WorldWideScience

Sample records for fuels oil shale

  1. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  2. Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

    Directory of Open Access Journals (Sweden)

    Ada TRAUMANN

    2014-09-01

    Full Text Available The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA. It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM and confirmed by the NIST Mass Spectral library and retention times of standards. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4549

  3. Oil shale technology

    International Nuclear Information System (INIS)

    Lee, S.

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail

  4. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  5. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  6. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  7. Oil shale highlights

    International Nuclear Information System (INIS)

    1994-01-01

    The low prices of crude oil have continued to retard the commercial development of oil shale and other syn fuels. Although research funds are more difficult to find, some R and D work by industry, academia, and governmental agencies continues in the United States and in other parts of the world. Improvements in retorting technology, upgrading oil-shale feedstock, and developing high-value niche-market products from shale oil are three notable areas of research that have been prominent for the past several years. Although the future prices of conventional crude cannot be predicted, it seems evident that diminishing supplies and a burgeoning world population will force us to turn to alternate fossil fuels as well as to cleaner sources of non-fossil energy. (author)

  8. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    Science.gov (United States)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  9. Shale oil. I. Genesis of oil shales and its relation to petroleum and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil-shale kerogen originated from resinous vegetation residues of past eras, whereas well petroleum was formed from oil shales by pressure and mild heat. Petroleum migrated to its present reservoir from neighboring oil-shale deposits, leaving a residue of black bituminous shales. The high carbon dioxide content of gases present in petroleum wells originated from kerogen, as it gives off carbon dioxide gas before producing soluble oil or bitumen.

  10. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    International Nuclear Information System (INIS)

    Azzam, S.M.

    1993-01-01

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of 'LPG' in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs

  11. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, S M

    1994-12-31

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of `LPG` in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs.

  12. Energy Return on Investment (EROI of Oil Shale

    Directory of Open Access Journals (Sweden)

    Peter A. O’Connor

    2011-11-01

    Full Text Available The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process as an energy cost. The energy return on investment (EROI for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

  13. Is Estonian oil shale beneficial in the future?

    International Nuclear Information System (INIS)

    Reinsalu, Enno

    1998-01-01

    Oil shale mining production reached its maximum level of 31.35·10 6 tonnes per year in 1980. After the eighties there was a steady decline in mining. The first scientific prognoses of the inescapable decrease in oil shale mining were published in 1988. According to this, the Estonian oil shale industry would vanish in the third decade of the next century. From the beginning of the nineties, the consumption and export of electricity have dropped in Estonia. The minimum level of oil shale mining was 13.5·10 6 tonnes per year. This occurred in 1994/1995. Some increase in consumption of electric power and oil shale began at the end of 1995. Oil shale processing began to increase gradually in 1993. Oil shale is the most important fuel in Estonia today. In 1997, oil shale provided 76% of Estonia's primary energy supply and accounted for 57% of its economic value. Oil shale is the cheapest fuel in Estonia. Nowadays, oil shale provides an essential part of the fuel supply in Estonia because it is considerably cheaper than other fuels. Oil shale costs EEK 12.16 per G J. At the same time, coal costs EEK 23.41 per G J and peat costs EEK 14.80 per G J (year 1997). There are three important customers of oil shale: the electric power company Eesti Energia, the oil processing company Kiviter and the factory Kunda Nordic Cement. In 1995, the power company utilised 81% of the oil shale mass and 77% of its heating value. The state energy policy inhibits increases in the oil shale price even though the mining infrastructure is decaying. Government price policies subside oil shale processing. The energy of oil shale processing is 1.9 times cheaper than the heating value of raw oil shale for power stations. It could be considered as a state subsidisation of oil and cement export at the expense of electricity. The subsidy assigned to oil processing was of EEK 124·10 6 and to the cement industry of EEK 8.4·10 6 in year 1997 (based on heating value). State regulation of prices and

  14. Prospects for the exploitation of Jordan oil shale

    International Nuclear Information System (INIS)

    Jaber, J.O; Probert, S.D.; Badr, O.

    1997-01-01

    Oil shale is the major indigenous fossil-fuel in Jordan: its predicted reserves, of about 5·10 1 0 tonnes, should be sufficient to satisfy Jordan's energy requirements for several centuries. Jordanian oil shale has, on an average, a gross calorific value of between 5 and 7 MJ/kg, an oil yield of ∼ 10 %, and a sulfur content of approximately 3 % by weight of the raw shale (i.e. 7 to 9 % of the organic matter content). Using the oil shale as the input fuel, a multipurpose production process (i.e. retorting, electricity generation, thermal water-desalination, chemicals production as well as mineral extraction) could achieve high utilisation-factors of both its chemical and energy potentials. In the long-term, oil shale is the only indigenous energy resource that could reduce Jordan's dependence on imported crude oil and hence ease the pressure on the national economy. The conversion of oil shale into a liquid or gaseous fuel and raw materials will be of decisive importance in attempts to secure the future of energy supplies. So national efforts devoted to the exploration for, and harnessing more economically, this energy resource, while limiting the associated adverse environmental impacts, should be accelerated. (author)

  15. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  16. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  17. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  18. Oil shales and the nuclear process heat

    International Nuclear Information System (INIS)

    Scarpinella, C.A.

    1974-01-01

    Two of the primary energy sources most dited as alternatives to the traditional fossil fuels are oil shales and nuclear energy. Several proposed processes for the extraction and utilization of oil and gas from shale are given. Possible efficient ways in which nuclear heat may be used in these processes are discussed [pt

  19. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  20. Gasification of oil shale by solar energy

    International Nuclear Information System (INIS)

    Ingel, Gil

    1992-04-01

    Gasification of oil shales followed by catalytic reforming can yield synthetic gas, which is easily transportable and may be used as a heat source or for producing liquid fuels. The aim of the present work was to study the gasification of oil shales by solar radiation, as a mean of combining these two energy resources. Such a combination results in maximizing the extractable fuel from the shale, as well as enabling us to store solar energy in a chemical bond. In this research special attention was focused upon the question of the possible enhancement of the gasification by direct solar irradiation of the solid carbonaceous feed stock. The oil shale served here as a model feedstock foe other resources such as coal, heavy fuels or biomass all of which can be gasified in the same manner. The experiments were performed at the Weizman institute's solar central receiver, using solar concentrated flux as an energy source for the gasification. The original contributions of this work are : 1) Experimental evidence is presented that concentrated sunlight can be used effectively to carry out highly endothermic chemical reactions in solid particles, which in turn forms an essential element in the open-loop solar chemical heat pipe; 2) The solar-driven gasification of oil shales can be executed with good conversion efficiencies, as well as high synthesis gas yields; 3)There was found substantial increase in deliverable energy compared to the conventional retorting of oil shales, and considerable reduction in the resulting spent shale. 5) A detailed computer model that incorporates all the principal optical and thermal components of the solar concentrator and the chemical reactor has been developed and compared favorably against experimental data. (author)

  1. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    Hamdan, M.; Al-Azzam, S.

    1998-11-01

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m 2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  2. Shale oil. II. Gases from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil shale (from Colorado) was pyrolyzed, and the gaseous products obtained were studied. The organic material present in oil shale contains carboxyl groups that lose carbon dioxide during pyrolysis before the formation of soluble bitumen. Nitrogen was evolved as ammonia in two stages and was not continuous. The first evolution was from loosely combined nitrogen structures, whereas the second was from more stable forms. No hydrocarbons were present as such in the kerogen. The gaseous products from oil-shale pyrolysis were similar to those obtained by distillation of colophony, amber, coal, and wood. This places the kerogen of the oil shale in the same series of carbonaceous substances as those from which coals are formed. Kerogen appeared to be decomposed in three steps; namely, to insoluble bitumen, to soluble bitumen, and to oil (gas evolution accompanied each step). Its low solubility and the character of its pyrolytic gas indicated that kerogen is largely a resinous residue from vegetation of the past era and may have been formed by the tranportation of coal-forming organic debris to inland salty lakes or carried to the sea by clay-laden waters. The salt water and the natural settling action precipitated the clay and organic matter in an almost homogeneous deposit. Oil shales have existed to the present time because they have not been subjected to high pressures or elevated temperatures that would have changed them to petroleum.

  3. Oil shale activities in China

    International Nuclear Information System (INIS)

    Peng, D.; Jialin, Q.

    1991-01-01

    China has abundant oil shale resources, of the Early Silurian to Neogene age, the most important being the Tertiary period. The proved oil shale reserves in Fushun amount to 3.6 billion t, in Maoming 4.1 billion t. In Fushun, oil shale is produced by open-pit mining as a byproduct of coal, in Maoming it is also mined in open pits, but without coal. In China, scale oil has been produced from oil shale for 60 years. Annual production of crude shale oil amounts to about 200 000 t. The production costs of shale oil are lower than the price of crude petroleum on the world market. China has accumulated the experience and technologies of oil shale retorting. The Fushun type retort has been elaborated, in which the latent and sensible heat of shale coke is well utilized. But the capacity of such retort is relatively small, therefore it is suitable for use in small or medium oil plants. China has a policy of steadily developing shale oil industry. China is conducting oil shale research and developing oil shale processing technology. Much attention is being pay ed to the comprehensive utilization of oil shale, shale oil, and to environmental problems. In China, oil shale is mostly used for producing shale by retorting, attention will also be paid to direct combustion for power generation. Great achievements in oil shale research have been made in the eighties, and there will be a further development in the nineties. (author), 12 refs., 3 tabs

  4. Characteristic fly-ash particles from oil-shale combustion found in lake sediments

    International Nuclear Information System (INIS)

    Alliksaar, T.; Hoerstedt, P.; Renberg, I.

    1998-01-01

    Fly-ash particles accumulate in sediments and can be used to assess spatial distribution and temporal trends of atmospheric deposition of pollutants derived from high temperature combustion of fossil fuels. Previous work has concerned fly-ash derived from oil and coal. Oil-shale is the main fossil fuel used in Estonia and a major source of atmospheric pollution in the Baltic states. To assess if oil-shale power plants produce specific fly-ash particles scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to compare fly-ash particles from oil-shale combustion with particles from oil and coal combustion. Two types were analysed, large black (10-30μm) and small glassy (< 5 μm) spheroidal particles. Although article morphology to some extent is indicative of the fuel burnt, morphological characters are not sufficient to differentiate between particles of different origin. However, the results indicate that with EDX analysis the fly-ash from oil-shale can be distinguished form oil and coal derived particles in environmental samples. Concentrations of large black and small glassy spheroidal fly-ash particles in a sediment core from an Estonian lake showed similar trends to oil-shale combustion statistics from Estonian power plants. 27 refs., 6 figs., 2 tabs

  5. Oil shale commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  6. Sulphation of oil shale ash under atmospheric and pressurized combustion conditions

    International Nuclear Information System (INIS)

    Kuelaots, I.; Yrjas, P.; Hupa, M.; Ots, A.

    1995-01-01

    One of the main problems in conventional combustion boilers firing pulverized oil shale is the corrosion and fouling of heating surfaces, which is caused by sulphur compounds. Another major problem, from the environmental point of view, are the high SO 2 emissions. Consequently, the amount of sulphur in flue gases must be reduced. One alternative to lower the SO 2 , concentration is the use of new technologies, such as pressurized fluidized bed combustion (PFBC). In FBC processes, the sulphur components are usually removed by the addition of limestone (CaCO 3 ) or dolomite (CaCO 3 x MgCO 3 ) into the bed. The calcium in these absorbents react with SO 2 , producing solid CaSO 4 . However, when burning oil shale, there would be no need to add limestone or dolomite into the bed, due to the initially high limestone content in the fuel (molar ratio Ca/S =10). The capture of sulphur by oil shale ashes has been studied using a pressurized thermogravimetric apparatus (PTGA). The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. Four different materials were tested - one cyclone ash from an Estonian oil shale boiler, two size fractions of Estonian oil shale and, one fraction of Israeli oil shale. The cyclone ash was found to be the poorest sulphur absorbent. In general, the results from the sulphur capture experiments under both atmospheric and pressurized fluidized bed conditions showed that the oil shale can capture not only its own sulphur but also significant amounts of additional sulphur from another fuel if the fuels are mixed together. (author)

  7. Oil shale (in memoriam)

    International Nuclear Information System (INIS)

    Strandberg, Marek

    2000-01-01

    Plans for the continued use of oil shale may lead the development of this country into an impasse. To this day no plans have been made for transition from the use of energy based on fossil fuels to that based on renewable resources. Without having any clear strategic plan politicians have been comforting both themselves and the population with promises to tackle the problem when the right time comes. Today the only enterprise whose cash flows and capital would really make it possible to reform the power industry is the firm Eesti Energia (Estonian Energy). However, its sole present shareholder - the state - prefers the sale of the firm's shares to carrying out a radical reform. At the same time, local consumers are likely to rather be willing to pay for the expensive electric energy produced from renewable resources than for that produced from fossil fuels, the price of which will also remain high due to the pollution tax. Practically it is impossible to buy a globally balanced environment for money - pollution taxes are but punitive mechanisms. The investments made into the oil-shale industry will also reinforce the cultural distance of North-East Estonia from the rest of Estonia - the uniform and prevalently Russian-speaking industrial area will be preserved as long as capital will continue to flow into the oil shale industry concentrated there. The way out would be for industries to make wider use of ecological and ecosystemic technologies and for the state to enforce ecologically balanced economic and social policies. (author)

  8. Analysis and characterization of trace elements in shale oil and shale oil products by instrumental neutron activation analysis. Master's thesis

    International Nuclear Information System (INIS)

    Shaw, P.

    1978-12-01

    Trace elements and their mobilization constitute an important consideration in the development of new fossil fuel technologies. Shale oil produced by in situ retorting of oil shale is an alternative fossil energy source. This study deals with the analysis of trace elements in various shale oil products using instrumental neutron activation analysis (INAA). INAA offers several advantages for those elements for which it is applicable. The greatest advantage is the lack of sample preparation prior to analysis, which greatly simplifies the process and prevents sample contamination. The elements for which analyses are reported in this study are aluminum, antimony, arsenic, bromine, cerium, chlorine, chromium, cobalt, copper, gallium, gold, iodine, iron, manganese, mercury, molybdenum, potassium, selenium, sodium, sulfur, tungsten, vanadium, and zinc

  9. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  10. Chemical aspects of shale and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1922-01-01

    To prove that the kerogen in oil shale is a form of bitumen, several experiments were made with oil shale and a heavy asphaltic oil mixed with fuller's earth. When distilled, both the oil shale and asphalt-impregnated fuller's earth yielded paraffin oil, wax, and hydrogen sulfide (if sulfur was present). Both yielded ammonia if nitrogen was present. The organic material in each was partly isolated by extraction with pyridine and appeared to be the same. Oil shale is a marl that was saturated with oil or through which oil has passed or filtered. The insolubilities of its organic compounds are due to a slightly elevated temperature for a prolonged period and to the retaining effect exerted by the finely divided marl. The marl exerted a selective action on the oil and absorbed the asphaltum, sulfur, and nitrogen compounds from the oil. The class of oil evolved from a shale depended on the nature of the original compounds absorbed. Asphaltenes obtained from crude oil by precipitation with ethyl ether produced distillation products of water, hydrogen sulfide, ammonia, oil, wax, and a carbonaceous residue. Water was formed by decomposition of oxyasphaltenes and hydrogen sulfide by decomposition of thioasphaltenes. Ammonia was evolved during decomposition if lime was present, but if there was not sufficient free lime present, pyridine and pyrrole derivatives were redistilled as such. The oil and wax that resulted from the dry distillation were true decomposition products and equaled about 60 weight-percent of the asphaltenes. The oil and wax content of the mixture varied between 8 and 10 percent. The carbonaceous residue, which represented approximately 40 percent of the original asphaltene, was a decomposition product of the asphaltenes. Geologic comparisons of oil-shale deposits and oil-well fields were also made.

  11. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  12. Process for oil shale retorting

    Science.gov (United States)

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  13. Shale oil specialty markets: Screening survey for United States applications

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    EG and G requested J. E. Sinor Consultants Inc. to carry out an initial screening study on the possibilities for producing specialty chemicals from oil shale. Raw shale oil is not an acceptable feedstock to refineries and there are not enough user of heavy fuel oil in the western oil shale region to provide a dependable market. The only alternatives are to hydrotreat the oil, or else ship it long distances to a larger market area. Either of these alternatives results in a cost penalty of several dollars per barrel. Instead of attempting to enter the large-volume petroleum products market, it was hypothesized that a small shale oil facility might be able to produce specialty chemicals with a high enough average value to absorb the high costs of shipping small quantities to distant markets and still provide a higher netback to the plant site than sales to the conventional petroleum products market. This approach, rather than attempting to refine shale oil or to modify its characteristics to satisfy the specifications for petroleum feedstocks or products, focuses instead on those particular characteristics which distinguish shale oil from petroleum, and attempts to identify applications which would justify a premium value for those distinctive characteristics. Because byproducts or specialty chemicals production has been a prominent feature of oil shale industries which have flourished for periods of time in various countries, a brief review of those industries provides a starting point for this study. 9 figs., 32 tabs.

  14. Future strategies for oil shale development as a new indigenous energy resource in Jordan

    International Nuclear Information System (INIS)

    Jaber, J.O.; Tarawneh, T.

    2011-01-01

    Indigenous oil shale deposits could satisfy Jordan's demand for liquid and gaseous fuels as well as electricity for many centuries. Markets also exist for raw and retorted oil shale, spent shale, and for sulfur recovered during the upgrading and refining of crude shale oil. Although the potential benefits of oil shale development are substantial, complex and expensive facilities would be required, and these have serious economic, environmental, and social implications for the Kingdom and its people. In January 2006, the United States Trade and Development Agency (USTDA) awarded a grant to the Jordanian Ministry of Planning and International Cooperation to support the analysis of current oil shale processing technologies and the application of international expertise to the development of a oil shale industry in Jordan. The goal of the technical assistance project was to help the Government of Jordan (GoJ) establish short and long-term strategies for oil shale development and to facilitate the commercial production of shale oil in the country. This paper discusses the results of the project. The Kingdom's current energy situation and its previous work on oil shale are summarized, and the incentives and restraints on oil shale commercialization are described. Impediments to development are identified, and possible governmental responses are assessed. (author)

  15. Refining fuels of the heavy gas--oil type

    Energy Technology Data Exchange (ETDEWEB)

    Bruzac, J F.A.

    1930-01-28

    This invention has for its object the production of a new type of gas-oil fuel, obtained from crude petroleum, shale oil, and peat oil, according to the method of treatment mentioned, by means of which is obtained from gas oil, shale oil, lignite oil, and peat oil (deprived of asphaltic, and bituminous, resinous, and sulfur compounds), a fuel suitable for running Diesel, Junkers, and Clerget motors and all others of the same kind, by diminishing considerably the fouling and attack on the metal.

  16. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...test_nC are sho’ T, in Trbl]e .3 d :: ab ffr stead..--staoe zerfrrmance was noted wcrh the snale fel. Wh’le a ..6 :o:n: = in Scecifiz Fuel Consumption...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine

  17. Treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Dolbear, S H

    1921-01-04

    Oil shale is treated for the separation of the valuable organic compounds, with a view to economy in subsequent destructive distillation, by grinding to powder, mixing with water to form a pulp, adding a small quantity of an oil liquid and aerating the mixture to form a froth containing the organic compounds. If the powdered shale contains sufficient free oil, the addition of oil to the pulp may be dispensed with. In some cases an electrolyte such as sulfuric acid may be added to the pulp.

  18. Development of new estimation method for CO2 evolved from oil shale

    International Nuclear Information System (INIS)

    Sato, S.; Enomoto, M.

    1997-01-01

    The quality of fossil fuels tends to be evaluated by amounts of CO 2 emissions. For the evaluation of an oil shale from this point, an on-line thermogravimetric-gas chromatographic system was used to measure CO 2 evolution profiles on temperature with a small oil shale sample. This method makes it possible to estimate the amounts of CO 2 evolved from kerogen and carbonates in retorting and those from carbonates in combustion, respectively. These results will be basic data for a novel oil shale retorting process for the control of CO 2 emissions. The profiles for Thai and Colorado oil shales have shown CO 2 mainly evolved by the pyrolysis of kerogen below 550 degree C, and that evolved by the decomposition of carbonates above that temperature. On the other hand, the profile for Condor oil shale showed that most carbonates decomposed below 550 degree C, while only small amounts of carbonates decomposed above this temperature. 14 refs., 2 figs., 3 tabs

  19. Converting of oil shale and biomass into liquid hydrocarbons via pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Pütün, Ayşe Eren; Uzun, Başak Burcu; Pütün, Ersan

    2014-01-01

    Highlights: • Co-processing of oil shale with an arid land biomass for hydrocarbon production. • Co-pyrolysis in TGA and fixed-bed reactor. • Characterization of oil and char. - Abstract: In this study, co-pyrolytic behaviors of oil shale and Euphorbia rigida were investigated at different temperatures in a fixed bed reactor at 450, 500, and 550 °C with a heating rate of 10 °C/min in the presence of nitrogen atmosphere. The obtained solid product (char) and liquid product (tar) were analyzed by using different types of characterization techniques. Experimental results showed co-pyrolysis of oil shale and biomass could be an environmental friendly way for the transformation of these precursors into valuable products such as chemicals or fuels

  20. Origin of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, W G

    1923-01-01

    The theory by Jones was questioned. Oil shales do not contain partly decomposed vegetable matter, and, where particles of vegetation are identified, they do not prove that kerogen was formed in its place. Some shales do contain free oil that can be extracted with solvents.

  1. Carbon sequestration in depleted oil shale deposits

    Science.gov (United States)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  2. Production of oil from Israeli oil shale

    International Nuclear Information System (INIS)

    Givoni, D.

    1993-01-01

    Oil shale can be utilized in two-ways: direct combustion to generate steam and power or retorting to produce oil or gas. PAMA has been developing both direct combustion and retorting processes. Its main effort is in the combustion. An oil shale fired steam boiler was erected in the Rotem industrial complex for demonstration purposes. PAMA has also been looking into two alternative retorting concepts - slow heating of coarse particles and fast heating of fine particles. The present paper provides operating data of oil shale processing in the following scheme: (a) retorting in moving bed, pilot and bench scale units, and (b) retorting in a fluidized bed, bench scale units. (author)

  3. Process for extracting oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process is described for recovering bituminous material from oil shale, characterized in that the oil shale is extracted with wood spirits oil (byproduct of woodspirit rectification), if necessary in admixture with other solvents in the cold or the hot.

  4. Conversion characteristics of 10 selected oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.

    1989-08-01

    The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

  5. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  6. Preparation of hydraulic cement from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement from oil-shale or oil-shale residue is characterized in that, the oil-shale or shale-coke together with a slight amount of marl is burned under sintering conditions and the residue obtained is ground to a fine dust.

  7. Introduction to special section: China shale gas and shale oil plays

    Science.gov (United States)

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    In the last 10 years, the success of shale gas and shale oil productions as a result of technological advances in horizontal drilling, hydraulic fracturing and nanoscale reservoir characterization have revolutionized the energy landscape in the United States. Resource assessment by the China Ministry of Land and Resources in 2010 and 2012 and by the U.S. Energy Information Administration in 2011 and 2013 indicates China’s shale gas resource is the largest in the world and shale oil resource in China is also potentially significant. Inspired by the success in the United States, China looks forward to replicating the U.S. experience to produce shale gas to power its economy and reduce greenhouse gas emissions. By 2014, China had drilled 400 wells targeting marine, lacustrine, and coastal swamp transitional shales spanning in age from the Precambrian to Cenozoic in the last five years. So far, China is the leading country outside of North America in the viable production of shale gas, with very promising prospects for shale gas and shale oil development, from the Lower Silurian Longmaxi marine shale in Fuling in the southeastern Sichuan Basin. Geological investigations by government and academic institutions as well as exploration and production activities from industry indicate that the tectonic framework, depositional settings, and geomechanical properties of most of the Chinese shales are more complex than many of the producing marine shales in the United States. These differences limit the applicability of geologic analogues from North America for use in Chinese shale oil and gas resource assessments, exploration strategies, reservoir characterization, and determination of optimal hydraulic fracturing techniques. Understanding the unique features of the geology, shale oil and gas resource potential, and reservoir characteristics is crucial for sweet spot identification, hydraulic fracturing optimization, and reservoir performance prediction.

  8. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11–12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO 2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides as well as 40 K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in

  9. Oil shale utilization in Israel

    International Nuclear Information System (INIS)

    Kaiser, A.

    1993-01-01

    Geological surveys have confirmed the existence of substantial Israeli oil shale reserves. The proven reserves contain approximately 12 billion tons of available ores, and the potential is deemed to be much higher. Economic studies conducted by PAMA indicate promising potential for power generation via Israel oil shale combustion. Electric power from oil shale appears competitive with power generated from coal fired power plants located along the coast. PAMA's demonstration power plant has been in operation since the end of 1989. Based on the successful results of the first year of operation, PAMA and IEC are now engaged in the pre-project program for a 1000 MW commercial oil shale fired power plant, based on eight 120 MW units; the first unit is scheduled to begin operation in 1996

  10. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1981-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  11. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    International Nuclear Information System (INIS)

    Motlep, Riho; Sild, Terje; Puura, Erik; Kirsimaee, Kalle

    2010-01-01

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  12. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    Energy Technology Data Exchange (ETDEWEB)

    Motlep, Riho, E-mail: riho.motlep@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sild, Terje, E-mail: terje.sild@maaamet.ee [Estonian Land Board, Mustamaee tee 51, 10621 Tallinn (Estonia); Puura, Erik, E-mail: erik.puura@ut.ee [Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu (Estonia); Kirsimaee, Kalle, E-mail: kalle.kirsimae@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  13. Executive summary. Western oil shale developmet: a technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  14. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  15. Hydrogenation of Estonian oil shale and shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N; Kopwillem, J

    1932-01-01

    Kukersite was heated in an atmosphere of hydrogen, nitrogen, or water in three series of experiments. Shale samples were heated at 370/sup 0/ to 410/sup 0/C for 2 to 3/sup 1///sub 2/ hours in the presence of 106 to 287 kg/sq cm pressure of water, nitrogen, or hydrogen. In some experiments 5 percent of iron oxide was added to the shale. The amount of kerogen liquefied by hydrogenation was not greater than the amount of liquid products obtained by ordinary distillation. On hydrogenation, kukersite absorbed 1.8 weight-percent of hydrogen. Almost no hydrogenation took place below the decomposition point of kerogen, and the lighter decomposition products were mainly hydrogenated. Hydrogenation of the shale prevented coke formation. Heating kukersite or its crude oil at temperatures of 400/sup 0/ to 410/sup 0/C under 250 kg/sq cm hydrogen pressure produced paraffinic and naphthenic oils of lower boiling points. At higher temperatures and after long-continued heating, the formation of aromatic hydrocarbons was observed.

  16. Oil shales of the Lothians. Part III. Chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  17. Oil shale : could Shell's experimental oil shale technology be adapted to Alberta's bitumen carbonates?

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2006-07-01

    Although Shell has been trying to develop technologies to economically extract oil from shale containing kerogen for the last 25 years, the volume of oil Shell produced from its Mahogany Research Project in Colorado has added up to less than 2500 bbls in total, and the company has recently devoted $400 million to purchase leases on carbonate reservoirs in Alberta. This article examined whether or not the technologies developed by Shell for oil shales could be used to profitably extract bitumen from carbonates. Extracting bitumen from carbonates may be easier than producing oil from shale, as the resource in carbonates is already oil, whereas the oil in oil shale is actually kerogen, which needs to be chemically cracked at extremely high temperatures. Although the technical feasibility of an in situ cracking process has been proven, work remains to be done before Shell can invest in a commercial-scale oil shale project. Challenges to oil shale production include preventing groundwater from entering target zones and keeping produced fluids out of the groundwater. However, a freeze wall test has recently been designed where chilled liquid is circulated through a closed-loop pipe system to freeze formation water, sealing off an area about the size of a football field from the surrounding strata. The energy requirements of the process that Shell is testing to produce shale oil in Colorado remain unprofitably high, as higher temperatures are necessary for thermal cracking. Shell has yet to make a decision as to what energy sources it will use to make the production process economically viable. An energy conservation group in Colorado has claimed that production of 100,000 bbls of shale oil would require the largest power plant in Colorado history. 2 figs.

  18. Scenarios for shale oil, syncrude and electricity production in Estonia in the interim 1995-2025

    International Nuclear Information System (INIS)

    Oepik, I.

    1992-01-01

    This paper is based on the author's pre-feasibility studies of oil shale utilization in oil production, electricity generation and cement industry. The electricity generation has been calculated on the basis of 1.4 and 1.6 GW oil shale power plants with pulverized fuel combustion today. The three scenarios OILMIN, OILMED and OILMAX differ by annual oil production and different investment costs. The investments in the oil shale processing industry seem to be more profitable than those in electricity generation. It is also important to take into account that the very high sensitivity of oil market to geopolitical aspects of resources and to sudden crises, makes the crude price a stochastic parameter, which loses its indicative character for long term economic choice. Therefore it will be very important to have the electric power plants with flexible combined oil shale and coal combustion. 4 figs., 4 tabs., 6 refs

  19. Oil shale research related to proposed nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, H C; Sohns, H W; Dinneen, G U [Laramie Petroleum Research Center, Bureau of Mines, Department of the Interior, Laramie, WY (United States)

    1970-05-15

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  20. Oil shale research related to proposed nuclear projects

    International Nuclear Information System (INIS)

    Carpenter, H.C.; Sohns, H.W.; Dinneen, G.U.

    1970-01-01

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  1. Western oil shale development: a technology assessment. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  2. Recovering valuable shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Engler, C

    1922-09-26

    A process is described for the recovery of valuable shale oils or tars, characterized in that the oil shale is heated to about 300/sup 0/C or a temperature not exceeding this essentially and then is treated with a solvent with utilization of this heat.

  3. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  4. Preparing hydraulic cement from oil-shale slag

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-19

    A process for the preparation of hydraulic cementing material from oil shale or oil-shale slag according to Patent 411,584 is characterized by the fact that the oil-shale slag is added to burnt marl, blast-furnace slag, and the like, whereupon the mixture is milled to dust in the known way.

  5. Preparation of cement from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1922-08-24

    A process for preparing cement from oil shale is described. The simultaneous recovery of shale oil by heating the oil shale formed into briquets with finely ground lime or limestone in a stream of hot gases is characterized by the fact that live steam or fine drops of water as preserving and carbonization means is introduced into the furnace, at the place, where the temperature of the briquet reaches about 500 to 600/sup 0/ C.

  6. Senate hearings whet interest in oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Remirez, R

    1967-06-05

    Recent oil shale hearings by the U.S. Senate disclosed the proposed leasing rules for federal oil-shale lands. In addition, Oil Shale Corp. announced that the first commercial shale-oil processing plant would be on stream in 1970. Both these announcements are expected to create a stronger interest in what is possibly the greatest untapped natural wealth in the U.S. According to the leasing rules, development leases would involve the following phases: (1) the contractor would have a 10-yr limit to conduct a research and development program on the leased territory; and (2) upon completion of a successful research program, the Interior Department will make available to lease at least enough land to sustain commercial operation. The terms that applicants will have to meet are included in this report. At the Senate hearing, discussions ranged from opinions indicating that development of oil shale recovery was not immediately necessary to opinions urging rapid development. This report is concluded with a state-of-the-art review of some of the oil shale recovery processes.

  7. Process of producing fuels from slates or bituminous shales. [distillation at incandescent heat

    Energy Technology Data Exchange (ETDEWEB)

    Huppenbauer, M

    1902-07-31

    A process of producing a fuel from slates or bituminous shales by saturating or impregnating them after preliminary distillation with the vapors of tars, resins, oils, etc., is given. The process is characterized by the bituminous shale being submitted in the form of fragments to distillation at incandescent heat to make the shale porous and able to absorb the vapors of the substances already mentioned.

  8. A review on technologies for oil shale surface retort

    International Nuclear Information System (INIS)

    Pan, Y.; Zhang, X.; Liu, S.; Yang, S.A.; Ren, N.

    2012-01-01

    In recent years, with the shortage of oil resources and the continuous increase in oil prices, oil shale has seized much more attention. Oil shale is a kind of important unconventional oil and gas resources. Oil shale resources are plentiful according to the proven reserves in places. And shale oil is far richer than crude oil in the world. Technology processing can be divided into two categories: surface retorting and in-situ technology. The process and equipment of surface retorting are more mature, and are still up to now, the main way to produce shale oil from oil shale. According to the variations of the particle size, the surface retorting technologies of oil shale can be notified and classified into two categories such as lump shale process and particulate shale process. The lump shale processes introduced in this article include the Fushun retorting technology, the Kiviter technology and the Petrosix technology; the particulate processes include the Gloter technology, the LR technology, the Tosco-II technology, the ATP (Alberta Taciuk Process) technology and the Enefit-280 technology. After the thorough comparison of these technologies, we can notice that, this article aim is to show off that : the particulate process that is environmentally friendly, with its low cost and high economic returns characteristics, will be the major development trend; Combined technologies of surface retorting technology and other oil producing technology should be developed; the comprehensive utilization of oil shale should be considered during the development of surface retorting technology, meanwhile the process should be harmless to the environment. (author)

  9. Oil shales of the Lothians, Part III, the chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: Vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  10. Process for treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process for treating oil shale is characterized in that the shale is first finely ground, then heated in the presence of steam in a high-pressure retort at 1 to 50 atmospheres pressure at a temperature of 200/sup 0/ to 450/sup 0/C and then with large amounts of water with or without materials forming emulsions with water or with oil. Solution medium suitable for bitumen or paraffin is beaten up in a rapid hammer mill until all or most all of the oil or bitumen is emulsified. The emulsion is separated by filter-pressing and centrifuging from the solid shale residue and the oil or bitumen is again separated from the emulsion medium by heating, acidulating, standing, or centrifuging, and then in known ways is further separated, refined, and worked up.

  11. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  12. Oil shale mines and their realizable production

    International Nuclear Information System (INIS)

    Habicht, K.

    1994-01-01

    The production of Estonian oil shale depends on its marketing opportunities. The realizable production is a function of the oil shale price, which in turn depends on production costs. The latter are dependent on which mines are producing oil shale and on the volume of production. The purpose of the present article is to analyze which mines should operate under various realizable production scenarios and what should be their annual output so that the total cost of oil shale production (including maintenance at idle mines) is minimized. This paper is also targeted at observing the change in the average production cost per ton of oil shale depending on the realizable output. The calculations are based on data for the first four months of 1993, as collected by N. Barabaner (Estonian Academy of Sciences, Institute of Economy). The data include the total production volume and production cost from the mines of RE 'Eesti Polevkivi' (State Enterprise 'Estonian Oil Shale'). They also project expenses from mine closings in case of conservation. The latter costs were allocated among mines in direct proportion to their respective number of employees. (author)

  13. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  14. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  15. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, J.O.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). School of Mechanical Engineering; Williams, P.T. [Leeds University (United Kingdom). Dept. of Fuel and Energy

    1998-02-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e. the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oil shale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  16. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    International Nuclear Information System (INIS)

    Jaber, J.O.; Probert, S.D.; Williams, P.T.

