V+, Mn+, Li+, Al+, Ca+, Cu+, Zn+, Cr+, CN-, PO3-, NO2-, NO3-, Cl-, SO2-4 , SiO3-, etc.PM2.5 in Guilin in-cluded nine classes, such as elemental carbon, organic carbon elemental carbon, organic carbon, manganese-rich particles, iron-rich particles, potassium-rich particles, minerals, L-glucan and other metals.

  1. Relationships between present/future climate and PM2.5 concentrations over Europe

    Science.gov (United States)

    Lecoeur, E.; Seigneur, C.; Page, C.; Terray, L.

    2012-12-01

    Atmospheric particulate matter (PM) pollution has become a field of great interest because of its impacts on human health, climate change, and atmospheric visibility. In particular, fine particles with an aerodynamical diameter less than or equal to 2.5 μ m (PM2.5) are regulated in North America and Europe. PM2.5 is a complex mixture of particles of different sizes and chemical compositions. It is composed of primary PM, which is directly emitted in the atmosphere, and secondary PM, which is formed in the atmosphere via chemical reactions. Both primary and secondary PM depend on meteorology via its effects on the emissions, the kinetics of chemical reactions, the gas-particle partitionning, and the removal of PM from the atmosphere. Therefore, climate change is expected to affect PM concentrations via the effect of meteorological variables on the emissions, formation and removal of PM. Studies of the effect of climate change on air quality have focused initially on ozone and the study of its effect on PM concentrations is more recent. However, most of work pertaining PM has focused so far on the United States. Furthermore, there is currently no strong consensus on the effects of the present and future climate on PM2.5 concentrations. Therefore, we present here an investigation of the potential effects of climate change on PM2.5 concentrations over Europe. Before investigating the effects of climate change on PM concentrations, it is primordial to ensure that our current understanding of the relationships between meteorology and PM concentrations is correct. Accordingly, we first perform a dynamic evaluation of PM2.5 air quality model Polyphemus/Polair3D CTM, based on a 9-year simulation from 2000 to 2008 over Europe to ensure that the model properly reproduces the effect of wind speed, temperature and precipitations on the concentrations of PM2.5 and its components. Next, we characterize the meteorology by classifying each day of the studied period into weather

  2. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales.

    Science.gov (United States)

    Darrah, Thomas H; Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel R; Poreda, Robert J

    2014-09-30

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.

  3. Estimation of ambient PM2.5 concentrations in Maryland and verification by measured values.

    Science.gov (United States)

    Walsh, Kenneth; Sherwell, John

    2002-10-01

    In 1997, Maryland had no available ambient Federal Reference Method data on particulate matter less than 2.5 microm in aerodynamic diameter (PM23), but did have annual ambient data for PM smaller than 10 microm (PM10) at 24 sites. The PM10 data were analyzed in conjunction with local annual and seasonal zip-code-level emission inventories and with speciated PM2.5 data from four nearby monitors in the IMPROVE network (located in the national parks, wildlife refuges, and wilderness areas) in an effort to estimate annual average and seasonal high PM2.5 concentrations at the 24 PM10 monitor sites operating from 1992 to 1996. All seasonal high concentrations were estimated to be below the 24-hr PM2.5 National Ambient Air Quality Standards (NAAQS) at the sites operating in Maryland between 1992 and 1996. The estimates also indicated that 12 monitor sites might exceed the 3-year annual average PM2.5 NAAQS of 15 microg/m3, but Maryland's air quality shows signs that it has been improving since 1992. The estimates also were compared with actual measurements after the PM2.5 monitor network was installed. The estimates were adequate for describing the chemical composition of the PM2.5, forecasting compliance status with the 24-hr and annual standards, and determining the spatial variations in PM2.5 across central Maryland.

  4. Fine particle emissions, emission reduction potential and reduction costs in Finland in 2020

    OpenAIRE

    Karvosenoja, Niko; Klimont, Zbigniew; Tohka, Antti; Johansson, Matti

    2006-01-01

    Fine particulate matter (PM2.5) in the atmosphere have been associated with severe human health effects. This report explores future emissions of primary PM2.5, their reduction potential and related reduction costs in Finland. One activity pathway of 2020 of the Finnish Climate Strategy was studied with two different PM emission control utilization scenarios: (1) "Baseline" which involves PM control technology utilization complying with current legislation, and (2) "Reduction" which assumes t...

  5. Primes of the form \\pm a^2\\pm qb^2

    OpenAIRE

    Ionascu, Eugen J.; Patterson, Jeff

    2012-01-01

    Representations of primes by simple quadratic forms, such as $\\pm a^2\\pm qb^2$, is a subject that goes back to Fermat, Lagrange, Legendre, Euler, Gauss and many others. We are interested in a comprehensive list of such results, for $q\\le 20$. Some of the results can be established with elementary methods and we put them at work on some instances. We are introducing new relationships between various representations.

  6. Observation of $C\\!P$ violation in $B^\\pm \\to D K^\\pm$ decays

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    An analysis of $B^{\\pm}\\to DK^{\\pm}$ and $B^{\\pm}\\to D\\pi^{\\pm}$ decays is presented where the $D$ meson is reconstructed in the two-body final states:$K^{\\pm}\\pi^{\\mp}$, $K^+K^-$, $\\pi^+\\pi^-$ and $\\pi^{\\pm}K^{\\mp}$. Using $1.0{\\rm \\,fb}^{-1}$ of LHCb data, measurements of several observables are made including the first observation of the suppressed mode $B^{\\pm}\\to[\\pi^{\\pm}K^{\\mp}]_DK^{\\pm}$. $C\\!P$ violation in $B^{\\pm}\\to DK^{\\pm}$ decays is observed with $5.8\\,\\sigma$ significance.

  7. Measurement of the charge asymmetry in $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ and search for $B^{\\pm}\\rightarrow \\phi \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Cheung, S -F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T

    2014-01-01

    The CP-violating charge asymmetry in $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ decays is measured in a sample of $pp$ collisions at 7 TeV centre-of-mass energy, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected by the LHCb experiment. The result is $\\mathcal{A}_{CP}(B^{\\pm}\\rightarrow \\phi K^{\\pm}) = \\rm 0.022\\pm 0.021 \\pm 0.009$, where the first uncertainty is statistical and the second systematic. In addition, a search for the $B^{\\pm}\\rightarrow \\phi \\pi^{\\pm}$ decay mode is performed, using the $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ decay rate for normalization. An upper limit on the branching fraction $\\mathcal{B}(B^{\\pm}\\rightarrow \\phi \\pi^{\\pm})< 1.5\\times 10^{-7}$ is set at 90% confidence level.

  8. Measurement of the charge asymmetry in $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ and search for $B^{\\pm}\\rightarrow \\phi \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Cheung, S -F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-01-01

    The CP-violating charge asymmetry in $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ decays is measured in a sample of $pp$ collisions at 7 TeV centre-of-mass energy, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected by the LHCb experiment. The result is $\\mathcal{A}_{CP}(B^{\\pm}\\rightarrow \\phi K^{\\pm}) = \\rm 0.022\\pm 0.021 \\pm 0.009$, where the first uncertainty is statistical and the second systematic. In addition, a search for the $B^{\\pm}\\rightarrow \\phi \\pi^{\\pm}$ decay mode is performed, using the $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ decay rate for normalization. An upper limit on the branching fraction $\\mathcal{B}(B^{\\pm}\\rightarrow \\phi \\pi^{\\pm})< 1.5\\times 10^{-7}$ is set at 90% confidence level.

  9. Weekly cycle of magnetic characteristics of PM2.5 and PM2.5-10 in Beijing, China

    Science.gov (United States)

    SHI, M.; Wu, H.; Zhang, S.; Li, H.; Yang, T.

    2013-12-01

    -oxides containing C, S, Al, Si, Na, Mg and Cl are larger than 1 um. Spherical particles in PM2.5-10 with a length of 0.6-3.5 um and angular particles with a length of 0.5-3.3 um are dominantly composed of Fe and O, additional elements including Na, Ma, Al, Si, S, K and Ca. In addition, metallic elements including Au, Ba, Co, Cr, Mn, Tb and Zr and copper spherical particle with diameter less than 1 um, and square particles rich of sulfur are observed in some samples. They may be related with vehicle body material and automobile exhaust purification catalysts. In summary, our results indicate that the magnetic concentrations and magnetic particle sizes showed seasonal variations and weekly cycle due to anthropogenic magnetic particles from domestic heating systems, vehicle emission and motor vehicle brake system. The results also suggest vehicle emission is predominated source, and magnetic parameters can be used as alternative air pollution indexes in Beijing area.

  10. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    Science.gov (United States)

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-08-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.

  11. Optimization of the fugitive coating thickness in pressure infiltrated mullite-alumina composites

    Energy Technology Data Exchange (ETDEWEB)

    Moore, E.H. [Wright Lab. Materials Directorate, Wright-Patterson Air Force Base, OH (United States); Shamasundar, S. [UES Inc., Dayton, OH (United States); Kroupa, J.L. [Univ. of Dayton Research Institute, Dayton, OH (United States)

    1995-12-01

    There is an increasing interest in oxide-oxide refractory composites and ceramic matrix composites (CMC) because of their high strength, high creep resistance and resistance to crack propagation in high-temperature structural and non-structural applications. High strength and low modulus oxide fibers are introduced into ceramic oxide matrices in order to resist crack growth (i.e., increase the composite`s strain to failure or {open_quotes}toughness{close_quotes}). Nevertheless, the introduction of a 2-D fibrous matte or 3-D fibrous preform into a ceramic matrix constrains the densification of the composite. (As a result, as prepared composite`s typically will have about 20 percent residual porosity.) Although higher densification is possible by free or pressure-less sintering, degradation of the mechanical properties of the fibers at elevated temperatures (e.g., normally above 1100{degrees}C for mullite fibers) prevents the application of high-temperature processing. An oxide-oxide composite composed of a high-purity alumina matrix and mullite; fibrous reinforcement has been used in this study. A fugitive carbon coating has been applied to 2-D fibrous mattes and 3-D preforms by chemical vapor deposition (CVD) and by polymer pyrolysis of a polymeric based resin system. This paper will only discuss the processing and applicable analysis of the CMC prepared with the applied polymeric pyrolyzed carbon coating.

  12. Measurement of $CP$ asymmetries in $D^{\\pm}\\rightarrow \\eta^{\\prime} \\pi^{\\pm}$ and $D_s^{\\pm}\\rightarrow \\eta^{\\prime} \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Bordyuzhin, Igor; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kosmyntseva, Alena; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mocci, Maria Paola; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2017-01-01

    A search for $CP$ violation in $D^{\\pm}\\rightarrow \\eta^{\\prime} \\pi^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow \\eta^{\\prime} \\pi^{\\pm}$ decays is performed using proton-proton collision data, corresponding to an integrated luminosity of $3$ fb$^{-1}$, recorded by the LHCb experiment at centre-of-mass energies of $7$ and $8$ TeV. The measured $CP$-violating charge asymmetries are $A_{CP}(D^{\\pm} \\rightarrow \\eta^{\\prime} \\pi^{\\pm})=(-0.61\\pm 0.72 \\pm 0.55 \\pm 0.12)\\%$ and $A_{CP}(D^{\\pm}_{s}\\rightarrow \\eta^{\\prime} \\pi^{\\pm})=(-0.82\\pm 0.36 \\pm 0.24 \\pm 0.27)\\%$, where the first uncertainties are statistical, the second systematic, and the third are the uncertainties on the $A_{CP}(D^{\\pm} \\rightarrow K^0_S \\pi^{\\pm})$ and $A_{CP}(D^{\\pm}_{s}\\rightarrow \\phi \\pi^{\\pm})$ measurements used for calibration. The results represent the most precise measurements of these asymmetries to date.

