WorldWideScience

Sample records for fuels synthesis volume

  1. Fuels planning: science synthesis and integration; fact sheet: The Fuels Synthesis Project overview

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The geographic focus of the "Fuels Planning: Science Synthesis and Integration" project #known as the Fuels Synthesis Project# is on the dry forests of the Western United States. Target audiences include fuels management specialists, resource specialists, National Environmental Policy Act #NEPA# planning team leaders, line officers in the USDA Forest Service...

  2. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  3. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. Small Volume Fuel Testers Report

    Energy Technology Data Exchange (ETDEWEB)

    Schoegl, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-31

    Micro-liter fuel ignition testing (μ-FIT) is based on the premise that characteristics FREI (Flames with Repetitive Extinction and Ignition, i.e. cyclically occurring combustion events within heated capillaries), are linked to fuel properties. In early FY16, proof-of-concept measurements with primary reference fuel (PRF) mixtures, i.e. blends of n-heptane and iso-octane, yielded clear evidence for the feasibility of the approach. Our experiments showed that it is critical to accurately link observed flame positions to local temperatures, which provides information on ignition, extinction and flame propagation, all of which are known to be impacted by fuel properties. In FY16, one major hurdle was uncertainty of temperature calibration, which required significant efforts for corrective action that were not included in the original scope of work. Temperature calibrations are obtained by translating a thermocouple within the capillary in absence of a flame. While measurements have good repeatability when accounting for transient and insertion effects, results from nominally identical thermocouples reveal unacceptable uncertainty (up to ±50K), which is attributed to variations in thermocouple placement and manufacturing tolerances. This issue is currently being resolved by switching to non-intrusive optical temperature measurements. Updates are expected to yield uncertainties of less than ±10K, while also eliminating transient and insertion effects. The experimental work was complemented by computational efforts where it was shown that a simplified Lagrangian zero-D model with detailed kinetics yields fuelspecific differentiation of ignition temperatures for simple fuels that are consistent with experiments. Further, a 2D transient model was implemented in OpenFOAM to investigate combustion behavior of simple fuels at elevated pressure. In an upcoming visit to LLNL, more advanced simulations using LLNL’s computational tools (e.g. zero-RK) are planned, which will

  7. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  8. Social science to improve fuels management: a synthesis of research on aesthetics and fuels management

    Science.gov (United States)

    Robert L. Ryan

    2005-01-01

    A series of syntheses were commissioned by the USDA Forest Service to aid in fuels mitigation project planning. This synthesis focuses on research addressing aesthetic considerations of fuels management. A general finding is that fuels management activities can contribute to the visual quality of a landscape. Topics covered in the synthesis include research findings on...

  9. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The two books of Volume 1 comprise the first in a three-volume series of compilations on the radioactive decay propertis of CANDU fuel and deal with the natural uranium fuel cycle. Succeeding volumes will deal with fuel cycles based on plutonium recycle and thorium. In Volume 1 which is divided into three parts, the computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 3 contains the data relating to the plutonium product and the high level wastes produced during fuel reprocessing. (author)

  10. Fuel conditioning facility electrorefiner volume calibration

    International Nuclear Information System (INIS)

    Bucher, R.G.; Orechwa, Y.

    1995-01-01

    In one of the electrometallurgical process steps of the Fuel Conditioning Facility (FCF), die in-process nuclear material is dissolved in the electrorefiner tank in an upper layer of a mixture of liquid LiCl-KCl salt and a lower layer of liquid cadmium. The electrorefiner tank, as most process tanks, is not a smooth right-circular cylinder for which a single linear volume calibration curve could be fitted over the whole height of the tank. Rather, the tank contains many internal components, which cause systematic deviations from a single linear function. The nominal operating temperature of the electrorefiner is 500 degrees C although the salt and cadmium are introduced at 410 degrees C. The operating materials and temperatures preclude multiple calibration runs at operating conditions. In order to maximize the calibration information, multiple calibration runs were performed with water at room temperature. These data allow identification of calibration segments, and preliminary estimation of the calibration function and calibration uncertainties. The final calibration function is based on a combination of data from die water calibrations and the measurements made during the filling of the electrorefiner with salt and cadmium for operation

  11. Energy perspectives 2035 - Volume 1, synthesis

    International Nuclear Information System (INIS)

    2007-01-01

    This comprehensive report published by the Swiss Federal Office of Energy (SFOE) presents a synthesis of the results of a study that examined four scenarios concerning future developments in Swiss energy supply policy. The four scenarios include the variants entitled 'business as usual', 'increased co-operation', 'new priorities' and 'on the way to a 2000-Watt society'. The four scenarios are presented in detail in a separate paper. Here, for each scenario, policy options, energy demand, electricity offerings and CO 2 emissions are noted. The scenarios are compared with each other and evaluated with respect to energy efficiency and energy demand. Examples are quoted and developments in demand are examined. Their sensitivities with respect to Gross Domestic Product (GDP), climate change and their costs are discussed. Renewable sources of energy for power, heating and motor fuels are discussed and non-renewable sources of energy such as nuclear power, gas-fired power stations, combined heat and power installations and district heating systems are examined. Electricity supply and possible shortages are discussed, as are environmental pollution and nuclear wastes. Finally, a dynamic balance model and effects on consumption, trade, employment and welfare are discussed and challenges placed concerning security of supply, environmental protection, the economy, society, politics and legislation are examined

  12. Fuel quality processing study, volume 1

    Science.gov (United States)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  13. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-12-01

    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  14. Barnwell Nuclear Fuels Plant applicability study. Volume III. Appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Volume III suppliees supporting information to assist Congress in making a decision on the optimum utilization of the Barnwell Nuclear Fuels Plant. Included are applicable fuel cycle policies; properties of reference fuels; description and evaluation of alternative operational (flue cycle) modes; description and evaluation of safeguards systems and techniques; description and evaluation of spiking technology; waste and waste solidification evaluation; and Department of Energy programs relating to nonproliferation

  15. Alternative Fuel News, Volume 4, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    Ficker, C.

    2000-11-14

    This issue of Alternative Fuel News focuses on transit buses and refuse haulers. Many transit agencies and waste management companies are investigating alternatives to traditional diesel buses and refuse haulers.

  16. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  17. RIA Fuel Codes Benchmark - Volume 1

    International Nuclear Information System (INIS)

    Marchand, Olivier; Georgenthum, Vincent; Petit, Marc; Udagawa, Yutaka; Nagase, Fumihisa; Sugiyama, Tomoyuki; Arffman, Asko; Cherubini, Marco; Dostal, Martin; Klouzal, Jan; Geelhood, Kenneth; Gorzel, Andreas; Holt, Lars; Jernkvist, Lars Olof; Khvostov, Grigori; Maertens, Dietmar; Spykman, Gerold; Nakajima, Tetsuo; Nechaeva, Olga; Panka, Istvan; Rey Gayo, Jose M.; Sagrado Garcia, Inmaculada C.; Shin, An-Dong; Sonnenburg, Heinz Guenther; Umidova, Zeynab; Zhang, Jinzhao; Voglewede, John

    2013-01-01

    Reactivity-initiated accident (RIA) fuel rod codes have been developed for a significant period of time and they all have shown their ability to reproduce some experimental results with a certain degree of adequacy. However, they sometimes rely on different specific modelling assumptions the influence of which on the final results of the calculations is difficult to evaluate. The NEA Working Group on Fuel Safety (WGFS) is tasked with advancing the understanding of fuel safety issues by assessing the technical basis for current safety criteria and their applicability to high burnup and to new fuel designs and materials. The group aims at facilitating international convergence in this area, including the review of experimental approaches as well as the interpretation and use of experimental data relevant for safety. As a contribution to this task, WGFS conducted a RIA code benchmark based on RIA tests performed in the Nuclear Safety Research Reactor in Tokai, Japan and tests performed or planned in CABRI reactor in Cadarache, France. Emphasis was on assessment of different modelling options for RIA fuel rod codes in terms of reproducing experimental results as well as extrapolating to typical reactor conditions. This report provides a summary of the results of this task. (authors)

  18. Nuclear Fuels & Materials Spotlight Volume 5

    International Nuclear Information System (INIS)

    Petti, David Andrew

    2016-01-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  19. Nuclear Fuels & Materials Spotlight Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  20. Alternatives to traditional transportation fuels 1994. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  1. Social science to improve fuels management: a synthesis of research on assessing social acceptability of fuels treatments

    Science.gov (United States)

    Terry C. Daniel; Michael Valdiserri; Carrie R. Daniel; Pamela Jakes; Pamela Jakes; Susan Barro

    2005-01-01

    A series of syntheses were commissioned by the USDA Forest Service to aid in fuels mitigation project planning. This synthesis focuses on research for assessing the social acceptability of fuels treatments. The synthesis is structured around six important considerations for any social acceptability assessment: defining the fuels treatments being assessed; representing...

  2. Nuclear fuel cycle. International overview. Updating of volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    It is presented the updating of the vol.I of the 'Nuclear fuel cycle - International overview' series which informs about the nuclear fuel cycle in the main countries that supply and /or use nuclear energy. It intends to serve the managerial staff since it gives a global view of the fuel cycle as well as its extent in each of the countries focalized. Information about Japan, Federal Republic of Germany, United Kingdon, France and Canada are presented. At first a summary about the situation of each country is presented and then all data for each country is presented in a tree - graphyic type, using an analysis and synthesis method, developed at the Nuclear Information Center, Brazil. (E.G.) [pt

  3. Liquid fuel production from hemicellulose. 2 Volumes

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Hemicellulose was derived from a variety of pretreated wood substrates. A variety of different fungi was screened for the ability of their culture filtrates to hydrolyse hemicellulose to its composite sugars. Three strains of Clostridia were screened to see which could produce higher amounts of solvents from those sugars. C. acetobutylicum proved to produce highest amounts of butanol and conditions for maximum solvent production by this anaerobe were defined. Six strains of facultative anaerobes were screened for their ability to produce power solvents from hemicellulose derived sugars. Klebsiella pneumoniae could efficiently utilize all the major sugars present in wood hemicellulose with 2,3-butanediol being the major end product. The conditions for maximum diol production by K. pneumoniae grown on sugars normally found in hemicellulose hydrolysates were defined. The utilization of wood hemicellulose hydrolyzates by microorganisms for the production of liquid fuels was investigated. Pretreatment of aspen wood by steam-explosion was optimized with respect to maximizing the pentosan yields in the water-soluble fractions of steam-treated substrates. These fractions were then hydrolyzed by dilute sulphuric acid or by the xylanase enzyme(s) present in the culture filtrates of Trichoderma harzianum. The relative efficiencies of hydrolysis were compared with respect to the release of reducing sugars and monosaccharides. The hemicellulose hydrolyzates were then used as substrates for fermentation. Butanediol yields of 0.4-0.5 g per g of sugar consumed were achieved using K. pneumoniae up to 0.16 g butanol could be attained per g of hemicellulose sugar utilized. 102 refs., 50 figs., 169 tabs.

  4. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  5. Electron-beam synthesis of fuel in the gas phase

    International Nuclear Information System (INIS)

    Ponomarev, A.V.; Holodkova, E.M.; Ershov, B.G.

    2011-01-01

    Complete text of publication follows. Tendencies of world development focus attention on a vegetative biomass as on the major raw resource for future chemistry and a fuel industry. The significant potential for perfection of biomass conversion processes is concentrated in the field of radiation-chemical methods. Both the mode of post-radiation distillation and mode of electron-beam distillation of biomass have been investigated as well as the mode of gas-phase synthesis of liquid engine fuel from of biomass distillation products. Synergistic action of radiation and temperature has been analyzed at use of the accelerated electron beams allowing to combine radiolysis with effective radiation heating of a material without use of additional heaters. At dose rate above 1 kGy/s the electron-beam irradiation results in intensive decomposition of a biomass and evaporation of formed fragments with obtaining of a liquid condensate (∼ 60 wt%), CO 2 and Co gases (13-18 wt%) and charcoal in the residue. Biomass distillation at radiation heating allows to increase almost three times an organic liquid yield in comparison with pyrolysis. The majority of liquid products from cellulose is represented by the furan derivatives considered among the very perspective components for alternative engine fuels. Distilled-off gases and vapors are diluted with gaseous C 1 -C 5 alkanes and again are exposed to an irradiation to produce liquid fuel from a biomass. This transformation is based on a method of electron-beam circulation conversion of gaseous C 1 -C 5 alkanes (Ponomarev, A.V., Radiat. Phys. Chem., 78, 48, 2009) which consists in formation and removal of liquid products with high degree of carbon skeleton branching. The isomers ratio in a liquid may be controlled by means of change of an irradiation condition and initial gas composition. The irradiation of gaseous alkanes together with vaporous products of biomass destruction allows to synthesize the fuel enriched by conventional

  6. Materials Research Society Symposium Proceedings Volume 635. Anisotropic Nanoparticles - Synthesis, Characterization and Applications

    National Research Council Canada - National Science Library

    Lyon, L

    2000-01-01

    This volume contains a series of papers originally presented at Symposium C, "Anisotropic Nanoparticles Synthesis, Characterization and Applications," at the 2000 MRS Fall Meeting in Boston, Massachusetts...

  7. Influence of the fuel in the nanostructure catalyzer oxides synthesis

    International Nuclear Information System (INIS)

    Zampiva, R.Y.S.; Panta, P.C.; Carlos, R.B.; Alves, A.K.; Bergmann, C.P.

    2012-01-01

    Among the techniques used in catalysts production, the solution combustion synthesis (SCS) has been increasingly applied due the possibility of producing, at low cost, highly pure and homogeneous nanostructured powders. The smaller the particle diameter, the greater the activity of the catalyst. In SCS, the size of the particles produced depends on the process variables. In order to formulate the optimal methodology for the preparation of nanostructured oxides for catalysis, it was studied the fuel-oxidant concentration ratio, and the use of glycine and polyethylene glycol with molecular weight 200 (PEG 200) as fuel in the SCS of Iron, Magnesium and Molybdenum based catalysts. The phase identification of the products was performed by x-ray diffraction (XRD). Particle size and surface area analysis were done to characterize the particles size and the samples morphology was obtained by scanning electron microscopy. Results indicated the formation of high purity nanomaterials obtained for low concentrations of fuel, and a wide variation in the nanostructure sizes depending on the concentration and type of fuel used. (author)

  8. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 1

    International Nuclear Information System (INIS)

    1987-01-01

    This design report describes the NUS final design of the Prototype Spent Nuclear Fuel Rod Consolidation System. This summary presents the approach and the subsequent sections describe, in detail, the final design. Detailed data, drawings, and the design Basis Accident Report are provided in Volumes II thru V. The design as presented, represents one cell of a multicell facility for the dry consolidation of any type of PWR and BWR fuel used in the United States LWR industry that will exceed 1% of the fuel inventory at the year 2000. The system contains the automatically-controlled equipment required to consolidate 750MT (heavy metal)/year, at 75% availability. The equipment is designed as replaceable components using state-of-the-art tchnology. The control system utilizes the most advanced commercially available equipment on the market today. Two state-of-the-art advanced servo manipulators are provided for system maintenance. In general the equipment is designed utilizing fabricated and commercial components. For example, the main drive systems use commercially available roller screws. These rollers screws have 60,000 hours of operation in nuclear power plants and have been used extensively in other applications. The motors selected represent the most advanced designed servo motors on the market today for the precision control of machinery. In areas where precise positioning was not required, less expensive TRW Globe motors were selected. These are small compact motors with a long history of operations in radiation environments. The Robotic Bridge Transporters are modified versions of existing bridge cranes for remote automatic operations. Other equipment such as the welder for fuel canister closure operations is a commercially available product with an operating history applicable to this process. In general, this approach was followed throughout the design of all the equipment and will enable the system to be developed without costly development programs

  9. Fuel performance annual report for 1983. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Dunenfeld, M.S.

    1985-03-01

    This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  10. Variable volume combustor with nested fuel manifold system

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  11. Alternative Fuel Research in Fischer-Tropsch Synthesis

    Science.gov (United States)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  12. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  13. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 2, Appendices

    International Nuclear Information System (INIS)

    1987-01-01

    This document, Volume 2, provides the appendices to Volume 1 of the Fuel Rod Consolidation Project. It provides information on the following: References; Trade-off Studies; Instrument List; RAM Data; Fabrication Specifications; Software Specifications; and Design Requirements

  14. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  15. LIFE Materails: Molten-Salt Fuels Volume 8

    International Nuclear Information System (INIS)

    Moir, R.; Brown, N.; Caro, A.; Farmer, J.; Halsey, W.; Kaufman, L.; Kramer, K.; Latkowski, J.; Powers, J.; Shaw, H.; Turchi, P.

    2008-01-01

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  16. Multimetallic nanosheets: synthesis and applications in fuel cells.

    Science.gov (United States)

    Zeb Gul Sial, Muhammad Aurang; Ud Din, Muhammad Aizaz; Wang, Xun

    2018-04-03

    Two-dimensional nanomaterials, particularly multimetallic nanosheets with single or few atoms thickness, are attracting extensive research attention because they display remarkable advantages over their bulk counterparts, including high electron mobility, unsaturated surface coordination, a high aspect ratio, and distinctive physical, chemical, and electronic properties. In particular, their ultrathin thickness endows them with ultrahigh specific surface areas and a relatively high surface energy, making them highly favorable for surface active applications; for example, they have great potential for a broad range of fuel cell applications. First, the state-of-the-art research on the synthesis of nanosheets with a controlled size, thickness, shape, and composition is described and special emphasis is placed on the rational design of multimetallic nanosheets. Then, a correlation is performed with the performance of multimetallic nanosheets with modified and improved electrochemical properties and high stability, including for the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation (FAO), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and methanol tolerance are outlined. Finally, some perspectives and advantages offered by this class of materials are highlighted for the development of highly efficient fuel cell electrocatalysts, featuring low cost, enhanced performance, and high stability, which are the key factors for accelerating the commercialization of future promising fuel cells.

  17. Hydrothermal synthesis for fabrication and reprocessing of MOX nuclear fuel

    International Nuclear Information System (INIS)

    Ohta, Suguru; Yamamura, Tomoo; Shirasaki, Kenji; Satoh, Isamu; Shikama, Tatsuo

    2011-01-01

    To improve the nuclear proliferation resistance and to minimize use of chemicals, a new reprocessing and fabrication process of 'mixed oxide' (MOX) fuel was proposed and studied by using simulated spent fuel solutions. The process is consisting of the two steps, i.e. the removal of fission product (FP) from dissolved spent fuel by using carbonate solutions (Step-1), and hydrothermal synthesis of uranium dioxides (Step-2). In Step-1, rare earth (the precipitation ratio: 90%) and alkaline earth (10-50% for Sr) as FP were removed based on their low solubility of hydroxides and carbonate salts, with uranium kept dissolved for the certain carbonate solutions of weak base (Type 2) or mixtures of relatively strong base and weak base (Type 3). In Step-2, the features of uranium dioxides UO 2+x particles, i.e. stoichiometry (x=0.05-0.2), size (0.2-3 μm) and shape (cubic, spherical, rectangular parallelpiped, etc.), were controlled, and the cesium was removed down to 40 ppm by an addition of organic additives. The decontamination factors (DF) for cesium exceeds 10 5 , whereas the total DF of all the simulated FP were as low as the order of 10 which requires future studies for removal of alkaline earth, Re and Tc etc. (author)

  18. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  19. Social science to improve fuels management: a synthesis of research relevant to communicating with homeowners about fuels management

    Science.gov (United States)

    Martha C. Monroe; Lisa Pennisi; Sarah McCaffrey; Dennis Mileti

    2006-01-01

    A series of syntheses were commissioned by the USDA Forest Service to aid in fuels mitigation project planning. This synthesis focuses on how managers can most effectively communicate with the public about fuels management efforts. It summarizes what is known about the techniques of persuasive communication programs and provides an outline of the characteristics of...

  20. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How is a refinery motor vehicle diesel... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using the...

  1. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

    1998-12-01

    Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

  2. Fuel performance annual report for 1991. Volume 9

    International Nuclear Information System (INIS)

    Painter, C.L.; Alvis, J.M.; Beyer, C.E.; Marion, A.L.; Kendrick, E.D.

    1994-08-01

    This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry's focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided

  3. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  4. Final Generic Environmental Impact Statement. Handling and storage of spent light water power reactor fuel. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1979-08-01

    This volume contains the following appendices: LWR fuel cycle, handling and storage of spent fuel, termination case considerations (use of coal-fired power plants to replace nuclear plants), increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data, characteristics of nuclear fuel, away-from-reactor storage concept, spent fuel storage requirements for higher projected nuclear generating capacity, and physical protection requirements and hypothetical sabotage events in a spent fuel storage facility

  5. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  6. The determinants of fuel use in the trucking industry – volume, size and the rebound effect

    DEFF Research Database (Denmark)

    Mulalic, Ismir

    2011-01-01

    We analyse the determinants of trucking firm fuel use. We develop a simple model to show that trucking firm fuel use depends, in addition to the fuel price and the traffic volume, also on the output of the trucking firm’s production process (the movement of cargo) measured in tonkilometres...... these elasticities using a simultaneous-equation model based on aggregate time-series data for Denmark for 1980-2007. Our best estimates of the short run and the long run rebound effects for road freight transportation are 19% and 28%, respectively. We also find that an increase in the fuel price surprisingly has...... a small but significant negative effect on the fuel efficiency (measured here as vehicle kilometres travelled (VKT) per litre of consumed fuel), i.e. a 1% increase in the fuel price decreases the fuel efficiency by 0.13% in the long run. However, less distance has to be driven for the same payload. An 1...

  7. Social science to improve fuels management: a synthesis of research on collaboration.

    Science.gov (United States)

    Victoria Sturtevant; Margaret Ann Moote; Pamela Jakes; Anthony S. Cheng

    2005-01-01

    A series of syntheses were commissioned by the USDA Forest Service to aid in fuels mitigation project planning. This synthesis focuses on collaboration research, and offers knowledge and tools to improve collaboration in the planning and implementation of wildland fire and fuels management projects. It covers a variety of topics including benefits of collaboration,...

  8. Solar Power and Solar Fuels Synthesis Report. Technology, market and research activities 2006-2011

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt; Nilsson, Ronny; Rehnlund, Bjoern [Grontmij, Stockholm (Sweden); Kasemo, Bengt [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2012-11-01

    The objectives of the synthesis is to survey the situation and give an accumulated and concentrated knowledge about status, needs and opportunities for Swedish research and Swedish industry within the area of solar power and solar fuels, to be used for prioritisation of further efforts. The synthesis shall identify strengths and weaknesses in areas fundamental for development of solar power and solar fuels, focused on the development in Sweden, but in an international context. The synthesis shall also cover proposals for future Swedish research efforts and organisation of future Swedish research programs.

  9. Proceedings of the 5th international conference on stability and handling of liquid fuels. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Giles, H.N. [ed.

    1995-04-01

    Volume 2 of these proceedings contains 34 papers divided into the following sessions: Deposit and insolubles measurement (5 papers); Gasolines (4 papers); Heavy oils and refinery processing (3 papers); Middle distillate fuels (7 papers); New fuels and environmental mandates (5 papers); and a Poster session (10 papers). Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    International Nuclear Information System (INIS)

    1978-01-01

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited

  11. Statistical model for grain boundary and grain volume oxidation kinetics in UO2 spent fuel

    International Nuclear Information System (INIS)

    Stout, R.B.; Shaw, H.F.; Einziger, R.E.

    1989-09-01

    This paper addresses statistical characteristics for the simplest case of grain boundary/grain volume oxidation kinetics of UO 2 to U 3 O 7 for a fragment of a spent fuel pellet. It also presents a limited discussion of future extensions to this simple case to represent the more complex cases of oxidation kinetics in spent fuels. 17 refs., 1 fig

  12. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  13. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  14. Fuel Line: Defense Energy Support Center. Volume 2

    National Research Council Canada - National Science Library

    2000-01-01

    .... Fuel Line is prepared by desktop publishing applications and designed to provide timely, factual information on policies, plans, operations, and technical developments of the Center and interrelated subject matter...

  15. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  16. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  17. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II

  18. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  19. LIFE Materials: Fuel Cycle and Repository Volume 11

    International Nuclear Information System (INIS)

    Shaw, H.; Blink, J.A.

    2008-01-01

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  20. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  1. GC of catalytic reactions products involved in the promising fuel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zheivot, V.; Sazonova, N. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Boreskov Inst. of Catalysis

    2012-09-15

    Catalytic reactions involved in the synthesis of the promising kinds of novel fuel and products formed in these reactions were systematized according to the resulting fuel type. Generalization of the retention of the substances comprising these products is presented. Chromatograms exhibiting their separation on chromatographic materials with the surface of different chemical properties are summarized. We propose procedures for gas-chromatographic analysis of the catalytic reactions products formed in the synthesis of hydrogen, methanol, dimethyl ether and hydrocarbons as a new generation of fuel alternative to petroleum and coal. For partial oxidation of methane into synthesis gas, on-line determination of the components obtained in the reaction was carried out by gas chromatography and gas analyzer based on different physicochemical methods (IR spectroscopy and electrochemical methods). Similarity of the results obtained using these methods is demonstrated. (orig.)

  2. 77 FR 59458 - Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume

    Science.gov (United States)

    2012-09-27

    ... gasoline and diesel fuel or renewable fuels such as ethanol and biodiesel. Potentially regulated categories... of Biodiesel 1. Grease and Rendered Fats 2. Corn Oil 3. Soybean Oil 4. Effects on Food Prices 5.... Deliverability and Transport Costs of Materials, Goods, and Products Other Than Renewable Fuel 6. Wetlands...

  3. Fuels planning: science synthesis and integration; economic uses fact sheet 04: My Fuel Treatment Planner

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    In the face of rapidly changing public and political attitudes toward fire and fuel planning, one thing remains constant: the fuel planner is ultimately responsible for making decisions on the land. This fact sheet discusses the options for fuel treatments, and the need, development, and use of the MS Excel-based tool, My Fuel Treatment Planner.

  4. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 1 presents these data for unirradiated fuel, uranium ore and uranium mill tailings. In Part 2 they have been computed for fuel irradiated to levels of burnup ranging from 140 GJ/kg U to 1150 GJ/kg U. (author)

  5. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DEFF Research Database (Denmark)

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms......; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions......, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossilfuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon...

  6. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 1

    International Nuclear Information System (INIS)

    Wuschke, D.M.; Gillespie, P.A.; Main, D.E.

    1985-07-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second assessment was performed in 1984 and is documented in the Second Interim assessment of the Canadian Concept for Nuclear Fuel Waste Disposal Volumes 1 to 4. This volume, entitled Summary, is a condensation of Volumes 2, 3 and 4. It briefly describes the Canadian nuclear fuel waste disposal concept, and the methods and results of the second interim pre-closure and post-closure assessments of that concept. 46 refs

  7. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    International Nuclear Information System (INIS)

    Beary, M.M.; Honekemp, J.R.; Winters, N.

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  8. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M.M.; Honekemp, J.R.; Winters, N. [Science Applications International Corp., Richland, WA (United States)

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE`s commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path.

  9. K Basin spent fuel sludge treatment alternatives study. Volume 1, Regulatory options

    International Nuclear Information System (INIS)

    Beary, M.M.; Honekemp, J.R.; Winters, N.

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. Volume 1 of this two-volume report describes the regulatory options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  10. Third international spent fuel storage technology symposium/workshop: proceedings. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The scope of this meeting comprised dry storage and rod consolidation, emphasizing programs on water reactor fuel with zirconium alloy cladding. Volume 2 contains the papers from the poster session and workshops that were conducted during the meeting. There were 18 poster presentations. Four workshops were held: Fuel Integrity; Storage System Modeling and Analysis; Rod Consolidation Technology; and System Integration and Optimization. Individual papers were processed for inclusion in the Energy Data Base

  11. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lakey, L. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  12. Molecular catalysis and high-volume organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Khidekel, M L; Vasserberg, V E

    1977-01-01

    The field of catalysis is very wide. The properties of catalysts are briefly reviewed and compared with the properties of enzymes. Various uses of enxymes in industry (sugar from corn, cellulose breakdown, etc.) are pointed out. The types of homogeneous and heterogeneous catalysts for use in organic synthesis are discussed. 48 refs. (SJR)

  13. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  14. Development of coating technology for nuclear fuel by self-propagating high temperature synthesis

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, Bong G.; Lee, Y. W.

    1997-01-01

    This paper presents experimental results of the preparation of silicon carbide and graphite layers on a nuclear fuel from silane and propane gases by a conventional chemical vapor deposition and combustion synthesis technologies. The direct reaction between silicon and pyrolytic carbon in a high temperature releases sufficient amount of energy to make a synthesis self-sustaining under the preheating of about 1200 deg C. During this high temperature process, lamellar structure with isotropic carbon synthesis. A full characterization of phase composition and final morphology of the coated layers by X-ray diffraction, SEM and AES is presented. (author). 6 refs., 1 tab., 11 figs

  15. Fuel from the synthesis gas - the role of process engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, Marek; Nowicki, Lech [Technical Univ. of Lodz, Dept. of Environmental Engineering Systems, Lodz (Poland)

    2003-02-01

    The paper presents the conclusions obtained in the investigations of methanol synthesis, Fischer-Tropsch synthesis, and higher alcohols synthesis from syngas as a raw material in slurry reactors. The overview of the role of process engineering was made on the basis of the experience in optimizing process conditions, modeling reactors and working out new technologies. Experimental data, obtained with a laboratory-stirred autoclave and theoretical considerations were used to develop the kinetic models that can describe the product formation and the model of the simultaneous phase and chemical equilibrium for the methanol and Fischer-Tropsch syntheses in the slurry reactors. These models were employed in modeling of the bubble-column slurry reactor (BCSR). Based on these considerations, a computer simulation of the low-pressure methanol synthesis for the pilot-scale, BCSR, was devised. The results of the calculations and the conclusions could be employed in the process for designing an industrial plant. (Author)

  16. Calculation of partial molar volume of components in supercritical ammonia synthesis system

    Institute of Scientific and Technical Information of China (English)

    Cunwen WANG; Chuanbo YU; Wen CHEN; Weiguo WANG; Yuanxin WU; Junfeng ZHANG

    2008-01-01

    The partial molar volumes of components in supercritical ammonia synthesis system are calculated in detail by the calculation formula of partial molar volume derived from the R-K equation of state under different conditions. The objectives are to comprehend phase beha-vior of components and to provide the theoretic explana-tion and guidance for probing novel processes of ammonia synthesis under supercritical conditions. The conditions of calculation are H2/N2= 3, at a concentra-tion of NH3 in synthesis gas ranging from 2% to 15%, Concentration of medium in supercritical ammonia syn-thesis system ranging from 20% to 50%, temperature ran-ging from 243 K to 699 K and pressure ranging from 0.1 MPa to 187 MPa. The results show that the ammonia synthesis system can reach supercritical state by adding a suitable supercritical medium and then controlling the reaction conditions. It is helpful for the supercritical ammonia synthesis that medium reaches supercritical state under the conditions of the corresponding total pres-sure and components near the normal temperature or near the critical temperature of medium or in the range of tem-perature of industrialized ammonia synthesis.

  17. Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister

    International Nuclear Information System (INIS)

    J.W. Davis

    1999-01-01

    The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR. Estimates of volumes, masses, and surface areas are needed as input to structural, thermal, geochemical, nuclear criticality, and radiation shielding calculations to ensure the viability of the proposed disposal configuration

  18. Catalytic synthesis of alcoholic fuels for transportation from syngas

    OpenAIRE

    Wu, Qiongxiao; Jensen, Anker Degn; Grunwaldt, Jan-Dierk; Temel, Burcin; Christensen, Jakob Munkholt

    2013-01-01

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenatio...

  19. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

    2011-01-01

    images using a 12.1 megapixel camera. Next, we extend the volume rendering pipeline by creating a transfer function which yields not only color and opacity from the input intensity, but also texture coordinates for our synthesized 3D texture. Thus, we add texture to the volume rendered images....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  20. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    International Nuclear Information System (INIS)

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions

  1. Wood fuel price survey for 2008 and 2009. Synthesis

    International Nuclear Information System (INIS)

    2010-01-01

    Based on interviews on telephone with wood fuel vendors and wholesalers, pellet producers, local community boiler managers, and individuals, this study, while giving several data figures and tables, proposes a price analysis for the housing sector (price evolution for individuals for different kinds and sizes of fuel woods), a comparison with other fuels and energies (electricity, gas) whether wood is used as the primary or secondary heating mean. It also comments the price scattering. It proposes the same kind of analysis for local communities

  2. Fuels planning: science synthesis and integration; economic uses fact sheet 03: economic impacts of fuel treatments

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    With increased interest in reducing hazardous fuels in dry inland forests of the American West, agencies and the public will want to know the economic impacts of fuel reduction treatments. This fact sheet discusses the economic impact tool, a component of My Fuel Treatment Planner, for evaluating economic impacts.

  3. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Liu, Yu; Li, Jun; Jin, Chao

    2015-01-01

    Highlights: • A sudden drop is observed in spray penetration for B10S10D80 fuel at 800 and 900 K. • With increasing of temperature, auto-ignition timings of fuels become unperceivable. • Low n-butanol addition has little effect on autoignition timings from 800 to 1200 K. • n-Butanol additive can reduce soot emissions at the near-wall regions. • Larger soot reduction is seen at higher ambient temperatures for n-butanol addition. - Abstract: The processes of spray penetrations, flame propagation and soot formation and oxidation fueling n-butanol/biodiesel/diesel blends were experimentally investigated in a constant volume combustion chamber with an optical access. B0S20D80 (0% n-butanol, 20% soybean biodiesel, and 80% diesel in volume) was prepared as the base fuel. n-Butanol was added into the base fuel by volumetric percent of 5% and 10%, denoted as B5S15D80 (5% n-butanol/15% soybean biodiesel/80% diesel) and B10S10D80 (10% n-butanol/10% soybean biodiesel/80% diesel). The ambient temperatures at the time of fuel injection were set to 800 K, 900 K, 1000 K, and 1200 K. Results indicate that the penetration length reduces with the increase of n-butanol volumes in blending fuels and ambient temperatures. The spray penetration presents a sudden drop as fueling B10S10D80 at 800 K and 900 K, which might be caused by micro-explosion. A larger premixed combustion process is observed at low ambient temperatures, while the heat release rate of high ambient temperatures presents mixing controlled diffusion combustion. With a lower ambient temperature, the auto-ignition delay becomes longer with increasing of n-butanol volume in blends. However, with increasing of ambient temperatures, the auto-ignition timing between three fuels becomes unperceivable. Generally, low n-butanol addition has a limited or no effect on the auto-ignition timing in the current conditions. Compared with the base fuel of B0S20D80, n-butanol additive with 5% or 10% in volume can reduce soot

  4. Rocket Fuel Synthesis by Fisher-Tropsch Process

    Data.gov (United States)

    National Aeronautics and Space Administration — This study aims to investigate the feasibility of using Fisher Tropsch (FT), a commercial-scale technology that currently produces liquid fuels from syngas (CO &...

  5. Effect of fuel characteristics on synthesis of calcium hydroxyapatite ...

    Indian Academy of Sciences (India)

    Administrator

    measurements. The particle size of phase pure HA powder was found to be <20 nm in this investigation. ..... selective samples obtained from mixed fuel excess condi- tions. Various .... <50 nm. Figure 6(d) shows the qualitative EDX analysis.

  6. Influence of fuel ratios on auto combustion synthesis of barium ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles. D BAHADUR*, S RAJAKUMAR and ANKIT KUMAR. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology,. Mumbai 400 076 e-mail: dhirenb@iitb.ac.in. Abstract. Single-domain barium ferrite nano ...