    1998-01-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e. the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oil shale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  17. Oil. The revenge of shales

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2017-01-01

    This article comments the evolutions noticed during these past years as the USA started to exploit non conventional hydrocarbons (shale gas and oil), and thus reduced their supplies from the Middle East. In reaction, OPEC members provoked a massive oil price decrease. If shale oil exploitation in the USA has slowed down for a while, it starts again: the number of platforms and production are increasing. Moreover, the profitability threshold is strongly decreasing. Argentina and China are also developing this sector, and Great-Britain and South-Africa are about to start projects. The article outlines that, even though France decided not to exploit shale gas and oil, French industries are present on this market and technology. In an interview, a representative of the French sector of non conventional hydrocarbons comments these evolutions as well as the French decision and its possible evolutions

  18. Utilization of oil shale in power plants and environmental protection; Polevkivienergeetika ja keskkonna saastumine

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical Univ. (Estonia)

    1994-04-01

    Estonia n oil shale was first used as a power fuel in 1924 at the Tallinn Power Plant. The first pulverized oil-shale-fired steam boilers were used in the end of forties. A new period in the utilization of the Estonia n oil shale began in the years of 1959-1960, when the first power units were applied at the Baltic Thermal Power Plant. The project capacity of the plant was 1600 MW. In the 1973 the Estonia n thermal Power Plant was put into operation with the capacity of 1610 MW. The output of the electric power generated by oil.shale power plants in 1989, was 17.4 TWh; the maximum output was achieved in 1979 - 19.1 TWh. In 1989, the amount of the Estonia n oil shale consumed to generate electric power was equal to 22.3{center_dot}10{sup 6}t. On burning oil shale the main atmospheric pollutants are the following: nitrogen oxides, sulphur oxides, and fly ash. The concentration of nitrogen oxide in the oil-shale flue gas leaving the chimney, expressed as nitrogen dioxide by an excess air factor 1.5, is in the range of 0.15-0.20 g/m{sup 3.} The total emission of nitrogen oxide into the atmosphere is approximately 15-20 thousand ton per year. the concentration of sulphur dioxide in the oil-shale flue gas leaving the boiler by an excess air factor 1.5 in the range of 1.0-1.8 g/m{sup 3.} the total emission of sulphur dioxide into atmosphere is in range of 140-160 thousand per year. As the oil-shale ash contains a large amount of the components capable of combining with sulphur in furnace and in boiler gas passes, the sulphur binding effect from ash is high, and it is in the range of 0.75-0.85. The boilers in oil-shale power plants are equipped with two-stage ash separation systems: cyclone and electrostatic al precipitators. The fly ash concentration in oil shale flue gas after electrostatic al precipitators by excess air factor 1.5 is 1-2 g/m{sup 3.} (author).

  19. Treatment of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H L

    1922-07-04

    To distill oil shale in lump form, it is fed as a continuous charge through an axially rotating externally heated retorting chamber, where the exposed surfaces of the lumps are gradually decomposed by destructive distillation, and light physical shocks are continuously administered to them, due to their tumbling-over motion and their contact with the ribs, to knock off the decomposing surfaces and present fresh surfaces for distillation. The vapors are withdrawn through a conduit, and the partially distilled lumps are fed through a shoot into a plurality of rotating externally heated retorts, similar in character to the first retort, from whence the vapors pass through a conduit to condensing apparatus, from which the permanent gases are withdrawn, and used for fuel in the distillation zone, while the residue is discharged into a water well. An auxiliary heating conduit, having a burner discharging into it, may be employed, while in some cases steam may be used if required. In two modifications, different arrangements of the retorts are shown, as well as means within the retorts for breaking up the lumps of shale.

  20. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  1. Analysis of oil shale and oil shale products for certain minor elements

    International Nuclear Information System (INIS)

    Dickman, P.T.; Purdy, M.; Doerges, J.E.; Ryan, V.A.; Poulson, R.E.

    1977-01-01

    The University of Wyoming was contracted by the Department of Energy's Laramie Energy Research Center (LERC) to develop rapid, inexpensive, and simple methods of quantitative and qualitative elemental analysis for products used and generated in the simulated in-situ retorting of oil shale. Alpha particle spectrometry was used to determine the radioisotope content of the aqueous retort products. Alpha particles are mono-energetic and the spectrometry method employed had very low background levels (1 count per 2000 seconds). These factors allow for both the quantitative and qualitative analysis of natural radioisotopes at the 1 ppm level. Sample preparation does not require any chemical treatment. Energy dispersive x-ray fluorescence (XRF) was used for the multi-element analysis of the retort products. The XRF, integrated with a mini-computer, allows rapid analysis of several elements in multiple samples. XRF samples require minimal amounts of preparation and analytical results are highly reproducible. This paper presents the methods developed and preliminary analytical results from oil shale by-products. Results from the analysis of oil shale rocks are not yet ready for presentation

  2. Distillation of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, G A

    1926-03-22

    To distill oil shales, cannel coals, and other carbonaceous materials for the extraction therefrom of hydrocarbons and volatile nitrogenous compounds, hard non-condensable gases from the condensers and scrubbers are withdrawn by blowers and admixed with burnt gases, obtained through conduits from the flues of heaters, and forced downwardly through horizontal chambers, connected by vertical conduits, of the heaters and delivered into the retort beneath the grate. Passing upwardly through the charge they vaporize the volatile substances in the shale, and a suction pump removes the vapors from the top of the retort. Immediately they are produced and at substantially the same temperature as that at which they emanate, thus preventing cracking of the oil vapors and condensation of the oil at the top of the retort. The amount of burnt flue gas admixed with the hard gases is regulated by two valves until a required uniform temperature is obtained. A generator supplies producer gas to a heater at the commencement of the retorting operation for circulation through the shale charge to initially produce oil vapors. The generator is connected by a pipe to the gas conduit leading to blowers.

  3. Chemical examination of the organic matter in oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J B

    1914-01-01

    The analyses of Broxburn (Scotland), Pumpherston (Scotland), Armadale (Scotland), Australian, and Knightsbridge oil shales were given. Also, the action of nitric acid and solvents on some of the oil shales was determined. Carbon-hydrogen ratios of the oil shales varied from 6 to more than 8, and the shales with the lowest ratio (most hydrogen per carbon) produced the largest amount of oil from a given amount of organic matter. There was little resinous material in the oil shales, and most of the organic matter was insoluble in organic solvents. Nitric acid oxidized Australian torbanite, Broxburn shale, New Battle cannel coal (Scotland), and Glenfullock peat to organic acids. The hydrogen content of the organic acids obtained by oxidizing the following materials increased from ordinary coal to cannel coal to peat to Broxburn shale to torbanite. The organic substance in oil shale is a decomposition product of vegetable matter similar to that found in peat and cannel coal, and it was produced by a definite combination of external conditions.

  4. Volatile characteristic of trace elements during microwave pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Kong, Ling-wen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Oil shale is abundant in the world. Today, the industry of oil shale retorting for producing shale oil is developing owing to high price of oil in the world. In order to study migratory behavior of trace elements in oil shale at microwave pyrolysis, tests were performed in laboratory with oil shale of the Huadian deposit of China at different powers from 400 to 700 W. The trace elements As, Cd, Hg, Mo, Pb, Se, Cr, Cu, Ni, V, Zn, Ba, Co, Mn present in oil shale and shale char were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). By comparing the content of trace elements in oil shale and shale char, distribution characteristics of trace elements at retorting were studied. The overall trends of volatile ratio of trace elements are ascending with higher microwave power and higher than the conventional pyrolysis. The differences in the volatile ratio indicate that the trace elements investigated are bound with the oil shale kerogen and its mineral matter in different manner. So Float-sink experiments (FSE) were performed on oil shale. Huadian oil shale has more included mineral. The volatilization of organic matter is not the main reason for the volatilization of trace elements in oil shale. The trace elements combined with the mineral elements may be also certain volatility.

  5. Quantitative effects of the shale oil revolution

    International Nuclear Information System (INIS)

    Belu Mănescu, Cristiana; Nuño, Galo

    2015-01-01

    The aim of this paper is to analyze the impact of the so-called “shale oil revolution” on oil prices and economic growth. We employ a general equilibrium model of the world oil market in which Saudi Arabia is the dominant firm, with the rest of the producers as a competitive fringe. Our results suggest that most of the expected increase in US oil supply due to the shale oil revolution has already been incorporated into prices and that it will produce an additional increase of 0.2% in the GDP of oil importers in the period 2010–2018. We also employ the model to analyze the collapse in oil prices in the second half of 2014 and conclude that it was mainly due to positive unanticipated supply shocks. - Highlights: • We analyze the impact of the “shale oil revolution” on oil prices and economic growth. • We employ a general equilibrium model of the oil market in which Saudi Arabia is the dominant firm. • We find that most of the shale oil revolution is already priced in. • We also analyze the decline in oil prices in the second half of 2014. • We find that unanticipated supply shocks played the major role in the fall.

  6. Relation of peat to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Linker, S

    1924-01-01

    Samples of oil shale from the Green River formation and from Elko (Nev.), Brazil, Austria, and South Africa were examined, and several varieties of shale were found. Green River oil shale represents three of the more common types plus one less common type. These were: contorted shale with a velvety appearance, thin paper shale resembling the curled-up leaves of a book, massive black shale resembling a piece of rubber, and a less common type, which showed the bedding planes very clearly. The Elko (Nev.) shale was a light buff color; the shale from Brazil resembled a piece of petrified peat. When the shales were cut very thin, their colors ranged from yellow to reddish-brown. The composition, as seen under the microscope, was of well-preserved plant material such as spores, pollen grains, fragments of cell tissues, algae, fungi, bacteria, macerated organic residue, small pieces of resin, animal fossils, and translucent bodies. Oil shale was produced from organic material that accumulated in peat bogs, marshes, or swamps in fresh or salt waters. The organic matter was decomposed by bacterial action. Certain parts of the plants decayed more readily than others. Before lithification occurred, a chemical action took place that changed the softer tissues of the plant debris into a gel. This collodial matter penetrated and surrounded the more resistant fragments and preserved them from further decay. Certain bog waters contain a high percentage of humic acids in solution or collodial suspension and produce insoluble humates when neutralized. These humates are probably the so-called kerogen bodies.

  7. Scale up risk of developing oil shale processing units

    International Nuclear Information System (INIS)

    Oepik, I.

    1991-01-01

    The experiences in oil shale processing in three large countries, China, the U.S.A. and the U.S.S.R. have demonstrated, that the relative scale up risk of developing oil shale processing units is related to the scale up factor. On the background of large programmes for developing the oil shale industry branch, i.e. the $30 billion investments in colorado and Utah or 50 million t/year oil shale processing in Estonia and Leningrad Region planned in the late seventies, the absolute scope of the scale up risk of developing single retorting plants, seems to be justified. But under the conditions of low crude oil prices, when the large-scale development of oil shale processing industry is stopped, the absolute scope of the scale up risk is to be divided between a small number of units. Therefore, it is reasonable to build the new commercial oil shale processing plants with a minimum scale up risk. For example, in Estonia a new oil shale processing plant with gas combustion retorts projected to start in the early nineties will be equipped with four units of 1500 t/day enriched oil shale throughput each, designed with scale up factor M=1.5 and with a minimum scale up risk, only r=2.5-4.5%. The oil shale retorting unit for the PAMA plant in Israel [1] is planned to develop in three steps, also with minimum scale up risk: feasibility studies in Colorado with Israel's shale at Paraho 250 t/day retort and other tests, demonstration retort of 700 t/day and M=2.8 in Israel, and commercial retorts in the early nineties with the capacity of about 1000 t/day with M=1.4. The scale up risk of the PAMA project r=2-4% is approximately the same as that in Estonia. the knowledge of the scope of the scale up risk of developing oil shale processing retorts assists on the calculation of production costs in erecting new units. (author). 9 refs., 2 tabs

  8. Process of recovering shale oil

    Energy Technology Data Exchange (ETDEWEB)

    1949-01-17

    A process is disclosed for recovering oil from shale rock by means of channels cut in the shale deposit, to which heat is carried for warming the shale mass and which are separated from the fume channels formed in the shale by parts of the shale rock, characterized in that heating elements are put down in the heating channels, which occupy less cross section than these channels, and in the so-formed space between the channel wall and the heating element a filling is placed, which facilitates heat transfer between the heating element and the shale and simultaneously prevents a streaming of the oily product gasified out of the shale from working into the heating element and stopping it.

  9. A photometric method for the estimation of the oil yield of oil shale

    Science.gov (United States)

    Cuttitta, Frank

    1951-01-01

    A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.

  10. Naval Petroleum and Oil Shale Reserves

    International Nuclear Information System (INIS)

    1992-01-01

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming

  11. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  12. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    Directory of Open Access Journals (Sweden)

    Altun N. Emre

    2016-01-01

    Full Text Available Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspective of utilization of oil shales in a similar manner to coal and lignites, problems and restrictions related to the inorganic ash-making and potentially pollutant constituents are applied. In this respect, cleaning of this important energy source through mineral processing methods, particularly by flotation, is an outstanding option. However, on the basis of unique features and distinctive characteristics, treatment of oil shales like a type of coal is a big perception and may be highly misleading. This paper discusses specific challenges regarding flotation behavior of oil shales with reference to the surface characteristics and behavior of oil shale entities – probably the most important aspect that determines the efficiency and success of the flotation based cleaning process.

  13. Desulfurization of Jordanian oil shale

    International Nuclear Information System (INIS)

    Abu-Jdayil, B. M.

    1990-01-01

    Oxy desulfurization process and caustic treatment were applied in this work to remove sulfur from Jordanian oil shale. The oxy desulfurization process has been studied in a batch process using a high pressure autoclave, with constant stirring speed, and oxygen and water were used as desulfurizing reagents. Temperature, oxygen pressure, batch time, and particle size were found to be important process variables, while solid/liquid ratio was found to have no significant effect on the desulfurization process. The response of different types of oil shale to this process varied, and the effect of the process variables on the removal of total sulfur, pyritic sulfur, organic sulfur, total carbon, and organic carbon were studied. An optimum condition for oxy desulfurization of El-Lajjun oil shale, which gave maximum sulfur removal with low loss of carbon, was determined from the results of this work. The continuous reaction model was found to be valid, and the rate of oxidation for El-Lajjun oil shale was of the first order with respect to total sulfur, organic sulfur, total carbon, and organic carbon. For pyritic sulfur oxidation, the shrinking core model was found to hold and the rate of reaction controlled by diffusion through product ash layer. An activation energy of total sulfur, organic sulfur, pyritic sulfur, total carbon, and organic carbon oxidation was calculated for the temperature range of 130 -190 degrees celsius. In caustic treatment process, aqueous sodium hydroxide at 160 degrees celsius was used to remove the sulfur from El-Lajjun oil shale. The variables tested (sodium hydroxide concentration and treatment time) were found to have a significant effect. The carbon losses in this process were less than in the oxy desulfurization process. 51 refs., 64 figs., 121 tabs. (A.M.H.)

  14. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  15. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  16. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  17. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  18. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  19. Some problems of oil shale retorting in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    1994-01-01

    Oil shale in Estonia will be competitive in the long term as a primary resource for power generating. The price of energy of Estonian oil shale is at present approximately 4 times lower than of coal. The price of electricity is anticipated to grow up to EEK 1.0/kWh in year 2020. The electricity price EEK 0.2/kWh at present in Estonia does not include capital costs needed for refurbishing of Estonian oil-shale-consuming power stations between the years 2000-2010. While all the prices and calculations of the enterprise are presented with no inflation adjustment, the other operation costs of oil shale retorting are anticipated for the prognosed period to remain at the present level: power consumption kWh 280/t crude oils and other operation costs (excluding labour, raw material and power consumption) EEK 100/t of oil

  20. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  1. Conceptual design and techno-economic evaluation of efficient oil shale refinery processes ingratiated with oil and gas products upgradation

    International Nuclear Information System (INIS)

    Yang, Qingchun; Qian, Yu; Zhou, Huairong; Yang, Siyu

    2016-01-01

    Highlights: • Three integrated oil shale refinery processes are proposed. • Techno-economic performance of three proposed processes is conducted and compared. • Competitiveness of the three proposed processes is investigated at different scenarios. • A development direction for oil shale refinery industry is suggested. - Abstract: Compared with the petrochemical industry, oil shale refinery industry is still relatively backward and has many shortcomings, such as poor quality of shale oil, inefficient utilization of retorting gas, and the unsatisfactory economic performance. In the situation of the low oil price, many oil shale refinery plants are forced to stop or cut production. Thus, oil shale industry is facing a severe problem. How to relieve monetary loss or turn it into profits? This paper proposes three integrated oil shale refinery processes: an integrated with hydrogen production from retorting gas, an integrated with hydrogenation of shale oil, and an integrated with hydrogen production and oil hydrogenation. The techno-economic performance of the three different processes is conducted and compared with that of a conventional oil shale process. Results show the exergy destruction ratio of the oil shale process integrated with hydrogen production from retorting gas is the least, 41.6%, followed by the oil shale process integrated with hydrogen production and oil hydrogenation, 45.9%. Furthermore, these two proposed processes have the best economic performance. Especially they can turn losses of the conventional oil shale process into profits at the situation of low oil price. The oil shale process integrated with hydrogen production from retorting gas is recommended to the oil shale plants which use the oil shale with oil content lower than 12.9%, while the plants using oil shale with oil content higher than 12.9% are better to select the oil shale process integrated with hydrogen production and oil hydrogenation.

  2. Developments in production of synthetic fuels out of Estonian shale

    Energy Technology Data Exchange (ETDEWEB)

    Aarna, Indrek

    2010-09-15

    Estonia is still the world leader in utilization of oil shale. Enefit has cooperated with Outotec to develop a new generation of solid heat carrier technology - Enefit280, which is more efficient, environmentally friendlier and has higher unit capacity. Breakeven price of oil produced in Enefit280 process is competitive with conventional oils. The new technology has advantages that allow easy adaptation to other oil shales around the world. Hydrotreated shale oil liquids have similar properties to crude oil cuts. Design for a shale oil hydrotreater unit can use process concepts, hardware components, and catalysts commercially proven in petroleum refining services.

  3. Study on geochemical occurrences of REE in Wangqing oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Tong; Wei, Yan-zhen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Sequential chemical extraction experiment (SCEE) and Float- sink experiment (FSE) have been employed on oil shale research from Wangqing, Jilin province China, in order to determine the binding forms of rare earth elements (REE) in oil shale. The REE contents were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). Wangqing oil shale was screened into specific gravity density level: <1.5g/cm{sup 3}, 1.5-1.6g/cm{sup 3}, 1.6-2.0g/cm{sup 3}, 2.0-2.4g/cm{sup 3}, >2.4g/cm{sup 3}. The mode of occurrences of rare earth elements in Wangqing oil shale was studied by six-step SCEE. FSE results show that REEs in Wangqing oil shale exist mainly in inorganic minerals and more in excluded mineral, while SCEE results show that REEs of Wangqing oil shale is primarily occurred in minerals, including carbonate, Fe-Mn oxide, sulfide, and Si-minerals. FSE and SCEE results fully illustrate excluded mineral is mainly mode of occurrence of REEs in Wangqing oil shale, whereas inorganic minerals and organic matter is not that. The REE distribution pattern curves of FSE density and SCEE fraction products are similar with that of raw oil shale. The REE in different densities products has a close connection with terrigenous clastic rock, and the supply of terrestrial material is stable.

  4. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  5. Process for recovering oil from shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-20

    A process is described for recovering oil from oil-shale and the like, by the direct action of the hot gases obtained by burning the carbonized shale residue. It is immediately carried out in separate adjacent chambers, through which the feed goes from one to the other intermittently, from the upper to the lower.

  6. Production of portland cement using Moroccan oil shale and comparative study between conventional cement plant and cement plant using oil shale

    International Nuclear Information System (INIS)

    Doumbouya, M.; Kacemi, K.E.; Kitane, S.

    2012-01-01

    Like the use of coal ash from power plants as an addition to cement, oil shale are used for cement production on an industrial scale in Estonia, China, USA and Germany. Oil shale can be utilized in manufacturing the cement. In addition to the utilization of these by-products after combustion, it can also reduce the required temperature for the clinkering reactions during the production of Portland clinker. We performed a study on the Moroccan oil shale to maximize the use of oil shale ash in the manufacturing of Portland cement. We found that Moroccan oil shale ash can be used up to 30% with 70% Portland clinker without altering its principle properties. The corresponding temperature required to generate the required liquid for the clinkering reactions as well as the essential ingredients for clinker was found to be around 850 to 1000 deg. C. The operating temperatures for this optimized blend ratio were found to 1000 deg. C. The resulting Portland clinker from this ratio will need further testing in accordance with international standards for Portland cement to examine properties like strength and setting time. (author)

  7. Mining and oil. Oil shale's contribution to future oil supply; Bergbau und Oel. Der Beitrag des Oelschiefers zur Oelversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Eike von der [Linden Advisory, Dreieich (Germany)

    2012-05-15

    Crude oil contributes in Germany and globally approximately one third to the consumption of primary energies and actually is and in the foreseeable future will be the most important energy source. Recently shale oil as an unconventional oil has gained attention in public discussions. Depending on temperatures oil shale contains either already matured fluid shale oil or immature waxy kerogen. For determination of kerogen containing oil shale and shale oil common definitions for fluid hydrocarbons will be presented. Fluid hydrocarbons (molecular chains > C{sub 5}H{sub 12}) originate from animal substance which had been settled millions of years in sediments on sea- or lakebeds under anaerobic conditions. High pressure and high temperatures effect conversion to hydrocarbons. With sufficient permeability the liquid hydrocarbons migrate from the sediment as the source rock and get assembled in porous rocks under the cover of an impermeable rock strata, in so called entrapment structures. In case there is no impermeable rock strate the hydrocarbons will diffuse into the atmosphere. The hydrocarbons in entrapment structures are called conventional oil and are extracted by drilling wells. The extractable oil as part of the oil in place depends on the viscosity of the oil, the permeability of the host rock and applied exploitation methods which can affect pressure, viscosity and permeability. The exploitation achieves 30 to 50% of the oil in place. When the source rock consisting of strata hundreds of meters thick is not sufficiently permeable the matured hydrocarbons remain at its place of origination. These hydrocarbons are called shale oil and belong to the unconventional oil resources. For exploitation of shale oil by wells the source rock must be treated by intensive energy input, amongst others, by fracking which creates artificial permeability and by pressure which affects migration of the hydrocarbons to the well. The exploitation methods for shale oil do not

  8. Eo-Oligocene Oil Shales of the Talawi, Lubuktaruk, and Kiliranjao Areas, West Sumatra: Are they potential source rocks?

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.198To anticipate the increasing energy demand, additional data and information covering unconventional fossil fuels such as oil shale must be acquired to promote the usage of alternative energy sources to crude oil. The Talawi and Lubuktaruk regions situated within intra-montane Ombilin Basin, and the Kiliranjao assumed to be a small intra montane basin are occupied by Eo-Oligocene sediments of Sangkarewang and Kiliran Formations, respectively. Field activity, geochemical screening techniques, and organic petrographic analysis, supported by SEM mode, are methods used. Most of the oil shale sequence is typically of an organically rich-succession comprising predominantly well-bedded, laminated and fissile, brownish to dark grey organic-rich shale and mudstone rocks. The exinite macerals within oil shale comprise mainly Pediastrum-lamalginite with minor cutinite, resinite, liptodetrinite, sporinite, bituminite, and rare Botryococcus-telalginite. Therefore; the oil shale deposits can be described as “lamosites”. Minor vitrinite maceral is also recognized. TOC analysis on selected shale samples corresponds to a fair up to excellent category of source rock characterization. The hydrogen index (HI for all samples shows a range of values from 207 - 864, and pyrolysis yield (PY ranges from 2.67 to 79.72 mg HC/g rock. The kerogen is suggested to be of mixed Type II and Type I autochthonous materials such as alginite, with minor allochthonous substances. Oil samples collected appear to be positioned within more oil prone rather than gas prone. Thermal maturity of the oil shales gained from Tmax value and production index (PI tends to show immature to marginally/early mature stage. A consistency in the thermal maturity level results by using both Tmax and vitrinite reflectance value is recognized. On the basis of  SEM analysis, the oil shale has undergone a late eodiagenetic process. Thereby, overall, vitrinite reflectance

  9. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  10. Producing electricity from Israel oil shale with PFBC technology

    International Nuclear Information System (INIS)

    Grinberg, A.; Keren, M.; Podshivalov, V.; Anderson, J.

    2000-01-01

    Results of Israeli oil shale combustion at atmospheric pressure in the AFBC commercial boiler manufactured by Foster Wheeler Energia Oy (Finland) and in the pressurized test facility of ABB Carbon AB (Finspong, Sweden) confirm suitability of fluidized-bed technologies in case of oil shale. The results approve possibility to use the PFBC technology in case of oil shale after solving of some problems connected with great amounts of fine fly ash. (author)

  11. Origin of Scottish oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Conacher, H R.J.

    1916-12-01

    Oil shales contain two distinct types of organic material, one is comparable to the woody material in coal and the other consists of yellow bodies. When distilled, the latter yields the liquid product typical of oil shale, whereas the woody material produces large amounts of ammonia. The yellow bodies have been described by various investigators as fossil algae, spores, or dried-up globules of petroleum. In this study it was concluded that the yellow bodies were fragments of resins set free by the decay and oxidation of the vegetable matter with which they were originally associated.

  12. Market analysis of shale oil co-products. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  13. Assessment of industry needs for oil shale research and development

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  14. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  15. Method of treating oil-bearing shale

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, N H

    1926-04-14

    The process is given for treating shale or other oil-bearing mineral which consists of the application of dry heat to render the oil soluble and subjects the product of the heat treatment to an operation to extract the soluble oils.

  16. Hydrogen retorting of oil shales from Eastern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, Ontario (Canada)); Synnott, J.; Boorman, R.S.; Salter, R.S.

    1984-04-01

    The liquid production potential of thirty oil shale samples from Eastern Canada was determined by Fischer assay retort and pyrochem retort. For all shales, the presence of hydrogen during pyrochem retorting resulted in a significant increase in oil yields compared to Fischer assay yields. Ten oil shale samples were selected for detailed evaluation in the pyrochem retort in the presence of nitrogen and hydrogen. Besides increasing yields, the presence of hydrogen lowered the specific gravity of liquid products and the content of sulphur but increased the content of nitrogen. This was attributed to the stabilization of precursors to nitrogen compounds which prevented their polymerization. (J.H.K.)

  17. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  18. Oil shale energy and some alternatives in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    2002-01-01

    An academic lecture delivered by prof. Ilmar Oepik at the Thermal Engineering Department of Tallinn Technical University in Dec. 2000 to mark the 120 semesters since the cum laude diploma of a mechanical engineer discusses about ineffective utilization of oil shale and developing renewable resources as an alternative to oil shale

  19. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  20. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  1. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  2. Analysis of the kerogen of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Quass, F W; Down, A L

    1939-01-01

    Comments are given on the method developed by F. W. Quass for reducing the amount of mineral matter present in certain coals and oil shales (torbanites). The method consisted of grinding oil shale with water in a porcelain ball mill in the presence of oil. The oil formed a paste with the carbonaceous material, and a greater portion of the mineral matter remained suspended in the water and was separated. Ultimate analyses of the enriched samples indicated that the percent of carbon was higher, the percent of hydrogen and oxygen was lower, and the ratio of carbon to hydrogen and carbon to oxygen increased in the enriched samples.

  3. Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Billing, Justin M.; Hallen, Richard T.; Schmidt, Andrew J.; Schaub, Tanner M.

    2017-02-17

    We provide a direct and detailed comparison of the chemical composition of petroleum crude oil (from the Gulf of Mexico), shale oil, and three biocrudes (i.e., clean pine, microalgae Chlorella sp., and sewage sludge feedstocks) generated by hydrothermal liquefaction (HTL). Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that HTL biocrudes are compositionally more similar to shale oil than petroleum crude oil and that only a few heteroatom classes (e.g., N1, N2, N1O1, and O1) are common to organic sediment- and biomass-derived oils. All HTL biocrudes contain a diverse range of oxygen-containing compounds when compared to either petroleum crude or shale oil. Overall, petroleum crude and shale oil are compositionally dissimilar to HTL oils, and >85% of the elemental compositions identified within the positive-ion electrospray (ESI) mass spectra of the HTL biocrudes were not present in either the petroleum crude or shale oil (>43% for negative-ion ESI). Direct comparison of the heteroatom classes that are common to both organic sedimentand biomass-derived oils shows that HTL biocrudes generally contain species with both smaller core structures and a lower degree of alkylation relative to either the petroleum crude or the shale oil. Three-dimensional plots of carbon number versus molecular double bond equivalents (with observed abundance as the third dimension) for abundant molecular classes reveal the specific relationship of the composition of HTL biocrudes to petroleum and shale oils to inform the possible incorporation of these oils into refinery operations as a partial amendment to conventional petroleum feeds.

  4. Market analysis of shale oil co-products. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  5. Research and information needs for management of oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  6. Scoping of fusion-driven retorting of oil shale

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1979-11-01

    In the time frame beyond 2005, fusion reactors are likely to make their first appearance when the oil shale industry will probably be operating with 20% of the production derived from surface retorts operating on deep mined shale from in situ retorts and 80% from shale retorted within these in situ retorts using relatively fine shale uniformly rubblized by expensive mining methods. A process was developed where fusion reactors supply a 600 0 C mixture of nitrogen, carbon dioxide, and water vapor to both surface and in situ retorts. The in situ production is accomplished by inert gas retorting, without oxygen, avoiding the burning of oil released from the larger shale particles produced in a simpler mining method. These fusion reactor-heated gases retort the oil from four 50x50x200m in-situ rubble beds at high rate of 40m/d and high yield (i.e., 95% F.A.), which provided high return on investment around 20% for the syncrude selling at $20/bbl, or 30% if sold as $30/bbl for heating oil. The bed of 600 0 C retorted shale, or char, left behind was then burned by the admission of ambient air in order to recover all of the possible energy from the shale resource. The hot combustion gases, mostly nitrogen, carbon dioxide and water vapor are then heat-exchanged with fusion reactor blanket coolant flow to be sequentially introduced into the next rubble bed ready for retorting. The advantages of this fusion-driven retorting process concept are a cheaper mining method, high yield and higher production rate system, processing with shale grades down to 50 l/mg (12 gpt), improved resource recovery by complete char utilization and low energy losses by leaving behind a cold, spent bed

  7. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  8. Process for desulfurizing shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Escherich, F

    1922-12-17

    A process is described for the desulfurizing of shale oil or tar, with recovery of valuable oils and hydrocarbons, characterized in that the raw material is heated in an autoclave to a pressure of 100 atmospheres or more.

  9. Simulation study of huff-n-puff air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach. Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance, thermal behavior, reservoir pressure and fluid saturation features. Air flooding is used as the basic case for a comparative study. The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir, but not for simple air flooding. The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-n-puff injection strategy. Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection. O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs. Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage. No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs. Huff-n-puff air injection has great potential to develop shale oil reservoirs. The results from this work may stimulate further investigations.

  10. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    Science.gov (United States)

    Hughes, J. D.

    2012-12-01

    as a new "Saudi Arabia" of oil. Growth in production has been spectacular, but currently amounts to just one million barrels per day which is less than 15 percent of US oil and other liquids production. Tight oil is offsetting declines in conventional crude oil production as well as contributing to a modest production increase from the 40-year US crude oil production low of 2008. The mantra that natural gas is a "transition fuel" to a low carbon future is false. The environmental costs of shale gas extraction have been documented in legions of anecdotal and scientific reports. Methane and fracture fluid contamination of groundwater, induced seismicity from fracture water injection, industrialized landscapes and air emissions, and the fact that near term emissions from shale gas generation of electricity are worse than coal. Tight oil also comes with environmental costs but has been a saviour in that it at least temporarily arrested a terminal decline in US oil production. A sane energy security strategy for America must focus on radically reducing energy consumption through investments in infrastructure that provides alternatives to our current high energy throughput. Shale gas and tight oil will be an important contributors to future energy requirements, given that other gas and oil sources are declining, but there is no free lunch.

  11. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    Science.gov (United States)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  12. Origin of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham-Craig, E H

    1915-01-01

    Kerogen was believed to be formed by the inspissation of petroleum. During this process nitrogen and sulfur compounds were concentrated in the most inspissated or weathered products. At a certain stage, reached gradually, the organic matter became insoluble in carbon-disulfide and ceased to be a bitumen. Oil shale was formed by the power of certain clays or shales to absorb inspissated petroleum, particularly unsaturated hydrocarbons. This adsorption apparently depended on the colloid content of the argillaceous rock. This rock retained these impregnated petroleum residues long after porous sandstones in the vicinity had lost all traces of petroleum by weathering and leaching.

  13. Beneficiation-hydroretort processing of US oil shales: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-01

    This report has been divided into three volumes. Volume I describes the MRI beneficiation work. In addition, Volume I presents the results of joint beneficiation-hydroretorting studies and provides an economic analysis of the combined beneficiation-hydroretorting approach for processing Eastern oil shales. Volume II presents detailed results of hydroretorting tests made by HYCRUDE/IGT on raw and beneficiated oil shales prepared by MRI. Volume III comprises detailed engineering design drawings and supporting data developed by the Roberts and Schaefer Company, Engineers and Contractors, Salt Lake City, Utah, in support of the capital and operating costs for a conceptual beneficiation plant processing an Alabama oil shale.

  14. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, J.O.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). School of Mechanical Engineering; Williams, P.T. [Leeds University (United Kingdom). Dept. of Fuel and Energy

    1998-03-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e., the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oilshale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  15. Evaluating possible industrial applications of combustible shales and shale ash wastes

    Directory of Open Access Journals (Sweden)

    Н. К. Кондрашева

    2016-08-01

    Full Text Available Today energy consumption is constantly growing while explored reserves of easily accessible oil are depleting, which is a reason why most countries tend to diversify their energy mix, develop non-hydrocarbon energy sources and use domestic types of fuel, including the low grade ones. Thereby interest is raised to such a source of hydrocarbons as combustible shales. Combustible shales appear to be one of the highest-potential types of organic raw materials, which may offset and in future even substitute oil products and gas. The paper is investigating behavior and structure of combustible shales during heat treatment in order to identify their possible industrial applications. A synchronous thermal analysis has been held, chemical composition of combustible shales’ mineral fraction and optimal conditions for shale fines briquetting have been determined.