  13. Chemical profiles of PM emitted from the iron and steel industry in northern China

    Science.gov (United States)

    Guo, Yangyang; Gao, Xiang; Zhu, Tingyu; Luo, Lei; Zheng, Yang

    2017-02-01

    Source-level sampling methods were adopted in this study to sample six iron and steel plants referring four main manufacturing processes, with over 150 samples collected and measured in this study, the latest data for iron and steel industry in China has been demonstrated. The emission factors of CO2, CO, SO2, NOx, TSP, PM2.5 and PM10 were calculated, and the majority of pollutants were emitted from the sintering process. The virtual impactor divided the PM sample into three size fractions for chemical profiles and the profiles indicate that SO42-, NH4+ and OC distribute more into fine particles. The elements in PM from the sintering, pelletizing, puddling and steelmaking processes were measured and compared using the coefficient of divergence. The divergence between PM2.5 and PM10 for the same process is not obvious, with CD values ranging from 0.1697 to 0.2578. PM2.5 profiles of four process were notably different from one another, with CD values ranging from 0.4802 to 0.7500. More efforts are needed to update the PM profiles in China. PAHs in PM were investigated, and most of the PAHs in PM are from the sintering process. The total PAH concentration in PM2.5 from the sintering process is 73.28 ± 1.45 μg/m3 with a BaPE value calculated at 9.92 μg/m3.

  14. Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Gervais, Todd L.

    2013-04-01

    This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposed individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  15. Chemical mass balance source apportionment of PM 10 in an industrialized urban area of Northern Greece

    Science.gov (United States)

    Samara, C.; Kouimtzis, Th; Tsitouridou, R.; Kanias, G.; Simeonov, V.

    Ambient PM 10 were sampled at three sites in an industrialized urban area of Northern Greece during June 1997-June 1998 and analyzed for 17 chemical elements, 5 water-soluble ions and 13 polycyclic aromatic hydrocarbons. In addition, chemical source profiles consisting of the same particulate components were obtained for a number of industrial activities (cement, fertilizer and asphalt production, quarry operations, metal electroplating, metal welding and tempering, steel manufacture, lead and bronze smelters, metal scrap incineration), residential oil burning, non-catalyst and catalyst-equipped passenger cars, diesel fuelled taxis and buses, as well as for geological fugitive sources (paved road dust and soil from open lands). Ambient and source data were used in a chemical mass balance (CMB) receptor model for source identification and apportionment. Results of CMB modeling showed that major source of ambient PM 10 at all three sites was diesel vehicle exhaust. Significant contribution from industrial oil burning was also evidenced at the site located closest to the industrial area.

  16. Potential Sources and Formations of the PM2.5 Pollution in Urban Hangzhou

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-07-01

    Full Text Available Continuous measurements of meteorological parameters, gaseous pollutants, particulate matters, and the major chemical species in PM2.5 were conducted in urban Hangzhou from 1 September to 30 November 2013 to study the potential sources and formations of PM2.5 pollution. The average PM2.5 concentration was 69 µg·m−3, ~97% higher than the annual concentration limit in the national ambient air quality standards (NAAQS of China. Relative humidity (RH and wind speed (WS were two important factors responsible for the increase of PM2.5 concentration, with the highest value observed under RH of 70%–90%. PM2.5 was in good correlation with both NO2 and CO, but not with SO2, and the potential source contribution function (PSCF results displayed that local emissions were important potential sources contributing to the elevated PM2.5 and NO2 in Hangzhou. Thus, local vehicle emission was suggested as a major contribution to the PM2.5 pollution. Concentrations of NO2 and CO significantly increased in pollution episodes, while the SO2 concentration even decreased, implying local emission rather than region transport was the major source contributing to the formation of pollution episodes. The sum of SO42−, NO3−, and NH4+ accounted for ~50% of PM2.5 in mass in pollution episodes and the NO3−/EC ratios were significantly elevated, revealing that the formation of secondary inorganic species, particularly NO3−, was an important contributor to the PM2.5 pollution in Hangzhou. This study highlights that controlling local pollution emissions was essential to reduce the PM2.5 pollution in Hangzhou, and the control of vehicle emission in particular should be further promoted in the future.

  17. PM10 modeling of Beijing in the winter

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.; Zhang, M.S.; Cai, X.H. [Peking University, Beijing (China). Dept. of Environmental Science

    2006-07-15

    The megacity of Beijing, China, has had an air pollution problem since the 1990s. The concentrations of particulate matter with an aerodynamic diameter less than 10 {mu}m (PM 10) in Beijing in the winter of 2000 were high; the average value of 188 {mu}g m{sup -3} was nearly four times the first grade national standard of 50 {mu}g m{sup -3}. The CALPUFF modeling system was used to simulate PM10 dispersion from 1 January 2000 to 29 February 2000. We used near real-time landcover data from the moderate resolution imaging spectroradiometer (MODIS). Statistical evaluation indicated that the model agreed well with the observations. The fluctuations of 24-h PM 10 concentrations followed the winter synoptic winds. Cold air from the northwest or north intruded over Beijing for average periods of 4 days in winter, accompanied by high wind speeds. PM10 was swept out of Beijing after the cold fronts and accumulated again once the winds stopped, until the next cold air intrusion. Capital Steel Corporation Limited contributed 46% of the PM10 mass concentrations observed in the Shijingshan industrial area, and had little effect on the eastern part or the center of Beijing. The other industrial regions distributed in southeastern Beijing accounted for an average of 18% of the PM10 in Beijing. Boilers associated with coal consumption mostly for winter heating contributed 31%. Motor vehicles and road dust contributed 5% and 13%, respectively. The total of residential heating in old houses and restaurants contributed approximately 7%. The primary PM10 emissions from electrical generating units were relatively low. Some suggestions are proposed for reducing PM10 pollution in Beijing.

  18. Joint measurements of PM2. 5 and light-absorptive PM in woodsmoke-dominated ambient and plume environments

    Directory of Open Access Journals (Sweden)

    K. M. Zhang

    2017-09-01

    Full Text Available DC, also referred to as Delta-C, measures enhanced light absorption of particulate matter (PM samples at the near-ultraviolet (UV range relative to the near-infrared range, which has been proposed previously as a woodsmoke marker due to the presence of enhanced UV light-absorbing materials from wood combustion. In this paper, we further evaluated the applications and limitations of using DC as both a qualitative and semi-quantitative woodsmoke marker via joint continuous measurements of PM2. 5 (by nephelometer pDR-1500 and light-absorptive PM (by 2-wavelength and 7-wavelength Aethalometer® in three northeastern US cities/towns including Rutland, VT; Saranac Lake, NY and Ithaca, NY. Residential wood combustion has shown to be the predominant source of wintertime primary PM2. 5 emissions in both Rutland and Saranac Lake, where we conducted ambient measurements. In Ithaca, we performed woodsmoke plume measurements. We compared the pDR-1500 against a FEM PM2. 5 sampler (BAM 1020, and identified a close agreement between the two instruments in a woodsmoke-dominated ambient environment. The analysis of seasonal and diurnal trends of DC, black carbon (BC, 880 nm and PM2. 5 concentrations supports the use of DC as an adequate qualitative marker. The strong linear relationships between PM2. 5 and DC in both woodsmoke-dominated ambient and plume environments suggest that DC can reasonably serve as a semi-quantitative woodsmoke marker. We propose a DC-based indicator for woodsmoke emission, which has shown to exhibit a relatively strong linear relationship with heating demand. While we observed reproducible PM2. 5–DC relationships in similar woodsmoke-dominated ambient environments, those relationships differ significantly with different environments, and among individual woodsmoke sources. Our analysis also indicates the potential for PM2. 5–DC relationships to be utilized to distinguish different combustion and operating conditions

  19. Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, South China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    PM2.5 and PM10 samples were collected at four major cities in the Pearl River Delta (PRD), South China, during winter and summer in 2002. Six water-soluble ions, Na+, NH4+, K+, Cl-, NO3- and SO42- were measured using ion chromatography. On average, ionic species accounted for 53.3% and 40.5% for PM2.5 and PM10, respectively in winter and 39.4% and 35.2%, respectively in summer. Secondary ions such as sulfate, nitrate and ammonium accounted for the major part of the total ionic species. Sulfate was the most abundant specie followed by nitrate. Overall, a regional pollution tendency were shown in this campaign though there were higher concentrations of sulfate, nitrate and ammonium measured in Guangzhou City than those in the other PRD cities. Significant seasonal variations were also observed with higher levels of species in winter and lower in summer. The Asian monsoon system was favorable for removal and diffusion of air pollutants in PRD in summer while highly loading of local industrial emissions tended to deteriorate the air quality as well. NO3-/SO42- ratio indicates that mobile sources have considerably contribution to the urban aerosol but stationary sources should still not be neglected. Besides the primary emissions, complex atmospheric reactions under favorable weather conditions should be paid more attention for formulating control strategies for primary emission in the future in the PRD region.

  20. Source apportionment of PM10 and PM2.5 near a large mining zone in Northern Chile

    Science.gov (United States)

    Jorquera, H.

    2008-12-01

    Chile's economic growth is mainly driven by intensive mining activities; currently Chile produces ~ 40% of copper worldwide. Most of those activities are located in northern Chile, in a desert region where strong regional winds contribute with soil erosion as well. The city of Calama (22.4°S, 68.9°W) is about 17 km south of Chuquicamata, one of the largest open pit copper mines in the world, both located on the west edge of the Andes; Calama is at 2,400 m asl and it is 215 km east of the Pacific Ocean. The mining complex releases ~ 21 kton/y of PM10 and ~ 78 kton/y of SO2 from a copper smelter. The levels of ambient PM10 have steadily increased at Calama in the last 5 years, so there is concern about the impacts from copper industry in the city´s inhabitants, most of who work in mining or related economic activities. A campaign was conducted at Calama between October and December 2007, sampling ambient PM10 and PM2.5 at several sites across the city. Filters were analyzed at the Desert Research Institute, Reno, NV for elemental composition by XRF and for elemental and organic carbon using thermal analysis. The application of positive matrix factorization (PMF) model identified four sources contributing to ambient PM2.5: secondary sulfates (49%), traffic emissions (37%), dust street (9%) and copper smelter emissions (5%). In the coarse fraction, four sources were identified: dust street (45%), wind erosion (34%), mineral processing (14%) and copper smelter emissions (7%). No natural background was found for PM2.5. For ambient PM10 the source apportionment obtained is: mining activities (33%), street dust (34%), wind erosion (22%) and traffic emissions (12%). With a current PM10 annual average of 58 μg/m3 and further mining activities projected in the area, there is a big challenge to improve air quality in the populated area close to the mining operations.

  1. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2014-07-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  2. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2015-02-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  3. Study on reinforcement of soil for suppressing fugitive dust by bio-cementitious material

    Science.gov (United States)

    Zhan, Qiwei; Qian, Chunxiang

    2017-06-01

    Microbial-induced reinforcement of soil, as a new green and environmental-friendly method, is being paid extensive attention to in that it has low cost, simple operation and rapid effects. In this research, reinforcement of soil for suppressing fugitive dust by bio-cementitious material was investigated. Soil cemented by bio-cementitious material had superior mechanical properties, such as hardness, compressive strength, microstructure, wind-erosion resistance, rainfall-erosion resistance and freeze-thaw resistance. The average hardness of sandy soil, floury soil and clay soil is 18.9 º, 25.2 º and 26.1 º, while average compressive strength of samples is 0.43 MPa, 0.54 MPa and 0.69 MPa, respectively; meanwhile, the average calcite content of samples is 6.85 %, 6.09 %, and 5.96 %, respectively. Compared with the original sandy soil, floury soil and clay soil, the porosity decreases by 38.5 %, 33.7 % and 29.2 %. When wind speed is 12 m/s, the mass loss of sandy soil, floury soil and clay soil cemented by bio-cementitious material are all less than 30 g/(m2·h). After three cycles of rainfall erosion of 2.5 mm/h, the mass loss are less than 25 g/(m2·h) and the compressive strength residual ratio are more than 98.0 %. Under 25 cycles of freeze-thaw, the mass loss ratio are less than 3.0 %.

  4. Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    ROKKAN, D.J.