  7. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    Science.gov (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  8. Fuels planning: science synthesis and integration; environmental consequences fact sheet 05: prescriptions and fire effects

    Science.gov (United States)

    Melanie Miller

    2004-01-01

    Fuels planning: science synthesis and integration; environmental consequences fact sheet 5: prescriptions and fire effects. Miller, Melanie. 2004. Res. Note RMRS-RN-23-5-WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2 p. While our understanding of the causes for variation in postfire effects is increasing, burn...

  9. 40 CFR 80.595 - How does a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the...

    Science.gov (United States)

    2010-07-01

    ... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose of...

  10. Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments

    International Nuclear Information System (INIS)

    Gilabert, J.; Palacios, M.D.; Sanz, V.; Mestre, S.

    2017-01-01

    The fuel effect on the synthesis of a ceramic pigment with a composition CoCr2−2ΨAl2ΨO4 (0≤Ψ≤1) by means of solution combustion synthesis process (SCS) has been studied. Three different fuels were selected to carry out the synthesis (urea, glycine and hexamethylentetramine (HMT)). Highly foamy pigments with very low density were obtained. Fd-3m spinel-type structure was obtained in all the experiments. Nevertheless, crystallinity and crystallite size of the spinels show significant differences with composition and fuel. The use of glycine along with the chromium-richest composition favours ion rearrangement to obtain the most ordered structure. Lattice parameter does not seem to be affected by fuel, although it evolves with Ψ according to Vegard's law. Colouring power in a transparent glaze shows important variations with composition. On the other hand, fuel effect presents a rather low influence since practically the same shades are obtained. However, it exerts certain effect on luminosity (L*). [es

  11. Prototypical spent fuel rod consolidation equipment preliminary design report: Volume 2, Drawings

    International Nuclear Information System (INIS)

    1986-01-01

    This volume consists of 65 E size drawings and 4 sketches of the NUS spent fuel rod consolidation equipment. The drawings have been grouped into categories; a detailed list of the drawings is included. The sketches prepared during the preliminary design process have been included

  12. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2

  13. Nuclear Fuel Recovery and Recycling Center. License application, PSAR, volume 3

    International Nuclear Information System (INIS)

    1976-01-01

    Volume 3 comprises Chapter 5 which provides descriptive information on Nuclear Fuel Recovery and Recycling Center buildings and other facilities, including their locations. The design features discussed include those used to withstand environmental and accidental forces and to insure radiological protection

  14. Survey regarding the prices of wood fuels over the 2014 - 2015 period - Synthesis

    International Nuclear Information System (INIS)

    Fautrad, Alice

    2015-11-01

    The study conducted by CODA Strategies contains, in a first part, the synthesis and the full report of the results of a survey realized in 2015 among distributors of wood fuels for domestic, commercial, industrial and collective housing purposes. A second report presents the 2014-2015 fuel prices for commercial, industrial and collective housing markets only. This report is based on data published by the CEEB and proposes a method to estimate the cost of delivery. A third report presents the 2014-2015 results of a survey realized among distributors of wood fuels for domestic purposes only. This report also presents data regarding wood pellets price, in order to place the French market in its international context. A last report presents a French/English synthesis of the the 2014-2015 survey results

  15. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    Directory of Open Access Journals (Sweden)

    R. J. Andres

    2012-05-01

    Full Text Available This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps; how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval. Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.

  16. Synthesis on the spent fuel long term evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C.; Poinssot, Ch.; Lovera, P.; Poulesquen, A. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC), 91 - Gif sur Yvette (France); Broudic, V. [CEA Cadarache, Direction des Reacteurs Nucleaires (DRN), 13 - Saint Paul lez Durance (France); Cappelaere, Ch. [CEA Saclay, Dept. des Materiaux pour le Nucleaire(DMN), 91 - Gif-sur-Yvette (France); Desgranges, L. [CEA Cadarache, Direction des Reacteurs Nucleaires (DRN), 13 - Saint-Paul-lez-Durance (France); Garcia, Ph. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC), 13 - Saint Paul lez Durance (France); Jegou, Ch.; Roudil, D. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN), 30 - Marcoule (France); Lovera, P.; Poulesquen, A. [CEA Saclay, Dept. de Physico-Chimie (DPC), 91 - Gif sur Yvette (France); Marimbeau, P. [CEA Cadarache, Dir. de l' Energie Nucleaire (DEN), 13 - Saint-Paul-lez-Durance (France); Gras, J.M.; Bouffioux, P. [Electricite de France (EDF), 75 - Paris (France)

    2005-07-01

    The French research on spent fuel long term evolution has been performed by CEA (Commissariat a l'Energie Atomique) since 1999 in the PRECCI project with the support of EDF (Electricite de France). These studies focused on the spent fuel behaviour under various conditions encountered in dry storage or in deep geological disposal. Three main types of conditions were discerned: - The evolution in a closed system which corresponds to the normal scenario in storage and to the first confinement phase in disposal; - The evolution in air which corresponds to an incidental loss of confinement during storage or to a rupture of the canister before the site re-saturation in geological disposal; - The evolution in water which corresponds to the normal scenario after the breaching of the canister in repository conditions. This document produced in the frame of the PRECCI project is an overview of the state of knowledge in 2004 concerning the long-term behavior of spent fuel under these various conditions. The state of the art was derived from the results obtained under the PRECCI project as well as from a review of the literature and of data acquired under the European project on Spent Fuel Stability under Repository Conditions. The main results issued from the French research are underlined. (authors)

  17. SYNTHESIS OF AUTOMOBILE IGNITION SYSTEM USING OZONIZED FUEL

    Directory of Open Access Journals (Sweden)

    O. M. Pilipenko

    2015-01-01

    Full Text Available The paper presents a mathematical model for electronic control system of the angular ignition timing (AIT in the (ICE, which is running on ozonized fuel. An algorithm for  ignition system control of internal combustion engine using ozonized fuel has been developed in the paper. A structure of the dynamic ignition system while using a control unit for supplying  ozone into fuel with a purpose to improve automobile ecological and economical indices adapted to operational conditions. Application of the given system allows to ensure minimum reduction of operational petrol consumption and concentration of incomplete combustion products due to optimum ozone dosage into the fuel.  The paper proposes a controlled automobile ignition system as a sequential scheme which has a great number of discrete inputs and outputs and many discrete internal  states. The scheme establishes a functional dependence between input and output states. The paper provides an assessment of ecological indices according to massive emissions of carbon monoxide СО, hydrocarbon СпНт and nitric oxide NOx .  The analysis of  investigations results has been carried out in the paper.

  18. Synthesis on the spent fuel long term evolution

    International Nuclear Information System (INIS)

    Ferry, C.; Poinssot, Ch.; Lovera, P.; Poulesquen, A.; Broudic, V.; Cappelaere, Ch.; Desgranges, L.; Garcia, Ph.; Jegou, Ch.; Roudil, D.; Lovera, P.; Poulesquen, A.; Marimbeau, P.; Gras, J.M.; Bouffioux, P.

    2005-01-01

    The French research on spent fuel long term evolution has been performed by CEA (Commissariat a l'Energie Atomique) since 1999 in the PRECCI project with the support of EDF (Electricite de France). These studies focused on the spent fuel behaviour under various conditions encountered in dry storage or in deep geological disposal. Three main types of conditions were discerned: - The evolution in a closed system which corresponds to the normal scenario in storage and to the first confinement phase in disposal; - The evolution in air which corresponds to an incidental loss of confinement during storage or to a rupture of the canister before the site re-saturation in geological disposal; - The evolution in water which corresponds to the normal scenario after the breaching of the canister in repository conditions. This document produced in the frame of the PRECCI project is an overview of the state of knowledge in 2004 concerning the long-term behavior of spent fuel under these various conditions. The state of the art was derived from the results obtained under the PRECCI project as well as from a review of the literature and of data acquired under the European project on Spent Fuel Stability under Repository Conditions. The main results issued from the French research are underlined. (authors)

  19. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different...... composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenation. The metal area based activity for a Cu-Ni/SiO2 catalyst is at the same level as a Cu/ZnO/Al2O3 model...... catalyst. The high activity and selectivity of silica supported Cu-Ni alloy catalysts agrees with the fact that the DFT calculations identified Cu-Ni alloys as highly active and selective catalysts for the hydrogenation of CO to form methanol. This work has also provided a systematic study of Cu...

  20. Synthesis of biodiesel fuel from safflower oil using various reaction parameters.

    Science.gov (United States)

    Meka, Pavan Kumar; Tripathi, Vinay; Singh, R P

    2006-01-01

    Biodiesel fuel is gaining more and more importance because of the depletion and uncontrollable prices of fossil fuel resources. The use of vegetable oil and their derivatives as alternatives for diesel fuel is the best answer and as old as Diesel Engine. Chemically biodiesel fuel is the mono alkyl esters of fatty acids derived from renewable feed stocks like vegetable oils and animal fats. Safflower oil contains 75-80% of linoleic acid; the presence of this unsaturated fatty acid is useful in alleviating low temperature properties like pour point, cloud point and cold filter plugging point. In this paper we studied the effect of various parameters such as temperature, molar ratio (oil to alcohol), and concentration of catalyst on synthesis of biodiesel fuel from safflower oil. The better suitable conditions of 1:6 molar ratio (oil to alcohol), 60 degrees C temperature and catalyst concentration of 2% (by wt. of oil) were determined. The finally obtained biodiesel fuel was analyzed for fatty acid composition by GLC and some other properties such as flash point, specific gravity and acid value were also determined. From the results it was clear that the produced biodiesel fuel was with in the recommended standards of biodiesel fuel with 96.8% yield.

  1. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    De Bernardinis, Alexandre

    2014-01-01

    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  2. Volume reduction technology development for solid wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, Kune Woo; Song, Kee Chan; Choi, Wang Kyu; Kim, Young Min

    1998-07-01

    A great deal of solid wastes, which have various physical, chemical, and radiological characteristics, are generated from the nuclear fuel cycle facility as well as radioactive gaseous and liquid wastes. The treatment of the large quantity of solid wastes from the nuclear fuel cycle have great technical, economical and social effects on the domestic policy decision on the nuclear fuel cycle, such as operation and maintenance of the facility, waste disposal, etc. Cement immobilization, super compaction, and electrochemical dissolution were selected as the volume reduction technologies for solid wastes, which will generated from the domestic nuclear fuel cycle facility in the future. And the assessment of annual arisings and the preliminary conceptual design of volume reduction processes were followed. Electrochemical decontamination of α-radionuclides from the spent fuel hulls were experimentally investigated, and showed the successful results. However, β/γ radioactivity did not reduce to the level below which hulls can be classified as the low-level radioactive waste and sent to the disposal site for the shallow land burial. The effects of the various process variables in the electrochemical decontamination were experimentally analysed on the process. (author). 32 refs., 32 tabs., 52 figs

  3. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    Science.gov (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  4. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    Science.gov (United States)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  5. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  6. Recovery of Navy distillate fuel from reclaimed product. Volume I. Technical discussion

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). The first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 referenvces and abstracts. This appendix, because of its volume, has been published separately as Volume 2. 18 figures, 4 tables.

  7. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  8. Catalytic synthesis of alcoholic fuels for transportation from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Qiongxiao Wu

    2012-12-15

    Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenation. The metal area based activity for a Cu-Ni/SiO2 catalyst is at the same level as a Cu/ZnO/Al2O3 model catalyst. The high activity and selectivity of silica supported Cu-Ni alloy catalysts agrees with the fact that the DFT calculations identified Cu-Ni alloys as highly active and selective catalysts for the hydrogenation of CO to form methanol. This work has also provided a systematic study of Cu-Ni catalysts for methanol synthesis from syngas. The following observations have been made: (1) Cu-Ni catalysts (Cu/Ni molar ratio equal to 1) supported on SiO2, ZrO2, {gamma}-Al2O3, and carbon nanotubes exhibit very different selectivities during CO hydrogenation. However, the metal area based CO conversion rates of all supported Cu-Ni catalysts are at the same level. Carbon nanotubes and SiO2 supported Cu-Ni catalysts show high activity and selectivity for methanol synthesis. The Cu-Ni/ZrO2 catalyst exhibits high methanol selectivity at lower temperatures (250 deg. C), but the selectivity shifts to hydrocarbons and dimethyl ether at higher temperatures (> 275 deg. C). It seems likely that the Cu-Ni alloys always produce methanol, but that some supports further convert methanol to different products. (2) Cu-Ni/SiO2 catalysts have been prepared with different calcination and reduction procedures and tested in the synthesis of methanol from H2/CO. The calcination of the impregnated catalysts (with/without calcination step) and different reduction procedures with varying hydrogen concentration have significant influence on Cu-Ni alloy formation and the alloy particle size and

  9. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 3

    International Nuclear Information System (INIS)

    Johansen, K.; Donnelly, K.J.; Gee, J.H.; Green, B.J.; Nathwani, J.S.; Quinn, A.M.; Rogers, B.G.; Stevenson, M.A.; Dunford, W.E.; Tamm, J.A.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second such assessment was completed in 1984 and is documented in the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1-4. This, the third volume of the report, summarizes the pre-closure environmental and safety assessments completed by Ontario Hydro for Atomic Energy of Canada Limited. The preliminary results and their sigificance are discussed. 85 refs

  10. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 4

    International Nuclear Information System (INIS)

    Wuschke, D.M.; Gillespie, P.A.; Mehta, K.K.; Henrich, W.F.; LeNeveu, D.M.; Guvanasen, V.M.; Sherman, G.R.; Donahue, D.C.; Goodwin, B.W.; Andres, T.H.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second such assessment was performed in 1984 and is documented in the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1-4. This volume, entitled Post-Closure Assessment, describes the methods, models and data used to perform the second post-closure assessment. The results are presented and their significance is discussed. Conclusions and planned improvements are listed. 72 refs

  11. Third international spent fuel stroage technology symposium/workshop: proceedings. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    The scope of this meeting comprised dry storage and rod consolidation, emphasizing programs on water reactor fuel with zirconium alloy cladding. Volume 1 contains the symposium papers, together with the question/answer sessions that followed the presentations. Four sessions were held: Dry Storage System Tests, Demonstrations and Analyses; At-Reactor and Central Storage Facilities; Dry Storage Integrity; and Rod Consolidation Technology and Demonstrations. Individual papers were processed for inclusion in the Energy Data Base

  12. Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb

    Science.gov (United States)

    Selden, Robert F

    1938-01-01

    Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.

  13. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    Science.gov (United States)

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  14. Colloidal sol-gel synthesis of oxides: application to the precursors of nuclear fuels

    International Nuclear Information System (INIS)

    Gossard, Alban

    2014-01-01

    One of the main objectives for the future nuclear fuel cycle is the recycling of the minor actinides. Different options are considered: their integration into a new fuel for a prospect of a closed fuel cycle or their transmutation in order to significantly decrease the long-term radiotoxicity of ultimate wastes. In both cases, the synthesis of new advanced materials integrating the actinides jointly is required. Sol-gel processes allow the organization of the material at the colloidal scale or the insertion of controlled porosity using 'templates'. Furthermore, the possibility to work in a 'wet environment' prevents the formation of pulverulent powders which are contaminant in the case of materials incorporating radioactive elements. The main purpose of this work is to demonstrate the adaptability of this route to the nuclear field. Firstly, a methodology of synthesis from a colloidal sol-gel route was set up on a non-radioactive zirconium-based system in order to characterize and understand of the different mechanisms of this synthesis. Then, studies on shaping, including insertion of porosity, were performed. Zirconia monoliths have been obtained thanks to a coupling between a colloidal sol-gel process and the formation of an emulsion stabilized by clusters of solid particles. Finally, a transposition of this work to an uranium-based system was introduced, pointing out different promising perspectives specially concerning the possibilities of shaping of the final material. (author) [fr

  15. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    Science.gov (United States)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  16. Synthesis gas from biomass for fuels and chemicals

    International Nuclear Information System (INIS)

    Van der Drift, A.; Boerrigter, H.

    2006-01-01

    Making H2 and CO (syngas) from biomass is widely recognised as a necessary step in the production of various second generation biofuels. There are two major ways to produce a biosyngas: fluidised bed gasification with catalytic reformer or entrained flow gasification. The latter option requires extensive pre-treatment such as flash pyrolysis, slow pyrolysis, torrefaction, or fluidized bed gasification at a low temperature. Cleaned and conditioned biosyngas can be used to synthesize second generation biofuels such as Fischer-Tropsch fuels, methanol, DME, mixed alcohols, and even pure hydrogen. The report describes the different technical options to produce, clean and condition bio-syngas. Furthermore, issues related to scale and biomass transport are covered shortly

  17. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  18. Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R and D Program

    International Nuclear Information System (INIS)

    Voit, Stewart L.; Vedder, Raymond James; Johnson, Jared A.

    2010-01-01

    Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO 2 spanning greater than 50 years. The Fuel Cycle R and D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion (Modified Direct Denitration or MDD) and internal/external gelation (sol-gel). Each of these techniques has various advantages and disadvantages. The Fiscal Year 2010 feedstock development work at ORNL focused on the synthesis and characterization of one batch of UO x and one batch of U 80 Ce 20 O x . Oxide material synthesized at ORNL is being shipped to LANL for fuel fabrication process development studies. The feedstock preparation was performed using the MDD process which utilizes a rotary kiln to continuously thermally denitrate double salts of ammonium

  19. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K. J.

    1979-01-01

    Volume 2 contains appendixes on small MOX fuel fabrication facility description, site description, residual radionuclide inventory estimates, decommissioning, financing, radiation dose methodology, general considerations, packaging and shipping of radioactive materials, cost assessment, and safety (JRD)

  20. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 2

    International Nuclear Information System (INIS)

    Gillespie, P.A.; Wuschke, D.M.; Guvanasen, V.M.; Mehta, K.K.; McConnell, D.B.; Tamm, J.A.; Lyon, R.B.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the burial of corrosion-resistant containers of waste in a vault located deep in plutonic rock in the Canadian Shield. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluatin of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have if the concept were implemented. The second assessment was performed in 1984 and is documented in Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1 to 4. This volume, entitled Background, discusses Canadian nuclear fuel wastes and the desirable features of a waste disposal method. It outlines several disposal options being considered by a number of countries, including the option chosen for development and assessment in Canada. The reference disposal systems assumed for the second assessment are described, and the approach used for concept assessment is discussed briefly. 79 refs

  1. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  2. Safety case for the disposal of spent nuclear fuel at Olkiluoto - Synthesis 2012

    International Nuclear Information System (INIS)

    2012-12-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR 2012) and application for a construction licence for a spent nuclear fuel repository. Consistent with the Government Decisions-in- Principle, this foresees a repository developed in bedrock at the Olkiluoto site according to the KBS-3 method, designed to accept spent nuclear fuel from the lifetime operations of the Olkiluoto and Loviisa reactors. Synthesis 2012 presents a synthesis of Posiva Oy's Safety Case 'TURVA-2012' portfolio. It summarises the design basis for the repository at the Olkiluoto site, the assessment methodology and key results of performance and safety assessments. It brings together all the lines of argument for safety, evaluation of compliance with the regulatory requirements, and statement of confidence in long-term safety and Posiva's safety analyses. The TURVA-2012 safety case demonstrates that the proposed repository design provides a safe solution for the disposal of spent nuclear fuel, and that the performance and safety assessments are fully consistent with all the legal and regulatory requirements related to long-term safety as set out in Government Decree 736/2008 and in guidance from the nuclear regulator - the STUK. Moreover, Posiva considers that the level of confidence in the demonstration of safety is appropriate and sufficient to submit the construction licence application to the authorities. The assessment of long-term safety includes uncertainties, but these do not affect the basic conclusions on the long-term safety of the repository. (orig.)

  3. Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels

    International Nuclear Information System (INIS)

    Moore, John J.; Reigel, Marissa M.; Donohoue, Collin D.

    2009-01-01

    The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low-heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS

  4. Parametric exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack through finite-volume model

    International Nuclear Information System (INIS)

    Calise, F.; Ferruzzi, G.; Vanoli, L.

    2009-01-01

    This paper presents a very detailed local exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack. In particular, a complete parametric analysis has been carried out, in order to assess the effects of the synthesis/design parameters on the local irreversibilities in the components of the stack. A finite-volume axial-symmetric model of the tubular internal reforming Solid Oxide Fuel Cell stack under investigation has been used. The stack consists of: SOFC tubes, tube-in-tube pre-reformer and tube and shell catalytic burner. The model takes into account the effects of heat/mass transfer and chemical/electrochemical reactions. The model allows one to predict the performance of a SOFC stack once a series of design and operative parameters are fixed, but also to investigate the source and localization of inefficiency. To this scope, an exergy analysis was implemented. The SOFC tube, the pre-reformer and the catalytic burner are discretized along their longitudinal axes. Detailed models of the kinetics of the reforming, catalytic combustion and electrochemical reactions are implemented. Pressure drops, convection heat transfer and overvoltages are calculated on the basis of the work previously developed by the authors. The heat transfer model includes the contribution of thermal radiation, so improving the models previously used by the authors. Radiative heat transfer is calculated on the basis of the slice-to-slice configuration factors and corresponding radiosities. On the basis of this thermochemical model, an exergy analysis has been carried out, in order to localize the sources and the magnitude of irreversibilities along the components of the stack. In addition, the main synthesis/design variables were varied in order to assess their effect on the exergy destruction within the component to which the parameter directly refers ('endogenous' contribution) and on the exergy destruction of all remaining components ('exogenous' contribution). Then, this analysis

  5. Long time storage containers for spent fuels and vitrified wastes: synthesis of the studies

    International Nuclear Information System (INIS)

    Beziat, A.

    2004-01-01

    This report presents a synthesis of the studies relatives to the containers devoted to the long time spent fuels storage and vitrified wastes packages. These studies were realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. The first part is devoted to the presentation of the studies. The container sizing studies which constitute the first containment barrier are then presented. The material choice and the closed system are also detailed. The studies were validate by the realization of containers models and an associated demonstration program is proposed. A synthesis of the technical and economical studies allowed to determine the components and operation costs. (A.L.B.)

  6. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology.

    Science.gov (United States)

    Kim, Daehee; Chang, In Seop

    2009-10-01

    A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.

  7. In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for direct methanol fuel cells.

    Science.gov (United States)

    Rao, Siyuan; Xiu, Ruijie; Si, Jiangju; Lu, Shanfu; Yang, Meng; Xiang, Yan

    2014-03-01

    In situ synthesis is a powerful approach to control nanoparticle formation and consequently confers extraordinary properties upon composite membranes relative to conventional doping methods. Herein, uniform nanoparticles of cesium hydrogen salts of phosphotungstic acid (CsPW) are controllably synthesized in situ in Nafion to form CsPW–Nafion nanocomposite membranes with both improved proton conductivity and methanol-crossover suppression. A 101.3% increase of maximum power density has been achieved relative to pristine Nafion in a direct methanol fuel cell (DMFC), indicating a potential pathway for large-scale fabrication of DMFC alternative membranes.

  8. Synthesis of Poly(3,4-Ethylenedioxy thiophene)-Poly(Styrene-4-Sulfonate) Composites for Support Fuel Cell Catalyst Layer

    International Nuclear Information System (INIS)

    Eko Sulistiyono; Murni Handayani

    2009-01-01

    Synthesis of poly(3,4-ethylenedioxy thiophene)-poly(styrene-4-sulfonate) composites for support fuel cell catalyst layer are synthesis composites which become fuel cell catalyst support so that catalyst has optimal performance. Main function of composites is support platinum particle for application in fuel cell. This article explains the result of composites production process from ( 3,4 Ethylenedioxy thiophene) and Sodium poly( styrene - 4-sulfonate) using two methods Jingning Shan method (method 1) and Zhigang Qi and Peter G.Pickup method (method 2). Analysis of the synthesis results used Scanning Electron Microscopic –Electron Dispersive X – Ray Spectrophotometer (SEM-EDS ). The analysis result show that both methods produce polymer agglomerate into a sponge-like morphology. Composite from method 1 has morphology, pores and proton transport better than composite produced by method 2. (author)

  9. Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat

    International Nuclear Information System (INIS)

    Nandan, Ravi; Goswami, Gopal Krishna; Nanda, Karuna Kar

    2017-01-01

    Graphical abstract: Direct-grown boron-doped carbon nanotubes on gas-diffusion layer as efficient Pt-free cathode catalyst for alcohol fuel cells, high boiling point fuels used to obtain hot fuels for the enhancement of cell performance that paves the way for the utilization of waste heat. Display Omitted -- Highlights: •One-step direct synthesis of boron-doped carbon nanotubes (BCNTs) on gas diffusion layer (GDL). •Home built fuel-cell testing using BCNTs on GDL as Pt-free cathode catalyst. •BCNTs exhibit concentration dependent oxygen reduction reaction and the cell performance. •Effective utilization of waste heat to raise the fuel temperature. •Fuel selectivity to raise the fuel temperature and the overall performance of the fuel cells. -- Abstract: Gas diffusion layers (GDL) and electrocatalysts are integral parts of fuel cells. It is, however, a challenging task to grow Pt-free robust electrocatalyst directly on GDL for oxygen reduction reaction (ORR) – a key reaction in fuel cells. Here, we demonstrate that boron-doped carbon nanotubes (BCNTs) grown directly on gas-diffusion layer (which avoid the need of ionomer solution used for catalyst loading) can be used as efficient Pt-free catalyst in alcohol fuel cells. Increase in boron concentration improves the electrochemical ORR activity in terms of onset and ORR peak positions, half-wave potentials and diffusion-limited current density that ensure the optimization of the device performance. The preferential 4e − pathway, excellent cell performance, superior tolerance to fuel crossover and long-term stability makes directly grown BCNTs as an efficient Pt-free cathode catalyst for cost-effective fuel cells. The maximum power density of the fuel cell is found to increase monotonically with boron concentration. In addition to the application of BCNTs in fuel cell, we have introduced the concept of hot fuels so that waste heat can effectively be used and external power sources can be avoided. The fuel

  10. Comparison of platinum/MWCNTs Nanocatalysts Synthesis Processes for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Liu, Xuan

    Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 °C and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm -2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 °C) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant

  11. Synthesis strategies for improving the performance of doped-BaZrO 3 materials in solid oxide fuel cell applications

    KAUST Repository

    Bi, Lei

    2013-08-07

    Solid oxide fuel cells (SOFCs) offer an efficient energy conversion technology for alleviating current energy problems. High temperature proton-conducting (HTPC) oxides are promising electrolytes for this technology, since their activation energy is lower than that of conventional oxygen-ion conductors, enabling the operating temperature reduction at 600 °C. Among HTPC oxides, doped BaZrO3 materials possess high chemical stability, needed for practical applications. Though, poor sinterability and the resulting large volume of highly resistive grain boundaries hindered their deployment for many years. Nonetheless, the recently demonstrated high proton conductivity of the bulk revived the attention on doped BaZrO3, stimulating research on solving the sintering issues. The proper selection of dopants and sintering aids was demonstrated to be successful for improving the BaZrO3 electrolyte sinterability. We here briefly review the synthesis strategies proposed for preparing BaZrO3-based nanostructured powders for electrolyte and electrodes, with the aim to improve the SOFC performance. © Materials Research Society 2013.

  12. One pot electrochemical synthesis of polymer/CNT/metal nanoparticles for fuel cell applications

    Science.gov (United States)

    Ventrapragada, Lakshman; Zhu, Jingyi; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Nanomaterials center Team

    Carbon nanotubes (CNTs) have become a key player in the design of materials for energy applications. They gained their popularity in industrial and scientific research due to their unique properties like excellent conductivity, high surface area, etc. Here we used chemical vapor deposition (CVD) to synthesize two types of CNTs namely, helically coiled CNTs and vertically aligned CNTs. These CNTs were subsequently used to make composites with conducting polymers and metal nanoparticles. One pot electrochemical synthesis was designed to electropolymerize aniline, pyrrole etc. on the surface of the electrode with simultaneous deposition of platinum and gold metal nanoparticles, and CNTs in the polymer matrix. The as synthesized composite materials were characterized with scanning electron microscope for surface morphology and spectroscopic techniques like Raman, UV-Vis for functionality. These were used to study electrocatalytic oxidation of methanol and ethanol for alkaline fuel cell applications. Electrodes fabricated from these composites not only showed good kinetics but also exhibited excellent stability. Uniqueness of this composite lies in its simple two step synthesis and it doesn't involve any surfactants unlike conventional chemical synthesis routes.

  13. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    Science.gov (United States)

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  14. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: A review

    OpenAIRE

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and active phase. A thorough analysis of the published literature on this topic reveals that efficiency in the production of liquid fuels correlates well with the proximity of FTS and acid sites. Moreover,...

  15. COBRA-SFS [Spent Fuel Storage]: A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods

  16. Safety case for the disposal of spent nuclear fuel at Olkiluoto - Synthesis 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR 2012) and application for a construction licence for a spent nuclear fuel repository. Consistent with the Government Decisions-in- Principle, this foresees a repository developed in bedrock at the Olkiluoto site according to the KBS-3 method, designed to accept spent nuclear fuel from the lifetime operations of the Olkiluoto and Loviisa reactors. Synthesis 2012 presents a synthesis of Posiva Oy's Safety Case 'TURVA-2012' portfolio. It summarises the design basis for the repository at the Olkiluoto site, the assessment methodology and key results of performance and safety assessments. It brings together all the lines of argument for safety, evaluation of compliance with the regulatory requirements, and statement of confidence in long-term safety and Posiva's safety analyses. The TURVA-2012 safety case demonstrates that the proposed repository design provides a safe solution for the disposal of spent nuclear fuel, and that the performance and safety assessments are fully consistent with all the legal and regulatory requirements related to long-term safety as set out in Government Decree 736/2008 and in guidance from the nuclear regulator - the STUK. Moreover, Posiva considers that the level of confidence in the demonstration of safety is appropriate and sufficient to submit the construction licence application to the authorities. The assessment of long-term safety includes uncertainties, but these do not affect the basic conclusions on the long-term safety of the repository. (orig.)

  17. Process analysis of an oxygen lean oxy-fuel power plant with co-production of synthesis gas

    International Nuclear Information System (INIS)

    Normann, Fredrik; Thunman, Henrik; Johnsson, Filip

    2009-01-01

    This paper investigates new possibilities and synergy effects for an oxy-fuel fired polygeneration scheme (transportation fuel and electricity) with carbon capture and co-firing of biomass. The proposed process has the potential to make the oxy-fuel process more effective through a sub-stoichiometric combustion in-between normal combustion and gasification, which lowers the need for oxygen within the process. The sub-stoichiometric combustion yields production of synthesis gas, which is utilised in an integrated synthesis to dimethyl ether (DME). The process is kept CO 2 neutral through co-combustion of biomass in the process. The proposed scheme is simulated with a computer model with a previous study of an oxy-fuel power plant as a reference process. The degree of sub-stoichiometric combustion, or amount of synthesis gas produced, is optimised with respect to the overall efficiency. The maximal efficiency was found at a stoichiometric ratio just below 0.6 with the efficiency for the electricity producing oxy-fuel process of 0.35 and a DME process efficiency of 0.63. It can be concluded that the proposed oxygen lean combustion process constitutes a way to improve the oxy-fuel carbon capture processes with an efficient production of DME in a polygeneration process

  18. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals

    Science.gov (United States)

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-01-01

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner. PMID:27621436

  19. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals.

    Science.gov (United States)

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-09-27

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner.

  20. Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders

    Science.gov (United States)

    Parnianfar, H.; Masoudpanah, S. M.; Alamolhoda, S.; Fathi, H.

    2017-06-01

    The solution combustion synthesis of porous magnetite (Fe3O4) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N2 adsorption-desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe3O4 powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe3O4 powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m2/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  1. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  2. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas : A review

    NARCIS (Netherlands)

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and

  3. Social science to improve fuels management: a synthesis of research on the impacts of wildland fires on communities

    Science.gov (United States)

    Stephen F. McCool; James Burchfield; Daniel R. Williams; Matt Carroll; Patricia Cohn; Yoshitaka Kumagai; Tam Ubben

    2007-01-01

    A series of syntheses were commissioned by the U.S. Forest Service to aid in fuels mitigation project planning. Focusing on research on the social impacts of wildland fire, this synthesis explores decisions and actions taken by communities before, during, and after a wildland fire to minimize its impacts. It then synthesizes the research studying (1) the consequences...

  4. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  5. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  6. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  7. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  8. Study of by-products of agro-food industries which could be used for bio-fuel production (animal fat, used food oils, and wine production by-products). Synthesis of the final report

    International Nuclear Information System (INIS)

    Gomy, Catherine; Thonier, Gregoire; Gagnepain, Bruno; Mhiri, Tarek

    2015-04-01

    As the Renewable Energy directive proposes the implementation of incentive arrangements for the production of bio-fuels from biomass, this report proposes a synthesis of a study which addressed three by-products of agro-food industry and of catering (collective, traditional, fast) which can help to reach objectives of energy production from biomass: used food oils, rendered animal fat of category 1 and 2, and vinification by-products (grape marc, lees, sludge). The objectives were to quantify, at the French national and regional levels, present resources and uses for these three by-products, non-valorised volumes and thus potentially available volumes for the production of liquid bio-fuels, to identify present actors and their interactions, and to study the potential of local production of liquid bio-fuels. The study comprised a comprehensive analysis of production and valorisation sectors for the three addressed types of by-products, and an identification of recent experiments implemented for the production of liquid bio-fuels. This synthesis states the lessons learned from the study of these three different sectors, and proposes recommendations for further developments

  9. Synthesis of yttria-doped zirconia anodes and calcium-doped ceria electrolyte to fuel cell

    International Nuclear Information System (INIS)

    Almeida, G.R.S de; Fagury Neto, E.; Rabelo, A.A.

    2010-01-01

    From the pursuit of lower operating temperature of fuel cells solid oxide was used polymeric precursor for the synthesis of reactive powder compositions Zr 0,92 Y 0,08 O 2 for the anode and Ce 0,88 Ca 0,12 O 2 for the electrolyte. The solutions were prepared using the metal in much of the composition and citric acid molar ratio of 1:3, under stirring at 60 deg C/1 h. The mixture of metallic citrates was subjected to agitation at a temperature of 80 deg C which was added ethylene glycol in the ratio 60:40 by weight citric acid / ethylene glycol, to form a resin that was pre-calcined at 300 deg C/3 h for to form the expanded resin. The powders were disaggregated in a mortar, screened and calcined at 400, 600 and 800 deg C/2 h. The powders were characterized by standard X-ray diffraction. (author)

  10. The performance of a thermophilic microbial fuel cell fed with synthesis gas.

    Science.gov (United States)

    Hussain, A; Mehta, P; Raghavan, V; Wang, H; Guiot, S R; Tartakovsky, B

    2012-08-10

    This study demonstrated electricity generation in a thermophilic microbial fuel cell (MFC) operated on synthesis gas (syngas) as the sole electron donor. At 50°C, a volumetric power output of 30-35 mWL(R)(-1) and a syngas conversion efficiency of 87-98% was achieved. The observed pathway of syngas conversion to electricity primarily consisted of a two-step process, where the carbon monoxide and hydrogen were first converted to acetate, which was then consumed by the anodophilic bacteria to produce electricity. A denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rDNA revealed the presence of Geobacter species, Acetobacter, methanogens and several uncultured bacteria and archaea in the anodic chamber. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  11. From furfural to fuel: synthesis of furoins by organocatalysis and their hydrodeoxygenation by cascade catalysis.

