WorldWideScience

Sample records for fuelled diesel power

  1. Bio-oil fuelled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A [Modigen Oy, Helsinki (Finland)

    1997-12-01

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 pyrolysis oil made of wood was tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  2. Power and Torque Characteristics of Diesel Engine Fuelled by Palm-Kernel Oil Biodiesel

    Directory of Open Access Journals (Sweden)

    Oguntola J. ALAMU

    2009-07-01

    Full Text Available Short-term engine performance tests were carried out on test diesel engine fuelled with Palm kernel oil (PKO biodiesel. The biodiesel fuel was produced through transesterification process using 100g PKO, 20.0% ethanol (wt%, 1.0% potassium hydroxide catalyst at 60°C reaction temperature and 90min. reaction time. The diesel engine was attached to a general electric dynamometer. Torque and power delivered by the engine were monitored throughout the 24-hour test duration at 1300, 1500, 1700, 2000, 2250 and 2500rpm. At all engine speeds tested, results showed that torque and power outputs for PKO biodiesel were generally lower than those for petroleum diesel. Also, Peak torque for PKO biodiesel occurred at a lower engine speed compared to diesel.

  3. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  4. Study on biogas premixed charge diesel dual fuelled engine

    International Nuclear Information System (INIS)

    Duc, Phan Minh; Wattanavichien, Kanit

    2007-01-01

    This paper presents an experimental investigation of a small IDI biogas premixed charge diesel dual fuelled CI engine used in agricultural applications. Engine performance, diesel fuel substitution, energy consumption and long term use have been concerned. The attained results show that biogas-diesel dual fuelling of this engine revealed almost no deterioration in engine performance but lower energy conversion efficiency which was offset by the reduced fuel cost of biogas over diesel. The long term use of this engine with biogas-diesel dual fuelling is feasible with some considerations

  5. Experimental investigations on CRDI diesel engine fuelled with acid ...

    African Journals Online (AJOL)

    reported that NOx emission amplified by means of an amplification in the proportion ... performance and emission characteristics of CRDI engine when fuelled with diesel, ..... rate of NOx formation is primarily a function of flame temperature, the ...

  6. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2010-01-01

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency.

  7. Distributed power generation using biogas fuelled microturbines

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, K.; Langan, M.

    2002-07-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects.

  8. Distributed power generation using biogas fuelled microturbines

    International Nuclear Information System (INIS)

    Pointon, K.; Langan, M.

    2002-01-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects

  9. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  10. Clean fossil-fuelled power generation

    International Nuclear Information System (INIS)

    Oliver, Tony

    2008-01-01

    Using fossil fuels is likely to remain the dominant means of producing electricity in 2030 and even 2050, partly because power stations have long lives. There are two main ways of reducing CO 2 emissions from fossil-fuelled power plants. These are carbon capture and storage (CCS), which can produce near-zero CO 2 emissions, and increases in plant efficiency, which can give rise to significant reductions in CO 2 emissions and to reduced costs. If a typical UK coal-fired plant was replaced by today's best available technology, it would lead to reductions of around 25% in emissions of CO 2 per MW h of electricity produced. Future technologies are targeting even larger reductions in emissions, as well as providing a route, with CCS, to zero emissions. These two routes are linked and they are both essential activities on the pathway to zero emissions. This paper focuses on the second route and also covers an additional third route for reducing emissions, the use of biomass. It discusses the current status of the science and technologies for fossil-fuelled power generation and outlines likely future technologies, development targets and timescales. This is followed by a description of the scientific and technological developments that are needed to meet these challenges. Once built, a power plant can last for over 40 years, so the ability to upgrade and retrofit a plant during its lifetime is important

  11. Experimental study on the performance and emissions of a compression ignition engine fuelled with butanol diesel blends

    International Nuclear Information System (INIS)

    Maki, Duraid F.; Prabhakaran, P.

    2010-01-01

    An experimental investigation on the application of the blends of butanol with diesel to a direct injection diesel engine was carried out. Experimental tests were carried out to study the performance and emissions of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with butanol to replace conventional diesel as the fuel for diesel engine; the fuel consumption, brake efficiency, exhaust temperature, and volumetric efficiency of the engine fuelled by the blends were comparable with that fuelled by diesel. The characteristics of the emissions were also studied. CO, CO 2 , HC and NO X are measured and compared with the base fuel case when the conventional diesel is used alone. The results were different for different speeds, loads and blends. (author)

  12. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...

  13. An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Tobacco seeds are a by product of tobacco leaves production. To the author's best knowledge, unlike tobacco leaves, tobacco seeds are not collected from fields and are not commercial products. However, tobacco seeds contain significant amounts of oil. Although tobacco seed oil is a non-edible vegetable oil, it can be utilized for biodiesel production as a new renewable alternative diesel engine fuel. In this study, an experimental study on the performance and exhaust emissions of a turbocharged indirect injection diesel engine fuelled with tobacco seed oil methyl ester was performed at full and partial loads. The results showed that the addition of tobacco seed oil methyl ester to the diesel fuel reduced CO and SO 2 emissions while causing slightly higher NO x emissions. Meanwhile, it was found that the power and the efficiency increased slightly with the addition of tobacco seed oil methyl ester. (Author)

  14. Effect of injection pressure on performance, emission, and combustion characteristics of diesel-acetylene-fuelled single cylinder stationary CI engine.

    Science.gov (United States)

    Srivastava, Anmesh Kumar; Soni, Shyam Lal; Sharma, Dilip; Jain, Narayan Lal

    2018-03-01

    In this paper, the effect of injection pressure on the performance, emission, and combustion characteristics of a diesel-acetylene fuelled single cylinder, four-stroke, direct injection (DI) diesel engine with a rated power of 3.5 kW at a rated speed of 1500 rpm was studied. Experiments were performed in dual-fuel mode at four different injection pressures of 180, 190, 200, and 210 bar with a flow rate of 120 LPH of acetylene and results were compared with that of baseline diesel operation. Experimental results showed that highest brake thermal efficiency of 27.57% was achieved at injection pressure of 200 bar for diesel-acetylene dual-fuel mode which was much higher than 23.32% obtained for baseline diesel. Carbon monoxide, hydrocarbon, and smoke emissions were also measured and found to be lower, while the NO x emissions were higher at 200 bar in dual fuel mode as compared to those in other injection pressures in dual fuel mode and also for baseline diesel mode. Peak cylinder pressure, net heat release rate, and rate of pressure rise were also calculated and were higher at 200 bar injection pressure in dual fuel mode.

  15. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  16. Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel

    Directory of Open Access Journals (Sweden)

    Debasish Padhee

    2014-05-01

    Full Text Available In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100 were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.

  17. Design of on-power fuelling machines

    International Nuclear Information System (INIS)

    Jackson, W.H.

    2004-01-01

    In May 1957, CGE was asked to design a fuelling machine for NPD2 Reactor. Two fuelling machines were required, one at each end of the reactor, that could either push the fuel bundles through the reactor or accept the bundles being pushed out. The machines had to connect on to the end fittings of the same tube, seal, fill with heavy water and pressure up to 1000 psi without external leaks. Each machine had to remove the tube seal plug from its end fitting and store it in an indexing magazine, which also had to hold up to six fuel bundles, or retrieve that many, if the magazine was empty. There was also the provision to store a spare plug. When finished moving fuel bundles, the tube plugs were to be replaced and tested for leaks, before the fuelling machines would be detached from the end fittings. This was all to be done by remote control. By late September 1957, sufficient design features were on paper and CGE management made a presentation to AECL at Chalk River Laboratories and this proposal was later accepted

  18. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends

    International Nuclear Information System (INIS)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-01-01

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions.

  19. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT...

  20. Influence of fuel injection pressures on Calophyllum inophyllum methyl ester fuelled direct injection diesel engine

    International Nuclear Information System (INIS)

    Nanthagopal, K.; Ashok, B.; Karuppa Raj, R. Thundil

    2016-01-01

    Highlights: • Effect of injection pressure of Calophyllum inophyllum biodiesel is investigated. • Engine characteristics of 100% Calophyllum inophyllum biodiesel has been performed. • Calophyllum inophyllum is a non-edible source for biodiesel production. • Increase in injection pressure of biodiesel, improves the fuel economy. • Incylinder pressure characteristics of biodiesel follows similar trend as of diesel. - Abstract: The trend of using biodiesels in compression ignition engines have been the focus in recent decades due to the promising environmental factors and depletion of fossil fuel reserves. This work presents the effect of Calophyllum inophyllum methyl ester on diesel engine performance, emission and combustion characteristics at different injection pressures. Experimental investigations with varying injection pressures of 200 bar, 220 bar and 240 bar have been carried out to analyse the parameters like brake thermal efficiency, specific fuel consumption, heat release rate and engine emissions of direct injection diesel engine fuelled with 100% biodiesel and compared with neat diesel. The experimental results revealed that brake specific fuel consumption of C. inophyllum methyl ester fuelled engine has been reduced to a great extent with higher injection pressure. Significant reduction in emissions of unburnt hydrocarbons, carbon monoxide and smoke opacity have been observed during fuel injection of biodiesel at 220 bar compared to other fuel injection pressures. However oxides of nitrogen increased with increase in injection pressures of C. inophyllum methyl ester and are always higher than that of neat diesel. In addition the combustion characteristics of biodiesel at all injection pressures followed a similar trend to that of conventional diesel.

  1. Emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends.

    Science.gov (United States)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, BeemKumar

    2017-05-01

    The present work is intended to investigate the emission characteristics of neat cashew nut shell methyl ester (CNSME100) by adding pentanol at two different proportions and compared with the baseline diesel. CNSME100 is prepared by the conventional transesterification process. CNSME100 is chosen due to its non-edible nature. Pentanol is chosen as an additive because of its higher inbuilt oxygen content and surface to volume ratio which reduces the drawbacks of neat CNSME100. Emission characteristics were carried out in single cylinder naturally aspirated CI engine fuelled with neat cashew nut shell methyl ester (CNSME), cashew nut shell methyl ester and pentanol by 10% volume (CNSME90P10), cashew nut shell methyl ester and pentanol by 20% volume (CNSME80P20), and diesel. This work also aims to investigate the feasibility of operating an engine fuelled with neat methyl ester and alcohol blends. Experimental results showed that by blending higher alcohol to neat cashew nut shell methyl ester reduces the emissions significantly. It is also found that the emission from neat methyl ester and pentanol blends is lesser than diesel at all loads.

  2. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  3. PV-diesel hybrid powers island nature reserve

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R. [University of New South Wales (Australia). Centre for Photovoltaic Engineering

    2001-03-01

    A short paper reports how by replacing a diesel-electric power supply with a PV-diesel-battery hybrid system, the diesel generator running time has been cut by 87%. The system provides all the power needs (including for the lighthouse, the lighthouse keeper's family, and a few visitors) on Montague Island nature reserve off Australia. The old system consisted of a pair of diesel-fuelled generator sets rated at 10 and 20 kVA. The main purposes for the changes were environmental, safety (in terms of transporting diesel fuel), and financial. Liquefied petroleum gas is now used for water heating and cooking. The reasons for not going for wind power are given. A diagram shows load and array power profiles for a May day in 1999.

  4. Emissions from Road Vehicles Fuelled by Fischer Tropsch Based Diesel and Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, U; Lundorf, P; Ivarsson, A; Schramm, J [Technical University of Denmark (Denmark); Rehnlund, B [Atrax Energi AB (Sweden); Blinge, M [The Swedish Transport Institute (Sweden)

    2006-11-15

    The described results were carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was supposed to be very similar, in many ways, to FT fuel. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline vehicle.

  5. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  6. Combustion and emission response of a heavy duty diesel engine fuelled with biodiesel: an experimental study

    International Nuclear Information System (INIS)

    Shah, A.N.; Shan, G.Y.