  16. The challenge of shale to the post-oil dreams of the Arab Gulf

    International Nuclear Information System (INIS)

    Sultan, Nabil

    2013-01-01

    Growth patterns in the Gulf Cooperation Council (GCC) countries suggest that demand for energy in this region is likely to increase in the years to come and this situation ultimately means that more of the region’s natural resources will need to be devoted to meeting this demand. For some of the GCC countries, the option to meet future power demands through alternative sources of energy such as nuclear power was deemed an attractive proposition. Furthermore, real investments and plans to use other alternative energy sources such as solar, wind, hydrogen and geothermal are also gaining momentum in the region. However, relatively recent developments in the technology used for extracting gas and oil from shale rock formations places a big question mark on the GCC countries’ energy plans including those relating to alternative and renewable sources of energy. This article examines the GCC’s new energy drive and explores the economic and political motivations behind it. Furthermore, the article also examines the potential impact of shale gas and oil extraction on this region’s abundant fossil-based resources and the ramifications of such impact (if it materialises) for the GCC countries’ alternative energy plans, future wealth and their political stability. - Highlights: • Shale gas (and oil) could potentially affect future oil prices. • Gas could be the future transport fuel. • Arab Gulf countries could be the victims

  17. Chemical process for improved oil recovery from Bakken shale

    Energy Technology Data Exchange (ETDEWEB)

    Shuler, Patrick; Tang, Hongxin; Lu, Zayne [ChemEOR Inc (United States); Tang, Youngchun [Power Environmental Energy Research Institute (United States)

    2011-07-01

    This paper presents the new chemically-improved oil recovery process (IOR) process for Bakken formation reservoirs. A custom surfactant agent can be used in standard hydraulic fracturing treatments in the Bakken to increase oil recovery. The rock formation consists of three members: the lower shale, middle dolostone and the upper shale. The dolostone was deposited as a coastal carbonate during shallower water and the shales were deposited in a relatively deep marine condition. With the widespread advent of horizontal well drilling and large-volume hydraulic fracturing treatments, production from the Bakken has become very active. The experimental results exhibited that specialized surfactant formulations will interact with this mixed oil-wet low permeability middle member to produce more oil. It was also observed that oil recovery by spontaneous imbibition was fast and significant. The best surfactant found in this study is compatible with a common fracture fluid system.

  18. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  19. BLM Colorado Oil Shale Leases

    Data.gov (United States)

    Department of the Interior — KMZ file Format –This data set contains the Oil Shale Leases for the State of Colorado, derived from Legal Land Descriptions (LLD) contained in the US Bureau of Land...

  20. The deep processing of oil residues conjunction with shales

    Directory of Open Access Journals (Sweden)

    Anatoly Maloletnev

    2012-12-01

    Full Text Available The results of studies on the development of a new process of thermal cracking of tar oil as a slurry with crushed oil shale to obtain components of motor fuels. The results suggest doubtless advantages of the process before the industrial of thermo cracking, since the single-stage processing of raw materials in relatively in the mild conditions (5 MPa, 425ºC, volumetric feed rate 1.0 h-1 is achieved deep destruction of tar oil (the yield petrol fraction with a bp amounts to up to 180ºC - ~12 mass % of middle distillates with a bp 180-360ºC – 43-44 mass %, of raw material for catalytic cracking of a bp 360-520ºC – ~15-16%, based on the initial tar oil. Formed like coke products and raw materials contained in V and Ni is postponed on the mineral part of slate and removed from the reaction zone with the liquid products of the process.

  1. Assessment of industry needs for oil shale research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  2. 1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10 9 m 3 (1000 x 10 9 bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region

  3. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We

  4. Technical and economic framework for market enhancement of shale oil

    International Nuclear Information System (INIS)

    Bunger, J.W.; Devineni, A.V.

    1992-01-01

    By now it is apparent that production of syncrude from shale oil will not be economically viable as long as there is a stable and reasonably-priced supply of petroleum. The costs and financial risks of producing syncrude from oil shale, in the face of price constraints imposed by petroleum markets, are too high to warrant private investment. A possible solution is to develop commodity and specialty products from shale oil which command a high market value. In this fashion, the economics are partially uncoupled from petroleum and an opportunity for a greater price/cost differential is provided

  5. Maceral and geochemical characteristics of oil shale 2 from the Huangxian Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhuang; Lin, Mingyue; Li, Haimei; Zhang, Hongjian; Li, Shifeng; Jin, Kankun [Hebei Architectural Science and Technology Inst., Handan, Hebei (China)

    2001-07-01

    Five samples of Oil Shale 2 from the Huangxian Basin have been analysed by coal petrographic and geochemical methods in order to study its formation environment. Higher alginite ratios and hopanes in Oil Shale 2 indicate a lower plants and anoxic environment. Two ternary diagrams of 'facies diagnostic' macerals and biomarkers were used to interpret the depositional environments of organic matter in Oil Shale 2. In both diagrams, Oil Shale 2 plots in a lower plant zone, and was deposited in a deeper water environment. (Author)

  6. Hydrologic-information needs for oil-shale development, northwestern Colorado. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, O.J. (comp.)

    1982-04-01

    The Piceance basin of northwestern Colorado contains large reserves of oil shale. Expected development of oil shale will affect the regional hydrologic systems because most oil-shale mines will require drainage; industrial requirements for water may be large; and oil-shale mines, wastes, and retorts may affect the quantity and quality of surface water and ground water. In addition, the oil-shale industry may discharge particles and gases to the atmosphere that could alter the quality of high-altitude lakes and surface-water reservoirs. Hydrologic data need to be collected in order to plan for oil-shale development and to estimate the effects of development. Test-well drilling and aquifer testing are needed to provide a better understanding of the local and regional flow system, to furnish additional data for a model that simulates mine drainage, and to explore for water supplies in aquifers of Paleozoic and Mesozoic age. Much of the ground water in the bedrock aquifers discharges through springs, and a systematic study of the springs will help to predict the effects of mine drainage on spring discharge and quality. Surface runoff, dissolved and suspended loads in streams, and the aquatic environment in streams would be highly susceptible to the disruptions in the land surface and will require additional study in order to estimate the effects of development. A water-quality assessment is proposed for the White River basin because it is a possible source of water and a region likely to be affected by development. The effects of emissions to the atmosphere from oil-shale plants require study because these emissions may affect the quality of water in lakes downwind. Spoil piles of retorted oil shale may be very large and require study to anticipate any problems caused by leaching and erosion. Processing wastes resulting from in-situ retorts and other waste materials need to be studied in greater detail. 71 refs., 30 figs., 5 tabs.

  7. Effects of pollution from oil shale mining in Estonia

    International Nuclear Information System (INIS)

    Vallner, L.; Sepp, K.

    1993-01-01

    The largest commercially exploited oil shale deposit in the world is in northeast Estonia. The accumulation of solid residues by oil shale mines and processing plants has resulted in numerous dumps and ash hills, which are polluting the environment. The groundwater and streams are highly polluted by sulphates, phenols and oil products. A dump hill of radioactive wastes poses a serious threat to the Baltic Sea. Local people suffer from diseases more often than in other regions of Estonia. (author)

  8. Geological characteristics and resource potentials of oil shale in Ordos Basin, Center China

    Energy Technology Data Exchange (ETDEWEB)

    Yunlai, Bai; Yingcheng, Zhao; Long, Ma; Wu-jun, Wu; Yu-hu, Ma

    2010-09-15

    It has been shown that not only there are abundant oil, gas, coal, coal-bed gas, groundwater and giant uranium deposits but also there are abundant oil shale resources in Ordos basin. It has been shown also that the thickness of oil shale is, usually, 4-36m, oil-bearing 1.5%-13.7%, caloric value 1.66-20.98MJ/kg. The resource amount of oil shale with burial depth less than 2000 m is over 2000x108t (334). Within it, confirmed reserve is about 1x108t (121). Not only huge economic benefit but also precious experience in developing oil shale may be obtained in Ordos basin.

  9. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  10. Assessment of potential unconventional lacustrine shale-oil and shale-gas resources, Phitsanulok Basin, Thailand, 2014

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.

  11. Spectroscopic and chromatographic analysis of oil from an oil shale flash pyrolysis unit

    Energy Technology Data Exchange (ETDEWEB)

    Khraisha, V.H.; Irqsousi, N.A. [University of Jordan, Amman (Jordan). Dept. of Chemical Engineering; Shabib, I.M. [Applied Science Univ., Amman (Jordan). Dept. of Chemistry

    2003-01-01

    In this investigation, spectroscopic (FT-IR, UV-Vis, {sup 1}H NMR) and chromatographic (GC) techniques were used to analyze two Jordanian shale oils, Sultani and El-Lajjun. The oils were extracted at different pyrolysis temperatures (400-500{sup o}C) using a fluidized bed reactor. The spectroscopic and chromatographic analyses show that the variation of pyrolysis temperature has no significant effect on the composition of the produced oil. The {sup 1}H NMR results indicate that the protons of methyl and methelyene represent the bulk of the hydrogen ({approx}90%) in most shale oil samples. GC analysis reveals that the oil samples contain n-alkanes with a predominant proportion of n-C{sub 25}. (Author)

  12. Technical-economic parameters of the new oil shale mining-chemical complex in Northeast Estonia

    International Nuclear Information System (INIS)

    Kuzmiv, I.; Fraiman, J.

    2006-01-01

    The history of oil shale mining in Estonia has reached its century mark. Three oil shale branches have been formed and have been working on the basis of Estonian oil shale deposits: the mining industry (underground and surface extraction), the power industry (heat and electric energy generation), and the chemical industry (gas and synthetic oils). The authors attempted to summarize the experience of the activities of these branches and to make into a whole the results of their research developments in the past years, as well as to form a notion about perspectives of oil shale in Estonia. Variants of the mining-chemical oil shale complex production and trade patterns differed from used ones. Mining methods, thermal processing of oil shale, and solid, liquid, and gas waste recovery have been studied, analyzed, and worked out up to the present. Setting up a flexible trade structure within the framework of that complex is considered the main economic mechanism capable of balancing production costs of such a complex with its earnings, which could respond properly to any, even peak, fluctuations of the market for final products processed from oil shale. Data of the working 'Estonia' oil shale mine were used as the basis of the analysis and practical conclusions. Information on the mine being projected in the region of Ojamaa in the northeast of Estonia was taken as the data of the worthwhile supplier. Oil shale processing chemical complex is considered in two structural alternatives: in technological chain with the 'Estonia' mine (the first variant), and the projected mine of a new technical level (the second variant). (author)

  13. Recovering oil from shale

    Energy Technology Data Exchange (ETDEWEB)

    Leahey, T; Wilson, H

    1920-11-13

    To recover oil free from inorganic impurities and water, and utilize the oil vapor and tarry matter for the production of heat, shale is heated in a retort at a temperature of not less than 120/sup 0/C. The vapors pass by a pipe into a water jacketed condenser from which the condensate and gas pass through a pipe into a chamber and then by a pipe to a setting chamber from where the light oils are decanted through a pipe into a tank. The heavy oil is siphoned through a pipe into a tank, while the gas passes through a pipe into a scrubber and then into a drier, exhauster and pipe to the flue and ports, above the fire-bars, into the retort. Air is introduced through a pipe, flue, and ports.

  14. Energy security of supply and oil shale resources

    International Nuclear Information System (INIS)

    Elkarmi, F.

    1994-01-01

    Jordan must utilize its huge oil shale deposits in order to increase domestic security of energy supply and benefit financially. Utilization processes will require large scale financial expenditures, beyond Jordan's means. Therefore, the BOT scheme seems to be the perfects solution. Since oil shale retorting technology will produce oil which can be traded to generate valuable foreign exchange revenues, it is more advantageous than direct burning technology which produces electricity limited to local consumption regardless of economics. Under the BOT scheme, the incentive, for the foreign sponsor is to return his investment via quantities of oil; for Jordan the aim is to meet local energy demand and acquire the plant infrastructure in the long term. Recent events in the more traditional oil fields of the region make such a project in Jordan more attractive. (author) 3 tabs. 2 figs

  15. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale

    International Nuclear Information System (INIS)

    Jiang, Haifeng; Deng, Sunhua; Chen, Jie; Zhang, Mingyue; Li, Shu; Shao, Yifei; Yang, Jiaqi; Li, Junfeng

    2017-01-01

    Highlights: • The maximum yield of pyrolysis oil is obtained at the pretreatment time of 2.0 h. • The higher H/C ratio of oil is obtained after hydrothermal pretreatment. • Hydrothermal treatment promotes the formation of aliphatic hydrocarbons in the oil. • Long pretreatment time causes the increase of heavier oil fraction in the oil. - Abstract: In this work, Huadian oil shale from China was treated by hydrothermal pretreatment at 200 °C with 1.0–2.5 h in order to investigate the effect of hydrothermal pretreatment on pyrolysis product distribution and characteristics of oil. The differences in the elemental composition and thermal behavior between the untreated and treated oil shale were analyzed and compared. The hydrothermal treatment process could decompose oxygen functional groups and remove some water soluble inorganics in oil shale, which decreased the formation of gas and water during the pyrolysis. However, hydrothermal pretreatment was conducive to increasing shale oil yield. The maximum of oil yield was obtained at the pretreatment time of 2.0 h. The enhancement of the free-radical reactions during the pyrolysis and the reduction of the secondary cracking reactions of the generated oil vapors were considered as the main reasons. The oil obtained by the treated oil shale had a higher H/C ratio, indicating it had high energy content. The analysis results of chemical compositions in oils showed that the relative content of aliphatic hydrocarbons significantly increased after hydrothermal pretreatment. The further analysis demonstrated that the increase in the pretreatment time caused the generated long chain hydrocarbons tended to be directly released from oil shale particles, and were condensed into the oil.

  16. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H; Klevtsov, I [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1999-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  17. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1998-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  18. Process for complete conversion of coal oils, shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, P

    1911-07-08

    A process is described for complete conversion of mineral coal oil, shale oil, and other similar oils in pitch, characterized by these oils being mixed with a nonvolatile substance with a boiling point on the average higher than the boiling point of the oil to be treated, and then being heated under pressure with the introduction of air, whereby the heating is interrupted if necessary on account of the known exothermic reaction and the conversion of the oil in the pitch or its distillation can be carried out without further heating.

  19. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    International Nuclear Information System (INIS)

    Thiéry, Vincent; Bourdot, Alexandra; Bulteel, David

    2015-01-01

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements

  20. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  1. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  3. Modelling of underground geomechanical characteristics for electrophysical conversion of oil shale

    International Nuclear Information System (INIS)

    Bukharkin, A A; Koryashov, I A; Martemyanov, S M; Ivanov, A A

    2015-01-01

    Oil shale energy extraction is an urgent issue for modern science and technique. With the help of electrical discharge phenomena it is possible to create a new efficient technology for underground conversion of oil shale to shale gas and oil. This method is based on Joule heat in the rock volume. During the laboratory experiments the problem has arisen, when the significant part of a shale fragment is being heated, but the further heating is impossible due to specimen cracking. It leads to disruption in current flow and heat exchange. Evidently, in the underground conditions these failure processes will not proceed. Cement, clay and glass fiber/epoxy resin armature have been used for modelling of geomechanical underground conditions. Experiments have shown that the use of a reinforcing jacket makes it possible to convert a full rock fragment. Also, a thermal field extends radially from the centre of a tree-type structure, and it has an elliptic cross section shape. It is explained by the oil shale anisotropy connected with a rock laminar structure. Therefore, heat propagation is faster along the layers than across ones. (paper)

  4. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    Science.gov (United States)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  5. Subsidence prediction in Estonia's oil shale mines

    International Nuclear Information System (INIS)

    Pastarus, J.R.; Toomik, A.

    2000-01-01

    This paper analysis the stability of the mining blocks in Estonian oil shale mines, where the room-and-pillar mining system is used. The pillars are arranged in a singular grid. The oil shale bed is embedded at the depth of 40-75 m. The processes in overburden rocks and pillars have caused the subsidence of the ground surface. The conditional thickness and sliding rectangle methods performed calculations. The results are presented by conditional thickness contours. Error does not exceed 4%. Model allows determining the parameters of spontaneous collapse of the pillars and surface subsidence. The surface subsidence parameters will be determined by conventional calculation scheme. Proposed method suits for stability analysis, failure prognosis and monitoring. 8 refs

  6. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Characteristic of oil-shale in Achibo-Sombo area of Yayu coalfield in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Tang, Z. [Exploration Institute of Shandong Coal Geology Bureau, Taian (China)

    2001-02-01

    On the basis of introducing the location, condition of strata, and the development of the coal-bearing strata of Achibo-Sombo area of Yayu coal field in Ethiopia, the distributing regularities, thickness, physical and chemical characteristics of the oil-shale in this area which are of industrial utilization are studied. And the reserves of the oil-shale has been calculated. The various aspects of industrial utilization of oil-shale are outlined. 2 figs., 3 tabs.

  8. Method of recovering oil from alum shales. [heating by electric currents

    Energy Technology Data Exchange (ETDEWEB)

    Wennerstrom, K G

    1918-06-04

    A method of treating alum shale and other bituminous shales in order to extract oil et cetera, is characterized by bringing the shale to a temperature at which it melts, and at which the necessary amount of heat is transferred to the molten shale to be distilled. The patent claim is characterized by heating the shale by means of electric current. The patent has one additional claim.

  9. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  10. Chemistry of the Estonian oil-shale kukersite

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N

    1931-01-01

    Estonian oil shale is one of the oldest and richest oil shales in the world. The deposits occur in the Middle-Ordovician strata having a total thickness of 2.2 meters. The ultimate composition of the kerogen varied within the following limits: carbon 76.5 to 76.7 percent, hydrogen 9.1 to 9.2 percent, nitrogen 0.2 to 0.4 percent, sulfur 1.6 to 2.2 percent, chlorine 0.5 to 0.7 percent, and oxygen (by difference) 11.2 to 12.2 percent. The composition of kukersite kerogen corresponds nearly to the empirical formula (C/sub 8/H/sub 11/O)n. One of the most significant differences between kukersite, coal, and lignite is the amount of alkali-soluble substances present. Kukersite has almost no humic acids. Samples of kukersite were brominated and chlorinated. The halogenated shales showed a solubility in absolute alcohol of 26 percent compared to only 0.31 percent for untreated shale. Enriched shale (4.5 percent ash) did not react with chlorine as much as did raw shale. Apparently the mineral matter acted catalytically during chlorination. The amount of soluble extract obtained by solvent treatment of kukersite ranged from 0.22 percent with chloroform to 2.20 percent with tetrachloroethane. Heat was the most effective agent for the depolymerization of kukersite kerogen. The percentage loss of weight due to drying in air was much less than in the presence of carbon dioxide. The results indicated that on drying in air, the powdered shale loses water and a volatile substance, probably the oxides of carbon, up to 80/sup 0/C. Carbon dioxide was also found to be present in the gases eliminated at the temperature of initial decomposition. Pulverized shale, heated for 6 hours at 220/sup 0/C, lost 2.6 percent of its weight; its solubility in carbon disulfide was 2.11 percent. Kukersite kerogen was formed from compounds that were resistent to bacteriological decomposition, such as waxes and resins, plus decomposition products of proteins, cellulose, and putrefaction products of

  11. Enrichment of {sup 210}Po and {sup 210}Pb in ash samples from oil shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, B. [University of Tartu, Institute of Physics/Ege University, Institute of Nuclear Sciences (Estonia); Vaasma, T.; Kiisk, M.; Suursoo, S.; Tkaczyk, A.H. [University of Tartu,Institute of Physics (Estonia)

    2014-07-01

    Energy production in Estonia is largely dependent on the oil shale industry. Oil shale is a fossil fuel typically characterized by relatively high mineral composition, modest organic fraction (varying between 10 and 65%), high ash content (usually 45% to 50%), and average lower heating value of 8.4 MJ/kg{sup -1}. Oil shale-fired power plants account for 85% of Estonian electricity production and produce up to 6 million tons of oil shale ash annually. This ash contains elevated amounts of natural radionuclides (from the {sup 238}U and {sup 232}Th series and {sup 40}K), which were bound to oil shale during its formation. These radionuclides become enriched in ash fractions during the combustion process and are partially emitted to the atmosphere via fly ash and flue gases. Oil shale-fired electricity production is foreseen to remain a dominant trend in Estonia, suggesting that the radionuclide emissions to the atmosphere will continue in the future. The natural radionuclides {sup 210}Po and {sup 210}Pb, with half-lives of 138 days and 22.3 years respectively, originate from the radioactive decay of radionuclides of {sup 238}U series present in the earth's crust. These radionuclides are also built up artificially in the environment due to waste discharge from phosphate, oil, and gas industries, combustion of fossil fuels and other energy production as technically enhanced natural radionuclides. There are few studies on oil shale power plants influence on the levels of natural radioactivity in the surrounding areas. Realo, et al. reported that the annual doses from fly ash depositions over a 30 year period are in the range 90 - 200 μSv a{sup -1}. A study previously initiated by the University of Tartu, Institute of Physics (IPh) evaluated enrichment in the activity concentrations of {sup 238}U, {sup 226}Ra, {sup 210}Pb, {sup 232}Th, {sup 228}Ra and {sup 40}K in ash samples collected from Eesti Power Plant's circulating fluidized bed (CFB) boiler. According

  12. Preliminary organic geochemical investigation of the Kimmeridgian oil shales. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P F.V.; Douglas, A G

    1980-01-01

    The Kimmeridge oil shales have assumed renewed significance because of their role as the prime source-rock for North Sea oil, and because of the need to assess their potential as a possible future supply of shale oil. This paper presents the results of a preliminary investigation of selected Kimmeridge oil shales. The immature shales are rich in organic matter with a dominantly marine type II kerogen showing evidence of algal contributions and a general sparsity of land-derived, higher plant detritus. Column chromatographic and capillary column gas chromatographic examinations of bitumens, pyrolysates and pyrolysis gas chromatograms of kerogen isolates show a predominance of aromatics in the hydrocarbon fractions, with bitumen n-alkane gas chromatograms showing evidence of algal-derived organic matter with n-alkane maxima in the n-C/sub 17/ region. Possible contributions from lower land plants are indicated by a second n-alkane maximum at n-C/sub 23/, whilst higher land plant detritus makes only a limited contribution. Reflected light microscopic examination of the shales also shows a general sparsity of recognizable land-derived woody or herbaceous material. Shale oil compositions reflect their pyrolytic origin, with unsaturates forming a large part of the aliphatic hydrocarbon fraction, together with significant amounts of isoprenoid alkanes; organic sulphur compounds are also prominent in the hydrocarbon fractions. Finally, considerable amounts of sterane and pentacyclic triterpane hydrocarbons have been found in the bitumen aliphatic hydrocarbon fractions, their distributions allowing Blackstone samples to be differentiated from those of lower stratigraphic levels.

  13. Biological marker compounds as indicators of the depositional history of the Maoming oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Brassell, S.C.; Eglinton, G.; Mo, F.J.

    1986-01-01

    The Eocene Maoming oil shale from Guangdong Province occurs as a laterally uniform stratigraphic section, typically 20-25 m thick, from which the aliphatic hydrocarbon constituents of six representative samples were investigated using GC and C-GC-MS. The sediments evaluated included the basal lignite, a vitrinite lens from the overlying claystone, and four intervals from the massive oil shale bed. As expected, the lignite and vitrinite differ markedly from the oil shales. The lignite is dominated by bacterial hopanoids and components of higher plant origin, including C/sub 29/ steroids and triterpenoids such as oleanenes. Visually, the oil shale samples show corroded and degraded phytoclasts, spores, wispy particles of fluorescent organic material attributable to dinoflagellates and, especially in the uppermost sample, colonial algal bodies. The distributions of biological markers in the oil shales show many features in common, notably a dominance of dinoflagellate-derived 4-methylsteroids, and a significant proportion of higher-plant derived n-alkanes with marked odd-over-even carbon number predominance. Overall, they exhibit several features that resemble characteristics of the Messel shale. The hydrocarbons of the lowest shale horizon suggest that there may have been a gradual transition between deposition of the original peat and the subsequent oil shales. The aliphatic hydrocarbons of the uppermost shale are dominated by a number of C/sub 31/ and C/sub 33/ botryococcane homologues and other unusual branched alkanes possibly derived from green algae. All of the samples are immature. Overall, molecular and microscopic examination of the stratigraphic succession of the Maoming oil shale suggests a shallow, lacustrine environment within which peats were deposited. This lake subsequently deepened to support abundant algal populations, especially dinoflagellates, culminating in a dominance of botryococcoid algae.

  14. Distilling oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, R H

    1923-04-18

    In the fractional distillation of oils from oil shale and similar materials the charge is passed continuously through a vertical retort heated externally by hot combustion gases in flues and internally by the passage of these gases through flues passing through the retort so that zones of increasing temperature are maintained. A vapor trap is provided in each zone having an exit pipe leading through a dust trap to a condenser. The bottoms of the conical vapor traps are provided with annular passages perforated to permit of steam being sprayed into the charge to form screens which prevent the vapors in different zones from mingling, and steam may also be introduced through perforations in an annular steam box. Dampers are provided to control the passage of the heating gases through the flues independently.

  15. Method of recovering oils, etc. , from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1921-05-23

    In the low-temperature distillation of bituminous shales or similar bituminous materials with high ash content for recovery of oil etc., steam or inert gases are introduced from outside through gas taps arranged in a circle in the retort. By the method used steam is introduced simultaneously in levels higher and lower than the one in which the gaseous and vaporized products are removed from the shale material and in such a manner that the zone of oil formation chiefly will be between the two places mentioned where vapors or steam are introduced into the retort. The patent has one additional claim.

  16. Application of the High Temperature Gas Cooled Reactor to oil shale recovery

    International Nuclear Information System (INIS)

    Wadekamper, D.C.; Arcilla, N.T.; Impellezzeri, J.R.; Taylor, I.N.

    1983-01-01

    Current oil shale recovery processes combust some portion of the products to provide energy for the recovery process. In an attempt to maximize the petroleum products produced during recovery, the potentials for substituting nuclear process heat for energy generated by combustion of petroleum were evaluated. Twelve oil shale recovery processes were reviewed and their potentials for application of nuclear process heat assessed. The High Temperature Gas Cooled Reactor-Reformer/Thermochemical Pipeline (HTGR-R/TCP) was selected for interfacing process heat technology with selected oil shale recovery processes. Utilization of these coupling concepts increases the shale oil product output of a conventional recovery facility from 6 to 30 percent with the same raw shale feed rate. An additional benefit of the HTGR-R/TCP system was up to an 80 percent decrease in emission levels. A detailed coupling design for a typical counter gravity feed indirect heated retorting and upgrading process were described. Economic comparisons prepared by Bechtel Group Incorporated for both the conventional and HTGR-R/TCP recovery facility were summarized

  17. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  18. Triterpene alcohol isolation from oil shale.

    Science.gov (United States)

    Albrecht, P; Ourisson, G

    1969-03-14

    Isoarborinol, an intact pentacyclic unsaturated alcohol, was isolated from the Messel oil shale (about 50 x 106 years old). Complex organic substances, even those very sensitive to oxidation, reduction, or acidic conditions, can thus survive without alteration for long periods.

  19. The US Shale Gas Revolution and Its Externality on Crude Oil Prices: A Counterfactual Analysis

    Directory of Open Access Journals (Sweden)

    Hongxun Liu

    2018-03-01

    Full Text Available The expansion of shale gas production since the mid-2000s which is commonly referred to as “shale gas revolution” has had large impacts on global energy outlook. The impact is particularly substantial when it comes to the oil market because natural gas and oil are substitutes in consumption and complements and rivals in production. This paper investigates the price externality of shale gas revolution on crude oil. Applying a structural vector autoregressive model (VAR model, the effect of natural gas production on real oil price is identified in particular, and then based on the identification, counterfactuals of oil price without shale gas revolution are constructed. We find that after the expansion of shale gas production, the real West Texas Intermediate (WTI oil price is depressed by 10.22 USD/barrel on average from 2007 to 2017, and the magnitude seems to increase with time. In addition, the period before shale gas revolution is used as a “thought experiment” for placebo study. The results support the hypothesis that real WTI oil price can be reasonably reproduced by our models, and the estimated gap for oil price during 2007–2017 can be attributed to shale gas revolution. The methodology and framework can be applied to evaluate the economic impacts of other programs or policies.

  20. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  1. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...

  2. Anvil Points oil shale tailings management in Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, R.; Galli LaBerge, C.; McClurg, J. [Ecology and Environment Inc., Lancaster, NY (United States); Walsh Integrated, Lachine, PQ (Canada)

    2009-07-01

    This presentation summarized the oil shale tailings management program used at the Anvil Points mining site in Colorado. Decommissioning and reclamation of the site occurred between 1984 and 1986. The geology of the region is comprised of Tertiary bedrock sedimentary formations and Quaternary formations on the surface. Oil shales mined at the facility are from the Eocene Green River formation. While the site lies within big game winter ranges, the areas around the shale pile supports are not a significant nesting or feeding habitat for wildlife. No sensitive plants are located on the waste shale pile. The program currently includes revegetation test plots and the reclamation of an area where heating oil storage tanks were located. The dumping area is currently being monitored, and geophysical surveys are being conducted. Documents produced by mining activities are also being reviewed. Results of the study to date have indicated the presence of asbestos-containing materials, significant physical hazards, and significant cultural resources. An engineering evaluation and cost analysis has demonstrated that arsenic, beryllium, and iron exceed established soil screening levels. It was concluded that off-site removal actions will be conducted to prevent or reduce human exposure to the metals of concern. tabs., figs.

  3. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  4. Technical considerations for Plowshare applications to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, David B [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States); Bray, Bruce G [CER Geonuclear Corporation, Las Vegas, NV (United States); Sohns, Harold W [U. S. Bureau of Mines, Laramie, WY (United States)

    1970-05-15

    Nuclear explosions have been proposed for use in the recovery of oil from deep oil shale deposits. Before commercial feasibility can be established, a variety of technical problems must be examined. Some of these are related to nuclear explosion effects, others to the recovery of oil from the broken rock. Among the primary areas of interest are fracturing, chimney collapse, rubble size distribution, radioactivity, and retorting methods and variables. To test the concept, nuclear explosion experiments will be needed. One such experiment. Project Bronco, has been designed in detail, and is used here to illustrate a possible direction of development. The design is based on the following objectives: to evaluate the overall feasibility of nuclear breaking, followed by in situ retorting; to investigate the gross physical effects of a nuclear explosion in oil shale, and to assess the role of radioactivities in the production of oil by in situ retorting. The experimental plan provides for the accomplishment of these objectives by appropriate preshot studies, a postshot examination of explosion effects, and experimental retorting of the nuclear chimney. (author)

  5. Technical considerations for Plowshare applications to oil shale

    International Nuclear Information System (INIS)

    Lombard, David B.; Bray, Bruce G.; Sohns, Harold W.

    1970-01-01

    Nuclear explosions have been proposed for use in the recovery of oil from deep oil shale deposits. Before commercial feasibility can be established, a variety of technical problems must be examined. Some of these are related to nuclear explosion effects, others to the recovery of oil from the broken rock. Among the primary areas of interest are fracturing, chimney collapse, rubble size distribution, radioactivity, and retorting methods and variables. To test the concept, nuclear explosion experiments will be needed. One such experiment. Project Bronco, has been designed in detail, and is used here to illustrate a possible direction of development. The design is based on the following objectives: to evaluate the overall feasibility of nuclear breaking, followed by in situ retorting; to investigate the gross physical effects of a nuclear explosion in oil shale, and to assess the role of radioactivities in the production of oil by in situ retorting. The experimental plan provides for the accomplishment of these objectives by appropriate preshot studies, a postshot examination of explosion effects, and experimental retorting of the nuclear chimney. (author)

  6. Method of concentrating oil shale by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, M

    1941-01-28

    A method is described of concentrating oil shale by flotation. It is characterized by grinding the shale to a grain size which, roughly speaking, is less than 0.06 mm. and more conveniently should be less than 0.05 mm., and followed by flotation. During the process the brown foam formed is separated as concentrate, while the black-brown to all-black foam is separated as a middle product, ground fine again, and thereafter floated once more. The patent contains five additional claims.

  7. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States); Minnick, Matthew [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States); Murray, Kyle [Colorado School of Mines, Golden, CO (United States); Mattson, Earl [Colorado School of Mines, Golden, CO (United States)

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  8. Organic material of the Messel oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, B.; Littke, R.

    1986-05-01

    According to chemism, the Messel oil shales belong to the Kerogen type II, formed by algae with additions of huminite detritus, i.e. residues of higher plants. This has been confirmed by the organo-petrographic studies reported. The oil shale deposits are characterised by their content of organic materials, the occurrence of a cream-coloured inertinite maceral, and of siderite. Hence, two facies can be clearly discriminated, the lower one containing relatively much organic material and the cream-coloured inertinite, but no siderite, and the upper facies exhibiting just the opposite. As the detritus is finely grained and quite uniform in content of huminite and silicate material, and only few spores and pollen have been found, there is reason to assume that the two facies represent sediments formed far from the border of the lake.

  9. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  10. The Resurgence of Shale Oil

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-09-01

    This study addresses the resilience factors of the American production of light tight oil, in particular regarding the evolution of the financial model, and the regulatory changes with the authorisation of exports for crude oil. The paper also evaluates the development perspectives of the production on the medium and long term. US production of light tight oil (LTO, commonly known as 'shale oil') experienced a spectacular expansion between 2010 and 2014, becoming the largest source of growth in world oil production. At the start of 2015, however, the sustainability of its business model became questionable. Oil prices had collapsed and uncertainty about future US production was at its height. The sharp drop in the number of drill holes as of January 2015 raised fears of a rapid fall in US petroleum output. The LTO business model, based largely on the use of debt, reinforced this projection. Independent producers were heavily indebted, and were no longer able to invest in new wells. LTO production would therefore run out of steam. Two years later, LTO has passed its first test successfully. While output of shale gas has clearly fallen, cuts have been modest and much less than had been feared, given the falls in capital spending (CAPEX) and the number of drill holes. Productivity improvements as well as cost reductions have permitted a halving of the LTO equilibrium price. Independent producers have refocused their activities on the most productive basins and sites. The essential role played by the Permian Basin should be stressed at this point. In two years, it has become a new El dorado. Despite the fall in drill holes through to May 2016, production has continued to rise and now amounts to a quarter of American oil output. Furthermore, independents have drawn extra value from their well inventories, which include drilled, but also uncompleted wells. Lastly, the impressive number of drilled wells prior to price cuts has allowed producers to maintain their output

  11. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  12. Apparatus for recovering oil from Posidonien shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-04-13

    Equipment for recovering oil from shale and the like, as well as the distilling of coal is characterized in that a number of chambers provided in a known way with upper and lower air supply are arranged open to the receiver of the oil vapors through removable domes which can be attached to the usual oil-vapor carry-off. Arrangement is characterized in that the domes are movable to the side, so that they can be interchangeably attached to the different chambers.

  13. Refining shale-oil distillates

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, J

    1952-03-17

    A process is described for refining distillates from shale oil, brown coal, tar, and other tar products by extraction with selective solvents, such as lower alcohols, halogen-hydrins, dichlorodiethyl ether, liquid sulfur dioxide, and so forth, as well as treating with alkali solution, characterized in that the distillate is first treated with completely or almost completely recovered phenol or cresotate solution, the oil is separated from the phenolate with solvent, for example concentrated or adjusted to a determined water content of lower alcohol, furfural, halogen-hydrin, dichlorodiethyl ether, liquid sulfur dioxide, or the like, extracted, and the raffinate separated from the extract layer, if necessary after distillation or washing out of solvent, and freeing with alkali solution from residual phenol or creosol.