    Science.gov (United States)

    Wegenhart, Benjamin L; Yang, Linan; Kwan, Soon Cheong; Harris, Remi; Kenttämaa, Hilkka I; Abu-Omar, Mahdi M

    2014-09-01

    The synthesis of furoins from biomass-derived furfural and 2-methylfurfural is demonstrated in high yields in green and renewable solvents using N-heterocyclic carbene organocatalysts. The resulting furoin molecules are used as precursors for fuels using cascade catalysis, first by using Pd/C with acidic co-catalysts under very mild conditions to yield oxygenated C12 molecules. Two main products were formed, which we identified as 1,2-bis(5-methyltetrahydrofuran-2-yl)ethane and 1-(5-methyltetrahydrofuran-2-yl)heptanol. The use of a Pd/Zeolite-β catalyst under more extreme conditions resulted in the complete hydrodeoxygenation of 5,5'-dimethylfuroin to dodecanes in high yields (76%) and exceptional selectivity (94%) for n-dodecane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photoelectroactivity of bismuth vanadate prepared by combustion synthesis: effect of different fuels and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, Renata; Serafim, Jessica A.; Lucilha, Adriana C.; Dall' Antonia, Luiz H., E-mail: luizh@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. Quimica. Lab. de Eletroquimica e Materiais; Silva, Marcelo R. [Universidade Estadual Paulista Julio de Mesquita Filho (CTI/UNESP), Bauru, SP (Brazil). Colegio Tecnico Industrial; Lepre, Luiz F.; Ando, Romulo A. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Lab. de Espectroscopia Molecular

    2014-04-15

    The bismuth vanadate (BiVO{sub 4}) is a semiconductor that has attracted much attention due to the photocatalytic efficiency in the visible light region. The objective of this work was to synthesize monoclinic BiVO{sub 4} by solution combustion synthesis, with different surfactants and fuels and apply it as photoelectrodes. The characterization by infrared spectroscopy and Raman spectroscopy showed that all samples showed characteristic bands of the monoclinic structure BiVO{sub 4}. The samples synthesized with glycine and glycine/Tween® 80 had V{sub 2}O{sub 5}. The film obtained from the alanine/ Tween® 80 showed highest photocurrent values, which may be related to smaller size particles (200 to 300 nm) observed by scanning electron microscopy images. The films obtained using alanine showed highest values of rate constant reaction and percentage discoloration of methylene blue. (author)

  13. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  14. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    Energy Technology Data Exchange (ETDEWEB)

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  15. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation

    International Nuclear Information System (INIS)

    1976-05-01

    Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives

  16. COBRA-SFS [Spent Fuel Storage]: A thermal-hydraulic analysis computer code: Volume 2, User's manual

    International Nuclear Information System (INIS)

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code

  17. Synthesis and sintering of UN-UO{sub 2} fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J., E-mail: BrianJaques@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A. [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Tyburska-Püschel, Beata [Department of Engineering Physics, University of Wisconsin–Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Meyer, Mitch [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Xu, Peng; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA 15235 (United States); Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2015-11-15

    The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO{sub 2}, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO{sub 2} to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO{sub 2} in a planetary ball mill. UN and UN – UO{sub 2} composite pellets were sintered in Ar – (0–1 at%) N{sub 2} to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO{sub 2} composite pellets were also sintered in Ar – 100 ppm N{sub 2} to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.

  18. Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions

    International Nuclear Information System (INIS)

    Al-Muhtaseb, Ala’a H.; Jamil, Farrukh; Al-Haj, Lamya; Al-Hinai, Mohab A.; Baawain, Mahad; Myint, Myo Tay Zar; Rooney, David

    2016-01-01

    Highlights: • Active catalysts Pt/C and Pd/C were developed from waste date pits. • Catalysts showed good activity in hydrodeoxygenation of date pit oil to alkane fuels. • The liquid product fractions lay within the range of the jet fuel and green diesel. • Green diesel fraction obtained by Pd/C was 72.03% and jet fuel was 30.39%. • Date pits can be a promising platform for the production of catalysts and biofuels. - Abstract: Date pits are considered one of the major agricultural wastes in Oman. The present work involves the synthesis of active catalysts from waste date pits carbon produced by carbonization and impregnation with Pt and Pd metals. Synthesized catalysts Pt/C and Pd/C were characterized by XRD, SEM, TEM, EDX, BET and XPS. The activity of the catalysts’ performance was evaluated by the hydrodeoxygenation of date pits oil for the production of second-generation biofuels, which includes jet fuel and green diesel fractions. Results indicate that the synthesized catalysts were highly active for the hydrodeoxygenation of date pits oil. Based on the elemental analysis, the degree of deoxygenation (DOD) of product oil was 97.5% and 89.4% for the Pd/C and Pt/C catalysts respectively. The high DOD was also confirmed by product analyses that mainly consist of paraffinic hydrocarbons. Results also showed that between the two catalysts, Pd/C showed a higher activity towards hydrodeoxygenation, a conclusion that was based on the high DOD of the product oil due to hydrocarbons formation. Based on the type of components in the product oil, the maximum fraction of hydrocarbons formed lay within the range of 72.03% and 72.78% green diesel, and 30.39% and 28.25% jet fuel using Pd/C and Pt/C catalysts respectively. It can be concluded that waste date pits can be a promising platform for the production of catalysts and biofuels.

  19. Hanford Spent Nuclear Fuel Project: Recommended path forward. Volume 2: Alternatives and path forward evaluation

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    The Hanford Spent Nuclear Fuel Project has completed an evaluation of four alternatives for expediting the removal of spent nuclear fuel from the K Basins and stabilizing and placing the fuel into interim storage. Four alternatives were compared: (1) Containerizing fuel in the K Basins, transporting fuel to a facility for stabilization, and interim storage of stabilized fuel in a dry storage facility (DSF); (2) Containerizing fuel in the K Basins, transporting fuel to a wet temporary staging facility, moving fuel to a facility for stabilization, and transporting stabilized fuel to an interim DSF; (3) Containerizing fuel in the K Basins in multi-canister overpacks, transporting fuel directly to a stabilization facility for passivation in the overpack, and interim storage of stabilized fuel in a DSF; (4) Packaging fuel for transport overseas and shipping fuel to a foreign reprocessing facility for reprocessing with eventual return of U, Pu and vitrified high level waste. The comparative evaluation consisted of a multi-attribute utility decision analysis, a public, worker and environmental health risk assessment, and a programmatic risk evaluation. The evaluation concluded that the best Path Forward combines the following concepts: Removal of K Basin fuel and sludge is uncoupled from the operation of a stabilization facility; A storage capability is provided to act as a lag storage or staging operation for overpack fuel containers as they are removed from the K Basins; Metal fuel drying and passivation should be maintained as the fuel stabilization process with the option of further refinements as more information becomes available; and The near term NEPA strategy should focus on expeditious removal of fuel and sludge from K Basins and placing overpacked fuel in temporary storage

  20. Proceedings of the 5th international conference on stability and handling of liquid fuels. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Giles, H.N. [ed.

    1995-03-01

    This proceedings summarizes recent work concerning stability and handling of fuels. Jet fuels, gasolines, heavy oils, and distillate fuels were considered. Fuel issues relevant to environmental mandates were discussed. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Development of base technology for high burnup PWR fuel improvement Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)

    1995-12-31

    Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.

  2. Fuels planning: science synthesis and integration; social issues fact sheet 13: Strategies for managing fuels and visual quality

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    The public's acceptance of forest management practices, including fuels reduction, is heavily based on how forests look. Fuels managers can improve their chances of success by considering aesthetics when making management decisions. This fact sheet reviews a three-part general strategy for managing fuels and visual quality: planning, implementation, and monitoring...

  3. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 05: fuel treatment principles for complex landscapes

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Appropriate types of thinning and surface fuel treatments are clearly useful in reducing surface and crown fire hazards under a wide range of fuels and topographic situations. This paper provides well-established scientific principles and simulation tools that can be used to adjust fuel treatments to attain specific risk levels.

  4. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  5. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  6. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  7. Perovskites synthesis for solid oxide fuel cells; Sintese de perovsquitas para celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sibelle F.C.X.; Melo, Dulce M.A.; Pimentel, Patricia M.; Melo, Marcus A. Freitas; Martinelli, Daniele M.H. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Quimica]. E-mail: sibelle.cunha@gmail

    2008-07-01

    This work aims to study on the obtaining powders of lanthanum manganite oxides with partial substitution of La with strontium at 20% for the application as a cathode for solid oxide fuel cell, through a route of synthesis that are similar to the Pechini method, in which gelatin replaces the ethylene glycol as polymerization agent. The method highlights itself due to its simplicity, low cost and capability to obtain crystalline powders with the high purity and good stoichiometric control. The perovskite obtained were characterized by thermogravimetric analysis, X ray diffraction, electronic scanning microscopy and the superficial area by BET method. The deposition of the perovskite on electrolyte/anode system was done through the spin coating technique. The methodology used for the perovskite synthesis was very efficient, considering a monophasic material was obtained and with characteristics that were proper to the application as electrode to solid oxide fuel cells. (author)

  8. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  9. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  11. Underwater Nuclear Fuel Disassembly and Rod Storage Process and Equipment Description. Volume II

    International Nuclear Information System (INIS)

    Viebrock, J.M.

    1981-09-01

    The process, equipment, and the demonstration of the Underwater Nuclear Fuel Disassembly and Rod Storage System are presented. The process was shown to be a viable means of increasing spent fuel pool storage density by taking apart fuel assemblies and storing the fuel rods in a denser fashion than in the original storage racks. The assembly's nonfuel-bearing waste is compacted and containerized. The report documents design criteria and analysis, fabrication, demonstration program results, and proposed enhancements to the system

  12. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  13. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately

  14. Fuels planning: science synthesis and integration; environmental consequences fact sheet 08: Evaluating sedimentation risks associated with fuel management

    Science.gov (United States)

    William Elliot; Pete Robichaud

    2005-01-01

    This fact sheet describes the sources of sediment in upland forest watersheds in the context of fuel management activities. It presents the dominant forest soil erosion processes, and the principles behind the new sediment delivery interface developed to aid in erosion analysis of fuel management projects.

  15. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 03: visualizing forest structure and fuels

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...

  16. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 04: role of silviculture in fuel treatments

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The principal goals of fuel treatments are to reduce fireline intensities, reduce the potential for crown fires, improve opportunities for successful fire suppression, and improve forest resilience to forest fires. This fact sheet discusses thinning, and surface fuel treatments, as well as challenges associated with those treatments.

  17. Fuels planning: science synthesis and integration; environmental consequences fact sheet 04: wildlife responses to fuels treatments: key considerations

    Science.gov (United States)

    David Pilliod

    2004-01-01

    Managers face a difficult task in predicting the effects of fuels treatments on wildlife populations, mostly because information on how animals respond to fuels treatments is scarce or does not exist. This paper discusses key considerations-aspects of an animal's ecology and available information-that, despite the scarcity of information, may make predictions of...

  18. Stereo photo series for quantifying natural fuels. Volume XII: Post-hurricane fuels in forests of the Southeast United States.

    Science.gov (United States)

    Robert E. Vihnanek; Cameron S. Balog; Clinton S. Wright; Roger D. Ottmar; Jeffrey W. Kelly

    2009-01-01

    Two series of single and stereo photographs display a range of natural conditions and fuel loadings in post-hurricane forests in the southeastern United States. Each group of photos includes inventory information summarizing vegetation composition, structure and loading, woody material loading and density by size class, forest floor loading, and various site...

  19. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0 2 ) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations

  20. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  1. Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode

    Science.gov (United States)

    Yin, Wong Wai; Daud, Wan Ramli Wan; Mohamad, Abu Bakar; Kadhum, Abdul Amir Hassan; Majlan, Edy Herianto; Shyuan, Loh Kee

    2012-06-01

    Organic catalyst has recently been identified as the potential substitution for expensive platinum electrocatalyst for fuel cell application. Numerous studies have shown that the nitrogen-containing carbon nanotubes (N-CNT) can be synthesized through spray pyrolysis or floating chemical vapor deposition (CVD) technique using various type of organometallic as precursors. This paper presents the method of synthesis and the initial findings of the growth of N-CNT directly on carbon paper using a modified CVD technique. In this research, nickel (II) phthalocyanines (Ni-Pc) as precursor was dissolved in ethanol solvent, stirred and sonicated to become homogenized. The solution was poured into a bubbler and heated up to allow the mixture to vaporize. Subsequently, the solution vapor was flowed into the tubical reactor maintained at 900°C. Carbon paper sputtered with nickel nanoparticles was used as the substrate. The synthesized sample was examined through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and Fourier Transform Infra-Red (FTIR). Long, entangled and compartmentalized nanotubes with tube diameter ranging 23-27 nm were found covered the carbon paper surface with approximate of 5.5-6.0 μm in thickness. EDX analysis has successfully showed the presence of nitrogen in the carbon nanotube. FTIR analysis showed the presence of the C-N bond on CNT.

  2. Mesoporous catalysts for the synthesis of clean diesel fuels by oligomerisation of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Catani, Roberto; Rossini, Stefano [Snamprogetti SpA, Via F. Maritano 26, 20092 , MI S. Donato Milanese (Italy); Mandreoli, Monica; Vaccari, Angelo [Dipartimento di Chimica Industriale e dei Materiali, Universita di Bologna, INSTM-UdR di Bologna, Viale del Risorgimento 4, 40136 Bologna (Italy)

    2002-07-03

    Si/Al MCM-41 type mesoporous compounds, as such or containing small amounts of metal (Ni, Rh or Pt), were investigated in the synthesis of clean diesel fuels by oligomerisation of orphan olefin streams. Very good catalytic performances were obtained with C{sub 4} and C{sub 5} olefins, while almost no conversion occurred with ethylene. The activity increased with increasing reaction pressure, temperature and contact time, while high Si/Al ratios had a negative effect on both activity and catalyst stability. The presence of small amount of metal inside the mesoporous structure did not significantly modify the catalytic activity, although specific effects were detected for each element. Since the evaluation of the cetane number by H-NMR gave rise to values about 20% lower than the actual value, a new and more complex algorithm is proposed to calculate the cetane number. Using the proposed algorithm, a good correlation index was found between calculated and motor values for pure compounds. Further study is necessary to move from pure compounds to experimental mixtures.

  3. Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance

    Science.gov (United States)

    Santoro, Carlo; Rojas-Carbonell, Santiago; Awais, Roxanne; Gokhale, Rohan; Kodali, Mounika; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2018-01-01

    Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm-2 to 214 ± 5 μW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.

  4. Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, F; Baque, L; Troiani, H; Granada, M; Serquis, A, E-mail: aserquis@cab.cnea.gov.a [Instituto Balseiro-Centro Atomico Bariloche and CONICET, San Carlos de Bariloche (Argentina)

    2009-05-01

    La{sub 1-x}Sr{sub x}Co{sub 1-y}FeyO{sub 3-d}elta oxides are good candidates for solid oxide fuel cell (SOFC) cathodes because these materials present high ionic and electronic conductivity, and compatibility with Cerium Gadolinium Oxide (CGO) electrolytes allowing a lower operation temperature. In this work, we report the synthesis of La{sub 0.4}Sr{sub 0.6}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d}elta (LSCF) nanotubes prepared by a porous polycarbonate membrane approach, obtaining different microstructures depending on sintering conditions. The structure and morphology of the nanotubes and deposited films were characterized by X-ray diffraction, transmission and scanning microscopy. Finally, we obtained nanostructured films of vertically aligned LSCF tubes deposited over the whole surface of CGO pellets with diameter up to 2.5cm in a direct and single step process.

  5. Mechanical energy yields and pressure volume and pressure time curves for whole core fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, P [United Kingdom Atomic Energy Authority, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1979-10-15

    In determining the damage consequences of a whole core Fuel-Coolant Interaction (FCI), one measure of the strength of a FCI that can be used and is independent of the system geometry is the constant volume mixing mechanical yield (often referred to as the Hicks-Menzies yield), which represents a near upper limit to the mechanical work of a FCI. This paper presents a recalculation of the Hicks-Menzies yields for UO{sub 2} and sodium for a range of initial fuel temperatures and fuel to coolant mass ratios, using recently published UO{sub 2} and sodium equation of state data. The work presented here takes a small number of postulated FCIs with as wide range as possible of thermal interaction parameters and determines their pressure-volume P(V) and pressure-time P(t) relations, using geometrical constraints representative of the reactor. Then by examining these P(V) and P(t) curves a representative pressure-relative volume curve or range of possible curves, for use in containment analysis, is recommended

  6. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  7. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men.

    Directory of Open Access Journals (Sweden)

    Nicholas A Burd

    Full Text Available BACKGROUND: We aimed to determine the effect of resistance exercise intensity (%1 repetition maximum-1RM and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen men (21+/-1 years; BMI=24.1+/-0.8 kg/m2 performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM until volitional failure (90FAIL, 30% 1RM work-matched to 90%FAIL (30WM, or 30% 1RM performed until volitional failure (30FAIL. Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX, myofibrillar (MYO, and sarcoplasmic (SARC protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121% and MYO (87% protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199% above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P=0.023 and mTORSer2448 phosphorylation at 4 h post-exercise (P=0.025. Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05 only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237% and 30FAIL (312% conditions. Pax7 mRNA expression increased at 24 h post-exercise (P=0.02 regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. CONCLUSIONS/SIGNIFICANCE: These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes.

  8. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O 2 concentrations were used, spanning 10–21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH ∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH ∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH ∗ with the increase of ambient temperature and O 2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O 2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O 2 concentration conditions by

  9. The synthesis of carbon nanocomposites as fuel cell catalyst support and the characterization of fuel cell catalysts by spatially resolved scanning mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan

    2007-07-01

    Ammonia decomposition over Ni/SiO{sub 2} and Ni/MgO was investigated by temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) in order to produce CO{sub x} free hydrogen fuel for fuel cell application. A highly efficient route for the synthesis of carbon nanocomposites based on electrochemical deposition and iron catalyzed chemical vapor deposition (CVD) was developed in order to obtain a promising substrate for fuel cell catalysts. The duration of electrochemical deposition, temperature and time for the carbon nanotubes (CNTs) growth had been optimized to achieve higher surface area after the growth. Hierarchically structured CNTs composites had been synthesized and electrochemical studies provided evidence for the strong interaction among the substrate and grown CNTs, which are essential for the application in fuel cells. A straightforward strategy was developed to synthesize well dispersed gold nanoparticles with a diameter of 4 to 6 nm on the sidewall of multi-walled carbon nanotubes (MWNTs). A gas flow set-up was developed for the evaluation of fuel cell catalysts by performing scanning mass spectrometry with integrated constant-distance positioning. Methanol oxidation was identified as a suitable test reaction. The diameter of scanning probe was reduced in order to achieve higher spatial resolution. Spatially resolved scanning mass spectrometry was successfully applied to visualize the catalytic activity over Pt-based catalysts and monitor the local activity of a catalysts coated membrane (CCM). The gas-solid phase reaction results were proved to be accurate, reliable and independent of the sample topography. This analytical method opens the way for fast quality control of the catalyst coating with respect to even coating and absence of damages, and for a better understanding of the CCM degradation in polymer membrane electrolyte fuel cells (PEMFCs). (orig.)

  10. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 02: fire hazard

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  12. Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses

    Energy Technology Data Exchange (ETDEWEB)

    Ring, S

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

  13. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  14. Licensed fuel facility status report. Inventory difference data, January-June 1985. Volume 6, No. 1

    International Nuclear Information System (INIS)

    1986-02-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  15. Licensed fuel facility status report. Inventory difference data, July-December 1985. Volume 6, No. 2

    International Nuclear Information System (INIS)

    1986-08-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  16. Licensed fuel facility status report. Inventory difference data, January-June 1983. Volume 4, No. 1

    International Nuclear Information System (INIS)

    1984-03-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, or uranium-233

  17. Licensed fuel facility status report. Inventory difference data, July 1983-December 1983. Volume 4, No. 2

    International Nuclear Information System (INIS)

    1984-08-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  18. Licensed fuel facility status report. Inventory difference data, January-June 1984. Volume 5, No. 1

    International Nuclear Information System (INIS)

    1985-04-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or Uranium-233

  19. Quantifying the potential impacts of fuel treatments on wildfire suppression costs volume

    Science.gov (United States)

    Matthew P. Thompson; Nicole M. Vaillant; Jessica R. Haas; Krista M. Gebert; Keith D. Stockmann

    2013-01-01

    Modeling the impacts and effects of hazardous fuel reduction treatments is a pressing issue within the wildfire management community. Prospective evaluation of fuel treatments allows for comparison of alternative treatment strategies in terms of socioeconomic and ecological impacts and facilitates analysis of tradeoffs across land management objectives (Stockmann et al...

  20. Licensed fuel facility. Volume 14. Inventory difference data, status report, July 1, 1993--June 30, 1994

    International Nuclear Information System (INIS)

    Joy, D.R.

    1995-03-01

    The Nuclear Regulatory Commission is committed to an annual publication of licensed fuel facilities' inventory difference (ID) results, after Agency review of the information and completion of any related investigations. Information in this report includes ID results for active fuel fabrication and/or recovery facilities

  1. Licensed fuel facility status report. Volume 5, No. 2. Inventory difference data, July 1984-December 1984

    International Nuclear Information System (INIS)

    1985-10-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  2. The determinants of fuel use in the trucking industry - volume, fleet characteristics and the rebound effect

    DEFF Research Database (Denmark)

    de Borger, Bruno; Mulalic, Ismir

    2012-01-01

    This paper studies the determinants of fuel use in the trucking industry in Denmark, using aggregate time series data for the period 1980–2007. The model captures the main linkages between the demand for freight transport, the characteristics of the vehicle fleet, and the demand for fuel. Results...... of this effect is approximately 10% in the short run and 17% in the long run, so that a 1% improvement in fuel efficiency reduces fuel use by 0.90% (short-run) to 0.83% (long-run). Second, we find that higher fuel prices raise the average capacity of trucks, and they induce firm sto invest in newer, typically...... more fuel efficient, trucks. Third, these adjustments and the rebound effect jointly imply that the effect of higher fuel prices on fuel use in the trucking industry is fairly small; estimated price elasticities are _0:13 and _0:22 in the short run and in the long run, respectively. The empirical...

  3. Licensed fuel facility status report: Inventory difference data, July 1, 1994--June 30, 1995. Volume 15

    International Nuclear Information System (INIS)

    Joy, D.R.

    1996-05-01

    The Nuclear Regulatory Commission (NRC) is committed to the periodic publication of licensed fuel facility inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of special nuclear material

  4. Synthesis and characterization of palm oil fuel ash (POFA) and metakaolin based geopolymer for possible application in nanocoating

    Science.gov (United States)

    Khan, Ihsan Ullah; Bhat, A. H.; Masset, Patrick J.; Khan, Farman Ullah; Rehman, Wajid Ur

    2016-11-01

    The main aim of this study was to synthesize and characterize highly amorphous geopolymer from palm oil fuel ash (POFA) and metakaolin, to be used as nanocoating. Geopolymers are man-made aluminosilicate materials that are amorphous analogues of zeolites. The geopolymers were made by condensing a mixture of raw materials metakaolin and palm oil fuel ash (POFA) with alkaline activator at a fixed ratio at room temperature. The kaolin type clay was calcined at 700 °C for 4hrs to transform it into amorphous metakaolin which is more reactive precursor for geopolymer formation. The characteristics of metakaolin and geopolymers (metakaolin and palm oil fuel ash based geopolymers) were analyzed by using x-ray fluorescence (XRF), Fourier transform infra-red spectrometry (FTIR), Thermogravimetric analysis (TG/DTA) and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDX). FTIR revealed the presence of Al-O and Si-O stretching vibrations of amorphous alumino-silicate structure for metakaolin, palm oil fuel ash and geopolymers. SEM-EDX images showed the presence of reaction product complementary to NASH (N = Na2O, A = Al2O3, S = SiO2, H = H2O) solid. The resulting geopolymers that were synthesized with NaOH/Na2SiO3 solution cured at 60 °C for 3 days. The results demonstrated the suitability of metakaolin and palm oil fuel ash (POFA) for synthesis of geopolymer at room temperatures.

  5. Mixture of fuels for solution combustion synthesis of porous Fe{sub 3}O{sub 4} powders

    Energy Technology Data Exchange (ETDEWEB)

    Parnianfar, H.; Masoudpanah, S.M., E-mail: masoodpanah@iust.ac.ir; Alamolhoda, S.; Fathi, H.

    2017-06-15

    Highlights: • Mixture of glycine and urea fuels was applied for solution combustion synthesis of Fe3O4 powders. • The phase and crystallite size of the as-combusted powders depends on the fuel to oxidant ratio (ϕ). • The maximum density (0.033 cm{sup 3}/g) was observed for the as-combusted powders at ϕ = 1. • The highest Ms of 75.5 emu/g and the lowest Hc of 84 Oe were achieved at ϕ = 1. - Abstract: The solution combustion synthesis of porous magnetite (Fe{sub 3}O{sub 4}) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N{sub 2} adsorption–desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe{sub 3}O{sub 4} powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe{sub 3}O{sub 4} powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m{sup 2}/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  6. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics.

    Science.gov (United States)

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin

    2016-02-01

    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.

  7. Draft Environmental Impact Statement on a proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Volume 1

    International Nuclear Information System (INIS)

    1995-03-01

    The United States Department of Energy and United States Department of State are jointly proposing to adopt a policy to manage spent nuclear fuel from foreign research reactors. Only spent nuclear fuel containing uranium enriched in the United States would be covered by the proposed policy. The purpose of the proposed policy is to promote U.S. nuclear weapons nonproliferation policy objectives, specifically by seeking to reduce highly-enriched uranium from civilian commerce. Environmental effects and policy considerations of three Management Alternative approaches for implementation of the proposed policy are assessed. The three Management Alternatives analyzed are: (1) acceptance and management of the spent nuclear fuel by the Department of Energy in the United States, (2) management of the spent nuclear fuel at one or more foreign facilities (under conditions that satisfy United States nuclear weapons nonproliferation policy objectives), and (3) a combination of components of Management Alternatives 1 and 2 (Hybrid Alternative). A No Action Alternative is also analyzed. For each Management Alternative, there are a number of alternatives for its implementation. For Management Alternative 1, this document addresses the environmental effects of various implementation alternatives such as varied policy durations, management of various quantities of spent nuclear fuel, and differing financing arrangements. Environmental impacts at various potential ports of entry, along truck and rail transportation routes, at candidate management sites, and for alternate storage technologies are also examined. For Management Alternative 2, this document addresses two subalternatives: (1) assisting foreign nations with storage; and (2) assisting foreign nations with reprocessing of the spent nuclear fuel. Management Alternative 3 analyzes a hybrid alternative. This document is Vol. 1 of 2 plus summary volume

  8. LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Fluss, M

    2008-12-19

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  9. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    International Nuclear Information System (INIS)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-01-01

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3)

  10. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  11. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 1: Procedural overview

    International Nuclear Information System (INIS)

    2007-01-01

    Accurate determinations of volume are a fundamental component of any measurement-based system of control and accountability in a facility that processes or stores nuclear materials in liquid form. Volume determinations are typically made with the aid of a calibration or volume measurement equation that relates the response of the tank's measurement system to some independent measure of tank volume. The ultimate purpose of the calibration exercise is to estimate the tank's volume measurement equation (the inverse of the calibration equation), which relates tank volume to measurement system response. The steps carried out to acquire data for estimating the tank's calibration or volume measurement equation are collectively described as the process of tank calibration. This part of ISO 18213 describes procedures for tank calibration and volume determination for nuclear process tanks equipped with pressure-measurement systems for determining liquid content. Specifically, overall guidance is provided for planning a calibration exercise undertaken to obtain the data required for the measurement equation to estimate a tank's volume. The key steps in the procedure are also presented for subsequently using the estimated volume-measurement equation to determine tank liquid volumes. The procedures presented apply specifically to tanks equipped with bubbler probe systems for measuring liquid content. Moreover, these procedures produce reliable results only for clear (i.e. without suspended solids), homogeneous liquids that are at both thermal and static equilibrium. The paper elaborates on scope, physical principles involved, the calibration model, equipment required, a typical tank calibration procedure, calibration planning and pre-calibration activities, and volume determination. A bibliography is provided

  12. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 2. Alternatives for waste treatment

    International Nuclear Information System (INIS)

    1976-05-01

    Volume II of the five-volume report is devoted to the description of alternatives for waste treatment. The discussion is presented under the following section titles: fuel reprocessing modifications; high-level liquid waste solidification; treatment and immobilization of chop-leach fuel bundle residues; treatment of noncombustible solid wastes; treatment of combustible wastes; treatment of non-high-level liquid wastes; recovery of transuranics from non-high-level wastes; immobilization of miscellaneous non-high-level wastes; volatile radioisotope recovery and off-gas treatment; immobilization of volatile radioisotopes; retired facilities (decontamination and decommissioning); and, modification and use of selected fuel reprocessing wastes

  13. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 2. Alternatives for waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume II of the five-volume report is devoted to the description of alternatives for waste treatment. The discussion is presented under the following section titles: fuel reprocessing modifications; high-level liquid waste solidification; treatment and immobilization of chop-leach fuel bundle residues; treatment of noncombustible solid wastes; treatment of combustible wastes; treatment of non-high-level liquid wastes; recovery of transuranics from non-high-level wastes; immobilization of miscellaneous non-high-level wastes; volatile radioisotope recovery and off-gas treatment; immobilization of volatile radioisotopes; retired facilities (decontamination and decommissioning); and, modification and use of selected fuel reprocessing wastes. (JGB)

  14. Synthesis of modified calcium aluminate with lanthanum manganite (LSM) for possible use in solid oxide fuel cell (SOFC)

    International Nuclear Information System (INIS)

    Veiga, F.C.T.; Jurado, J.; Sousa, V.C. de

    2016-01-01

    The fuel cells solid oxide (SOFC) is made up of three basic elements: two electrodes, the anode and cathode and a conductive electrolyte ions. The objective of this work consists of calcium aluminate synthesis modified LSM in a 1: 1 by combustion synthesis method with a view to its use as a cathode in SOFC. The characterization of the post was carried out by the methods of XRD, TEM and EIS. After heat treatment at 1200°C/4 hours it was possible to obtain Ca0.5Sr1.5MnO4 and CaMnO2.56 phases. The material showed a semiconductor characteristics because with increasing temperature the electrical resistance value tends to decrease obtaining electrical conductivity greater than 10-6S / cm featuring an extrinsic semiconductor with an activation energy of 0.12. Therefore, with an activation energy value within the range of materials used for a SOFC cathodes. (author)

  15. Prototypical spent fuel rod consolidation equipment preliminary design report: Volume 1, Report

    International Nuclear Information System (INIS)

    1986-01-01

    This design report describes the NUS Preliminary Design of the Prototype Spent Nuclear Fuel Rod Consolidation Equipment for the Department of Energy. The sections of the report elaborate on each facet of the preliminary design. A concept summary is provided to assist the reader in rapidly understanding the complete design. The NUS Prototype Spent Fuel Rod Consolidation System is an automatically controlled system to consolidate a minimum of 750 MT (heavy metal)/year of US commercial nuclear reactor fuel, at 75% availability. The system is designed with replaceable components utilizing the latest state-of-the-art technology. This approach gives the system the flexibility to be developed without costly development programs, yet accept new technology as it evolves over the next ten years. Capability is also provided in the system design to accommodate a wide variety of fuel conditions and to recover from any situation which may arise

  16. Fuels planning: science synthesis and integration; social issues fact sheet 18: Issues affecting social acceptability of fuels treatments

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    Researchers have tried to understand how information about forest management can influence a person's landscape preferences and aesthetic appreciation. These findings are relevant for fuels management projects, since these projects are often characterized by conflicts between aesthetic and ecological objectives. This fact sheet discusses different aspects and ways...

  17. Fuels planning: science synthesis and integration; social issues fact sheet 17: Considering social acceptability of fuels treatments

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    When making decisions about fuels treatments, forest managers need to assess not only the biological impacts of a treatment, but the social impacts as well. Social acceptability is based on value judgments by people-their notions of what is "good" and what is "better." This fact sheet discusses six questions that may be useful for framing initial...

  18. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  19. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 1. Summary: alternatives for the back of the LWR fuel cycle types and properties of LWR fuel cycle wastes projections of waste quantities; selected glossary

    International Nuclear Information System (INIS)

    1976-05-01

    Volume I of the five-volume report contains executive and technical summaries of the entire report, background information of the LWR fuel cycle alternatives, descriptions of waste types, and projections of waste quantities. Overview characterizations of alternative LWR fuel cycle modes are also included

  20. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  1. Proceedings of the US Department of Energy environmental control symposium. Volume 1. Plenary session and fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    Volume one of the proceedings (Plenary Session and Fossil Fuels) contains papers on environmental pollution control which resulted mainly from US DOE's research programs in coal (preparation, desulfurization, gasification, liquefaction, combustion, fluidized-bed combustion, and pollution control methods with respect to SO/sub 2/, NO/sub x/, and CO/sub 2/ (global effects and feasibility studies); a few papers deal with oil shale operations and the enhanced recovery of petroleum. Papers have been entered individually into EDB and ERA, with 3 also into EAPA; six papers had been entered previously from other sources. (LTN)

  2. Estimating volume, biomass, and potential emissions of hand-piled fuels

    Science.gov (United States)

    Clinton S. Wright; Cameron S. Balog; Jeffrey W. Kelly

    2009-01-01

    Dimensions, volume, and biomass were measured for 121 hand-constructed piles composed primarily of coniferous (n = 63) and shrub/hardwood (n = 58) material at sites in Washington and California. Equations using pile dimensions, shape, and type allow users to accurately estimate the biomass of hand piles. Equations for estimating true pile volume from simple geometric...

  3. Final Generic Environmental Impact Statement. Handling and storage of spent light water power reactor fuel. Volume 1. Executive summary and text

    International Nuclear Information System (INIS)

    1979-08-01

    The Generic Environmental Impact Statement on spent fuel storage was prepared by the Nuclear Regulatory Commission staff in response to a directive from the Commissioners published in the Federal Register, September 16, 1975 (40 FR 42801). The Commission directed the staff to analyze alternatives for the handling and storage of spent light water power reactor fuel with particular emphasis on developing long range policy. Accordingly, the scope of this statement examines alternative methods of spent fuel storage as well as the possible restriction or termination of the generation of spent fuel through nuclear power plant shutdown. Volume 1 includes the executive summary and the text

  4. Studies on the synthesis of nanocrystalline Y{sub 2}O{sub 3} and ThO{sub 2} through volume combustion and their sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sanjay Kumar, D. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Ananthasivan, K., E-mail: asivan@igcar.gov.in [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Venkata Krishnan, R. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Amirthapandian, S. [Material Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Dasgupta, Arup [Microscopy and Thermo-Physical Property Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India)

    2016-10-15

    Volume combustion was observed in the auto-ignition of the citrate gels containing the nitrates of yttrium/thorium for the first time in mixture with a fuel (citric acid) to oxidant (Y{sup 3+} or Th{sup 4+} nitrate) ratio close to that demanded by the stoichiometry. These nanocrystalline powders were characterized for their bulk density, specific surface area, particle size distribution, carbon residue and X-ray crystallite size and were sintered by both the conventional and the two-step method. The maximum relative sintered density of Y{sub 2}O{sub 3} was 98.9% TD. The sintered density of thoria (97.8% TD) is the highest among the values reported so far, for nanocrystalline ThO{sub 2}. Characterization of the pellets and powders by using scanning electron microscopy and transmission electron microscopy reaffirmed nanocrystallinity and that the sintered pellets comprised faceted sintered grains. The two-step sintering was found to restrict “runaway” sintering. - Highlights: • Scaled-up synthesis of nanocrystalline Y{sub 2}O{sub 3} and ThO{sub 2} using citrate gel-combustion method. • VCR was observed at a fuel to nitrate ratio (R) of 0.125 and 0.17 in mixtures containing Th(NO{sub 3}){sub 4} and Y(NO{sub 3}){sub 3} respectively. • The calcined powders were compacted and sintered by using a novel two-step sintering method. • Sintered densities as high as 97.8% T.D. (ThO{sub 2}, T{sub H} = 0.48) and 98.9% T.D. (Y{sub 2}O{sub 3}, T{sub H} = 0.61) were obtained.