    2000-06-01

    This report documents radionuclide air emissions from the US. Department of Energy (DOE) Hanford Site in 1999 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR). Title 40, Protection of the Environment, Part 61. National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities'', and with the Washington Administrative Code (WAC) Chapter 246-247. Radiation Protection-Air Emissions. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from US. Department of Energy (DOE) facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1999 from Hanford Site point sources was 0.029 mrem (2.9 E-04 mSv), which is less than 0.3 percent of the federal standard. WAC 246-247 requires the reporting of radionuclide emissions from all Hanford Site sources, during routine as well as nonroutine operations. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations. The state further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. The EDE from diffuse and fugitive emissions at the Hanford Site in 1999 was 0.039 mrem (3.9 E-04 mSv) EDE. The total dose from point sources and from diffuse and fugitive sources of radionuclide emissions during all operating conditions in 1999 was 0.068 mrem (6.8 E-04 mSv) EDE, which is less than 0.7 percent of the state standard.

  5. Trends and variability of atmospheric PM2.5 and PM10-2.5 concentration in the Po Valley, Italy

    Science.gov (United States)

    Bigi, Alessandro; Ghermandi, Grazia

    2016-12-01

    The Po Valley is one of the largest European regions with a remarkably high concentration level of atmospheric pollutants, both for particulate and gaseous compounds. In the last decade stringent regulations on air quality standards and on anthropogenic emissions have been set by the European Commission, including also for PM2.5 and its main components since 2008. These regulations have led to an overall improvement in air quality across Europe, including the Po Valley and specifically PM10, as shown in a previous study by Bigi and Ghermandi (2014). In order to assess the trend and variability in PM2.5 in the Po Valley and its role in the decrease in PM10, we analysed daily gravimetric equivalent concentration of PM2.5 and of PM10-2.5 at 44 and 15 sites respectively across the Po Valley. The duration of the times series investigated in this work ranges from 7 to 10 years. For both PM sizes, the trend in deseasonalized monthly means, annual quantiles and in monthly frequency distribution was estimated: this showed a significant decreasing trend at several sites for both size fractions and mostly occurring in winter. All series were tested for a significant weekly periodicity (a proxy to estimate the impact of primary anthropogenic emissions), yielding positive results for summer PM2.5 and for summer and winter PM10-2.5. Hierarchical cluster analysis showed moderate variability in PM2.5 across the valley, with two to three main clusters, dividing the area in western, eastern and southern/Apennines foothill sectors. The trend in atmospheric concentration was compared with the time series of local emissions, vehicular fleet details and fuel sales, suggesting that the decrease in PM2.5 and in PM10 originates from a drop both in primary and in precursors of secondary inorganic aerosol emissions, largely ascribed to vehicular traffic. Potentially, the increase in biomass burning emissions in winter and the modest decrease in NH3 weaken an otherwise even larger drop in

  6. Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures

    Science.gov (United States)

    Yang, Hainan; Chen, Jing; Wen, Jiaojiao; Tian, Hezhong; Liu, Xingang

    2016-01-01

    The diurnal variations of the water soluble organic and inorganic components as well as six selected metals in PM2.5 around the heating periods of 2013 and 2014 in Beijing were analyzed in this study to investigate the contributions of secondary aerosols and primary pollutants to PM2.5 and the effects of domestic heating and mitigation measures. The before-heating sampling period in 2014 (from Nov. 1st to Nov. 15th) was characterized with reinforced short-term mitigation measures for the 2014 Asia-Pacific Economic Cooperation (APEC) meeting. As a result, the average mass concentrations of PM2.5 and most of the measured species except for Cu, Al, and Ca2+ were greatly reduced during the APEC meeting period. The domestic heating activity alone resulted in a 17.7% increase of PM2.5 in 2013, exerting lesser effects on the increase of PM2.5 than before. Water soluble organic carbon was the most abundant water soluble species in PM2.5, followed by NO3-, SO42-, and NH4+ . According to the PMF model calculation, secondary aerosols, coal combustion, biomass/waste burning, traffic related pollution, long-range transport, and fugitive soil and sand dust were identified as the main sources of PM2.5 in Beijing, among which secondary formation of aerosols was the dominant source of PM2.5 during the non-APEC period while biomass/waste burning dominated during the APEC period. As a timely feedback on the effects of the mitigation measures adopted by the government, the results of this study provide knowledge necessary for a sustainable urban management.

  7. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    Science.gov (United States)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  8. Study of direct CP violation in $B^{\\pm} \\to J/\\psi K^{\\pm}(\\pi^{\\pm})$ decays

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; sman, B; Assis-Jesus, A C S; Atramentov, O; Avila, C; Ay, C; Badaud, F; Baden, AA; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Böhnlein, A; Boline, D; Bolton, T A; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M C; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Davies, G; De, K; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Dliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, e H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gel, D; Gerber, eC E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gmez, B; Goussiou, A; Grannis, P D; Greenlee, o H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Holubyev, K; Hong, S J; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, e C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalinin, A M; Kalk, J M; Kappler, S; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Yu M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J P; Korablev, V M; Kozelov, A V; Kraus, J; Krop, D; Kühl, T; Kumar, A; Kupco, A; Kura, T; Kvita, J; Lacroix, F; Lam, cD; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Lévêque, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajícek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, e V M; Pogorelov, Y; Pol, M E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simák, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; vanden Berg, P J; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vokac, P; Von Törne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Williams, M; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zatserklyaniy, A; Zeitnitz, C; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2008-01-01

    We present a search for direct CP violation in $B^{\\pm} \\to J/\\psi K^{\\pm}(\\pi^{\\pm})$ decays. The event sample is selected from 2.8 fb$^{-1}$ of $p\\bar{p}$ collisions recorded by D0 experiment in Run II of the Fermilab Tevatron Collider. The charge asymmetry $A_{CP}(B^+ \\to J/\\psi K^+) = +0.0075 \\pm 0.0061$(stat.)$\\pm 0.0027$(syst.) is obtained using a sample of approximately 40 thousand $B^{\\pm} \\to J/\\psi K^{\\pm}$ decays. The achieved precision is of the same level as the expected deviation predicted by some extensions of the standard model. We also measured the charge asymmetry $A_{CP}(B^+ \\to J/\\psi \\pi^+) = -0.09 \\pm 0.08$(stat.)$\\pm 0.03$(syst.).

  9. Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2013-06-06

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2012 from PNNL Site sources is 9E-06 mrem (9E-08 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 1E-7 mrem (1E-9 mSv) EDE. The dose from radon emissions is 2E-6 mrem (2E-08 mSv) EDE. No nonroutine emissions occurred in 2012. The total radiological dose for 2012 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 1E-5 mrem (1E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

  10. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2014-06-01

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance

  11. Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China

    Directory of Open Access Journals (Sweden)

    Y. Q. Wang

    2015-06-01

    Full Text Available Concentrations of PM10, PM2.5 and PM1 were monitored at 24 stations of CAWNET (China Atmosphere Watch Network from 2006 to 2014 using GRIMM 180 dust monitors. The highest particulate matter (PM concentrations were observed at the stations of Xian, Zhengzhou and Gucheng, in Guanzhong and the Hua Bei Plain (HBP. The second highest PM concentrations were observed in northeast China, followed by southern China. According to the latest air quality standards of China, 14 stations reached the PM10 standard and only 7 stations, mainly rural and remote stations, reached the PM2.5 standard. The PM2.5 and PM10 ratios showed a clear increasing trend from northern to southern China, because of the substantial contribution of coarse mineral aerosol in northern China. The PM1 and PM2.5 ratios were higher than 80% at most stations. PM concentrations tended to be highest in winter and lowest in summer at most stations, and mineral dust impacts influenced the results in spring. A decreasing interannual trend was observed in the HBP and southern China from 2006 to 2014, but an increasing trend occurred at some stations in northeast China. Also diurnal variations of PM concentrations and meteorological factors effects were investigated.

  12. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Science.gov (United States)

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  13. On the origin and variability of suspended particulate matter (PM1, PM2.5 and PM10) concentrations in Cyprus.

    Science.gov (United States)

    Pikridas, Michael; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Kizas, Christos; Savvides, Chrysanthos; Sciare, Jean

    2017-04-01

    The Eastern Mediterranean (EM) lies at the crossroad of three different continents (Europe, Asia, and Africa). EM is a densely populated region including several cities with 3M inhabitants or more (e.g. Athens, Istanbul, Izmir, and Cairo). It has been identified as the most polluted area in Europe with respect to particulate matter (PM) mainly due to the combination of high photochemical activity, which causes pollutants to oxidize and partitioning in the particle phase, with the elevated pollutants emissions from neighboring regions. In addition, the proximity to Africa and the Middle East allows frequent transport of dust particles. At the center of the Eastern Mediterranean lies the island of Cyprus, which has received very little attention regarding its PM levels despite being the location in Europe most frequently impacted by air masses from the Middle East. Herewith, we present a historical PM archive that spans 2 decades. It involves ongoing monitoring on a daily basis of particulate matter with diameters smaller than 10 μm (PM10), 2.5 μm (PM2.5), and 1 μm (PM1) conducted in at least one, of the 12 currently existing air quality stations in Cyprus since 1997, 2005, and 2009, respectively. The most extended PM datasets correspond a) to the Agia Marina Xyliatou (AMX) monitoring station established at a remote area at the foothills of mount Troodos and b) that of the inland capital, Nicosia. Based on this long-term dataset, the diurnal, temporal and annual variability is assessed. Prior to 2010, PM10 concentration at all sites remained relatively constant, but at different levels, violating the annual EU legislated PM10 limit of 40 μg m-3. Since 2010, coarse mode levels have decreased at all sites. The reported decrease was equal to 30% at AMX. As a result, since 2010 the observed levels comply with the EU legislation threshold. Satellite observations of Aerosol Optical Thickness (AOT) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA

  14. Shipping emissions in ports

    OpenAIRE

    2014-01-01

    Shipping emissions in ports are substantial, accounting for 18 million tonnes of CO2 emissions, 0.4 million tonnes of NOx, 0.2 million of SOx and 0.03 million tonnes of PM10 in 2011. Around 85% of emissions come from containerships and tankers. Containerships have short port stays, but high emissions during these stays. Most of CO2 emissions in ports from shipping are in Asia and Europe (58%), but this share is low compared to their share of port calls (70%). European ports have much less emi...

  15. Efficiency of Pm-147 direct charge radioisotope battery

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskiy, A.; Yakubova, G.; Yousaf, S.M. [TRACE Photonics Inc, 1680 West Polk Avenue, Charleston, IL 61920 (United States); Bower, K., E-mail: kbower@tracephotonics.co [TRACE Photonics Inc, 1680 West Polk Avenue, Charleston, IL 61920 (United States); Robertson, J.D.; Garnov, A. [Department of Chemistry and University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2011-05-15

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries.

  16. High concentrations of heavy metals in PM from ceramic factories of Southern Spain

    Science.gov (United States)

    Sánchez de la Campa, Ana M.; de la Rosa, Jesús D.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío; Alastuey, Andrés; Querol, Xavier; Pio, Casimiro

    2010-06-01

    In this study, physicochemical characterization of Atmospheric Particulate Matter (PM) was performed in an urban-industrial site background (Bailén, Southern Spain), highly influenced by the impact of emission plumes from ceramic factories. This area is considered one of the towns with the highest PM 10 levels and average SO 2 concentration in Spain. A three stages methodology was used: 1) real-time measurements of levels of PM 10 and gaseous pollutants, and sampling of PM; 2) chemical characterization using ICP-MS, ICP-OES, CI and TOT, and source apportionment analysis (receptor modelling) of PM; and 3) chemical characterization of emission plumes derived from representative factories. High ambient air concentrations were found for most major components and trace elements compared with other industrialized towns in Spain. V and Ni are considered fingerprints of PM derived from the emissions of brick factories in this area, and were shown to be of particular interest. This highlights the high V and Ni concentrations in PM 10 (122 ngV/m 3 and 23.4 ngNi/m 3), with Ni exceeding the 2013 annual target value for the European Directive 2004/107/EC (20 ng/m 3). The methodology of this work can be used by Government departments responsible for Environment and Epidemiology in planning control strategies for improving air quality.