  14. Oil shale research and coordination. Progress report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R

    1981-01-01

    Purpose is to evaluate the environmental and health consequences of the release of toxic trace elements by an oil shale industry. Emphasis is on the five elements As, Mo, F, Se, and B. Results of four years' research are summarized and the research results over the past year are reported in this document. Reports by the task force are included as appendices, together with individual papers on various aspects of the subject topic. Separate abstracts were prepared for the eleven individual papers. A progress report on the IWG oil shale risk analysis is included at the end of this document. (DLC)

  15. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  16. Geochemical and petrographic investigation of Himmetoglu oil shale field, Goynuk, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sener, M.; Gundogdu, M.N. [General Directorate of Mineral Research and Exploration, Ankara (Turkey)

    1996-09-01

    The Himmetoglu field is a good example of oil shale fields in Turkey. Mineral and maceral types show that the huminite and liptinite groups tend to be associated with smectite, clinoptilolite and calcite in Himmetoglu oil shale, while the liptinite group is accompanied by analcime and dolomite in bituminous laminated marl. The pH value increases from bottom (pH {lt} 9) to top (pH {gt} 9) in the Himmetoglu formation and volcanogenic materials have played a very important role in deposition of organic matter. The negative correlation between trace elements and organic carbon suggests absence of enrichment of trace elements in oil shales. The results of g.c.-m.s. and carbon isotope analysis show that there is a decrease in the amount of terrestrial organic matter and a relative decrease in maturity of the organic matter in the vertical succession from Himmetoglu oil shape up to the bituminous laminated marl. 8 refs., 6 figs., 5 tabs.

  17. Plan and justification for a Proof-of-Concept oil shale facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  18. Generation and migration of Bitumen and oil from the oil shale interval of the Eocene Green River formation, Uinta Basin, Utah

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.

    2016-01-01

    The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.

  19. Trace elements in oil shale. Progress report, 1976--1979

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W.R.

    1979-01-01

    The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements (As, B, F, Mo, Se) by shale oil production and use. Some of the particularly significant results are: The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. This implies that the number of analytical determinations required of processed shales is not large. Leachate studies show that significant amounts of B, F, And Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements ae not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Upon oxidation a drastic lowering in pH is observed. Preliminary data indicates that this oxidation is catalyzed by bacteria. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. These amounts depend upon the process and various site specific characteristics. In general, the amounts taken up decrease with increasing soil cover. On the other hand, we have not observed significant uptake of As, Se, and F into plants. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. In particular, most of the Cd, Se, and Cr in shale oil is associated with the organic fraction containing most of the nitrogen-containing compounds.

  20. Studies on the utilization of PETROSIX process pyrolysed oil shale for pozzolans production

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, M C; Souza Santos, P de; Schmal, M

    1984-08-01

    It was studied the possibility of utilization the PETROSIX Process pyrolised oil-shale as a raw material in the production of cementing materials emphasizing its use as pozzolan. Analysis of X-ray diffraction and spectrophotometry were used to determine the pozzolanic characteristics of the pyrolysed oil-shale. (Author).

  1. Geology of the oil shales of Messel near Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Matthess, G.

    1966-07-25

    The oil shale, with a thickness of nearly 190 m, represents the middle part of the strata of Messel. Freshly mined, it consists of about 40% water and about 25% organic matter. The rest are clay minerals, chiefly montmorillonite. Kaolinite, messelite, vivianite, pyrites, markasite, siderite, and gypsum occur in small quantities. The organic components are kerogens which are extraordinary rich in oxygen. They are tied adsorptively to montmorillonite. The bitumina are supposed to be chiefly derived from algae, in a smaller extent from fungi and pollen. Plants as well as the large ganoid fishes and the crocodiles indicate a tropical to subtropical climate and a larger extent of the former water system. The oil shales of Messel are preserved in a tectonic graben that is 1,000 m long and up to 700 m wide. This graben is divided into 3 depressions. Both depressions are close together in the south and diverge northward. The ground water lifted in the open mining shows high degrees of total hardness and unusual high sulfate and phosphate contents. These matters can be derived from the weathering events in the exposed oil shale. (133 refs.)

  2. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  3. Process of distillation of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, A L

    1968-08-16

    In an oil-shale distillation apparatus with a single retort, in which separate zones of preheating, distillation, combustion, and cooling are maintained, the operation is conducted at a presssure higher than the atmospheric pressure, preferably at a gage pressure between about 0.35 and 7.0 bars. This permits increasing the capacity of the installation.

  4. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  5. A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

    KAUST Repository

    Patzek, Tadeusz

    2017-10-18

    Over the last six years, crude oil production from shales and ultra-deep GOM in the United States has accounted for most of the net increase of global oil production. Therefore, it is important to have a good predictive model of oil production and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model thousands of wells in the Eagle Ford shale. Given well geometry, we obtain a one-dimensional nonlinear pressure diffusion equation that governs flow of mostly oil and solution gas. In principle, solutions of this equation depend on many parameters, but in practice and within a given oil shale, all but three can be fixed at typical values, leading to a nonlinear diffusion problem we linearize and solve exactly with a scaling

  6. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.; Brandt, Adam R.; Cai, Hao; Wang, Michael Q.; Vafi, Kourosh; Reedy, Robert C.

    2017-01-30

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gas (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.

  7. Centennial review-forecast--oil sands, shales spar for markets

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1967-09-01

    The relationship between possible developments of tar sands and oil shale deposits to the future of the oil and gas industry is examined. The Athabasca tar sands are estimated to contain 85 billion bbl of synthetic crude oil which can be exploited using currently available mining equipment and proven techniques. Another 240 billion bbl of synthetic crude are potentially available through in-situ extraction methods. Great Canadian Oil Sands Ltd. is using an extraction procedure which involves a surface mining operation, extraction and processing of the bitumen, and product shipments via a 266-mile pipeline. This procedure will be used to produce 45,000 bpd of synthetic crude and 300 ton per day of sulfur. Syncrude Canada Ltd. and Shell Canada Ltd. both have applied to the Alberta government for permission to operate 100,000-bpd operations. Syncrudes is a mining operation and Shell plans to use in-situ extraction. A number of companies have conducted research projects concerning shale oil recovery. The majority of these projects have been aimed at improving mining operations. In-situ retorting of kerogen and extraction of oil has also received consideration.

  8. Method of removing paraffin from mineral oils, shale oils, tar oils, and their fractions or residues

    Energy Technology Data Exchange (ETDEWEB)

    Palmquist, F T.E.

    1949-09-08

    A method is described for removing paraffin from mineral oils, shale oils, tar oils, and their fractions or residues by centrifuging in the presence of oil-dissolving and paraffin-precipitating solvents, by which the precipitated paraffin is made to pass through an indifferent auxiliary liquid, in which a removal of oil takes place, characterized in that as auxiliary liquid is used a liquid or mixture of liquids whose surface tension against the oil solution is sufficiently low for the paraffin to pass the layer of auxiliary liquid in the form of separate crystals.

  9. 78 FR 18547 - Oil Shale Management-General

    Science.gov (United States)

    2013-03-27

    ... the future below the point at which oil shale production would be profitable (i.e., competitive with... competition, employment, investment, productivity, innovation, or on the ability of United States-based..., innovation, or on the ability of United States-based enterprises to compete with foreign- based enterprises...

  10. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  11. Shale engineering application: the MAL-145 project in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Vassilellis, George D.; Li, Charles; Bust, Vivian K. [Gaffney, Cline and Associates (United States); Moos, Daniel; Cade, Randal [Baker Hughes Inc (United States)

    2011-07-01

    With the depletion of conventional fossil fuels and the rising energy demand, oil shale and shale gas are becoming an important component of the oil and gas markets in North America. The aim of this paper is to present a novel methodology for predicting production in shale and tight formations. This method, known as the shale engineering approach and modeling, provides reservoir simulations based on modeling the propagation of the simulated rock volume. This technique was applied to an Upper Devonian shale formation in West Virginia, United States, and was compared to available data such as production logs and downhole microseismic data. Results showed a good match between the shale engineering approach data and early well performance. This paper presented a new reservoir simulation methodology which is successful in forecasting production and which can also be used for field development design and optimization.

  12. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  13. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    Science.gov (United States)

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  14. Shale oil value enhancement research. Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The first year of this effort was focussed on the following broad objectives: (1) Analyze the molecular types present in shale oil (as a function of molecular weight distribution); (2) Determine the behavior of these molecular types in liquid-liquid extraction; (3) Develop the analytical tools needed to systematize the process development; (4) Survey the markets to assure that these have high value uses for the types found in shale oil; (5) Explore selective process means for extracting/converting shale oil components into concentrates of potentially marketable components; (6) Compile overview of the venture development strategy and begin implementation of that strategy. Each of these tasks has been completed in sufficient detail that we can now focus on filling in the knowledge gaps evident from the overview.

  15. Method of refining mineral and shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    1950-12-06

    A method is described for refining mineral oils, shale oils, tar oil. The oil is preferably treated with concentrated sulphuric acid, of not less than 90% by weight concentration or with chloro-sulphonic acid in order to extract the more reactive components of the oil. The solution (extract phase) is separated from the treated oil (raffinate phase) by centrifuging, characterised by centrifugally separating the extract phase from the raffinate phase before any noticeable chemical reaction with subsequent solution of acid reaction products in the raffinate phase has taken place. The acid remaining in the raffinate phase is allowed to react chemically with the more reactive constituents. The sludge formed is removed from the raffinate phase by centrifuging.

  16. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    International Nuclear Information System (INIS)

    1993-01-01

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program's oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994

  17. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  18. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James [Texas Tech Univ., Lubbock, TX (United States); Li, Lei [Texas Tech Univ., Lubbock, TX (United States); Yu, Yang [Texas Tech Univ., Lubbock, TX (United States); Meng, Xingbang [Texas Tech Univ., Lubbock, TX (United States); Sharma, Sharanya [Texas Tech Univ., Lubbock, TX (United States); Huang, Siyuan [Texas Tech Univ., Lubbock, TX (United States); Shen, Ziqi [Texas Tech Univ., Lubbock, TX (United States); Zhang, Yao [Texas Tech Univ., Lubbock, TX (United States); Wang, Xiukun [Texas Tech Univ., Lubbock, TX (United States); Carey, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nguyen, Phong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porter, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jimenez-Martinez, Joaquin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mody, Fersheed [Apache Corp., Houston, TX (United States); Barnes, Warren [Apache Corp., Houston, TX (United States); Cook, Tim [Apache Corp., Houston, TX (United States); Griffith, Paul [Apache Corp., Houston, TX (United States)

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  19. Shale oil value enhancement research. Quarterly report, March 1 - May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Activities during this quarter focused on integrating the various tasks and elements. During Phase-1, substantial effort was placed on designing and automating the identification of molecular types present in shale oil. The ability to know the molecular composition and to track a given ``target`` species through the initial concentration steps was deemed critically important to the ultimate success of the three-phase project. It has been this molecular tracking ability that clearly distinguishes the JWBA work from prior shale oil research. The major software and hardware tasks are not in place to rapidly perform these analytical efforts. Software improvements are expected as new questions arise. The existence of the major nitrogen and oxygen types in shale oil has been confirmed. Most importantly, the ability to convert higher molecular weight types to lower molecular weight types was preliminarily confirmed in the present quarter. This is significant because it confirms earlier hypothesis that values are found though out the boiling range. Potential yields of extremely high value chemicals, e.g., $1000/bbl of up to 10% by weight of the barrel remain a feasible objective. Market and economic assessment continue to show encouraging results. Markets for specialty and fine chemicals containing a nitrogen atom are expanding both in type and application. Initial discussions with pharmaceutical and agrochemical industries show a strong interest in nitrogen-based compounds. Major progress was made during this quarter in completing agreements with industry for testing of shale oil components for biological activity. Positive results of such testing will add to the previously known applications of shale oil components as pure compounds and concentrates. During this quarter, we will formulate the pilot plant strategy for Phase-11(a).

  20. Determination of Heating Value of Estonian Oil Shale by Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Aints

    2018-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS combined with multivariate regression analysis of measured data were utilised for determination of the heating value and the chemical composition of pellets made from Estonian oil shale samples with different heating values. The study is the first where the oil shale heating value is determined on the basis of LIBS spectra. The method for selecting the optimal number of spectral lines for ordinary multivariate least squares regression model is presented. The correlation coefficient between the heating value predicted by the regression model, and that measured by calorimetric bomb, was R2=0.98. The standard deviation of prediction was 0.24 MJ/kg. Concentrations of oil shale components predicted by the regression model were compared with those measured by ordinary methods.

  1. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  2. Mud Lake, a modern analog of oil shale deposition in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J.D.

    1987-01-01

    Mud Lake in north-central Florida was identified by Bradley as an analog of oil shale-type kerogen deposition. This lake supports an abundant diatom and algal flora which is unique in that the accumulating algal ooze does not decay as long as it stays oxygenated. This same material does not nutritionally support many invertebrates, owing to its flocculent consistency and apparent indigestibility, although fish are abundant and an occasional crocodile is found in the lake. Accumulation of the algal ooze is very slow at roughly 1 foot per 52,000 years based on radiocarbon dates. An understanding of oil shale depositional conditions could be translated into a predictive model for location and recognition of hydrocarbon generating source rocks. When oil shales are mentioned the first association is likely to be that with the Eocene Green River Formation of the Western US. Conditions leading to deposition and preservation of this massive quantity of organic debris is difficult to comprehend, but recognition of modern analogs provide an available area for study and comparison.

  3. Environmental control technology for shale oil wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Wakamiya, W.; Bell, N.E.; Mason, M.J.; Spencer, R.R.; English, C.J.; Riley, R.G.

    1982-09-01

    This report summarizes the results of studies conducted at Pacific Northwest Laboratory from 1976 to 1982 on environmental control technology for shale oil wastewaters. Experimental studies conducted during the course of the program were focused largely on the treatment and disposal of retort water, particularly water produced by in situ retorting of oil shale. Alternative methods were evaluated for the treatment and disposal of retort water and minewater. Treatment and disposal processes evaluated for retort water include evaporation for separation of water from both inorganic and organic pollutants; steam stripping for ammonia and volatile organics removal; activated sludge and anaerobic digestion for removal of biodegradable organics and other oxidizable substances; carbon adsorption for removal of nonbiodegradable organics; chemical coagulation for removal of suspended matter and heavy metals; wet air oxidation and solvent extraction for removal of organics; and land disposal and underground injection for disposal of retort water. Methods for the treatment of minewater include chemical processing and ion exchange for fluoride and boron removal. Preliminary cost estimates are given for several retort water treatment processes.

  4. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  5. Emission from Estonian oil shale power plants

    International Nuclear Information System (INIS)

    Aunela, L.; Haesaenen, E.; Kinnunen, V.; Larjava, K.; Mehtonen, A.; Salmikangas, T.; Leskelae, J.; Loosaar, J.

    1995-01-01

    Flue gas emissions from pulverized oil shale fired boilers of Estonian and Baltic power plants have been studied. The concentrations of NO x , CO, C x H y , HCI, Hf and polycyclic aromatic hydrocarbons in flue gases have been found to be relatively low and acceptable according to German emission limits, for instance. Desulphurization degree of flue gases by SO 2 absorption with ash has been found to vary defending on boiler type and operation conditions. In spite of significant sulphur capture (average values for different boilers in the range between 68 and 77 % of the initial sulphur content of the fuel), SO 2 concentrations in flue gases remain still very high (up to 2600 mg/m 3 , 10% O 2 ). Very high concentrations of particles, especially at Estonian Power Plant (up o 6250 mg/m 3 , 10 % 0 2 ) have been detected. Heavy metal emissions were too high by the reason of particle control insufficiency as well. Yearly emission estimates of this study support the former Estonian ones within the range of 10-15 %. (author)

  6. Oil shale mining and processing impact on landscapes in north-east Estonia

    International Nuclear Information System (INIS)

    Toomik, Arvi; Liblik, Valdo

    1998-01-01

    As the world's largest commercial oil shale reserve, the Estonian Oil Shale Deposit has been exploited since 1916. As a result of mining, storing of solid wastes from the oil shale separation, combustion in the power plants and its thermal processing, the landscape in northeastern Estonia has been essentially changed and the man-made landforms have developed: the new microreliefs of natural and artificial structure are formed, as well as 'mountainous' and hilly reliefs in the form of waste heaps, ash plateaus, coke-ash dumps etc. Deformed (stable) and undeformed (unstable) areas from underground mining currently cover about 220km 2 . About 90km 2 (80%) of the area damaged by open pits are recultivated and reformed as forested and agricultural (grassland) areas. The total area occupied by solid waste has reached up to 26km 2 . New technogenic landscape units, i.e. made by technical means, will essentially influence the environment

  7. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  8. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Hasfurther, V.

    1992-01-01

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells

  9. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  10. Isothermal decomposition of Baltic oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aarna, A Ya

    1955-01-01

    Heating oil shale at 300/sup 0/ to 440/sup 0/C yields a primary tar. Longer heating, regardless of temperature, results in the formation of heavier tar fractions. Higher temperatures tend to increase the middle and high-boiling fractions and to increase the concentration of unsaturated hydrocarbons at the expense of saturated hydrocarbons. Phenols appear, even at lower heating temperatures, indicating that aromatic structures are present or generated during the process.

  11. Geological settings of the protected Selisoo mire (northeastern Estonia threatened by oil shale mining

    Directory of Open Access Journals (Sweden)

    Helen Hiiemaa

    2014-05-01

    Full Text Available The protected Selisoo mire in northeastern Estonia is located above valuable oil shale resources, partly in the permitted mining area. We describe in detail the geomorphology and geological setting of the mire to understand the natural preconditions for its formation, development and preservation. We used the LiDAR-based digital elevation model for relief analysis, mapped the peat thickness with ground-penetrating radar and described the Quaternary cover through corings. Ridges, oriented perpendicular to the generally southward-sloping terrain, and shallow depressions at the surface of mineral soil have influenced mire formation and its spatio-temporal dynamics. The Quaternary cover under the mire is thin and highly variable. Therefore the mire is hydro­geologically insufficiently isolated from the limestone bedrock that is drained by the nearby oil shale mine and consequently the mining activities approaching the mire may have a negative influence on the wetland and proposed Natura 2000 site. Natura 2000 type wetlands, both protected or currently outside the nature reserves, cover a significant portion of the prospective oil shale mining areas. The distribution and resilience of those sites may significantly influence further utilization of oil shale resources.

  12. Strategies for displacing oil

    Science.gov (United States)

    Rao, Vikram; Gupta, Raghubir

    2015-03-01

    Oil currently holds a monopoly on transportation fuels. Until recently biofuels were seen as the means to break this stranglehold. They will still have a part to play, but the lead role has been handed to natural gas, almost solely due to the increased availability of shale gas. The spread between oil and gas prices, unprecedented in its scale and duration, will cause a secular shift away from oil as a raw material. In the transport fuel sector, natural gas will gain traction first in the displacement of diesel fuel. Substantial innovation is occurring in the methods of producing liquid fuel from shale gas at the well site, in particular in the development of small scale distributed processes. In some cases, the financing of such small-scale plants may require new business models.

  13. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  14. Depositional Environment of the Sangkarewang Oil Shale, Ombilin Basin, Indonesia

    Directory of Open Access Journals (Sweden)

    Komang Anggayana

    2014-12-01

    Full Text Available Five samples from 56 m long drill core of lacustrine Sangkarewang oil shale have been studied by means of petrography and organic geochemistry to investigate the organic matter composition and depositional environments of the shale. The organic matter consists of abundant lamalginite (30%, v/v and very limited amount of vitrinite, suggesting aquatic depositional environments with minor terrestrial influence. Organic geochemical analysis exhibits the dominance of pristane, phytane, and generally n-alkanes compounds. These compounds might originate mostly from aquatic photosynthetic organisms. The oil shale was likely deposited in anoxic lake environments, suggested by the presence of framboidal pyrite (6%, v/v and preserved organic matter with total organic carbon (TOC about 4.9%. The pristane/phytane ratio is relatively high about 3.9 and thought as source sensitive rather than redox sensitive. Hopanoid and aryl isoprenoid compounds are present in minor amounts. The latter compounds are interpreted to be derived from green sulfur bacteria dwelling in anoxic and the presence of H2S in bottom water.

  15. Process of preparing artificial stone from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-02-10

    A process for the preparation of artificial stone from oil-shale slag is characterized by the fact that the coarse part of the ground slag before working into artificial stone is saturated with water and serves as filler, while the fine part is milled to dust and forms the binding material.

  16. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

    1992-11-01

    The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3x3.0x3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992

  17. On possibilities to decrease influence of oxidation processes on oil yield at oil shale retorting

    International Nuclear Information System (INIS)

    Yefimov, V.; Loeoeper, R.; Doilov, S.; Kundel, H.

    1993-01-01

    At the present technical level retorting is carried out so that an increase in specific air consumption results in an increase of oxygen ingress into the semi coking shaft. At the same time a direct relationship between the degree of volatiles pyrolysis and specific air consumption was observed. This regularity enables to assume that within the reaction volume there occurs most likely the thermo oxidative pyrolysis of volatile products, not the oxidation of oil shale as it is considered traditionally. The main source of oxygen ingress ed into the semi coking shaft at processing oil shale in retorts is the process of spent shale. This process is not fully elaborated for utilization in commercial scale and can not be arranged so that the ingress of oxygen into the smacking chamber could be eliminated. In case of a slower semi coke gasification process and reduced specific air consumption for gasification the absolute amount of oxygen ingress ed into the semi coking shaft also decreases. One of the efficient methods to decrease specific air consumption is to build furnaces into the semi coking chamber to obtain additional amount of heat carrier by combusting generator gas. The maximum effect is reached when steam-and-air blow is completely replaced by recycle gas: specific air consumption is reduced whereas recycle gas is deoxygenated in the cooling zone while passing through spent shale bed which has the temperature of about 500 deg C. Another possible source of oxygen to the semi coking shaft with heat carrier is production of flue gases by combusting recycle gas in burners built in retorts. We consider the recycle gas employed upon processing oil shale in retorts hardly to be an appreciable source of the oxygen ingress into the semi coking shaft. Additional amounts of residual oxygen containing in recycle gas fed into both cooling zone and furnaces are practically totally consumed at gas combusting and passing across the bed of semi coke heated up to approximately

  18. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-01-01

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  19. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-12-31

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  20. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The revolution of shale oils in the United States. The business model is being tested

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2015-01-01

    This report proposes an overview of LTO (Light Tight Oil or shale oil) production in the USA, and examines the consequences of oil price fall on its future level. The first part gives an assessment of five years of this revolution which follows the shale gas revolution. It addresses the most remarkable evolutions: spectacular development of production, decrease of oil imports, increase of oil product exports, and a move towards oil independence. The second part highlights some peculiarities of shale oils and of the resulting business model which is much different from the Exploration/Production model for conventional oil. It analyses the LTO economy and breakeven prices required for a continued investment. Technological advances which are at the basis of this revolution are addressed, and expected improvements on a short or medium term are described. The main financial indicators are then presented as the financial situation of LTO producers is a crucial factor for future investment levels. The last chapter reports the study of the impact of price decrease on capital expenditures (CAPEX) of American producers, and on the drilling activity. It seems that LTO production will resist to price decrease

  2. Oil Shale and Its Relation to Petroleum and Other Fuels (Summary Les schistes à l'huile et leurs relation avec le pétrole et les autres combustibles (résumé

    Directory of Open Access Journals (Sweden)

    Billo S. M.

    2006-10-01

    Full Text Available World oil reserves in oil shales (1. 2 to 2 trillion barrels are at least 4 times as large as proven crude oil petroleum reserves (310 billion barrels. Petroleum is produced from oil shale by pyrolysis (destructive distillation by hecit. Coal can also be converted ta synthetic petroleum products by direct hydrogenation and by the modified Fischer-Tropsch process. Rising cost of oil exploration and production and increasing efficiency of synthetizing processes indicate that synthetic fuels may increase the supply of natural liquid fuels in the foreseeable future. The term kerogen is often used to comprise all the organic matter contained in sediments and may be of two kinds: 1 coalylike kerogen, and 2 sapropellic kerogen - oil shale type. It is believed that both kerogen and petroleum were formed from hypothetical ancestor - protopetroleum. They are found together in sedimenfs and their C13C12 ratios are similar. The largest producer of oil shale ore China, the USSR and Sweden. The USA is technologically prepared to begin production of synthetized fuels through varying economic condition. Richness and size of deposits, cost of mining, cost of retorting, character of products, and location of deposit in relation to plant and market, determine the economic value of a given deposit. Les réserves mondiales de schistes à huile (1,2 à 2 x 10. 12 barils sont au moins quatre fois supérieures aux réserves prouvées de pétrole brut (310 x 10. 9 barils. On extrait le pétrole des schistes par pyrolyse (distillation destructive thermique. Le charbon peut aussi être transformé en hydrocarbures par hydrogénation et par le procédé Fischer-Tropsch modifié. L'augmentation des coûts de l'exploration et de la production du pétrole et amélioration de l'efficacité des procédés synthétiques montrent que les produits synthétiques vont jouer un rôle croissant dans l'approvisionnement en combustibles liquides au cours des années à venir. Le terme k

  3. Perspective usage estimation of Volga region combustible shale as a power generating fuel alternative

    Science.gov (United States)

    Korolev, E.; Barieva, E.; Eskin, A.

    2018-05-01

    A comprehensive study of combustible shale, common within Tatarstan and Ulyanovsk region, is carried out. The rocks physicochemical parameters are found to meet the power generating fuels requirements. The predictive estimate of ash products properties of combustible shale burning is held. Minding furnace process technology it is necessary to know mineral and organic components behavior when combustible shale is burnt. Since the first will determine slagging properties of energy raw materials, the second – its calorific value. In consideration of this the main research methods were X-ray, thermal and X-ray fluorescence analyses. Summing up the obtained results, we can draw to the following conclusions: 1. The combustible shale in Tatarstan and the Ulyanovsk region has predominantly low calorific value (Qb d = 5-9 MJ/kg). In order to enhance its efficiency and to reduce cost it is possible to conduct rocks burning together with some other organic or organic mineral power generating fuels. 2. High ash content (Ad = 60-80%) that causes a high external ballast content in shale implies the appropriateness of using this fuel resource next to its exploitation site. The acceptable distance to a consumer will reduce unproductive transportation charges for large ash and moisture masses. 3. The performed fuel ash components characteristics, as well as the yield and volatiles composition allow us to specify the basic parameters for boiler units, designed for the Volga combustible shale burning. 4. The noncombustible residual components composition shows that shale ash can be used in manufacture of materials of construction.

  4. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  5. The investigation for attaining the optimal yield of oil shale by integrating high temperature reactors

    International Nuclear Information System (INIS)

    Bhattacharyya, A.T.

    1984-03-01

    This work presents a systemanalytical investigation and shows how far a high temperature reactor can be integrated for achieving the optimal yield of kerogen from oil shale. About 1/3 of the produced components must be burnt out in order to have the required high temperature process heat. The works of IGT show that the hydrogen gasification of oil shale enables not only to reach oil shale of higher quality but also allows to achieve a higher extraction quantity. For this reason a hydro-gasification process has been calculated in this work in which not only hydrogen is used as the gasification medium but also two high temperature reactors are integrated as the source of high temperature heat. (orig.) [de

  6. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    Science.gov (United States)

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  7. A lithology identification method for continental shale oil reservoir based on BP neural network

    Science.gov (United States)

    Han, Luo; Fuqiang, Lai; Zheng, Dong; Weixu, Xia

    2018-06-01

    The Dongying Depression and Jiyang Depression of the Bohai Bay Basin consist of continental sedimentary facies with a variable sedimentary environment and the shale layer system has a variety of lithologies and strong heterogeneity. It is difficult to accurately identify the lithologies with traditional lithology identification methods. The back propagation (BP) neural network was used to predict the lithology of continental shale oil reservoirs. Based on the rock slice identification, x-ray diffraction bulk rock mineral analysis, scanning electron microscope analysis, and the data of well logging and logging, the lithology was divided with carbonate, clay and felsic as end-member minerals. According to the core-electrical relationship, the frequency histogram was then used to calculate the logging response range of each lithology. The lithology-sensitive curves selected from 23 logging curves (GR, AC, CNL, DEN, etc) were chosen as the input variables. Finally, the BP neural network training model was established to predict the lithology. The lithology in the study area can be divided into four types: mudstone, lime mudstone, lime oil-mudstone, and lime argillaceous oil-shale. The logging responses of lithology were complicated and characterized by the low values of four indicators and medium values of two indicators. By comparing the number of hidden nodes and the number of training times, we found that the number of 15 hidden nodes and 1000 times of training yielded the best training results. The optimal neural network training model was established based on the above results. The lithology prediction results of BP neural network of well XX-1 showed that the accuracy rate was over 80%, indicating that the method was suitable for lithology identification of continental shale stratigraphy. The study provided the basis for the reservoir quality and oily evaluation of continental shale reservoirs and was of great significance to shale oil and gas exploration.

  8. The Messel oil shale - an algae laminate. [A]. Der Messeler Oelschiefer - ein Algenlaminit

    Energy Technology Data Exchange (ETDEWEB)

    Goth, K. (Forschungsinstitut Senckenberg, Frankfurt am Main (Germany). Palaeontologische Sektion)

    1990-12-31

    The lacustrine sediment exposed at the former open cast mine 'Grube Messel', the Messel Oil Shale, consists of allochthonous, autochthonous and autigenous components. A low sedimentation rate (0,1-0,2 mm/a) and an increasing content of coarser clastic material towards the edges of the structure indicate that the Messel lake was small and deep, with a limited drainage basin. The high organic content of the oil shale is made up mainly by cell walls of the coccal green alga Tetraedron minimum. This alga bloomed once a year and caused the lamination of the sediment, which was achieved by sinking of the dead cells. Synsedimentary slumping and sliding of the uppermost sediment layers destroyed the varve pattern in several horizons. These turbidite-like layers often yield a higher amount of coarse grains than the laminations above and below. By counting the seasonal laminae, and taking into account of slumped sediments an age of one million years for the deposition of the Messel Oil Shale is suggested. In extant lakes varved sediments are usually deposited below a chemocline. Therefore a meromictic stratification of the Messel lake water column is suggested. Chemical analyses of Tetraedron minimum cell wall material revealed that it is composed of a highly aliphatic biopolymer. In the Messel Oil Shale this biopolymer forms the kerogen which is, in this case, a result of selective preservation, not of abiological random polymerization of monomers during diagnesis. (orig.) With 29 tabs., 27 figs.

  9. Numerical Simulation of In Situ Combustion of Oil Shale

    Directory of Open Access Journals (Sweden)

    Huan Zheng

    2017-01-01

    Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.

  10. Shale gas. Shale gas formation and extraction

    International Nuclear Information System (INIS)

    Renard, Francois; Artru, Philippe

    2015-10-01

    A first article recalls the origin of shale gases and technological breakthroughs which allowed their exploitation, describes the development of shale gas exploitation in the USA during the 2000's and the consequences for the gas and electricity markets, and discusses the various environmental impacts (risks of pollution of aquifers, risks of induced seismicity, use and processing of drilling and production waters). The second article describes the formation of shale gas: presence of organic matter in sediments, early evolution with the biogenic gas, burrowing, diagenesis and oil formation, thermal generation of gas (condensates and methane). The author indicates the location of gas within the rock, and the main sites of shale oils and shale gases in the World. In the next part, the author describes the various phases of shale gas extraction: exploration, oriented drillings, well preparation for hydraulic fracturing, fracturing, processing of fracturing fluids, flow-back, gas production and transport, aquifer protection. He finally gives a brief overview of technical evolution and of shale gas economy

  11. Mason’s equation application for prediction of voltage of oil shale treeing breakdown

    Science.gov (United States)

    Martemyanov, S. M.

    2017-05-01

    The application of the formula, which is used to calculate the maximum field at the tip of the pin-plane electrode system was proposed to describe the process of electrical treeing and treeing breakdown in an oil shale. An analytical expression for the calculation of the treeing breakdown voltage in the oil shale, as a function of the inter-electrode distance, was taken. A high accuracy of the correspondence of the model to the experimental data in the range of inter-electrode distances from 0.03 to 0.5 m was taken.

  12. Parachute Creek Shale Oil Program Environmental Monitoring Program. Quarterly report, fourth quarter, October 1-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The document contains environmental compliance data collected in the fourth quarter of 1991, contents of reports on compliance data submitted to regulatory agencies, and supplemental analytical results from retorted shale pile runoff water collected following a storm event during the third quarter of 1991

  13. Life cycle greenhouse gas emissions, consumptive water use and levelized costs of unconventional oil in North America

    Science.gov (United States)

    Mangmeechai, Aweewan

    Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available

  14. Distillation of shale in situ

    Energy Technology Data Exchange (ETDEWEB)

    de Ganahl, C F

    1922-07-04

    To distill buried shale or other carbon containing compounds in situ, a portion of the shale bed is rendered permeable to gases, and the temperature is raised to the point of distillation. An area in a shale bed is shattered by explosives, so that it is in a relatively finely divided form, and the tunnel is then blocked by a wall, and fuel and air are admitted through pipes until the temperature of the shale is raised to such a point that a portion of the released hydrocarbons will burn. When distillation of the shattered area takes place and the lighter products pass upwardly through uptakes to condensers and scrubbers, liquid oil passes to a tank and gas to a gasometer while heavy unvaporized products in the distillation zone collect in a drain, flow into a sump, and are drawn off through a pipe to a storage tank. In two modifications, methods of working are set out in cases where the shale lies beneath a substantially level surface.

  15. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1946-08-29

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors from the zone, mixing fresh cold shale with the hydrocarbon vapors to quench the same, whereby the fresh shale is preheated, recovering hydrocarbon vapors and product vapors from the mixture and withdrawing preheated shale from the mixture and charging it to a shale distillation zone.

  16. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    Science.gov (United States)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  17. Simultaneous caving and surface restoration system for oil shale mining

    Energy Technology Data Exchange (ETDEWEB)

    Allsman, P.T.

    1968-10-01

    A modified caving method is introduced for mining oil shale and simultaneous restoration of the land surface by return of spent shale onto the subsided area. Other methods have been designed to mine the relatively thin richer beds occurring near outcrops in the Piceance Creek Basin of NW. Colorado. Since the discovery of the much thicker beds in the N.-central part of the basin, some attention has focused on in situ and open-pit methods of recovery. Although caving has been recognized as a possible means of mining shale, most people have been skeptical of its success. This stems from the unknown and salient factors of cavability and size of broken rock with caving. Wisdom would seem to dictate that serious evaluation of the caving method be made along with the other methods.

  18. Preliminary analysis of surface mining options for Naval Oil Shale Reserve 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-20

    The study was undertaken to determine the economic viability of surface mining to exploit the reserves. It is based on resource information already developed for NOSR 1 and conceptual designs of mining systems compatible with this resource. Environmental considerations as they relate to surface mining have been addressed qualitatively. The conclusions on economic viability were based primarily on mining costs projected from other industries using surface mining. An analysis of surface mining for the NOSR 1 resource was performed based on its particular overburden thickness, oil shale thickness, oil shale grade, and topography. This evaluation considered reclamation of the surface as part of its design and cost estimate. The capital costs for mining 25 GPT and 30 GPT shale and the operating costs for mining 25 GPT, 30 GPT, and 35 GPT shale are presented. The relationship between operating cost and stripping ratio, and the break-even stripping ratio (BESR) for surface mining to be competitive with room-and-pillar mining, are shown. Identification of potential environmental impacts shows that environmental control procedures for surface mining are more difficult to implement than those for underground mining. The following three areas are of prime concern: maintenance of air quality standards by disruption, movement, and placement of large quantities of overburden; disruption or cutting of aquifers during the mining process which affect area water supplies; and potential mineral leaching from spent shales into the aquifers. Although it is an operational benefit to place spent shale in the open pit, leaching of the spent shales and contamination of the water is detrimental. It is therefore concluded that surface mining on NOSR 1 currently is neither economically desirable nor environmentally safe. Stringent mitigation measures would have to be implemented to overcome some of the potential environmental hazards.