  5. Assesment of the energy quality of the synthesis gas produced from biomass derived fuels conversion: Part I: Liquid Fuels, Ethanol

    International Nuclear Information System (INIS)

    Arteaga Perez, Luis E; Casas, Yannay; Peralta, Luis M; Granda, Daikenel; Prieto, Julio O

    2011-01-01

    The use of biofuels plays an important role to increase the efficiency and energetic safety of the energy processes in the world. The main goal of the present research is to study from the thermodynamics and kinetics the effect of the operational variables on the thermo-conversion processes of biomass derived fuels focused on ethanol reforming. Several models are developed to assess the technological proposals. The minimization of Gibbs free energy is the criterion applied to evaluate the performance of the different alternatives considering the equilibrium constraints. All the models where validated on an experimental data base. The gas composition, HHV and the ratio H2/CO are used as measures for the process efficiency. The operational parameters are studied in a wide range (reactants molar ratio, temperature and oxygen/fuel ratio). (author)

  6. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2. GSFLS visit findings and evaluations. Interim report

    International Nuclear Information System (INIS)

    1978-01-01

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This report describes a global framework that evaluates spent fuel disposition requirements, influencing factors and strategies. A broad sampling of foreign governmental officials, electric utility spokesmen and nuclear power industry officials responsible for GSFLS policies, plans and programs were surveyed as to their views with respect to national and international GSFLS related considerations. The results of these GSFLS visit findings are presented herein. These findings were then evaluated in terms of technical, institutional and legal/regulatory implications. The GSFLS evaluations, in conjunction with perceived US spent fuel objectives, formed the basis for selecting a set of GSFLS strategies which are reported herein

  7. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2. GSFLS visit findings and evaluations. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This report describes a global framework that evaluates spent fuel disposition requirements, influencing factors and strategies. A broad sampling of foreign governmental officials, electric utility spokesmen and nuclear power industry officials responsible for GSFLS policies, plans and programs were surveyed as to their views with respect to national and international GSFLS related considerations. The results of these GSFLS visit findings are presented herein. These findings were then evaluated in terms of technical, institutional and legal/regulatory implications. The GSFLS evaluations, in conjunction with perceived US spent fuel objectives, formed the basis for selecting a set of GSFLS strategies which are reported herein.

  8. Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, K.S.

    1993-11-01

    The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

  9. Spent Nuclear Fuel Project technical baseline document. Fiscal year 1995: Volume 1, Baseline description

    International Nuclear Information System (INIS)

    Womack, J.C.; Cramond, R.; Paedon, R.J.

    1995-01-01

    This document is a revision to WHC-SD-SNF-SD-002, and is issued to support the individual projects that make up the Spent Nuclear Fuel Project in the lower-tier functions, requirements, interfaces, and technical baseline items. It presents results of engineering analyses since Sept. 1994. The mission of the SNFP on the Hanford site is to provide safety, economic, environmentally sound management of Hanford SNF in a manner that stages it to final disposition. This particularly involves K Basin fuel, although other SNF is involved also

  10. Development of a mathematical model for a single alkaline membrane fuel cell (AMFC) with fixed volume and general square section

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Elise Meister; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Setor de Tecnologia], Email: jvargas@demec.ufpr.br; Martins, Lauber de Souza; Ordonez, Juan Carlos [Florida State University, Tallahasse, FL (United States). Dept. of Mechanical Engineering and Center for Advanced Power Systems], Emails: martins@caps.fsu.edu, ordonez@eng.fsu.edu

    2010-07-01

    The Alkaline Membrane Fuel Cell (AMFC) is a recently developed fuel cell type, which has shown good experimental results in the laboratory. This paper introduces a mathematical model for the single AMFC with fixed volume and general square section. The main objective is to produce a reliable model (and computationally fast) to predict the response of the single AMFC according to variations of the physical properties of manufacturing materials and operating and design parameters. The model is based on mass, momentum, energy and species conservation, and electrochemical principles, and takes into account pressure drops in the gas channels and temperature gradients with respect to space in the flow direction. The simulation results comprise the AMFC temperature distribution, net power and polarization curves. It is shown that temperature spatial gradients and gas channels pressure drops significantly affect fuel cell performance. Such effects are not usually investigated in the models available in the literature, with most of them assuming uniform pressure and temperature operation. Therefore, the model is expected to be a useful tool for AMFC design and optimization. (author)

  11. Barnwell Nuclear Fuels Plant applicability study. Volume II. BNFP: utilization alternatives, evaluations, and conclusions

    International Nuclear Information System (INIS)

    1978-04-01

    Descriptions and status of the Barnwell separations facility and related fuel cycle facilities are given. Alternative uses other than reprocessing, evaluation of uses for reprocessing alternatives, resource utilization and its relationship to U.S. security objectives, and evaluation of ownership-management options are discussed

  12. Nuclear fuel reprocessing and high level waste disposal: informational hearings. Volume V. Reprocessing. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-03-08

    Testimony was presented by a four member panel on the commercial future of reprocessing. Testimony was given on the status of nuclear fuel reprocessing in the United States. The supplemental testimony and materials submitted for the record are included in this report. (LK)

  13. Nuclear Fuel Recovery and Recycling Center. License application, PSAR, volume 1

    International Nuclear Information System (INIS)

    1976-01-01

    A summary of the location and major design features of the proposed Nuclear Fuel Recovery and Recycling Center is presented. The safety aspects of the proposed facilities and operations are summarized, taking into account possible normal and abnormal operating and environmental conditions. A chapter on site characteristics is included

  14. Operating experience feedback report: Assessment of spent fuel cooling. Volume 12

    International Nuclear Information System (INIS)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.; Ornstein, H.L.; Pullani, S.V.

    1997-02-01

    This report documents the results of an independent assessment by a team from the Office of Analysis and Evaluation of Operational Data of spent-fuel-pool (SFP) cooling in operating nuclear power plants. The team assessed the likelihood and consequences of an extended loss of SFP cooling and suggested corrective actions, based on their findings

  15. Synthesis Report on the understanding of failed LMFBR fuel element performance

    International Nuclear Information System (INIS)

    Plitz, H.; Bagley, K.; Harbourne, B.

    1990-07-01

    In the coarse of LMFBR operation fuel element failures cannot entirely be avoided as experienced during the operation of PFR, PHENIX and KNK II, where 44 failed fuel elements have been registered between 1978 and 1989. In earlier irradiations, post irradiation examinations showed mixed oxide pin diameter increases up to pin pitch distance, urging to stress reactor safety questions on the potential of fuel pin failure propagation within pin bundles. The chemical interaction of sodium with mixed oxide fuel is regarded to be the key for the understanding of failed fuel behavior. Valuable results on the failed fuel pin behavior during operation were obtained from the SILOE sodium loop test. Based on the bulk of experience with the detection of fuel pin failures, with the continued operation and with the handling of failed pins respectively elements, one can state: 1. All fuel pin failures have been detected securely in time and have been located. 2. Small defects are developing slowly. 3. Even large defects at end-of-life pins resulted in limited fuel loss. 4. Clad failures behave benign in main aspects. 5. The chemical interaction of sodium with mixed oxide is an important factor in the behavior of failed fuel pins, especially at high burnup. 6. Despite different pin designs and different operation conditions, on the basis of 44 failed elements in PFR, PHENIX and KNK II no pin-to-pin propagation was observed and fuel release was rather low, often not detectable. 7. In no case hazard conditions affecting reactor safety have been experienced

  16. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    International Nuclear Information System (INIS)

    Denney, R.D.

    1995-10-01

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP

  17. Engineered Barrier System - Mechanical Integrity of KBS-3 Spent Fuel Canisters. Report from a Workshop. Synthesis and extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    SKI is preparing to review the license applications being developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) for a final repository for the geological disposal of spent nuclear fuel in the year 2009. As part of its preparation, SKI is conducting a series of technical workshops on key aspects of the Engineered Barrier System (EBS). The workshop reported here mainly dealt with the mechanical integrity of KBS-3 spent fuel canisters. This included assessment and review of various loading conditions, structural integrity models and mechanical properties of the copper shell and the cast iron insert. Degradation mechanisms such as stress corrosion cracking and brittle creep fracture were also briefly addressed. Previous workshops have addressed the overall concept for long-term integrity of the EBS, the manufacturing, testing and QA of the EBS, the performance confirmation for the EBS, long-term stability of the buffer and the backfill, corrosion properties of copper canisters and the spent fuel dissolution and source term modelling. The goal of ongoing review work in connection of the workshop series is to achieve a comprehensive overview of all aspects of SKB's EBS and spent fuel work prior to the handling of the forthcoming license application. This report aims to summarise the issues discussed at the workshop and to extract the essential viewpoints that have been expressed. The report is not a comprehensive record of all the discussions at the workshop, and individual statements made by workshop participants should be regarded as personal opinions rather than SKI viewpoints. Results from the EBS workshops series will be used as one important basis in future review work. This reports includes in addition to the workshop synthesis, questions to SKB identified prior to the workshop, and extended abstracts for introductory presentations

  18. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which

  19. Technological aspects in synthesis and characterization of proton conducting polyetheretherketone (PEEK) membranes for fuel cell applications.

    CSIR Research Space (South Africa)

    Vaivars, G

    2009-08-01

    Full Text Available The research on ion-exchange membranes has grown considerably in recent years with the growing interest in fuel cell technology for the automotive and portable applications. The requirements for a fuel cell membrane are the following: high chemical...

  20. Fuels planning: science synthesis and integration; economic uses fact sheet 09: Mechanical treatment costs

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2005-01-01

    Although fuel reduction treatments are widespread, there is great variability and uncertainty in the cost of conducting treatments. Researchers from the Rocky Mountain Research Station, USDA Forest Service, have developed a model for estimating the per-acre cost for mechanical fuel reduction treatments. Although these models do a good job of identifying factors that...

  1. Fuels planning: science synthesis and integration; social issues fact sheet 12: Keys to successful collaboration

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    Collaborating on fire and fuels management with a host of public and private partners may seem like an impossible undertaking, and presents many challenges. This fact sheet reviews tips for what to focus on as you embark on a collaborative fuels management project.Other...

  2. Fuels planning: science synthesis and integration; social issues fact sheet 05: The importance of working locally

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    People who evaluate their actions in terms of what others think are often said to be guided by community norms. With respect to fuels management, this means that when you are "selling" a property owner on taking steps to reduce fuels, you are not just "selling" to one person, but to a network of people. This fact sheet discusses three tools to help...

  3. Fuels planning: science synthesis and integration; social issues fact sheet 15: Landscape change and aesthetics

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    Fuels management produces changes in the landscape that can impact scenic beauty. If people do not consider a forest to be scenic, they may think that the low scenic quality is a result of poor management or ecological health. This fact sheet looks at the relevency of the effects of natural and human-caused landscape changes, when planning fuels management.

  4. Fuels planning: science synthesis and integration; economic uses fact sheet 02: log hauling cost

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Knowing the cost of fuel reduction treatments and associated activities, such as hauling cut trees, is essential for fire and fuels planning. This fact sheet explores the main factors that determine the cost of hauling cut trees and points the user to an interactive tool that can help plan for those and other expenses.

  5. Fuels planning: science synthesis and integration; economic uses fact sheet 01: mastication treatments and costs

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Mastication, or mulching, is a mechanical fuel treatment that changes the structure and size of fuels in the stand. This fact sheet describes the kinds of equipment available, where mastication should be used, and treatment factors affecting cost.Other publications in this...

  6. Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels

    DEFF Research Database (Denmark)

    Simonetti, D.A.; Rass-Hansen, Jeppe; Kunkes, E.L.

    2007-01-01

    Liquid alkanes can be produced directly from glycerol by an integrated process involving catalytic conversion to H-2/CO gas mixtures (synthesis gas) combined with Fischer-Tropsch synthesis. Synthesis gas can be produced at high rates and selectivities suitable for Fischer-Tropsch synthesis (H-2/CO...... between 1.0 and 1.6) from concentrated glycerol feed solutions at low temperatures (548 K) and high pressures (1-17 bar) over a 10 wt% Pt-Re/C catalyst with an atomic Pt : Re ratio of 1 : 1. The primary oxygenated hydrocarbon intermediates formed during conversion of glycerol to synthesis gas are ethanol...... in the liquid organic effluent stream and increasing the selectivity to C5+ alkanes by a factor of 2 ( from 0.30 to 0.60). Catalytic conversion of glycerol and Fischer-Tropsch synthesis were coupled in a two-bed reactor system consisting of a Pt-Re/C catalyst bed followed by a Ru/TiO2 catalyst bed...

  7. Transfer of radioactive materials in the fuel cycle. Transportation systems, transportation volume and radiation protection

    International Nuclear Information System (INIS)

    Schwarz, G.

    1997-01-01

    No other aspect of the carriage of hazardous goods has been provoking such long-lived concern in the general public and in the press during the last few years as the transport of spent nuclear fuels and high-level radioactive wastes to the storage facility at Gorleben. One reason for this controversy, besides clear-cut opposition in principal against such transfer activities, is the fact that there is an information gap, so that large parts of the population are not well informed about the relevant legal safety requirements and obligations governing such transports. The article therefore tries to fill this gap, presenting information on the number and necessity of transports of radioactive materials in the nuclear fuel cycle, the relevant scenarios, the transportation systems and packing and shielding requirements, as well as information on the radiological classification and hazardousness of waste forms. (Orig.) [de

  8. Brief draft on surface and subsurface storage of high level and long-lived radioactive wastes. Spent fuels synthesis file

    International Nuclear Information System (INIS)

    Dumas, C.; Jaecki, P.

    2002-01-01

    This document makes a synthesis of the results of two brief draft studies performed in 2002 about the surface and subsurface storage of spent fuels. These studies stress on the long duration aspect of the disposal: feasibility of a secular disposal facility, potential risks and safety level of such a facility, estimation of the initial investment and of operation and maintenance costs. The main points of the specifications and the input data are presented first, and then the subsurface and surface draft studies are described. Content: specifications (imposed design principles and options, dry corrosion, input data); subsurface storage (description and design options, thermal dimensioning and ventilation, geotechnical stability of the facility, subsurface water management, dry corrosion, infrastructure durability, safety, monitoring, security and physical protection, technical-economical aspects, case of Mox fuel, case of glass packages); surface storage (description and design options, thermal dimensioning and ventilation, mechanical dimensioning of the facility, dry corrosion, infrastructure durability, safety, monitoring, security and physical protection, technical-economical aspects, case of Mox fuel, case of glass packages); conclusions and perspectives. (J.S.)

  9. Design report small-scale fuel alcohol plant. Volume 2: Detailed construction information

    Science.gov (United States)

    1980-12-01

    The objectives are to provide potential alcohol producers with a reference design and provide a complete, demonstrated design of a small scale fuel alcohol plant. The plant has the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention.

  10. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3A. GSFLS technical analysis (appendix). Interim report

    International Nuclear Information System (INIS)

    1978-01-01

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. A technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives

  11. Global spent fuel logistics systems study (GSFLS). Volume I. GSFLS summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    An important element in the implementation of international nuclear energy policies is the creation of viable systems for transporting, handling, storing, and disposing of the world's spent nuclear fuel. There is an urgent need to implement selected global spent fuel logistics systems (GSFLS) which can best bridge the interests of countries throughout the world and provide the necessary means for transporting, handling, storing and disposing of spent nuclear fuel. The viability of these systems depends upon their compatibility with governmental policies and nonproliferation concerns; their adequacy in support of projected global nuclear power programs; and their adaptation to realistic technological and institutional constraints. The United States Department of Energy contracted with Boeing Engineering and Construction (BEC), a division of the Boeing Company, and its subcontractors, International Energy Associates Limited (IEAL) and the firm of Doub, Purcell, Muntzing and Hansen to conduct a study of issues and options in establishing GSFLS and to develop preliminary GSFLS concepts. BEC conducted the study integration and developed the technological/economic framework; IEAL researched and developed the institutional framework; and the firm of Doub, Purcell, Muntzing and Hansen conducted the legal/regulatory research associated with the study. BEC also consulted with the First Boston Corporation regarding generic financial considerations associated with GSFLS. This report provides a summarization of the GSFLS study findings.

  12. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3. GSFLS technical and financial analysis. Interim report

    International Nuclear Information System (INIS)

    1978-01-01

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported herein. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. A technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives

  13. Global spent fuel logistics systems study (GSFLS). Volume I. GSFLS summary report

    International Nuclear Information System (INIS)

    1978-06-01

    An important element in the implementation of international nuclear energy policies is the creation of viable systems for transporting, handling, storing, and disposing of the world's spent nuclear fuel. There is an urgent need to implement selected global spent fuel logistics systems (GSFLS) which can best bridge the interests of countries throughout the world and provide the necessary means for transporting, handling, storing and disposing of spent nuclear fuel. The viability of these systems depends upon their compatibility with governmental policies and nonproliferation concerns; their adequacy in support of projected global nuclear power programs; and their adaptation to realistic technological and institutional constraints. The United States Department of Energy contracted with Boeing Engineering and Construction (BEC), a division of the Boeing Company, and its subcontractors, International Energy Associates Limited (IEAL) and the firm of Doub, Purcell, Muntzing and Hansen to conduct a study of issues and options in establishing GSFLS and to develop preliminary GSFLS concepts. BEC conducted the study integration and developed the technological/economic framework; IEAL researched and developed the institutional framework; and the firm of Doub, Purcell, Muntzing and Hansen conducted the legal/regulatory research associated with the study. BEC also consulted with the First Boston Corporation regarding generic financial considerations associated with GSFLS. This report provides a summarization of the GSFLS study findings

  14. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3A. GSFLS technical analysis (appendix). Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Kriger, A.

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. A technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives.

  15. Physical protection of special nuclear material in the commercial fuel cycle. Volume I. Executive summary

    International Nuclear Information System (INIS)

    1976-04-01

    This is the summary of the work and recommendations resulting from Sandia's participation in the Special Safeguards Study, which covered three areas: protection of SNM at fixed facilities, protection of SNM while in transit, and relocation and recovery of lost SNM. The results are published in full in five other volumes. 6 tables, 4 fig

  16. Modified hydrogenated PBLH copolymer synthesis with styrene for proton exchange membranes fuel cell application

    International Nuclear Information System (INIS)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Rodrigues, Maraiza F.; Groetzner, Mariana B.; Cesar-Oliveira, Maria Aparecida F.; Cantao, Mauricio P.

    2005-01-01

    Polymers used as electrolyte in fuel cells are expected to have functional groups in their structure which are responsible for proton conductivity. Since the use of hydroxylated liquid polybutadiene (PBLH) has not been mentioned in the literature as an ion exchange membrane for fuel cell application (PEMFC), and its structure can be modified for a later sulfonation, it has been studied. In this work, PBLH was modified through a hydrogenation reaction. Furthermore, hydrogenated polymeric esters were obtained by esterification and transesterification reactions (PBLH- estearate and PBLH- methacrylate). Reacting the PBLH methacrylate with styrene, it was generated a copolymer with appropriated structure for sulfonation, justifying researches for fuel cell. (author)

  17. Synthesis and characterisation of alkaline anionic-exchange membranes for direct alcohol fuel cells

    CSIR Research Space (South Africa)

    Nonjola, P

    2007-12-01

    Full Text Available , but the most important being proton exchange membrane fuel cell (PEMFC), which uses an acidic membrane like Nafion (sulfonated fluorocarbon polymers) as an electrolyte. The use of polymer electrolytes represents an interesting path to pursue...

  18. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    Science.gov (United States)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  19. Influence of fuel ratios on auto combustion synthesis of barium ferrite

    Indian Academy of Sciences (India)

    Abstract. Single-domain barium ferrite nano particles have been synthesized with narrow particle-size distribution using an auto combustion technique. In this process, citric acid was used as a fuel. Ratios of cation to fuel were maintained variously at 1 : 1, 1 : 2 and 1 : 3. The pH was 7 in all cases. Of all three cases, a cation ...

  20. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells

    NARCIS (Netherlands)

    Smet, de C.R.H.; Croon, de M.H.J.M.; Berger, R.J.; Marin, G.B.M.M.; Schouten, J.C.

    2001-01-01

    Adiabatic fixed-bed reactors for the catalytic partial oxidn. (CPO) of methane to synthesis gas were designed at conditions suitable for the prodn. of methanol and hydrogen-for-fuel-cells. A steady-state, one-dimensional heterogeneous reactor model was applied in the simulations. Intra-particle

  1. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  2. Compliance problems of small utility systems with the Powerplant and Industrial Fuel Use Act of 1978: volume II - appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    A study of the problems of compliance with the Powerplant and Industrial Fuel Use Act of 1978 experienced by electric utility systems which have a total generating capacity of less than 2000 MW is presented. This volume presents the following appendices: (A) case studies (Farmington, New Mexico; Lamar, Colorado; Dover, Delaware; Wolverine Electric Cooperative, Michigan; Central Telephone and Utilities, Kansas; Sierra Pacific Power Company, Nevada; Vero Beach, Florida; Lubbock, Texas; Western Farmers Cooperative, Oklahoma; and West Texas Utilities Company, Texas); (B) contacts and responses to study; (C) joint action legislation chart; (D) Texas Municipal Power Agency case study; (E) existing generating units jointly owned with small utilities; (F) future generating units jointly owned with small utilities; (G) Federal Register Notice of April 17, 1980, and letter of inquiry to utilities; (H) small utility responses; and (I) Section 744, PIFUA. (WHK)

  3. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst

    International Nuclear Information System (INIS)

    Cheng, Y; Tanaka, M; Watanabe, T; Choi, S Y; Shin, M S; Lee, K H

    2014-01-01

    The catalyst of Ni 2 B nanoparticles was successfully prepared using nickel and boron as precursors with the quenching gas in radio frequency thermal plasmas. The generating of Ni 2 B needs adequate reaction temperature and boron content in precursors. The quenching gas is beneficial for the synthesis of Ni 2 B in RF thermal plasma. The effect of quenching rate, powder feed rate and boron content in feeding powders on the synthesis of nickel boride nanoparticles was studied in this research. The high mass fraction of 28 % of Ni 2 B nanoparticles can be generated at the fixed initial composition of Ni:B = 2:3. Quenching gas is necessary in the synthesis of Ni 2 B nanoaprticles. In addition, the mass fraction of Ni 2 B increases with the increase of quenching gas flow rate and powder feed rate

  4. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 1, Detailed design

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Goedicke, F.E.; Bessko, C.

    1987-01-01

    This document describes the Westinghouse Final Design for the Prototypical Spent Fuel Consolidation Equipment Demonstration Project. This design represents a fully qualified, licensable, cost effective spent fuel rod consolidation system. As a result of significant concerns raised by DOE and its Technical Review Committee during the 30% Design Review, significant changes were made to the original Preliminary Design resulting from Phase I activities. These changes focused on increased automation, end fitting removal, the rod pulling process and the need to maintain the consolidation canisters as clean as possible. As a result of these changes, the new system is greatly enhanced with a much greater probability of meeting or exceeding the project functional requirements. As a result of delays in resolving cost and contractual differences, additional bench testing was not conducted during Phase II. It is however our belief that the current design exceeds the 90% confidence level required by DOE because of the confidence gained from the Phase I tests, the additional engineering detail completed and the fact that our rod pulling tool has been demonstrated in a similar application at Oconee while our ID tube cutter is a modified (mounting method only) off-the-shelf design. 7 refs., 49 figs., 36 tabs

  5. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Volume I. Conceptual design report

    International Nuclear Information System (INIS)

    1978-12-01

    In February 1976, the Energy Research and Development Administration (ERDA), now the Department of Energy (DOE), established a National Waste Terminal Storage (NWTS) program. As a part of this program, two parallel conceptual design efforts were initiated in January 1977. One was for deep geologic storage, in domed salt, of high level waste resulting from the reprocessing of spent fuel. The other was for deep geologic storage of unreprocessed spent fuel in bedded salt. These two concepts are identified as NWTS Repository 1 and Repository 2, respectively. Repository 2 (NWTSR2) is the concept which is covered by this Conceptual Design Report. Volume I of the conceptual design report contains the following information: physical description of the report; project purpose and justification; principal safety, fire, and health hazards; environmental impact considerations; quality assurance considerations; assessment of operational interfaces; assessment of research and development interfaces; project schedule; proposed method of accomplishment; summary cost estimate; and outline specifications. The conceptual design for Repository 2 was developed in sufficient detail to permit determination of scope, engineering feasibility, schedule, and cost estimates, all of which are necessary for planning and budgeting the project

  6. Survey of Biomass Gasification, Volume II: Principles of Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B. (comp.)

    1979-07-01

    Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

  7. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller

    1999-01-01

    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

  8. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 5, Operations and maintenance manual

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of this manual is to describe the function, installation, operation and maintenance of the Fuel Rod Consolidation System. This Document is preliminary and must be updated to incorporate any modifications to the mechanical and electrical systems that are performed during construction. Any changes and specific references related to the software requirements will be provided as the software is developed in Phase III. Setpoints related to equipment positions as a function of resolver and position transducer readings will also be provided in Phase III. References such as vendor supplied Operating and Maintenance Manuals for vendor components and assemblies are not available until a receipt of a purchase order. These references will become an integral part of this manual during the construction phase

  9. Coordinated safeguards for materials management in a fuel reprocessing plant. Volume I

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.; Augustson, R.H.; Barnes, J.W.

    1977-09-01

    A materials management system is described for safeguarding special nuclear materials in a fuel-reprocessing plant. Recently developed nondestructive-analysis techniques and process-monitoring devices are combined with conventional chemical analyses and process-control instrumentation for improved materials accounting data. Unit-process accounting based on dynamic material balances permits localization of diversion in time and space, and the application of advanced statistical methods supported by decision-analysis theory ensures optimum use of accounting information for detecting diversion. This coordinated safeguards system provides maximum effectiveness consistent with modest cost and minimum process interference. Modeling and simulation techniques are used to evaluate the sensitivity of the system to single and multiple thefts and to compare various safeguards options. The study identifies design criteria that would improve the safeguardability of future plants

  10. Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel.

    Science.gov (United States)

    Gopala Krishna, Prashanth; Paduvarahalli Ananthaswamy, Prashanth; Trivedi, Priyanka; Chaturvedi, Vinita; Bhangi Mutta, Nagabhushana; Sannaiah, Ananda; Erra, Amani; Yadavalli, Tejabhiram

    2017-06-01

    In this study, we report the synthesis, structural and morphological characteristics of zinc oxide (ZnO) nanoparticles using solution combustion synthesis method where lemon juice was used as the fuel. In vitro anti-tubercular activity of the synthesized ZnO nanoparticles and their biocompatibility studies, both in vitro and in vivo were carried out. The synthesized nanoparticles showed inhibition of Mycobacterium tuberculosis H37Ra strain at concentrations as low as 12.5μg/mL. In vitro cytotoxicity study performed with normal mammalian cells (L929, 3T3-L1) showed that ZnO nanoparticles are non-toxic with a Selectivity Index (SI) >10. Cytotoxicity performed on two human cancer cell lines DU-145 and Calu-6 indicated the anti-cancer activity of ZnO nanoparticles at varied concentrations. Results of blood hemolysis indicated the biocompatibility of ZnO nanoparticles. Furthermore, in vivo toxicity studies of ZnO nanoparticles conducted on Swiss albino mice (for 14days as per the OECD 423 guidelines) showed no evident toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    International Nuclear Information System (INIS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-01-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO_2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  12. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  13. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  14. Kajian Pemilihan Sumber Mikroorganisme Solid Phase Microbial Fuel Cell (SMFC Berdasarkan Jenis dan Volume Sampah, Power Density dan Efisiensi Penurunan COD

    Directory of Open Access Journals (Sweden)

    Ganjar Samudro

    2017-06-01

    Full Text Available Mikroorganisme merupakan salah satu komponen penting dalam proses Solid Phase Microbial Fuel Cell (SMFC untuk degradasi bahan organik dan transfer elektron. Pemilihan sumber mikroorganisme menjadi metode yang paling sederhana untuk dikaji sebagai informasi awal ketersediaan dan identifikasi jenis mikroorganisme yang mendukung proses SMFC. Tujuan kajian ini adalah untuk memilih sumber mikroorganisme tanah, septic tank dan sedimen sungai yang tepat digunakan dalam proses SMFC berdasarkan jenis dan volume sampah, power density, dan efisiensi penurunan COD. Kajian ini didasarkan pada hasil penelitian menggunakan reaktor SMFC tipe single chamber microbial fuel cell dengan variabel jenis dan volume sampah , serta sumber mikroorganisme. Metode perbandingan secara kuantitatif dilakukan berdasarkan kecenderungan nilai power density dan efisiensi penurunan COD tertinggi di antara jenis dan volume sampah kantin, dedaunan dan komposit kantin-dedaunan. Hasil yang didapatkan adalah sumber mikroorganisme tanah dan sedimen sungai tepat digunakan untuk volume sampah 1/3 dan 2/3 dari volume reaktor, sedangkan sumber mikroorganisme septic tank tepat digunakan untuk volume sampah 1/3 dan 1/2 dari volume reaktor. Sumber mikroorganisme dari septic tank menunjukkan kinerja power density dan efisiensi penurunan COD yang lebih rendah dibandingkan sumber mikroorganisme tanah dan sedimen sungai.

  15. Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel

    Directory of Open Access Journals (Sweden)

    Swapnil A. Dharaskar

    2016-07-01

    Full Text Available In the present paper the experimental data of extractive desulfurization of liquid fuel using 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 have been presented. The data of FTIR, 1H NMR and 13C NMR have been discussed for the molecular confirmation of synthesized [BMIM]BF4. Further, the thermal properties, conductivity, solubility, and viscosity analysis of the [BMIM]BF4 were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of ionic liquid without regeneration on dibenzothiophene removal of liquid fuel were presented. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 73.02% for mass ratio of 1:1 in 30 min at 30 °C under the mild reaction conditions. The ionic liquids could be reused four times without a significant decrease in activity. Also, the desulfurizations of real fuels, multistage extraction were presented. The data and results provided in the present paper explore the significant insights of imidazoled ILs for extractive desulfurization of liquid fuels.

  16. Fuels planning: science synthesis and integration; environmental consequences fact sheet 10: The Understory Response Model

    Science.gov (United States)

    Steve Sutherland; Melanie Miller

    2005-01-01

    The Understory Response Model is a species-specific computer model that qualitatively predicts change in total species biomass for grasses, forbs, and shrubs after thinning, prescribed fire, or wildfire. The model examines the effect of fuels management on plant survivorship and reproduction. This fact sheet identifies the intended users and uses, required inputs, what...

  17. Fuels planning: science synthesis and integration; economic uses fact sheet 07: markets and log prices

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Markets and prices for logs vary widely across the West, fluctuating from place to place in response to regional variables and hauling costs. This fact sheet discusses those variables, locality of log markets, markets for low-value logs, and caveats to consider when using My Fuel Treatment Planner.

  18. Fuels planning: science synthesis and integration; social issues fact sheet 16: Prescribed fire and visual quality

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    Research shows that, while prescribed burning and other fuels treatments can lower visual quality in some situations, they can also improve it in others. This fact sheet reviews the visual aspects of different levels of prescribed burning.Other publications in this series...

  19. Fuels planning: science synthesis and integration; environmental consequences fact sheet 15: The Wildlife Habitat Response Model

    Science.gov (United States)

    David Pilliod

    2005-01-01

    The Wildlife Habitat Response Model (WHRM) is a Web-based computer tool for evaluating the potential effects of fuel-reduction projects on terrestrial wildlife habitats. It uses species-habitat associations in ponderosa pine (Pinus ponderosa), dry-type Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus...

  20. Fuels planning: science synthesis and integration; social issues fact sheet 14: Landscape preference in forested ecosystems

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    It is important to understand what types of landscape settings most people prefer to be able to plan fuels treatment and other forest management activities that will be acceptable to the general public. This fact sheet considers the four common elements of visually preferred forest settings: large trees; herbacious, smooth groundcover; open midstory canopy; and vistas...

  1. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  2. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    International Nuclear Information System (INIS)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials

  3. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  4. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  5. VSOP, Neutron Spectra, 2-D Flux Synthesis, Fuel Management, Thermohydraulics Calculation

    International Nuclear Information System (INIS)

    Teuchert, E.; Haas, K.A.

    1995-01-01

    1 - Description of problem or function: VSOP (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D and 3-D diffusion calculation, depletion and shut-down features, in- core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (steady state and transient). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of thermal reactors, their fuel cycles, thermal transients, and safety assessment. Besides its use in research and development work for the Gas Cooled High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors, MAGNOX, and RBMK. 2 - Method of solution: The nuclear data for 184 isotopes are contained in two libraries. Fast and epithermal data in a 68 group GAM-I structure have been prepared mainly from ENDF/B-V and JEF-1. Resonance cross section data are given as input. Thermal data in a 30 group THERMOS structure have been collapsed from a 96 group THERMALIZATION (GATHER) library by a relevant neutron energy spectrum generated by the THERMALIZATION code. Graphite scattering matrices are based on the Young phonon spectrum in graphite. The neutron spectrum is calculated by a combination of the GAM and THERMOS codes. They can simultaneously be employed for many core regions differing in temperature, burnup, and fuel element lay-out. The thermal cell code THERMOS has been extended to treat the grain structure of the coated particles inside the fuel elements, and the epithermal GAM code uses modified cross sections for the resonance absorbers prepared from double heterogeneous ZUT-DGL calculations. The diffusion module of the code is CITATION with 2 - 8 energy groups. It provides the neutron

  6. Two-dimensional transient thermal analysis of a fuel rod by finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rhayanne Yalle Negreiros; Silva, Mário Augusto Bezerra da; Lira, Carlos Alberto de Oliveira, E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-07-01

    One of the greatest concerns when studying a nuclear reactor is the warranty of safe temperature limits all over the system at all time. The preservation of core structure along with the constraint of radioactive material into a controlled system are the main focus during the operation of a reactor. The purpose of this paper is to present the temperature distribution for a nominal channel of the AP1000 reactor developed by Westinghouse Co. during steady-state and transient operations. In the analysis, the system was subjected to normal operation conditions and then to blockages of the coolant flow. The time necessary to achieve a new safe stationary stage (when it was possible) was presented. The methodology applied in this analysis was based on a two-dimensional survey accomplished by the application of Finite Volume Method (FVM). A steady solution is obtained and compared with an analytical analysis that disregard axial heat transport to determine its relevance. The results show the importance of axial heat transport consideration in this type of study. A transient analysis shows the behavior of the system when submitted to coolant blockage at channel's entrance. Three blockages were simulated (10%, 20% and 30%) and the results show that, for a nominal channel, the system can still be considerate safe (there's no bubble formation until that point). (author)

  7. A Safe, Self-Calibrating, Wireless System for Measuring Volume of Any Fuel at Non-Horizontal Orientation

    Science.gov (United States)

    Woodward, Stanley E.; Taylor, Bryant D.