    2010-01-01

    In order to meet the growing energy needs, alternative energy sources particularly bio fuels are receiving increasing attention during the last few years. Biodiesel, consisting of alkyl monoesters of fatty acids from vegetable oils or animal fats, has already been commercialized in the transport sector. In the present work, a turbo charged, inter cooled, DI (Direct Injection) diesel engine was fuelled with biodiesel from waste cooking oil and its 20% blend with commercial diesel to study the regulated exhaust pollutants in the light of combustion parameters in the cylinder. The experimental results show that BTE (Brake Thermal Efficiently), MCP (Maximum Combustion Pressure) and SOI (Start of injection) angle were increased, ID (Ignition Delay) was decreased; however, RHR (Rate of Heat Release) remained almost unaffected in case of biodiesel. The BTE and RHR were not much affected with B20; however Sol angle and MCP were improved, and ID was decreased with B20. Smoke opacity, CO (Carbon Monoxide), and HC (HydroCarbons) emissions were decreased, but NO. (Oxides of Nitrogen) pollutants were increased in case of both B100 and B20 compared to fossil diesel. However, the increase in NO emissions was lower with B20. (author)

  7. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  8. Experimental investigation on a Common Rail Diesel engine partially fuelled by syngas

    International Nuclear Information System (INIS)

    Rinaldini, Carlo Alberto; Allesina, Giulio; Pedrazzi, Simone; Mattarelli, Enrico; Savioli, Tommaso; Morselli, Nicolò; Puglia, Marco; Tartarini, Paolo

    2017-01-01

    Highlights: • A current automotive Diesel engine is tested running on both Diesel fuel and syngas. • The syngas HHV is about 5 MJ/Nm"3, allowing a 60% of Diesel substitution. • The engine brake efficiency is slightly increased running on syngas at high load. • In-cylinder pressure do not change very much even if Diesel fuel is strongly reduced. - Abstract: The high efficiency, reliability and flexibility of modern passenger car Diesel engines makes these power units quite attractive for steady power plants totally or partially running on fuels derived from biomass, in particular on syngas. The engine cost, which is obviously higher than that of current industrial engines, may not be a big obstacle, provided that the re-engineering work is limited and that performance and efficiency are enhanced. The goal of this work is to explore the potential of a current automotive turbocharged Diesel engine running on both Diesel fuel and syngas, by means of a comprehensive experimental investigation focused on the combustion process. The engine is operated at the most typical speed employed in steady power plants (3000 rpm), considering three different loads (50–100–300 Nm/16–31–94 kW). For each operating condition, the syngas rate is progressively increased until it provides a maximum heating power of 85 kW, while contemporarily reducing the amount of injected Diesel oil. Maximum care is applied to guarantee a constant quality of the syngas flow throughout the tests, as well as to maintain the same engine control parameters, in particular the boost pressure. It is found that in-cylinder pressure traces do not change very much, even when drastically reducing the amount of Diesel fuel: this is a very encouraging result, because it demonstrates that there is no need to radically modify the standard stock engine design. Another promising outcome is the slight but consistent enhancement of the engine brake efficiency: the use of syngas not only reduces the

  9. Environmental implications of fossil-fuelled power stations

    International Nuclear Information System (INIS)

    Robson, A.

    1979-01-01

    The public health and environmental implications of electricity generation by fossil-fuelled power stations are discussed with respect to pollutant emission and the disposal of waste products. The following conclusions were deduced. The policy of using tall chimney stacks has ensured that acceptable concentrations of potential pollutants are observed in the vicinity of power stations. Large scale carbon dioxide emission may represent a problem in the future due to its effect on the climate. The effects of sulphur dioxide and the oxides of nitrogen need to be kept under review but it is likely that sources other than power stations will be of greater importance in this context. Pulverised fuel ash is a safe and useful by product of power production. Finally the radiation dose to man caused by the release of naturally occurring radioisotopes is negligible compared to the natural background levels. (UK)

  10. Evolution of on-power fuelling machines on Canadian natural uranium power reactors

    International Nuclear Information System (INIS)

    Isaac, P.

    1984-10-01

    The evolution of the on-power fuel changing process and fuelling machines on CANDU heavy-water pressure tube power reactors from the first nuclear power demonstration plant, 22 MWe NPD, to the latest plants now in design and development is described. The high availability of CANDU's is largely dependent on on-power fuelling. The on-power fuelling performance record of the 16 operating CANDU reactors, covering a 22 year period since the first plant became operational, is given. This shows that on-power fuel changing with light (unshielded), highly mobile and readily maintainable fuelling machines has been a success. The fuelling machines have contributed very little to the incapabilities of the plants and have been a key factor in placing CANDUs in the top ten list of world performance. Although fuel handling technology has reached a degree of maturity, refinements are continuing. A new single-ended fuel changing concept for horizontal reactors under development is described. This has the potential for reducing capital and operating costs for small reactors and increasing the fuelling capability of possible large reactors of the future

  11. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  12. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  13. Mechanism of hydrocarbon reduction using multiple injection in a natural gas fuelled/micro-pilot diesel ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Micklow, G.J.; Gong, W. [University of North Carolina, Charlotte, NC (United States)

    2002-03-01

    Research has shown that a large amount of natural gas (NG) is unburned at light loads in an NG fuelled/micro-pilot diesel compression ignition engine. A mechanism of unburned hydrocarbon (HC) reduction using multiple injections of micro-pilot diesel has been proposed in this paper. Multidimensional computations were carried out for a dual-fuel engine based on a modified CAT3401 engine configuration. The computations show that a split injection with a small percentage (e.g. 30 per cent of diesel in the second injection pulse) can significantly reduce HC, CO and NO{sub x} emissions. Based on parax metric studies to optimize the timing of both of the injection pulses, HC emissions could be reduced by 90 per cent, with a reduction in CO emissions of 50 per cent and NO{sub x} emissions of 70 per cent in comparison to a singlex injection pulse-base case configuration. (author)

  14. Comparing in Cylinder Pressure Modelling of a DI Diesel Engine Fuelled on Alternative Fuel Using Two Tabulated Chemistry Approaches.

    Science.gov (United States)

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi

    2014-01-01

    The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine's in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction.

  15. On-power fuelling machine of Dhruva research reactor: An indigenous effort (Paper No. 043)

    International Nuclear Information System (INIS)

    Rao, T.K.; Andhansare, M.G.

    1987-02-01

    On-power fuelling machine of Dhruva Research Reactor has been indigenously designed, manufactured, installed and commissioned. This is being used for fuelling of Dhruva Research reactor regularly since June 1985. This paper deals with the developmental efforts made during design and manufacture for meeting the functional requirements of the fuelling machine. This paper also highlights the special features of the components like servo valves, hydraulic motors, S.S. bellows, bearings, roller chains, solenoid valves etc. needed for reliable operation and maintenance of the fuelling machine whose down time should be minimum to achieve maximum reactor availability. (author). 17 figs

  16. An assessment of calophyllum inophyllum biodiesel fuelled diesel engine characteristics using novel antioxidant additives

    International Nuclear Information System (INIS)

    Ashok, B.; Nanthagopal, K.; Jeevanantham, A.K.; Bhowmick, Pathikrit; Malhotra, Dhruv; Agarwal, Pranjal

    2017-01-01

    Highlights: • A novel antioxidant Ethanox was used for the present investigation. • Effect of two antioxidants on biodiesel fuelled engine characteristics were studied. • Brake thermal efficiency increased by 5.3% for Ethanox 1000 ppm with biodiesel. • 21% reduction in oxides of nitrogen for Butylated hydroxytoluene 500 ppm addition. • Higher hydrocarbon and smoke emissions were observed for all treated fuels. - Abstract: In this present study, the effect of antioxidant additives with pure Calophyllum inophyllum methyl ester on the performance, combustion and emission characteristics has been investigated. New antioxidant additive namely Ethanox was added to the Calophyllum inophyllum biodiesel at concentrations of 200 ppm, 500 ppm and 1000 ppm for oxides of nitrogen reductions and the experimental results were compared to Butylated hydroxytoluene antioxidant at same concentrations. An experimental study was done on a twin cylinder, four stroke diesel engine at a constant speed of 1500 rpm with two different antioxidants, Ethanox and Butylated hydroxytoluene individually mixed with pure Calophyllum inophyllum at concentrations of 200 ppm, 500 ppm and 1000 ppm by weight. The experimental results showed that the addition of antioxidants with Calophyllum inophyllum biodiesel produced higher brake specific fuel consumption and higher brake thermal efficiency compared to pure biodiesel. Significant reductions in oxides of nitrogen emissions were observed with Ethanox and Butylated hydroxytoluene addition with biodiesel at all concentrations compared to neat biodiesel. The reduction oxides of nitrogen emission was 12.6% for Ethanox 1000 ppm and 21% for Butylated hydroxytoluene 500 ppm compared to neat biodiesel. Comparable combustion characteristics were obtained by addition of Ethanox with biodiesel than Butylated hydroxytoluene antioxidant. Moreover, the addition of Ethanox and Butylated hydroxytoluene antioxidants with neat biodiesel increase the carbon

  17. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-01-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a track-etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have beeen developed and evaluated. These include a super-8 mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. The information provided by these different instruments should increase the effectiveness of Agency safeguards and, when used in combination with other measures, will facilitate inspection at reactor sites

  18. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-05-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a Track-Etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have been developed and evaluated. These include a super-8-mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. (author)

  19. Optimization of performance and emission characteristics of PPCCI engine fuelled with ethanol and diesel blends using grey-Taguchi method

    Science.gov (United States)

    Natarajan, S.; Pitchandi, K.; Mahalakshmi, N. V.

    2018-02-01

    The performance and emission characteristics of a PPCCI engine fuelled with ethanol and diesel blends were carried out on a single cylinder air cooled CI engine. In order to achieve the optimal process response with a limited number of experimental cycles, multi objective grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a combination of input parameters was prefigured so as to achieve optimum response characteristics. It was observed that 20% premixed ratio of blend was most suitable for use in a PPCCI engine without significantly affecting the engine performance and emissions characteristics.

  20. Exposure assessment of particulates originating from diesel and CNG fuelled engines

    Energy Technology Data Exchange (ETDEWEB)

    Oravisjaervi, K.; Pietikaeinen, M.; Keiski, R. L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: kati.oravisjarvi@oulu.fi; Voutilainen, A. (Univ. of Kuopio, Dept. of Physics (Finland)); Haataja, M. (Oulu Univ. of Applied Sciences (Finland); Univ. of Oulu, Dept. of Mechanical Engineering (Finland)); Ruuskanen, J. (Univ. of Kuopio, Dept. of Environmental Sciences (Finland)); Rautio, A. (Univ. of Oulu, Thule Inst. (Finland))

    2009-07-01

    Particulates emitted from combustion engines have been a great concern in past years due to their adverse health effects, such as pulmonary and cardiovascular diseases, morbidity and mortality. The source of particulates can be stationary and transient, such as gas and oil fuelled engines, turbines and boilers. Particulate matter (PM) dispersed into ambient air can be classified in many ways: the mechanism of the formation, the size and the composition. Fine particles (PM2.5) are particles with an aerodynamic diameter less than 2.5 mum and particles, greater than 2.5 mum in diameter are generally referred to as coarse particles (PM10). PM2.5 is also called the respirable fraction, because they can penetrate to the unciliated regions of the lung. Fine particles consist of so called ultrafine particles (an aerodynamic diameter less than 0.1 mum). The sizes of particulates emitted from combustion processes range between 10 nm and 100 mum, and are usually a mixture of unburned and partially burned hydrocarbons. Diesel exhaust particles have a mass median diameter of 0.05-1.0 mum. They are a complex mixture of elemental carbon, a variety of hydrocarbons, sulphur compounds, and other species. They consist of a numerous spherical primary particles, which are agglomerated into aggregates. Particles from natural gas engine emissions range from 0.01-0.7 mum. Increase in PM10 pollution has been found to be associated with a range of adverse health effects, such as increased use of medication for asthma, attacks of asthma in patients with pre-existing asthma, attacks of chronic obstructive pulmonary disease (COPD), deaths from respiratory causes, admission to hospital for cardiovascular causes, deaths from heart attacks and deaths from strokes. While it is unknown, which particulate matter component is the most hazardous for humans, a number of factors suggest that ultrafine particles may be more toxic than larger particles. Ultrafine particles have a large surface area per

  1. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  2. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    Science.gov (United States)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  3. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Acevedo, Helmer; Mantilla, Juan

    2011-01-01

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  4. Study of the cycle variability at an automotive diesel engine fuelled with LPG

    Directory of Open Access Journals (Sweden)

    Nemoianu Liviu

    2017-01-01

    Full Text Available Liquid Petroleum Gas is a viable alternative fuel for diesel engines due to its ability of emissions and fuel consumption reduction. Combustion variability at LPG diesel engine is analysed for maximum pressure, maximum pressure angle and indicated mean effective pressure. Combustion variability is influenced by the increase of LPG cycle dose which lead to the increase of the cycle variability coefficients values, but without exceeding the admitted values that provide diesel engine reliability. Analysis of COV values establishes the maximum admitted values of LPG cycle.