  17. Chemical Composition of PM2.5 at an Urban Site of Chengdu in Southwestern China

    Institute of Scientific and Technical Information of China (English)

    TAO Jun; CHENG Tiantao; ZHANG Renjian; CAO Junji; ZHU Lihua; WANG Qiyuan; LUO Lei

    2013-01-01

    PM2.5 aerosols were sampled in urban Chengdu from April 2009 to January 2010,and their chemical compositions were characterized in detail for elements,water soluble inorganic ions,and carbonaceous matter.The annual average of PM2.5 was 165 μg m-3,which is generally higher than measurements in other Chinese cities,suggesting serious particulate pollution issues in the city.Water soluble ions contributed 43.5% to the annual total PM2.5 mass,carbonaceous aerosols including elemental carbon and organic carbon contributed 32.0%,and trace elements contributed 13.8%.Distinct daily and seasonal variations were observed in the mass concentrations of PM2.5 and its components,reflecting the seasonal variations of different anthropogenic and natural sources.Weakly acidic to neutral particles were found for PM2.5.Major sources of PM2.5 identified from source apportionment analysis included coal combustion,traffic exhaust,biomass burning,soil dust,and construction dust emissions.The low nitrate:sulfate ratio suggested that stationary emissions were more important than vehicle emissions.The reconstructed masses of ammonium sulfate,ammonium nitrate,particulate carbonaceous matter,and fine soil accounted for 79% of the total measured PM2.5 mass; they also accounted for 92% of the total measured particle scattering.

  18. Remote sensing investigations of fugitive soil arsenic and its effects on vegetation reflectance

    Science.gov (United States)

    Slonecker, E. Terrence

    2007-12-01

    Three different remote sensing technologies were evaluated in support of the remediation of fugitive arsenic and other hazardous waste-related risks to human and ecological health at the Spring Valley Formerly Used Defense Site in northwest Washington D.C., an area of widespread soil arsenic contamination as a result of World War I research and development of chemical weapons. The first evaluation involved the value of information derived from the interpretation of historical aerial photographs. Historical aerial photographs dating back as far as 1918 provided a wealth of information about chemical weapons testing, storage, handling and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5 % of the features were spatially correlated with current areas of contamination or remedial activity. The second investigation involved the phytoremediation of arsenic through the use of Pteris ferns and the evaluation of the spectral properties of these ferns. Three hundred ferns were grown in controlled laboratory conditions in soils amended with five levels (0, 20, 50, 100 and 200 parts per million) of sodium arsenate. After 20 weeks, the Pteris ferns were shown to have an average uptake concentration of over 4,000 parts per million each. Additionally, statistical analysis of the spectral signature from each fern showed that the frond arsenic concentration could be reasonably predicted with a linear model when the concentration was equal or greater than 500 parts per million. Third, hyperspectral imagery of Spring Valley was obtained and analyzed with a suite of spectral analysis software tools. Results showed the grasses growing in areas of known high soil arsenic could be identified and mapped at an approximate 85% level of accuracy when the hyperspectral image was processed

  19. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bisping, Lynn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    This report documents radionuclide air emissions that result in the 2014 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI due to routine major and minor point source emissions in 2014 from PNNL Campus sources is 2E 05 mrem (2E-07 mSv) EDE. The dose from all fugitive sources is 3E-6 mrem (3E-8 mSv) EDE. The dose from radon emissions is 1E-6 mrem (1E-8 mSv) EDE. No nonroutine emissions occurred in 2014. The total radiological dose for 2014 to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 3E-5 mrem (3E-7 mSv) EDE, or more than 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Campus is in compliance.

  20. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bisping, Lynn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    This report documents radionuclide air emissions that result in the 2015 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI from routine major and minor point source emissions in 2015 from PNNL Campus sources is 2.6E-4 mrem (2.6E-6 mSv) EDE. The dose from all fugitive sources is 1.8E-6 mrem (1.8E-8 mSv) EDE. The dose from radon emissions is 4.4E-8 mrem (4.4E-10 mSv) EDE. No nonroutine emissions occurred in 2015. The total radiological dose to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 2.6E-4 mrem (2.6E-6 mSv) EDE, or more than 10,000 times less than the federal and state standard of 10 mrem/yr, with which the PNNL Campus is in compliance.

  1. Characterisation of fugitive and accidental PCB emissions from a hazardous waste incinerator : spruce needle, snow and sediment sampling

    Energy Technology Data Exchange (ETDEWEB)

    Froese, K.L. [Alberta Univ., Dept. of Public Health Sciences, Edmonton, AB (Canada); Blais, J.M. [Alberta Univ., Dept. of Biological Sciences, Edmonton, AB (Canada); Muir, D.C.G. [Environment Canada, National Water research Inst., Burlington, ON (Canada)

    1998-09-01

    A pipe rupture at a hazardous waste incineration facility resulted in the release of large quantities of PCBs and polychlorinated dibenzo-dioxins and polychlorinated dibenzofurans into the environment. The accident occurred in October 1996, but was not reported until three weeks later which made it difficult to estimate the extent of the regional exposure and the impact of these releases on the ecosystem and human health. Spruce needles were used to provide data related to vegetative accumulation of lipophilic contaminants. Snow samples were used to get information regarding PCB deposition and sorption in the snow in the months following the accident. Radiometrically dated lake sediments were used to obtain information on changes in PCB deposition through time for a single location. Initial results show that needle samples within 2 km of the incinerator contain PCBs at five times the concentration of samples from 50 to 20 km from the plant. Snow samples within 2 km of the plant showed a 10-fold increase over distant samples. Sediment samples also showed a 10-fold increase in PCB concentrations above background values.

  2. Performance Evaluation and Quality Validation System for Optical Gas Imaging Cameras that Visualize Fugitive Hydrocarbon Gas Emissions

    Science.gov (United States)

    A U.S. EPA team, consisting of the Office of Research and Development and Region 6 (Dallas) and Region 8 (Denver), deployed passive-diffusive sorbent tubes as part of a method evaluation study around one oil and natural gas production pad in both the Barnett Shale Basin in Texas ...

  3. [Sampling methods for PM2.5 from stationary sources: a review].

    Science.gov (United States)

    Jiang, Jing-Kun; Deng, Jian-Guo; Li, Zhen; Li, Xing-Hua; Duan, Lei; Hao, Ji-Ming

    2014-05-01

    The new China national ambient air quality standard has been published in 2012 and will be implemented in 2016. To meet the requirements in this new standard, monitoring and controlling PM2,,5 emission from stationary sources are very important. However, so far there is no national standard method on sampling PM2.5 from stationary sources. Different sampling methods for PM2.5 from stationary sources and relevant international standards were reviewed in this study. It includes the methods for PM2.5 sampling in flue gas and the methods for PM2.5 sampling after dilution. Both advantages and disadvantages of these sampling methods were discussed. For environmental management, the method for PM2.5 sampling in flue gas such as impactor and virtual impactor was suggested as a standard to determine filterable PM2.5. To evaluate environmental and health effects of PM2.5 from stationary sources, standard dilution method for sampling of total PM2.5 should be established.

  4. [Characteristics of Water-Soluble Inorganic Ions in PM2.5 Emitted from Coal-Fired Power Plants].

    Science.gov (United States)

    Ma, Zi-zhen; Li, Zhen; Jiang, Jing-kun; Ye, Zhi-xiang; Deng, Jian-guo; Duan, Lei

    2015-07-01

    To characterize the primary PM2.5 emission from coal-fired power plants in China, and to quantitatively evaluate the effects of flue gas denitrification and desulfurization on PM2.5 emission, a pulverized coal fired (PC) power plant and a circulating fluidized bed (CFB) plant were selected for measuring the mass concentration and water-soluble ion composition of PM2.5 in flue gas. The results showed that the mass concentration of PM2.5 generated from the CFB was much higher than that from the PC, while the mass concentrations of PM2.5 emitted from these two plants were very similar, because the CFB was equipped with an electrostatic-bag precipitator (EBP) with higher PM2.5 removal efficiency than the common electrostatic precipitator (ESP). Although the total concentration of water-soluble ions in PM2.5 generated from the PC was lower than that from the CFB, the total concentration of water-soluble ions in PM2.5 emitted from the PC was much higher than that from the CFB, which implied that PM2.5 emission from the PC was greatly affected by the flue gas treatment installations. For example, the flue gas denitrification system produced H2SO4 mist, part of which reacted with the excessive NH3 in the flue gas to form NH4HSO4 in PM2.5 and to increase the acidity of PM2.5. In addition, the escaping of desulfurization solution during the flue gas desulfurization process could also introduce NH4+ and SO2- into PM2.5. Therefore, although the main water-soluble ions in PM2.5 generated from both of the plants were Ca2+ and SO(4)2-, the major cation was changed to NH4+ when emitted from PC.

  5. 75 FR 67220 - Determinations of Attainment by the Applicable Attainment Date for the Hayden, Nogales, Paul Spur...

    Science.gov (United States)

    2010-11-02

    ... 1989 Hayden PM 10 Plan identifies the ASARCO copper smelter and related sources, such as the smelter stack, copper ore tailings, ore crushing, the slag dump, road dust, smelter building fugitives, and copper ore, as the principal sources of PM 10 emissions in the Hayden portion of the Hayden/Miami PM 10...

  6. Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their Relation to Meteorological Factors

    Directory of Open Access Journals (Sweden)

    Yang Li

    2015-01-01

    Full Text Available Daily average monitoring data for PM10, PM2.5 and PM1.0 and meteorological parameters at Chengdu from 2009 to 2011 are analyzed using statistical methods to replicate the effect of urban air pollution in Chengdu metropolitan region of the Sichuan Basin. The temporal distribution of, and correlation between, PM10, PM2.5 and PM1.0 particles are analyzed. Additionally, the relationships between particulate matter (PM and certain meteorological parameters are studied. The results show that variations in the average mass concentrations of PM10, PM2.5 and PM1.0 generally have the same V-shaped distributions (except for April, with peak/trough values for PM average mass concentrations appearing in January/September, respectively. From 2009 to 2011, the inter-annual average mass concentrations of PM10, PM2.5 and PM1.0 fall year on year. The correlation coefficients of daily concentrations of PM10 with PM2.5, PM10 with PM1.0, and PM2.5 with PM1.0 were high, reaching 0.91, 0.83 and 0.98, respectively. In addition, the average ratios of PM2.5/PM10, PM1.0/PM10 and PM1.0/PM2.5 were 85%, 78% and 92%, respectively. From this, fine PM is determined to be the principal pollutant in the Chengdu region. Except for averaged air pressure values, negative correlations exist between other meteorological parameters and PM. Temperature and air pressure influenced the transport and accumulation of PM by affecting convection. Winds promoted PM dispersion. Precipitation not only accelerated the deposition of wet PM, but also inhibited surface dust transport. There was an obvious correlation between PM and visibility; the most important cause of visibility degradation was due to the light extinction of aerosol particles.

  7. Estimating Greenhouse Gas Emissions Level of A Natural Gas Pipeline – Case Study from A to B Point in West Java-Indonesia

    OpenAIRE

    Dianita Cindy; Saputra Asep Handaya

    2016-01-01

    Indonesia is one of the highest greenhouse emitters in the world. As a response of this problem, Indonesia declared the national action plan to focus on national greenhouse gas (GHG) reduction by 26 % by 2020. To achieve this target, Government puts energy sector as one of the top priorities since it is the second strongest contributor to national GHG emissions. The main purpose of this paper is to apply the method of fugitive emissions calculation to the existing natural gas pipeline in Indo...

  8. PM Raman fiber laser at 1679 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2012-01-01

    We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth.......We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth....

  9. Top-down Constraints on Emissions: Example for Oil and Gas Operations

    Science.gov (United States)

    Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.