    2010-01-01

    A system for wirelessly measuring the volume of fluid in tanks at non-horizontal orientation is predicated upon two technologies developed at Langley Research Center. The first is a magnetic field response recorder that powers and interrogates magnetic field response sensors [ Magnetic Field Response Measurement Acquisition System, (LAR-16908), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28]. Magnetic field response sensors are a class of sensors that are powered via oscillating magnetic fields and when electrically active respond with their own magnetic fields whose attributes are dependent upon the magnitude of the physical quantity being measured. The response recorder facilitates the use of the second technology, which is a magnetic field response fluid-level sensor ["Wireless Fluid- Level Sensors for Harsh Environments," (LAR-17155), NASA Tech Briefs, Vol. 33, No. 4 (April 2009), page 30]. The method for powering and interrogating the sensors allows them to be completely encased in materials (Fig. 1) that are chemically resilient to the fluid being measured, thereby facilitating measurement of substances (e.g., acids, petroleum, cryogenic, caustic, and the like) that would normally destroy electronic circuitry. When the sensors are encapsulated, no fluid (or fluid vapor) is exposed to any electrical component of the measurement system. There is no direct electrical line from the vehicle or plant power into a fuel container. The means of interrogating and powering the sensors can be completely physically and electrically isolated from the fuel and vapors by placing the sensor on the other side of an electrically non-conductive bulkhead (Fig. 2). These features prevent the interrogation system and its electrical components from becoming an ignition source.

  8. Synthesis on the long term behavior of spent nuclear fuel. Vol.1,2

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Toulhoat, P.; Grouiller, J.P.; Pavageau, J.; Piron, J.P.; Pelletier, M.; Dehaudt, Ph.; Cappelaere, Ch.; Limon, R.; Desgranges, L.; Jegou, Ch.; Corbel, C.; Maillard, S.; Faure, M.H.; Cicariello, J.C.; Masson, M.

    2001-01-01

    The aim of this report is to present the major objectives, the key scientific issues, and the preliminary results of the research conducted in France in the framework of the third line of the 1991 Law, on the topic of the long term behavior of spent nuclear fuel in view of long term storage or geological disposal. Indeed, CEA launched in 1998 the Research Program on the Long Term Behavior of Spent Nuclear Fuel (abbreviated and referred to as PRECCI in French; Poinssot, 1998) the aim of which is to study and assess the ability of spent nuclear fuel packages to keep their initially allocated functions in interim storage and geological disposal: total containment and recovery functions for duration up to hundreds of years (long term or short-term interim storage and/or first reversible stages of geological disposal) and partial confinement function (controlled fluxes of RN) for thousands of years in geological disposal. This program has to allow to obtain relevant and reliable data concerning the long term behavior of the spent fuel packages so that feasibility of interim storage and/or geological disposal can be assessed and demonstrated as well as optimized. Within this framework, this report presents for every possible scenario of evolution (closed system, in Presence of water in presence of gases) what are estimated to be the most relevant evolution mechanism. For the most relevant scientific issues hence defined, a complete scientific review of the best state of knowledge is subsequently here given thus allowing to draw a clear guideline of the major R and D issues for the next years. (authors)

  9. Synthesis of jet fuel range branched cycloalkanes with mesityl oxide and 2-methylfuran from lignocellulose

    Science.gov (United States)

    Li, Shanshan; Li, Ning; Wang, Wentao; Li, Lin; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2016-09-01

    Jet fuel range branched cycloalkanes with high density (0.82 g mL-1) and low freezing point (217-219 K) was first prepared by the solvent-free intramolecular aldol condensation of the trione from the hydrolysis of the alkylation product of mesityl oxide and 2-methylfuran (or the one-pot reaction of mesityl oxide, 2-methylfuran and water), followed by hydrodeoxygenation (HDO).

  10. Synthesis and characterization of brannerite wasteforms for the immobilization of mixed oxide fuel residues

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D.J.; Stennett, M.C.; Hyatt, N.C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-07-01

    A possible method for the reduction of civil Pu stockpiles is the reuse of Pu in mixed oxide fuel (MOX). During MOX fuel production, residues unsuitable for further recycle will be produced. Due to their high actinide content MOX residues require immobilization within a robust host matrix. Although it is possible to immobilize actinides in vitreous wasteforms; ceramic phases, such as brannerite (UTi{sub 2}O{sub 6}), are attractive due to their high waste loading capacity and relative insolubility. A range of uranium brannerite, formulated Gd{sub x}U{sub 1-x}Ti{sub 2}O{sub 6}, were prepared using a mixed oxide route. Charge compensation of divalent and trivalent cations was expected to occur via the oxidation of U{sup 4+} to higher valence states (U{sup 5+} or U{sup 6+}). Gd{sup 3+} was added to act as a neutron absorber in the final Pu bearing wasteform. X-ray powder diffraction of synthesised specimens found that phase distribution was strongly affected by processing atmosphere (air or Ar). In all cases prototypical brannerite was formed accompanied by different secondary phases dependent on processing atmosphere. Microstructural analysis (SEM) of the sintered samples confirmed the results of the X-ray powder diffraction. The preliminary results presented here indicate that brannerite is a promising host matrix for mixed oxide fuel residues. (authors)

  11. Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose

    Science.gov (United States)

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-03-01

    For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL-1 and 0.91 g mL-1) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity.

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  13. Synthesis, characterization and optimization of platinum-alloy nanoparticle catalysts in proton exchange membrane fuel cells

    Science.gov (United States)

    Srivastava, Ratndeep

    Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane

  14. Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 3. Appendix on service and fuel demands. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This book is the third volume of the ISTUM report. The first volume of the report describes the primary model logic and the model's data inputs. The second volume lists and evaluates the results of one model run. This and the fourth volume give supplementary information in two sets of model data - the energy consumption base and technology descriptions. Chapter III of Vol. I, Book 1 describes the ISTUM demand base and explains how that demand base was developed. This volume serves as a set of appendices to that chapter. The chapter on demands in Vol. I describes the assumptions and methodology used in constructing the ISTUM demand base; this volume simply lists tables of data from that demand base. This book divides the demand tables into two appendices. Appendix III-1 contains detailed tables on ISTUM fuel-consumption estimates, service-demand forecasts, and size and load-factor distributions. Appendix III-2 contains tables detailing ISTUM allocations of each industry's fuel consumption to service sectors. The tables show how the ECDB was used to develop the ISTUM demand base.

  15. Energy perspectives 2035 - Volume 1, synthesis; Die Energieperspektiven 2035 - Band 1: Synthese. Modellrechnungen, Vergleiche, Bewertungen und Herausforderungen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    This comprehensive report published by the Swiss Federal Office of Energy (SFOE) presents a synthesis of the results of a study that examined four scenarios concerning future developments in Swiss energy supply policy. The four scenarios include the variants entitled 'business as usual', 'increased co-operation', 'new priorities' and 'on the way to a 2000-Watt society'. The four scenarios are presented in detail in a separate paper. Here, for each scenario, policy options, energy demand, electricity offerings and CO{sub 2} emissions are noted. The scenarios are compared with each other and evaluated with respect to energy efficiency and energy demand. Examples are quoted and developments in demand are examined. Their sensitivities with respect to Gross Domestic Product (GDP), climate change and their costs are discussed. Renewable sources of energy for power, heating and motor fuels are discussed and non-renewable sources of energy such as nuclear power, gas-fired power stations, combined heat and power installations and district heating systems are examined. Electricity supply and possible shortages are discussed, as are environmental pollution and nuclear wastes. Finally, a dynamic balance model and effects on consumption, trade, employment and welfare are discussed and challenges placed concerning security of supply, environmental protection, the economy, society, politics and legislation are examined

  16. Synthesis of Fuel Cell Membrane: Copolymerization of Styrene on ETFE Film by Grafted pre-Irradiation

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Preirradiation Grafting styrene monomer on ETFE  film has been prepared. Research has been  performed by γ-ray radiation at various total dose from 2.5 - 12.5 kGy and various dose rate from 1.3 - 1.9 kGy/hour. Irradiated copolymer is then grafted by styrene monomer in various solvent: ethanol, 2-propanol, and toluene, various concentration from 20 - 70% volume, various temperature from 50 - 90oC, and various grafting time from 2 - 12 hours. The results showed that percent of grafting is increase with increase of total dose and decrease of  rate dose. The optimum experiment conditions are obtained at total dose 10 kGy, dose rate 1,9 kGy/hour, 2-propanol solvent, 40% volume styrene, 4 hours grafting time, and 70oC grafting temperature.

  17. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines (Year Two)

    Science.gov (United States)

    2011-03-31

    a variety of sugar monomers) and lignin , an amorphous, cross-linked set of molecules so random in its size and structure that no accurate model has...regardless of reactive gas atmosphere. Furthermore, the experiments determined that a heating rate in the 200-500 °C s-1 regime may be sufficient for...Biomass is made up of polymeric chain linked porous material which may undergo expansion, surface area to volume changes, and surface reactivity

  18. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description

    International Nuclear Information System (INIS)

    1980-06-01

    The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates

  19. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

  20. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains

    Science.gov (United States)

    Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali

    2017-08-01

    With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.

  1. Design and synthesis of nanomaterials for surface-enhanced Raman scattering, fuel cell technology, and photonics

    Science.gov (United States)

    Camargo, Pedro Henrique Cury

    In the first part of my dissertation, I developed two approaches for selectively probing the SERS activities of individual hot spots, i.e., experimentally detect the SERS signals only for the molecules that are trapped within the hot-spot region in individual Ag nanoparticle dimers. Then, I performed a systematic investigation on the SERS activity of individual dimers composed of two closed spaced Ag nanoparticles. By utilizing Ag nanoparticles displaying a variety of well-defined shapes, sizes and orientations to construct the dimers, I were able to precisely correlate the detected SERS signals to the specific geometry of individual hot spots. In the second part of this dissertation, I performed a systematic investigation on the galvanic replacement reaction between PtCl62- and Pd nanocrystals with well-defined shapes including octahedra, nanocubes, and nanorods. The resultant hollow Pd-Pt bimetallic nanostructures were employed as electrocatalysts for the oxygen reduction reaction (ORR). Our results demonstrated that the nanostructures derived from Pd octahedra displayed the highest ORR activity, being 1.7 times more active based on equivalent Pt mass than the commercial Pt/C. I also conducted a mechanistic study on the galvanic replacement reaction between AuCl4- and Pd nanorods. Differently from the Pd-Pt system, a new type of hybrid nanostructure in the tadpole shape consisting of a Au head and a Pd tail was obtained due to a localized galvanic replacement mechanism. As an extension of my work to develop new electrocatalysts for the ORR, a templateengaged reaction was utilized for the synthesis of RuSe2+delta nanotubes. The RuSe2+delta nanotubes were active towards the ORR and displayed no loss in activity in the presence of methanol, as opposed to commercial Pt/C. Finally, the template-engaged reaction was applied to the synthesis of Se MSe (M = Zn, Cd or Pb) colloidal spheres having similar sizes but different compositions. They were utilized as building

  2. Synthesis and analysis of a closed cycle methane-fueled marine energy process

    International Nuclear Information System (INIS)

    Teich, C.I.

    1983-01-01

    A marine energy system has been synthesized from state-of-the-art technology to convert nuclear derived electricity into liquefied methane. In the first part of the process, the on-board process, liquid methane is burned in a combined gas turbine-steam turbine system to provide propulsion power and the carbon dioxide created during combustion recovered. In the second part of the process, the fuel regeneration process, the methane is regenerated in a centralized land-based facility by the reaction of the recovered carbon dioxide with hydrogen obtained from nuclear-powered electrolysis of water. The system was analyzed by combining thermodynamic available energy analysis and an approximate preliminary design. The available energy analysis of the combined system established the thermodynamic feasibility of the methane-carbon dioxide cycle and resulted in various process improvements because of the inefficiencies disclosed by the analysis. The more critical on-board process was analyzed and developed further by a capital cost optimization and ranking alternate process options by their available energy consumptions. The optimal on-board process, whose capital cost is 16% less than the preliminary design, has an effectiveness of 47% and the fuel regeneration process an effectiveness of 56%. It was also found that the process cost was proportional to the horsepower raised to the seven-tenths power

  3. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst wa......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society.......A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst...... was found to be a mixture of nanocrystalline, mostly unalloyed Pt and an amorphous phase mostly of Ru and to a lesser extent of Pt oxides on top of the crystalline phase. The flame-produced Pt1Ru1 demonstrated similar onset potential but similar to 60% higher activity compared to commercially available Pt1...

  4. Synthesis and characterization of Pd-Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells

    International Nuclear Information System (INIS)

    Zhao, Juan; Sarkar, Arindam; Manthiram, Arumugam

    2010-01-01

    Carbon-supported Pd-Ni nanoalloy electrocatalysts with different Pd/Ni atomic ratios have been synthesized by a modified polyol method, followed by heat treatment in a reducing atmosphere at 500-900 deg. C. The samples have been characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), rotating disk electrode (RDE) measurements, and single-cell proton exchange membrane fuel cell (PEMFC) tests for oxygen reduction reaction (ORR). XRD and TEM data reveal an increase in the degree of alloying and particle size with increasing heat-treatment temperature. XPS data indicate surface segregation with Pd enrichment on the surface of Pd 80 Ni 20 after heat treatment at ≥500 deg. C, suggesting possible lattice strains in the outermost layers. Electrochemical data based on CV, RDE, and single-cell PEMFC measurement show that Pd 80 Ni 20 heated at 500 deg. C has the highest mass catalytic activity for ORR among the Pd-Ni samples investigated, with stability and catalytic activity significantly higher than that found with Pd. With a lower cost, the Pd-Ni catalysts exhibit higher tolerance to methanol than Pt, offering an added advantage in direct methanol fuel cells (DMFC).

  5. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Gurpreet; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com [Advanced Functional Material Laboratory, Department of Nanotechnology,, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140 406 Punjab (India); Kumar, Manjeet [Department of Materials Engineering, Defense Institute of Advanced Technology (DU), Pune-411 025 (India); Bala, Rajni [Department of Mathematics Punjabi University Patiala-147 002 Punjab (India)

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used for high temperature applications.

  6. Fuel Cell Power Plant Initiative. Volume II: Preliminary Design of a Fixed-Base LFP/SOFC Power System

    National Research Council Canada - National Science Library

    Veyo, S

    1997-01-01

    .... Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate...

  7. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 4, Appendices: Part 3

    International Nuclear Information System (INIS)

    Ciez, A.P.

    1987-01-01

    The purpose of this manual is to provide assembly, installation, operation, maintenance, and off-normal recovery procedures for the Consolidation Equipment. The Consolidation System is a horizontal, dry system capable of processing one Pressurized Water Reactor (PWR) fuel assembly or one Boiling Water Reactor (BWR) fuel assembly at a time. The system will process all spent PWR and BWR fuels from the commercial US nuclear power reactor industry. Component changeouts for various fuel types have been minimized to reduce costs, required in-cell module storage space, and to increase efficiency by decreasing set-up time between fuel consolidation campaigns. The most important feature of the Westinghouse system is the ability to control the fuel rods at all times during the consolidation process from rod extraction, through canister loading. This features assures that the rods from two PWR fuel assemblies or four BWR fuel assemblies (minimum) can be loaded into one consolidated rods canister

  8. Fuels planning: science synthesis and integration; social issues fact sheet 02: Developing personal responsibility for fuels reduction: Types of information to encourage proactive behavior

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Fuels management responsibilities may include providing local property owners with the information for taking responsibility for reducing fuels on their land. This fact sheet discusses three different types of information that may be useful in programs to engage property owners in fuel reduction activities.

  9. Fuels planning: science synthesis and integration; environmental consequences fact sheet 12: Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool

    Science.gov (United States)

    William Elliot; David Hall

    2005-01-01

    The Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool was developed to estimate sediment generated by fuel management activities. WEPP FuMe estimates sediment generated for 12 fuel-related conditions from a single input. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user how to obtain the...

  10. Synthesis and characterization of metallic nuclear fuels; Sintese e caracterizacao de combustiveis nucleares metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Longen, F.R., E-mail: frlongen@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil); Barco, R.; Paesano Junior, A. [Universidade Estadual de Maringa (UEM), PR (Brazil); Pagano Junior, L. [Centro Tecnologico da Marinha (CETEM), Sao Paulo, SP (Brazil)

    2014-07-01

    U-Zr-Mo and U-Zr-Gd ternary alloys, potentially useful as metallic nuclear fuel, were prepared at different concentrations by arc-melting and characterized by X-ray diffraction. Those alloys containing molybdenum were submitted to thermal annealing in inert atmosphere, followed by quenching in water. These samples were measured before and after the thermal treatment. The diffractometric results evidenced that the as-cast alloys solidified mostly with a body centered cubic structure (γphase) and that for the uranium richest samples a second phase formed, with an orthorhombic structure (α phase). For the U-Zr-Gd alloys the X-ray diffractometry revealed the retention of a hexagonal structure (δ phase) and gadolinium traces in the poorest uranium samples. The U{sub 57}(Zr{sub 92}Gd{sub 8}){sub 43} sample resulted monophasic becoming, according to literature, the first time that a solid solution combining uranium and gadolinium is identified. (author)

  11. Hydrothermal Synthesis of Nanostructured Manganese Oxide as Cathodic Catalyst in a Microbial Fuel Cell Fed with Leachate

    Science.gov (United States)

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824

  12. Controlled synthesis of Pt/CS/PW12-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen

    2015-01-01

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW 12 -GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW 12 -GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H 3 PW 12 O 40 (PW 12 ) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW 12 -GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW 12 -GNs exhibit the forward peak current density of 445 mA mg −1 , which is much higher than that (220 mA mg −1 ) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications

  13. Synthesis of carbide fuels from nano-structured precursors: impact on carbo-reduction and physico-chemical properties

    International Nuclear Information System (INIS)

    Saravia, Alvaro

    2015-01-01

    The classical way classically used for manufacturing carbide fuels consists of carbo-reducing at high temperature (1600 C) and under primary vacuum a mixture of AnO 2 and graphite powders. These conditions are disadvantageous for the synthesis of mixed (U,Pu)C carbides on account of plutonium volatilization. Therefore, one of the main aims of these studies is to decrease the carbo-reduction temperature. The experiments focused mainly on the lowering of the uranium oxide temperature. This result has been obtained with the use of uranium oxide and carbon nano-structured precursors. To achieve this goal colloidal suspensions of uranium oxide have been prepared and stabilized by cellulosic ethers. Cellulosic ethers are both stabiliser for uranium oxide nanoparticles and carbon source for carbo-reduction. It has been shown that these precursors are more efficient for carbo-reduction than the standard precursors: a reduction of 300 C of carbo-reduction temperature has been obtained. The impact of these precursors on carbo-reduction and on physico-chemical properties as well as the structural and microstructural characterizations of the obtained carbides have been carried out. (author) [fr

  14. Controlled synthesis of Pt/CS/PW{sub 12}-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen, E-mail: shenlin@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Chemical Engineering (China)

    2015-04-15

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW{sub 12}-GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW{sub 12}-GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H{sub 3}PW{sub 12}O{sub 40} (PW{sub 12}) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW{sub 12}-GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW{sub 12}-GNs exhibit the forward peak current density of 445 mA mg{sup −1}, which is much higher than that (220 mA mg{sup −1}) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications.

  15. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    Science.gov (United States)

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in

  16. Investigations of possibilities to dispose of spent nuclear fuel in Lithuania: a model case. Volume 2, Concept of Repository in Crystalline Rocks

    International Nuclear Information System (INIS)

    Motiejunas, S.; Poskas, P.

    2005-01-01

    The aim is to present the generic repository concept in crystalline rocks in Lithuania and cost assessment of the disposal of spent nuclear fuel and long-lived intermediate level waste in this repository. Due to limited budget of this project the repository concept development for Lithuania was based mostly on the experience of foreign countries. In this Volume a review of the existing information on disposal concept in crystalline rocks from various countries is presented. Described repository concept for crystalline rocks in Lithuania covers repository layout, backfill, canister, construction materials and auxiliary buildings. Costs calculations for disposal of spent nuclear fuel and long-lived intermediate-level wastes from Ignalina NPP are presented too. Thermal, criticality and other important disposal evaluations for RBMK-1500 spent nuclear fuel emplaced in copper canister were performed and described

  17. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    International Nuclear Information System (INIS)

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-01-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO 2 ; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database

  18. Natural rubber, a potential alternative source for the synthesis of renewable fuels via Hydrous Pyrolysis

    Science.gov (United States)

    Ahmad, N.; Dayana, S. A. S.; Abnisa, F.; Mohd, W. A. W. D.

    2018-03-01

    Natural rubber is a humid agricultural harvest, which mostly contains hydrocarbon cis-1, 4-Poly isoprene. Through depolymerisation technology, the natural rubber can be changed into liquid product, and then it can be subsequently utilized as a fuel or chemical feedstock. This article aims to provide an outlook on the natural rubber and its sources, which are available globally. Numerous depolymerisation processes, which include pyrolysis, gasification, chemical degradation, catalytic cracking and hydrogenation, were introduced in this paper, while the focus of discussion was emphasized on the hydrous pyrolysis process. Many studies have shown that the use of hydrous pyrolysis able to improve the depolymerisation process, e.g. the raw material can be feed without drying, the process can be carried out at lower temperature, only the water is used as the reaction medium, and it is easy to separate the water from oil product. The effect of operating parameters such as temperature, water to rubber mass ratio, reaction time and type of gases on the product yield and composition were reviewed in this paper. In addition, this paper also highlighted the eco-friendly and economic viability of the hydrous pyrolysis process.

  19. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  20. Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies

    International Nuclear Information System (INIS)

    Lobyntseva, Elena; Kallio, Tanja; Alexeyeva, Nadezda; Tammeveski, Kaido; Kontturi, Kyoesti

    2007-01-01

    The electrochemical reduction of oxygen on various catalysts was studied using the thin-layer rotating disk electrode (RDE) method. High-surface-area carbon was modified with an anthraquinone derivative and gold nanoparticles. Polytetrafluoroethylene (PTFE) and cationic polyelectrolyte (FAA) were used as binders in the preparation of thin-film electrodes. Our primary goal was to find a good electrocatalyst for the two-electron reduction of oxygen to hydrogen peroxide. All electrochemical measurements were carried out in 0.1 M KOH. Cyclic voltammetry was used in order to characterise the surface processes of the modified electrodes in O 2 -free electrolyte. The RDE results revealed that the carbon-supported gold nanoparticles are active catalysts for the four-electron reduction of oxygen in alkaline solution. Anthraquinone-modified high-area carbon catalyses the two-electron reduction at low overpotentials, which is advantageous for hydrogen peroxide production. In addition, the polymer electrolyte fuel cell technology was used for the generation of hydrogen peroxide. The cell was equipped with a bipolar membrane which consisted of commercial Nafion 117 as a cation-exchange layer and FT-FAA as an anion-exchange layer. The bipolar membranes were prepared by a hot pressing method. Use of the FAA ionomer as a binder for the anthraquinone-modified carbon catalyst resulted in production of hydrogen peroxide

  1. Synthesis and study of lipophilic crown ethers and thia-ligands. Application to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Guyon, Vincent

    1992-01-01

    In the field of metal extraction from the solutions of nuclear fuel reprocessing, new specific complexing agents that are more efficient than tributyl phosphate must possess a high lipophilic character. The use of lipophilic crown ethers and thia-ligands has eliminated the problem related to their loss in the aqueous media. Moreover, it has made their complexes more soluble in organic solvents. The increase of lipophilic character of monocyclic polyethers has been realized with the addition of an alkyl chain and the development of a new process has made possible the separation of cis-syn-cis and cis-anti-cis isomers of dicyclohexano 18 crown 6 on an industrial scale. The creation of a rapid NMR method of analysis has permitted to study the extracting capacity of those crown ethers in relation to monovalent and divalent cations in nitric acid media and also to demonstrate the influence brought by different substituents. Some new lipophilic thia-ligands (macrocycles and podands) have also been prepared and the study of palladium extraction in nitric acid media by these compounds has led to a better understanding of the relation between the structure and the extracting capacity. Of easy access, some podands have an extracting selectivity and an extracting kinetic for this metal which are highly superior than those of dialkyl sulphides actually employed in the industry. This makes their use possible in the nuclear area. (author) [fr

  2. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Bo; Yin, Ge-Ping [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Lin, Yong-Ge [Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931 (United States)

    2007-07-10

    This research aims at enhancement of the performance of anodic catalysts for the direct ethanol fuel cell (DEFC). Two distinct DEFC nanoparticle electrocatalysts, PtRuMo/C and PtRu/C, were prepared and characterized, and one glassy carbon working electrode for each was employed to evaluate the catalytic performance. The cyclic-voltammetric, chronoamperometric, and amperometric current-time measurements were done in the solution 0.5 mol L{sup -1} CH{sub 3}CH{sub 2}OH and 0.5 mol L{sup -1} H{sub 2}SO{sub 4}. The composition, particle sizes, lattice parameters, morphology, and the oxidation states of the metals on nanoparticle catalyst surfaces were determined by energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), transmission electron micrographs (TEM) and X-ray photoelectron spectrometer (XPS), respectively. The results of XRD analysis showed that both PtRuMo/C and PtRu/C had a face-centered cubic (fcc) structure with smaller lattice parameters than that of pure platinum. The typical particle sizes were only about 2.5 nm. Both electrodes showed essentially the same onset potential as shown in the CV for ethanol electrooxidation. Despite their comparable active specific areas, PtRuMo/C was superior to PtRu/C in respect of the catalytic activity, durability and CO-tolerance. The effect of Mo in the PtRuMo/C nanoparticle catalyst was illustrated with a bifunctional mechanism, hydrogen-spillover effect and the modification on the Pt electronic states. (author)

  3. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Science.gov (United States)

    Farzin Nejad, N.; Shams, E.; Amini, M. K.

    2015-09-01

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. Nitrogen adsorption-desorption measurement revealed the high surface area (810 m2 g-1), maxima pore size of 3.3 nm and large pore volume (1.01 cm3 g-1) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g-1 of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles.

  4. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Farzin Nejad, N., E-mail: Farzinnejadn@ripi.ir [Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran 14857-33111 (Iran, Islamic Republic of); Shams, E.; Amini, M.K. [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2015-09-15

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m{sup 2} g{sup −1}), maxima pore size of 3.3 nm and large pore volume (1.01 cm{sup 3} g{sup −1}) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g{sup −1} of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q{sub max}) of Fe-OMC for DBT was found to be 111.1 mg g{sup −1}. • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps.

  5. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    International Nuclear Information System (INIS)

    Farzin Nejad, N.; Shams, E.; Amini, M.K.

    2015-01-01

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m 2 g −1 ), maxima pore size of 3.3 nm and large pore volume (1.01 cm 3 g −1 ) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g −1 of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q max ) of Fe-OMC for DBT was found to be 111.1 mg g −1 . • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps

  6. Use of Hesperaloe funifera for the production of paper and extraction of lignin for synthesis and fuel gases

    International Nuclear Information System (INIS)

    Sanchez, R.; Rodriguez, A.; Navarro, E.; Conesa, J.A.; Jimenez, L.

    2010-01-01

    In this work, we characterized Hesperaloe funifera; pulp and paper obtained by subjecting the plant raw material to soda, soda-anthraquinone, ethanolamine, ethyleneglycol and diethyleneglycol cooking. In addition, the solid fractions extracted by acidifying the cooking liquors, rich in lignin, were used to obtain synthesis and fuel gases. The contents in lignin, α-cellulose, holocellulose, hemicellulose, ethanol-benzene extractives, hot water solubles, 1% NaOH solubles and ash of H. funifera were found to be 7.3%, 40.9%, 76.5%, 35.6%, 4.0%, 13.5%, 29.5% and 5.9%, respectively. The mean fibre length, 4.19 mm, exceeds those for some non-wood materials. Hesperaloe pulp obtained by cooking with 10% NaOH and 1% anthraquinone at 155 o C for 30 min exhibited good values of yield (48.3%), viscosity (737 mL g -1 ), Kappa number (15.2), tensile index (83.6 Nm g -1 ), stretch (3.8%), burst index (7.34 kN g -1 ) and tear index (3.20 mNm 2 g -1 ). Acidification to pH 6 of the liquor resulting from the soda pulping of 500 g of plant raw material provided an amount of 13.90 g of lignin-rich solids pyrolysis of which gave a gas mixture containing 1.13% H 2 , 31.79% CO and 1.86% CH 4 by weight. Gasification of the same sample provided a mixture containing 0.18% H 2 , 24.50% CO and 17.75% CH 4 , also by weight.

  7. Synthesis and characterisation of sulphonated poly(arylene sulphone) terpolymers with triphenylphosphine oxide moieties for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Titvinidze, G.; Kaltbeitzel, A.; Manhart, A.; Meyer, W.H. [Max Planck Institute for Polymer Research, Mainz (Germany)

    2010-06-15

    For application in fuel cells, a series of sulphonated poly(phenylene sulphone) terpolymers with triphenylphosphine oxide moieties as constitutional units in the polymer backbone have been prepared. The synthesis of the terpolymers represents a two-step process including: (i) an aromatic nucleophilic substitution polycondensation of three difluoro monomers with varying ratios, i.e. 3,3'-disulphonate-4,4'-difluorodiphenylsulphone, 4,4'-difluorodiphenylsulphone and bis(4-fluorophenyl)phenyl phosphine oxide (BFPPO), with 4,4'-thiobisbenzenethiol yielding sulphonated poly(phenylene sulphide) terpolymers (sPPSPO) and (ii) their following oxidation with hydrogen peroxide in acidic solution to yield sulphonated poly(phenylene sulphone) terpolymers (sPPSO2PO). The structures and molecular compositions were confirmed by {sup 1}H and {sup 13}C NMR spectroscopy. The ion exchange capacity (IEC) was adjusted at will choosing the appropriate ratio of sulphonated and unsulphonated monomers. Terpolymers with 1.72 {<=} IEC {<=} 2.32 have been obtained. Sulphonated poly(arylene) ionomers containing only sulphone (-SO{sub 2}-) linkages and phosphine oxide (-PO-) units rather than ether or sulphide in the backbone reveal a high thermal and oxidative stability. Membranes were cast either from dimethylformamide (DMF) or from dimethyl sulphoxide (DMSO) solutions. For all terpolymers some general characteristic trends were observed, such as an increase of the proton conductivity with increasing IEC, water uptake and temperature. The series of sPPSO2PO membranes offered high conductivities at high humidification, however, their performance strongly depends on the relative humidity. The mechanical properties of sulphonated poly(phenylene sulphone)s have been considerably improved by means of terpolymerisation with phenylene oxide moieties. Even under high humidification the terpolymers form clear, flexible membranes the stress at break of some membranes exceeds that of

  8. Synthesis and electrochemical characterization of hybrid membrane Nafion-SiO2 for application as polymer electrolyte in PEM fuel cell

    International Nuclear Information System (INIS)

    Dresch, Mauro Andre

    2009-01-01

    In this work, the effect of sol-gel synthesis parameters on the preparation and polarization response of Nafion-SiO 2 hybrids as electrolytes for proton exchange membrane fuel cells (PEMFC) operating at high temperatures (130 degree C) was evaluated. The inorganic phase was incorporated in a Nafion matrix with the following purposes: to improve the Nafion water uptake at high temperatures (> 100 degree C); to increase the mechanical strength of Nafion and; to accelerate the electrode reactions. The hybrids were prepared by an in-situ incorporation of silica into commercial Nafion membranes using an acid-catalyzed sol-gel route. The effects of synthesis parameters, such as catalyst concentration, sol-gel solvent, temperature and time of both hydrolysis and condensation reactions, and silicon precursor concentration (Tetraethyl orthosilicate - TEOS), were evaluated as a function on the incorporation degree and polarization response. Nafion-SiO 2 hybrids were characterized by gravimetry, thermogravimetric analysis (TGA), scanning electron microscopy and X-ray dispersive energy (SEM-EDS), electrochemical impedance spectroscopy (EIS), and X-ray small angle scattering (SAXS). The hybrids were tested as electrolyte in single H 2 /O 2 fuel cells in the temperature range of 80 - 130 degree C and at 130 degree C and reduced relative humidity (75% and 50%). Summarily, the hybrid performance showed to be strongly dependent on the synthesis parameters, mainly, the type of alcohol and the TEOS concentration. (author)

  9. Mixture of fuels approach for the synthesis of SrFeO(3-δ) nanocatalyst and its impact on the catalytic reduction of nitrobenzene.

    Science.gov (United States)

    Naveenkumar, Akula; Kuruva, Praveena; Shivakumara, Chikkadasappa; Srilakshmi, Chilukoti

    2014-11-17

    A modified solution combustion approach was applied in the synthesis of nanosize SrFeO(3-δ) (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 °C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was ∼50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.

  10. Fuels planning: science synthesis and integration; environmental consequences fact sheet 09: Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS)

    Science.gov (United States)

    Elizabeth Reinhardt

    2005-01-01

    FFE-FVS is a model linking stand development, fuel dynamics, fire behavior and fire effects. It allows comparison of mid- to long-term effects of management alternatives including harvest, mechanical fuel treatment, prescribed fire, salvage, and no action. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user...

  11. Phase 1 study of metallic cask systems for spent fuel management from reactor to repository. Volume I. Phase 1 study summary

    International Nuclear Information System (INIS)

    1986-02-01

    It was proposed to perform a systems evaluation of metallic cask systems in order to define and examine the use of various metallic cask concepts or combination of concepts for the overall inventory management of spent fuel starting with its discharge from reactors to its emplacement in geologic repositories. This systems evaluation occurs in three phases. This three phase systems evaluation leads to a definition and recommendation of a sound and practical metallic cask system to accomplish efficient and effective management of spent fuel in the back end of the nuclear fuel cycle. Phase 1 Study objectives: establish system-wide functional criteria and assumptions; perform the systems engineering needed to define the metallic cask concepts and their feasibility; perform a screening evaluation of the technical and economic merits of the concepts; and recommend those to be included for a more detailed systems evaluation in Phase 2. Phase 2 Study objectives: refine the system-wide functional criteria and assumptions; perform the design engineering needed to enhance the validity and workability of those concepts recommended in Phase 1; and perform a more detailed systems evaluation. Phase 3 Study objectives: conclude the systems evaluation and develop an implementation plan. Volume I presents an overview of the detailed systems evaluation presented in Volume II

  12. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  13. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 2: Methodology and Results

    International Nuclear Information System (INIS)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-01-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3)

  14. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 2: Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  15. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 1: Executive Summary

    International Nuclear Information System (INIS)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.Z.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-01-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3)

  16. Gram-Scale Synthesis of Highly Active and Durable Octahedral PtNi Nanoparticle Catalysts for Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Choi, Juhyuk; Jang, Jue-Hyuk; Roh, Chi-Woo

    2018-01-01

    for the commercialization of PEMFCs. In this study, we focus on gram-scale synthesis of octahedral PtNi nanoparticles with Pt overlayers (PtNi@Pt) supported on the carbon, resulting in enhanced catalytic activity and durability. Such PtNi@Pt catalysts show high mass activity (1.24 A mgPt−1) at 0.9 V (vs RHE) for the ORR......Proton exchange membrane fuel cells (PEMFC) are regarded as a promising renewable energy source for a future hydrogen energy society. However, highly active and durable catalysts are required for the PEMFCs because of their intrinsic high overpotential at the cathode and operation under the acidic...... condition for oxygen reduction reaction (ORR). Since the discovery of the exceptionally high surface activity of Pt3Ni(111), the octahedral PtNi nanoparticles have been synthesized and tested. Nonetheless, their milligram-scale synthesis method and poor durability make them unsuitable...