  5. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    Science.gov (United States)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  6. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends

    International Nuclear Information System (INIS)

    Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, Hwai Chyuan; Chong, W.T.

    2013-01-01

    Highlights: • Ceiba pentandra biodiesel was prepared by two-step transesterification. • The main FAC of C. pentandra is 18.54% of malvalic acid. • Engine performance and emission are conducted for CPME and its blends. • The CPB10 gives the best engine performance at 1900 rpm. • The CO, HC and smoke opacity were lower for all biodiesel blends. - Abstract: Nowadays, production of biodiesel from non-edible feedstock is gaining more attention than edible oil to replace diesel fuel. Thus, Ceiba pentandra is chosen as a potential biodiesel feedstock for the present investigations based on the availability in Indonesia and Malaysia. C. pentandra methyl ester was prepared by two-step acid esterification (H 2 SO 4 ) and base transesterification (NaOH) process. The purpose of this study is to examine the engine performance and emission characteristic of C. pentandra biodiesel diesel blends in internal combustion. Besides, the detailed properties of C. pentandra biodiesel, biodiesel diesel blends and diesel were measured and evaluated. After that, the biodiesel diesel blends (10%, 20%, 30% and 50%) were used to conduct engine performance and exhaust emission characteristic at different engine speeds. The experimental results showed that CPB10 blend give the best results on engine performance such as engine torque and power at 1900 rpm with full throttle condition. Besides, the brake specific fuel consumption at maximum torque (161 g/kW h) for CPB10 is higher about 22.98% relative to diesel fuel (198 g/kW h). This is shown that the lower biodiesel diesel blends ratio will increase the performance and reduce the fuel consumption. Moreover, the exhaust emissions showed that CO, HC and smoke opacity were reduced for all biodiesel diesel blends. However, NO x and CO 2 were increased compared to petrol diesel. Overall, the results proved that C. pentandra biodiesel is a suitable alternative and substitute fuel to diesel

  7. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Gottekere, Kumar Narayanappa

    2017-10-01

    Nitrogen oxides and smoke are the substantial emissions for the diesel engines. Fuels comprising high-level oxygen content can have low smoke emission due to better oxidation of soot. The objective of the paper is to assess the potential to employ oxygenated fuel, i.e., n-butanol and its blends with the neat diesel from 0 to 30% by volume. The experimental and computational fluid dynamic (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol-diesel blends for various injection timings (9°, 12°, 15°, and 18°) using modern twin-cylinder, four-stroke, common rail direct injection (CRDI) engine. Experimental results reveal the increase in brake thermal efficiency (BTE) by ~ 4.5, 6, and 8% for butanol-diesel blends of 10% (Bu10), 20% (Bu20), and 30% (Bu30), respectively, compared to neat diesel (Bu0). Maximum BTE for Bu0 is 38.4%, which is obtained at 12° BTDC; however, for Bu10, Bu20 and Bu30 are 40.19, 40.9, and 41.7%, which are obtained at 15° BTDC, respectively. Higher flame speed of n-butanol-diesel blends burn a large amount of fuel in the premixed phase, which improves the combustion as well as emission characteristics. CFD and experimental results are compared and validated for all fuel blends for in-cylinder pressure and nitrogen oxides (NO x ), and found to be in good agreement. Both experimental and simulation results witnessed in reduction of smoke opacity, NO x , and carbon monoxide emissions with the increasing n-butanol percentage in diesel fuel.

  8. Lubrication and wear in diesel engine injection equipment fuelled by dimethyl ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius

    2003-01-01

    Dimethyl ether (DME) has been recognised as an excellent fuel for diesel engines for over one decade now. DME fueled engines emit virtually no particulate matter even at low NOx levels. DME has thereby the potential of reducing the diesel engine emissions without filters or other devices...... that jeopardise the high efficiency of the engine and increase the manufacturing costs. DME has a low toxicity and can be made from anything containing carbon including biomass. If DME is produced from cheap natural gas from remote locations, the price of this new fuel could even become lower than that of diesel...... oil. Fueling diesel engines with DME presents two significant problems: The injection equipment can break down due to extensive wear and DME attacks nearly all known elastomers. The latter problem renders dynamic sealing diƣult whereas the first one involves the poor lubrication qualities of DME which...

  9. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    Science.gov (United States)

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  10. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  11. Effect of antioxidants on the performance and emission characteristics of a diesel engine fuelled by waste cooking sunflower methyl ester

    Science.gov (United States)

    Reddy, V. Puneeth Kumar; Senthil Kumar, D.; Thirumalini, S.

    2018-02-01

    Biodiesel is a renewable, biodegradable fuel produced from vegetable oils and animal fats. Nonetheless, its extensive utilization is impeded by the auto-oxidation resulting in degradation of the fuel. Adding antioxidants to the biodiesel is a potential solution, but it might have an effect on the clean-burning characteristics of the fuel. This paper investigates the effect of antioxidants on the performance and emission characteristics of a diesel engine fuelled by the waste cooking sunflower methyl ester. The fuel samples tested include B10, B20, B30 and B40, among which B20 produced the best possible results. Antioxidants 2, 6-ditert-butyl-4-methylphenol (BHA) and 2(3)-tert-butyl-4-methoxy phenol (BHT) of two concentrations 1000 ppm, 2000 ppm were added to B20 to evaluate the effectiveness. B20BHA1000 had the best effect with an average decrease of 5.035%, 2.02% in brake specific fuel consumption (BSFC) and exhaust gas temperature (EGT) compared to B20. Regarding the emission characteristics it was observed that B20BHA1000 had produced an increase of 7.21%, 27.79% in NOx and smoke emissions and a decrease of 33.33% in HC emissions when compared to B20. On the whole, without any requirement of alteration in the diesel engines, B20 blends with antioxidant can be utilized as fuel.

  12. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  13. Emissions Characteristics of Small Diesel Engine Fuelled by Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2014-07-01

    Full Text Available Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. However, biodiesel has oxygenated, more density and viscosity compared to mineral diesel. Despite years of improvement attempts, the key issue in using waste cooking oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. Thus, the improvement of emission exhausted from diesel engines fueled by biodiesel derived from waste cooking oil (WCO is urgently required to meet the future stringent emission regulations. The purpose of this research is to investigate the influences of WCO blended fuel and combustion reliability in small engine on the combustion characteristics and exhaust emissions. The engine speed was varied from 1500-2500 rpm and WCO blending ratio from 5-15 vol% (W5-W15. Increased blends of WCO ratio is found to influences to the combustion process, resulting in decreased the HC emissions and also other exhaust emission element. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.

  14. PERFORMANCE AND EMISSIONS OF A HEAVY DUTY DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL AND PREMIUM DIESEL

    Directory of Open Access Journals (Sweden)

    HELMER ACEVEDO

    2011-01-01

    Full Text Available Biodiesel es promocionado como combustible alternativo para sustituir combustibles de origen fósil y reducir emisiones de carbono. Algunos estudios han sido llevados a cabo para estudiar las emisiones de vehículos diesel de baja potencia. Sin embargo, las emisiones sólidas y gaseosas emitidas por vehículos de trabajo operados con biodiesel de palma africana y diesel de bajo contenido de azufre (~ 15 ppm han sido poco estudiadas. El objetivo de este estudio fue determinar el desempeño y emisiones de un motor Diesel Cummins, 4 tiempos, 9.5 litros, 6 cilindros con sistema de inyección "common rail", y sistema de recirculación de gases. El motor desarrolló una menor potencia (10 % cuando fue operado con biodiesel de palma africana. El motor cumplió con la norma ambiental 2004 cuando fue operado con combustible diesel, sin embargo, con biodiesel de palma africana las emisiones de material particulado y los óxidos de nitrógeno estuvieron fuera de norma.

  15. Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine.

    Science.gov (United States)

    Silitonga, Arridina Susan; Hassan, Masjuki Haji; Ong, Hwai Chyuan; Kusumo, Fitranto

    2017-11-01

    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.

  16. Experimental investigation into the oxidation reactivity and nanostructure of particulate matter from diesel engine fuelled with diesel/polyoxymethylene dimethyl ethers blends

    Science.gov (United States)

    Yang, Hao; Li, Xinghu; Wang, Yan; Mu, Mingfei; Li, Xuehao; Kou, Guiyue

    2016-11-01

    This paper focuses on oxidation reactivity and nanostructural characteristics of particulate matter (PM) emitted from diesel engine fuelled with different volume proportions of diesel/polyoxymethylene dimethyl ethers (PODEn) blends (P0, P10 and P20). PM was collected using a metal filter from the exhaust manifold. The collected PM samples were characterized using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The TGA results indicated that the PM produced by P20 had the highest moisture and volatility contents and the fastest oxidation rate of solid carbon followed by P10 and P0 derived PM. SEM analysis showed that PM generated from P20 was looser with a lower mean value than PM emitted from P10 and P0. Quantitative analysis of high-resolution TEM images presented that fringe length was reduced along with increased separation distance and tortuosity with an increase in PODEn concentration. These trends improved the oxidation reactivity. According to Raman spectroscopy data, the intensity, full width at half-maximum and intensity ratio of the bands also changed demonstrating that PM nanostructure disorder was correlated with a faster oxidation rate. The results show the use of PODEn affects the oxidation reactivity and nanostructure of PM that is easier to oxidize.

  17. Effect of steam injection on nox emissions and performance of a single cylinder diesel engine fuelled with soy methyl ester

    Directory of Open Access Journals (Sweden)

    Manickam Madhavan V.

    2017-01-01

    Full Text Available Biodiesel attracts most of the researchers and automotive industries in recent years as an alternative fuel for diesel engines, because of its better lubricity property, higher cetane number, and less greenhouse gas emissions. The use of bio diesel leads to reduction in hydro carbons, carbon monoxide, and particulate matter, but increase in NOx emissions. Increase in biodiesel blends in standard diesel leads to increase in NOx emission. In this study, an attempt is made to reduce the NOx emis-sions of a diesel engine fueled with pure soy methyl ester (B100 with low pressure steam injection. Experiments were carried out and studied for both standard diesel and pure biodiesel of soy methyl ester with steam injection ratio of 5, 10, and 15% on mass ratio basis of air in the inlet manifold. The present study has shown that around 30% reduction in NOx can be achieved for the steam injection rate of 10% and considerable reduction for all other steam injection rates when compared to standard diesel and B100. It is also observed that steam injection having signifi-cant impact on reduction of other emissions such as HC, CO, and CO2. The study also noted marginal improvement in the engine brake power, brake thermal effi-ciency and reduction in specific fuel consumption at part loads and minor increase during peak load operation for the low pressure steam injection on B100.