  19. Rapid estimation of organic nitrogen in oil shale wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Harris, G.J.; Daughton, C.G.

    1984-03-01

    Many of the characteristics of oil shale process wastewaters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogen heterocycles and aromatic amines. For the frequent performance assessment of waste treatment procsses designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential.

  20. Investigation of the Geokinetics horizontal in situ oil-shale-retorting process. Fourth annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L. (ed.)

    1981-03-01

    The Geokinetics in situ shale oil project is a cooperative venture between Geokinetics Inc. and the US Department of Energy. The objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conducted at a field site, Kamp Kerogen, located 70 miles south of Vernal, Utah. This Fourth Annual Report covers work completed during the calendar year 1980. During 1980 one full-size retort was blasted. Two retorts, blasted the previous year, were burned. A total of 4891 barrels of oil was produced during the year.

  1. Chemical composition of anthropogenic particles on needles collected close to the Estonian oil-shale power plants

    International Nuclear Information System (INIS)

    Meinander, O.

    1995-01-01

    Within the countries surrounding the Baltic Sea, north-eastern Estonia is among the most polluted areas. Emissions from the oil-shale power plants produce air pollution problems both locally and on a larger scale. In the atmosphere, pollutants mix and convert. Consequently, the particles deposited due to the use of oil-shale can have various chemical compositions. From the point of view of air chemistry, ecological effects and air pollution modelling, knowledge of the chemical composition of the deposited particles can be of great value. The aim of this work was to study the chemical composition of single anthropogenic particles occurring on needle surfaces in north-eastern Estonia and Southern Finland close to the Estonian oil-shale power plants. For the purpose, scanning electron microscopical microanalysis was used

  2. Technogenic waterflows generated by oil shale mining: impact on Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Liblik, V.

    2000-01-01

    The correlation between natural (meteorological, hydrological) and technogenic (mining-technological, hydrogeological, hydrochemical) factors caused by oil shale mining in the Purtse catchment region in northeastern Estonia during 1990-1998 has been studied. As a result of a complex effect of these factors (correlation coefficients r = 0. 60-0.86), a so-called hydrogeological circulation of water has been formed in the catchment area. It totals 25-40 % from the whole amount of mine water pumped out at the present, but in the near future it will reach even up to 50-55 %. On the ground of average data, a conceptual balance scheme of water circulation (cycles) for the Purtse catchment landscape has been worked out. It shows that under the influence of technogenic waterflows a new, anthropogenic biogeochemical matter cycling from geological environment into hydrological one has been formed in this catchment area. Transition of the macro- and microelements existing in the composition of oil shale into the aqueous solution and their distribution in mine water are in a good harmony with the so-called arrangement of the elements by the electrode potentials. The technogenic hydrochemical conditions arising in the catchment rivers will not disappear even after finishing oil shale mining. (author)

  3. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  4. Unocal Parachute Creek Shale Oil Program Environmental Monitoring Program. Annual report, October 1, 1990-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains summaries of compliance and supplemental environmental and industrial hygiene and health surveillance monitoring conducted during the period; compliance permits, permit changes, and Notices of Violations discussions; statistical significance of Employee General Health information, medical histories, physical exams, pulmonary functions, clinical tests and demographics; independent audit reports; and a description of retorted shale disposal activities

  5. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Yang, Yu; Lu, Xiaofeng; Wang, Quanhai

    2017-01-01

    Highlights: • The co-combustion characteristic parameters were studied. • The co-combustion of oil shale and semi-coke could be expressed roughly by the addition of individual components. • Activation energy was calculated by Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. - Abstract: In the present work, thermogravimetric analysis was employed to investigate co-combustion behaviors of Fushun low calorific oil shale and its semi-coke. The synergy effect was estimated by using the interaction coefficient and the relative error of mean square root. In addition, activation energy was also calculated by means of Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. Results indicated that with the increase of oil shale mass fraction and oxygen concentration, combustion characteristics of the samples were improved. And some little interaction did occur during the co-combustion process, but it was relatively slight. Consequently, the co-combustion of oil shale and semi-coke still could be expressed roughly by the addition of individual components of the mixtures. Furthermore, activation energy of the samples decreased slowly at the initial stage attributed to the minerals’ catalytic effects, and in the final stage, it jumped to a high value, suggesting that the burnout of the samples was difficult. Besides, the mix proportion of oil shale which was added to stabilize the combustion in the circulating fluidized bed was also theoretically calculated.

  6. Risks and mitigation options for on-site storage of wastewater from shale gas and tight oil development

    International Nuclear Information System (INIS)

    Kuwayama, Yusuke; Roeshot, Skyler; Krupnick, Alan; Richardson, Nathan; Mares, Jan

    2017-01-01

    We provide a critical review of existing research and information regarding the sources of risk associated with on-site shale gas and tight oil wastewater storage in the United States, the gaps that exist in knowledge regarding these risks, policy and technology options for addressing the risks, and the relative merits of those options. Specifically, we (a) identify the potential risks to human and ecological health associated with on-site storage of shale gas and tight oil wastewater via a literature survey and analysis of data on wastewater spills and regulatory violations, (b) provide a detailed description of government regulations or industry actions that may mitigate these risks to human and ecological health, and (c) provide a critical review of this information to help generate progress toward concrete action to make shale gas and tight oil development more sustainable and more acceptable to a skeptical public, while keeping costs down. - Highlights: • We review current research/information on shale gas and tight oil wastewater storage. • Pit overflows, tank overfills, and liner malfunctions are common spill causes. • Tanks lead to smaller and less frequent spills than pits, but are not a magic bullet. • State regulations for on-site oil and gas wastewater storage are very heterogeneous.

  7. Apparatus for utilizing liquid hydrocarbons such as shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, M

    1868-02-29

    The hydrocarbon liquids such as petroleum, shale oil, naphtha, cresol, coal tar, or other mineral, animal or vegetable oil are placed in a heater or special generator analogous to ordinary generators for vapors and to which the name vaporizer has been given in the description. This vaporizer is furnished with all kinds of safety devices, such as valves, manometer, float indicating the level, standard stopcock, etc., and is heated by the combustion of the vapors produced by it.

  8. Recovery of very viscous lubricating oils from shale-tar, etc

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, E

    1918-01-22

    A process is disclosed for the recovery of very viscous lubricating oils from brown-coal tar and shale tar, consisting in driving off from the crude tar or the tar freed from volatile constituents after removal of paraffin by precipitation with a volatile solvent such as acetone or one of its homologs, the light oils more or less completely with superheated steam from about 200 to 250/sup 0/C without any outside heating over a free flame.

  9. Process for retorting shale

    Energy Technology Data Exchange (ETDEWEB)

    1952-03-19

    The method of retorting oil shale to recover valuable liquid and gaseous hydrocarbons consists of heating the oil shale in a retorting zone to a temperature sufficient to convert its kerogenic constituents to normally liquid and normally gaseous hydrocarbons by contact with hot gas previously recovered from shale, cooling the gases and vapors effluent from the retorting zone by direct countercurrent contact with fresh shale to condense the normally liquid constituents of the gases and vapors, separating the fixed gas from the liquid product, heating the fixed gas, and returning it to the retorting zone to contact further quantities of shale.

  10. Characterization of oil shale residue and rejects from Irati Formation by Electron Paramagnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, S.L.; Brinatti, A.M.; Saab, S.C. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Fisica; Simoes, M.L.; Martin-Neto, L. [Embrapa Instrumentacao Agropecuaria, Sao Carlos, SP (Brazil); Rosa, J.A. [IAPAR - Unidade Regional de Pesquisa, Ponta Grossa, PR (Brazil); Mascarenhas, Y. P. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2009-03-15

    In this study, sedimentary organic matter of oil shale rejects, calschist, shale fine and the so called retorted shale from Irati formation was characterized. EPR was used to analyse the samples regarding loss of signal in g = 2:003 associated to the organic free radical with the calcined samples and washing with hydrogen peroxide. The radical signal was detected in all samples, however, for the calschist and shale fine samples another signal was identified at g = 2:000 which disappeared when the sample was heated at 400 deg C. Hydrogen peroxide washing was also performed and it was noted that after washing the signal appeared around g = 2:000 for all samples, including retorted shale, which might be due to the quartz E1 defect. (author)

  11. Total lead (Pb) concentration in oil shale ash samples based on correlation to isotope Pb-210 gamma-spectrometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaasma, T.; Kiisk, M.; Tkaczyk, A.H. [University of Tartu (Estonia); Bitjukova, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    Estonian oil shale consists of organic matter and mineral material and contains various amounts of heavy metals as well as natural radionuclides (from the U-238 and Th-232 series and K-40). Previous research has shown that burning oil shale in the large power plants causes these radionuclides to become enriched in different ash fractions and be partially emitted to the atmosphere via fly ash and flue gases. The activity concentrations (Bq/kg) of these nuclides in different oil shale ash fractions vary significantly. This is influenced by the boiler parameters and combustion conditions - prevailing temperatures, pressure, ash circulating mechanisms, fly ash particle size, chemical composition of ash and coexistence of macro and micro components. As with radionuclides, various heavy metals remain concentrated in the ash fractions and are released to the atmosphere (over 20 tons of Pb per year from Estonian oil shale power plants). Lead is a heavy metal with toxic influence on the nervous system, reproductive system and different organs in human body. Depending on the exposure pathways, lead could pose a long term health hazard. Ash samples are highly heterogeneous and exhibit great variability in composition and particle size. Determining the lead concentration in ash samples by modern methods like inductively coupled plasma mass spectroscopy (ICP-MS), flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectroscopy (GFAAS) and other techniques often requires time consuming, multistage and complex chemical sample preparation. The list of possible methods to use is lengthy, but it is a challenge to choose a suitable one to meet measurement needs and practical considerations. The detection limits, capital costs and maintenance expenses vary between the instruments. This work presents the development of an alternative measurement technique for our oil shale ash samples. Oil shale ash was collected from different boilers using pulverized fuel

  12. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    Science.gov (United States)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better

  13. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.

    2013-01-01

    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  14. Modeling and simulation of a novel 4.5 kW_e multi-stack solid-oxide fuel cell prototype assembly for combined heat and power

    International Nuclear Information System (INIS)

    Anyenya, Gladys A.; Sullivan, Neal P.; Braun, Robert J.

    2017-01-01

    Highlights: • A novel CHP application of SOFC technology in unconventional oil and gas processing. • Thermo-electrochemical performance model of a multi-stack solid-oxide fuel cell (SOFC) assembly is described. • Parametric study explores a wider range of operating conditions than can be experimentally tested. • Geothermic Fuel Cell operational characteristics are reviewed. - Abstract: The United States Geological Survey estimates that over four trillion barrels of crude oil are currently trapped within U.S. oil shale reserves. However, no cost-effective, environmentally sustainable method for oil production from oil shale currently exists. Given the continuing demand for low-cost fossil-fuel production, alternative methods for shale-oil extraction are needed. Geothermic Fuel Cells™ (GFC) harness the heat generated by high-temperature solid oxide fuel cells during electricity generation to process oil shale into “sweet” crude oil. In this paper, a thermo-electrochemical model is exercised to simulate the performance of a 4.5 kW_e (gross) Geothermic Fuel Cell module for in situ oil-shale processing. The GFC analyzed in this work is a prototype which contains three 1.5 kW_e solid oxide fuel cell (SOFC) stack-and-combustor assemblies packaged within a 0.3 m diameter, 1.8 m tall, stainless-steel housing. The high-temperature process heat produced by the SOFCs during electricity generation is used to retort oil shale within underground geological formations into high-value shale oil and natural gas. A steady-state system model is developed in Aspen Plus™ using user-defined subroutines to predict the stack electrochemical performance and the heat-rejection from the module. The model is validated against empirical data from independent single-stack performance testing and full GFC-module experiments. Following model validation, further simulations are performed for different values of current, fuel and air utilization to study their influence on system

  15. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, P.L.

    1977-02-01

    Substantial progress has been made towards implementing all of the prescribed studies and satisfying the stated objectives since the Oil Shale Rehabilitation Project was actively initiated in June 1976. Concurrent with implementation, research objectives were substantively defined and supplemented without distracting or departing from the original purpose. Current studies are designed to fill voids in the present status of knowledge regarding lands disturbed by an impending oil shale industry in Colorado. The efforts of all contributing investigators have therefore been integrated and directed toward the goal of developing methodologies requisite for restoring diverse and complex ecosystems which will require only a minimal amount of maintenance or input of scarce resources. An intensive study site southeast of the Oil Shale Tract C-a has been obtained through a Cooperative Agreement with the Bureau of Land Management. Following this agreement, most subprojects were initiated at the intensive site. Additional programs will be implemented as spent shale becomes available this summer. Studies conducted principally in the laboratory and greenhouse, such as the microbiological and plant genetic studies, have achieved significant results.

  16. Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins, the Piceance Creek basin in northwestern Colorado and the Uinta basin in northwestern Utah. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. Microgranular calcite and dolomite are the predominant mineral constituents of most of the oil shale. The microflora of the Green River formation consist of two forms that have been referred to as bacteria and many fungi spores. Two kinds of organic matter are seen in thin sections of the oil shale; one is massive and structureless and is the matrix of the other, which has definite form and consists of organisms or fragments of organisms. Most structureless organic matter is isotropic (there are two anisotropic varieties) and makes up the greater part of the total organic material.

  17. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Fan, Yunlong; Yu, Zhaosheng; Fang, Shiwen; Lin, Yan; Lin, Yousheng; Liao, Yanfen; Ma, Xiaoqian

    2016-01-01

    Highlights: • Co-combustion of oil shale with municipal solid waste created significant changes. • Blending with municipal solid wastes could improve the combustion performance. • 10–30% of oil shale in the blends could be determined as the optimum ratio range. • Activation energy were calculated by the conversion rate and different proportion. - Abstract: The aim of this study is trying to reveal the thermal characteristics and kinetics of oil shale, municipal solid waste and their blends in the combustion process which are needed for efficient utilization. The combustion experiment is carried out in a thermogravimetric simultaneous thermal analyzer, where the temperature ranged from 110 °C to 900 °C at three different heating rates as 10 °C/min, 20 °C/min and 30 °C/min. Their kinetics were studied by Ozawa–Flynn–Wall and Friedmen methods. According to the data analysis, combustion characteristic index increased progressively with the increase of the proportion of municipal solid waste. And it’s suggested that there was certain interaction in the combustion process of oil shale and municipal solid waste. The average activation energy of the blends reached the minimum value, 177.7927 kJ/mol by Ozawa–Flynn–Wall method and 167.4234 kJ/mol by Friedmen method, when the proportion of MSW was 70%.

  18. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  19. New technologies in the production of motor fuels from renewable materials

    Directory of Open Access Journals (Sweden)

    Adnađević Borivoj K.

    2012-01-01

    Full Text Available This work presents resources of the Autonomous Province of Vojvodina available for bioethanol and motor fuels (gasoline and diesel fuel from sustainable resources: corn-stalks, straw, sweet sorghum, pork fat. The physicochemical basis for novel processes for motor fuel production is coupling microwave pyrolysis of oil shale and catalytic cracking of purified pyrolysis oil, hydrothermal liquefaction of algae and swine manure. The effects of the degree of purification of crude pyrolysis oil and oil shale on the degree of their conversion to gasoline and diesel fuel, as well as the product distribution are investigated. The effects of the duration and temperature of hydrothermal liquefaction of microalga, Botryoccocus braunii, and swine manure on their degrees of conversion into bio-oil and its thermal properties are investigated. The development of novel strategy of biofuel in the Autonomous Province of Vojvodina is presented.

  20. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  1. Evidence for polar porphyrins of bacterial and algal origin in oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, R.; Callot, H.J.; Albrecht, P.

    1986-04-01

    The major part of the porphyrins of the immature Messel oil shale is composed of monocarboxylic acids (C/sub 30/-C/sub 36/) essentially complexed with nickel. These acids were separated as methyl esters by reverse phase h.p.l.c. and nine components characterized by mass and NMR spectroscopy. Structural assignments were supported by synthesis of several members and nuclear Overhauser effect experiments. Besides a major component of the DPEP series, this fraction contained other members belonging to the phyllo- and etioporphyrin series, as well as to a novel chlorophyll C derived series typical of algae. Furthermore the identification of several higher homologues (C/sub 34/-C/sub 36/) of the DPEP series, structurally related to the bacteriochlorophylls, reflects the bacterial input. The characterization of a series of petroporphyrinic acids from the polar fraction of the Messel oil shale confirms the chlorophyllic (a+b,c) origin of these porphyrins. It furthermore implies that most of the characterized petroporphyrins and the survival of carboxylic functions in this class of compounds under mild diagenetic conditions. It furthermore implies that most of the characterized petroporphyrins in Messel shale originate from photosynthetic bacteria and microscopic algae.

  2. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  3. The U.S. Shale Oil and Gas Resource - a Multi-Scale Analysis of Productivity

    Science.gov (United States)

    O'sullivan, F.

    2014-12-01

    Over the past decade, the large-scale production of natural gas, and more recently oil, from U.S. shale formations has had a transformative impact on the energy industry. The emergence of shale oil and gas as recoverable resources has altered perceptions regarding both the future abundance and cost of hydrocarbons, and has shifted the balance of global energy geopolitics. However, despite the excitement, shale is a resource in its nascency, and many challenges surrounding its exploitation remain. One of the most significant of these is the dramatic variation in resource productivity across multiple length scales, which is a feature of all of today's shale plays. This paper will describe the results of work that has looked to characterize the spatial and temporal variations in the productivity of the contemporary shale resource. Analysis will be presented that shows there is a strong stochastic element to observed shale well productivity in all the major plays. It will be shown that the nature of this stochasticity is consistent regardless of specific play being considered. A characterization of this stochasticity will be proposed. As a parallel to the discussion of productivity, the paper will also address the issue of "learning" in shale development. It will be shown that "creaming" trends are observable and that although "absolute" well productivity levels have increased, "specific" productivity levels (i.e. considering well and stimulation size) have actually falling markedly in many plays. The paper will also show that among individual operators' well ensembles, normalized well-to-well performance distributions are almost identical, and have remained consistent year-to-year. This result suggests little if any systematic learning regarding the effective management of well-to-well performance variability has taken place. The paper will conclude with an articulation of how the productivity characteristics of the shale resource are impacting on the resources

  4. Deep hydrotreating of middle distillates from crude and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Landau, M.V. [The Blechner Center for Industrial Catalysis and Process Development, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    1997-06-20

    The potential scientific and technological solutions to the problems that appear as a result of shifting the hydrotreating of crude oil middle distillates and shale oils from the `normal` to the `deep` mode are considered on the basis of the reactivities and transformation routes of the least-reactive sulfur-, nitrogen-, and oxygen-containing compounds. The efficiency of selecting the optimal feedstock, increasing the process severity, improving the catalysts activity, and using alternative catalytic routes are compared, taking into account the specific issues related to deep hydrodesulfurization/hydrodenitrogenation/hydrodeoxygenation, i.e., chemical aspects, kinetics and catalysts

  5. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jacomini, V V

    1938-06-07

    To produce valuable oils from shale by continuous distillation it is preheated by a heated fluid and introduced into a distilling retort from which the oil vapours and spent material are separately removed and the vapours condensed to recover the oil. The shale is preheated to 400 to 500/sup 0/F in the hopper by combustion gases from a flue and is fed in measured quantities to a surge drum, a loading chamber and surge drum, the latter two being connected to a steam pipe which equalises the pressure thereon. The material passes by two screw conveyors to a retort with deflector bars to scatter the material so that lean hot cycling gas flowing through a pipe is spread out as it makes its way upwardly through the shale and heats the oil so that it is driven off as vapour, collected in the lean gas and carried off through an outlet pipe. A measuring valve is provided at the bottom of a retort and cutter knives cut the spent shale and distribute cooling water thereto. The gases travel through heat exchangers and a condenser to an accumulator where the cycling gas is separated from the vapours, passed to compression, and preheated in a gas exchanger and spiral coils before it is returned to the retort. The oil passes to a storage tank by way of a unit tank in which oil vapours are recovered. Water is collected by a pipe in the tank bottom and returned by shaft to a retort.

  6. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    International Nuclear Information System (INIS)

    Morea, Michael F.

    1999-01-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field

  7. Assessment of in-place oil shale resources of the Eocene Green River Formation, a foundation for calculating recoverable resources

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracy

    2011-01-01

    The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.

  8. Groundwater management for pollution control: a case study for oil shale mining in Northeast Estonia

    International Nuclear Information System (INIS)

    Erg, K.; Raukas, A.

    2001-01-01

    In Estonia oil shale is produced by underground and surface mining. The excavation methods used cause serious damage to the environment, especially to the topography, which hampers the further use of the mined-out areas. The oil shale mining has a serious impact on the environment also due to the pollution of surface and groundwater by polluted mine drainage waters, lowering of groundwater level, changing of soil properties and high air pollution rate. Decline in mining activities and the introduction of new technologies together with economic measures has improved the situation but much should be done during coming years. (author)

  9. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  10. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  11. Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 2.The effect on forest condition in a pine stand

    International Nuclear Information System (INIS)

    Terasmaa, T.; Pikk, J.

    1995-01-01

    First years after the treatment (in 1987) of forest soil with mineral fertilizers and powdered oil-shale ash in a heavily damaged 50-year-old Scots pine ecosystem showed a comparatively small effect (B<0.95) of liming on the stand characters. However, in comparison with the effect of only NPK fertilization on the volume growth and the health state of trees, liming (NPK+oil-shale ash) tended to increase the positive influence of fertilizers. Under the influence of oil-shale ash the mortality of the trees was lower, the density of the stand rose more, and the mean radial increment of trees was by 26% greater than after the NPK treatment without a lime agent. On the whole, the effect of oil-shale ash liming on the growth and health condition of the pine stand was not high. However, the first results of its experimental use on mineral forest soil cannot serve as the basis for essential conclusions. Still, the results give us some assurance to continue our experimental work with powdered oil-shale ash in forests with the purpose of regulating the high acidity of forest soils in some sites to gain positive shifts in the forest life. Taking into account the low price of the powdered oil-shale ash and the plentiful resources of this liming material in Estonia, even a small trend towards an improvement of forest condition on poor sandy soils would be a satisfactory final result of the work. It is essential to note that oil-shale ash is not only a simple liming material, but also a lime fertilizer consisting of numerous chemical elements necessary for plant growth. 2 tabs., 3 figs., 18 refs

  12. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia, 2015

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.

    2015-11-12

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 459 million barrels of shale oil, 275 billion cubic feet of associated gas, and 23 million barrels of natural gas liquids in the Central Sumatra Basin, Indonesia.

  13. Revegetation research on oil shale lands in the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.; Cook, C.W.

    1981-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

  14. Utah Heavy Oil Program

    Energy Technology Data Exchange (ETDEWEB)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  15. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  16. Comparative acute toxicity of shale and petroleum derived distillates.

    Science.gov (United States)

    Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K

    1989-12-01

    In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.

  17. Paraho oil shale module. Site development plan, Task 4

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  18. Change in mechanical properties of Antrim oil shale on retorting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. P.; Hockings, W. A.; Kim, K.

    1979-01-01

    The decomposition of kerogen in oil shale and subsequent extraction of the decomposition products during the retorting process are known to alter the pore structure, resulting in changes in permeability, deformation and strength properties. Prediction of these changes is of fundamental importance in the design of in-situ retorting processes. This paper summarizes a comprehensive laboratory investigation on the changes in mechanical properties of Antrim oil shale on retorting at 500/sup 0/C. It was observed that kerogen plays an important role in the change of the properties on retorting. When subjected to heat, the degree of deformation, the extent of fracturing and the structural instability of the specimens appeared to be strongly dependent upon kerogen content. The values of elastic modulus, strength, and density decreased whereas maximum strain at failure increased on retorting. Significant increases in permeability and porosity also resulted from retorting. The most pronounced increase was observed in the permeability in the direction parallel to bedding which exceeded in some cases as much as 3 orders of magnitude. Microscopic observations of pore structures provided a qualitative support to data obtained in measurements of porosity and permeability.

  19. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1948-08-03

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described, which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors containing shale fines from the zone, mixing sufficient fresh cold shale with the hydrocarbon vapors to quench the same and to cause condensation of the higher boiling constituents thereof, charging the mixture of vapors, condensate, and cold shale to a separation zone where the shale is maintained in a fluidized condition by the upward movement of the hydrocarbon vapors, withdrawing condensate from the separation zone and recycling a portion of the condensate to the top of the separation zone where it flows countercurrent to the vapors passing therethrough and causes shale fines to be removed from the vapors by the scrubbing action of the condensate, recovering hydrocarbon vapors and product vapors from the separation zone, withdrawing preheated shale from the separation zone and charging it to a shale distillation zone.

  20. Process for recovering oil from shale and other bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    1918-08-23

    A process for recovering oil from shale and other bituminous minerals in rotary retorts heated from outside and flushed with water vapor or other oxygen-free gases is characterized by the fact that all kinds of minerals are carbonized, and that during the carbonization process the temperature of the superheated steam or gases is about 50/sup 0/ C higher than the temperature of the carbonized mineral.

  1. Method of utilization of alum shales

    Energy Technology Data Exchange (ETDEWEB)

    Dahlerus, C G

    1908-07-04

    A procedure - by means of reducing smelting of bituminous alum shales in a closed furnace process with or without the use of additional fuel and without adding lime or other slag-forming material - to utilize the hydrocarbons and tar oils formed, and likewise the alkali, nitrogen, and sulfur compositions is given. This is accomplished by making these products follow the furnace gases, and later separating them from the gases by cooling for condensation. The patent contains one more claim.

  2. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  3. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  4. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Morea, M.F.

    1998-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

  5. Proceedings: 1993 fuel oil utilization workshop

    International Nuclear Information System (INIS)

    1994-08-01

    The primary objective of the Workshop was to utilize the experiences of utility personnel and continue the interchange of information related to fuel oil issues. Participants also identified technical problem areas in which EPRI might best direct its efforts in research and development of fuel oil utilization and to improve oil-fired steam generating systems' performance. Speakers presented specific fuel projects conducted at their particular utilities, important issues in the utilization of fuel oil, studies conducted or currently in the process of being completed, and information on current and future regulations for fuel utilization. Among the major topics addressed at the 1993 Fuel Oil Utilization Workshop were burner and ESP improvements for the reduction of particulate and NO x emissions, practical experience in utilization of low API gravity residual fuel oils, the use of models to predict the spread of oil spills on land, implementing OPA 90 preparedness and response strategies planning, a report on the annual Utility Oil Buyers Conference, ASTM D-396 specification for No. 6 fuel oil, the utilization of Orimulsion reg-sign in utility boilers, recent progress on research addressing unburned carbon and opacity from oil-fired utility boilers, EPRI's hazardous air pollutant monitoring and implications for residual fuel oil, and the feasibility of toxic metals removal from residual fuel oils. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  6. Barnett shale completions

    Energy Technology Data Exchange (ETDEWEB)

    Schein, G. [BJ Services, Dallas, TX (United States)

    2006-07-01

    Fractured shales yield oil and gas in various basins across the United States. A map indicating these fractured shale source-reservoir systems in the United States was presented along with the numerous similarities and differences that exist among these systems. Hydrocarbons in the organic rich black shale come from the bacterial decomposition of organic matter, primary thermogenic decomposition of organic matter or secondary thermogenic cracking of oil. The shale may be the reservoir or other horizons may be the primary or secondary reservoir. The reservoir has induced micro fractures or tectonic fractures. This paper described the well completions in the Barnett Shale in north Texas with reference to major players, reservoir properties, mineralogy, fluid sensitivity, previous treatments, design criteria and production examples. The Barnett Shale is an organic, black shale with thickness ranging from 100 to 1000 feet. The total organic carbon (TOC) averages 4.5 per cent. The unit has undergone high rate frac treatments. A review of the vertical wells in the Barnett Shale was presented along with the fracture treatment schedule and technology changes. A discussion of refracturing opportunities and proppant settling and transport revealed that additional proppant increases fluid recovery and enhances production. Compatible scale inhibitors and biocides can be beneficial. Horizontal completions in the Barnett Shale have shown better results than vertical wells, as demonstrated in a production comparison of 3 major horizontal wells in the basin. tabs., figs.

  7. Shale fabric and velocity anisotropy : a study from Pikes Peak Waseca Oil Pool, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Newrick, R.T.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    The stratigraphic sequence of the Pikes Peaks region in west-central Saskatchewan consists of a thick sequence of shale overlying interbedded sandstones, shale and coal from the Mannville Group. Hydrocarbons exist in the Waseca, Sparky and General Petroleum Formations in the Pikes Peak region. The primary objective of this study was to examine the layering of clay minerals in the shale and to find similarities or differences between samples that may be associated with velocity anisotropy. Anisotropy is of key concern in areas with thick shale sequences. Several processing algorithms include corrections for velocity anisotropy in order for seismic images to be well focused and laterally positioned. This study also estimated the Thomsen parameters of anisotropy through field studies. The relationship between the shale fabric and anisotropy was determined by photographic core samples from Pike Peak using a scanning electron microscope. Shale from two wells in the Waseca Oil Pool demonstrated highly variable fabric over a limited vertical extent. No layering of clay minerals was noted at the sub-centimetre scale. Transverse isotropy of the stratigraphy was therefore considered to be mainly intrinsic. 7 refs., 3 tabs., 9 figs.

  8. Carbon Isotope Analyses of Individual Hydrocarbon Molecules in Bituminous Coal, Oil Shale and Murchison Meteorite

    Directory of Open Access Journals (Sweden)

    Kyoungsook Kim

    1998-06-01

    Full Text Available To study the origin of organic matter in meteorite, terrestrial rocks which contain organic compounds similar to the ones found in carbonaceous chondrites are studied and compared with Murchison meteorite. Hydrocarbon molecules were extracted by benzene and methanol from bituminous coal and oil shale and the extracts were partitioned into aliphatic, aromatic, and polar fractions by silica gel column chromatography. Carbon isotopic ratios in each fractions were analysed by GC-C-IRMS. Molecular compound identifications were carried by GC-MS Engine. Bituminous coal and oil shale show the organic compound composition similar to that of meteorite. Oil shale has a wide range of δ(13C, -20.1%_0 - -54.4%_0 compared to bituminous coal, -25.2%_0 - -34.3%_0. Delta values of several molecular compounds in two terrestrial samples are different. They show several distinct distributions in isotopic ratios compared to those of meteorite; Murchison meteorite has a range of δ(13C from -13%_0 to +30%_0. These results provide interpretation for the source and the formation condition of each rock, in particular alteration and migration processes of organic matter. Especially, they show an important clue whether some hydrocarbon molecules observed in meteorite are indigenous or not.

  9. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    Science.gov (United States)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  10. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2012-09-30

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  11. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  12. Driving it home: choosing the right path for fueling North America's transportation future

    Energy Technology Data Exchange (ETDEWEB)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

  13. Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Grimalt, J.O.; Lopez, J.F.; Albaiges, J.; Leeuw, J.W. de

    1997-01-01

    A study of the solvent extracts of four samples from two immature oil shales from Tertiary lacustrine basins, Ribesalbes and Campins (southern European rift system), deposited under reducing conditions, has allowed the identification of S-containing hopanoids and novel highly branched isoprenoids

  14. Study on the Low-Temperature Oxidation Law in the Co-Mining Face of Coal and Oil Shale in a Goaf—A Case Study in the Liangjia Coal Mine, China

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2018-01-01

    Full Text Available The low-temperature oxidation law of coal and rock mass is the basis to study spontaneous combustion in goafs. In this paper, the low-temperature oxidation laws of coal, oil shale, and mixtures of coal and oil shale were studied by using laboratory programmed heating experiments combined with a field beam tube monitoring system. The results from the programmed heating experiments showed that the heat released from oil shale was less than that from coal. Coal had a lower carbon monoxide (CO-producing temperature than oil shale, and the mixture showed obvious inhibiting effects on CO production with an average CO concentration of about 38% of that for coal. Index gases were selected in different stages to determine the critical turning point temperature for each stage. The field beam tube monitoring system showed that the temperature field of the 1105 co-mining face of coal and oil shale in the goaf of the Liangjia Coal Mine presented a ladder-like distribution, and CO concentration was the highest for coal and lower for the mixture of coal and oil shale, indicating that the mixture of coal with oil shale had an inhibiting effect on CO production, consistent with the results from the programmed heating experiments.

  15. Rapid estimation of organic nitrogen in oil shale waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting the sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a

  16. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  17. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis

    International Nuclear Information System (INIS)

    Chen, Bin; Han, Xiangxin; Li, Qingyou; Jiang, Xiumin

    2016-01-01

    Highlights: • Long-chain alkenes’ formation needs less energy than short ones. • The rupture tends to happen at the middle position of long alkyl chains first. • Cycloparaffins tend to be cracked rather than to be dehydrogenated. - Abstract: The essence of kerogen decomposition in retorting process is organic carbon conversion. FTIR and GC-MS methods were employed in analyzing the conversion process of “kerogen → bitumen” and “bitumen → shale oil” in this paper. To achieve a deeper investigation of thermochemical transformation of organic carbon during the oil shale retorting, a set of physical models of carbon chains were constructed and analyzed using the transition state theory (TST) of quantum chemistry with gauss03 package. According to the results, the main reactions in the transformation of kerogen to bitumen are the re-integration of macromolecular structure and the breakup of oxygen-bridged bonds. Long alkyl chains containing functional groups decompose and transform to shorter alkanes, alkenes and aliphatic free radicals. The rupture of alkanes happens first at the middle position of long carbon chains. Alkyl free radicals further convert to alkanes, alkenes or aromatic rings. The alkanes take the highest content in shale oil.

  18. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-01-01

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm 3 , weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  19. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  20. The Geopolitics of Shale Gas : The Implications of the US' Shale Gas Revolution on Intrastate Stability within Traditional Oil- and Natural Gas-Exporting Countries in the EU Neighborhood

    NARCIS (Netherlands)

    Jong, S. de; Auping, W.; Govers, J.; Peters, M.C.A.M.; Widdershoven, C.J.C.G.; Weterings, R.A.P.M.

    2014-01-01

    The US’ shale gas revolution could in the long term destabilize traditional oil- and gas exporters in the European Union (EU) neighborhood: A combination of substitution effects and greater energy efficiency, could put pressure on the price of oil, leading to fiscal difficulties in traditional

  1. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    Science.gov (United States)

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  2. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  3. Process for refining shale bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Plauson, H

    1920-09-19

    A process is disclosed for refining shale bitumen for use as heavy mineral oil, characterized by mixtures of blown hard shale pitch and heavy mineral oil being blown with hot air at temperatures of 120 to 150/sup 0/ with 1 to 3 percent sulfur, and if necessary with 0.5 to 3 percent of an aldehyde.