  10. Characterization of PM10 sources in the central Mediterranean

    Directory of Open Access Journals (Sweden)

    G. Calzolai

    2015-07-01

    Full Text Available The Mediterranean Basin atmosphere is influenced by both strong natural and anthropogenic aerosol emissions, and is also subject to important climatic forcings. Several programs have addressed the study of the Mediterranean basin; nevertheless important pieces of information are still missing. In this framework, PM10 samples were collected on a daily basis on the island of Lampedusa (35.5° N, 12.6° E, 45 m a.s.l., which is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away. After mass gravimetric measurements, different portions of the samples were analyzed to determine the ionic content by Ion Chromatography (IC, the soluble metals by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES, and the total (soluble + insoluble elemental composition by Particle Induced X-ray Emission (PIXE. Data from years 2007 and 2008 are used in this study. The Positive Matrix Factorization (PMF model was applied to the 2 year long data set of PM10 mass concentration and chemical composition to assess the aerosol sources affecting the Central Mediterranean basin. Seven sources were resolved: sea-salt, mineral dust, biogenic emissions, primary particulate ship emissions, secondary sulphate, secondary nitrate, and combustion emissions. Source contributions to the total PM10 mass were estimated to be about 40 % for sea-salt, around 25 % for mineral dust, 10 % each for secondary nitrate and secondary sulphate, and 5 % each for primary particulate ship emissions, biogenic emissions, and combustion emissions. Large variations in absolute and relative contributions are found and appear to depend on the season and on transport episodes. In addition, the secondary sulphate due to ship emissions was estimated, and found to contribute by about one third to the total sulphate mass. Results for the sea-salt and mineral dust sources were compared with estimates of the same contributions obtained from independent

  11. Evaluation of the Modeling of Exposure to Environmental Tobacco Smoke (ETS) in the SHEDS-PM Model.

    Science.gov (United States)

    Cao, Ye; Frey, H Christopher; Liu, Xiaozhen; Deshpande, Bela K

    2009-06-01

    Environmental tobacco smoke (ETS) is estimated to be a major contributor to indoor PM concentration and human exposures to fine particulate matter of 2.5 microns or smaller (PM2.5). The Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model developed by the US Environmental Protection Agency estimates distributions of outdoor and indoor PM2.5 exposure for a specified population based on ambient concentrations and indoor emissions sources. Because indoor exposures to ETS can be high, especially in indoor residential microenvironments, a critical assessment was conducted of the methodology and data used in SHEDS-PM for estimation of indoor exposure to ETS. For the residential microenvironment, SHEDS uses a mass-balance approach which is comparable to best practices. The default inputs in SHEDS-PM were reviewed and more recent and extensive data sources were identified. Sensitivity analysis was used to determine which inputs should be prioritized for updating. Data regarding the cigarette emission rate was found to be the most important. SHEDS-PM does not currently account for in-vehicle ETS exposure; however, in-vehicle ETS-related PM2.5 levels can exceed those in residential microenvironments by a factor of 10 or more. Therefore, a mass-balance based methodology for estimating in-vehicle ETS PM2.5 concentration is evaluated. Recommendations are made regarding updating of input data and algorithms related to ETS exposure in the SHEDS-PM model.

  12. Electrocardiographic, hemodynamic, and biochemical responses to acute particulate matter (PM) exposure in aged heart failure-prone rats

    Science.gov (United States)

    Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiac disease-especially heart failure (HF). The mechanisms explaining PM-induced exacerbation ofHF are unclear. Some o...

  13. Acute Exposure to Particulate Matter (PM) Alters Physiologic and Toxicologic Endpoints in a Rat Model of Heart Failure

    Science.gov (United States)

    Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). We previously examined the effects of PM on HF by exposing Sponta...

  14. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC superstation and their ratios as source signature

    Directory of Open Access Journals (Sweden)

    S. Yoon

    2011-07-01

    Full Text Available PM1.0, PM2.5, and PM10 were sampled at Gosan ABC Superstation on Jeju Island from August 2007 to September 2008. The carbonaceous aerosols were quantified with the thermal/optical reflectance (TOR method, which produced five organic carbon (OC fractions, OC1, OC2, OC3, OC4, and pyrolyzed organic carbon (OP, and three elemental carbon (EC fractions, EC1, EC2, and EC3. The mean mass concentrations of PM1.0, PM2.5, and PM10 were 13.72 μg m−3, 17.24 μg m−3, and 28.37 μg m−3, respectively. The averaged mass fractions of OC and EC were 23.0 % and 10.4 % for PM1.0, 22.9 % and 9.8 % for PM2.5, and 16.4 % and 6.0 % for PM10. Among the OC and EC sub-components, OC2 and EC2+3 were enriched in the fine mode, but OC3 and OC4 in the coarse mode. The filter-based PM1.0 EC agreed well with black carbon (BC measured by an Aethalometer, and PM10 EC was higher than BC, implying less light absorption by larger particles. EC was well correlated with sulfate, resulting in good relationships of sulfate with both aerosol scattering coefficient measured by Nephelometer and BC concentration. Our measurements of EC confirmed the definition of EC1 as char-EC emitted from smoldering combustion and EC2+3 as soot-EC generated from higher-temperature combustion such as motor vehicle exhaust and coal combustion. In particular, EC1 was strongly correlated with potassium, a traditional biomass burning indicator, except during the summer, when the ratio of EC1 to EC2+3 was the lowest. We also found the ratios of major chemical species to be a useful tool to constrain the main sources of aerosols, by which the five air masses were well distinguished: Siberia, Beijing, Shanghai, Yellow Sea, and East Sea types. Except Siberian air, the continental background of the study region, Beijing plumes showed the highest EC1 (and OP to sulfate ratio, which implies that this air mass had the highest net warming by aerosols of the four air masses. Shanghai-type air, which was heavily

  15. Impact of mineral components and selected trace metals on ambient PM10 concentrations

    Science.gov (United States)

    Limbeck, Andreas; Handler, Markus; Puls, Christoph; Zbiral, Johannes; Bauer, Heidi; Puxbaum, Hans

    PM10 levels of the mineral components Si, Al, Fe, Ca, Mg and some trace metals were measured at three different sites in the urban area of Vienna (Austria). Observed trace metal concentrations varied between less than 0.1 ng m -3 (Cd) and approximately 200 ng m -3 (Zn), mineral components showed enhanced concentrations ranging from 0.01 μg m -3 (Ca) to 16.3 μg m -3 (Si). The contribution of the respective mineral oxides to PM10 mass concentrations accounted on average for 26.4 ± 16% (n = 1090) of the PM10 mass, with enhanced rates in spring and autumn (monthly averages of up to 40%) and decreased contributions in the cold season (monthly averages below 10%). The atmospheric occurrence of Al, Ti and Sr could be assigned to crustal sources, whereas for the elements Ba, Ca, Fe, Mg, Mn and V an increased contribution of non-crustal origin was observed. PM10 levels of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Sn and Zn were predominantly derived from man-made emissions. Intersite comparison indicated that urban PM10 mass concentrations and PM10 levels of As, Pb and Zn were predominantly influenced from the transport of aerosols from outside into the city, whereas for the elements Ba, Mg, Ca, Cu and Fe a distinctly increased impact of local emissions was observed. The contribution of these urban emissions to total PM10 concentrations was estimated by calculating the so-called "urban impact", which was found to be 32.7 ± 18% (n = 392) in the case of PM10 mass concentrations. The investigated elements accounted on average for 31.3 ± 19% (n = 392) of the observed PM10 mass increase. The mean values for the "urban impacts" of individual elements varied between 25.5% (As) and 77.0% (Ba).

  16. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Science.gov (United States)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M.

    2015-02-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  17. Chemical composition of PM2.5 during winter in Tianjin, China

    Institute of Scientific and Technical Information of China (English)

    Jinxia Gu; Zhipeng Bai; Weifang Li; Liping Wu; Aixia Liu; Haiyan Dong; Yiyang Xie

    2011-01-01

    PM2.5 samples for 24 h were collected during winter in Tianjin, China. The ambient mass concentration and chemical composition of the PM2.s were determined. Ionic species were analyzed by ion chromatography, while carbonaceous species were determined with the IMPROVE thermal optical reflectance (TOR)method, and inorganic elements were measured by inductively coupled plasma-atomic emission spectrometer. The daily PM2.s mass concentrations ranged from 48.2 to 319.2 μg/m3 with an arithmetic average of 144.6 μg/m3. The elevated PM2.5 in winter was mostly attributed to combustion sources such as vehicle exhaust, heating, cooking and industrial emissions, low wind speeds and high relative humidity (RH), which were favorable for pollutant accumulation and formation of secondary pollutants. By chemical mass balance, it was estimated that about 89.1% of the PM2.s mass concentrations were explained by carbonaceous species, secondary particles, crustal matters, sea salt and trace elements. Organic material was the largest contributor, accounting for about 32.7% of the total PM2.5 mass concentrations. SO42-,NO3-, Cl- and NH4+ were four major ions, accounting for 16.6%, 11.5%, 4.7% and 6.0%, respectively, of the total mass of PM2.s.

  18. Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model

    Science.gov (United States)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-01-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50

  19. Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model

    Science.gov (United States)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-01-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50

  20. Quantifying PM2.5-meteorology sensitivities in a global climate model

    Science.gov (United States)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-10-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 μg m-3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 μg m-3 (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 μg m-3 for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10-50% over the

  1. Chemical characteristics of PM2.5-0.3 and PM0.3 and consequence of a dust storm episode at an urban site in Lebanon

    Science.gov (United States)

    Borgie, Mireille; Ledoux, Frédéric; Dagher, Zeina; Verdin, Anthony; Cazier, Fabrice; Courcot, Lucie; Shirali, Pirouz; Greige-Gerges, Hélène; Courcot, Dominique

    2016-11-01

    Located on the eastern side of the Mediterranean Basin at the intersection of air masses circulating between three continents, the agglomeration of Beirut, capital of Lebanon is an important investigating area for air pollution and more studies are needed to elucidate the composition of the smallest particles classified as carcinogenic to humans. PM2.5-0.3 and PM0.3 samples were collected during the spring-summer period in an urban background site of Beirut, after a dust storm episode occurred, and their chemical composition was determined. Our findings showed that components formed by gas to particle conversion (SO42 - and NH4+) and related to combustion processes are mainly found in the PM0.3 fraction. Typical crustal (Ca2+, Fe, Ti, Mg2+), sea-salt (Na+, Cl-, Mg2+, Sr) species, and NO3- are mainly associated with the PM2.5-0.3 fraction. We have also evidenced that the dust episode which occurred in Lebanon in May 2011 originated from the Iraqian and Syrian deserts, which are the least studied, and had a direct influence on the composition of PM2.5-0.3 during the beginning of the first sampling period, and then an indirect and persistent influence by the re-suspension of deposited dust particles. Moreover, PAHs concentrations were much higher in PM0.3 than in PM2.5-0.3 and their composition appeared influenced by diesel (buses, trucks and generator sets) and gasoline (private cars) emissions.

  2. Particulate matter concentrations and emissions in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-04-01

    Full Text Available The extent of the potential health hazards of particulate matter (PM inside rabbit farms and the magnitude of emission levels to the outside environment are still unknown, as data on PM concentrations and emissions in and from such buildings is scarce.  The purpose of this study was to quantify airborne PM10 and PM2.5 concentrations and emissions on two rabbit farms in Mediterranean conditions and identify the main factors related with farm activities influencing PM generation.  Concentrations of PM10 and PM2.5 were determined continuously using a tapered element oscillating microbalance (TEOM in one farm with fattening rabbits and one reproductive doe farm in autumn.  At the same time as PM sampling, the time and type of human farm activity being performed was recorded. Additionally, temperature, relative humidity and ventilation rate were recorded continuously.  Emissions were calculated using a mass balance on each farm.  Results showed PM concentrations in rabbit farms are low compared with poultry and pig farms.  Average PM10 concentrations were 0.082±0.059 mg/m3 (fattening rabbits, and 0.048 ±0.058 mg/m3 (reproductive does. Average PM2.5 concentrations were 0.012±0.016 mg/m3 (fattening rabbits, and 0.012±0.035 mg/m3 (reproductive does. Particulate matter concentrations were significantly influenced by the type of human farm activity carried out in the building rather than by animal activity.  The main PM-generating activity on the fattening rabbit farm was sweeping, and the major PM-generating activity in reproductive does was sweeping and burning hair from the cages.  Average PM10 emissions were 5.987±6.144 mg/place/day (fattening rabbits, and 14.9±31.5 mg/place/day (reproductive does.  Average PM2.5 emissions were 0.20±1.26 mg/place/day (fattening rabbits, and 2.83±19.54 mg/place/day (reproductive does.  Emission results indicate that rabbit farms can be considered relevant point sources of PM emissions, comparable to

  3. New considerations for PM, black carbon and particle number concentration for air quality monitoring across different European cities

    OpenAIRE

    Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; T. Moreno; Rodríguez, S.; Y. González; R. Fernández-Camacho; J. de la Rosa; Dall'Osto, M; Prévôt, A. S. H.; Hueglin, C.; R. M. Harrison; Quincey, P.