  18. An experimental investigation of PAH emissions from a heavy duty diesel engine fuelled with biodiesel and its blend

    International Nuclear Information System (INIS)

    Shah, A. N.; Shan, G.E.Y.; Wei, T.J.; Hua, L.Z.

    2008-01-01

    For the comparison of emission of polycyclic aromatic hydrocarbons (PAHs) from diesel biodiesel and its 20% blend with diesel, and their carcinogenic potencies, an experimental study has been conducted on a turbocharged, intercooled and direct injection diesel engine. Total PAHs (solid and gas) from diesel, B20 and B100 at low load were more than those at high loads. Total PAH emissions from the test fuels at the rated speed were more than those at maximum torque speed. Benzo[a] pyrene (BaP) brake specific emission of biodiesel is less than that of diesel. LMW-PAH emissions for the test fuels are all higher than those of MMW and HMW PAH. Biodiesel and B20 reduce both the total Benzo[a] pyrene equivalent concentration (BaP/sub eq/) and the total mean-PAHs as compared to commercial diesel fuel. BSFC of the engine increased but its brake power decreased in the cases of B20 and biodiesel. (author)

  19. Calculations on heavy-water moderated and cooled natural uranium fuelled power reactors

    International Nuclear Information System (INIS)

    Pinedo V, J.L.

    1979-01-01

    One of the codes that the Instituto Nacional de Investigaciones Nucleares (Mexico) has for the nuclear reactors design calculations is the LEOPARD code. This work studies the reliability of this code in reactors design calculations which component materials are the same of the heavy water moderated and cooled, natural uranium fuelled power reactors. (author)

  20. Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel

    Directory of Open Access Journals (Sweden)

    C. Syed Aalam

    2015-09-01

    Full Text Available Experiments were conducted to determine engine performance, exhaust emissions and combustion characteristics of a single cylinder, common rail direct injection (CRDI system assisted diesel engine using diesel with 25 percentage of zizipus jujube methyl ester blended fuel (ZJME25. Along with this ZJME25 aluminium oxide nanoparticles were added as additive in mass fractions of 25 ppm (AONP 25 and 50 ppm (AONP 50 with the help of a mechanical Homogenizer and an ultrasonicator. It was observed that aluminium oxide nanoparticles blended fuel exhibits a significant reduction in specific fuel consumption and exhaust emissions at all operating loads. At the full load, the magnitude of HC and smoke emission for the ZJME25 before the addition of aluminium oxide nanoparticles was 13.459 g/kW h and 79 HSU, whereas it was 8.599 g/kW h and 49 HSU for the AONP 50 blended ZJME25 fuel respectively. The results also showed a considerable enhancement in brake thermal efficiency and heat release rate due to the influence of aluminium oxide nanoparticles addition in biodiesel–diesel blend.

  1. Performance of on-power fuelling equipment at Rajasthan Atomic Power Station

    International Nuclear Information System (INIS)

    Jayabarathan, S.; Gopalakrishnan, S.

    1977-01-01

    Natural uranium reactors on account of their intrinsically low reactivity need frequent refuelling. The Rajasthan Atomic Power Station based on natural uranium reactors has, therefore, been provided with on-power fuel handling system which was installed in 1972. Its performance has met the design intent and operational objectives which are enumerated. However, continuous fuelling 7 to 10 days has not been possible because frequent maintenance of refuelling system is needed on account of certain deficiencies major of which is the heavy water leakage. For better performance, installation of a programmable logic controller is suggested. Mention has also been made of inadequate number of skilled man-power required for maintenance which leads to quick depletion of man-rem of all the available personnel trained for maintenance work. (M.G.B.)

  2. Diesel-powered Passenger Cars and Light Trucks

    Science.gov (United States)

    2015-10-01

    Diesel-powered automobiles are in the news following emission concerns raised by the U.S. Environmental Protection Agency. This fact sheet contains background information on diesel-powered motor vehicles and diesel fuel.

  3. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    Science.gov (United States)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  4. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    International Nuclear Information System (INIS)

    Zhen, Dong; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew; Wang, Tie

    2013-01-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation. (paper)

  5. Feasibility of a Dual-Fuel Engine Fuelled with Waste Vegetable Oil and Municipal Organic Fraction for Power Generation in Urban Areas

    Directory of Open Access Journals (Sweden)

    L. De Simio

    2012-01-01

    Full Text Available Biomass, in form of residues and waste, can be used to produce energy with low environmental impact. It is important to use the feedstock close to the places where waste are available, and with the shortest conversion pathway, to maximize the process efficiency. In particular waste vegetable oil and the organic fraction of municipal solid waste represent a good source for fuel production in urban areas. Dual fuel engines could be taken into consideration for an efficient management of these wastes. In fact, the dual fuel technology can achieve overall efficiencies typical of diesel engines with a cleaner exhaust emission. In this paper the feasibility of a cogeneration system fuelled with waste vegetable oil and biogas is discussed and the evaluation of performance and emissions is reported on the base of experimental activities on dual fuel heavy duty engine in comparison with diesel and spark ignition engines. The ratio of biogas potential from MSW and biodiesel potential from waste vegetable oil was estimated and it results suitable for dual fuel fuelling. An electric power installation of 70 kW every 10,000 people could be achieved.

  6. Performance of diesel engine fuelled with sunflower biodiesel blends; Desempenho de motor diesel com misturas de biodiesel de oleo de girassol

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Ila Maria; Maziero, Jose Valdemar Gonzalez; Bernardi, Jose Augusto; Storino, Moises [Instituto Agronomico de Campinas (CEA/IAC), SP (Brazil). Centro de Engenharia e Automacao; Ungaro, Maria Regina [Instituto Agronomico de Campinas (IAC), SP (Brazil). Centro de Graos e Fibras

    2006-07-01

    The aim of this paper was to evaluate the use of sunflower bio diesel blends in a CI engine, direct injection. The test procedure was done in a dynamometer bench had been determined the performance of engine through power take-off (PTO) with use of diesel and sunflower bio diesel blends (B5, B10, B20 and B100). The lubricating oil was analyzed before and after period of 96 hours. The results were: D (40,7 kw; 271 g/kw.h); B5 (40,3 kw; 271 g/kw.h); B10 (39,8 kw; 277 g/kw.h); B20 (40,0 kw; 277 g/kw.h) e B100 (39,8 kw; 291 g/kw.h). It was conclude that the use of blends B5, B10, B20 and B100 decreased the power of PTO max. 2,2% and increased the fuel consumption max. 7, 3%. The analyze of lubricating oil showed that the viscosity, water content and level of iron were the parameters more affected, although it had been acceptable. (author)

  7. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  8. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lopez, P. Reche; Reyes, N. Ruiz; Gonzalez, M. Gomez; Jurado, F.

    2008-01-01

    With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)

  9. A long-term view of fossil-fuelled power generation in Europe

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Georgakaki, Aliki

    2010-01-01

    The paper presents a view into the long term future of fossil-fuelled power generation in the European Union, based on a number of alternative scenarios for the development of the coal, natural gas and CO 2 markets, and the penetration of renewable and nuclear technologies. The new fossil fuelled capacity needed and the likely technology mix are estimated using a cost optimisation model based on the screening curve method, taking into consideration the rate of retirement of the current power plant fleet, the capacity already planned or under construction and the role of carbon capture and storage technologies. This analysis shows that measures to increase both non-fossil-fuel-based power generation and the price of CO 2 are necessary to drive the composition of the European power generation capacity so that the European policy goal of reducing greenhouse gas emissions is achieved. Meeting this goal will however require a high capital investment for the creation of an optimal fossil fuel power plant technology mix.

  10. Combustion performance and emission analysis of diesel engine fuelled with water-in-diesel emulsion fuel made from low-grade diesel fuel

    International Nuclear Information System (INIS)

    Ithnin, Ahmad Muhsin; Ahmad, Mohamad Azrin; Bakar, Muhammad Aiman Abu; Rajoo, Srithar; Yahya, Wira Jazair

    2015-01-01

    Highlights: • Effect of using emulsified fuel made from low-grade fuel in engine are investigated. • Specific fuel consumption of the engine is reduced overall for all types of W/D. • Comparable maximum in-cylinder pressure and pressure rise rate compared to D2. • NOx and PM are found to be reduced for all types of W/D. • CO and CO 2 emissions increase compared to D2 at low load and high load. - Abstract: In the present research, an experiment is designed and conducted to investigate the effect of W/D originating from low-grade diesel fuel (D2) on the combustion performance and emission characteristics of a direct injection diesel engine under varying engine loads (25–100%) and constant engine speed (3000 rpm). Four types of W/D are tested, which consist of different water percentages (5%, 10%, 15% and 20%), with constant 2% of surfactant and labelled as E5, E10, E15 and E20, respectively. The specific fuel consumption (SFC) of the engine when using each type of W/D is found to be reduced overall. This is observed when the total amount of diesel fuel in the emulsion is compared with that of neat D2. E20 shows a comparable maximum in-cylinder pressure and pressure rise rate (PRR) compared to D2 in all load conditions. In addition, it produces the highest maximum rate of heat release (MHRR) in almost every load compared to D2 and other W/Ds. NOx and PM are found to be reduced for all types of W/D. The carbon monoxide (CO) and carbon dioxide (CO 2 ) emissions increase compared to D2 at low load and high load, respectively. Overall, it is observed that the formation of W/D from low-grade diesel is an appropriate alternative fuel method that can bring about greener exhaust emissions and fuel savings without deteriorating engine performance

  11. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available (SOPAC Miscellaneous Report 406, 2005). The battery bank is cycled frequently, shortening its lifetime. If the inverter fails there is complete loss of power to the load, unless the load can be supplied directly from the diesel generator for emergency purposes....5 Sizing the inverter ............................................................................................... 67 5.6 Sizing the charge Controller ............................................................................... 68 5.7 Sizing...

  12. Spray-combustion process characterization in a common rail diesel engine fuelled with butanol-diesel blends by conventional methods and optical diagnostics

    Directory of Open Access Journals (Sweden)

    Simona Silvia Merola

    2014-04-01

    Full Text Available The target of a sustainable mobility has led to investigate advanced combustion modes and fuels technologies. On the other side, the increasing global energy demand and the decreasing fossil-energy resources are enhancing the interest in the use of renewable alternative fuels for compression ignition engines with the target of near-zero emission levels. Although performance and emissions of alternative-fuel within light-duty diesel engines have been extensively investigated, results of fuel chemical composition impact on combustion by integrated optical methodologies are lacking. In order to meet this challenge, one of the main objectives of the research efforts is to characterize the combustion and species evolution. In this investigation, conventional tests and optical diagnostics were employed to enhance the comprehension of the combustion process and chemical markers in a common rail compression ignition engine powered by butanol-diesel blends. The investigation was focused on the effect of the injection strategy and blend composition on in-cylinder spray combustion and soot formation, through UV-visible digital imaging and natural emission spectroscopy. Experiments were performed in an optically accessible single cylinder high swirl compression ignition engine, equipped with a common rail multi-jets injection system. UV-visible emission spectroscopy was used to follow the evolution of the combustion process chemical markers. Spectral features of OH were identified and followed during the spray combustion process examining different pilot-main dwell timings. Soot spectral evidence in the visible wavelength range was correlated to soot engine out emissions. In this work, conventional and optical data related to diesel fuel blended with 40 % of n-butanol will be presented.

  13. Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels

    International Nuclear Information System (INIS)

    Singh, Devendra; Singal, S.K.; Garg, M.O.; Maiti, Pratyush; Mishra, Sandhya; Ghosh, Pushpito K.