  4. Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes

    International Nuclear Information System (INIS)

    Zhou, Huairong; Yang, Siyu; Xiao, Honghua; Yang, Qingchun; Qian, Yu; Gao, Li

    2016-01-01

    To alleviate the conflict between oil supply and demand, Chinese government has accelerated exploration and exploitation of alternative oil productions. STL (Shale-to-liquid) processes and CTL (coal-to-liquid) processes are promising choices to supply oil. However, few analyses have been made on their energy efficiency and economic performance. This paper conducts a detailed analysis of a STL process and a CTL process based on mathematical modeling and simulation. Analysis shows that low efficiency of the STL process is due to low oil yield of the Fushun-type retorting technology. For the CTL process, the utility system provides near to 34% energy consumption of the total. This is because that CTL technologies are in early development and no heat integration between units is implemented. Economic analysis reveals that the total capital investment of the CTL process is higher than that of the STL process. The production cost of the CTL process is right on the same level as that of the STL process. For better techno-economic performance, it is suggested to develop a new retorting technology of high oil yield for the STL process. The remaining retorting gas should be converted to hydrogen and then used for shale oil hydrogenation. For the CTL process, developing an appropriate heat network is an efficient way to apply heat integration. In addition, the CTL process is intended to be integrated with hydrogen rich gas to adjust H_2/CO for better resource utilization. - Highlights: • Aspen Plus software is used for modeling and simulation of a shale-to-liquid (STL) and a coal-to-liquid (CTL) processes. • Techno-economic analysis of STL and CTL processes is conducted. • Suggestions are given for improving energy efficiency and economic performance of STL and CTL processes.

  5. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Unconventional wisdom: an economic analysis of US shale gas and implications for the EU

    International Nuclear Information System (INIS)

    Spencer, Thomas; Sartor, Oliver; Mathieu, Mathilde

    2014-01-01

    Despite very low and ultimately unsustainable short-term prices of natural gas, the unconventional oil and gas revolution has had a minimal impact on the US macro-economy. We provide an upper-optimistic-estimate of its long-term effect on the level of US GDP (not its long-term annual growth rate) at about 0.84% between 2012 and 2035. Compared to an annual growth rate of 1.4%, this long-term increase is small. And we estimate its short-term stimulus effects at 0.88% of GDP during the 2007/8 to 2012 downturn. The unconventional oil and gas revolution has also had a minimal impact on US manufacturing, confined to gas-intensive sectors, which we calculate as making up about 1.2% of US GDP. There is thus no evidence that shale gas is driving an overall manufacturing renaissance in the US. Absent further policies, the US shale revolution will not lead to a significant, sustained decarbonization of the US energy mix nor will it assure US energy security. A reference scenario based on current policies sees US emissions stagnant at current levels out to 2040, clearly insufficient for a reasonable US contribution to global climate change mitigation. Oil imports continue to rise in monetary terms. While it can promote some coal to gas switching in the short term if additional policies are enacted, there is also the risk that the unconventional oil and gas revolution further locks the US into an energy- and emissions-intensive capital stock. It is unlikely that the EU will repeat the US experience in terms of the scale of unconventional oil and gas production. Uncertainty exists around the exact size of exploitable EU shale gas reserves; a median scenario would see the EU producing about 3-10% of its gas demand from shale gas by 2030-2035. The EU's fossil fuel import dependency will therefore continue to increase and its fossil fuel prices will remain largely determined by international markets. Shale production would not have significant macro-economic or competitiveness

  7. Overview of fuel conversion

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1991-01-01

    The conversion of solid fuels to cleaner-burning and more user-friendly solid liquid or gaseous fuels spans many technologies. In this paper, the authors consider coal, residual oil, oil shale, tar sends tires, municipal oil waste and biomass as feedstocks and examine the processes which can be used in the production of synthetic fuels for the transportation sector. The products of mechanical processing to potentially usable fuels include coal slurries, micronized coal, solvent refined coal, vegetable oil and powdered biomall. The thermochemical and biochemical processes considered include high temperature carbide production, liquefaction, gasification, pyrolysis, hydrolysis-fermentation and anaerobic digestion. The products include syngas, synthetic natural gas, methanol, ethanol and other hydrocarbon oxygenates synthetic gasoline and diesel and jet engine oils. The authors discuss technical and economic aspects of synthetic fuel production giving particular attention and literature references to technologies not discussed in the five chapters which follow. Finally the authors discuss economic energy, and environmental aspects of synthetic fuels and their relationship to the price of imported oil

  8. Khadum Formation of Pre-Caucasus region as potential source of oil shales: geology and geochemistry

    Directory of Open Access Journals (Sweden)

    N.Sh. Yandarbiev1

    2017-05-01

    Full Text Available One of the main modern aim for oil industry is the development of hydrocarbon extraction technologies from «oil shale». In Russia there are kerogen-saturated carbonate-clayey-siliceous deposits of the Bazhenov Formation, carbonate rocks of the Volga-Ural and Timan-Pechora oil and gas bearing basins and clayey Maikop series of Pre-Caucasus region. The Khadum Formation is lower part of the Maikop series represented by carbonate-clay and clayey deposits. On the basis of long-term field and laboratory investigation conducted by specialists of the Oil and Gas Department from Geological Faculty of the Lomonosov Moscow State University. a comprehensive study of the lithological composition, structure, geochemical, hydrogeological and hydrodynamic characteristics of the Paleogene section and monitoring of the drilled wells, the prospects of the oil and gas potential of the Khadum deposits of the Oligocene in the Eastern Pre-Caucasus oil and gas bearing basin were estimated. 11 gas and 19 oil deposits are discovered within the Khadum deposits, and they are confined to the sand layers and lenses, but most of the Khadum section belongs to «unconventional» sources of hydrocarbons. Based on the integrated approach, a map of oil and gas potential prospects for the Khadum deposits was constructed. Highly prospective territories for drilling for oil, areas with small and medium perspectives, and gas prospecting areas have been singled out. Recommendations are given for drilling and technology for the development of the Pre-Caucasus oil shales, based on the world experience in the development of such formations.

  9. Mineralogy and organic petrology of oil shales in the Sangkarewang Formation, Ombilin Basin, West Sumatra, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052 (Australia)]|[Centre for Geological Resources, Department of Mines and Energy, Jalan Soekarno Hatta No. 444, Bandung 40254 (Indonesia); Ward, Colin R. [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052 (Australia)

    2009-01-31

    The Ombilin Basin is filled by late Eocene to early Oligocene marginal fan deposits (Brani Formation) and lacustrine shales (Sangkarewang Formation), unconformably overlain by a late Oligocene to early Miocene fluvial sequence (Sawahlunto and Sawahtambang Formations) and capped by an early to mid-Miocene marine sequence (Ombilin Formation). Significant oil shale deposits occur in the Sangkarewang Formation, intercalated with thin laminated greenish-grey calcareous sandstones. X-ray diffraction shows that the sediments consist mainly of quartz, feldspar, carbonates and a range of clay minerals, together in some cases with minor proportions of sulphides, evaporites and zeolites. Feldspar and non-kaolinite clay minerals decrease up the sequence, relative to kaolinite, suggesting a changing sediment source as the basin was filled. Calcite, thought to be mainly of authigenic origin, is also more abundant in the middle and upper parts of the sequence. The organic matter in the oil shales of the sequence is dominated by liptinite macerals, particularly alginite (mainly lamalginite) and sporinite. Cutinite also occurs in some samples, along with resinite and traces of bituminite. The dominance of lamalginite in the liptinite components suggests that the material can be described as a lamosite. Samples from the Sangkarewang Formation have vitrinite reflectance values ranging between 0.37% and 0.55%. These are markedly lower than the vitrinite reflectance for coal from the overlying Sawahlunto Formation (0.68%), possibly due to suppression associated with the abundant liptinite in the oil shales. Fischer assay data on outcrop samples indicate that the oil yield is related to the organic carbon content. Correlations with XRD data show that, with one exception, the oil yield and organic carbon can also be correlated directly to the abundance of carbonate (calcite) and inversely to the abundance of quartz plus feldspar. This suggests that the abundance of algal material in the

  10. Comparative dermal carcinogenesis of shale and petroleum-derived distillates.

    Science.gov (United States)

    Clark, C R; Walter, M K; Ferguson, P W; Katchen, M

    1988-03-01

    Ten test materials derived from petroleum or hydrotreated shale oils were applied 3 times/week for up to 105 weeks to the shaved skin of 25 male and 25 female C3H/HeN mice per group. Mineral oil and benzo(a) pyrene (0.15%) were control materials. Clinical observations were recorded during the study. At death, histopathologic examination was conducted on skin, internal organs and any gross lesions. Exposures to some materials were ended midway in the study due to severe irritation. Chronic toxicity of all materials was limited to inflammatory and degenerative skin changes. Significant increases over control incidence of skin tumors (squamous cell carcinoma and fibrosarcoma) occurred with both petroleum and shale-derived naphtha (21%, 50%), Jet A (26%, 28%), JP-4 (26%, 50%), and crude oils (84%, 54%). Severely hydrotreated shale oil and petroleum and shale-derived diesel distillates were not considered tumorigenic. Results indicate that toxicity of comparable petroleum and shale-derived fractions was qualitatively similar and confirm earlier findings that hydrotreating reduces or eliminates carcinogenicity of raw shale oil.

  11. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S

    1909-11-29

    Mineral, shale, and like oils are treated successively with sulfuric acid, milk of lime, and a mixture of calcium oxide, sodium chloride, and water, and finally a solution of naphthalene in toluene is added. The product is suitable for lighting, and for use as a motor fuel; for the latter purpose, it is mixed with a light spirit.

  12. [Application of wavelet transform and neural network in the near-infrared spectrum analysis of oil shale].

    Science.gov (United States)

    Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong

    2013-04-01

    In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.

  13. PROSPECTS OF «SHALE REVOLUTION» AND RUSSIAN-CHINESE ENERGY DIALOGUE

    Directory of Open Access Journals (Sweden)

    Чэнь Чэн

    2015-12-01

    Full Text Available The article touches upon the analysis of the prospects of the “shale revolution” at the world gas market and the assessment of influence that could be exerted on the development of the Russian-Chinese energy dialogue by the growing production of this type of fuel. The author examines the advantages and disadvantages of shale gas in comparison with traditional natural gas, considering the practicability of exploring such energy resource for Russia and China. Shale gas may in the future provide significant reserves of natural gas. This will lead to a significant change in the elasticity of demand in all regional markets, including the Asian one. However, the supply of shale gas from the US to Eurasia expected in a few years will not endanger the supply of pipeline gas from Russia to China. Russian gas is more competitive than the American one due to the fact that the costs of production and transportation of natural gas from Russia is much lower than the costs for shale gas from the US. The most important difference is that natural gas unlike shale is environmentally friendly. The potential "shale revolution" will not make serious adjustments in the Russian-Chinese energy dialogue. This is due to a number of circumstances. First, it is important for China to develop its economy based on environmentally friendly fuel. Secondly, from the point of view of geography and convenience of transit of energy resources Russia is an ideal partner for China. Moreover, Moscow has repeatedly proven to be reliable in carrying out commitments on oil and gas contracts.

  14. The Geopolitics of Shale Gas : The Implications of the US' Shale Gas Revolution on Intrastate Stability within Traditional Oil- and Natural Gas-Exporting Countries in the EU Neighborhood

    OpenAIRE

    Jong, S. de; Auping, W.; Govers, J.; Peters, M.C.A.M.; Widdershoven, C.J.C.G.; Weterings, R.A.P.M.

    2014-01-01

    The US’ shale gas revolution could in the long term destabilize traditional oil- and gas exporters in the European Union (EU) neighborhood: A combination of substitution effects and greater energy efficiency, could put pressure on the price of oil, leading to fiscal difficulties in traditional hydrocarbon exporting countries.

  15. Shale oil and gas: technical and environmental files

    International Nuclear Information System (INIS)

    Schilansky, Jean-Louis; Quehen, Audrey; Appert, Olivier; Aurengo, Andre; Candel, Sebastien; Chanin, Marie-Lise; Geoffron, Patrice; Goffe, Bruno; Marsily, Ghislain de; Pouzet, Andre; Schnapper, Dominique; Tardieu, Bernard

    2016-01-01

    This publication proposes information regarding technical and environmental issues related to shale oil and gas extraction and exploitation. It addresses various topics: hydraulic fracturing (techniques, quantity assessment, regulation), water consumption and management (problematic, quantity assessment, regulation), additives and management of production fluids (a necessary taking into account, quantity assessment, regulation), surface aquifers (surface sheets and exploration activity, quantity assessment, regulation), activity footprint (ground footprint and impact on landscape, quantity assessment, regulation), end of activity and site future (return to the initial condition, quantity assessment, regulation), seismicity (manageable seismic risks, quantity assessment, regulations), greenhouse gas emissions (development, quantity assessment, regulation), issues related to health aspects (general and specific risks, epidemiological studies)

  16. Improvements relating to the low temperature carbonisation of coal, shale, and other suitable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1930-03-10

    In the low-temperature carbonization of coal, shale, and other suitable fuel is interposed between the fuel to be carbonized and the container, conveyor, grate, or other surface or surfaces with which the fuel normally contacts during the heat treatment. A medium decomposes during the said heat treatment, to produce a dry carbon at the surface or surfaces contacted without passing through an intermediate plastic or liquid phase during decomposition.

  17. Palm oil and derivatives: fuels or potential fuels?

    Directory of Open Access Journals (Sweden)

    Pioch Daniel

    2005-03-01

    Full Text Available Scientific and technical information including field trials about uses of palm oil as fuel has been available for more than half a century now. Several ways were investigated, from the simple mixture with petroleum Diesel fuel, to more sophisticated solutions. The quality of vegetable oils in natura as fuel is difficult to assess because of interferences between properties of the triacylglycerols – the main components – and those of the many minor components, their content varying significantly from sample to sample. A methodology set up at Cirad allowed to investigate separately natural triacylglycerols alone and the effect of minor components. In addition to these laboratory experiments, engine test at bench and field trials performed in palm oil producing countries, show that this oil is among the best oils as fuel; palm kernel oil whose chemical and physical properties are very close to those of the best of the series investigated, namely copra oil, should display also very interesting properties as Diesel biofuel. Both oils do require external adaptation of the engine when using an indirect injection type engine but even heavier adaptations for a direct injection model. Thus for use as Diesel fuel palm and palm kernel oils are suitable for captive fleets or for engine gensets, to balance the adaptation cost by a scale-up effect either on the number of identical engines or on the nominal vegetable oil consumption per set. Direct use of palm et palm kernel oils fits very well with technical and economical conditions encountered in remote areas. It is also possible to mix palm oil to Diesel fuel either as simple blend or as micro-emulsion. Out of the direct use, palm oil methyl or ethyl ester, often referred to as biodiesel, displays properties similar to those of petroleum Diesel fuel. This technical solution which is suitable to feed all kinds of standard compression ignited engines requires a chemical plant for carrying out the

  18. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  19. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    Energy Technology Data Exchange (ETDEWEB)

    White, O. Jr. (ed.)

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  20. Treatment of products from petroleum, shale, coal, lignite, etc

    Energy Technology Data Exchange (ETDEWEB)

    Jevanoff, V

    1952-06-20

    An improved process is described for treating with sodium plumbite all the products derived from crude petroleum, bituminous shale, coal, lignite, peat, etc., such as gasoline, solvents, lamp oil, gas oil, fuels, etc; the process being essentially characterized by the fact that it consists first in washing the product to be refined with a soda wash; submitting it to a treatment with sodium plumbite, without addition of sulfur, then to eliminate the sulfur plumbite compounds resulting in the treated product, using either redistillation to eliminate products remaining in the residue or filtration over an absorbing material such as active carbon, decolorizing earths.

  1. Characterization of some Jordanian oil shales by pyrolysis gas chromatography

    International Nuclear Information System (INIS)

    Jaradat, Q. M.

    1995-01-01

    Gas chromatography with flame ionization detector (GC-FID) was used to study pyrolysis of some Jordanian oil shale samples. Three sampls of different altitudes from El-Lajjun were studied. Pyrograms of solid sampls were studied at different temperature profiles. Solid-liquid extraction with water, methanol, or hexane allowed extraction of organics of different polarity. Hexane showed the highest extraction efficiency. Reproducibility of the pyrograms of the solid sample was evalualted. Relative standard deviation was 7.56%. (author). 7 refs., 8 figs

  2. FOSSIL FUEL ENERGY RESOURCES OF ETHIOPIA Wolela Ahmed ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Coal, Energy, Ethiopia, Fossil fuel, Oil shale, Oil and gas. INTRODUCTION .... The marginal faults favoured the accumulation of alluvial fan sandy ... sediments towards the western marginal areas of the basin. ...... subsiding East African continental margin initiated to deposit fluvio-lacustrine sediments. A.

  3. Fuel oil and kerosene sales 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  4. Fuel oil and kerosene sales 1997

    International Nuclear Information System (INIS)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs

  5. Process of heat-treating fuels of a bituminous nature, such as shale

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1927-11-25

    A process is described of heat treating any kind of material of a bituminous nature usable as fuel, like shale, mineral coal, peat, etc., whereby the fuel undergoes in a retort or the like a distillation for recovering from it the total amount or the greatest part of gaseous or vaporous distillation products. The warm distillation residue is burned, characterized by the retorts, containing the fuel going through, being wholly or partly surrounded by materials to be heated. These materials and the warm distillation residue resulting from the distillation during the burning are moved forward independently one of the other.

  6. Organic constituents in sour condensates from shale-oil and petroleum-crude runs at Sohio's Toledo refinery: identification and wastewater-control-technology considerations

    Energy Technology Data Exchange (ETDEWEB)

    Wingender, R J; Harrison, W; Raphaelian, L A

    1981-02-01

    Samples of sour condensate generated from the continuous processing of both crude shale oil and petroleum crude were collected and extracted with methylene chloride. The extracts were analyzed using capillary-column gas chromatography/mass spectrometry at Argonne National Laboratory and Radian Corporation. Qualitatively, the predominant types of organic compounds present in the shale-oil sour condensate were pyridines and anilines; semiquantitatively, these compounds were present at a concentration of 5.7 ppM, or about 78% of the total concentration of components detected. In contrast, straight-chain alkanes were the predominant types of compounds found in the sour condensate produced during isocracking of conventional crude oil. The approximate concentration of straight-chain alkanes, 8.3 ppM, and of other branched and/or unsaturated hydrocarbons, 6.8 ppM, amounted to 88% of the total concentration of components detected in the sour condensate from the petroleum-crude run. Nitrogen compounds in the shale-oil sour condensate may necessitate alterations of the sour water and refinery wastewater-treatment facilities to provide for organics degradation and to accommodate the potentially greater ammonia loadings. This would include use of larger amounts of caustic to enhance ammonia removal by steam stripping. Possible problems associated with biological removal of organic-nitrogen compounds should be investigated in future experimental shale-oil refining runs.

  7. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia – The impact of new circulating fluidized bed technology

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated – two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides and for 40 K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ( 210 Pb and 40 K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ( 238 U, 226 Ra, 210 Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, 226 Ra and 228 Ra. A part of 226 Ra input activity, unlike 228 Ra, was undetectable in the solid

  8. Characterization of Tertiary Catalan lacustrine oil shales: Discovery of extrmely organic sulphur-rich Type I kerogens

    Energy Technology Data Exchange (ETDEWEB)

    Sinninghe Damste, J.S.; Heras, F.X.C. De Las; Bergen, P.F. Van; Leeuw, J.W. De (Delft Univ. of Technology (Netherlands))

    1993-01-01

    The kerogens of three Tertiary Catalan lacustrine oil shales were analyzed by light microscopy, flash pyrolysis-gas chromatography-mass spectrometry, and bulk composition methods (elemental analysis, Rock Eval pyrolysis). Two of the three kerogens (Ribesalbes and Campins) are extremely rich in organic sulfur (atomic S[sub org]/C ratio > 0.04) and hydrogen (atomic ratio H/C ratio > 1.5) and are, consequently, classified as Type I-S kerogens. Very characteristic distribution patterns of flash pyrolysis products (e.g., alkan-9- and -10-ones, alkadienes) of the Ribesalbes kerogen revealed that it is predominantly composed of fossilized organic matter of the freshwater alga Botryococcus braunii. These two findings demonstrate that sulfurization of organic matter may also occur in lacustrine sediments provided that sulfate is supplied by external sources. Data on the third kerogen sample (Cerdanya) suggest that the freshwater alga Pediastrum may contain a (partly) aromatic biomacromolecule that is selectively preserved upon diagenesis. These findings testify to the large variability in palaeodepositional conditions in lacutrine environments. A comparison of the biomarker composition of the extract of the Ribesalbes oil shale with the kerogen composition indicate that biomarkers often cannot be used to assess the major sources of organic matter in such settings. A similar conclusion can be drawn from a comparison of literature data concerning the Messel Oil Shale. 75 refs., 18 figs., 7 tabs.

  9. Characterization of Tertiary Catalan lacustrine oil shales: Discovery of extremely organic sulphur-rich Type I kerogens

    Science.gov (United States)

    Sinninghe Damsté, Jaap S.; de las Heras, F. Xavier C.; van Bergen, Pim F.; de Leeuw, Jan W.

    1993-01-01

    The kerogens of three Tertiary Catalan lacustrine oil shales were analyzed by light microscopy, flash pyrolysis-gas chromatography-mass spectrometry, and bulk composition methods (elemental analysis, Rock Eval pyrolysis). Two of the three kerogens (Ribesalbes and Campins) are extremely rich in organic sulphur (atomic S org/C ratio > 0.04) and hydrogen (atomic ratio H/C ratio > 1.5) and are, consequently, classified as Type I-S kerogens. Very characteristic distribution patterns of flash pyrolysis products (e.g., alkan-9- and -10-ones, alkadienes) of the Ribesalbes kerogen revealed that it is predominantly composed of fossilized organic matter of the freshwater alga Botryococcus braunii. These two findings demonstrate that sulphurization of organic matter may also occur in lacustrine sediments provided that sulphate is supplied by external sources. Data on the third kerogen sample (Cerdanya) suggest that the freshwater alga Pediastrum may contain a (partly) aromatic biomacromolecule that is selectively preserved upon diagenesis. These findings testify to the large variability in palaeodepositional conditions in lacustrine environments. A comparison of the biomarker composition of the extract of the Ribesalbes oil shale with the kerogen composition indicate that biomarkers often cannot be used to assess the major sources of organic matter in such settings. A similar conclusion can be drawn from a comparison of literature data concerning the Messel Oil Shale.

  10. 13C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    International Nuclear Information System (INIS)

    Santos, J.V. dos; Mangrich, A.S.; Pereira, B.F.; Pillon, C.N.; Bonagamba, T.J.

    2013-01-01

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand 13 C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO 2+ correlated positively with uronic acid-type hydrophilic organic structures, determined from the 13 C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  11. Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview

    Science.gov (United States)

    Soua, Mohamed

    2014-12-01

    During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main 'hot' shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the Ludlow-Pridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly E-W trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2 Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (ΦN), deep Resistivity (Rt) and Bulk Density (ρb) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete

  12. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    Science.gov (United States)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  13. Porphyrin metabolism in lymphocytes of miners exposed to diesel exhaust at oil shale mine.

    NARCIS (Netherlands)

    Muzyka, V.; Scheepers, P.T.J.; Bogovski, S.; Lang, I.; Schmidt, N.; Ryazanov, V.; Veidebaum, T.

    2004-01-01

    The present study was carried out on the evaluation and application of new biomarkers for populations exposed to occupational diesel exhaust at oil shale mines. Since not only genotoxic effects may play an important role in the generation of tumors, the level of porphyrin metabolism was proposed as

  14. 46 CFR 58.01-10 - Fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60 °C...

  15. The Devonian Marcellus Shale and Millboro Shale

    Science.gov (United States)

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.

    2014-01-01

    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  16. Synthesis of nucleated glass-ceramics using oil shale fly ash

    International Nuclear Information System (INIS)

    Luan Jingde; Li Aimin; Su Tong; Cui Xiaobo

    2010-01-01

    Nucleated glass-ceramics materials were produced from oil shale fly ash obtained from Huadian thermal power plant in China with the addition of analytic reagent CaO. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of two parent glass samples with different alkalinity (Ak=m CaO /m SiO 2 ) were identified as Tn 1 = 810 deg. C, Tc 1 = 956 deg. C and Tn 2 = 824 o C, Tc 2 = 966 deg. C, respectively. X-ray diffraction (XRD) analysis of the produced nucleated glass-ceramics materials revealed that there was a coexistence phenomenon of multi-crystalline phase and the main crystalline phase was anorthite ([Ca,Na][AI,Si] 2 Si 2 O 8 ). The microstructure of the glass-ceramics materials was examined by scanning electron microscope (SEM). SEM observation indicated that there was an increase in the quantity of sphere-shaped crystals when crystallization time increased. Furthermore, the increase of alkalinity caused more amorphous phase occurring in glass-ceramics materials. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase and fine microstructure had high density, fine performance of resisting compression (328.92 MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall results indicated that it was a feasible attempt to produce nucleated glass-ceramics materials for building and decorative materials from oil shale fly ash.

  17. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1917-02-06

    The yield of oil obtained by distilling shale is increased by first soaking the shale with about 10 percent of its volume of a liquid hydrocarbon for a period of 24 hours or longer. Distillation is carried on up to a temperature of about 220/sup 0/C., and a further 10 percent of hydrocarbon is then added and the distillation continued up to a temperature of about 400/sup 0/C.

  18. Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O' Rourke, J.A.; Wagner, P.

    1982-04-01

    The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

  19. High-temperature reactors for underground liquid-fuels production with direct carbon sequestration

    International Nuclear Information System (INIS)

    Forsberg, C. W.

    2008-01-01

    The world faces two major challenges: (1) reducing dependence on oil from unstable parts of the world and (2) minimizing greenhouse gas emissions. Oil provides 39% of the energy needs of the United States, and oil refineries consume over 7% of the total energy. The world is running out of light crude oil and is increasingly using heavier fossil feedstocks such as heavy oils, tar sands, oil shale, and coal for the production of liquid fuels (gasoline, diesel, and jet fuel). With heavier feedstocks, more energy is needed to convert the feedstocks into liquid fuels. In the extreme case of coal liquefaction, the energy consumed in the liquefaction process is almost twice the energy value of the liquid fuel. This trend implies large increases in carbon dioxide releases per liter of liquid transport fuel that is produced. It is proposed that high-temperature nuclear heat be used to refine hydrocarbon feedstocks (heavy oil, tar sands, oil shale, and coal) 'in situ ', i.e., underground. Using these resources for liquid fuel production would potentially enable the United States to become an exporter of oil while sequestering carbon from the refining process underground as carbon. This option has become potentially viable because of three technical developments: precision drilling, underground isolation of geological formations with freeze walls, and the understanding that the slow heating of heavy hydrocarbons (versus fast heating) increases the yield of light oils while producing a high-carbon solid residue. Required peak reactor temperatures are near 700 deg. C-temperatures within the current capabilities of high-temperature reactors. (authors)

  20. Fuel oil and kerosene sales 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This publication contains the 1994 survey results of the ''Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ''Annual Fuel Oil and Kerosene Sales Report'' survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994

  1. A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

    KAUST Repository

    Patzek, Tadeusz; Saputra, Wardana; Kirati, Wissem

    2017-01-01

    and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model

  2. The Water-Energy-Food Nexus of Unconventional Fossil Fuels.

    Science.gov (United States)

    Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.

  3. Preparation of nano-sized {alpha}-Al{sub 2}O{sub 3} from oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan [College of Chemistry, Jilin University, Changchun 130026 (China)

    2010-01-15

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized {alpha}-Al{sub 2}O{sub 3}. Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of {alpha}-Al{sub 2}O{sub 3}. The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO{sub 2}), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles. (author)

  4. Aviation fuel and future oil production scenarios

    International Nuclear Information System (INIS)

    Nygren, Emma; Aleklett, Kjell; Hoeoek, Mikael

    2009-01-01

    Most aviation fuels are jet fuels originating from crude oil. Crude oil must be refined to be useful and jet fuel is only one of many products that can be derived from crude oil. Jet fuel is extracted from the middle distillates fraction and competes, for example, with the production of diesel. Crude oil is a limited natural resource subject to depletion and several reports indicate that the world's crude oil production is close to the maximum level and that it will start to decrease after reaching this maximum. A post-Kyoto political agenda to reduce oil consumption will have the same effect on aviation fuel production as a natural decline in the crude oil production. On the other hand, it is predicted by the aviation industry that aviation traffic will keep on increasing. The industry has put ambitious goals on increases in fuel efficiency for the aviation fleet. Traffic is predicted to grow by 5% per year to 2026, fuel demand by about 3% per year. At the same time, aviation fuel production is predicted to decrease by several percent each year after the crude oil production peak is reached resulting in a substantial shortage of jet fuel by 2026. The aviation industry will have a hard time replacing this with fuel from other sources, even if air traffic remains at current levels.

  5. Spatial and Temporal Characteristics of Historical Oil and Gas Wells in Pennsylvania: Implications for New Shale Gas Resources.

    Science.gov (United States)

    Dilmore, Robert M; Sams, James I; Glosser, Deborah; Carter, Kristin M; Bain, Daniel J

    2015-10-20

    Recent large-scale development of oil and gas from low-permeability unconventional formations (e.g., shales, tight sands, and coal seams) has raised concern about potential environmental impacts. If left improperly sealed, legacy oil and gas wells colocated with that new development represent a potential pathway for unwanted migration of fluids (brine, drilling and stimulation fluids, oil, and gas). Uncertainty in the number, location, and abandonment state of legacy wells hinders environmental assessment of exploration and production activity. The objective of this study is to apply publicly available information on Pennsylvania oil and gas wells to better understand their potential to serve as pathways for unwanted fluid migration. This study presents a synthesis of historical reports and digital well records to provide insights into spatial and temporal trends in oil and gas development. Areas with a higher density of wells abandoned prior to the mid-20th century, when more modern well-sealing requirements took effect in Pennsylvania, and areas where conventional oil and gas production penetrated to or through intervals that may be affected by new Marcellus shale development are identified. This information may help to address questions of environmental risk related to new extraction activities.

  6. Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 1.The effect on forest soil in a pine stand

    International Nuclear Information System (INIS)

    Terasmaa, T.; Sepp, S.

    1994-01-01

    A fertilization and liming experiment with mineral fertilizers and powdered oil-shale ash was carried out in a heavily damaged 50-year-old Scots pine ecosystem in South Estonia. In Estonia, where electric power is produced mainly in big oil-shale-fired power plants, huge quantities of SO 2 are flying into the atmosphere through the chimneys of the plants. However, it is characteristic of Estonia that simultaneously with comparatively high SO 2 pollution the proton load has been quite low because of big amounts of alkali c ash emitted together with SO 2 into the atmosphere through the chimneys of the thermal power plants. Therefore, acid rains are not frequent in Estonia. Acid precipitation here is caused mainly by SO 2 released in the central part of Europe. In Estonia acid rains are most frequently registered in the southern area of the country. At times rains with pH values below 5.1 (even 4.0 and lower) have been registered there. This is also the region where quite severely damaged pine forests can be found. As a rule, these forests grow on acid sandy soils poor in nutrients and bases. The aim of the present study was to investigate the possibility of using oil shale ash as a liming agent in a forest ecosystem for protecting forest soils from acidification and, together with some mineral fertilizers, for improving the health of injured pine stands. In Estonia the most easily available liming agent is powdered oil-shale ash, which has been widely used as a lime fertilizer for agricultural crops but so far has not been tested for liming forests on mineral soils. The comparison of the present study with the liming experiments carried out with limestone in Finland shows that the effect of oil-shale ash treatment of acid sandy soils to raise pH values and to reduce other characteristics of soil acidity was more effective than limestone liming of mineral soils in Finnish forests. The present study demonstrates that powdered oil-shale ash is highly effective in short

  7. Flash pyrolysis fuel oil: BIO-POK

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1995-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  8. Flash pyrolysis fuel oil: BIO-POK

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S [Neste Oy, Porvoo (Finland)

    1996-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  9. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  10. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Shale gas. A provisional assessment of climate change and environmental impacts

    International Nuclear Information System (INIS)

    Wood, R.; Gilbert, P.; Sharmina, M.; Anderson, K.; Footitt, A.; Glynn, S.; Nicholls, F.

    2011-01-01

    This report, commissioned by The Co-operative, provides a provisional review and assessment of the risks and benefits of shale gas development, with the aim of informing The Co-operative's position on this 'unconventional' fuel source. The analysis within the report addresses two specific issues associated with the extraction and combustion of shale gas. Firstly, it outlines potential UK and global greenhouse gas (GHG) emissions arising from a range of scenarios building on current predictions of shale gas resources. Secondly, it explores the health and environmental risks associated with shale gas extraction. It should be stressed that a key issue in assessing these issues has been a paucity of reliable data. To date shale gas has only been exploited in the US and, while initial estimates have been made, it is difficult to quantify the possible resources in other parts of the globe, including the UK. Equally, information on health and environmental aspects is of variable quality and only now is there any systematic effort being undertaken to better understand these issues. Therefore, while every effort has been made to ensure the accuracy of the information in the report, it can only be as accurate as the information on which it draws. It is clear however, that while shale gas extraction, at a global level, does not involve the high energy and water inputs at the scale of other unconventional fuels, such as oil derived from tar sands, it does pose significant potential risks to human health and the environment. Principally, the potential for hazardous chemicals to enter groundwater via the extraction process must be subject to more thorough research prior to any expansion of the industry being considered. Additionally, while being promoted as a transition route to a low carbon future, none of the available evidence indicates that this is likely to be the case. It is difficult to envisage any situation other than shale gas largely being used in addition to other

  12. Traditional technologies of fuels production for air-jet engines

    Directory of Open Access Journals (Sweden)

    Бойченко С. В.

    2013-07-01

    Full Text Available Available energy resources for various fuels, mainly for gas-turbine engines are presented in the given article. Traditional technologies for jet fuels production from nonrenewable raw materials, such as crude oil, coal, natural gas, oil-shales and others are analyzed in details. Cause and effect relationship between production and use of such fuels and their impact on natural environment is defined. The timeliness and necessity for development of alternative technologies of aviation biofuels production are determined in the given article.

  13. The potential of using vegetable oil fuels as fuel for diesel engines

    International Nuclear Information System (INIS)

    Altin, Recep; Cetinkaya, Selim; Yucesu, Huseyin Serdar

    2001-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  14. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  15. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1997-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  16. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  17. Balance of alkaline and acidic pollution loads in the area affected by oil shale combustion

    International Nuclear Information System (INIS)

    Kaasik, M.