    2011-01-01

    In many large cities of Europe standard air quality limit values of particulate matter (PM) are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air ...

  4. Understanding the Rising Phase of the PM2.5 Concentration Evolution in Large China Cities

    Science.gov (United States)

    Lv, Baolei; Cai, Jun; Xu, Bing; Bai, Yuqi

    2017-04-01

    Long-term air quality observations are seldom analyzed from a dynamic view. This study analyzed fine particulate matter (PM2.5) pollution processes using long-term PM2.5 observations in three Chinese cities. Pollution processes were defined as linearly growing PM2.5 concentrations following the criteria of coefficient of determination R2 > 0.8 and duration time T ≥ 18 hrs. The linear slopes quantitatively measured pollution levels by PM2.5 concentrations rising rates (PMRR, μg/(m3·hr)). The 741, 210 and 193 pollution processes were filtered out, respectively, in Beijing (BJ), Shanghai (SH), and Guangzhou (GZ). Then the relationships between PMRR and wind speed, wind direction, 24-hr backward points, gaseous pollutants (CO, NO2 and SO2) concentrations, and regional PM2.5 levels were studied. Inverse relationships existed between PMRR and wind speed. The wind directions and 24-hr backward points converged in specific directions indicating long-range transport. Gaseous pollutants concentrations increased at variable rates in the three cities with growing PMRR values. PM2.5 levels at the upwind regions of BJ and SH increased at high PMRRs. Regional transport dominated the PM2.5 pollution processes of SH. In BJ, both local contributions and regional transport increased during high-PMRR pollution processes. In GZ, PM2.5 pollution processes were mainly caused by local emissions.

  5. Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China

    Science.gov (United States)

    Kong, Shaofei; Ji, Yaqin; Liu, Lingling; Chen, Li; Zhao, Xueyan; Wang, Jiajun; Bai, Zhipeng; Sun, Zengrong

    2013-08-01

    Phthalic acid esters (PAEs) are produced in large amounts throughout the world and are excessively used in various industries, which have posed a serious threat to human health and the environment. An investigation of six major PAEs congeners in atmospheric PM10 and PM2.5 was synchronously conducted at seven sites belonging to different functional zones in spring, summer and winter in Tianjin, China in 2010. Results showed that the average concentrations of DMP, DEP, DBP, BBP, DEHP and DOP in PM10 were 0.88, 0.73, 12.90, 0.15, 98.29 and 0.83 ng m-3, respectively, and in PM2.5, they were 0.54, 0.30, 8.72, 0.08, 75.68 and 0.33 ng m-3, respectively. DEHP and DBP were the predominant species. The industrial site exhibited highest PAEs values as 135.9 ± 202.8 ng m-3. In winter, the detected percentages for DOP were low. The other five PAEs concentrations were higher in winter than those in spring and summer, which may be related to the influence of emission sources, meteorological parameters and the chemical-physical characteristic of themselves. Except for DOP, other PAEs were negatively correlated with ambient temperature and the relationships were the best fitted as exponential forms. Significant positive correlations were found for PAEs in PM2.5 and PM10, indicating common sources. The PM2.5/PM10 ratios (0.53-0.70) for the six PAEs concentrations suggested that they were preferentially concentrated in finer particles. Principal component analysis indicated the emission from cosmetics and personal care products, plasticizers and sewage and industrial wastewater may be important sources for PAEs in atmospheric particulate matter in Tianjin.

  6. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    Science.gov (United States)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  7. Modeling Pareto efficient PM10 control policies in Northern Italy to reduce health effects

    Science.gov (United States)

    Pisoni, Enrico; Volta, Marialuisa

    High PM10 concentrations can cause human health problems, both related to short-term and long-term exposure to particles. In this work the impact of efficient PM10 control problems in Northern Italy is assessed by means of a two-stage methodology. In the first stage a multi-objective optimization approach is applied. The multi-objective problem defines two control objectives (the emission reduction costs and the air quality index) to be minimized varying the decision variables (precursor emission reductions). The solution of the multi-objective problem is the Pareto efficient PM10 control policies. In the second stage, the ExternE methodology is applied to estimate health impacts and external costs for the efficient emission reduction scenarios computed in the first stage. The methodology has been applied over Lombardia region, one of the most polluted areas in Europe.

  8. Search for direct CP violating charge asymmetries in $K^\\pm\\to\\pi^\\pm\\pi^+\\pi^-$ and $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ decays

    CERN Document Server

    Batley, J Richard; Kalmus, George Ernest; Lazzeroni, C; Munday, D J; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Cabibbo, Nicola; Ceccucci, A; Cundy, Donald C; Falaleev, V; Fidecaro, Maria; Gatignon, L; Gonidec, A; Kubischta, Werner; Norton, A; Maier, A; Patel, M; Peters, A; Balev, S; Frabetti, P L; Goudzovski, E; Khristov, P Z; Kekelidze, V D; Kozhuharov, V; Litov, L; Madigozhin, D T; Marinova, E; Molokanova, N A; Polenkevich, I; Potrebenikov, Yu K; Stoynev, S; Zinchenko, A I; Monnier, E; Swallow, E; Winston, R; Rubin, P; Walker, A; Baldini, W; Cotta-Ramusino, A; Dalpiaz, P; Damiani, C; Fiorini, M; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Wahle, H; Bizzeti, A; Calvetti, M; Celeghini, E; Iacopini, E; Lenti, M; Martelli, F; Ruggiero, G; Veltri, M; Behler, M; Eppard, K; Kleinknecht, K; Marouelli, P; Masetti, L; Moosbrugger, U; Morales-Morales, C; Renk, B; Wache, M; Wanke, R; Winhart, A; Coward, D; Dabrowski, A; Fonseca-Martin, T; Shieh, M; Szleper, M; Velasco, M; Wood, M D; Anzivino, Giuseppina; Cenci, P; Imbergamo, E; Nappi, A; Pepé, M; Petrucci, M C; Piccini, M; Raggi, M; Valdata-Nappi, M; Cerri, C; Collazuol, G; Costantini, F; Di Lella, L; Doble, N; Fantechi, R; Fiorini, L; Giudici, S; Lamanna, G; Mannelli, I; Michetti, A; Pierazzini, G M; Sozzi, M; Bloch-Devaux, B; Cheshkov, C; Chèze, J B; De Beer, M; Derré, J; Marel, Gérard; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Ziolkowski, M; Bifani, S; Biino, C; Cartiglia, N; Clemencic, M; Goy-Lopez, S; Marchetto, F; Dibon, Heinz; Jeitler, Manfred; Markytan, Manfred; Mikulec, I; Neuhofer, G; Widhalm, L

    2007-01-01

    A measurement of the direct CP violating charge asymmetries of the Dalitz plot linear slopes $A_g=(g^+-g^-)/(g^++g^-)$ in $K^\\pm\\to\\pi^\\pm\\pi^+\\pi^-$ and $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ decays by the NA48/2 experiment at CERN SPS is presented. A new technique of asymmetry measurement involving simultaneous $K^+$ and $K^-$ beams and a large data sample collected allowed a result of an unprecedented precision. The charge asymmetries were measured to be $A^c_g=(-1.5\\pm2.1)\\times10^{-4}$ with $3.11\\times 10^9$ $K^{\\pm}\\to\\pi^\\pm\\pi^+\\pi^-$ decays, and $A^n_g=(1.8\\pm1.8)\\times10^{-4}$ with $9.13\\times 10^7$ $K^{\\pm}\\to\\pi^\\pm\\pi^0\\pi^0$ decays. The precision of the results is limited mainly by the size of the data sample.

  9. Motor transport related harmful PM2.5 and PM10: from onroad measurements to the modelling of air pollution by neural network approach on street and urban level

    Science.gov (United States)

    Lozhkina, O.; Lozhkin, V.; Nevmerzhitsky, N.; Tarkhov, D.; Vasilyev, A.

    2016-11-01

    The level of PM10 and PM2.5 concentrations in the air on seven roads in St. Petersburg, Russia, were investigated using gravimetry and nephelometry measurement techniques in 2013-2015. The effects of meteorological conditions (temperature, relative humidity, wind direction, and speed) and the intensity of traffic flows on the results of the measurements were also evaluated. On the base of the measurements, there was developed a neural network modelling approach that allowed to quantify exhaust / non-exhaust PM10 and PM 2.5 emissions and carry out numerical investigations of air pollution by transport related PM2.5 and PM10 on street and urban level in St. Petersburg.

  10. Comprehensive characterization of PM2.5 aerosols in Singapore

    Science.gov (United States)

    Balasubramanian, R.; Qian, W.-B.; Decesari, S.; Facchini, M. C.; Fuzzi, S.

    2003-08-01

    A comprehensive characterization of PM2.5 aerosols collected in Singapore from January through December 2000 is presented. The annual average mass concentration of PM2.5 was 27.2 μg/m3. The atmospheric loading of PM2.5 was elevated sporadically from March through May, mainly due to advection of biomass burning (deliberate fires to clear plantation areas) impacted air masses from Sumatra, Indonesia. Satellite images of the area, trajectory calculations, and surface wind direction data are in support of the transport of pyrogenic products from Sumatra toward Singapore. Aerosol samples collected during the dry season were analyzed for water-soluble ions, water-soluble organic compounds (WSOC), elemental carbon (EC), organic carbon, and trace elements using a number of analytical techniques. The major components were sulfate, EC, water-soluble carbonaceous materials, and water-insoluble carbonaceous materials. Aerosol WSOC were characterized based on a combination of chromatographic separations by ion exchange chromatography, functional group investigation by proton nuclear magnetic resonance, and total organic carbon determination. The comprehensive chemical characterization of PM2.5 particles revealed that both non-sea-salt sufate (nss-SO42-) and carbonaceous aerosols mainly contributed to the increase in the mass concentration of aerosols during the smoke haze period. Using a mass closure test (a mass balance), we determined whether the physical measurement of gravimetric fine PM concentration of a sample is equal to the summed concentrations of the individually identified chemical constituents (measured or inferred) in the sample. The sum of the determined groups of aerosol components and the gravimetrically determined mass agreed reasonably well. Principal component analysis was performed from the combined data set, and five factors were observed: a soil dust component, a metallurgical industry factor, a factor representing emissions from biomass burning and

  11. Seasonal variation of PM10 chemical constituents in different French urban environments

    Science.gov (United States)

    Salameh, Dalia; Golly, Benjamin; Besombes, Jean Luc; Alleman, Laurent; Favez, Olivier; Jaffrezo, Jean Luc

    2016-04-01

    Particulate matter (PM10, with a diameter less than 10 μm) is a heterogeneous mixture of natural and anthropogenic components including organic and elemental carbon (OC, and EC), sulfates, nitrates, ammonium, mineral dust, trace elements, seasalt, which has been linked to adverse impact on human health, visibility, and climate change. Atmospheric PM concentration and composition can vary widely due to different climatic conditions and local features such as anthropogenic source types, emission rates and dispersion patterns. Moreover, the contribution of natural sources (e.g. seasalt and dust) varies from one region to another. However, a fundamental step towards a better understanding and identification of the sources of PM10 is constituted by the study of aerosol chemical composition. Moreover, in order to define cost effective emission abatement strategies, research studies to interpret the variability of PM10 levels and components and to identify the main emission sources influencing ambient air PM10 levels is still needed. In a national context of a better understanding of PM composition and sources, and therefore the implementation of efficient reduction plans of PM in France, various monitoring campaigns were carried out recently within different air quality programs, where PM10 filter samples were collected on a 24 hour basis at various type of French sites (e.g. urban, rural, etc.,), located in different urban environments. An extensive chemical characterization of PM10 composition at these sites was performed, and a large range of analytical techniques was used to determine the concentrations of various chemical species which included the analysis of OC, and EC, major ionic species (SO42-, NO3-, Cl-, NH4+, K+, Na+, Mg2+, and Ca2+), metals and trace elements (e.g. Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn, etc.,), and organic compounds (e.g. sugars, polyols, PAH, methyl PAH, sulfur PAH, alkanes, hopanes, and methoxyphenols). The seasonal and spatial

  12. Application guide for source PM10 measurement with constant sampling rate

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, W.E.; Dawes, S.S.