    2015-01-01

    Highlights: • B100 biodiesels from Jatropha (BJ) and marine microalga (BA) compared. • 17% lower NOx and 6% lower specific fuel consumption of BA over BJ. • Brake specific fuel consumption (BSFC) highest in urban mode in all cases. • NOx, HC and CO highest in rural-, motorway-and urban modes, respectively. • Microalga Chlorella variabilis is a promising feedstock for renewable fuels. - Abstract: Biodiesel is a renewable alternative to petro-diesel used in compression ignition (CI) engine. Two B100 biodiesel samples were prepared by patented routes from the lipids extracted from marine microalga Chlorella variabilis (BA) cultivated in salt pans and wasteland-compatible Jatropha curcas (BJ). The fuels complied with ASTM D-6751 and European Standard EN-14214 specifications. Standard Petro-diesel served as a control. Transient performance and emission characteristics of a heavy duty diesel engine fuelled with these B100 fuels (BJ and BA) were studied over European Transient Cycle. Test results showed that both B100 biodiesels outperformed petro-diesel in terms of particulate matter (PM), carbon monoxide (CO) and hydrocarbon (HC) emissions, with slight penalty on NOx emissions. Among the two biodiesels, merits of BA were established over BJ in terms of nitrogen oxides (NOx) emissions and specific fuel consumption. Mode-wise transient emission analysis revealed that NOx was highest in rural mode, CO was highest in urban and HC was highest in motorway mode for all fuels. BA may be considered as a promising alternative fuel for diesel engine which can be produced sustainably through cultivation of the marine microalga in coastal locations using seawater as culture medium, obviating thereby concerns around land use competition for food and fuel.

  14. EXPERIMENTAL INVESTIGATIONS ON THE EFFECT OF HYDROGEN INDUCTION ON PERFORMANCE AND EMISSION BEHAVIOUR OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH PALM OIL METHYL ESTER AND ITS BLEND WITH DIESEL

    Directory of Open Access Journals (Sweden)

    BOOPATHI D.

    2017-07-01

    Full Text Available Internal combustion engines are an integral part of our daily lives, especially in the agricultural and transportation sector. With depleting fossil fuel and increasing environmental pollution, the researchers are foraying into alternate sources for fuelling the internal combustion engine. Vegetable oils derived from plant seeds is one such solution, but using them in unmodified diesel engine leads to reduced thermal efficiency and increased smoke emissions. Hydrogen if induced in small quantities in the air intake manifold can enhance the engine performance running on biodiesel. In this work, experiments were performed to evaluate the engine performance when hydrogen was inducted in small quantities and blends of esterified palm oil and diesel was injected as pilot fuel in the conventional manner. Tests were performed on a single cylinder, 4 - stroke, water cooled, direct injection diesel engine running at constant speed of 1500 rpm under variable load conditions and varying hydrogen flow. At full load for 75D25POME (a blend of 75% diesel and 25% palm oil methyl ester by volume, the results indicated an increase in brake thermal efficiency from 29.75% with zero hydrogen flow to a maximum of 30.17% at 5lpm hydrogen flow rate. HC emission reduced from 34 to 31.5 ppm, by volume at maximum load. Whereas, CO emission reduced from 0.09 to 0.045 % by volume at maximum load. Due to higher combustion rates with hydrogen induction, NOx emission increased from 756 to 926 ppm, at maximum load.

  15. Towards controlling dioxins emissions from power boilers fuelled with salt-laden wood waste

    International Nuclear Information System (INIS)

    Luthe, C.; Karidio, I.; Uloth, V.

    1997-01-01

    An evaluation of the dioxins emissions from a power boiler fuelled with salt-laden wood waste has provided insights on potential control technologies. Whereas a reduction in stack particulate levels does not preclude a corresponding reduction in dioxins emissions, good combustion conditions, in combination with an efficient secondary collection device for particulate removal, were found to offer effective control (stack emissions of 0.064 to 0.086 ng TEQ/m 3 ). Regarding minimization of dioxins formation at source, a preliminary assessment of the possible beneficial effect of an attenuated chlorine:sulphur ratio was encouraging. A more accurate assessment requires additional trials, preferably longer in duration, to eliminate any possible memory effects. (author)

  16. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Balaji Gnanasikamani

    2017-01-01

    Full Text Available The experimental investigation of the influence of Al2O3 nanoadditive on performance and emissions in a methyl ester of neem oil fueled direct injection Diesel engine is reported in this paper. The Al2O3 nanoparticles are mixed in various proportions (100 to 300 ppm with methyl ester of neem oil. The performance and emissions are tested in a single cylinder computerized, 4-stroke, stationary, water-cooled Diesel engine of 3.5 kW rated power. Results show that the nanoadditive is effective in increasing the performance and controlling the NO emissions of methyl ester of neem oil fueled Diesel engines.

  17. Desempenho de motor diesel com misturas de biodiesel de óleo de girassol Performance of diesel engine fuelled with sunflower biodiesel blends

    Directory of Open Access Journals (Sweden)

    Ila Maria Corrêa

    2008-06-01

    Full Text Available Objetivou-se, neste trabalho avaliar o uso de misturas de biodiesel de girassol (Helianthus annuus L. e diesel no desempenho de um motor de ignição por compressão, injeção direta. Os ensaios foram realizados em bancada dinamométrica utilizando-se as misturas B5, B10, B20 e B100 em comparação ao diesel (D. Foi analisado o desempenho do motor através da tomada de potência (TDP com cada combustível, e analisado o óleo lubrificante do motor antes e após 96 horas de uso com B100. Os resultados obtidos foram: D (40,7 kW; 271 g/kW.h; B5 (40,3 kW; 271 g/kW.h; B10 (39,8 kW; 277 g/kW.h; B20 (40,0 kW; 277 g/kW.h e B100 (39,8 kW; 291 g/kW.h. Concluiu-se que o uso das misturas B5, B10, B20 e B100 proporcionou redução de no máximo 2,2 % na potência na TDP e um aumento máximo de 7,3 %, no consumo específico de combustível. A análise do óleo lubrificante, antes e após o uso com B100, detectou alterações aceitáveis, sendo a viscosidade, a presença de água e o teor de ferro os parâmetros mais expressivamente alterados.This work aimed to evaluate the use of sunflower biodiesel (Helianthus annuus L. blends in a CI engine, direct injection. The test procedure was carried out in a dynamometer bench that determined the performance of engine through power take-off (PTO with use of diesel and sunflower biodiesel blends (B5, B10, B20 and B100. The lubricating oil was analyzed before and after period of 96 hours. The results were: D (40,7 kW; 271 g/kW.h; B5 (40,3 kW; 271 g/kW.h; B10 (39,8 kW; 277 g/kW.h; B20 (40,0 kW; 277 g/kW.h e B100 (39,8 kW; 291 g/kW.h. One conclude that the use of blends B5, B10, B20 and B100 decreased the power of PTO max. 2,2% and increased the fuel consumption max. 7, 3%. The analysis of the lubricating oil before and after the use of B100 showed acceptable alterations and the viscosity, water content and level of iron were the most affected parameters.

  18. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  19. Experimental studies on the combustion and emission characteristics of a diesel engine fuelled with used cooking oil methyl ester and its diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi Narayana Rao, G.; Sampath, S. [Sri Venkateswara College of Engineering, Sriperumbudur (India); Rajagopal, K. [Jawaharlal Nehru Technological Univ., Hyderabad (India)

    2008-04-01

    Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analyzed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution. Of the various alternate fuels under consideration, biodiesel is the most promising due to the following reasons: (1) Biodiesel can be used in the existing engine without any modifications. (2) Biodiesel is made entirely from vegetable sources; it does not contain any sulfur, aromatic hydrocarbons, metals or crude oil residues. (3) Biodiesel is an oxygenated fuel; emissions of carbon monoxide and soot tend to reduce. (4) Unlike fossil fuels, the use of biodiesel does not contribute to global warming as CO{sub 2} emitted is once again absorbed by the plants grown for vegetable oil/biodiesel production. Thus CO{sub 2} balance is maintained. (5) The Occupational Safety and Health Administration classifies biodiesel as a non-flammable liquid. (6) The use of biodiesel can extend the life of diesel engines because it is more lubricating than petroleum diesel fuel. (7) Biodiesel is produced from renewable vegetable oils/animal fats and hence improves the fuel or energy security and economy independence.

  20. Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine

    International Nuclear Information System (INIS)

    Sathiyamoorthi, R.; Sankaranarayanan, G.; Pitchandi, K.

    2017-01-01

    Highlights: • Neat lemongrass oil can be used as an alternate fuel in diesel engine. • The combined effect of nano emulsion and EGR using LGO25-DEE-Diesel is investigated. • The BTE is improved for nano emulsion fuel blend. • The NO_x and smoke emissions decrease significantly. • Cylinder pressure and Heat release rate increase with longer ignition delay. - Abstract: In the present experimental study, the combined effects of nanoemulsion and exhaust gas recirculation (EGR) on the performance, combustion and emission characteristics of a single cylinder, four stroke, variable compression ratio diesel engine fueled with neat lemongrass oil (LGO)-diesel-DEE (diethyl ether) blend are investigated. The Neat Lemongrass oil could be used as a new alternate fuel in compression ignition engines without any engine modifications. The entire investigation was conducted in the diesel engine using the following test fuels: emulsified LGO25, cerium oxide blended emulsified LGO25 and DEE added emulsified LGO25 with EGR respectively and compared with standard diesel and LGO25 (75% by volume of diesel and 25% by volume of lemongrass oil) fuels. The combined effect of DEE added nano-emulsified LGO25 with EGR yielded a significant reduction in NO_x and smoke emission by 30.72% and 11.2% respectively compared to LGO25. Furthermore, the HC and CO emissions were reduced by 18.18% and 33.31% respectively than with LGO25. The brake thermal efficiency and brake specific fuel consumption increased by 2.4% and 10.8% respectively than LGO25. The combustion characteristics such as cylinder pressure and heat release rate increased by 4.46% and 3.29% respectively than with LGO25. The combustion duration and ignition delay increase at nano-emulsified LGO25 with DEE and EGR mode but decrease for nano-emulsified LGO25 fuel.

  1. Experimental Studies on Four Stroke Diesel Engine Fuelled with Tamarind Seed Oil as Potential Alternate Fuel for Sustainable Green Environment

    Directory of Open Access Journals (Sweden)

    V. Dhana Raju

    2018-01-01

    Full Text Available The main objective of this present novel work is to investigate the performance, combustion and emission characteristics of biodiesel derived from the tamarind seed through the transesterification process as potential alternative feedstock for the diesel engine. The physio-chemical properties of tamarind seed methyl ester (TSME were evaluated experimentally and compared with the base fuel. Test fuels were prepared in 3 concentrations such as B10 (10% tamarind seed oil and 90% diesel, B20 and B30.Experiments were conducted at a constant speed, the injection timing of 23° crank angle and compression ratio 17.5:1 with varying load conditions to investigate the diesel engine characteristics. TSME 20 shown better thermal efficiency (34.41% over diesel which is 1.17 % higher and also it produces lower emissions of CO, HC, and smoke opacity. N-Amyl alcohol (NAA is used as a fuel additive for the optimum blend of TSME20; added in 5% and 10% concentration on the volume basis. From the analysis of experimental data, the use of fuel additives significantly reduces the smoke opacity by 29.49 % for TSME20 NAA 10% blend in addition to the reduction of carbon monoxide and hydrocarbons emissions; however, the specific fuel consumption and the oxides of nitrogen were marginally increased.