  17. Investigations of possibilities to dispose of spent nuclear fuel in Lithuania: a model case. Volume 3, Generic Safety Assessment of Repository in Crystalline Rocks

    International Nuclear Information System (INIS)

    Motiejunas, S.; Poskas, P.

    2005-01-01

    In this Volume a generic safety assessment of the repository for spent nuclear fuel in crystalline rock in Lithuania is presented. Modeling of safety relevant radionuclide release from the defected canister and their transport through the near field and far field was performed. Doses to humans due to released radionuclides in the well water were calculated and compared with the dose restrictions existing in Lithuania. For this stage of generic safety assessment only two scenarios were chosen: base scenario and canister defect scenario. KBS-3 concept developed by SKB for disposal of spent nuclear fuel in Sweden was chosen as prototype for repository in crystalline basement in Lithuania. The KBS-3H design with horizontal canister emplacement is proposed as a reference design for Lithuania

  18. Synthesis and characterization of La1-xSrxMnO3 (x=0,1) for cathode application in solid oxide fuel cells (SOFC)

    International Nuclear Information System (INIS)

    Tarrago, D.P.; Sousa, V.C.; Malfatti, C.F.

    2010-01-01

    Perovskite powders, with composition La 1-x Sr x MnO 3 (x=0,1) were obtained via combustion synthesis using sucrose as fuel. In the X-ray diffraction patterns it was observed that in order to obtain a single phase and well crystallized material a calcination in 750 deg C for 3 hours was necessary. BET analysis detected a specific surface area of 45m 2 /g, considerably higher than when obtained with other fuels. SEM micrographs revealed a spongy aspect with a connected porosity in the agglomerates and though TEM micrographs the presence of pores in the particles was verified. The powder compacted with 125MPa and sintered at 1050 deg C for two hours presented a 31% open porosity and the SEM micrographs showed a fine interconnected porosity. (author)

  19. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i

  20. Consequences of increased extraction of forest fuel - A synthesis from the Energy Agency fuel program 2007-2011 Summary of the Synthesis Report; Konsekvenser av ett oekat uttag av skogsbraensle - En syntes fraan Energimyndighetens braensleprogram 2007-2011 Sammanfattning av syntesrapporten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report summarizes the findings of a research synthesis of forest fuels. The full report (de Jong et al 2012) can be ordered from the Swedish Energy Agency (report number: ER 2012:08), or downloaded from www.energimyndigheten.se. The Energy Agency's research program 'Sustainable supply and refining of biofuels', also known as 'Fuel program', ran from 2007-01-01 to 2011-06-30. The results of the program are reported in synthesis reports for various program areas. The purpose of the synthesis reports is to compile the knowledge in various areas, to identify knowledge gaps that need to be elucidated further, and to place and discuss the aggregated research results in a larger energy- and societal perspective, including relations to environmental quality and forest policy environmental- and production goals. This report covers sub-project 'Forest fuel and environmental impacts', conducted during the years 2007-2011. The report covers projects within the program 'Sustainable supply and refining of biofuels', adjacent individual projects funded by the Energy Agency and certain other national related activities.

  1. DOD Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Program. Volume 2. Summary of Fiscal Year 2001-2003 Projects

    Science.gov (United States)

    2005-09-01

    produced many of the Beatles 1970s recordings. This facility was selected to host the UK PEM demonstration project from a selection of four potential sites...funded the Department of Defense (DOD) Residential PEM Demonstration Project to demonstrate domestically-produced, residential Proton Exchange Membrane...PEM) fuel cells at DOD Facilities. The objectives were to: (1) assess PEM fuel cells’ role in supporting sustainability at military installations

  2. Synthesis of Glycerol Based Fuel Additives to Reduce NOx Emissions from Diesel Engines Operated on Diesel and Biodiesel fuels by SNCR

    OpenAIRE

    Tanugula, Shravan Kumar

    2010-01-01

    The demand for energy around the world is dramatically increasing due to the constant growth in industry and the transportation of the industrially produced goods. In view of growing energy demand without irreparably damaging the environment is of the most primary concern. With the rising fuel prices and environmental concern and the new laws imposed by the government to reduce emissions, alternative fuels could fill in the gap of satisfying the need of renewable energy with low environmental...

  3. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Research Team . Volume 2; Appendices

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.

  4. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 1: Plenary session; High burnup fuel; Containment and structural aging

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-01-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This first volume is divided into 3 sections: plenary session; high burnup fuel; and containment and structural aging. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  5. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 1: Plenary session; High burnup fuel; Containment and structural aging

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-01-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This first volume is divided into 3 sections: plenary session; high burnup fuel; and containment and structural aging. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 2: Data standardization for tank calibration

    International Nuclear Information System (INIS)

    2007-01-01

    Measurements of the volume and height of liquid in a process accountancy tank are often made in order to estimate or verify the tank's calibration or volume measurement equation. The calibration equation relates the response of the tank's measurement system to some independent measure of tank volume. The ultimate purpose of the calibration exercise is to estimate the tank's volume measurement equation (the inverse of the calibration equation), which relates tank volume to measurement system response. In this part of ISO 18213, it is assumed that the primary measurement-system response variable is liquid height and that the primary measure of liquid content is volume. This part of ISO 18213 presents procedures for standardizing a set of calibration data to a fixed set of reference conditions so as to minimize the effect of variations in ambient conditions that occur during the measurement process. The procedures presented herein apply generally to measurements of liquid height and volume obtained for the purpose of calibrating a tank (i.e. calibrating a tank's measurement system). When used in connection with other parts of ISO 18213, these procedures apply specifically to tanks equipped with bubbler probe systems for measuring liquid content. The standardization algorithms presented herein can be profitably applied when only estimates of ambient conditions, such as temperature, are available. However, the most reliable results are obtained when relevant ambient conditions are measured for each measurement of volume and liquid height in a set of calibration data. Information is provided on scope, physical principles, data required, calibration data, dimensional changes in the tank, multiple calibration runs and results on standardized calibration data. Four annexes inform about density of water, buoyancy corrections for mass determination, determination of tank heel volume and statistical method for aligning data from several calibration runs. A bibliography is

  7. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    International Nuclear Information System (INIS)

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility

  8. Catalytic autothermal reforming of hydrocarbon fuels for fuel cells

    International Nuclear Information System (INIS)

    Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D.; Ahmed, S.

    2002-01-01

    Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles[1]. The lack of an infrastructure for producing and distributing H(sub 2) has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H(sub 2)[2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines[3]. Existing reforming technology for the production of H(sub 2) from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H(sub 2) for large-scale manufacturing processes

  9. Black Liquor Gasification with Motor Fuel Production - BLGMF II - A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ekbom, Tomas; Berglin, Niklas; Loegdberg, Sara [Nykomb Synergetics AB, Stockholm (Sweden)

    2005-06-15

    The present project presents additional results to the former BLGMF project, which investigate Black Liquor Gasification with Motor Fuels (BLGMF) production. The objectives were to investigate, based on the KAM 2 program Ecocyclic Pulp Mill (2,000 ADt/day of pulp) the feasibility of synthetic fuels production. Specifically the route to Fischer-Tropsch diesel fuels is investigated as comparison to earlier work on methanol/DME. As modern kraft pulp mills have a surplus of energy, they could become key suppliers of renewable fuels. It is thus of great interest to convert the spent cooking product 'black liquor' to an energy carrier of high value. The resulting biomass-to-fuel energy efficiency when only biomass is used as an external energy source was 43% for FTD or 65% for FT products compared with 66% for methanol and 67% for DME. The FTD calculation is considerably more complicated and based on assumptions, therefore the uncertainty is higher. Would the diesel be taken out with a T95% of 320 deg C the FTD efficiency would be 45%. FT synthesis also opens up a possibility to produce e.g. lube oils from waxes produced. The total net FT-products output equals 4115 barrels/day. The FTD production cost is calculated as the energy share of the total production cost and assumes an offset of naphtha covering its own costs, where it is essential that it finds a market. Assuming same petrol (methanol) and diesel (DME, FTD) costs for the consumer the payback time were 2.6, 2.9 and 3.4 years with an IRR of 40%, 45% and 30%, respectively. In conclusion, there are necessary resources and potential for large-scale methanol (or DME, FTD) production and substantial economic incentive for making plant investments and achieving competitive product revenues.

  10. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  11. Programmatic Life Cycle Environmental Assessment for Smoke/Obscurants. Volume 1. Fog Oil, Diesel Fuels, and Polyethylene Glycol (PEG 200)

    Science.gov (United States)

    1983-07-01

    distances using TLV on these models requires conversion from concentration to dosage. The TWA (time weighted averae) for healthy adult humans exposed to oil...diseases. Chronic industrial exposures of oils and oil mists have been implicated in causing dermatosis (SGF No. 1) and dermatosis plus tumors of skin...mg/I No. 2 2-Day LCo Is Quahaug larvae fuel oil dissolved in water Exposure to 0.53 mg/l No. 10-Day LCo0 2 fuel oil dissolved in water Young adult

  12. Assessment of LWR spent fuel disposal options. Volume 3. Study bases and system design considerations (Appendices). Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Volume 3 (Appendices) provides a tabulation of the bases and assumptions used in the study as well as preconceptual design description and cost estimates of the facilities and transportation systems necessary to implement the various study cases.

  13. Assessment of LWR spent fuel disposal options. Volume 3. Study bases and system design considerations (Appendices). Technical report

    International Nuclear Information System (INIS)

    1979-07-01

    Volume 3 (Appendices) provides a tabulation of the bases and assumptions used in the study as well as preconceptual design description and cost estimates of the facilities and transportation systems necessary to implement the various study cases

  14. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)

  15. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    International Nuclear Information System (INIS)

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials

  16. Study of synthesis routes and processing of NiO-YSZ ceramic composite for use as anode in solid oxide fuel cell (SOFC)

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji

    2011-01-01

    This study aim the definition of synthesis and ceramic processing conditions of the anodic component suitable for operation of SOFC, i.e, homogeneous distribution of NiO in YSZ matrix and porosity after reduction above 30%. The selected synthesis routes included the co-precipitation in ammonia media, mechanical mixing of powders and combustion reaction from nitrate salts. The characterization techniques of powders included the X-ray diffraction, scanning and transmission electron microscopy, laser diffraction, nitrogen gas adsorption technique (BET) and Helium pycnometry. The obtained results indicated that the loss of Ni 2+ in co-precipitation process, due to the formation of complex [Ni(NH 3 ) n ] 2+ , can be minimized by controlling the pH around 9.3, keeping the concentration of nickel cation in the solution to be precipitated around 0.1M. In the mechanical mixing method the best condition of powder dispersion, without differential sedimentation, was obtained for zeta potential values at pH around 8.0, fixing the dispersant concentration at 0.8%. For the combustion synthesis it was observed that when stoichiometric and twofold stoichiometric urea was used, amorphous phase was formed and a higher surface area was attained in the final products. Employing the fuel-rich solution condition, crystallization of the powder was observed and the relative intensity of reflections of XRD patterns increased with excess of fuel, due to increasing the reaction temperature. Sinterability studies of pellets prepared from powder synthesized by the three routes described above showed the temperature around 1300 deg C for maximum rate densification and porosity between 6.0 and 14%. Reduction results of the composites confirmed that the reduction kinetics occurs in two steps. The first one with a linear behavior and controlled by chemical reaction on the surface. The second reduction step is the reduction that is controlled by gas diffusion in micro pores, generated by reduction

  17. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 01: forest structure and fire hazard overview

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Many managers and policymakers guided by the National Environmental Policy Act process want to understand the scientific principles on which they can base fuel treatments for reducing the size and severity of wildfires. These Forest Structure and Fire Hazard fact sheets discuss how to estimate fire hazard, how to visualize fuel treatments, and how the role of...

  18. Fuels planning: science synthesis and integration; environmental consequences fact sheet 06: wildland fire use: the "other" treatment option

    Science.gov (United States)

    Anne Black

    2004-01-01

    Fire suppression has reduced acres burned to an average of 2 million acres a year. An unfortunate result of this has been the accumulation of even more above-normal fuel loads in many areas. This paper discusses (1) the important ecological role of fire, (2) using fire as a fuels treatment, and (2) the benefits and risks of fire.

  19. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K J

    1979-01-01

    Detailed technology, safety and cost information are presented for the conceptual decommissioning of a reference small mixed oxide fuel fabrication plant. Alternate methods of decommissioning are described including immediate dismantlement, safe storage for a period of time followed by dismantlement and entombment. Safety analyses, both occupational and public, and cost evaluations were conducted for each mode.

  20. PBF [Power Burst Facility] severe fuel damage test 1-1: Volume 2, Test results report, Appendices A through I

    International Nuclear Information System (INIS)

    Martinson, Z.R.; Petti, D.A.; Cook, B.A.

    1986-10-01

    This report provides information on: fuel rod characteristics; instrumentation identification, location, and performance; effluent sampling and monitoring system; bundle power; test SFD 1-1 data qualification, uncertainties, and data plots; postirradiation examinations; chemical kinetics predictions; SCDAP analysis model; and coolant level measurements

  1. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  2. Fuels planning: science synthesis and integration; social issues fact sheet 03: Developing personal responsibility for fuels reduction: More ways to catch and hold people's attention

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Other fact sheets discuss the different types of information that are useful in explaining to property owners the importance of taking personal responsibility for fuels management on their land. However, for some property owners, new information is not enough-they may need more information in order to understand that change is necessary. This fact sheet discusses ways...

  3. Fuels planning: science synthesis and integration; social issues fact sheet 01: Developing personal responsibility for fuels reduction: Building a successful program to engage property owners

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    In the course of work as a land manager, you will no doubt be involved in developing programs to achieve various objectives, including the improvement of fuels management on private lands. This fact sheet describes six steps that will help you plan and conduct a successful program.

  4. Investigations of possibilities to dispose of spent nuclear fuel in Lithuania: a model case. Volume 1, Suitability of Geological Environment in Lithuania for Disposal of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Motiejunas, S.; Satkunas, J.

    2005-01-01

    This Volume contains an overview of geological structure with respect to its relevance for waste disposal conditions and characteristics of crystalline rocks in Lithuania with respect to its relevance for waste disposal. The most prospective rock types are represented by cratonic (anorogenic) granitoid intrusions that in some places compose rather large massifs. These rocks are the least damaged by tectonic activity. Furthermore, the lithology variations at short distances are only minor that makes exploration much easier. Yet, other rock types (gneisses, mafic intrusions, migmatites) compose someplace only weakly fractured blocks that also may be prospective for repository

  5. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals. Technical Progress Report

    International Nuclear Information System (INIS)

    Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2006-01-01

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rate, selectivity for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C 5+ , olefins). During this fifth reporting period, we have studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C 5+ selectivities of the Fe-based catalysts that we have developed as part of this project. During this fifth reporting period, we have also continued our studies of optimal activation procedures, involving reduction and carburization of oxide precursors during the early stages of contact with synthesis gas. We have completed the analysis of the evolution of oxide, carbide, and metal phases of the active iron components during initial contact with synthesis gas using advanced synchrotron techniques based on X-ray absorption spectroscopy. We have confirmed that the Cu or Ru compensates for inhibitory effects of Zn, a surface

  6. Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant at Brady's Hot Springs. The results of the study are positive, showing that a plant of innovative, yet proven design can be built to adapt current commerical fermentation-distillation technology to the application of geothermal heat energy. The specific method of heat production from the Brady's Hot Spring wells has been successful for some time at an onion drying plant. Further development of the geothermal resource to add the capacity needed for an ethanol plant is found to be feasible for a plant sized to produce 10 million gallons of motor fuel grade ethanol per year. A very adequate supply of feedgrains is found to be available for use in the plant without impact on the local or regional feedgrain market. The effect of diverting supplies from the animal feedlots in Northern Nevada and California will be mitigated by the by-product output of high-protein feed supplements that the plant will produce. The plant will have a favorable impact on the local farming economies of Fallon, Lovelock, Winnemucca and Elko, Nevada. It will make a positive and significant socioeconomic contribution to Churchill County, providing direct employment for an additional 61 persons. Environmental impact will be negligible, involving mostly a moderate increase in local truck traffic and railroad siding activity. The report is presented in two volumes. Volume 1 deals with the technical design aspects of the plant. The second volume addresses the issue of expanded geothermal heat production at Brady's Hot Springs, goes into the details of feedstock supply economics, and looks at the markets for the plant's primary ethanol product, and the markets for its feed supplement by-products. The report concludes with an analysis of the economic viability of the proposed project.

  7. Fuel assembly

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Bassler, E.A.; Huckestein, E.A.; Salton, R.B.; Tower, S.N.

    1988-01-01

    A fuel assembly adapted for use with a pressurized water nuclear reactor having capabilities for fluid moderator spectral shift control is described comprising: parallel arranged elongated nuclear fuel elements; means for providing for axial support of the fuel elements and for arranging the fuel elements in a spaced array; thimbles interspersed among the fuel elements adapted for insertion of a rod control cluster therewithin; means for structurally joining the fuel elements and the guide thimbles; fluid moderator control means for providing a volume of low neutron absorbing fluid within the fuel assembly and for removing a substantially equivalent volume of reactor coolant water therefrom, a first flow manifold at one end of the fuel assembly sealingly connected to a first end of the moderator control tubes whereby the first ends are commonly flow connected; and a second flow manifold, having an inlet passage and an outlet passage therein, sealingly connected to a second end of the moderator control tubes at a second end of the fuel assembly

  8. Mining exploitation of Imouraren.Complementary studies.Report of synthesis - volume G. and H. Organization and professional training -Transport

    International Nuclear Information System (INIS)

    1980-07-01

    The volume G objective is to present a study that defines an organization, a staff policy and recruiting system and professional training in harmony with mine, plant and other services needs by considering available human resources and bearing in mind the Rick possible achievement of nigeriens staff, employee and personal advanced qualification and training.While the volume H describes the divers transportation methods for important equipments and reactive tonnage, during construction and project functioning phase of Imouraren sit. The possible divers way toward the sit are described. And transport methods and retained possible ways as base for the cost estimation are mentioned. In both volumes relative costs are estimated [fr

  9. Power to Fuels: Dynamic Modeling of a Slurry Bubble Column Reactor in Lab-Scale for Fischer Tropsch Synthesis under Variable Load of Synthesis Gas

    Directory of Open Access Journals (Sweden)

    Siavash Seyednejadian

    2018-03-01

    Full Text Available This research developed a comprehensive computer model for a lab-scale Slurry Bubble Column Reactor (SBCR (0.1 m Dt and 2.5 m height for Fischer–Tropsch (FT synthesis under flexible operation of synthesis gas load flow rates. The variable loads of synthesis gas are set at 3.5, 5, 7.5 m3/h based on laboratory adjustments at three different operating temperatures (483, 493 and 503 K. A set of Partial Differential Equations (PDEs in the form of mass transfer and chemical reaction are successfully coupled to predict the behavior of all the FT components in two phases (gas and liquid over the reactor bed. In the gas phase, a single-bubble-class-diameter (SBCD is adopted and the reduction of superficial gas velocity through the reactor length is incorporated into the model by the overall mass balance. Anderson Schulz Flory distribution is employed for reaction kinetics. The modeling results are in good agreement with experimental data. The results of dynamic modeling show that the steady state condition is attained within 10 min from start-up. Furthermore, they show that step-wise syngas flow rate does not have a detrimental influence on FT product selectivity and the dynamic modeling of the slurry reactor responds quite well to the load change conditions.

  10. Study on a New Type of Electric-controlled Engine Fuel Consumption Meter Based on Volume Method

    Directory of Open Access Journals (Sweden)

    Qing-Yong Zhang

    2014-04-01

    Full Text Available At present study on the testing methods and instruments for vehicles’ fuel consumption is still not perfect. It still can’t provide a rapid and accurate measuring method and instrument. A new type of fuel consumption meter structure is developed which used two small containers to relay to supply the engine and realizes oil consumption measuring by detecting the real- time liquid level in the containers. Photoelectric sensors and a chip microcomputer are used to realize transient detection. Its structure and principle are analyzed. The system of its hardware and software of the electric-controlling system are designed. Some key components are selected and the process of exhausting, starting and measuring are designed. Precision test of the system is performed, and the result shows the accuracy of the meter in the range of 800 ml is 0.1 %, which meets the requirements and the feasibility of the structure is verified. Finally the main influencing factors are analyzed.

  11. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix A, environmental justice analysis. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix A to a draft Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. This appendix addresses environmental justice for the acceptance of foreign research reactor spent nuclear fuel containing uranium enriched in the United States. Analyses of environmental justice concerns are provided in three areas: (1) potential ports of entry, (2) potential transportation routes from candidate ports of entry to interim management sites, and (3) areas surrounding potential interim management sites. These analyses lead to the conclusion that the alternatives analyzed in this Environmental Impact Statement (EIS) would result in no disproportionate adverse effects on minority populations or low-income communities surrounding the candidate ports, transport routes, or interim management sites

  12. Nuclear fuel reprocessing and high level waste disposal: informational hearings. Volume XII. Public and private roles, Part 2

    International Nuclear Information System (INIS)

    1977-01-01

    Presentations were made on institutional experiences at Nuclear Fuel Services, the framework for an acceptable nuclear future, the Price-Anderson Indemnity Act, Congress and nuclear energy policy, human dimension, and risk perception. The supplemental testimony and materials submitted for the record included information of the nuclear waste at West Valley, New York, the perception and acceptability of risk from nuclear and alternative energy sources, and psychological determinants of perceived and acceptable risk

  13. Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation

    Science.gov (United States)

    Dunbar, D. N.; Tunnah, B. G.

    1978-01-01

    The FORTRAN computing program predicts flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuels of varying end point and hydrogen content specifications. The program has a provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case.

  14. Prototypical spent nuclear nuclear fuel rod consolidation equipment, Phase 2: Final design report: Volume 2, Appendices: Part 1

    International Nuclear Information System (INIS)

    Ciez, A.P.

    1987-01-01

    The purpose of this specification is to establish functional and design requirements for the Prototypical Spent Nuclear Fuel Rod Consolidation System. The Department of Energy-Idaho Operations Office (DOE-ID) is responsible for the implementation of the Prototypic Dry Rod Consolidation Demonstration Project. This program is to develop and demonstrate a fully qualified, licensable, cost-effective, dry spent fuel rod consolidation system by July 1989. The work is divided into four phases as follows: Phase I--Preliminary Design, Phase II--Final Design Option, Phase III--Fabrication and System Checkout Option, and Phase IV--Installation and Hot Demonstration Option. This specification is part of the Phase II effort. The objectives of this specification are to provide functional and design requirements for the Prototypical Spent Nuclear Fuel Rod Consolidation equipment; establish specific tool and subsystem requirements such that the integrated and overall system requirements are satisfied; and establish positioning, envelope and size interface control requirements for each tool or subsystem such that the individual components will interface properly with the overall system design

  15. Fuels planning: science synthesis and integration; social issues fact sheet 06: Important considerations for communicating about hazards

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Effective public education and communication campaigns about wildland fire and fuels management should have clear objectives, and use the right techniques to achieve these objectives. This fact sheet lists seven important considerations for planning or implementing a hazard communication effort.

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  17. Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas

    Science.gov (United States)

    2004-08-01

    UsesIntermediatesBiomass Feedstocks Sugars Glucose Fructose Xylose Arabinose Lactose Sucrose Starch Starch Cellulose Lignin Oil Protein Hemicellulose...these goals, the Program supports the integrated biorefinery, a processing facility that extracts carbohydrates, oils, lignin , and other materials from...biomass, converts them into multiple products including fuels and high value chemicals and materials. Already today, corn wet and dry mills, and

  18. Cost of fuel cell systems on a mass basis as a function of production volume; Kosten von Brennstoffzellensystemen auf Massenbasis in Abhaengigkeit von der Absatzmenge

    Energy Technology Data Exchange (ETDEWEB)

    Werhahn, Johannes

    2009-07-01

    The currently high cost of fuel cells is determined by expensive materials and low production volume. A detailed understanding of the cost structures reveals unexploited potential that can reduce costs in future. However, this requires a method of predicting costs that can be applied with little effort and which offers both a sufficient degree of detail and also good accuracy. Existing forecasting methods do not, however, fulfil these requirements. The major objective of the present work was to apply mass-specific cost forecasting to fuel cell systems for the first time and to modify the approach for this application. In this method, the cost of an object is estimated solely by means of the object mass with the aid of empirical values (Euro/kg). The advantages of the method are its simple application and the accuracy of the forecast. Due to the considerable complexity of the fuel cell and the heterogeneity of the materials used, the application of mass-specific cost forecasting does not provide the desired benefits on the level of the aggregated system. The mass-specific cost forecast approach was therefore expanded and optimized. Instead of determining costs on the level of the aggregated system, the cost forecast was applied directly to the individual components. Cost parameters were also embedded in the method in order to include component-internal cost-relevant differences. Due to the great influence of the production rate on the manufacturing costs, an additional dependence on number of units was also integrated. Expanding the empirical values from discrete values to distribution functions enabled a detailed error analysis to be performed and also a statistical localization of the predicted production costs. Empirical values are necessary in order to implement the modified method and therefore an extensive data search was performed. To this end, a methodology was developed which comprehensively described the data acquisition and the required data evaluation on

  19. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...test_nC are sho’ T, in Trbl]e .3 d :: ab ffr stead..--staoe zerfrrmance was noted wcrh the snale fel. Wh’le a ..6 :o:n: = in Scecifiz Fuel Consumption...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine

  20. Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

  1. The hard start phenomena in hypergolic engines. Volume 4: The chemistry of hydrazine fuels and nitrogen tetroxide propellant systems

    Science.gov (United States)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    The various chemical reactions that occur and that could possibly occur in the RCS engines utilizing hydrazine-type fuel/nitrogen tetroxide propellant systems, prior to ignition (preignition), during combustion, and after combustion (postcombustion), and endeavors to relate the hard-start phenomenon to some of these reactions are discussed. The discussion is based on studies utilizing a variety of experimental techniques and apparatus as well as current theories of chemical reactions and reaction kinetics. The chemical reactions were studied in low pressure gas flow reactors, low temperature homogeneous- and heterogeneous-phase reactors, simulated two-dimensional (2-D) engines, and scaled and full size engines.

  2. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  3. Strategic bioenergy research. A knowledge compilation and synthesis of research projects funded by the Swedish Energy Agency's fuel program 2007-2011; Strategisk bioenergiforskning. En kunskapssammanstaellning och syntes av forskningsprojekt finansierade av Energimyndighetens braensleprogram 2007-2011

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Gustavsson, Mathias; Hoeglund, Jonas; Hellsten, Sofie; Martinsson, Fredrik; Stadmark, Johanna [IVL Svenska Miljoeinstitutet, Stockholm (Sweden)

    2012-11-01

    During 2007-2011 the Swedish Energy Agency has run the program 'Sustainable supply and processing of biofuels'. To summarise the state of knowledge, identify knowledge gaps and analyse the results in a broader context, three different synthesis reports have been performed in the program's final phase. This report is one of these synthesis reports and concerns the area of strategic bioenergy research. In this context, 'strategic' means research that is of significance from the system, marketing and/or policy perspective. The work is based on research conducted mainly in the research programme 'Sustainable supply and processing of biofuels'. This report constitutes the final report of the synthesis project on strategic bioenergy research and includes knowledge compilation, identification of knowledge gaps and synthesis. The results of the synthesis project provide a basis for planning new research programs in the auspices of the Swedish Energy Agency. The two other synthesis projects concern forest fuels as well as energy crops and fuel quality. The report covers a rather broad field of research, e.g. environmental impact, carbon balances, nitrous oxide, bioenergy systems, scenarios, trade and marketing, standardization and certification. The work has been based on project plans and publications for a predefined number of projects, as well as on interviews and discussions with project leaders. Furthermore, several seminars and workshops also provided information for the compilation. Other studies have also been taken into account to some extent.

  4. Minimization of the volume and Pu content of the waste generated at a plutonium fuel fabrication plant

    International Nuclear Information System (INIS)

    Pauwels, H.

    1992-01-01

    The amounts of waste generated during 1987, 1989 and a past reference period have been reported in great detail. The main conclusions which can be drawn from these figures are: (i) for all kinds of waste, the waste-to-product ratio has decreased very substantially during the past few years. This reduction results partly from a scale effect, i.e. the better load factor of the plant, and partly from Belgonucleare's continuous effort to minimize the radioactive waste arisings; (ii) the ratio of the Pu content of the waste to the total Pu throughput of the plant has also decreased substantially; (iii) the mean Pu content of the solid Pu contaminated waste equals 1.39 g Pu per unit volume of 25 l. Only for a small fraction of this waste (<5% by volume) does the Pu content exceed 5 g per unit volume of 25 l; (iv) even after the implementation of waste reducing measures, some 45% of the solid Pu contaminated waste is generated by operations which involve the handling and transfer of powders. Finally, some 63% of the total amount of Pu in the waste can be imputed to these operations

  5. The Solid-Phase Synthesis of an Fe-N-C Electrocatalyst for High-Power Proton-Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Qingtao; Liu, Xiaofang; Zheng, Lirong; Shui, Jianglan

    2018-01-26

    The environmentally friendly synthesis of highly active Fe-N-C electrocatalysts for proton-exchange membrane fuel cells (PEMFCs) is desirable but remains challenging. A simple and scalable method is presented to fabricate Fe II -doped ZIF-8, which can be further pyrolyzed into Fe-N-C with 3 wt % of Fe exclusively in Fe-N 4 active moieties. Significantly, this Fe-N-C derived acidic PEMFC exhibits an unprecedented current density of 1.65 A cm -2 at 0.6 V and the highest power density of 1.14 W cm -2 compared with previously reported NPMCs. The excellent PEMFC performance can be attributed to the densely and atomically dispersed Fe-N 4 active moieties on the small and uniform catalyst nanoparticles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Assessment of the Public Health impact from the accidental release of UF6 at the Sequoyah Fuels Corporation Facility at Gore, Oklahoma (Docket No. 40-8027). Volume 2

    International Nuclear Information System (INIS)

    1986-03-01

    Following the accidental release of UF 6 from the Sequoyah Fuels Facility on January 4, 1986, an Ad Hoc Interagency Public Health Assessment Task Force was established. The Task Force consists of technical staff members from various agencies who have prepared this assessment of the public health impact associated with the accidental release. Volume 2 of the report contains Appendices which provide more detailed information used in the assessment and support the discussion in Volume 1

  7. Is it possible to design a portable power generator based on micro-solid oxide fuel cells? A finite volume analysis

    Science.gov (United States)

    Pla, D.; Sánchez-González, A.; Garbayo, I.; Salleras, M.; Morata, A.; Tarancón, A.

    2015-10-01

    The inherent limited capacity of current battery technology is not sufficient for covering the increasing power requirements of widely extended portable devices. Among other promising alternatives, recent advances in the field of micro-Solid Oxide Fuel Cells (μ-SOFCs) converted this disruptive technology into a serious candidate to power next generations of portable devices. However, the implementation of single cells in real devices, i.e. μ-SOFC stacks coupled to the required balance-of-plant elements like fuel reformers or post combustors, still remains unexplored. This work aims addressing this system-level research by proposing a new compact design of a vertically stacked device fuelled with ethanol. The feasibility and design optimization for achieving a thermally self-sustained regime and a rapid and low-power consuming start-up is studied by finite volume analysis. An optimal thermal insulation strategy is defined to maintain the steady-state operation temperature of the μ-SOFC at 973 K and an external temperature lower than 323 K. A hybrid start-up procedure, based on heaters embedded in the μ-SOFCs and heat released by chemical reactions in the post-combustion unit, is analyzed allowing start-up times below 1 min and energy consumption under 500 J. These results clearly demonstrate the feasibility of high temperature μ-SOFC power systems fuelled with hydrocarbons for portable applications, therefore, anticipating a new family of mobile and uninterrupted power generators.

  8. Microwave-Assisted Synthesis of Reduced Graphene Oxide/SnO2 Nanocomposite for Oxygen Reduction Reaction in Microbial Fuel Cells.

    Science.gov (United States)

    Garino, Nadia; Sacco, Adriano; Castellino, Micaela; Muñoz-Tabares, José Alejandro; Chiodoni, Angelica; Agostino, Valeria; Margaria, Valentina; Gerosa, Matteo; Massaglia, Giulia; Quaglio, Marzia

    2016-02-01

    We report on an easy, fast, eco-friendly, and reliable method for the synthesis of reduced graphene oxide/SnO2 nanocomposite as cathode material for application in microbial fuel cells (MFCs). The material was prepared starting from graphene oxide that has been reduced to graphene during the hydrothermal synthesis of the nanocomposite, carried out in a microwave system. Structural and morphological characterizations evidenced the formation of nanocomposite sheets, with SnO2 crystals of few nanometers integrated in the graphene matrix. Physico-chemical analysis revealed the formation of SnO2 nanoparticles, as well as the functionalization of the graphene by the presence of nitrogen atoms. Electrochemical characterizations put in evidence the ability of such composite to exploit a cocatalysis mechanism for the oxygen reduction reaction, provided by the presence of both SnO2 and nitrogen. In addition, the novel composite catalyst was successfully employed as cathode in seawater-based MFCs, giving electrical performances comparable to those of reference devices employing Pt as catalyst.

  9. A hybrid multi-level optimization approach for the dynamic synthesis/design and operation/control under uncertainty of a fuel cell system

    International Nuclear Information System (INIS)

    Kim, Kihyung; Spakovsky, Michael R. von; Wang, M.; Nelson, Douglas J.

    2011-01-01

    During system development, large-scale, complex energy systems require multi-disciplinary efforts to achieve system quality, cost, and performance goals. As systems become larger and more complex, the number of possible system configurations and technologies, which meet the designer's objectives optimally, increases greatly. In addition, both transient and environmental effects may need to be taken into account. Thus, the difficulty of developing the system via the formulation of a single optimization problem in which the optimal synthesis/design and operation/control of the system are achieved simultaneously is great and rather problematic. This difficulty is further heightened with the introduction of uncertainty analysis, which transforms the problem from a purely deterministic one into a probabilistic one. Uncertainties, system complexity and nonlinearity, and large numbers of decision variables quickly render the single optimization problem unsolvable by conventional, single-level, optimization strategies. To address these difficulties, the strategy adopted here combines a dynamic physical decomposition technique for large-scale optimization with a response sensitivity analysis method for quantifying system response uncertainties to given uncertainty sources. The feasibility of such a hybrid approach is established by applying it to the synthesis/design and operation/control of a 5 kW proton exchange membrane (PEM) fuel cell system.

  10. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    Science.gov (United States)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  11. Variable volume combustor

    Science.gov (United States)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  12. Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis.