    1989-05-01

    The manual presents a method, Constant Sampling Rate (CSR), which allows determination of stationary source PM-10 emissions with hardware similar to that used for Methods 5 or 17. The operating principle of the method is to extract a multipoint sample so that errors due to spatial variation of particle size and anisokinetic sampling are kept within predetermined limits. The manual specifically addresses the use of the CSR methodology for determination of stationary source PM-10 emissions. Material presented in the manual includes calibration of sampling train components, pretest setup calculations, sample recovery, test data reduction, and routine equipment maintenance.

  13. Combustion Science to Reduce PM Emissions for Military Platforms

    Science.gov (United States)

    2012-01-01

    diesel injection configuration (Shaddix, 2008). Furthermore, USC has directly measured the flame speed and extinction characteristics of this...Lagrangian system is being developed. Nano -size soot precursors are released into the flowfield based on soot-inception theory. Evolution of these...experiments with m-xylene were conducted using a bubbler to add the m-xylene. The C2H4–N2 mixture was bubbled through m-xylene, which was held in a 200

  14. Measurement of $CP$ observables in $B^\\pm \\to D^{(*)} K^\\pm$ and $B^\\pm \\to D^{(*)} \\pi^\\pm$ decays

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Bordyuzhin, Igor; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano

    2017-01-01

    Measurements of $CP$ observables in $B^\\pm \\rightarrow D^{(*)} K^\\pm$ and $B^\\pm \\rightarrow D^{(*)} \\pi^\\pm$ decays are presented, where $D^{(*)}$ indicates a neutral $D$ or $D^*$ meson that is an admixture of $D^{(*)0}$ and $\\bar{D}^{(*)0}$ states. Decays of the $D^*$ meson to the $D\\pi^0$ and $D\\gamma$ final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the $B$ candidate invariant mass distribution. Decays of the $D$ meson are fully reconstructed in the $K^\\pm \\pi^\\mp$, $K^+ K^-$ and $\\pi^+ \\pi^-$ final states. The analysis uses a sample of charged $B$ mesons produced in $pp$ collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb$^{-1}$ taken at centre-of-mass energies of $\\sqrt{s}$ = 7, 8 and 13 TeV, respectively. The study of $B^{\\pm} \\to D^* K^{\\pm}$ and $B^{\\pm} \\to D^* \\pi^{\\pm}$ decays using a partial reconstruction method is the first of its kind, while the measurement of $...

  15. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  16. Estimation of PM10 in the traffic-related atmosphere for three road types in Beijing and Guangzhou, China.

    Science.gov (United States)

    Wang, Yu; Li, Jiong; Cheng, Xiang; Lun, Xiaoxiu; Sun, Dezhi; Wang, Xingzu

    2014-01-01

    The levels of roadside PM10 in Beijing, China, were investigated in 2011 and 2012 on a seasonal basis to estimate the population exposure to particulates for three road types. The measurements of PM10 were also conducted in the southern Chinese megacity of Guangzhou for comparison purposes. The results showed that roadside PM10 in Beijing correlated strongly with the PM10 background in the urban atmosphere. The levels of PM10 in street canyons were markedly higher than those along the open roads and in crossroad areas because of limited ventilation. An elevation of PM10 was observed in April, which was possibly due to the sand storms that frequently occur in the spring. Based on these observations, roadside PM10 in Beijing could have multiple origins and was to some extent dispersion-governed. In Guangzhou, the roadside PM10 did not closely relate to the background values. The PM10 pollution was greatly affected by local traffic conditions. The simulation of PM10 for different road types was completed during the study period using the Motor Vehicle Emissions Factor Model (MOBILE6.2) as an emission model and the California Line Source Dispersion Model (CALINE4) and Operational Street Pollution Model (OSPM) as dispersion models. The MOBILE6.2/CALINE4 software package was demonstrated to be sufficient for the simulation of PM10 in the open roads and crossroad areas in both Beijing and Guangzhou, and the simulation results of roadside PM10 in the street canyons by the MOBILE6.2/OSPM package were in close agreement with those of the measurements.

  17. Investigating of spatial variations of PM2.5 concentration in Suzhou using remote sensing imagery

    Science.gov (United States)

    Zhang, Shanzheng; Li, Bailiang

    2017-04-01

    Suzhou is located at the center of Yangtze Delta, suffering the air pollution from construction of mega city, industrial emission and traffic development. Particulate matter not greater than 2.5 micrometers (PM2.5) is now considered as the most important pollutants in the air in East China. For Suzhou city, some studies on PM2.5 temporal variations based on ground measurements have been conducted. However, until now, there is limited remote sensing based research to investigate the spatial pattern of PM2.5 in Suzhou. MODIS is often used to evaluate the spatial variabiilty of air quality, however, due to its low spatial resolution (250m), we have adopted China launched HJ-1 satellite with 30 m resolution of CCD sensor. Following the solar radiation S6 model and dark object atmospheric correction method (Kaufman,et al., 2000), atmospheric optical depth (AOD) was estimated. A statistical relationship has been built up between AOD and PM2.5. We have retrieved the spatial distribution of PM2.5 across Suzhou city in the winter of 2014. Results indicate that PM2.5 has the highest value in Kunshan (East of Suzhou) and Changshu and Taicang (NE of Suzhou) due to the heavy-polluted industry, while in the island of the Taihu Lake, the PM2.5 is significantly lower than other places maybe because of high deposition rate of PM2.5 over water and forest surfaces. The spatial variation also shows that traffic has less contribution to the PM2.5 generation than the industry. We believe this study will be very useful to identify the causes of local PM2.5 pollution. The findings could also benefit local management and policy making.

  18. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou,China

    Institute of Scientific and Technical Information of China (English)

    Junji Cao; Zhenxing Shen; Judith C.Chow; Guowei Qi; John G.Watsonc

    2009-01-01

    Aerosol observation was conducted for four seasons from September 2001 to August 2002 at five sampling sites in Hangzhou, South China, on PM10 mass, 22 elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Cd, Ba, and Pb), 5 major ions (F-, Cl-, NO3-, SO42-, and NH4+), and organic and elemental carbon (OC and EC), showing that PM10 mass ranged from 46.7 to 270.8 μg/m3, with an annual average of 119.2 μg/m3. Na, AI, Si, S. K, Ca, and Fe were the most abundant elements in PM10, most ors being in the form of SO42-. SO42-, NO4-, and NH4+ were the major ions, which contributed to about 20%; of the PM10 mass. The mean seasonal concentrations for SO42- , averaged over all sites, were found to be 18.0, 18.5, 24.Z and 21.4 μg/m3. for spring, summer, autumn, and winter, respectively, while the corresponding Ioadings for NO3- were 72, 4.7, 7.1, and 11.2μg/m3. and for NH4+ were 6.0, 5.9, 8.2. and 9.3 μg/m3, in the form mostly of NH4NO3 in spring, autumn, and winter, and mostly of (NH4)2SO4 in summer. The low NO3-/SO42- ratio found indicates coal combustion as the major source throughout the year. The mean annual concentrations of OC and EC in PM10 were found to be 21A, and 4.1 μg/m3, respectively. Material balance calculation indicated that fugitive dust, the secondary aerosol, and carbonaceous matter were the most abundant species in PM10 for the four seasons, as is characteristic for cities in South China.

  19. CHARACTERIZATION OF EMISSIONS FROM BURNING INCENSE

    Science.gov (United States)

    The primary objective of this study was to improve the characterization of particulate matter emissions from burning incense. Emissions of particulate matter were measured for 23 different types of incense using a cyclone/filter method. Emission rates for PM2.5 (particulate matte...

  20. Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion

    OpenAIRE

    2009-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contra...

  1. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment

    Science.gov (United States)

    Wang, Qun; Jiang, Nan; Yin, Shasha; Li, Xiao; Yu, Fei; Guo, Yue; Zhang, Ruiqin

    2017-07-01

    PM2.5 and PM10 samples were simultaneously collected in an urban site in Zhengzhou, China from October 2014 to July 2015 representing the four seasons. Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs) were quantified. The characteristics of their concentrations, seasonal variations, and sources of n-alkanes and PAHs were investigated. Diagnostic ratios and positive matrix factorization (PMF) were used to characterize carbonaceous species, identify their possible sources, and apportion the contributions from each possible source. The concentrations of the components exhibited distinct seasonal variation, that is, the concentrations are high in winter and low in summer. This finding could be associated with increase in air pollutant emissions during heating season and stable weather condition. The estimated total carbonaceous aerosol accounts for 32% of PM2.5 and 30% of PM10. Hence, carbonaceous compounds were the major components of particulate matter in the study area. Moreover, OC, EC, PAHs, and n-alkanes preferentially accumulated into fine particles. The carbonaceous components exhibited high correlation in PM2.5 and PM10, thereby indicating that their sources were similar. The PMF results revealed that the main sources of PAHs were coal combustion (40%) and motor vehicles (29%); n-alkanes were mainly from burning of fossil fuel (48%). These sources were consistent with the diagnostic ratios obtained. This study provides guidance for improving air quality and reducing human exposure to toxic air pollutants.

  2. Quantification of greenhouse gas emissions from a biological waste treatment facility

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Mønster, Jacob

    2017-01-01

    influence on the overall environmental impact of the treatment facility, assessed by consequential life cycle assessment. Including the higher whole-site fugitive emissions led to an increase in global warming potential, from a saving of 97kgCO2-eq.tonne-1 of treated waste (wet weight) to a loading of 71kg......Whole-site emissions of methane and nitrous oxide, from a combined dry anaerobic digestion and composting facility treating biowaste, were quantified using a tracer dispersion technique that combines a controlled tracer gas release from the treatment facility with time-resolved concentration...... CO2-eq. tonne-1, ultimately flipping the environmental profile of the treatment facility....

  3. Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation

    Science.gov (United States)

    Wang, G.; Xie, M.; Hu, S.; Gao, S.; Tachibana, E.; Kawamura, K.

    2010-07-01

    Dicarboxylic acids (C2-C10), metals, elemental carbon (EC), organic carbon (OC), and stable isotopic compositions of total carbon (TC) and total nitrogen (TN) were determined for PM10 samples collected at three urban and one suburban sites of Baoji, an inland city of China, during winter and spring 2008. Oxalic acid (C2) was the dominant diacid, followed by succinic (C4) and malonic (C3) acids. Total diacids in the urban and suburban areas were 1546±203 and 1728±495 ng m-3 during winter and 1236±335 and 1028±193 ng m-3 during spring. EC in the urban and the suburban atmospheres were 17±3.8 and 8.0±2.1 μg m-3 during winter and 20±5.9 and 7.1±2.7 μg m-3 during spring, while OC at the urban and suburban sites were 74±14 and 51±7.9 μg m-3 in winter and 51±20 and 23±6.1 μg m-3 in spring. Secondary organic carbon (SOC) accounted for 38±16% of OC in winter and 28±18% of OC in spring, suggesting an enhanced photochemical production of secondary organic aerosols in winter under an inversion layer development. Total metal elements in winter and spring were 34±10 and 61±27 μg m-3 in the urban air and 18±7 and 32±23 μg m-3 in the suburban air. A linear correlation (r2>0.8 in winter and r2>0.6 in spring) was found between primary organic carbon (POC) and Ca2+/Fe, together with a strong dependence of pH value of sample extracts on water-soluble inorganic carbon, suggesting fugitive dust as an important source of the airborne particles. Polycyclic aromatic hydrocarbons (PAHs), sulfate, and Pb in the samples well correlated each other (r2>0.6) in winter, indicating an importance of emissions from coal burning for house heating. Stable carbon isotope compositions of TC (δ13C) became higher with an increase in the concentration ratios of C2/OC due to aerosol aging. In contrast, nitrogen isotope compositions of TN (δ15N) became lower with an increases in the mass ratios of NH4+/PM10 and NO3-/PM10, which is possibly caused by an enhanced adsorption and

  4. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  5. Pollution of PM10 in an underground enclosed loading dock in Malaysia

    Science.gov (United States)

    Abualqumboz, M. S.; Mohammed, N. I.; Malakahmad, A.; Nazif, A. N.; Albattniji, A. T.