  2. EFFECT OF COMPRESSION RATIO ON ENERGY AND EMISSION OF VCR DIESEL ENGINE FUELLED WITH DUAL BLENDS OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    R. D. EKNATH

    2014-10-01

    Full Text Available In recent 10 years biodiesel fuel was studied extensively as an alternative fuel. Most of researchers reported performance and emission of biodiesel and their blends with constant compression ratio. Also all the research was conducted with use of single biodiesel and its blend. Few reports are observed with the use of variable compression ratio and blends of more than one biodiesel. Main aim of the present study is to analyse the effect of compression ratio on the performance and emission of dual blends of biodiesel. In the present study Blends of Jatropha and Karanja with Diesel fuel was tested on single cylinder VCR DI diesel engine for compression ratio 16 and 18. High density of biodiesel fuel causes longer delay period for Jatropha fuel was observed compare with Karanja fuel. However blending of two biodiesel K20J40D results in to low mean gas temperature which is the main reason for low NOx emission.

  3. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    Science.gov (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  4. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    Science.gov (United States)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  5. Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations

    International Nuclear Information System (INIS)

    Jemni, Mohamed Ali; Kantchev, Gueorgui; Abid, Mohamed Salah

    2011-01-01

    Diesel engines, especially for trucks and buses, cause many economical and ecological problems. Diesel exhaust emissions are a major source of pollution in most urban centers around the world. Furthermore, the price of crude oil continues to increase rapidly. The use of alternative fuels (liquified petroleum gas, LPG and compressed natural gas, CNG) and the optimization of combustion present effective solutions. Improving combustion is directly related to improving the intake aerodynamic movements which is influenced by the inlet system, especially the intake manifold. In this paper we have studied the geometry effects of two intake manifolds on the in-cylinder flows by two methods, numerically and experimentally. These two manifolds are mounted on a fully instrumented, six-cylinder, 13.8 l displacement, heavy duty, IVECO engine, installed at the authors' laboratory, which is used to power the urban bus diesel engines in Sfax. This engine was modified to bi-fuel spark ignition engine gasoline and gas fuelling. The 1st manifold presents an unspecified geometry whereas the 2nd presents an optimal filling geometry. A three-dimensional numerical modeling of the turbulent in-cylinder flow through the two manifolds was undertaken. The model is based on solving Navier-Stokes and energy equations in conjunction with the standard k-ε turbulence model, using the 3D CFD code FloWorks. This modeling made it possible to provide a fine knowledge of in-flow structures, in order to examine the adequate manifold. Experimental measurements are also carried out to validate this manifold by measuring the important engine performances. Brake power (BP), brake torque (BT) and brake thermal efficiency (BTE), are increased by 16%, 13.9%, and 12.5%, respectively, using optimal manifold. The brake specific fuel consumption (BSFC) is reduced by 28%. Simulation and experiments results confirmed the benefits of the optimized manifold geometry on the in-cylinder flow and engine performances

  6. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships

    International Nuclear Information System (INIS)

    Strazza, C.; Del Borghi, A.; Costamagna, P.; Traverso, A.; Santin, M.

    2010-01-01

    Fuel cells own the potential for significant environmental improvements both in terms of air quality and climate protection. Through the use of renewable primary energies, local pollutant and greenhouse gas emissions can be significantly minimized over the full life cycle of the electricity generation process, so that marine industry accounts renewable energy as its future energy source. The aim of this paper is to evaluate the use of methanol in Solid Oxide Fuel Cells (SOFC), as auxiliary power systems for commercial vessels, through Life Cycle Assessment (LCA). The LCA methodology allows the assessment of the potential environmental impact along the whole life cycle of the process. The unit considered is a 20 kWel fuel cell system. In a first part of the study different fuel options have been compared (methanol, bio-methanol, natural gas, hydrogen from cracking, electrolysis and reforming), then the operation of the cell fed with methanol has been compared with the traditional auxiliary power system, i.e. a diesel engine. The environmental benefits of the use of fuel cells have been assessed considering different impact categories. The results of the analysis show that fuel production phase has a strong influence on the life cycle impacts and highlight that feeding with bio-methanol represents a highly attractive solution from a life cycle point of view. The comparison with the conventional auxiliary power system shows extremely lower impacts for SOFCs.

  7. Diesel engines for independent power producers

    International Nuclear Information System (INIS)

    Berc, Dj.

    1999-01-01

    During recent years an increasing demand has been experienced in the stationary diesel engine market for 10-70 MW diesel units. For larger units this demand is being met by two-stroke low-speed crosshead uniflow scavenged diesel engines, capable of burning almost any fuel available on the market, both liquid of gaseous. The paper deals with service experience gained from such engines and their fuel capability. Examples of actual installations for IPPs and captive plants, together with an example of a typical feasibility study of such plants, is presented in the Appendix. (author)

  8. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A C; Core, W G.F.; Gerstel, U C; Von Hellermann, M G; Koenig, R W.T.; Marcus, F B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  9. New local diesel power stations: an economic assessment

    International Nuclear Information System (INIS)

    Wills, R.J.; Reuben, B.G.

    1992-01-01

    A recent investigation examined the economic potential for electricity generation in the U.K. using large slow-speed two-stroke diesel engines of around 40MW unit output. Large diesels are a high efficiency technology, resilient to fuel quality, and with high reliability. Economic analysis compared diesels with other generating options for a range of fuel scenarios and discount rates. Merit order potential and total costs were also assessed. The diesels show superior economic qualities, both in terms of investment criteria and high merit position. They are economically comparable with combined cycle gas turbines, but combined cycle plant is essentially large-scale, whereas diesels in 40 MW units sizes can provide small-scale, high-efficiency local generation. Slow-speed diesels represent a sound investment for electricity supply. Diesels in local power stations in southern England would increase supply security and diversity. They are compatible with a cautious investment approach and are appropriate for the new market conditions in electricity supply. (author)

  10. Performance and emission characteristics of a stationary diesel engine fuelled by Schleichera Oleosa Oil Methyl Ester (SOME produced through hydrodynamic cavitation process

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2018-03-01

    Full Text Available In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester blended with diesel in proportions of 10%, 20%, 30% and 50% by volume and pure diesel was used as fuel. Engine performance (specific fuel consumption and brake thermal efficiency and exhaust emission (CO, CO2 and NOx were measured to evaluate the behaviour of the diesel engine running on biodiesel. The results show that the brake thermal efficiency of diesel is higher and brake specific fuel consumption is lower at all loads followed by blends of SOME and diesel. The performance parameter for B10, B20, B30 and B50 were also closer to diesel and the CO emission was found to be lesser than diesel while there was a slight increase in the CO2 and NOx. SOME produced by using hydrodynamic cavitation seems to be efficient, time saving and industrially viable. The experimental results revel that SOME-diesel blends up to 50% (v/v can be used in a diesel engine without modifications. Keywords: Performance, Emission, Diesel engine, Schleichera Oleosa Oil, Biodiesel hydrodynamic cavitation (HC

  11. Diesel fuel to dc power: Navy & Marine Corps Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, D.P. [Analytic Power Corp., Boston, MA (United States)

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  12. Analysis of power tiller noise using diesel-biodiesel fuel blends

    Directory of Open Access Journals (Sweden)

    N Keramat Siavash

    2015-09-01

    , capacitor microphone with a unidirectional pattern whose size, sensitivity and frequency range are 1/2", 50 mV Pa-1 and 10 Hz to 20 kHz with a flat extrusion, respectively. Choosing the combination of fuel was carried out according to experiments that have been done before determining engine operation parameters. Results and Discussion: Fuel type has a direct effect on the quality of the IC engine's combustion phenomenon. One of the most important quality parameters that can be fluctuated by fuel type is engine noise. The fuel type has a direct effect on internal fuel ignition engines and affects the quality of fuel ignition. One of the effects of ignition quality is the sound of the engine that is very important in terms of both the health and evaluation of engine performance. Two-wheel tractors are of the most important tools used in agriculture. In addition to agricultural work, they have applications in rural areas as power generators. No research has been carried out so far in Iran on the sound of two-wheel tractors fuelled with diesel and biodiesel fuels. Therefore, the sound of the ignition of biodiesel and diesel mixtures in four stroke, single cylinder, two wheel diesel tractors manufactured by Ashtad Company was studied. The purpose of this study is to analyze the noise parameters of a diesel engine using B0, B5, B10, B15, B20, B25 and B30 biodiesel–diesel blends. Biodiesel was produced from waste oil and blended with net diesel fuel to evaluate the Power tiller's engine noise parameters. This study was carried out at a stationary position and at three positions such as driver's left ear position (DLEP, 1.5 meter (1.5 MAFE and 7.5 meters (7.5 MAFE away from the exhaust at 6 engine speeds (1200, 1400, 1600, 1800, 2000 & 2200 rpm. Statistical analysis and frequency analysis were used to analyze sound of the engine. The results showed that the sound pressure levels of the engine for B10 fuel have the least amount of noise level of the sound pressure. However, this

  13. CANDU 9 fuelling machine carriage

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, D J; Slavik, J F [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1997-12-31

    Continuous, on-power refuelling is a key feature of all CANDU reactor designs and is essential to maintaining high station capacity factors. The concept of a fuelling machine carriage can be traced to the early CANDU designs, such as the Douglas Point Nuclear Generating Station. In the CANDU 9 480NU unit, the combination of a mobile carriage and a proven fuelling machine head design comprises an effective means of transporting fuel between the reactor and the fuel transfer ports. It is a suitable alternative to the fuelling machine bridge system that has been utilized in the CANDU 6 reactor units. The CANDU 9 480NU fuel handling system successfully combines features that meet the project requirements with respect to fuelling performance, functionality, seismic qualification and the use of proven components. The design incorporates improvements based on experience and applicable current technologies. (author). 4 figs.

  14. CANDU 9 fuelling machine carriage

    International Nuclear Information System (INIS)

    Ullrich, D.J.; Slavik, J.F.

    1996-01-01

    Continuous, on-power refuelling is a key feature of all CANDU reactor designs and is essential to maintaining high station capacity factors. The concept of a fuelling machine carriage can be traced to the early CANDU designs, such as the Douglas Point Nuclear Generating Station. In the CANDU 9 480NU unit, the combination of a mobile carriage and a proven fuelling machine head design comprises an effective means of transporting fuel between the reactor and the fuel transfer ports. It is a suitable alternative to the fuelling machine bridge system that has been utilized in the CANDU 6 reactor units. The CANDU 9 480NU fuel handling system successfully combines features that meet the project requirements with respect to fuelling performance, functionality, seismic qualification and the use of proven components. The design incorporates improvements based on experience and applicable current technologies. (author). 4 figs

  15. Fuelling tomorrow's transport

    International Nuclear Information System (INIS)

    Cadwallader, S.; Donovan, N.

    1995-11-01

    Fuelling Tomorrow's Transport provides a thorough analysis of key industry trends; developments in technology, fuel use and efficiency; environmental and legislative constraints; and company and governmental policy. It discusses in detail the changes facing the transport industry and analyses how the various technological, political and economic developments will affect the industry into the next century. Key issues addressed include: current and future fuel use in road, marine and aviation transport; growth in the transport sector and the impact on the oil market; likely scenarios for future transport fuelling; the latest developments in alternative fuels and engines, including electricity, natural gas, nuclear power and liquid hydrogen, and the commercial feasibility of these technologies; government policy and current and proposed legislative and fiscal incentives for the development and take-up of alternative fuels and engines; the driving force of the environmental debate; the current research and development programmes of individual companies; and the commercial openings offered by these developments. (author)

  16. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    . A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling......This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up...

  17. 76 FR 45741 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Diesel-Powered Motor...

    Science.gov (United States)

    2011-08-01

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Diesel-Powered Motor Vehicle Idling Act AGENCY... the Commonwealth's Diesel-Powered Motor Vehicle Idling Act (Act 124 of 2008, or simply Act 124) into... allowable time that heavy-duty, commercial highway diesel vehicles of over 10,000 pounds gross vehicle...

  18. 77 FR 17099 - Proposed Extension of Existing Information Collection; Diesel-Powered Equipment for Underground...