    Science.gov (United States)

    Ganzola, Rossana; Maziade, Michel; Duchesne, Simon

    2014-06-01

    Studies have reported hippocampal and amygdala volume abnormalities in schizophrenic patients. It is necessary to explore the potential for these structures as early disease markers in subjects at high risk (HR) of schizophrenia. We performed a review of 29 magnetic resonance imaging (MRI) studies measuring hippocampal and amygdala volumes in subjects at HR for schizophrenia. We reclassified subjects in 3 new HR categories: presence of only risk symptoms (psychotic moderate symptoms), presence of only risk factors (genetic, developmental or environmental), and presence of combined risk symptoms/factors. Hippocampal volume reductions were detected in subjects with first episode (FE) of psychosis, in all young adults and in adolescents at HR of schizophrenia. The loss of tissue was mainly located in the posterior part of hippocampus and the right side seems more vulnerable in young adults with only risk symptoms. Instead, the anterior sector seems more involved in HR subjects with genetic risks. Abnormal amygdala volumes were found in FE subjects, in children with combined risk symptoms/factors and in older subjects using different inclusion criteria, but not in young adults. Hippocampal and amygdala abnormalities may be present before schizophrenia onset. Further studies should be conducted to clarify whether these abnormalities are causally or effectually related to neurodevelopment. Shape analysis could clarify the impact of environmental, genetic, and developmental factors on the medial temporal structures during the evolution of this disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Industrial Fuel Gas Demonstration-Plant Program. Volume II. The environment (Deliverable No. 27). [Baseline environmental data

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The proposed site of the Industrial Fuel Gas Demonstration Plant (IFGDP) is located on a small peninsula extending eastward into Lake McKeller from the south shore. The peninsula is located west-southwest of the City of Memphis near the confluence of Lake McKeller and the Mississippi River. The environmental setting of this site and the region around this site is reported in terms of physical, biological, and human descriptions. Within the physical description, this report divides the environmental setting into sections on physiography, geology, hydrology, water quality, climatology, air quality, and ambient noise. The biological description is divided into sections on aquatic and terrestrial ecology. Finally, the human environment description is reported in sections on land use, demography, socioeconomics, culture, and visual features. This section concludes with a discussion of physical environmental constraints.

  14. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    Science.gov (United States)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  15. FARO test L-14 on fuel coolant interaction and quenching. Comparison report, volume 1 + 2, analysis of the results

    International Nuclear Information System (INIS)

    Annunziato, A.; Addabbo, C.; Yerkess, A.; Silverii, R.; Brewka, W.; Leva, G.

    1997-01-01

    This report provides a comparative analysis of the results from the ISP-39 exercise promoted by OECD-CSNI in the frame of the NEA activities. ISP-39 has been conceived to benchmark the predictive capabilities of computer codes used in the evaluation of fuel-coolant interaction (FCI) and quenching phenomenologies of relevance in water cooled reactors severe accidents safety analysis. The ISP-39 reference case is FARO test L-14, a non-energetic FCI test performed under realistic melt composition and prototypical accident conditions in the FARO experimental installation (Ispra, Italy). Thirteen research organizations from ten countries participated in the exercise submitting 15 prediction calculations with 8 different codes or code versions (COMETA, MC3D, IVA, IFCI, JASMINE, TEXAS, THIRMAL, VAPEX). ISP-39 was conducted as an open exercise. Conclusions are given concerning code capabilities, users effect and sensitivity analyses, numerical accuracy quantification of the predictions, code improvements, general considerations

  16. Influence of different fuel agents on the combustion synthesis of the nanostructured Li{sub 1.05}Mn{sub 2}O{sub 4} oxide

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Fabio A.; Guerra, R.F.; Santana, L.K.; Canobre, S.C., E-mail: fabioamaral@iqufu.ufu.br [Universidade Federal de Uberlandia (LAETE/UFU), MG (Brazil). Inst. de Quimica. Lab. de Armazenamento de Energia e Tratamento de Efluentes

    2014-08-15

    In this work nanostructured Li{sub 1.05}Mn{sub 2}O{sub 4} oxide was obtained by Solution Combustion Synthesis (SCS) using three different fuel agents in order to obtain a unique phase with a crystalline cubic structure belonging to the F{sub d3m} spatial group. The phase of interest could be obtained, following the order: glycine (at 600 °C for 2 h) ‹ urea (at 750 °C for 2 h) ‹ maleic anhydride (at 750 °C for 4 h), with crystallite size in the range from 4.6 to 9.7 nm (nanometric character) and the unit cell parameter of the calcined samples at 750 °C for 2 h were similar to the JCPDS 35-0782 with cubic structure (a = 8.247 Å). Charge and discharge tests from the samples obtained by glycine fuel (at 750 °C for 4 h) presented the highest experimental specific capacities of 115 mA h g{sup -1} and 92% of retention after 10 cycles. (author)

  17. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells.

    Science.gov (United States)

    Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping

    2017-09-20

    As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

  18. Facile and rapid auto-combustion synthesis of nano-porous γ-Al2O3 by application of hexamethylenetetramine in fuel composition

    Science.gov (United States)

    Salem, Shiva; Salem, Amin; Parni, Mohammad Hosein; Jafarizad, Abbas

    2018-06-01

    In this article, urea, glycine and hexamethylenetetramine were blended in accordance with the mixture design algorithm to prepare γ-Al2O3 by auto-combustion technique. Aluminum nitrate was then mixed with the stoichiometric contents of prepared fuel solutions to obtain gel systems. The gels exhibited a typical self-propagating combustion behavior at low temperature, directly resulting amorphous materials. The precursors were calcined at various temperatures ranging from 700 to 900 °C. The treated powders were evaluated by determining the methylene blue (MB) adsorption efficiency. The production condition to obtain γ-Al2O3 with maximum surface area depends on fuel composition and calcination temperature. The alumina powder fabricated by this procedure was uniformly distributed and contains nano-sized secondary particles with diameter about 10-30 nm in which the average pore size is 3.2 nm induced large surface area, 240 m2g-1. The employment of hexamethylenetetramine provides a potential for synthesis of γ-Al2O3 at lower temperature, 700 °C, with maximum MB removal efficiency.

  19. Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2015-01-01

    We present a detailed study of a novel Fe3C-based spherical catalyst with respect to synthetic parameters, nanostructure formation, ORR active sites and fuel cell demonstration. The catalyst is synthesized by high temperature autoclave pyrolysis using decomposing precursors. Below 500 °C, melamine...

  20. Fuels planning: science synthesis and integration; environmental consequences fact sheet 02: First Order Fire Effects Model (FOFEM)

    Science.gov (United States)

    Steve Sutherland

    2004-01-01

    FOFEM 5.2 is a simple, yet versatile computer program that predicts first order fire effects using text and graphic outputs. It can be used in a variety of situations including: determining acceptable upper and lower fuel moistures for conducting prescribed burns, determining the number of acres that may be burned on a given day without exceeding particulate emission...

  1. Fuels planning: science synthesis and integration; social issues fact sheet 04: Three critical topics to cover when talking about hazards

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The amount of science applicable to the management of wildfire hazards is increasing daily. In addition, the attitudes of landowners and policymakers about fire and fuels management are changing. This fact sheet discusses three critical keys to communicating about wildfire hazards.

  2. Preliminary Screening -- Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Dayton, D. C.

    2003-12-01

    In principle, syngas (primarily consisting of CO and H2) can be produced from any hydrocarbon feedstock, including: natural gas, naphtha, residual oil, petroleum coke, coal, and biomass. The lowest cost routes for syngas production, however, are based on natural gas, the cheapest option being remote or stranded reserves. Economic considerations dictate that the current production of liquid fuels from syngas translates into the use of natural gas as the hydrocarbon source. Nevertheless, the syngas production operation in a gas-to-liquids plant amounts to greater than half of the capital cost of the plant. The choice of technology for syngas production also depends on the scale of the synthesis operation. Syngas production from solid fuels can require an even greater capital investment with the addition of feedstock handling and more complex syngas purification operations. The greatest impact on improving the economics of gas-to liquids plants is through (1) decreasing capital costs associated with syngas production and (2) improving the thermal efficiency with better heat integration and utilization. Improved thermal efficiency can be obtained by combining the gas-to-liquids plant with a power generation plant to take advantage of the availability of low-pressure steam. The extensive research and development efforts devoted to syngas conversion to fuels and chemicals are documented in a vast amount of literature that tracks the scientific and technological advancements in syngas chemistry. The purpose of this report is to review the many syngas to products processes and summarize the salient points regarding the technology status and description, chemistry, catalysts, reactors, gas cleanliness requirements, process and environmental performances, and economics. Table 1 lists the products examined in this study and gives some facts about the technology as well as advantages and disadvantages. Table 2 summarizes the catalysts, process conditions, conversions, and

  3. State policies and requirements for management of uranium mining and milling in New Mexico. Volume IV. The supply of electric power and natural gas fuel as possible constraints on uranium production

    International Nuclear Information System (INIS)

    Page, G.B.

    1980-04-01

    The report contained in this volume considers the availability of electric power to supply uranium mines and mills. The report, submited to Sandia Laboratories by the New Mexico Department of Energy and Minerals (EMD), is reproduced without modification. The state concludes that the supply of power, including natural gas-fueled production, will not constrain uranium production

  4. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells

    Directory of Open Access Journals (Sweden)

    Ahmed Yousef

    2017-09-01

    Full Text Available A large amount of urea-containing wastewater is produced as a by-product in the fertilizer industry, requiring costly and complicated treatment strategies. Considering that urea can be exploited as fuel, this wastewater can be treated and simultaneously exploited as a renewable energy source in a direct urea fuel cell. In this study, multi-layers graphene/nickel nanocomposites were prepared by a one-step green method for use as an anode in the direct urea fuel cell. Typically, commercial sugar was mixed with nickel(II acetate tetrahydrate in distilled water and then calcined at 800 °C for 1 h. Raman spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and energy dispersive spectroscopy (EDS were employed to characterize the final product. The results confirmed the formation of multi-layers graphene sheets decorated by nickel nanoparticles. To investigate the influence of metal nanoparticles content, samples were prepared using different amounts of the metal precursor; nickel acetate content was changed from 0 to 5 wt.%. Investigation of the electrochemical characterizations indicated that the sample prepared using the original solution with 3 wt.% nickel acetate had the best current density, 81.65 mA/cm2 in a 0.33 M urea solution (in 1 M KOH at an applied voltage 0.9 V vs Ag/AgCl. In a passive direct urea fuel cell based on the optimal composition, the observed maximum power density was 4.06 × 10−3 mW/cm2 with an open circuit voltage of 0.197 V at room temperature in an actual electric circuit. Overall, this study introduces a cheap and beneficial methodology to prepare effective anode materials for direct urea fuel cells.

  5. Deep repository for spent nuclear fuel. SR-97-Post-closure safety. Main Report. Volume I and II

    International Nuclear Information System (INIS)

    Hedin, A.

    1999-11-01

    In preparation for coming site investigations for siting of a deep repository for spent nuclear fuel, the Swedish Government and nuclear regulatory authorities have requested an assessment of the repository's long-term safety. The purpose is to demonstrate whether the risk of harmful effects in individuals in the vicinity of the repository complies with the acceptance criterion formulated by the Swedish regulatory authorities, i.e. that the risk may not exceed 10 -6 per year. Geological data are taken from three sites in Sweden to shed light on different conditions in Swedish granitic bedrock. The future evolution of the repository system is analyzed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings are postulated to persist. The four other scenarios show how the evolution of the repository differs from that in the base scenario if the repository contains a few initially defective canisters, in the event of climate change, earthquakes, and future inadvertent human intrusion. The time horizon for the analyses is at most one million years, in accordance with preliminary regulations. By means of model studies and calculations, the base scenario analyzes how the radioactivity of the fuel declines with time, the repository's thermal evolution as a result of the decay heat in the fuel, the hydraulic evolution in buffer and backfill when they become saturated with water, and the long-term groundwater flow in the geosphere on the three sites. The overall conclusion of the analyses in the base scenario is that the copper canisters isolating capacity is not threatened by either the mechanical or chemical stresses to which it is subjected. The safety margins are great even in a million-year perspective. The internal evolution in initially defective canisters and the possible resultant migration of radionuclides in buffer, geosphere

  6. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  7. Fuel and Fuel System Materials Compatibility Test Program for A JP-8+100 Fuel Additive. Volume 1: Thermal Stability Additive Package BetzDearborn Spec Aid(Registered) 8Q462

    Science.gov (United States)

    2001-10-01

    SAE Rings, Sealing, Butadiene-Acrylonitrile ( NBR ), Rubber Fuel and Low Temperature Resistant 60 - 70 MIL-R-83248C Rubber , Fluorocarbon...KAPTON/TEFLON (COMPOSITE) WIRE I.I.10 34 VI. REFERENCE DOCUMENTS Non-Metallics MIL-HDBK-149B Military Standardization Hand Book Rubber ...ASTM D-1414 Standard Test Methods for Rubber O-Rings ASTM D-412 Type II Standard Test Methods for Vulcanized Rubber and Thermoplastic

  8. Comprehensive coordination chemistry. The synthesis, reactions, properties and applications of coordination compounds. V.3. Main group and early transition elements

    International Nuclear Information System (INIS)

    Wilkinson, Geoffrey; Gillard, R.D.; McCleverty, J.A.

    1987-01-01

    Comprehensive coordination chemistry reviews the synthesis reactions and properties of coordination compounds. Their uses in such diverse fields as nuclear fuels, toxicology, medicine and biology are discussed. Volume three concentrates on the main group and early transition element coordination compounds. (UK)

  9. Breaking the news or fueling the epidemic? Temporal association between news media report volume and opioid-related mortality.

    Directory of Open Access Journals (Sweden)

    Nabarun Dasgupta

    2009-11-01

    Full Text Available Historical studies of news media have suggested an association between reporting and increased drug abuse. Period effects for substance use have been documented for different classes of legal and illicit substances, with the suspicion that media publicity may have played major roles in their emergence. Previous analyses have drawn primarily from qualitative evidence; the temporal relationship between media reporting volume and adverse health consequences has not been quantified nationally. We set out to explore whether we could find a quantitative relationship between media reports about prescription opioid abuse and overdose mortality associated with these drugs. We assessed whether increases in news media reports occurred before or after increases in overdose deaths.Our ecological study compared a monthly time series of unintentional poisoning deaths involving short-acting prescription opioid substances, from 1999 to 2005 using multiple cause-of-death data published by the National Center for Health Statistics, to monthly counts of English-language news articles mentioning generic and branded names of prescription opioids obtained from Google News Archives from 1999 to 2005. We estimated the association between media volume and mortality rates by time-lagged regression analyses. There were 24,272 articles and 30,916 deaths involving prescription opioids during the seven-year study period. Nationally, the number of articles mentioning prescription opioids increased dramatically starting in early 2001, following prominent coverage about the nonmedical use of OxyContin. We found a significant association between news reports and deaths, with media reporting preceding fatal opioid poisonings by two to six months and explaining 88% (p<0.0001, df 78 of the variation in mortality.While availability, structural, and individual predispositions are key factors influencing substance use, news reporting may enhance the popularity of psychoactive

  10. Breaking the news or fueling the epidemic? Temporal association between news media report volume and opioid-related mortality.

    Science.gov (United States)

    Dasgupta, Nabarun; Mandl, Kenneth D; Brownstein, John S

    2009-11-18

    Historical studies of news media have suggested an association between reporting and increased drug abuse. Period effects for substance use have been documented for different classes of legal and illicit substances, with the suspicion that media publicity may have played major roles in their emergence. Previous analyses have drawn primarily from qualitative evidence; the temporal relationship between media reporting volume and adverse health consequences has not been quantified nationally. We set out to explore whether we could find a quantitative relationship between media reports about prescription opioid abuse and overdose mortality associated with these drugs. We assessed whether increases in news media reports occurred before or after increases in overdose deaths. Our ecological study compared a monthly time series of unintentional poisoning deaths involving short-acting prescription opioid substances, from 1999 to 2005 using multiple cause-of-death data published by the National Center for Health Statistics, to monthly counts of English-language news articles mentioning generic and branded names of prescription opioids obtained from Google News Archives from 1999 to 2005. We estimated the association between media volume and mortality rates by time-lagged regression analyses. There were 24,272 articles and 30,916 deaths involving prescription opioids during the seven-year study period. Nationally, the number of articles mentioning prescription opioids increased dramatically starting in early 2001, following prominent coverage about the nonmedical use of OxyContin. We found a significant association between news reports and deaths, with media reporting preceding fatal opioid poisonings by two to six months and explaining 88% (pnews reporting may enhance the popularity of psychoactive substances. Albeit ecological in nature, our finding suggests the need for further evaluation of the influence of news media on health. Reporting on prescription opioids conforms

  11. Deep repository for spent nuclear fuel. SR-97-Post-closure safety. Main Report. Volume I and II

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, A [ed.

    1999-11-01

    In preparation for coming site investigations for siting of a deep repository for spent nuclear fuel, the Swedish Government and nuclear regulatory authorities have requested an assessment of the repository's long-term safety. The purpose is to demonstrate whether the risk of harmful effects in individuals in the vicinity of the repository complies with the acceptance criterion formulated by the Swedish regulatory authorities, i.e. that the risk may not exceed 10{sup -6} per year. Geological data are taken from three sites in Sweden to shed light on different conditions in Swedish granitic bedrock. The future evolution of the repository system is analyzed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings are postulated to persist. The four other scenarios show how the evolution of the repository differs from that in the base scenario if the repository contains a few initially defective canisters, in the event of climate change, earthquakes, and future inadvertent human intrusion. The time horizon for the analyses is at most one million years, in accordance with preliminary regulations. By means of model studies and calculations, the base scenario analyzes how the radioactivity of the fuel declines with time, the repository's thermal evolution as a result of the decay heat in the fuel, the hydraulic evolution in buffer and backfill when they become saturated with water, and the long-term groundwater flow in the geosphere on the three sites. The overall conclusion of the analyses in the base scenario is that the copper canisters isolating capacity is not threatened by either the mechanical or chemical stresses to which it is subjected. The safety margins are great even in a million-year perspective. The internal evolution in initially defective canisters and the possible resultant migration of radionuclides in buffer

  12. Deep repository for spent nuclear fuel. SR-97-Post-closure safety. Main Report. Volume I and II

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, A. [ed.

    1999-11-01

    In preparation for coming site investigations for siting of a deep repository for spent nuclear fuel, the Swedish Government and nuclear regulatory authorities have requested an assessment of the repository's long-term safety. The purpose is to demonstrate whether the risk of harmful effects in individuals in the vicinity of the repository complies with the acceptance criterion formulated by the Swedish regulatory authorities, i.e. that the risk may not exceed 10{sup -6} per year. Geological data are taken from three sites in Sweden to shed light on different conditions in Swedish granitic bedrock. The future evolution of the repository system is analyzed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings are postulated to persist. The four other scenarios show how the evolution of the repository differs from that in the base scenario if the repository contains a few initially defective canisters, in the event of climate change, earthquakes, and future inadvertent human intrusion. The time horizon for the analyses is at most one million years, in accordance with preliminary regulations. By means of model studies and calculations, the base scenario analyzes how the radioactivity of the fuel declines with time, the repository's thermal evolution as a result of the decay heat in the fuel, the hydraulic evolution in buffer and backfill when they become saturated with water, and the long-term groundwater flow in the geosphere on the three sites. The overall conclusion of the analyses in the base scenario is that the copper canisters isolating capacity is not threatened by either the mechanical or chemical stresses to which it is subjected. The safety margins are great even in a million-year perspective. The internal evolution in initially defective canisters and the possible resultant migration of radionuclides in

  13. A study on synthesis of energy fuel from waste plastic and assessment of its potential as an alternative fuel for diesel engines.

    Science.gov (United States)

    Kaimal, Viswanath K; Vijayabalan, P

    2016-05-01

    The demand for plastic is ever increasing and has produced a huge amount of plastic waste. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste plastic. This paper assesses the potential of using Waste Plastic Oil (WPO), synthesized using pyrolysis of waste plastic, as an alternative for diesel fuel. In this research work, the performance and emission characteristics of a single cylinder diesel engine fuelled with WPO and its blends with diesel are studied. In addition to neat plastic oil, three blends (PO25, PO50 and PO75) were prepared on a volumetric basis and the engine was able to run on neat plastic oil. Brake thermal efficiency of blends was lower compared to diesel, but PO25 showed similar performance to that of diesel. The emissions were reduced considerably while using blends when compared to neat plastic oil. The smoke and NOX were reduced by 22% and 17.8% respectively for PO25 than that of plastic oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An all-aromatic polypyridine: Monomer and polymer synthesis; Film formation and crosslinking; A candidate fuel cell membrane

    Science.gov (United States)

    Sikkema, Doetze J.; Versteegen, Ron M.; Pouderoijen, Maarten J.; Janssen, Henk M.; Boere, Ben; Brands, Ferry; Kemperman, GerJan; Rewinkel, Jos B. M.; Koeman, Menno

    2018-03-01

    2,6-di (3-pyridyl)phenol and the title polymer are synthesized at 1 kg scale. Polymer is processed and crosslinked without the introduction of non-aromatic moieties after shaping into membranes. Attractive proton conduction, at high temperature (140-180 °C: 300 mS cm-1) and at room temperature (60 mS cm-1) are recorded in the dry state (higher numbers at modest humidity) and excellent retention of properties after challenge by humidity (in contrast with state-of-the-art PBI membranes). Functional fuel cells are made and tested. In prolonged use the membrane is plasticized and this seems attributable to curing reversal at the hydrogen electrode. For high temperature fuel cell use, another curing scheme (again without the introduction of aliphatic character) must be found.

  15. Combustion synthesis by reaction and characterization of nano ferrites: study of fuel aniline, citric and its mixture

    International Nuclear Information System (INIS)

    Silva, M.C. da; Coutinho, J.P.; Costa, A.C.F.M.; Kiminami, R.H.G.A.; Freitas, N.L. de

    2012-01-01

    The present study aims to evaluate the influence of aniline and citric acid used alone and combined in a ratio of 50% each in the characterization of NiZn ferrite synthesized by combustion reaction method in a muffle furnace. Measurements were made of temperature and reaction time. The nano-powders were characterized by XRD, EDX, textural analysis and SEM. The highest temperature was achieved by the reaction using the mixture of fuel and increased reaction time using citric acid. The nano ferrites using different fuels, and the mixture changed phases, the crystallite size and decreased surface area of the samples with aniline, citric acid and a mixture of both, respectively. The powder morphology ranged from presenting the formation of irregular blocks for the use of citric agglomerated in the form of skeins with aniline and a mixture to agglomerate larger particles. (author)

  16. Spent Fuel Dissolution and Source Term Modelling in Safety Assessment. Report from a Workshop. Synthesis and extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    This report describes a workshop that was organised by the Swedish Nuclear Power Inspectorate (SKI) for assessment of the handling of near-field radionuclide retention processes by the Swedish Nuclear Fuel and Waste Management Company (SKB). The general objective with this type of meeting is to improve the knowledge and awareness of recent developments and to provide preliminary review comments. A number of SKB reports provided the general background for the workshop discussions. One report addresses the release of radionuclides from spent fuel, another the concentration limits related to radionuclide solubility and a third buffer radionuclide sorption and migration parameters. These reports comprise a basis for the handling of the spent fuel, solubility and sorption processes in new complete safety assessment SR-Can. The discussion and analysis of these background reports at the workshop therefore provide an essential element of preparation for the planned review of SR-Can. The review comments provided in this report are nonetheless of a preliminary character since the SR-Can report was not available at the time of the workshop and details about the incorporation of various potential safety features into the entirety of safety assessment were not known. The present report sets out the detailed objectives and format of the workshop in Section 2. Section 3 provides a high-level overview of processes that need to be taken into account. In Section 4, there is a brief discussion about the chemical and physical environment near the engineered barriers. Section 5 gives a more detailed description of spent fuel processes that affect the radionuclide releases. In Section 6, the key issues for radionuclide chemistry and the estimation of concentration limits for various radionuclides are discussed. Section 7 discusses radionuclide sorption and migration in the buffer and Section 8 presents overall conclusions from the workshop.

  17. Synthesis of Acetone-Derived C6 , C9 , and C12 Carbon Scaffolds for Chemical and Fuel Applications.

    Science.gov (United States)

    Moore, Cameron M; Jenkins, Rhodri W; Janicke, Michael T; Kubic, William L; Polikarpov, Evgueni; Semelsberger, Troy A; Sutton, Andrew D

    2016-12-20

    A simple, inexpensive catalyst system (Amberlyst 15 and Ni/SiO 2 -Al 2 O 3 ) is described for the upgrading of acetone to a range of chemicals and potential fuels. Stepwise hydrodeoxygenation of the produced ketones can yield branched alcohols, alkenes, and alkanes. An analysis of these products is provided, which demonstrates that this approach can provide a product profile of valuable bioproducts and potential biofuels. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of zeolite from rice husk ash waste of brick industries as hydrophobic adsorbent for fuel grade ethanol purification

    Science.gov (United States)

    Purnomo, A.; Alhanif, M.; Khotimah, C.; Zuhra, UA; Putri, BR; Kumoro, AC

    2017-11-01

    A lot of researchers have devoted on ethanol utilization as renewable energy to substitute petroleum based gasoline. When ethanol is being used as a new fuel candidate, it should have at least of 99.5% purity. Usually produced via sugar fermentation process, further purification of ethanol from other components in fermentation broth to obtain its fuel grade is a crucial step. The purpose of this research is to produce synthetic zeolite as hydrophobic adsorbent from rice husk ash for ethanol-water separation and to investigate the influence of weight, adsorption time and initial ethanol concentration on zeolite adsorption capacity. This research consisted of rice husk silica extraction, preparation of hydrophobic zeolite adsorbent, physical characterization using SEM, EDX and adsorption test for an ethanol-water solution. Zeolite with highest adsorption capacity was obtained with 15: 1 alumina silica composition. The best adsorption condition was achieved when 4-gram hydrophobic zeolite applied for adsorption of 100 mL of 10% (v/v) ethanol-water solution for 120 minutes, which resulted in ethanol with 98.93% (v/v) purity. The hydrophobic zeolite from rice husk ash is a potential candidate as an efficient adsorbent to purify raw ethanol into fuel grade ethanol. Implementation of this new adsorbent for ethanol production in commercial scale may reduce the energy consumption of that usually used for the distillation processes.

  19. Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance

    International Nuclear Information System (INIS)

    Rahmani Vahid, Behgam; Haghighi, Mohammad

    2016-01-01

    Graphical abstract: As a base catalyst for biodiesel production, MgAl 2 O 4 spinel was successfully synthesized by combustion method with MgO, as the active phase, dispersed on the catalyst surface. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize the concentration of urea (as fuel) in the combustion synthesis. Analyzing the effect of fuel ratio on the combustion synthesized MgAl 2 O 4 , it was revealed that the synthesized base catalyst with a fuel ratio of 1.5 was of the best specifications for biodiesel production process. Future researches may investigate the catalyst reusability and mild reaction conditions, so as to achieve more economical production of biodiesel. - Highlights: • Efficient synthesis of MgAl 2 O 4 spinel by solution combustion method. • Improvement of catalytic activity and stability by optimum ratio fuel. • Enhanced dispersion of MgO over MgAl 2 O 4 spinel. • Production of biodiesel over MgO/MgAl 2 O 4 at relatively mild reaction conditions. - Abstract: MgO/MgAl 2 O 4 nanocatalyst was synthesized by a simple, cost-effective and rapid method and used in biodiesel production from sunflower oil. MgAl 2 O 4 was synthesized by combustion method at different fuel ratios and then active phase of MgO was dispersed on the samples by impregnation method. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize the concentration of urea (as fuel) in the combustion synthesis. The physicochemical properties of the nanocatalyst confirmed the sample synthesized with fuel ratio of 1.5 has high surface area, effective morphology and texture properties. Finally, in order to evaluate catalytic activity of the samples in biodiesel production, the transesterification reaction was performed. The results indicated the catalyst prepared by combustion synthesis with a fuel ratio of 1.5 was optimum specifications for biodiesel production. Using this

  20. Synthesis and Activity Test of Cu/ZnO/Al2O3 for the Methanol Steam Reforming as a Fuel Cell’s Hydrogen Supplier

    Directory of Open Access Journals (Sweden)

    IGBN Makertihartha

    2009-05-01

    Full Text Available The synthesis of hydrogen from hydrocarbons through the steam reforming of methanol on Cu/ZnO/Al2O3 catalyst has been investigated. This process is assigned to be one of the promising alternatives for fuel cell hydrogen process source. Hydrogen synthesis from methanol can be carried out by means of methanol steam reforming which is a gas phase catalytic reaction between methanol and water. In this research, the Cu/ZnO/Al2O3 catalyst prepared by the dry impregnation was used. The specific surface area of catalyst was 194.69 m2/gram.The methanol steam reforming (SRM reaction was carried out by means of the injection of gas mixture containing methanol and water with 1:1.2 mol ratio and 20-90 mL/minute feed flow rate to a fixed bed reactor loaded by 1 g of catalyst. The reaction temperature was 200-300 °C, and the reactor pressure was 1 atm. Preceding the reaction, catalyst was reduced in the H2/N2 mixture at 160 °C. This study shows that at 300 °C reaction temperature, methanol conversion reached 100% at 28 mL/minute gas flow rate. This conversion decreased significantly with the increase of gas flow rate. Meanwhile, the catalyst prepared for SRM was stable in 36 hours of operation at 260 °C. The catalyst exhibited a good stability although the reaction condition was shifted to a higher gas flow rate.

  1. Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling

    International Nuclear Information System (INIS)

    Prabhu, B.; Suryanarayana, C.; An, L.; Vaidyanathan, R.

    2006-01-01

    Al-Al 2 O 3 metal matrix composite (MMC) powders with volume fractions of 20, 30, and 50% Al 2 O 3 were synthesized by high-energy milling of the blended component powders. The particle sizes of Al 2 O 3 studied were 50 nm, 150 nm, and 5 μm. A uniform distribution of the Al 2 O 3 reinforcement in the Al matrix was successfully obtained after milling the powders for a period of 20 h at a ball-to-powder ratio of 10:1 in a SPEX mill. The uniform distribution of Al 2 O 3 in the Al matrix was confirmed by characterizing these nanocomposite powders by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray mapping, and X-ray diffraction (XRD) techniques

  2. Analysis and synthesis of the theoretical studies performed on the control and safety of LWR's burning plutonium fuel

    International Nuclear Information System (INIS)

    Basselier, J.; Renard, A.; Holzer, R.; Hnilica, K.

    1982-01-01

    This report presents the comparative investigations of parameters for plutonium fuelled power stations (PWR and BWR) under steady state and dynamic conditions for typical accidents. The recycling of about 30% of mixed oxide fuel in the large LWR cores should not induce special problems, if some cautions are taken in core design to minimize the differences with UO 2 cores taking into account a limited margin fo uncertainty. The influence on the core behaviour, during the investigated accidents, is not very important and does not induce restrictions for at least a 30% Pu fraction in the core. The operation with high plutonium amounts may be considered. From the steady state and safety point-of-views, the maximum allowable quantity into the cores should be sought for each reactor. In principle, a 100% UO 2 -PuO 2 core could be operated under certain conditions of loading pattern and shutdown margins. For what concerns the storage and handling, the studies show the following results: storage pool design with respect to criticality will not be affected by the use of UO 2 -PuO 2 fuel asemblies

  3. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Synthesis and characterization of PtRu/C catalysts obtained by colloidal and deposition methods for fuel cell applications

    Directory of Open Access Journals (Sweden)

    Egberto Gomes Franco

    2005-06-01

    Full Text Available The purpose of this investigation was to compare catalysts produced by the Bönnemann - colloidal method (PtRu (B1 and PtRu (B2, and those produced by the spontaneous deposition method (PtRu (SD. The catalysts produced by both methods had good electrochemical behavior for methanol oxidation for proton exchange membrane fuel cell applications. The structure of the catalyst was examined by transmission electron microscopy (TEM. Energy dispersive spectroscopic analysis (EDS was used to determine the semi-quantitative composition of the catalysts, and the electrochemical behavior was determined by cyclic voltammetry (CV. The diffractograms of the binary catalysts revealed platinum and ruthenium as the only crystalline phases, as per ICDD data base. The PtRu (B1 catalyst, treated in a reducing atmosphere, has the same structure as PtRu (B2, treated in an oxidising/reducing atmosphere, except that the crystallite size was around 1.7 nm for PtRu (B1 instead of 9.9 nm for PtRu (B2. The catalysts PtRu (B2 and PtRu (SD showed similar cyclic voltammetric behavior, which was better than that of PtRu (B1. Both methods are suitable for the production of electrocatalysts for fuel cell applications. The colloidal method is more expensive than the deposition method, but the former permits the production of ternary and quaternary catalyst systems with enhanced CO tolerance.

  5. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    Science.gov (United States)

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  6. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Primm III, RT

    2002-05-29

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  7. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    International Nuclear Information System (INIS)

    Primm III, RT

    2002-01-01

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors

  8. Assessment of the public health impact from the accidental release of UF6 at the Sequoyah Fuels Corporation Facility at Gore, Oklahoma (Docket No. 40-8027, License No. SUB-1010). Main report. Volume 1

    International Nuclear Information System (INIS)

    1986-03-01

    Following the accidental release of UF 6 from the Sequoyah Fuels Facility on January 4, 1986, an Ad Hoc Interagency Public Health Assessment Task Force was established. The Task Force consists of technical staff members from various agencies who have prepared this assessment of the public health impact associated with the accidental release. The assessment consists of two volumes and is based on data from the accident available as of February 14, 1986. Volume 1 of the report describes the effects from the intake of uranium and fluoride and summarizes the findings and recommendations of the Task Force. Volume 2 of the report contains Appendices which provide more detailed information used in the assessment and support the discussion in Volume 1. 57 refs., 26 figs., 12 tabs

  9. Synthesis of Joint Volumes, Visualization of Paths, and Revision of Viewing Sequences in a Multi-dimensional Seismic Data Viewer

    Science.gov (United States)

    Chen, D. M.; Clapp, R. G.; Biondi, B.

    2006-12-01

    Ricksep is a freely-available interactive viewer for multi-dimensional data sets. The viewer is very useful for simultaneous display of multiple data sets from different viewing angles, animation of movement along a path through the data space, and selection of local regions for data processing and information extraction. Several new viewing features are added to enhance the program's functionality in the following three aspects. First, two new data synthesis algorithms are created to adaptively combine information from a data set with mostly high-frequency content, such as seismic data, and another data set with mainly low-frequency content, such as velocity data. Using the algorithms, these two data sets can be synthesized into a single data set which resembles the high-frequency data set on a local scale and at the same time resembles the low- frequency data set on a larger scale. As a result, the originally separated high and low-frequency details can now be more accurately and conveniently studied together. Second, a projection algorithm is developed to display paths through the data space. Paths are geophysically important because they represent wells into the ground. Two difficulties often associated with tracking paths are that they normally cannot be seen clearly inside multi-dimensional spaces and depth information is lost along the direction of projection when ordinary projection techniques are used. The new algorithm projects samples along the path in three orthogonal directions and effectively restores important depth information by using variable projection parameters which are functions of the distance away from the path. Multiple paths in the data space can be generated using different character symbols as positional markers, and users can easily create, modify, and view paths in real time. Third, a viewing history list is implemented which enables Ricksep's users to create, edit and save a recipe for the sequence of viewing states. Then, the recipe

  10. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F.; Radtke, C.

    2010-01-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  11. Synthesis and characterization of gadolinia-doped ceria-silver cermet cathode material for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    A series of Ce 0.9 Gd 0.1 O 2-δ -Ag cermets with different Ag contents were prepared by conventional sintering process aiming at assessing the suitability of using them as cathode material for solid oxide fuel cell (SOFC) with Gadolinia-doped ceria electrolyte. The chemical compatibility between Ce 0.9 Gd 0.1 O 2-δ (CGO) and Ag was investigated by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Thermal expansion coefficients of the cermets were measured as a function of Ag content and were found to increase with metallic content. Although oxygen adsorption at the surface of the cermets could be detected, no reaction or solid solubility between CGO and Ag was found

  12. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  13. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    International Nuclear Information System (INIS)

    Chavez G, L.; Hinojosa R, M.; Medina L, B.; Ringuede, A.; Cassir, M.; Vannier, R. N.