    2016-06-01

    The enclosed nature of underground loading docks results in accumulation of motor vehicles emissions. Thus, concentration of numerous harmful air pollutants including PM10 particles can increase and reach dangerous levels. This paper aims to study short-term and long-term exposure of PM10 particles inside an underground loading dock located in Malaysia. In addition, the correlation with indoor temperature, relative humidity and vehicles flow will be measured. The concentrations of PM10 were measured for three consecutive weeks using the real-time air quality monitoring instrument AQM60. Series of statistical tests and multiple linear regression analysis were applied on the data using SPSS software and MATLAB R2013a. The results illustrated that PM10 daily average concentration was in compliance with the Malaysian guideline of 150 µg/m3. Actually, 95% of instantaneous PM10 concentration readings were below 75 μg/m3. In addition, significant correlation were found between PM10 concentration and indoor temperature, relative humidity and the previous concentration. The multiple R and R2 were 0.91 and 0.83, respectively. PM10 concentration was also correlated with motor vehicles flow. In conclusion, health effects of long-term exposure to small repetitive doses of air pollutant inside underground facilities should be studied and appropriate control measures need to be implemented.

  6. Status and characteristics of ambient PM2.5 pollution in global megacities.

    Science.gov (United States)

    Cheng, Zhen; Luo, Lina; Wang, Shuxiao; Wang, Yungang; Sharma, Sumit; Shimadera, Hikari; Wang, Xiaoliang; Bressi, Michael; de Miranda, Regina Maura; Jiang, Jingkun; Zhou, Wei; Fajardo, Oscar; Yan, Naiqiang; Hao, Jiming

    2016-01-01

    Ambient PM2.5 pollution is a substantial threat to public health in global megacities. This paper reviews the PM2.5 pollution of 45 global megacities in 2013, based on mass concentration from official monitoring networks and composition data reported in the literature. The results showed that the five most polluted megacities were Delhi, Cairo, Xi'an, Tianjin and Chengdu, all of which had an annual average concentration of PM2.5 greater than 89μg/m(3). The five cleanest megacities were Miami, Toronto, New York, Madrid and Philadelphia, the annual averages of which were less than 10μg/m(3). Spatial distribution indicated that the highly polluted megacities are concentrated in east-central China and the Indo-Gangetic Plain. Organic matter and SNA (sum of sulfate, nitrate and ammonium) contributed 30% and 36%, respectively, of the average PM2.5 mass for all megacities. Notable seasonal variation of PM2.5 polluted days was observed, especially for the polluted megacities of China and India, resulting in frequent heavy pollution episodes occurring during more polluted seasons such as winter. Marked differences in PM2.5 pollution between developing and developed megacities require more effort on local emissions reduction as well as global cooperation to address the PM2.5 pollution of those megacities mainly in Asia.

  7. [Characterising seasonal variation and spatial distribution of PM2.5 species in Shenzhen].

    Science.gov (United States)

    Yun, Hui; He, Ling-Yan; Huang, Xiao-Feng; Lan, Zi-Juan; Li, Xiang; Zeng, Li-Wu

    2013-04-01

    To investigate the effect of meteorological characteristics on PM2.5 chemical composition and the spatial distribution of different PM2.5 species in Shenzhen, 24-h PM2.5 samples were collected every six days from December 2008 to December 2009. The sampling network included an industrial site at Baoan, an urban site at Luohu and a seaside site at Yantian. Water-soluble inorganic ions and carbonaceous material (organic carbon and elemental carbon) were analyzed. The industrial site showed a much higher concentration than that of other two sites of organic matter, elemental carbon and nitrate, which presented the obvious difference of local emissions. But for the concentration of sulfate and ammonium of three different sites nearly stayed at the same level and indicated that they were mainly influenced by regional transport. OC/EC had the characteristics of the industrial site climate is the dominant meteorological feature of the Pearl River Delta with a southwesterly transport and abundant rain in spring and summer, in contrast to a northwesterly transport and little rain in fall and winter, the PM2.5 pollution was much more serious in winter than in summer. Compared with the results of the similar experiment in 2004, the concentration of sulfate in PM2.5 has significantly declined because of the measures of reducing the emission of sulfer dioxide. But the pollution of vehicle emissions has become significant.

  8. Emissions of particulate matter from animal houses in the Netherlands

    Science.gov (United States)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  9. Observation of photon polarization in $B^\\pm \\to K^\\pm\\pi^\\mp\\pi^\\pm\\gamma$ decays

    CERN Multimedia

    Veneziano, G

    2014-01-01

    A study of the flavor-changing neutral current radiative $B^{\\pm} \\to K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}\\gamma$ decays performed using data collected in proton-proton collisions with the LHCb detector at $7$ and $8\\,$TeV center-of-mass energies is presented. In this sample, corresponding to an integrated luminosity of $3\\,\\text{fb}^{-1}$, nearly $14\\,000$ signal events are reconstructed and selected, containing all possible intermediate resonances with a $K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}$ final state in the $[1.1, 1.9]$\\,GeV/$c^{2}$ mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of $K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}$ mass and the asymmetry between the number of signal events found on each side of the plane is obtained. The first direct observation of the photon polarization in the $b \\to s\\gamma$ transition is reported with a significance of $5.2\\,\\sigma$.

  10. One-photon exchange contribution to $B^{\\pm}\\to (\\pi^{\\pm},K^{\\pm}) \\ell^+\\ell^-$ decays

    CERN Document Server

    Guevara, A; Roig, P; Tostado, S L

    2015-01-01

    A so far neglected long-distance (also called one-photon exchange) contribution to the rare semileptonic $B^{\\pm}\\to (\\pi^{\\pm},K^{\\pm})\\ell^+\\ell^-$ ($\\ell=e,\\,\\mu$) transitions is evaluated. Although it does not contribute to solve the possible breaking of lepton-universality observed by LHCb in the $B^{\\pm}\\to K^{\\pm}(\\mu^+\\mu^-/e^+e^-)$ ratio, nor provides an important hadronic contamination to their decay rates, its contribution to the branching ratios of the $B^{\\pm}\\to \\pi^{\\pm}\\ell^+\\ell^-$ transitions turns out to be significant. This hadronic pollution should be taken into account when looking for new physics effects in decays into pions, which suggests to restrict these searches to squared lepton-pair invariant mass in the $(1,8)$ GeV$^2$ range. The interference of the one-photon exchange contribution with the dominant short-distance one-loop amplitude induces a sizable CP asymmetry in these rare decays, which calls for dedicated measurements.

  11. Atmospheric Carbon Tetrachloride: Mysterious Emissions Gap Almost Closed

    Science.gov (United States)

    Liang, Q.; Newman, P. A.; Reimann, S.

    2016-12-01

    Carbon tetrachloride (CCl4) is a major ozone-depleting substance and its production and consumption is controlled under the Montreal Protocol for emissive uses. The most recent WMO/UNEP Scientific Assessment of Ozone Depletion [WMO, 2014] estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg yr-1, based on country-by-country reports to UNEP, vs. a global top-down emissions estimate of 57 Gg yr-1, based on atmospheric measurements. To understand the gap between the top-down and bottom-up emissions estimates, a CCl4 activity was formed under the auspices of the Stratosphere-Troposphere Processes And their Role in Climate (SPARC) project. Several new findings were brought forward by the SPARC CCl4 activity. CCl4 is destroyed in the stratosphere, oceans, and soils. The total lifetime estimate has been increased from 26 to 33 years. The new 33-year total lifetime lowers the top-down emissions estimate to 40 (25-55) Gg yr-1. In addition, a persistent hemispheric difference implies substantial ongoing Northern Hemisphere emissions, yielding an independent emissions estimate of 30 Gg yr-1. The combination of these two yields an emissions estimate of 35 Gg yr-1. Regional estimates have been made for Australia, North America, East Asia, and Western Europe. The sum of these estimates results in emissions of 21 Gg yr-1, albeit this does not include all regions of the world. Four bottom-up CCl4 emissions pathways have been identified, i.e., fugitive, unreported non-feedstock, unreported inadvertent, and legacy emissions. The new industrial bottom-up emissions estimate includes emissions from chloromethanes plants (13 Gg yr-1) and feedstock fugitive emissions (2 Gg yr-1). When combined with legacy emissions and unreported inadvertent emissions ( 10 Gg yr-1), the total global emissions are 20±5 Gg yr-1. While the new bottom-up value is still less than the aggregated top-down values, these estimates reconcile the CCl4 budget discrepancy when considered at the edges of their

  12. Comprehensive chemical characterization of industrial PM2.5 from steel industry activities

    Science.gov (United States)

    Sylvestre, Alexandre; Mizzi, Aurélie; Mathiot, Sébastien; Masson, Fanny; Jaffrezo, Jean L.; Dron, Julien; Mesbah, Boualem; Wortham, Henri; Marchand, Nicolas

    2017-03-01

    Industrial sources are among the least documented PM (Particulate Matter) source in terms of chemical composition, which limits our understanding of their effective impact on ambient PM concentrations. We report 4 chemical emission profiles of PM2.5 for multiple activities located in a vast metallurgical complex. Emissions profiles were calculated as the difference of species concentrations between an upwind and a downwind site normalized by the absolute PM2.5 enrichment between both sites. We characterized the PM2.5 emissions profiles of the industrial activities related to the cast iron (complex 1) and the iron ore conversion processes (complex 2), as well as 2 storage areas: a blast furnace slag area (complex 3) and an ore terminal (complex 4). PM2.5 major fractions (Organic Carbon (OC) and Elemental Carbon (EC), major ions), organic markers as well as metals/trace elements are reported for the 4 industrial complexes. Among the trace elements, iron is the most emitted for the complex 1 (146.0 mg g-1 of PM2.5), the complex 2 (70.07 mg g-1) and the complex 3 (124.4 mg g-1) followed by Al, Mn and Zn. A strong emission of Polycyclic Aromatic Hydrocarbons (PAH), representing 1.3% of the Organic Matter (OM), is observed for the iron ore transformation complex (complex 2) which merges the activities of coke and iron sinter production and the blast furnace processes. In addition to unsubstituted PAHs, sulfur containing PAHs (SPAHs) are also significantly emitted (between 0.011 and 0.068 mg g-1) by the complex 2 and could become very useful organic markers of steel industry activities. For the complexes 1 and 2 (cast iron and iron ore converters), a strong fraction of sulfate ranging from 0.284 to 0.336 g g-1) and only partially neutralized by ammonium, is observed indicating that sulfates, if not directly emitted by the industrial activity, are formed very quickly in the plume. Emission from complex 4 (Ore terminal) are characterized by high contribution of Al (125.7 mg

  13. A Study of metabolic transformation of organic and inorganic components in PM2.5 and PM10, South Korea

    Science.gov (United States)

    Kim, J.; Yoon, H.; Lee, M.

    2012-12-01

    The important factors of atmospheric particle matter (PM) are size, concentration, composition and toxicity which can considerably affect the possible human health problem, especially respiratory diseases, visibility reduction and climate change. PM2.5 and PM10 are complex mixture of ammonium sulfate, ammonium nitrate, organic carbon, inorganic carbon and inorganic constituents. Recently, most researches of source attribution and assessments of the relationship between health effects and particle concentrations have not taken advantage of the development in analytical tools measuring the detailed molecular structure and microstructure of particles and of the knowledge of particle formation mechanisms in combustion system. This study will combine variety analytical techniques that can provide structural and compositional information to determine the correlation between sources of hazardous material and physicochemical properties in aerosol particle. Inorganic metal can be rapidly quantifying to filter base using ED-XRF (Energy-dispersive X-ray fluorescence). Speciation and quantification of water soluble components applied HPLC-ICP-MS and LC-MS NMR (nuclear magnetic resonance). Afterward, we investigate metabolic transformations of atmospheric particle matter also using FE-TEM (Field Emission Transmission Electron Microscopy).

  14. Measurement of $C\\!P$ violation in the phase space of $B^{\\pm} \\to K^{\\pm} \\pi^{+} \\pi^{-}$ and $B^{\\pm} \\to K^{\\pm} K^{+} K^{-}$ decays

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De C