    2000-01-01

    Field measurements of concentrations of SO 2 and NO 2 in the air and deposition of Ca 2+ , Mg 2+ , K + , Na + , SO 4 2- , NO 3 - and Cl - in northeastern Estonia were carried out in the end of winter 1998/99. Concentrations in the air were measured by passive sampling method (Palmes tubes); snow samples were used to quantify the deposition loads. The measurement domain covered entire Ida-Viru County, eastern part of Laeaene-Viru County and a few sites in Jogeva County. These measurements and comparison with earlier investigations show that in wintertime most of sulfate over the area affected by oil shale industrial complex appears to be deposited with fly ash particles. The regression formulae for wintertime sulfate and calcium deposition loads for oil-shale region are derived. The inhomogeneous chemical composition of fly ash and influence of other (domestic, traffic) emissions are suggested as possible factors affecting the ratio of sulfate and calcium deposition loads. (author)

  18. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  19. Characterisation of Tertiary Catalan lacustrine oil shales: Discovery of extremely organic sulphur-rich type I kerogens

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Bergen, P.F. van; Leeuw, J.W. de

    1993-01-01

    The kerogens of three Tertiary Catalan lacustrine oil shales were analyzed by light microscopy, flash pyrolysis-gas chromatography-mass spectrometry, and bulk composition methods (elemental analysis, Rock Eval pyrolysis). Two of the three kerogens (Ribesalbes and Campins) are extremely rich in

  20. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Justice, P M

    1917-09-19

    Light paraffin oils and other oils for motors are obtained from shale, and benzene, toluene, and solvent naphtha are obtained from coal by a process in which the coal or shale is preferably powered to pass through a mesh of 64 to the inch and is heated with a mixture of finely ground carbonate or the like which under the action of heat gives off carbonic acid, and with small iron scrap or its equivalent which is adapted to increase the volume of hydrocarbons evolved. The temperature of the retort is maintained between 175 and 800/sup 0/C., and after all the vapors are given off at the higher temperature a fine jet of water may be injected into the retort and the temperature increased. The produced oil is condensed and purified by fractional distillation, and the gas formed is stored after passing it through a tower packed with coke saturated with a non-volatile oil with recovery of an oil of light specific gravity which is condensed in the tower. The residuum from the still in which the produced oil is fractionated may be treated with carbonate and iron, as in the first stage of the process, and the distillate therefrom passed to a second retort containing manganese dioxide and iron scrap preferably in the proportion of one part or two. The mixture, e.g., one containing shale or oil with six to thirteen percent of oxygen, to which is added three to eight per cent of carbonate, and from one and a half to four per cent of scrap iron, is conveyed by belts and an overhead skip to a hopper of a retort in a furnace heated by burners supplied with producer gas. The retort is fitted with a detachable lid and the vapors formed are led by a pipe to a vertical water-cooled condenser with a drain-cock which leads the condensed oils to a tank, from which a pipe leads to a packed tower for removing light oils and from which the gas passes to a holder.

  1. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  2. Oil from biomass corncob tar as a fuel

    International Nuclear Information System (INIS)

    Zhang, Hongmei; Wang, Jun

    2007-01-01

    In this study, biomass corncob tar oil (B-oil I and B-oil II) was extracted and its characteristics were measured. The characterization data show some similarities and differences among B-oil I, B-oil II and the Diesel: flash point. The densities and viscosities are higher than that of Diesel fuel. The solidifying point for B-oil I and B-oil II were lower than that of Diesel. The heating value of B-oil I and B-oil II were about 85.6% and 87.3% of that ordinary Diesel fuel (OD). The distillation temperatures of B-oil I and B-oil II were lower than that of Diesel fuel, with the 50% evaporation point being as much as 10 o C and 4 o C lower and the 90% evaporation point being 10 o C and 2 o C lower, respectively. These evaporation characteristics implied better cold starting and warm up properties of B-oil I and B-oil II than that of Diesel fuel. B-oil I and B-oil II were blended with Diesel in 10% and 20% by volume. Engine tests have been conducted with the aim of obtaining comparative measures of torque, thermal efficiency, specific fuel consumption and emissions such as CO, smoke density and NO to evaluate and compute the behavior of the Diesel engine running on the above mentioned fuels. The reduction in exhaust emissions, together with the increases in torque and thermal efficiency and the reduction in specific fuel consumption made the blends of B-oil I and B-oil II a suitable alternative fuel for Diesel and could help in controlling air pollution

  3. Suggestive evidence on the origin of petroleum and oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J C

    1923-01-01

    Oil shales and coals originated in fresh water muds that contained large amounts of spores, algae, and other nonwoody vegetable material. This organic debris was partly decomposed by bacterial action but not enough to increase the percentage of fats by removal of other plant substances. By contrast, petroleum was formed by thorough decomposition of nonfatty material in salt water. The main difference in bacterial action was due to differences in the saline content of the water in which the organic material was deposited. In fresh water, the amount of decay was small, whereas in salt water it was nearly complete.

  4. Updated methodology for nuclear magnetic resonance characterization of shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  5. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  6. Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste

    International Nuclear Information System (INIS)

    1975-05-01

    Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements

  7. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  8. Apparatus for decomposing shale

    Energy Technology Data Exchange (ETDEWEB)

    Gislain, M

    1865-06-20

    The apparatus is designed to fulfill the three following conditions: (1) complete extraction of the mineral oil, by avoiding partial decomposition; (2) purification of the said oil from products formed in the decomposition of the shale; (3) breaking down of the said oil into more products of different density. The separation of the heavy and bituminous products is claimed.

  9. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  10. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  11. Organic substances of bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, V A; Pronina, M V

    1944-01-01

    Samples of Gdov (Estonia) and Volga (Russia) oil shales were oxidized by alkaline permanganate to study the distribution of carbon and the composition of the resulting oxidation products. Gdov shale was rather stable to oxidation and, after 42 hours 61.2 percent of the organic material remained unoxidized. Five hundred hours were required for complete oxidation, and the oxidation products consisted of CO/sub 2/, acetic, oxalic, and succinic acids. The oxidation products from Volga shale consisted of CO/sub 2/, acetic, oxalic, succinic, adipic, phthalic, benzenetricarboxylic, benzenetetracarboxylic, and benzenepentacarboxylic acids. The results indicated that Gdov shale is free of humic substances and is of sapropelic origin, while Volga shale is of sapropelic-humic origin.

  12. Shale gas exploitation: Status, problems and prospect

    Directory of Open Access Journals (Sweden)

    Shiqian Wang

    2018-02-01

    Full Text Available Over the past five years, great progress has been made in shale gas exploitation, which has become the most driving force for global gas output growth. Hydrocarbon extraction from shale helps drive the USA on the road to energy independence. Besides, shale oil & gas production has been kept in a sustained growth by continuous improvement in drilling efficiency and well productivity in the case of tumbling oil prices and rig counts. Shale gas reserves and production have been in a rapid growth in China owing to the Lower Paleozoic Wufeng and Longmaxi shale gas exploitation in the Sichuan Basin, which has become an important sector for the future increment of gas reserves and output in China. However, substantial progress has been made neither in non-marine shale gas exploitation as previously expected nor in the broad complicated tectonic areas in South China for which a considerable investment was made. Analysis of the basic situation and issues in domestic shale gas development shows that shale gas exploitation prospects are constrained by many problems in terms of resources endowment, horizontal well fracturing technology, etc. especially in non-marine shale deposits and complicated tectonic areas in South China where hot shales are widely distributed but geological structures are found severely deformed and over matured. Discussion on the prospects shows that the sustained and steady growth in shale gas reserves and production capacity in the coming years lies in the discovery and supersession of new shale plays in addition to Wufeng and Longmaxi shale plays, and that a technological breakthrough in ultra-high-pressure and ultra-deep (over 3500 m buried in the Sichuan Basin marine shale gas exploitation is the key and hope. Keywords: Shale gas, Exploitation, Marine facies, Hot shale, Resource endowment, Sichuan Basin, South China, Complicated tectonic area, Gas play

  13. Stuart oil shale project stage two: executive summary: draft environmental impact statement

    International Nuclear Information System (INIS)

    1999-09-01

    The project is an oil shale open pit mine and processing operation that is currently being commissioned 15 km north of Gladstone, Queensland, Australia, and is owned as a joint venture by Southern Pacific Petroleum N.L., Central Pacific Minerals N.L, and Suncor Energy Inc., a leading Canadian company that is an integrated energy company. The results of a comprehensive investigation are included of the potential environmental impacts of the project, and which are described in the Draft Environmental Impact Statement (EIS). In stage two, there is included the existing mine expansion as well as the construction of an additional process plant based around a larger commercial scale ATP oil shale processing plant. The new stage two operation will be developed next to and integral with services and infrastructure provided for stage one. Described are: the assessment process, regulatory framework and the project area, the needs for an alternative to the project, the proposal itself, the existing natural, social and economic impacts, and the environmental impacts as well as plans for their mitigation. In appendices there are included a draft environmental management overview strategy and an environmental management plan. The elements covered in the report by section are: background, need for the project, the proponent, legislation and approvals, project description, environmental issues and impact management

  14. World resources of oil products

    International Nuclear Information System (INIS)

    Bonnaterre, Raymond

    2014-01-01

    In a first part, the author outlines that the issue of density of an oil product raises the question of the validity of a counting approach based on volumes. As oil industries produce always less heavy products and always more light products, this means that always less oil is needed to produce a gallon or a litre of fuel out of a refinery. The author comments the evolution of crude oil extraction. In a second part, he outlines that hydrocarbon productions become always more complex with respect to their origin. Thus, during gas extraction, humid gases are recovered which contain an important part of hydrocarbons similar to light oil. These aspects and the development of shale gas exploitation will make the USA the first oil producer in the world whereas they still have to import heavy oil to feed their refineries. He discusses the level of reserves and production costs with respect to the product type or its extraction location. He discusses the evolution of the estimates of world ultimately recoverable resources (synthesis processes excluded). He comments the level of condensate extraction ratio of the main shale gas fields in the USA and outlines the cost of natural gas imports for France. He outlines the importance of GTL (gas to liquid) processes, the increasing importance of bio-fuels (notably isobutanol biosynthesis and terpene biosynthesis). In the third part, the author states that the barrel price should keep on increasing and, in the fourth part, proposes a list of issues which will impact the future of the oil market

  15. Major and trace elements in Mahogany zone oil shale in two cores from the Green River Formation, piceance basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.

    1983-01-01

    The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements

  16. Unocal Parachute Creek Shale Oil Program. Environmental Monitoring Plan quarterly report. Fourth quarter, 1989. Rept. for 1 Oct-31 Dec 89

    International Nuclear Information System (INIS)

    1990-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commerical-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains environmental compliance data reports, results of industrial hygiene compliance monitoring, and independent audits. Table 2-1 shows 14 of the 20 supplemental monitoring sites sampled during the quarter

  17. Utility residual fuel oil market conditions: An update

    International Nuclear Information System (INIS)

    Mueller, H.A. Jr.

    1992-01-01

    Planning for residual fuel oil usage and management remains an important part of the generation fuel planning and management function for many utilities. EPRI's Utility Planning Methods Center has maintained its analytical overview of the fuel oil markets as part of its overall fuel planning and management research program. This overview provides an update of recent fuel oil market directions. Several key events of the past year have had important implications for residual fuel oil markets. The key events have been the changes brought about by the Persian Gulf War and its aftermath, as well as continuing environmental policy developments. The Persian Gulf conflict has created renewed interest in reducing fuel oil use by utilities as part of an overall reduction in oil imports. The policy analysis performed to date has generally failed to properly evaluate utility industry capability. The Persian Gulf conflict has also resulted in an important change in the structure of international oil markets. The result of this policy-based change is likely to be a shift in oil pricing strategy. Finally, continued change in environmental requirements is continuing to shift utility residual oil requirements, but is also changing the nature of the US resid market itself

  18. Entrepreneurial Leadership in Upstream Oil and Gas Industry

    OpenAIRE

    Kalu, Mona Ukpai

    2015-01-01

    The study examined Entrepreneurial leadership in Upstream Oil and Gas industry and its ability to accelerate innovative energy technology development. The declining deliverability from existing reservoirs and ever increasing demand for energy to fuel growth in many parts of the world is driving oil and gas exploration into more difficult to access reservoirs like bituminous sands and shale gas. Accelerating new innovative technology development to access these new streams of profitable oil an...

  19. 19 CFR 10.62 - Bunker fuel oil.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a Customs...

  20. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  1. Electrical discharge phenomena application for solid fossil fuels in-situ conversion

    International Nuclear Information System (INIS)

    Bukharkin, A A; Lopatin, V V; Martemyanov, S M; Koryashov, I A

    2014-01-01

    The application of high voltage to oil shale initiates partial discharges (PDs) with the following treeing like in insulating dielectrics. Critical PDs and treeing with a high propagation rate occur under the low electrical intensity ∼10 2 V/cm due to oil shale's high porosity, heterogeneity and anisotropy. The completed discharge occurs as a result of these phenomena. Carbonization is initiated around a plasma channel at the treeing stage and extended during electromagnetic action time. Carbonized rock electrical resistance decreases by 8÷10 degrees to 10 ohm·cm, and shale and coal could be heated by Joule heat in carbonized volume and discharge plasma. A high-current supply is necessary for this heating stage. Also, a high- voltage supply with steep-grade characteristics can be used for PDs and treeing initiating and heating the carbonized rock with low resistance. Thus, these phenomena allow in-situ processing in order to produce a flammable gas and synthetic oil from inferior solid fossil fuels by pyrolytic conversion. Computations show that the ratio between energy derived from gas flaming and energy for shale conversion is more than fifty. Therefore, oil shale conversion with the help of electrical discharge phenomena application can be very efficient, as it needs little energy

  2. Structural Exploration of the Two HBI Alkanes in the Chinese Maoming Oil Shale

    Science.gov (United States)

    Liao, J.; Lu, H.; Wang, Q.; Zhou, Y., Sr.

    2017-12-01

    The Maoming oil shale is notable for its high rate of oil production and abundant biomarker compounds. Apart from the odd-numbered C31 and C33botryococcanes dominant and characteristic, two highly branched isoprenoid (HBI) alkanes (Fig. 1) were exclusively occurred (Brassell et al., 1986). The first identification of the two HBI alkanes in the Maoming oil shale was based on a comparison with the mass spectrum of C20 HBI (2,6,10-trimethyl-7-(3-methylbutyl)dodecane) (Yon et al., 1982; Rowland et al., 1985 ) from Rozel Point crude oil. Brassell et al (1986) thought that the characteristic ions at m/z 308 and 336 could be indicative of an additional C10 alkyl side chain on top of the characteristic ions of m/z 168 and 197 for the C20-HBI. However, the structural speculation seemed suspicious for not only their mass spectrum but also their co-chromatography results were not identical to the later synthesized C30 HBI alkane (Rowland and Robson, 1990). In addition, the source attribution of diatoms indicated by two C30 HBIs was inconsistent with the species of B race of Botryococcus braunii indicated by the dominant distribution of botryococcanes. Thus, the thirty-year-old structural assignment of the two C30 HBI alkanes may require confirmation. At first, the monomers of two HBIs were prepared by preparative gas chromatography. The HR-EI MS (436.5003) illustrated a formula of C31H64 rather than carbon numbered C30 HBIs. Moreover, two novel polymethyl alkane structures (I, II) could be yielded by 1D and 2D NMR results (Fig. 2), which completely different from that of previously speculated C30-HBIs (Fig. 2). According to the elucidated structure, the characteristic ions at m/z 308, 336, 434 and other irons at m/z 127, 211, 225, 281, 336 were mainly corresponded to relevant cleavages. Hence, their mass spectra were basically consistent with the structure determined from the NMR data. The new structural skeleton in our results for the two compounds does not support the

  3. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    Science.gov (United States)

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to

  4. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  5. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  6. Straight Vegetable Oil as a Diesel Fuel?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  7. Mineral oil

    International Nuclear Information System (INIS)

    Schult-Bornemann, Karl-Heinz

    2015-01-01

    The dominant theme in the world energy market was the fall in oil prices in 2014. From 115 US-$/bbl in June it dropped to below 50 US-$/bbl in January 2015. Thereby the shale oil revolution has had the strong impact on the global energy situation, to this point has been predicted for three years. Although no one could predict the exact height of the fall in oil prices, but with oil as a reserve currency for all other fuels, it has not only had an impact on the gas and coal prices, but other commodities, such as copper, have also yielded. About cause and effect, there is a lot of speculation - not all of which are supported by wisdom. [de

  8. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  9. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  10. Black shales and naftogenesis. A review

    International Nuclear Information System (INIS)

    Yudovich, Yu.E.; Ketris, M.P.

    1993-01-01

    A genetic relation between petroleum plus hydrocarbon gases and bio organic authigenic matter has been well established. As black shales are enriched in organic matter they may serve as potential petroleum beds on the depths suitable for petroleum generation (2-5 km). The calculations made by petroleum geologists showed that hydrocarbon amounts generated by black shales made up to one fifth of the initial organic matter at the end of MK-2 stage of catagenesis. Consequently, black shales may serve as the main oil producers in many sedimentary basins. Petroleum generation in black shales has some peculiarities. Abundant masses of organic matter generate huge amounts of hydrocarbon gases which in turn produce anomalous high bed pressures followed by pulse cavitation effect. Bed pressures 1.5 times higher than normal lithostatic pressure have been detected in oil-bearing black shales of the Cis-Caucasus on the depth of 2.0-2.5 km, along with very high (6 degrees per 100 m) geothermal gradient. According to Stavropol oil geologists, there occurs an effect of rock-by-fluid-destruction after fluid pressure has greatly exceeded the lithostatic pressure. Stress tensions discharge by impulses and cracks may appear with a rate of 0.3-0.7 of the sound speed. Cavitation of gaseous bubbles is produced by sharp crack extension. Such cavitation accounts for impact waves and increased local pressure and temperature. Such an increase, in turn, fastens petroleum generation and new rock cracking. The effect of over-pressed rocks associated with black shales may serve as a process indicator. That is why the geophysical methods detect enhanced specific gravity and decreased porosity zones in such black shales. Cracks and petroleum accumulation occur on the flanks of such zones of rock-by-fluid-destruction. Some black shales may be petroleum-productive due to enhanced uranium content. There exist ideas about uranium-derived heat or radiolytic effects on the petroleum generation. Such

  11. Status of fossil fuel reserves

    International Nuclear Information System (INIS)

    Laherrere, J.

    2005-01-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  12. Fuel oil and kerosene sales 1995

    International Nuclear Information System (INIS)

    1996-09-01

    This publication contains the 1995 survey results of the ''Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs

  13. Fuel oil and kerosene sales 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  14. Site evaluation for U.S. Bureau of Mines experimental oil-shale mine, Piceance Creek basin, Rio Blanco County, Colorado

    Science.gov (United States)

    Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.

    1978-01-01

    The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of

  15. Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence

    Science.gov (United States)

    2014-10-30

    Paraffins DEFINITIONS Coalescence - the ability to shed water Conventional Material Source - crude oil , natural gas liquid condensates...Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence NF&LCFT REPORT 441/15-003 30 October 2014...heavy oil , shale oil , and oil sands Effluent - stream leaving a system Influent - stream entering a system Turnover - time required to flow the

  16. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK

    Science.gov (United States)

    Thomas, Merryn; Partridge, Tristan; Harthorn, Barbara Herr; Pidgeon, Nick

    2017-04-01

    Shale gas and oil production in the US has increased rapidly in the past decade, while interest in prospective development has also arisen in the UK. In both countries, shale resources and the method of their extraction (hydraulic fracturing, or 'fracking') have been met with opposition amid concerns about impacts on water, greenhouse gas emissions, and health effects. Here we report the findings of a qualitative, cross-national deliberation study of public perceptions of shale development in UK and US locations not yet subject to extensive shale development. When presented with a carefully calibrated range of risks and benefits, participants' discourse focused on risks or doubts about benefits, and potential impacts were viewed as inequitably distributed. Participants drew on direct, place-based experiences as well as national contexts in deliberating shale development. These findings suggest that shale gas development already evokes a similar 'signature' of risk across the US and UK.

  17. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Kern, L

    1922-07-21

    In the distillation of shale and similar materials the shale is ground and briquetted and the briquettes are placed in a retort so that air passages are left between them, after which they are uniformly and slowly heated to at least 700/sup 0/C, the air passages facilitating the escape of the oil vapors, and the slow heating preventing fusion of the flux forming constituents. After the bitumen has been driven off, air is passed into the retort and heating continued to about 1050/sup 0/C, the result being a porous product suitable for insulating purposes or as a substitute for kieselguhr. The ground shale may be mixed prior to distillation with peat, sawdust, or the like, and with substances which yield acids, such as chlorides, more particularly magnesium chloride, the acids acting on the bitumen.

  18. Predicted costs of environmental controls for a commercial oil shale industry. Volume 1. An engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nevens, T.D.; Culbertson, W.J. Jr.; Wallace, J.R.; Taylor, G.C.; Jovanovich, A.P.; Prien, C.H.; Hicks, R.E.; Probstein, R.F.; Domahidy, G.

    1979-07-01

    The pollution control costs for a commercial oil shale industry were determined in a joint effort by Denver Research Institute, Water Purification Associates of Cambridge, and Stone and Webster Engineering of Boston and Denver. Four commercial oil shale processes were considered. The results in terms of cost per barrel of syncrude oil are predicted to be as follows: Paraho Process, $0.67 to $1.01; TOSCO II Process, $1.43 to $1.91; MIS Process, $2.02 to $3.03; and MIS/Lurgi-Ruhrgas Process, $1.68 to $2.43. Alternative pollution control equipment and integrated pollution control strategies were considered and optimal systems selected for each full-scale plant. A detailed inventory of equipment (along with the rationale for selection), a detailed description of control strategies, itemized costs and predicted emission levels are presented for each process. Capital and operating cost data are converted to a cost per barrel basis using detailed economic evaluation procedures. Ranges of cost are determined using a subjective self-assessment of uncertainty approach. An accepted methodology for probability encoding was used, and cost ranges are presented as subjective probability distributions. Volume I presents the detailed engineering results. Volume II presents the detailed analysis of uncertainty in the predicted costs.

  19. Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes

    NARCIS (Netherlands)

    Bauersachs, T.; Schouten, S.; Schwark, L.

    2014-01-01

    We investigated a 150 m thick drill core section of Messel oil shale using bulk geochemical and stable isotope techniques in order to determine the organic matter sources and the environmental conditions that prevailed during the deposition of the lacustrine sequence. High Corg values (on average

  20. Fuel oil and kerosene sales 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This publication contains the 1992 survey results of the ''Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ''Annual Fuel Oil and Kerosene Sales Report'' survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA)

  1. The Lower Jurassic Posidonia Shale in southern Germany: results of a shale gas analogue study

    Science.gov (United States)

    Biermann, Steffen; Schulz, Hans-Martin; Horsfield, Brian

    2013-04-01

    The shale gas potential of Germany was recently assessed by the Federal Institute for Geosciences and Natural Resources (2012 NiKo-Project) and is - in respect of the general natural gas occurrence in Germany - regarded as a good alternative hydrocarbon source. The Posidonia Shale in northern and southern Germany is one of the evaluated rock formation and easily accessible in outcrops in the Swabian Alps (southern Germany). The area of interest in this work is located in such an outcrop that is actively used for open pit mining next to the town of Dotternhausen, 70 km southwest of Stuttgart. 31 samples from the quarry of Dotternhausen were analyzed in order to characterize the immature Posidonia Shale (Lower Toarcian, Lias ɛ) of southern Germany as a gas shale precursor. Methods included are Rock Eval, Open Pyrolysis GC, SEM, Mercury Intrusion Porosimetry, XRD, and other. The samples of Dotternhausen contain exclusively type II kerogen. The majority of the organic matter is structureless and occurs in the argillaceous-calcareous matrix. Structured organic matter appears predominantly as alginite, in particular the algae "tasmanite" is noticeable. The TOC content ranges up to 16 wt% with a high bitumen content. The mineral content characterizes the Posidonia Shale as a marlstone or mudstone with varying clay-calcite ratios. The quartz and pyrite content reaches up to 20 wt% and 9 wt%, respectively. The rock fabric is characterized by a fine grained and laminated matrix. The mean porosity lies between 4 and 12 %. Fractures other than those introduced by sample preparation were not observed. The Posidonia Shale is predicted to have an excellent source rock potential and will generate intermediate, P-N-A low wax oil when exposed to higher P-T-conditions ("oil kitchen"). Contact surfaces between the kerogen and matrix will be vulnerable to pressure induced fracturing caused by hydrocarbon formation. Additional porosity will be formed during maturation due to the

  2. Extraction of hydrocarbon products from shales and coals

    Energy Technology Data Exchange (ETDEWEB)

    Reed, V Z

    1918-05-17

    A process is disclosed of extracting hydrocarbon oil matter from petroleum-bearing shales and coals which comprises subjecting a mass of such shale or coal, before distillation to the solvent action of material containing an acid, permitting the solvent material to pass through the mass of shale or coal, and recovering the combined solvent and extracted matter.

  3. Fuel oil and LPG; Fioul et GPL

    Energy Technology Data Exchange (ETDEWEB)

    Philippon, A. [UFIP, Union Francaise des Industries Petroliere, 75 - Paris (France)

    1997-12-31

    The impacts of new environmental regulations on the heavy fuel oil and refining French markets, are studied. Illustrated with numerous diagrams concerning oil price evolution, fuel price comparison, market shares, consumption data, etc., it is shown that a brutal elimination of high sulfur content oil fuels would cause an extremely negative impact for the refining industry and for the French economy. Sulfur content limits should be kept at their present levels and users should be free to select technical choices in order to keep within these limits, either through fume desulfurization either through fuel-natural gas mixed combustion

  4. Tri- and tetraterpenoid hydrocarbons in the Messel oil shale

    Science.gov (United States)

    Kimble, B. J.; Maxwell, J. R.; Philp, R. P.; Eglinton, G.; Albrecht, P.; Ensminger, A.; Arpino, P.; Ourisson, G.

    1974-01-01

    The high-molecular-weight constituents of the branched and cyclic hydrocarbon fraction of the Messel oil shale (Eocene) have been examined by high-resolution gas chromatography and combined gas chromatography/mass spectrometry. The following compounds are present: perhydrolycopene, together with one or more unsaturated analogs with the same skeleton; a series of 4-methylsteranes in higher abundance than their 4-desmethyl analogs; two series of pentacyclic triterpanes, one series based on the hopane structure, and the other based on the 17 alpha-H hopane structure; and an intact triterpene hop-17(21)-ene. Only two additional triterpanes were detected in minor concentrations - namely, 30-normoretane and a C31 triterpane based on the hopane/lupane-type skeleton. The presence of these compounds suggests a significant microbial contribution to the forming sediment.

  5. Is Shale Development Drilling Holes in the Human Capital Pipeline?

    OpenAIRE

    Rickman, Dan S.; Wang, Hongbo; Winters, John V.

    2016-01-01

    Using the Synthetic Control Method (SCM) and a novel method for measuring changes in educational attainment we examine the link between educational attainment and shale oil and gas extraction for the states of Montana, North Dakota, and West Virginia. The three states examined are economically-small, relatively more rural, and have high levels of shale oil and gas reserves. They also are varied in that West Virginia is intensive in shale gas extraction, while the other two are intensive in sh...

  6. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift

    Science.gov (United States)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-01-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  7. UNOCAL Parachute Creek Shale Oil Program. Environmental Monitoring Plan - supplemental environmental. Volume 1. Trip 2 report. Rept. for 1988-90

    International Nuclear Information System (INIS)

    1991-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains results of three years of supplemental environmental sampling (Trial Trip, 1988; Trip 1, 1989; and Trip 2, 1990); Trip 2 sampling and analytical methods; quality assurance and quality control procedures; sampling and analytical methods; and corrected data from 1988 and 1989 gas and particulate concentrations

  8. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  9. Retort for distilling oil from shales and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E C

    1931-04-17

    A retort is constructed in the form of a flat shallow covered conduit through which the fuel in a pulverized form is continuously conveyed on a train of pans so loaded as to completely fill the conduit, heat being applied to an adequate central portion of the conduit to effect the distillation of the fuel. The roof or cover is sufficiently higher for the extent of such heated portion to afford space for and thereby facilitate the offtake of the distillation products while the ends of the conduit remain sealed against the escape of such products.

  10. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  11. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  12. Legal Regime of Shale Gas Extraction

    OpenAIRE

    Ovidiu – Horia Maican

    2013-01-01

    Some countries with large reserves intend to promote shale gas production, in order to reduce their dependency on imported gas. Shale gas will be an important new aspect in the world energy scene, with many effects. European Union wants secure and affordable sources of energy. Natural gas is the cleanest fossil fuel and a vital component of European Union's energy strategy. One of the most important aspects is that gas produces significantly cleaner energy than other fossil fuels. From a lega...

  13. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  14. Distilling shale and the like

    Energy Technology Data Exchange (ETDEWEB)

    Gee, H T.P.

    1922-02-23

    In distilling shale or like bituminous fuels by internal heating with hot gas obtained by the gasifying of the shale residues with air or steam or a mixture of these, the amount and temperature of the gaseous distilling medium is regulated between the gasifying and the distilling chambers, by the introduction of cold gas or air.

  15. New options for conversion of vegetable oils to alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2006-05-15

    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  16. The price of fuel oil for power generation

    International Nuclear Information System (INIS)

    Hsu, G.J.Y.; Liaw, Y.Y.C.

    1987-01-01

    This study establishes a break-even analysis model for fuel oil generation. The authors calculate the break-even points of the international fuel oil prices for the existing coal-fired power plants, the nuclear power plants and the newly-built coal/oil-fired power plants

  17. Vegetable oils as fuels and lubrificants: Commercialization problematics

    International Nuclear Information System (INIS)

    Bartolelli, V.

    1992-01-01

    The aim of this paper is to assess the commercialization feasibility of vegetable oils as industrial fuels and lubricants. The paper also discusses what should be the suitable mix of Italian Government agricultural, environmental and fiscal strategies to support and encourage the production and use of industrial vegetable fuel oils and lubricants. It points out the main advantages of bio-fuel oils - they are much less polluting than conventional fossil fuel oils and can be produced domestically, thus reducing national dependency on foreign energy imports and increasing employment opportunities. The major obstacle to their development is identified as being the creation of suitable pricing and fiscal policies in harmony with traditional energy markets

  18. Fuel oil systems for standby diesel-generators

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides the design requirements for fuel oil system for diesel-generators that provide standby power for a nuclear power generating station. The system includes all essential equipment from and including fuel oil storage tanks up to the terminal connection on the diesel-engine. It does not include that portion of the fuel oil system supplied by the diesel-generator manufacturer which is in accordance with Trial-Use Criteria for Diesel-Generator Units Applied as Standby Power Supplies for Nuclear Power Generating Stations, IEEE-387-1972. This definition of scope is intended to exclude only those factory-assembled, engine-mounted appurtances supplied with a diesel-generator unit. Integral tanks are, however, within the scope of this Standard. It also excludes motors, motor control centers, switchgear, cables, and other electrical equipment which is used in operation of the fuel oil system, except to define interface requirements

  19. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1978--May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.W.

    1979-03-01

    The following document is a third-year progress report for the period June 1, 1978 to May 31, 1979. The overall objective of the project is to study the effects of seeding techniques, species mixtures, fertilizer, ecotypes, improved plant materials, mycorrhizal fungi, and soil microorganisms on the initial and final stages of reclamation obtained through seeding and subsequent succession on disturbed oil shale lands. Plant growth medias that are being used in field-established test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Because of the long-term nature of successional and ecologically oriented studies the project is just beginning to generate significant publications. Several of the studies associated with the project have some phases being conducted principally in the laboratories and greenhouses at Colorado State Univerisity. The majority of the research, however, is being conducted on a 20 hectare Intensive Study Site located near the focal points of oil shale activity in the Piceance Basin. The site is at an elevation of 2,042 m, receives approximately 30 to 55 cm of precipitation annually, and encompasses the plant communities most typical of the Piceance Basin. Most of the information contained in this report originated from the monitoring and sampling of research plots established in either the fall of 1976 or 1977. Therefore, data that have been obtained from the Intensive Study Site represent only first- or second-year results. However, many trends have been identified in thesuccessional process and the soil microorganisms and mycorrhizal studies continue to contribute significant information to the overall results. The phytosociological study has progressed to a point where field sampling is complete and the application and publication of this materials will be forthcoming in 1979.

  20. Sequence Stratigraphic Analysis and Facies Architecture of the Cretaceous Mancos Shale on and Near the Jicarilla Apache Indian Reservation, New Mexico-their relation to Sites of Oil Accumulation; FINAL

    International Nuclear Information System (INIS)

    Ridgley, Jennie

    2001-01-01

    The purpose of phase 1 and phase 2 of the Department of Energy funded project Analysis of oil- bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico was to define the facies of the oil producing units within the Mancos Shale and interpret the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) redefinition of the area and vertical extent of the ''Gallup sandstone'' or El Vado Sandstone Member of the Mancos Shale, (2) determination of the facies distribution within the ''Gallup sandstone'' and other oil-producing sandstones within the lower Mancos, placing these facies within the overall depositional history of the San Juan Basin, (3) application of the principals of sequence stratigraphy to the depositional units that comprise the Mancos Shale, and (4) evaluation of the structural features on the Reservation as they may control sites of oil accumulation

  1. Intelligent fracture creation for shale gas development

    KAUST Repository

    Douglas, Craig C.; Qin, Guan; Collier, Nathan; Gong, Bin

    2011-01-01

    Shale gas represents a major fraction of the proven reserves of natural gas in the United States and a collection of other countries. Higher gas prices and the need for cleaner fuels provides motivation for commercializing shale gas deposits even

  2. Results of industrial tests of carbonate additive to fuel oil

    Science.gov (United States)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  3. Shale processing

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, W H

    1928-05-29

    The process of treating bituminiferous solid materials such as shale or the like to obtain valuable products therefrom, which comprises digesting a mixture of such material in comminuted condition with a suitable digestion liquid, such as an oil, recovering products vaporized in the digestion, and separating residual solid matter from the digestion liquid by centrifuging.

  4. Shaft-retort for treating waste materials, like washery waste, bituminous shale, oil-bearing sands and the like

    Energy Technology Data Exchange (ETDEWEB)

    Koppers, H

    1916-10-29

    A shaft-retort for converting waste materials, like washery waste, bituminous shale, oil-bearing sands, brown coal and non-coking mineral coal to oil and tar by supplying heat through the shaft wall formed of an iron-sheet to the material, which is forced through a feeding member perforated for the removal of gases and vapors, and moved downward in a thin layer on the shaft wall; that is characterized by the fact that the iron heating sheet is made rotatable for the purpose of equalizing overheating of itself and the material to be treated.

  5. Biomarkers for environmental and occupational exposure to aromatic mutagens and carcinogens from emissions of oil shale petrochemistry. Report of the EC PECO programme, project CIPA-CT92-3016

    Energy Technology Data Exchange (ETDEWEB)

    Carere, A.; Crebelli, R. [eds.] [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia

    1998-03-01

    Oil shale processing for energy supply and further refining for petrochemistry is an important field of industry in Baltic countries. Estonia possesses the largest oil shale mines and oil shale processing plants of the world. Large scale oil shale extraction and processing lead to extensive environmental pollution and to the release of high levels of aromatic carcinogenic substances in processing plants. In the framework of the `PECO` programme, during 1993-1996, the European Commission funded a research project on biomarkers of environmental and occupational exposure in oil shale petrochemistry. The project gave the opportunity to develop and calibrate several biomarkers of exposure to aromatic carcinogens. The results obtained highlighted the role of blood benzene and urinary trans, trans-muconic acid and l-hydroxypyrene as sensitive biomarkers of occupational exposure to benzene and polycyclic aromatic hydrocarbons. A new promising approach was developed for the analysis of benzene adducts in haemoglobin. This methodology, as well as the {sup 32}P-postlabelling analysis of nulky adducts in DNA of blood cells of oil shale workers, showed high sensitivity and potential utility in human biomonitoring. Molecular cytogenetic methods based on in situ hybridization showed an exposure related clastogenic, and possibly an eugenic, effect in oil shale workers, demonstrating the potential advantage of new molecular approaches in the cytogenetic surveillance of carcinogen exposure. [Italiano] Gli scisti bituminosi costituiscono una materia prima di importanza prioritaria per l`industria petrolchimica dei paesi baltici. In Estonia, l`estrazione su larga scala degli scisti bituminosi ha prodotto una situazione di degrado ambientale, aggravata dalla emissione di considerevoli quantita` di sostanze cancerogene durante la lavorazione degli scisti negli impianti petrolchimici. Nell`ambito del programma di ricerca `PECO`, nel 1993-1996, l`Unione Europea ha finanziato un progetto

  6. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    Science.gov (United States)

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  7. Determination of Calorific Ability of Fuel Briquettes on the Basis of Oil and Oil Slimes

    Science.gov (United States)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.; Rakhmatulina, E. M.; Zakharov, V. A.; Fisenko, T. E.