    2017-01-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi_xCo_1_-_xO_3 (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi_0_._7Co_0_._3O_3, LaNi_0_._5Co_0_._5O_3 and LaNi_0_._3Co_0_._7O_3 structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi_xCo_1_-_xO_3/YSZ (Yttria-stabilized zirconia)/LaNi_xCo_1_-_xO_3 showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi_0_._5Co_0_._5O_3, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  14. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    Science.gov (United States)

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Science.gov (United States)

    Chhina, H.; Campbell, S.; Kesler, O.

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.

  16. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada); Campbell, S. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada)

    2008-04-15

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 C and compared to that of HiSpec 4000 trademark Pt/Vulcan XC-72R in 0.5 M H{sub 2}SO{sub 4}. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000 trademark. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization. (author)

  17. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  18. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3-δ for electrolyte of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyuki; Enoki, Makiko; Ishihara, Tatsumi; Akiyama, Tomohiro

    2007-01-01

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-δ (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm -1 and its maximum power density was a value of 245 mW cm -2 in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm 0.5 Sr 0.5 CoO 3 . The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application

  19. Use of Dendrimers during the Synthesis of Pt-Ru Electrocatalysts for PEM Fuel Cells: Effects on the Physical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    J. C. Calderón

    2011-01-01

    Full Text Available In this work, Pt-Ru catalysts were synthesized by a novel methodology which includes the use as encapsulating molecules of dendrimers of different generation: zero (DN-0, one (DN-1, two (DN-2, and three (DN-3. Synthesized catalysts were heat-treated at 350°C, and the effects of this treatment was established from the physical (X-ray dispersive energy (XDE and X-ray diffraction (XRD and electrochemical characterization (cyclic voltammetry and chronoamperometry. Results showed that the heat-treatment benefits the catalytic properties of synthesized materials in terms of CO and methanol electrochemical oxidation. The curves for CO stripping were more defined for heat-treated catalysts, and methanol oxidation current densities were higher for these materials. These changes are principally explained from the removal of organic residues remaining on the surface of the Pt-Ru nanoparticles after the synthesis procedure. After the activation of the catalysts by heating at 350°C, the real importance of the use of these encapsulating molecules and the effect of the generation of the dendrimer become visible. From these results, it can be concluded that synthesized catalysts are good catalytic anodes for direct methanol fuel cells (DMFCs.

  20. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    Science.gov (United States)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases

  1. Synthesis and characterization of strontium and magnesium substituted lanthanum gallate-nickel cermet anode for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Pradyot [Max-Planck-Institut fuer Metallforschung and Institut fuer Nichtmetallische, Anorganische Materialien, Universitaet Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, Stuttgart 70569 (Germany)]. E-mail: pdatta@rediffmail.com; Majewski, Peter [University of South Australia, Ian Wark Research Institute, Mawson Lakes, SA 5095 (Australia); Aldinger, Fritz [Max-Planck-Institut fuer Metallforschung and Institut fuer Nichtmetallische, Anorganische Materialien, Universitaet Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, Stuttgart 70569 (Germany)

    2007-04-15

    La{sub 0.90}Sr{sub 0.10}Ga{sub 0.85}Mg{sub 0.15}O{sub 3-{delta}} (LSGM) was prepared by solid state synthesis and mixed with various amounts of Ni and NiO, respectively. The optimum sintering temperature of the material was identified by dilatometric studies to be above 1300 deg. C. The interaction between LSGM and NiO was studied by X-ray diffraction after sintering at 1300 and 1400 deg. C in air as well as after reduction in hydrogen atmosphere at 800 and 1000 deg. C. The LaSrGa{sub 3}O{sub 7} compound was detected after sintering, whereas, LaSrGaO{sub 4} was found after reduction treatment of the material. Diffusion of Ni into LSGM was thought to be the reason for the presence of the above mentioned phases. After the treatment, LSGM contained 2.3 at% of Ni determined by energy dispersive X-ray analysis (EDX). The thermal expansion coefficient of LSGM with varying contents of Ni was observed to increase with increasing the Ni content.

  2. Synthesis and characterization of strontium and magnesium substituted lanthanum gallate-nickel cermet anode for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2007-01-01

    La 0.90 Sr 0.10 Ga 0.85 Mg 0.15 O 3-δ (LSGM) was prepared by solid state synthesis and mixed with various amounts of Ni and NiO, respectively. The optimum sintering temperature of the material was identified by dilatometric studies to be above 1300 deg. C. The interaction between LSGM and NiO was studied by X-ray diffraction after sintering at 1300 and 1400 deg. C in air as well as after reduction in hydrogen atmosphere at 800 and 1000 deg. C. The LaSrGa 3 O 7 compound was detected after sintering, whereas, LaSrGaO 4 was found after reduction treatment of the material. Diffusion of Ni into LSGM was thought to be the reason for the presence of the above mentioned phases. After the treatment, LSGM contained 2.3 at% of Ni determined by energy dispersive X-ray analysis (EDX). The thermal expansion coefficient of LSGM with varying contents of Ni was observed to increase with increasing the Ni content

  3. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Chavez G, L.; Hinojosa R, M. [Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, San Nicolas de los Garza, 66450 Nuevo Leon (Mexico); Medina L, B.; Ringuede, A.; Cassir, M. [Institut de Recherche de Chimie Paris, CNRS-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Vannier, R. N., E-mail: leonardo.chavezgr@uanl.edu.mx [Unite de Catalyse et de Chimie du Solide, UMR 8181 CNRS, 59655, Villeneuve d Ascq Cedex (France)

    2017-11-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi{sub x}Co{sub 1-x}O{sub 3} (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi{sub 0.7}Co{sub 0.3}O{sub 3}, LaNi{sub 0.5}Co{sub 0.5}O{sub 3} and LaNi{sub 0.3}Co{sub 0.7}O{sub 3} structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi{sub x}Co{sub 1-x}O{sub 3}/YSZ (Yttria-stabilized zirconia)/LaNi{sub x}Co{sub 1-x}O{sub 3} showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi{sub 0.5}Co{sub 0.5}O{sub 3}, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  4. Reactive flash volatilization of fluid fuels

    Science.gov (United States)

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Dreyer, Bradon J.; Salge, James R.

    2013-01-08

    The invention provides methods for the production of synthesis gas. More particularly, various embodiments of the invention relate to systems and methods for volatilizing fluid fuel to produce synthesis gas by using a metal catalyst on a solid support matrix.

  5. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.

    Science.gov (United States)

    Laycock, Christian J; Staniforth, John Z; Ormerod, R Mark

    2011-05-28

    Numerous investigations have been carried out into the conversion of biogas into synthesis gas (a mixture of H(2) + CO) over Ni/YSZ anode cermet catalysts. Biogas is a variable mixture of gases consisting predominantly of methane and carbon dioxide (usually in a 2 : 1 ratio, but variable with source), with other constituents including sulfur-containing gases such as hydrogen sulfide, which can cause sulfur poisoning of nickel catalysts. The effect of temperature on carbon deposition and sulfur poisoning of 90 : 10 mol% Ni/YSZ under biogas conversion conditions has been investigated by carrying out a series of catalytic reactions of methane-rich (2 : 1) CH(4)/CO(2) mixtures in the absence and presence of H(2)S over the temperature range 750-1000 °C. The effect of ceria-doping on carbon dioxide reforming, carbon deposition and sulfur tolerance has also been investigated by carrying out a similar series of reactions over ceria-doped Ni/YSZ. Ceria was doped at 5 mol% of the nickel content to give an anode catalyst composition of 85.5 : 4.5 : 10 mol% Ni/CeO(2)/YSZ. Reactions were followed using quadrupolar mass spectrometry (QMS) and the amount of carbon deposition was analysed by subjecting the reacted catalyst samples to a post-reaction temperature programmed oxidation (TPO). On undoped Ni/YSZ, carbon deposition occurred predominantly through thermal decomposition of methane. Ceria-doping significantly suppressed methane decomposition and at high temperatures simultaneously promoted the reverse Boudouard reaction, significantly lowering carbon deposition. Sulfur poisoning of Ni/YSZ occurred in two phases, the first of which caused the most activity loss and was accelerated on increasing the reaction temperature, while the second phase had greater stability and became more favourable with increasing reaction temperature. Adding H(2)S significantly inhibited methane decomposition, resulting in much less carbon deposition. Ceria-doping significantly increased the sulfur

  6. Quantification of process variables for carbothermic synthesis of UC{sub 1-x}N{sub x} fuel microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Lindemer, T.B. [MPi Business Solutions, Inc., Knoxville, TN 37915 (United States); Silva, C.M.; Henry, J.J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6063 (United States); McMurray, J.W., E-mail: mcmurrayjw1@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6063 (United States); Voit, S.L.; Collins, J.L.; Hunt, R.D. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6063 (United States)

    2017-01-15

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ∼820-μm-dia. UC{sub 1-x}N{sub x} fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO{sub 3}-H{sub 2}O-C microspheres in Ar and H{sub 2}-containing gases, conversion of the resulting UO{sub 2}-C kernels to dense UO{sub 2}:2UC in the same gases and vacuum, and its conversion in N{sub 2} to UC{sub 1-x}N{sub x} (x = ∼0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO{sub 2}:2UC kernel of ∼96% theoretical density was required, but its subsequent conversion to UC{sub 1-x}N{sub x} at 2123 K was not accompanied by sintering and resulted in ∼83–86% of theoretical density. Increasing the UC{sub 1-x}N{sub x} kernel nitride component to ∼0.98 in flowing N{sub 2}-H{sub 2} mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H{sub 2} in the entire process. - Highlights: • Sol-gel feedstock conversion to UN through carbothermic reduction. • Investigation of process gas effect on final kernel quality and density. • Recommended process for consistent kernel production.

  7. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  8. Actual Implementation of a Spent Nuclear Fuel Repository in Sweden: Seizing Opportunities. Synthesis of the FSC National Workshop and Community Visit - Oesthammar, Sweden 4-6 May 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The 8. Forum on Stakeholder Confidence (FSC) National Workshop and Community Visit was held 4-6 May 2011 in Gimo (Oesthammar), Sweden. The Swedish National Council for Nuclear Waste, Oesthammar municipality, the Swedish Nuclear Fuel and Waste Management Company (SKB) and the Swedish Radiation Safety Authority (SSM) assisted the FSC in the organisation and logistics and provided financial support for the event. The central theme of the workshop was 'Actual Implementation of a Spent Nuclear Fuel Repository: Seizing Opportunities'. The three day event took place in Gimo, a locality of Oesthammar. There were 90 participants from 13 countries who included representatives of local, regional and national government, civil society organisations and environmental groups, universities, waste management agencies and regulatory authorities. In all, 63 persons participated from Sweden. The workshop provided an overview of the different aspects involved in the Swedish nuclear waste management programme from different viewpoints, mainly those of the implementer SKB, the regulator SSM, the two municipalities involved - Oskarshamn and Oesthammar - and civil society organisations. The visions for the future of the two municipalities were presented by local representatives on the first evening. The second day, after a brief historical overview of waste management, the Swedish funding system and how it contributes to the participation of local and regional stakeholders was addressed as well as the role and perspective of different actors in the new licensing phase for the repository. After a session on the role of dialogue, information exchange and transparency throughout the process, participants at eight round tables discussed the concept of transparency and how it could be affected in the repository licensing phase. The third day, presentations and round table discussions addressed the specific aspects of consultation through the Environmental Impact Assessment (EIA) and economic

  9. Synthesis, characterization and electrochemical studies of Pt- W/C catalyst for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Ahmed, R.; Shahid, S.; Ansari, M. S.

    2013-01-01

    Pt-W/C catalyst was synthesized by slow reduction of platinum and tungsten solutions in the desired ratio with subsequent deposition on the Vulcan carbon already added to the solution. Crystallite size of catalyst was about 9 nm and its density, cell volume, d-spacing and lattice parameter were also calculated. EDX analysis of the catalyst was also done. Electrochemical surface area of the catalyst was determined by cyclic voltammetry (CV). CV of the catalyst was done both in acidic and basic media to find out the peak potential, peak current, specific activity and mass activity of the catalyst. Peak potential versus scan rate plots showed that the electro oxidation of methanol is an irreversible process. Tafel equation was used to plot polarization curves to find out the exchange current density. Higher values of exchange current indicate better catalysts. Specific activities of the catalyst were determined in acidic and basic media and it was found that the specific activity in basic media increased substantially as compared to acidic media. The specific activity in acidic media was 83 mA/mg pt whereas in basic media it was 137mA/mg pt which is a substantial increase. Heterogeneous rate constant in acidic media was 6.15 * 10-6 cm/ s and in basic media it was 4.92 * 10-5 cm/s which is much higher in basic media. In this binary catalyst addition of tungsten has increased the catalytic activity but it is non-noble metal thus will decrease the cost. Stability studies of the catalyst were done upto fifty cycles both in acidic and basic media and was found quite stable in both the media. (author)

  10. Synthesis, characterization and electrochemical studies of Pt-W/C catalyst for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Ahmed, Riaz; Shahid, Saliha; Ansari, Muhammad Shahid

    2014-01-01

    Pt-W/C catalyst was synthesized by slow reduction of platinum and tungsten solutions in the desired ratio with subsequent deposition on the Vulcan carbon already added to the solution. Crystallite size of catalyst was about 9 nm and its density, cell volume, d-spacing and lattice parameter were also calculated. EDX analysis of the catalyst was also done. Electrochemical surface area of the catalyst was determined by cyclic voltammetry (CV). CV of the catalyst was done both in acidic and basic media to find out the peak potential, peak current, specific activity and mass activity of the catalyst. Peak potential versus scan rate plots showed that the electro oxidation of methanol is an irreversible process. Tafel equation was used to plot polarization curves to find out the exchange current density. Higher values of exchange current indicate better catalysts. Specific activities of the catalyst were determined in acidic and basic media and it was found that the specific activity in basic media increased substantially as compared to acidic media. The specific activity in acidic media was 83 mA/mg pt whereas in basic media it was 137mA/mg pt which is a substantial increase. Heterogeneous rate constant in acidic media was 6.15 x 10 −6 cm/ s and in basic media it was 4.92 x 10 −5 cm/s which is much higher in basic media. In this binary catalyst addition of tungsten has increased the catalytic activity but it is non-noble metal thus will decrease the cost. Stability studies of the catalyst were done upto fifty cycles both in acidic and basic media and was found quite stable in both the media

  11. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    Science.gov (United States)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  12. Template-free synthesis of three-dimensional nanoporous N-doped graphene for high performance fuel cell oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Tang, Sheng; Zhou, Xuejun; Xu, Nengneng; Bai, Zhengyu; Qiao, Jinli; Zhang, Jiujun

    2016-01-01

    Highlights: • 3-D porous N-doped graphene was prepared using one-step silica template-free method. • High specific surface area of 920 m 2 g −1 was achieved for 3-D porous N-doped graphene. • Much higher ORR activity was observed for N-doped graphene than S-doped one in 0.1 M KOH. • The as-prepared catalyst gave a peak power density of 275 mW cm −2 as zinc–air battery cathode. - Abstract: Three-dimensional nanoporous nitrogen-doped graphene (3D-PNG) has been synthesized through a facial one-step synthesis method without additional silica template. The as-prepared 3D-PNGwas used as an electrocatalyst for the oxygen reduction reaction (ORR), which shows excellent electrochemistry performance, demonstrated by half-cell electrochemical evaluation in 0.1 M KOH including prominent ORR activity, four electron-selectivity and remarkable methanol poisoning stability compared to commercial 20%Pt/C catalyst. The physical and surface properties of 3D-PNG catalyst were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET surface area analysis. The experiments show that 3D-PNG catalyst possesses super-large specific surface area reaching 920 m 2 g −1 , which is superior to our most recently reported 3D-PNG synthesized by silica template (670 m 2 g −1 ) and other doped graphene catalysts in literature. When used for constructing a zinc–air battery cathode, such an 3D-PNG catalyst can give a discharge peak power density of 275 mW cm −2 . All the results announce a unique procedure to product high-efficiency graphene-based non-noble metal catalyst materials for electrochemical energy devices including both fuel cells and metal–air batteries.

  13. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O{sub 3-{delta}} for electrolyte of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Hiroyuki [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan); Enoki, Makiko [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Ishihara, Tatsumi [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Akiyama, Tomohiro [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: takiyama@eng.hokudai.ac.jp

    2007-03-14

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm{sup -1} and its maximum power density was a value of 245 mW cm{sup -2} in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3}. The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application.

  14. One-pot solvothermal synthesis of ordered intermetallic Pt{sub 2}In{sub 3} as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-10-15

    Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.

  15. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 4. Alternatives for waste isolation and disposal

    International Nuclear Information System (INIS)

    1976-05-01

    Volume IV of the five-volume report contains information on alternatives for final storage and disposal of radioactive wastes. Section titles include: basic concepts for geologic isolation; geologic storage alternatives; geologic disposal alternatives; extraterrestrial disposal; and, transmutation

  16. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 4. Alternatives for waste isolation and disposal

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume IV of the five-volume report contains information on alternatives for final storage and disposal of radioactive wastes. Section titles include: basic concepts for geologic isolation; geologic storage alternatives; geologic disposal alternatives; extraterrestrial disposal; and, transmutation. (JGB)

  17. Supercritical Synthesis of Biodiesel

    Directory of Open Access Journals (Sweden)

    Michel Vaultier

    2012-07-01

    Full Text Available The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs for biodiesel synthesis.

  18. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  19. Fuel trading

    International Nuclear Information System (INIS)

    2015-01-01

    A first part of this report proposes an overview of trends and predictions. After a synthesis on the sector changes and trends, it indicates and comments the most recent predictions for the consumption of refined oil products and for the turnover of the fuel wholesale market, reports the main highlights concerning the sector's life, and gives a dashboard of the sector activity. The second part proposes the annual report on trends and competition. It presents the main operator profiles and fuel categories, the main determining factors of the activity, the evolution of the sector context between 2005 and 2015 (consumptions, prices, temperature evolution). It analyses the evolution of the sector activity and indicators (sales, turnovers, prices, imports). Financial performances of enterprises are presented. The economic structure of the sector is described (evolution of the economic fabric, structural characteristics, French foreign trade). Actors are then presented and ranked in terms of turnover, of added value, and of result

  20. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Savander, V. I.; Shumskiy, B. E., E-mail: borisshumskij@yandex.ru [National Research Nuclear University MEPhI (Russian Federation); Pinegin, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  1. Acquisition/expulsion system for earth orbital propulsion system study. Volume 1: Summary report. [cryogenic storage and fuel flow regulation system for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    Design, construction, and quality control tests on a dual screen liner device for the space shuttle orbiter cryogenic fuel tank and feedliner system are summarized. The dual stainless steel mesh of the device encloses eight liquid fuel channels and provides the liquid/vapor interface stability required for low gravity orbits.

  2. Synthesis of modified calcium aluminate with lanthanum manganite (LSM) for possible use in solid oxide fuel cell (SOFC); Sintese de aluminato de calcio modificado com manganita de lantanio (LSM) para possivel utilizacao em celula combustivel de oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, F.C.T.; Jurado, J.; Sousa, V.C. de, E-mail: faili.cintia@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Departamento de Materiais; Cava, S.S. [Universidade Federal de Pelotas, RS (Brazil)

    2016-07-01

    The fuel cells solid oxide (SOFC) is made up of three basic elements: two electrodes, the anode and cathode and a conductive electrolyte ions. The objective of this work consists of calcium aluminate synthesis modified LSM in a 1: 1 by combustion synthesis method with a view to its use as a cathode in SOFC. The characterization of the post was carried out by the methods of XRD, TEM and EIS. After heat treatment at 1200°C/4 hours it was possible to obtain Ca0.5Sr1.5MnO4 and CaMnO2.56 phases. The material showed a semiconductor characteristics because with increasing temperature the electrical resistance value tends to decrease obtaining electrical conductivity greater than 10-6S / cm featuring an extrinsic semiconductor with an activation energy of 0.12. Therefore, with an activation energy value within the range of materials used for a SOFC cathodes. (author)

  3. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels.

    Science.gov (United States)

    Ayodele, Olumide Bolarinwa

    2017-08-30

    Achieving high degree of active metal dispersions at the highest possible metal loading and high reducibility of the metal remains a challenge in Fischer Tropsch synthesis (FTS) as well as in hydrogeoxygenation (HDO).This study therefore reports the influence of oxalic acid (OxA) functionalization on the metal dispersion, reducibility and activity of Co supported ZSM-5 catalyst in FTS and HDO of oleic acid into paraffin biofuel. The Brunauer-Emmett-Teller (BET) results showed that cobalt oxalate supported ZSM-5 catalyst (CoOx/ZSM-5) synthesized from the incorporation of freshly prepared cobalt oxalate complex into ZSM-5 displayed increase in surface area, pore volume and average pore size while the nonfunctionalized cobalt supported on ZSM-5 (Co/ZSM-5) catalyst showed reduction in those properties. Furthermore, both XRD and XPS confirmed the presence of Co° formed from the decomposition of CoOx during calcination of CoOx/ZSM-5 under inert atmosphere. The HRTEM showed that Co species average particle sizes were smaller in CoOx/ZSM-5 than in Co/ZSM-5, and in addition, CoOx/ZSM-5 shows a clear higher degree of active metal dispersion. The FTS result showed that at CO conversion over Co/ZSM-5 and CoOx/ZSM-5 catalysts were 74.28% and 94.23% and their selectivity to C 5+ HC production were 63.15% and 75.4%, respectively at 4 h TOS. The HDO result also showed that the CoOx/ZSM-5 has higher OA conversion of 92% compared to 59% over Co/ZSM-5. In addition CoOx/ZSM-5 showed higher HDO and isomerization activities compared to Co/ZSM-5.

  4. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume III. Resources and fuel cycle facilities

    International Nuclear Information System (INIS)

    1980-06-01

    The ability of uranium supply and the rest of the nuclear fuel cycle to meet the demand for nuclear power is an important consideration in future domestic and international planning. Accordingly, the purpose of this assessment is to evaluate the adequacy of potential supply for various nuclear resources and fuel cycle facilities in the United States and in the world outside centrally planned economy areas (WOCA). Although major emphasis was placed on uranium supply and demand, material resources (thorium and heavy water) and facility resources (separative work, spent fuel storage, and reprocessing) were also considered

  5. Modelling and Optimization of Reforming Systems for use in PEM Fuel Cell

    DEFF Research Database (Denmark)

    Berry, Melissa; Korsgaard, Anders Risum; Nielsen, Mads Pagh

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent...... reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest...

  6. Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors. Volume 3

    International Nuclear Information System (INIS)

    1976-08-01

    An assessment is presented of the health, safety and environmental effects of the entire light water reactor fuel cycle, considering the comparative effects of three major alternatives: no recycle, recycle of uranium only, and recycle of both uranium and plutonium. The assessment covers the period from 1975 through the year 2000 and includes the cumulative effects for the entire period as well as projections for specific years. Topics discussed include: the light water reactor with plutonium recycle; mixed oxide fuel fabrication; reprocessing plant operations; supporting uranium fuel cycle; transportation of radioactive materials; radioactive waste management; storage of plutonium; radiological health assessment; extended spent fuel storage; and blending of plutonium and uranium at reprocessing plants

  7. Electrochemically assisted organosol method for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt support: Extended reaction zone anodes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lycke, Derek R.; Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-03-20

    Two electrochemically assisted variants of the Boenneman organosol method were developed for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt electrodes (e.g. thickness up to 2 mm). Tetraoctylammonium triethylhydroborate N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} was employed as colloid stabilizer and reductant dissolved in tetrahydrofuran (THF). The role of the electric field at a low deposition current density of 1.25 mA cm{sup -2} was mainly electrophoretic causing the migration and adsorption of N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} on the graphite felt surface where it reduced the PtCl{sub 2}-SnCl{sub 2} mixture. Faradaic electrodeposition was detected mostly for Sn. Typical Pt-Sn loadings were between 0.4 and 0.9 mg cm{sup -2} depending on the type of pre-deposition exposure of the graphite felt: surfactant-adsorption and metal-adsorption variant, respectively. The catalyst surface area and Pt:Sn surface area ratio was determined by anodic striping of an underpotential deposited Cu monolayer. The two deposition variants gave different catalyst surfaces: total area 233 and 76 cm{sup 2} mg{sup -1}, with Pt:Sn surface area ratio of 3.5:1 and 7.7:1 for surfactant and metal adsorption, respectively. Regarding electrocatalysis of ethanol oxidation, voltammetry and chronopotentiometry studies corroborated by direct ethanol fuel cell experiments using 0.5 M H{sub 2}SO{sub 4} as electrolyte, showed that due to a combination of higher catalyst load and Pt:Sn surface ratio, the graphite felt anodes prepared by the metal-adsorption variant gave better performance. The catalyzed graphite felt provided an extended reaction zone for ethanol electrooxidation and it gave higher catalyst mass specific peak power outputs compared to literature data obtained using gas diffusion anodes with carbon black supported Pt-Sn nanoparticles. (author)

  8. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  9. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  10. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM

  11. Modelling and optimization of reforming systems for use in PEM fuel cell systems

    International Nuclear Information System (INIS)

    Berry, M.; Korsgaard, A.R.; Nielsen, M.P.

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest and exhibits a comparable efficiency to the SR system. The SR system had the best relation between efficiency and volume increase. Optimal temperature profiles within each reactor were found. It was shown that temperature control can significantly reduce reactor volume and increase conversion capabilities. (author)

  12. Dry refabrication technology development of spent nuclear fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Lee, J. W.; Song, K. C.

    2012-04-01

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed

  13. Dry refabrication technology development of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Lee, J. W.; Song, K. C.; and others

    2012-04-15

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed.

  14. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research

  15. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 06: Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2005-01-01

    The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...

  17. Enlarged Halden programme group meeting on high burn-up fuel performance, safety and reliability and degradation of in-core materials and water chemistry effects and man-machine systems research. Volume II

    International Nuclear Information System (INIS)

    1999-01-01

    Academy of Sciences, KFKI Atomic Energy Research Institute, the N.V. KEMA, the Netherlands, the Russian Research Centre 'Kurchatov Institute', the Slovakian VUJE - Nuclear Power Plant Research Institute, and from USA: the ABB Combustion Engineering Inc., the Electric Power Research Institute (EPRI), and the General Electric Co. The right to utilise information originating from the research work of the Halden Project is limited to persons and undertakings specifically given this right by one of these Project member organisations. The activities in the area of fuel and materials performance are based on extensive in-reactor measurements. The programmes are expanding in the areas of fuel performance at extended burn-ups, waterside corrosion and material testing in general. Development of in-core instruments is an important activity in support of the experimental programmes. The research programme at the Halden Project addresses the research needs of the nuclear industry in connection with introduction of digital I and C systems in NPPs. The programme provides information supporting design and licensing of upgraded, computer-based control room systems, and demonstrates the benefits of such systems through validation experiments in Halden's experimental research facility, HAMMLAB and pilot installations in NPPs. The Enlarged Halden Programme Group Meeting at Loen, Norway, was arranged to provide an opportunity to present results of work carried out at Halden and within participating organisations, and to encourage comments and impulses related to future Halden Project work. This HPR-351 relates to the fuel and materials part of the meeting and is divided in two volumes, HPR-351 Volume I and HPR-351 Volume II. The corresponding collection of papers in the man-machine area are given in one volume, HPR-352 Volume I. The overall programme of the Loen Enlarged Meeting covering the Fuel and Materials Research is given in the following pages. The papers with denomination HWR have

  18. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  19. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  20. The role of various fuels on microwave-enhanced combustion synthesis of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming

    International Nuclear Information System (INIS)

    Ajamein, Hossein; Haghighi, Mohammad; Alaei, Shervin

    2017-01-01

    Graphical abstract: CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the fast and simple microwave enhanced combustion method. Considering that the fuel type is one of the effective parameters on quality of the prepared nanocatalysts, different fuels such as sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used. XRD, FESEM, FTIR, EDX, and BET analyses were applied to determine the physicochemical properties of fabricated nanocatalysts. The catalytic experiments were performed in a fixed bed reactor in the temperature range of 160–300 °C. The characteristic and reactivity properties of fabricated nanocatalysts proved that ethylene glycol is the suitable fuel for preparation of CuO/ZnO/Al 2 O 3 nanocatalysts via microwave enhanced combustion method. - Highlights: • Microwave combustion synthesis of CuO/ZnO/Al 2 O 3 nanocatalysts by different fuels. • Enhancement of methanol conversion at low temperatures by selecting proper fuel. • Providing a large number of combustion pores by application of ethylene glycol as fuel. • Increase of CO selectivity in steam methanol reforming by Zn(0 0 2) crystallite facet. - Abstract: A series of CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the microwave enhanced combustion method to evaluate the influence of fuel type. Sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used as fuel. XRD results revealed that application of ethylene glycol led to highly dispersed CuO and ZnO crystals. It was more highlighted about Cu(1 1 1) crystallite facet which known as the main active site of methanol steam reforming. Moreover, using ethylene glycol resulted homogeneous morphology and narrow particles size distribution (average surface particle size is about 265 nm). Due to the significant physicochemical properties, the catalytic experiments showed that the sample prepared by ethylene glycol achieved total conversion of methanol at 260 °C. Its carbon monoxide

  1. Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California

    Energy Technology Data Exchange (ETDEWEB)

    Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

    1977-01-01

    This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

  2. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  4. Direct Synthesis of H{sub 2}O{sub 2} over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H{sub 2}O{sub 2}-ODS of Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng [Northeast Forestry Univ., Harbin (China); Liu, Guangliang [Univ. of Connecticut, Storrs (United States); Chen, Ping; Zhao, Zhixi [Xinjiang Normal Univ., Urumqi (China)

    2013-10-15

    Direct synthesis of H{sub 2}O{sub 2} and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au{sup 0} species for H{sub 2}O{sub 2} synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H{sub 2}O{sub 2} synthesis as CH{sub 3}OH/H{sub 2}O ratio of solvent changed. H{sub 2}O{sub 2} decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O{sub 2}/H{sub 2} ratio on H{sub 2}O{sub 2} concentration, H{sub 2} conversion and H{sub 2}O{sub 2} selectivity revealed a relationship between H{sub 2}O{sub 2} generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O{sub 2}/H{sub 2} ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H{sub 2} conversion and oxidative desulfurization selectivity of H{sub 2} were presented.

  5. Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

    International Nuclear Information System (INIS)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng; Liu, Guangliang; Chen, Ping; Zhao, Zhixi

    2013-01-01

    Direct synthesis of H 2 O 2 and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au 0 species for H 2 O 2 synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H 2 O 2 synthesis as CH 3 OH/H 2 O ratio of solvent changed. H 2 O 2 decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O 2 /H 2 ratio on H 2 O 2 concentration, H 2 conversion and H 2 O 2 selectivity revealed a relationship between H 2 O 2 generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O 2 /H 2 ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H 2 conversion and oxidative desulfurization selectivity of H 2 were presented

  6. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  7. Metallic fuel development

    International Nuclear Information System (INIS)

    Walters, L.C.

    1987-01-01

    Metallic fuels are capable of achieving high burnup as a result of design modifications instituted in the late 1960's. The gap between the fuel slug and the cladding is fixed such that by the time the fuel swells to the cladding the fission gas bubbles interconnect and release the fission gas to an appropriately sized plenum volume. Interconnected porosity thus provides room for the fuel to deform from further swelling rather than stress the cladding. In addition, the interconnected porosity allows the fuel pin to be tolerant to transient events because as stresses are generated during a transient event the fuel flows rather than applying significant stress to the cladding. Until 1969 a number of metallic fuel alloys were under development in the US. At that time the metallic fuel development program in the US was discontinued in favor of ceramic fuels. However, development had proceeded to the point where it was clear that the zirconium addition to uranium-plutonium fuel would yield a ternary fuel with an adequately high solidus temperature and good compatibility with austenitic stainless steel cladding. Furthermore, several U-Pu-Zr fuel pins had achieved about 6 at.% bu by the late 1960's, without failure, and thus the prospect for high burnup was promising

  8. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  9. Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties

    Science.gov (United States)

    2013-01-31

    fuel in NATO countries will have some amount of FAME present. There is some work being done on hydrocarbon alternatives but the regulatory structure ... synthesis or hydrotreatment – Requirements and test methods.” According to the specification, paraffinic diesel fuel does not meet the current requirements...or international specification for triglyceride based fuel oils (straight vegetable oil / raw vegetable oil). The same holds true for alcohol-based

  10. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.; Sarathy, Mani; Má rchese, Anthony J.

    2013-01-01

    -octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content

  11. Stereo photo series for quantifying natural fuels.Volume XIII: grasslands, shrublands, oak-bay woodlands, and eucalyptus forests in the East Bay of California.

    Science.gov (United States)

    Clinton S. Wright; Robert E. Vihnanek

    2014-01-01

    Four series of photographs display a range of natural conditions and fuel loadings for grassland, shrubland, oak-bay woodland, and eucalyptus forest ecosystems on the eastern slopes of the San Francisco Bay area of California. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and...

  12. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  13. Partially-reflected water-moderated square-piteched U(6.90)O2 fuel rod lattices with 0.67 fuel to water volume ratio (0.800 CM Pitch)

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Gary A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5% 235U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad square-pitched U(6.90%)O2 fuel rods.

  14. The disposal of Canada`s nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    Energy Technology Data Exchange (ETDEWEB)

    Wikjord, A G; Baumgartner, P; Johnson, L H; Stanchell, F W; Zach, R; Goodwin, B W

    1996-06-01

    The concept for disposal of Canada`s nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada`s nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL`s disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs.

  15. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    International Nuclear Information System (INIS)

    Wikjord, A.G.; Baumgartner, P.; Johnson, L.H.; Stanchell, F.W.; Zach, R.; Goodwin, B.W.

    1996-06-01

    The concept for disposal of Canada's nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada's nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL's disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs

  16. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  17. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  18. Synthesis of the studies on fuels and transmutation targets (fabrication, design, irradiation damage and dissolution) realized in the framework of the Bataille law

    International Nuclear Information System (INIS)

    Pillon, S.

    2004-12-01

    This document presents the different studied fuels and targets for the transmutation of the minor actinides and of the long life fission products for PWR/EPR and Fast neutron Reactor/EFR of today technology; the results of studies on the behavior under ions irradiation and in experimental nuclear reactor; the knowledge in terms of design, simulation and sizing; the development in terms of fabrication; the knowledge on the dissolution aptitude of these fuels and targets. (A.L.B.)

  19. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  20. Available forest biomass for new energetic and industrial prospects. Part 1: analysis and synthesis of existing studies compiled at the international level. Part 2: volume calculations. Part 3: economic part. Final report

    International Nuclear Information System (INIS)

    2007-01-01

    Motivated by new energetic constraints and the interest of biomass, the authors report a bibliographical survey of studies concerning the evaluation of the available forest biomass. They comment the geographical and time distribution of the identified and compiled studies. They analyse their different topics. Then, they discuss the various field hypotheses, discuss and comments various resource assessment methodologies. They comment the resource the French forest can be, present a synthesis of the available resource at the regional level according to the different studies. They propose a review of some technical-economical aspects (costs, energy cost, price evolutions, improvement of the wood-energy mobilization). The second part proposes a whole set of volume calculations for different forest types (clusters or plantations of trees, copses, sawmills products), for industry and household consumption. It discusses the available volumes with respect to accessibility, additional available volumes, and possible improvements. The third part analyses, comments and discusses the wood market and wood energetic uses, and the possible supply curves for wood energetic uses by 2016