    Science.gov (United States)

    2012-03-23

    ... to underground coal miners who work in mines that use diesel-powered equipment. Diesel equipment can... provide important safety protections to underground coal miners who work in mines that use diesel-powered... maintenance of fire suppression systems on the equipment and at fueling stations; exhaust gas sampling...

  19. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A [Modigen Oy, Helsinki (Finland)

    1996-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  20. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  1. Experience with a biomass-fuelled power plant in Peru. Peru kokunai no biomass nenryoka no hatsuden plant no keiken

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This paper describes the result of operating a 25-kW biomass-fuelled power plant for 500 hours installed for people in a small village in jungle along the Amazon basin in Peru. The gasifier plant consists of two invert type gas combustors combined with series cyclone dryer filters. Filtration used activated carbons and cotton cloths. The fuel for the plant is wood chips containing water at 5.5% to 11% with calorific power of 20 mJ/kg, consumed at 2.0 kg of lumber per kWh (25 kWh). A gas analysis showed values of CO2 at 13%, CO at 14%, H2 at 18%, CH4 at 3%, and N2 at 52%. Because the fuel of wood chips may cause problems if the size is too large, a size of about 10[times]20[times]30 mm was selected finally. Pressure drop in the gas purifying system was measured using a manometer, which verified that a textile filtering material can be used. The gasoline engine rotation was fixed at 2700 rpm upon discussions. The gasoline engine had no need of modification except at a pipe to the carburetor. This system can be installed at any small village. 1 ref., 1 fig.

  2. Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications

    Science.gov (United States)

    Cox, Brian; Treyer, Karin

    2015-02-01

    Global mobile telecommunication is possible due to millions of Base Transceiver Stations (BTS). Nearly 1 million of these are operating off-grid, typically powered by diesel generators and therefore leading to significant CO2 emissions and other environmental burdens. A novel type of Alkaline Fuel Cell (AFC) powered by cracked ammonia is being developed for replacement of these generators. This study compares the environmental and economic performance of the two systems by means of Life Cycle Assessment (LCA) and Levelised Cost of Electricity (LCOE), respectively. Results show that the production of ammonia dominates the LCA results, and that renewable ammonia production pathways greatly improve environmental performance. Sensitivity analyses reveal that the fuel cell parameters that most affect system cost and environmental burdens are cell power density and lifetime and system efficiency. Recycling of anode catalyst and electrode substrate materials is found to have large impacts on environmental performance, though without large cost incentives. For a set of target parameter values and fossil sourced ammonia, the AFC is calculated to produce electricity with life cycle CO2 eq emissions of 1.08 kg kWh-1, which is 23% lower than a diesel generator with electricity costs that are 14% higher in the same application.

  3. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  4. Improvement studies on emission and combustion characteristics of DICI engine fuelled with colloidal emulsion of diesel distillate of plastic oil, TiO2 nanoparticles and water.

    Science.gov (United States)

    Karisathan Sundararajan, Narayanan; Ammal, Anand Ramachandran Bhagavathi

    2018-04-01

    Experimentation was conducted on a single cylinder CI engine using processed colloidal emulsions of TiO 2 nanoparticle-water-diesel distillate of crude plastic diesel oil as test fuel. The test fuel was prepared with plastic diesel oil as the principal constituent by a novel blending technique with an aim to improve the working characteristics. The results obtained by the test fuel from the experiments were compared with that of commercial petro-diesel (CPD) fuel for same engine operating parameters. Plastic oil produced from high density polyethylene plastic waste by pyrolysis was subjected to fractional distillation for separating plastic diesel oil (PDO) that contains diesel range hydrocarbons. The blending process showed a little improvement in the field of fuel oil-water-nanometal oxide colloidal emulsion preparation due to the influence of surfactant in electrostatic stabilization, dielectric potential, and pH of the colloidal medium on the absolute value of zeta potential, a measure of colloidal stability. The engine tests with nano-emulsions of PDO showed an increase in ignition delay (23.43%), and decrease in EGT (6.05%), BSNO x (7.13%), and BSCO (28.96%) relative to PDO at rated load. Combustion curve profiles, percentage distribution of compounds, and physical and chemical properties of test fuels ascertains these results. The combustion acceleration at diffused combustion phase was evidenced in TiO 2 emulsion fuels under study.

  5. Implementasi Power Turbin pada Diesel Generator di Sistem Pembangkit Listrik Tenaga Diesel (PLTD dalam meningkatkan produksi energi listrik

    Directory of Open Access Journals (Sweden)

    Aditya Wahyu Saputra

    2017-01-01

    Full Text Available Aplikasi Power Turbine merupakan salah satu aplikasi PTO (Power Take-Off yang mampu meningkatkan produksi energi listrik dengan memanfaatkan aliran gas buang dari motor bakar (diesel maupun bensin yang mengandung energi kalor (panas yang digunakan untuk memutar turbin dan generator. Penelitian ini bertujuan mencari besar potensi daya listik yang bisa dihasilkan power turbine. Hal ini dicapai dengan cara menganalisa pengaruh pembebanan power turbine terhadap kinerja motor diesel sehingga kita dapat melihat seberapa jauh power turbine tersebut dapat diaplikasikan pada motor bakar. Dari hasil analisa dan perhitungan, didapat bahwa power turbine tersebut dapat menghasilkan energi listrik sebesar 250 kW pada continuous rating (93,23%.

  6. Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminary study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Lujan, J.M.; Tormos, B.; Salvador, F.J.; Gargar, K. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain)

    2009-06-15

    The present work consists of introducing the tests and facilities used to perform a comparative analysis of a diesel engine working with different blends of biodiesel fuel during the New European Driving Cycle. Furthermore, as a preliminary study, it was interesting to know the effects of biodiesel fuel on a common-rail high pressure injection system, those more useful in modern light duty diesel engines, as a consequence of its different physicochemical properties compared with conventional diesel fuel. As the real goal of the study is to compare fairly performance and emissions from the engine, it was essential to know any injection effects owed to fuel's own characteristics that finally would affect those parameters that will be evaluated. A complete fuel characterization for diesel and biodiesel fuels, as the EN 590 and the EN 14214 standard specifications, was performed in order to quantify the differences between both fuels. A priori, it could be thought that viscosity and density values will be the most significant parameters capable of altering the injection rate. As positive results, it was obtained that the common-rail high pressure injection system was totally blind in the injection rate measurements, even the significant differences between both fuels, taking into account the counterbalancing effects generated by two parameters mentioned before. The second part of the study deals with engine performance and pollutant emissions on an unmodified common-rail turbocharged diesel engine running with biodiesel fuel blends during the New European Driving Cycle. (author)

  7. Experimental investigation of evaporation rate and emission studies of diesel engine fuelled with blends of used vegetable oil biodiesel and producer gas

    Directory of Open Access Journals (Sweden)

    Nanjappan Balakrishnan

    2015-01-01

    Full Text Available An experimental study to measure the evaporation rates, engine performance and emission characteristics of used vegetable oil methyl ester and its blends with producer gas on naturally aspirated vertical single cylinder water cooled four stroke single cylinder diesel engine is presented. The thermo-physical properties of all the bio fuel blends have been measured and presented. Evaporation rates of used vegetable oil methyl ester and its blends have been measured under slow convective environment of air flowing with a constant temperature and the values are compared with fossil diesel. Evaporation constants have been determined by using the droplet regression rate data. The fossil diesel, biodiesel blends and producer gas have been utilized in the test engine with different load conditions to evaluate the performance and emission characteristics of diesel engine and the results are compared with each other. From these observations, it could be noted that, smoke and hydrocarbon drastically reduced with biodiesel in the standard diesel engine without any modifications.

  8. Medical Radioisotope Production in a Power-Flattened ADS Fuelled with Uranium and Plutonium Dioxides

    Directory of Open Access Journals (Sweden)

    Gizem Bakır

    2016-01-01

    Full Text Available This study presents the medical radioisotope production performance of a conceptual accelerator driven system (ADS. Lead-bismuth eutectic (LBE is selected as target material. The subcritical fuel core is conceptually divided into ten equidistant subzones. The ceramic (natural U, PuO2 fuel mixture and the materials used for radioisotope production (copper, gold, cobalt, holmium, rhenium, thulium, mercury, palladium, thallium, molybdenum, and yttrium are separately prepared as cylindrical rods cladded with carbon/carbon composite (C/C and these rods are located in the subzones. In order to obtain the flattened power density, percentages of PuO2 in the mixture of UO2 and PuO2 in the subzones are adjusted in radial direction of the fuel zone. Time-dependent calculations are performed at 1000 MW thermal fission power (Pth for one hour using the BURN card. The neutronic results show that the investigated ADS has a high neutronic capability, in terms of medical radioisotope productions, spent fuel transmutation and energy multiplication. Moreover, a good quasiuniform power density is achieved in each material case. The peak-to-average fission power density ratio is in the range of 1.02–1.28.

  9. Performance and emission characteristics of a stationary diesel engine fuelled by Schleichera Oleosa Oil Methyl Ester (SOME) produced through hydrodynamic cavitation process

    OpenAIRE

    Ashok Kumar Yadav; M. Emran Khan; Amit Pal; Uttam Ghosh

    2018-01-01

    In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester) blended with die...

  10. The comparative costs of nuclear and fossil fuelled power plants in an American electricity utility

    International Nuclear Information System (INIS)

    Corey, G.R.

    1984-01-01

    This chapter compares the current and historic operating performances of twelve large nuclear and coal-fired units now operated by Commonwealth Edison Company, and provides specific comparison of bus-bar costs of electricity generated by those units in recent years. It also provides cost comparisons for future nuclear and coal-fired units and attempts to deal realistically with the effect of future inflation upon these comparisons. The chapter attempts to deal responsibly with the problem of uncertainty - how present-day comparisons may be affected by future developments and how my own published comparisons have varied over the past four or five years. The conclusion is reached that, given the uncertain world in which we live, no electric power supplier can afford to put all its eggs in one basket. Utility managers have a strong incentive to diversify their sources of power generation, and society as a whole would do well to encourage such diversification. (author)

  11. Comparative study of regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine fuelled with Fischer Tropsch and biodiesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Vicente; Lujan, Jose M.; Pla, Benjamin; Linares, Waldemar G. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    In this study, regulated and unregulated gaseous emissions and fuel consumption with five different fuels were tested in a 4-cylinder, light-duty diesel EURO IV typically used for the automotive vehicles in Europe. Three different biodiesel fuels obtained from soybean oil, rapeseed oil and palm oil, a Fischer Tropsch fuel and an ultra low sulphur diesel were studied. The test used was the New European Driving Cycle (NEDC), this allowed tests to be carried out on an engine warmed up beforehand to avoid the effect of cold starts and several tests a day. Regulated emissions of NO{sub X}, CO, HC and CO{sub 2} were measured for each fuel. Unburned Hydrocarbon Speciation and formaldehyde were also measured in order to determine the maximum incremental reactivity (MIR) of the gaseous emissions. Pollutants were measured without the diesel oxidation catalyst (DOC) to gather data about raw emissions. When biodiesel was used, increases in regulated and unregulated emissions were observed and also significant increases in engine fuel consumption. The use of Fischer Tropsch fuel, however, caused lower regulated and unregulated emissions and fuel consumption than diesel. (author)

  12. The European fossil-fuelled power station database used in the SEI CASM model

    International Nuclear Information System (INIS)

    Bailey, P.