    2018-01-01

    Utilization and neutralization of oil slimes is one of important environmental problems of the oil-extracting, oil-processing and petrochemical industry. The easiest and economic way of utilization of oil slimes is their use as a part of the bricketed boiler fuel. In this work the highest calorific ability of crude oil, the oil slimes and fuel briquettes made on their basis is defined. A research problem was carrying out the technical analysis of oil fuels on the content in them analytical moisture, the cindery rest and volatiles. It is established that in comparison with oil slimes crude oil possesses bigger highest calorific ability, has smaller humidity and an ash-content. The highest calorific abilities of the boiler briquettes made of samples of crude oil, oil slimes and peat made 14 - 26 MJ/kg.

  8. Source apportionment of hydrocarbons measured in the Eagle Ford shale

    Science.gov (United States)

    Roest, G. S.; Schade, G. W.

    2016-12-01

    The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.

  9. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  10. And if France had oil, gas and ideas at the same time... Contribution to the debate on shale hydrocarbons

    International Nuclear Information System (INIS)

    2013-02-01

    This report aims at gathering available information on shale hydrocarbons in order to show that shale gas exploitation is possible in France in order to meet energy needs. After a brief presentation of these hydrocarbons and of potential resources in the world and in France, the report addresses the different stages from exploration (how to obtain a research permit, to locate potential resources, assessment of available quantities and of the economic potential of an oil field), to production (drilling, stimulation, extraction, management on a large scale and on the long term), and to site restitution (industrial site rehabilitation, economic restructuring)

  11. Pressurized fluidized-bed hydroretorting of eastern oil shales. [Estimation of the cost of beneficiating Alabama shale

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  12. Thermodynamically consistent model of brittle oil shales under overpressure

    Science.gov (United States)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  13. 46 CFR 97.15-55 - Requirements for fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...

  14. 46 CFR 78.17-75 - Requirements for fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating the...

  15. Assessment of Appalachian basin oil and gas resources: Devonian gas shales of the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System: Chapter G.9 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Swezey, Christopher S.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This report presents the results of a U.S. Geological Survey (USGS) assessment of the technically recoverable undiscovered natural gas resources in Devonian shale in the Appalachian Basin Petroleum Province of the eastern United States. These results are part of the USGS assessment in 2002 of the technically recoverable undiscovered oil and gas resources of the province. This report does not use the results of a 2011 USGS assessment of the Devonian Marcellus Shale because the area considered in the 2011 assessment is much greater than the area of the Marcellus Shale described in this report. The USGS assessment in 2002 was based on the identification of six total petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian gas shales described in this report are within the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System, which extends generally from New York to Tennessee. This total petroleum system is divided into ten assessment units (plays), four of which are classified as conventional and six as continuous. The Devonian shales described in this report make up four of these continuous assessment units. The assessment results are reported as fully risked fractiles (F95, F50, F5, and the mean); the fractiles indicate the probability of recovery of the assessment amount. The products reported are oil, gas, and natural gas liquids. The mean estimates for technically recoverable undiscovered hydrocarbons in the four gas shale assessment units are 12,195.53 billion cubic feet (12.20 trillion cubic feet) of gas and 158.91 million barrels of natural gas liquids

  16. Chronic fuel oil toxicity in American mink (Mustela vison): systemic and hematological effects of ingestion of a low-concentration of bunker C fuel oil

    International Nuclear Information System (INIS)

    Schwartz, Julie A.; Aldridge, Brian M.; Lasley, Bill L.; Snyder, Paul W.; Stott, Jeff L.; Mohr, F. Charles

    2004-01-01

    Petroleum oil enters the coastal marine environment through various sources; marine mammals such as sea otters that inhabit this environment may be exposed to low concentrations of petroleum hydrocarbons through ingestion of contaminated prey. The inability to perform controlled studies in free-ranging animals hinders investigations of the effects of chronic petroleum oil exposure on sea otter morbidity and mortality, necessitating the development of a reliable laboratory model. We examined the effects of oral exposure to 500 ppm bunker C fuel oil over 113-118 days on American mink, a species phylogenetically related to the sea otter. Hematological parameters and organs were examined for fuel oil-associated changes. Hepatic cytochrome P4501A1 mRNA expression and fecal cortisol concentrations were also measured. Ingestion of fuel oil was associated with a decrease in erythrocyte count, hemoglobin concentration (Hgb), hematocrit (HCT), and an increase in mean corpuscular volume (MCV). Total leukocytes were elevated in the fuel oil group from increases in neutrophils, lymphocytes, and monocytes. Significant interactions between fuel oil and antigen challenge were found for erythrocyte parameters, monocyte and lymphocyte counts. Liver and adrenal weights were increased although mesenteric lymph node weights were decreased in the fuel oil group. Hepatic cytochrome P4501A1 mRNA was elevated in the fuel oil group. Fecal cortisol concentration did not vary between the two groups. Our findings show that fuel oil exposure alters circulating leukocyte numbers, erythrocyte homeostasis, hepatic metabolism and adrenal physiology and establish a framework to use mink as a model for sea otters in studying the systemic effects of marine contaminants

  17. Stabilization of gasoline from shale

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, L

    1929-03-14

    A process is described of stabilizing gasoline from shale, consisting in treating by agitating the gasoline freshly distilled from shale oil with 1.5 percent of its weight of sulfuric acid diluted to more than 10 times its volume, after which separating the pyridine, then treating by agitating with sulfuric acid which treatment separates the unsaturated hydrocarbons and finally treating by agitating with 1.5 percent of its weight of saturated caustic soda solution and washing with water.

  18. Let us talk about shale gas in 30 questions

    International Nuclear Information System (INIS)

    Bauquis, Pierre-Rene

    2014-01-01

    The author addresses and gives an overview of the issue of shale gas extraction and production by answering 30 questions. These questions concern the origins of hydrocarbons, the definition of shale gas and oil, how gases and oils are produced from source rocks, the principle of hydraulic fracturing, where and how to perform this fracturing, the issue of water wastage, the risks of water pollution, seismic risks, nuisances for the neighbourhood, alternatives to hydraulic fracturing, production technical and economic characteristics, the issue of production profitability, economic benefits in the USA, impacts on the world refining industry, the possibility of creation of a new bubble, the role played by US authorities, the US shale oil and gas production, the technical potential outside the USA, the French resources, the stakes for the French economy, the macro-economic and geo-strategic impacts, the consequences for climate change, impacts on the world energy production

  19. Investigating GHGs and VOCs emissions from a shale gas industry in Germany and the UK

    Science.gov (United States)

    Cremonese, L.; Weger, L.; Denier Van Der Gon, H.; Bartels, M. P.; Butler, T. M.

    2017-12-01

    The shale gas and shale oil production boom experienced in the US led the country to a significant reduction of foreign fuel imports and an increase in domestic energy security. Several European countries are considering to extract domestic shale gas reserves that might serve as a bridge in the transition to renewables. Nevertheless, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact local and regional air quality and climate. Results from numerous studies investigating greenhouse gas and pollutant emissions from shale oil and shale gas extraction in North America can help in estimating the impact of such industrial activity elsewhere, when local regulations are taken into consideration. In order to investigate the extent of emissions and their distribution from a potential shale gas industry in Germany and the United Kingdom, we develop three drilling scenarios compatible with desired national gas outputs based on available geological information on potential productivity ranges of the reservoirs. Subsequently we assign activity data and emissions factors to wells under development, as well as to producing wells (from activities at the well site up until processing plants) to enable emissions quantification. We then define emissions scenarios to explore different shale gas development pathways: 1) implementation of "high-technology" devices and recovery practices (low emissions); 2) implementation of "low-technology" devices and recovery practices (high emissions), and 3) intermediate scenarios reflecting assumptions on local and national settings, or extremely high emission events (e.g. super-emitters); all with high and low boundaries of confidence driven by uncertainties. A comparison of these unconventional gas production scenarios to conventional natural gas production in Germany and the United Kingdom is also planned. The aim of this work is to highlight important variables and their ranges, to

  20. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    Science.gov (United States)

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  1. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  2. Assessment of undiscovered continuous oil and gas resources of Upper Cretaceous Shales in the Songliao Basin of China, 2017

    Science.gov (United States)

    Potter, Christopher J.; Schenk, Christopher J.; Pitman, Janet K.; Klett, Timothy R.; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Brownfield, Michael E.; Mercier, Tracey J.; Marra, Kristen R.; Woodall, Cheryl A.

    2018-05-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 3.3 billion barrels of oil and 887 billion cubic feet of gas in shale reservoirs of the Upper Cretaceous Qingshankou and Nenjiang Formations in the Songliao Basin of northeastern China.

  3. Thermally-driven Coupled THM Processes in Shales

    Science.gov (United States)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation

  4. DETERMINATION OF OPTIMAL CONTOURS OF OPEN PIT MINE DURING OIL SHALE EXPLOITATION, BY MINEX 5.2.3. PROGRAM

    Directory of Open Access Journals (Sweden)

    Miroslav Ignjatović

    2013-04-01

    Full Text Available By examination and determination of optimal solution of technological processes of exploitation and oil shale processing from Aleksinac site and with adopted technical solution and exploitation of oil shale, derived a technical solution that optimize contour of the newly defined open pit mine. In the world, this problem is solved by using a computer program that has become the established standard for quick and efficient solution for this problem. One of the computer’s program, which can be used for determination of the optimal contours of open pit mines is Minex 5.2.3. program, produced in Australia in the Surpac Minex Group Pty Ltd Company, which is applied at the Mining and Metallurgy Institute Bor (no. of licenses are SSI - 24765 and SSI - 24766. In this study, authors performed 11 optimization of deposit geo - models in Minex 5.2.3. based on the tests results, performed in a laboratory for soil mechanics of Mining and Metallurgy Institute, Bor, on samples from the site of Aleksinac deposits.

  5. Integrated oil production and upgrading using molten alkali metal

    Science.gov (United States)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  6. TENORM radiological survey of Utica and Marcellus Shale

    International Nuclear Information System (INIS)

    Ying, Leong; O’Connor, Frank

    2013-01-01

    Comprehensive on-site radiological survey of processed sludge drilled materials extracted from the oil and gas production activities in the Utica and Marcellus Shale in Ohio has been conducted with a shielded isotopic identifier incorporating an advanced patented algorithmic processor to measure low-activity levels in compliance with environmental standards. - highlights: • First on-site radiological survey of processed shale sludge from oil and gas fields. • Mobile spectroscopic radiation inspection system with shielding for low-activity measurements. • Quantification of Ra-226 and Ra-228 radionuclides contamination in soil samples

  7. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  8. Microbial production of natural gas from coal and organic-rich shale

    Science.gov (United States)

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  9. Method of simultaneous recovery of oil and sulfur from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    1919-02-25

    The method consists of means for dry distillation of bituminous shales in furnaces heated from inside to recover simultaneously oil and sulfur, and is characterized by obtaining the sulfur partly in the form of sulfuretted hydrogen as a direct distillation product produced in the upper part of the furnace and partly in the form of free sulfur formed in the reduction zone of the furnace by the reduction of the sulfur dioxide formed in the burning zone. It is also characterized by the recovery of sulfur--in so far as the reduction and formation of sulfur dioxide are concerned--being regulated by means of the corresponding regulation of the proportion of the speed of discharging to the amount of air introduced into the process.

  10. Application of game theory in decision making strategy: Does gas fuel industry need to kill oil based fuel industry?

    Science.gov (United States)

    Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami

    2017-03-01

    Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.

  11. The Geopolitical Impact of Shale Gas : The Modelling Approach

    NARCIS (Netherlands)

    Auping, W.L.; De Jong, S.; Pruyt, E.; Kwakkel, J.H.

    2014-01-01

    The US’ shale gas revolution, a spectacular increase in natural gas extraction from previously unconventional sources, has led to considerable lower gas prices in North America. This study focusses on consequences of the shale gas revolution on state stability of traditional oil and gas exporting

  12. High temperature solvent extraction of oil shale and bituminous coal using binary solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, G.K.E. [Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle, RWTH Aachen (Germany)

    1997-12-31

    A high volatile bituminous coal from the Saar Basin and an oil shale from the Messel deposit, both Germany, were extracted with binary solvent mixtures using the Advanced Solvent Extraction method (ASE). Extraction temperature and pressure were kept at 100 C, respectively 150 C, and 20,7 MPa. After the heating phase (5 min) static extractions were performed with mixtures (v:v, 1:3) of methanol with toluene, respectively trichloromethane, for further 5 min. Extract yields were the same or on a higher level compared to those from classical soxhlet extractions (3 days) using the same solvents at 60 C. Comparing the results from ASE with those from supercritical fluid extraction (SFE) the extract yields were similar. Increasing the temperature in ASE releases more soluble organic matter from geological samples, because compounds with higher molecular weight and especially more polar substances were solubilized. But also an enhanced extraction efficiency resulted for aliphatic and aromatic hydrocarbons which are used as biomarkers in Organic Geochemistry. Application of thermochemolysis with tetraethylammonium hydroxide (TEAH) using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) on the extraction residues shows clearly that at higher extraction temperatures minor amounts of free fatty acids or their methyl esters (original or produced by ASE) were trapped inside the pore systems of the oil shale or the bituminous coal. ASE offers a rapid and very efficient extraction method for geological samples reducing analysis time and costs for solvents. (orig.)

  13. Method of distillation of sulfurous bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Hallback, A J.S.; Bergh, S V

    1918-04-22

    A method of distillation of sulfur-containing bituminous shales is characterized by passing the hot sulfur-containing and oil-containing gases and vapors formed during the distillation through burned shale containing iron oxide, so that when these gases and vapors are thereafter cooled they will be, as far as possible, free from sulfur compounds. The patent contains six more claims.

  14. Comparison of performance of biodiesels of mahua oil and gingili oil in dual fuel engine

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME and gingili oil methyl ester (GOME were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.

  15. Fuel options for oil sands

    International Nuclear Information System (INIS)

    Wise, T.

    2005-01-01

    This presentation examined fuel options in relation to oil sands production. Options include steam and hydrogen (H 2 ) for upgrading; natural gas by pipeline; bitumen; petroleum coke; and coal. Various cost drivers were also considered for each of the fuel options. It was noted that natural gas has high energy value but the capital cost is low, and that coke's energy value is very low but the capital cost is high. A chart forecasting energy prices was presented. The disposition of Western Canada's northern gas situation was presented. Issues concerning rail transportation for coal were considered. Environmental concerns were also examined. A chart of typical gas requirements for 75,000 B/D oil sands projects was presented. Issues concerning steam generation with gas and mining cogeneration with gas fuel and steam turbines were discussed, as well as cogeneration and H 2 with gas fuels and steam turbines. Various technology and fuel utility options were examined, along with details of equipment and processes. Boiler technologies were reviewed by type as well as fuel and steam quality and pressure. Charts of cogeneration with gas turbine and circulation fluid bed boilers were presented. Gasification processes were reviewed and a supply cost basis was examined. Cost drivers were ranked according to energy, operating considerations and capital investment. Results indicated that fuel costs were significant for gas and coal. Capital costs and capital recovery charge was most significant with coal and gasification technology. Without capital recovery, cash costs favour the use of bitumen and coke. Gasification would need lower capital and lower capital recovery to compete with direct burning. It was concluded that direct burning of bitumen can compete with natural gas. With price volatility anticipated, dual fuel capability for bitumen and gas has merit. Petroleum coke can be produced or retrieved from stockpiles. Utility supply costs of direct burning of coke is

  16. Seed production for fuel oils

    International Nuclear Information System (INIS)

    Mosca, G.

    1992-01-01

    With the aim of assessing commercialization prospects for vegetable oils to be used as diesel fuel alternatives, this paper provides maps indicating regional production quantities for soybean, rape and sunflower seeds in Italy. It then tables and discusses the results of energy input-output analyses carried out for rape and soybean oil production

  17. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  18. The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states

    International Nuclear Information System (INIS)

    Auping, Willem L.; Pruyt, Erik; Jong, Sijbren de; Kwakkel, Jan H.

    2016-01-01

    While the shale revolution was largely a US’ affair, it affects the global energy system. In this paper, we look at the effects of this spectacular increase in natural gas, and oil, extraction capacity can have on the mix of primary energy sources, on energy prices, and through that on internal political stability of rentier states. We use two exploratory simulation models to investigate the consequences of the combination of both complexity and uncertainty in relation to the global energy system and state stability. Our simulations show that shale developments could be seen as part of a long term hog-cycle, with a short term drop in oil prices if unconventional supply substitutes demand for oil. These lower oil prices may lead to instability in rentier states neighbouring the EU, especially when dependence on oil and gas income is high, youth bulges are present, or buffers like sovereign wealth funds are too limited to bridge the negative economic effects of temporary low oil prices. - Highlights: • We quantitatively explore geopolitical consequences of the shale gas revolution. • We use a multi-model approach to generate and use energy price scenarios. • Simulations show that current low oil prices could be part of a hog cycle. • The shale gas boom was an early warning for the drop in oil prices. • Low prices due to shale gas can reduce internal stability in rentier states.

  19. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  20. Fuel saving performances of marine diesel engine oils on board

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasunori; Henmi, Takashi; Minamitani, Hiromu; Akizawa, Hayao; Hamada, Minoru; Ashida, Jiro

    1988-05-01

    After the second oil crisis, the percentage of the fuel cost against the operational cost of a ship has been showing the rising tendency, engine manufacturers have placed the top priority on the improvement of fuel consumption, operators have been conducting various energy saving measures and refiners have been paying efforts to improve lubricating oil. This article reports the study on the lubricating oil characteristics affecting the fuel consumption per power output, particularly the viscosity and the adding effect of friction modifier additives by using dynamo-generator diesel engines on board the ships already in commission. The investigation was conducted by comparing the cases of using several sample oils with the cases of using the reference oils. According to the results, the viscous property of engine oil was most effective on fuel consumption and the lower the viscosity of oil, the more the fuel consumption effect was. However, the addition of friction modifier additives did hardly show any improvement of the above effect. (5 figs, 4 tabs, 3 refs)

  1. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  2. Method and arrangement of distillation of shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1920-03-29

    A method is given of distilling shale and other bituminous materials utilizing the heat from the combustion of the residue, possibly with additional heat from other fuels. It is characterized by the shale, which is arranged in layers, being first submitted to a process of distillation utilizing the heat mentioned, and at the same time recovering the products of distillation, and second the shale being burned without disturbing the layers to any appreciable extent. The patent has 16 more claims.

  3. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    It could be refined further to produce domestic kerosene and gasoline. The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water ...

  4. Flash pyrolysis fuel oil: bio-pok

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S [Neste Oy, Porvoo (Finland)

    1997-12-01

    Samples of flash pyrolysis liquid produced by Union Fenosa, Spain from pine and straw and samples produced by Ensyn of Canada from mixed hardwoods were combusted with simple pressure atomization equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system improvements but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: refractory section between burner and boiler, acid resistant progressive cavity pump, higher liquid preheat temperature and higher pressure than for light fuel oils. The main problems with pyrolysis liquids concerns their instability or reactivity. At temperatures above 100 deg C they begin to coke, their viscosity increases during storage and oxygen from air causes skin formation. This requires that special handling procedures are developed for fuel storage, delivery and combustion systems. (orig.)

  5. Novel Methods for Desulfurization of Fuel Oils

    OpenAIRE

    H. Hosseini

    2012-01-01

    Because of the requirement for low sulfur content of fuel oils, it is necessary to develop alternative methods for desulfurization of heavy fuel oil. Due to the disadvantages of HDS technologies such as costs, safety and green environment, new methods have been developed. Among these methods is ultrasoundassisted oxidative desulfurization. Using ultrasound-assisted oxidative desulfurization, compounds such as benzothiophene and dibenzothiophene can be oxidized. As an alterna...

  6. Proceedings of the fuels technology contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.D. [ed.

    1993-11-01

    The Fuels Technology Contractors Review Meeting was held November 16-18, 1993, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. This meeting was sponsored and hosted by METC, the Office of Fossil Energy, U.S. Department of Energy (DOE). METC periodically provides an opportunity to bring together all of the R&D participants in a DOE-sponsored contractors review meeting to present key results of their research and to provide technology transfer to the active research community and to the interested public. This meeting was previously called the Natural Gas Technology Contractors Review Meeting. This year it was expanded to include DOE-sponsored research on oil shale and tar sands and so was retitled the Fuels Technology Contractors Review Meeting. Current research activities include efforts in both natural gas and liquid fuels. The natural gas portion of the meeting included discussions of results summarizing work being conducted in fracture systems, both natural and induced; drilling, completion, and stimulation research; resource characterization; delivery and storage; gas to liquids research; and environmental issues. The meeting also included project and technology summaries on research in oil shale, tar sands, and mild coal gasification, and summaries of work in natural-gas fuel cells and natural-gas turbines. The format included oral and poster session presentations. Individual papers have been processed separately for inclusion in the Energy Science and Technology database.

  7. Liberation play : technology and prices help release shale gas from unconventional status

    International Nuclear Information System (INIS)

    Roche, P.

    2006-01-01

    Shale gas production is set to increase in Canada. The British Columbia (BC) Oil and Gas Commission has approved more than 20 blocks of potential shale lands as experimental scheme areas targeting Cretaceous-age and Devonian-age shales. The BC government is currently working on a royalty scheme to benefit shale gas producers by allowing them to defer the bulk of the royalty collection until projects have reached a certain economic payout point. Interest in unconventional gas has spawned activity in previously unexplored areas of BC. Coals and shales are currently being evaluated near the community of Hudson's Hope, which has an estimated 1.8 tcf of shale gas. Canadian Spirit Resources Inc., who have leased the land, are now focusing on optimizing production processes to improve the economics of shale gas recovery. In Saskatchewan, shale gas exploration is occurring in the central region of the province, far from existing oil and gas production. PanTerra Resources Corp. has recently drilled 16 wells on its Foam Lake project, and detailed core and log analyses are being conducted to improve the understanding of the lithology and rock fabric and allow the company to design completion and stimulation programs. Stealth Ventures Ltd. is concentrating on developing the tight, biogenic Colorado Shale, which extends from Manitoba to the foothills of Alberta. Because of the shallow depths, the initial drilling costs are lower for biogenic gas than for thermogenic gas. Success will depend on the right drilling and completion methods. Junior explorers are also exploring for shale gas in an area straddling the St. Lawrence River between Quebec City and Montreal. Several large companies are examining the economic potential of shale gas production throughout North America. It was concluded that oil and gas operators are becoming more confident that domestic shale gas resources will be cheaper in future than imported liquefied natural gas (LNG), which requires special ships

  8. Method for rendering harmless sulfur dioxide-carrying gases and sulfur-carrying waste water from pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aspegren, O E.A.; Eklund, A J

    1951-03-15

    A method is described for rendering harmless sulfur dioxide-carrying gases, which are formed in processes for the manufacture of solid, liquid, or gaseous products by pyrolysis of oil shale, and thereby to extract valuable products, characterized in that the sulfur dioxide-carrying gases are washed with a solution or sludge obtained by leaching wholly or partly burned-out residues from the pyrolysis.

  9. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  10. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, G T.B.

    1907-07-08

    Crude petroleum having a density of 850 to 900 is purified with sulfuric acid, decanted, mixed with benzine or petrol, and again treated with sulfuric acid and decanted. The remaining acid and coloring-matter are removed by washing with water, or treating with oxalic acid, zinc carbonate, lead carbonate, calcium carbonate, or oxide of zinc. The product is used as a fuel for internal-combustion engines. Specifications No. 28,104, A.D. 1906, and No. 12,606, A.D. 1907, are referred to. According to the Provisional Specification, the process is applicable to shale or schist oil.

  11. Synthesis of biodiesel fuel from safflower oil using various reaction parameters.

    Science.gov (United States)

    Meka, Pavan Kumar; Tripathi, Vinay; Singh, R P

    2006-01-01

    Biodiesel fuel is gaining more and more importance because of the depletion and uncontrollable prices of fossil fuel resources. The use of vegetable oil and their derivatives as alternatives for diesel fuel is the best answer and as old as Diesel Engine. Chemically biodiesel fuel is the mono alkyl esters of fatty acids derived from renewable feed stocks like vegetable oils and animal fats. Safflower oil contains 75-80% of linoleic acid; the presence of this unsaturated fatty acid is useful in alleviating low temperature properties like pour point, cloud point and cold filter plugging point. In this paper we studied the effect of various parameters such as temperature, molar ratio (oil to alcohol), and concentration of catalyst on synthesis of biodiesel fuel from safflower oil. The better suitable conditions of 1:6 molar ratio (oil to alcohol), 60 degrees C temperature and catalyst concentration of 2% (by wt. of oil) were determined. The finally obtained biodiesel fuel was analyzed for fatty acid composition by GLC and some other properties such as flash point, specific gravity and acid value were also determined. From the results it was clear that the produced biodiesel fuel was with in the recommended standards of biodiesel fuel with 96.8% yield.

  12. Underground fires in oil shale mines: special traits of their spreading, extinguishing and liquidating of consequences

    International Nuclear Information System (INIS)

    Parakhonsky, E.

    1995-01-01

    Danger of catching fire in oil shale underground mines has considerably increased lately because of essential increase in mechanization level and frequent violation of fire-safety regulations. The largest underground fire in Estonia took place in the most mechanized mine 'Estonia' in the end of 1988 and lasted 81 days. The fire started in one of the conveyor drifts where two belt-conveyors with rubber-rope belts and a fire pipeline were installed. At the start of the fire and beginning of extinguishing work this pipeline contained no water. Driving heads of these conveyors were installed with automatic extinguishing equipment and with different primary means against fire. When the first group of the Johvi military mine-rescue squad reached the mine they established that the conveyor drift, pillars and a part of rail drift between them were caught by fire. The conveyor belt, oil shale and feeds of conveyor drives were burning. The flame had propagated about 350 metres along the rail and conveyor drifts but the smoke had spread 4 kilometres already. Air temperature near the burning area was about 40-60 deg C, rocks from the roof supported by pillars had crashed down. The mine air was polluted by combustion products. The fire caused a noticeable pollution of mine and surface waters with phenols formed at oil shale combustion. Their limit concentration was exceeded for more than 400 times. To decrease this number, an intensive saturation of waters with atmosphere air was started. For this purpose special dams were constructed on water-diversion ditches ensuring a 0.5-0.7 m difference in water levels. Nevertheless, the phenol concentration in Rannapungerya River and Lake Peipsi still exceeded the normal level 5-6 times. However, the actual maximum concentration of phenols was considerably lower than the lethal doses for fish and other water organisms. Their mass extinction in the river or in the lake was observed neither during nor after the fire. One may conclude the

  13. Changes in baseflow patterns in water-limited shale oil and gas regions: the Eagle Ford play

    Science.gov (United States)

    Arciniega, S.; Brena-Naranjo, J. A.; Hernández-Espriú, A.; Pedrozo-Acuña, A.

    2016-12-01

    Quantifying and analyzing the contribution of groundwater from shallow aquifers to rivers as baseflow is very important for water supply and riverine ecosystem health, especially in water-limited catchments. Baseflow depends on the water available (precipitation), vegetation (land use, water use), aquifer properties and water-table depth. In this context, human activities such as groundwater abstraction for multiple purposes can alter the relationship between aquifer storage and baseflow. In this study, we analyzed observed changes in baseflow patterns of 40 catchments located across the Eagle Ford shale gas/oil play (Texas) during the period 1986-2015. The Eagle Ford sedimentary formation is actually the largest shale oil producing region in the US with large production in shale gas. Intensive unconventional resources extraction in the Eagle Ford play started in 2009 and gas/oil production increased faster than in other plays, accompanied by a rise in groundwater consumption for HF purposes. Spatial and temporal impacts on baseflow at the Eagle Ford play derived from HF were assessed by means of different patterns such as baseflow hydrograph separation, flow-duration curves, empirical storage-discharge relationships and streamflow recession curve analysis. A comparison during different periods of water use for HF activities was performed: pre-development period (1986-2000); moderate period (2001-2008); and intensive period (2009-2015). The pre-development period was considered as a baseline and catchments located inside and outside the play area were separately analyzed. The results show negative changes on baseflow patterns during the intensive HF period that were not observed during the moderate period, especially in catchments located inside the play. These changes were also characterized by a decline on mean annual baseflow volume and shorter hydrograph recession times, that led to a shift in the streamflow regime in some catchments from perennial to

  14. Gas chromatograph study of bitumen from oil shale of Amman Formation (upper cretaceous), NW Jordan

    International Nuclear Information System (INIS)

    Darwish, H.; Mustafa, H.

    1997-01-01

    The extractable organic matter of seven outcrop samples of Amman Formation Oil Shale have been analysed by Gas Chromatography (GC). The bitumen is rich in heterocompounds contents (> 60 wt%). Gas chromatograms show a predominance of iosprenoids, specially phytane over n-alkanes, and low carbon preference index (CPI). This indicates that the organic matter is immature, and its origin is mainly of marine organisms. These rocks could be possible source rocks due to the high content of hydrocarbon. (authors). 22 refs., 4 figs. 3 tabs

  15. Antiknock additives for engine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Poletaeva, O. [Ufa State Petroleum Technological Univ., Ufa (Russian Federation); Movsumzade, E. [Institute of Education of Indigenous Small-Nambered Peoples of the North RAE, Moscow (Russian Federation)

    2013-11-01

    Obtaining gasoline with necessary quality and quantity is an actual problem. To increase fuel resources in the development are involved heavy oil, shale gas with further obtaining synthetic oil. Here is presented an analysis of processing technologies of natural and synthetic oil obtained in the Fischer-Tropsch synthesis, wherein focus is on octane number of gasoline fraction. Due to the low octane number, resolution of questions related to improving the detonation resistance, does not lose its relevance to the present day. Represented a quantum-chemical studies of some antiknock agents in the purpose by quantum chemistry methods to identify trends to increase the octane number of compounds and gasoline when they are added. (orig.)

  16. New adsorbents from oil shales. Preparation, characterization and U, Th isotope adsorption tests

    International Nuclear Information System (INIS)

    Khouya, E.; Andres, Y.; Naslain, R.; Pailler, R.; Nourredine, A.

    2004-01-01

    New activated adsorbents for radionuclides have been produced from Moroccan oil shales by pyrolysis of the natural material at 550 deg C flowed by a KMnO 4 activation. The texture and composition of the native rock and the adsorbents were studied before their use in tests for adsorption of radionuclides from standard solutions prepared from uranylnitrate and thorium nitrate in equilibrium with their daughters. The distribution coefficients between solutions containing U, Th and Ra and the adsorbents were evaluated by means of specific activities, measured by γ-ray spectrometry. The adsorbents were observed to eliminate U, Th, Ra, Ac and Tl from aqueous solutions. (author)

  17. Oxidizing oils, etc. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    Penniman, W B.D.

    1926-03-02

    The oxidation of crude petroleum and its distillates, shale oils and tars, waxes, sludges, petroleum residues, asphaltic oils, asphalt, malthas, cracked oils and residues from cracking stills, wood tar oils and wood tar, peat and lignite distillates, coal tar oils and coal tars, and oils containing powdered coal, coke, oreat, sulphur in suspension, by passing air or other oxygen-containing gas through a layer of the material of a depth sufficient substantially to deoxygenate the air and c., is carried out in stages in a series of treatment zones, the pressure in at least one of the zones being above atmospheric pressre. The products of oxidation include acetaldehyde, propionaldehyde, formic, acetic, propionic, butyric, acrylic and phthalic acids, alcohols, acetone, solvents, gums, and substances adapted for use as motor fuels or burnign oils. The oxidizing gas may be enriched with oxygen or be diluted with steam, and its point of entry into the oil and c. layer may be varied to promote or retard settlement of suspended solids.

  18. Volatility spillovers in China’s crude oil, corn and fuel ethanol markets

    International Nuclear Information System (INIS)

    Haixia, Wu; Shiping, Li

    2013-01-01

    Price volatility spillovers among China’s crude oil, corn and fuel ethanol markets are analyzed based on weekly price data from September 5, 2003 to August 31, 2012, employing the univariate EGARCH model and the BEKK-MVGARCH model, respectively. The empirical results indicate a higher interaction among crude oil, corn and fuel ethanol markets after September, 2008. In the overall sample period, the results simultaneously provide strong evidence that there exist unidirectional spillover effects from the crude oil market to the corn and fuel ethanol markets, and double-directional spillovers between the corn market and the fuel ethanol market. However, the spillover effects from the corn and fuel ethanol markets to the crude oil market are not significant. -- Highlights: •Employing univariate EGARCH model and BEKK-MVGARCH model, respectively. Unidirectional spillover effects from crude oil market to corn and fuel ethanol markets. •Double-directional spillovers between corn market and fuel ethanol market. •The spillover effects from corn and fuel ethanol markets to crude oil market are not significant. •The empirical results indicate a higher interaction among crude oil, corn and fuel ethanol markets after September, 2008

  19. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  20. SEQUENCE STRATIGRAPHIC ANALYSIS AND FACIES ARCHITECTURE OF THE CRETACEOUS MANCOS SHALE ON AND NEAR THE JICARILLA APACHE INDIAN RESERVATION, NEW MEXICO-THEIR RELATION TO SITES OF OIL ACCUMULATION

    International Nuclear Information System (INIS)

    Jennie Ridgley

    2000-01-01

    Oil distribution in the lower part of the Mancos Shale seems to be mainly controlled by fractures and by sandier facies that are dolomite-cemented. Structure in the area of the Jicarilla Apache Indian Reservation consists of the broad northwest- to southeast-trending Chaco slope, the deep central basin, and the monocline that forms the eastern boundary of the San Juan Basin. Superimposed on the regional structure are broad low-amplitude folds. Fractures seem best developed in the areas of these folds. Using sequence stratigraphic principals, the lower part of the Mancos Shale has been subdivided into four main regressive and transgressive components. These include facies that are the basinal time equivalents to the Gallup Sandstone, an overlying interbedded sandstone and shale sequence time equivalent to the transgressive Mulatto Tongue of the Mancos Shale, the El Vado Sandstone Member which is time equivalent to part of the Dalton Sandstone, and an unnamed interbedded sandstone and shale succession time equivalent to the regressive Dalton Sandstone and transgressive Hosta Tongue of the Mesaverde Group. Facies time equivalent to the Gallup Sandstone underlie an unconformity of regional extent. These facies are gradually truncated from south to north across the Reservation. The best potential for additional oil resources in these facies is in the southern part of the Reservation where the top sandier part of these facies is preserved. The overlying unnamed wedge of transgressive rocks produces some oil but is underexplored, except for sandstones equivalent to the Tocito Sandstone. This wedge of rocks is divided into from two to five units. The highest sand content in this wedge occurs where each of the four subdivisions above the Tocito terminates to the south and is overstepped by the next youngest unit. These terminal areas should offer the best targets for future oil exploration. The El Vado Sandstone Member overlies the transgressive wedge. It produces most of