    1996-01-01

    The database contains details of power stations in Europe that burn fossil-fuels. All countries are covered from Ireland to the European region of Russia as far as the Urals. The following data are given for each station: Location (country and EMEP square), capacity (net MW e and boiler size), year of commissioning, and fuels burnt. A listing of the database is included in the report. The database is primarily used for estimation of emissions and abatement costs of sulfur and nitrogen oxides in the SEI acid rain model CASM. 24 refs, tabs

  13. The European fossil-fuelled power station database used in the SEI CASM model

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, P. [comp.] [Stockholm Environment Inst. at York (United Kingdom)

    1996-06-01

    The database contains details of power stations in Europe that burn fossil-fuels. All countries are covered from Ireland to the European region of Russia as far as the Urals. The following data are given for each station: Location (country and EMEP square), capacity (net MW{sub e} and boiler size), year of commissioning, and fuels burnt. A listing of the database is included in the report. The database is primarily used for estimation of emissions and abatement costs of sulfur and nitrogen oxides in the SEI acid rain model CASM. 24 refs, tabs

  14. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: Assessment of pollutant dispersion and health risk

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Yara S.; Borillo, Guilherme C.; Godoi, Ana Flávia L.; Cichon, Amanda; Silva, Thiago O.B.; Valebona, Fábio B.; Errera, Marcelo R. [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Penteado Neto, Renato A.; Rempel, Dennis; Martin, Lucas [Institute of Technology for Development, Lactec–Leme Division, 01 LothárioMeissner Ave., Curitiba, PR, 80210-170 (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil)

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NO{sub x}, NO, NO{sub 2}, NH{sub 3} and N{sub 2}O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NO{sub x} and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH{sub 3} and N{sub 2}O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH{sub 3}, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NO{sub x} and NO emissions were the lowest when SCR was used; however, it yielded the highest NH{sub 3} concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. - Highlights: • Emission, dispersion and risk assessment

  15. 30 CFR 75.1710 - Canopies or cabs; diesel-powered and electric face equipment.

    Science.gov (United States)

    2010-07-01

    ...-powered and electric face equipment, including shuttle cars, be provided with substantially constructed... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Canopies or cabs; diesel-powered and electric... Miscellaneous § 75.1710 Canopies or cabs; diesel-powered and electric face equipment. In any coal mine where the...

  16. Securing and Fuelling China's Ascent to Power. The Geopolitics of the Chinese-Kazakh Pipeline

    International Nuclear Information System (INIS)

    Handke, S.

    2006-08-01

    China's grand strategy to peacefully ascend to the ranks of great powers will become the major feature of Asia's development in the 21st century. The success of China's economic reform process, which is the precondition of this strategy, is determined by external and internal factors. While China's internal policies are focussed on the realisation of a sustainable economic development, the dynamic of the Sino-American relations is the most significant external factor that influences or could possibly influence China's behaviour on the international stage. The country's economic modernisation depends to a large extent on the government's ability to diminish the regional disparities in wealth. More economic integration with neighbouring countries has become an important part of China's policy to promote economic development in its land-locked border regions. From an energy perspective, China's rapid economic transformation causes a pressing need for energy, which in the case of oil makes the country's economy ever more import dependent. In fact, China's energy security is increasingly linked to its relations with the United States as well as its regional policies. Therefore, China's involvement in Central Asia must also be assessed from a strategic perspective. On the one hand, China's policies towards the region is part of the government's effort to develop the economy of the country's western regions. On the other hand, recent US-led activities in the broader Central Asian region caused the Chinese to pay more attention to the countries beyond China's western borders. This paper uses the Chinese Kazakh oil pipeline as a case study in order to elaborate the rationale behind China's economic and political involvement in Central Asia

  17. Operating experience with diesel generators in Belgian nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Merny, R. [Association Vincotte, Avenue du Roi 157, B-1060 Bruxelles/Brussels (Belgium)

    1986-02-15

    Various problems have occurred on the diesel generators in the Belgian nuclear power plants, independently of the D.G. manufacturer or from the operating crew. Furthermore no individual part of the D.G. can be incriminated as being the main cause of the incidents. The incidents reported in this paper are chosen because of the importance for the safety or for the long repair period. The unavailability of a D.G. can only be detected by periodic tests and controls. Combined with a good preventive maintenance, the risks of incidents can be reduced. (author)

  18. Operating experience with diesel generators in Belgian nuclear power plants

    International Nuclear Information System (INIS)

    Merny, R.

    1986-01-01

    Various problems have occurred on the diesel generators in the Belgian nuclear power plants, independently of the D.G. manufacturer or from the operating crew. Furthermore no individual part of the D.G. can be incriminated as being the main cause of the incidents. The incidents reported in this paper are chosen because of the importance for the safety or for the long repair period. The unavailability of a D.G. can only be detected by periodic tests and controls. Combined with a good preventive maintenance, the risks of incidents can be reduced. (author)

  19. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    OpenAIRE

    SENDILVELAN S.; SUNDAR RAJ C.

    2017-01-01

    Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize ...

  20. Effect of Di-Tertiary Butyl Peroxide on the performance, combustion and emission characteristics of ethanol blended cotton seed methyl ester fuelled automotive diesel engine

    International Nuclear Information System (INIS)

    Kumar, K. Senthil; Raj, R. Thundil Karuppa

    2016-01-01

    Highlights: • Effect of di-tertiary butyl peroxide on ethanol blended biodiesel is investigated. • Cetane enhanced ethanol up to 10% can be blended with cotton seed biodiesel. • Nitrogen oxides emissions are lower for cetane enhanced ethanol biodiesels. • Performance characteristics of cetane improved ethanol biodiesels are reasonable. • Cetane enhanced ethanol blended biodiesel is an promising renewable energy source. - Abstract: An experimental study is carried out to examine and analyze the influence of Di-Tertiary Butyl Peroxide in bioethanol diesel blends on the performance, combustion and emission characteristics in a single cylinder, 4-stroke, naturally aspirated, automotive diesel engine for variable speed at full load conditions. Esterified cotton seed oil of 5% by volume is emulsified with 95% pure diesel to get the base fuel (BE0) for the experiments. Bioethanol diesel blends are produced from base fuel by adding 5% and 10% pure ethanol on a volumetric basis to obtain BE5 and BE10 respectively. The bioethanol fuels are low in Cetane number and hence Di-Tertiary Butyl Peroxide a Cetane enhancer is added by 0.4% by volume to produce BE5CN0.4% and BE10CN0.4% emulsions respectively. It is found from the experiments carried out, that an inverse trend exists between brake thermal efficiency and percentage of ethanol in base fuel. This is due to the lower calorific value of ethanol and an improvement in brake thermal efficiency is observed with ignition improver added blends. The presence of Cetane improver significantly reduced oxides of nitrogen and unburned hydro carbon emissions for overall engine speed and carbon monoxide emissions for low to medium speed range.

  1. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    Science.gov (United States)

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    Science.gov (United States)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  3. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    DEFF Research Database (Denmark)

    Hu, Yu; Morales González, Juan Miguel; Pineda, Salvador

    2015-01-01

    -stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given......An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi...

  4. General design criteria for diesel-generator sets for nuclear power plants

    International Nuclear Information System (INIS)

    Rangarao, G.

    1975-01-01

    The design criteria for diesel-generators for nuclear power plants are examined. Applicable standards, loading, design performance, and characteristics to be considered in the selection of diesel-generator set and its auxiliary system are discussed. Also, engineered safety features loads together with loss of power safe shutdown loads and their starting sequence, analysis of voltage and frequency response and the diesel-generator ability to start various load blocks successfully to meet the reactor emergency core cooling requirements are discussed

  5. Reliability of diesel generators in the Finnish and Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.; Norros, L.; Vanhala, J.

    1989-10-01

    Diesel generators are used as emergency AC-power sources in nuclear power plants and they produce electric power for other emergency systems during accidents in which offsite power is lost. The reliability of diesel generators is thus of major concern for overall safety of nuclear power plants. In this study we consider the reliability of diesel generators in the Swedish and Finnish nuclear power plants on the basis of collected operational experience. We classify the occurred failures according to their functional criticality, type and cause. The failures caused by human errors in maintenance and testing are analysed in detail. We analyse also the reliability of the diesel generator subsystems. Further, we study the effect of surveillance test and the type of test on the reliability. Finally we construct an unavailability model for single diesel generator unit and discuss the findings of the study giving some practical recommendations

  6. Advanced fuelling system for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Roger [University of Washington, Seattle, WA (United States)], E-mail: raman@aa.washington.edu

    2008-12-15

    Steady-state high-performance discharges in reactors, such as the Advanced Tokamak (AT) scenarios would rely on optimized density and pressure profiles that must be maintained. This maximizes the bootstrap current fraction, reduces reactor recycling power and reduces thermal stresses. Other than a system for the balance of current drive not provided by bootstrap current drive, no other sources of input power, such as from neutral beams, are allowed. For these systems, a precision fuelling system would be the ideal way to control the fusion burn by controlling and maintaining the required pressure profile. This requires a fuelling system that is capable of depositing fuel at any radial location within the plasma while at the same time not altering the density profile to a level that degrades the required pressure profile. Present fuelling systems are incapable of meeting these requirements. An advanced fuelling system based on Compact Toroid injection has the potential to meet these needs while simultaneously providing a source of toroidal momentum input. Description of a conceptual Compact Toroid fueller for ITER is presented in conjunction with a plan for developing this much needed technology.

  7. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Science.gov (United States)

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  8. DENINT power plant cost benefit analysis code: Analysis of methane fuelled power plant/district heating system

    International Nuclear Information System (INIS)

    Cincotti, V.; D'Andrea, A.

    1989-07-01

    The DENINT power plant cost benefit analysis code takes into consideration, not only power production costs at the generator terminals, but also, in the case of cogeneration, the costs of the fuel supply and heat and power distribution systems which depend greatly on the location of the plant. The code is able to allow comparisons of alternatives with varying annual operation hours, fuel cost increases, and different types of fossil fuels and production systems. For illustrative purposes, this paper examines two methane fired cogeneration plant/district heating alternatives

  9. Determination of reliability criteria for standby diesel generators at a nuclear power station

    International Nuclear Information System (INIS)

    Evans, M.G.K.

    1987-01-01

    The requirement for standby diesel generators at nuclear power stations is developed and a probabilistic approach used to define the reliability parameters. The present criteria used when ordering a diesel generator are compared with the testing required by the regulatory body and the most likely requirement following an accident. The impact of this on the diesels at a particular station and the root cause of failures are discussed. (orig.)

  10. 30 CFR 36.4 - Mobile diesel-powered transportation equipment for which certificates of approval may be granted.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mobile diesel-powered transportation equipment... REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT General Provisions § 36.4 Mobile... of approval will be granted for completely assembled mobile diesel-powered transportation equipment...

  11. Standardized small diesel power plants for rural electrification in Tanzania

    International Nuclear Information System (INIS)

    Holmqvist, A.; Soerman, J.; Gullberg, M.; Kjellstroem, B.

    1993-01-01

    This study focuses on small townships where the forecasted power demand stays below 500 kW during the ten first years. Case study calculations were made where two hypothetical load centres form the base. Each load centre is assumed to be supplied by two alternative standardized diesel power plants. One option is a power plant consisting of two medium speed (750 rpm) generator sets, one always on stand-by. Alternatively, a power plant consisting of three high speed (1500 rpm) generator sets is evaluated for each hypothetical load centre. The calculations clearly show that the high speed, three unit option comes out cheaper than the two unit, medium speed option in all the considered cases. The fuel costs per kWh generated are almost the same in all the cases studied, i.e. between 6 and 7 US cents. The medium speed engine tends to consume more fuel per kWh generated than the high speed, as it runs more often on part load. Consequently, the fuel costs will be slightly higher for this option. It is also of interest to compare the plant failure rate of the two options. In this study no proper probability evaluation has been made, but some general reflections can be worth considering. The availability of spare parts in Tanzania is doubtful. Many small diesel power plants presently operating have to wait indefinitely, when a failure appears that requires spare parts. As long as the individual sets have the same, or nearly the same failure rate, a three unit plant has lower probability for total loss of generating capacity than a two unit plant. The main conclusion of this evaluation is that for electricity generation in rural Tanzanian villages, power plants with three small, high speed generator sets are preferable to plants with two, medium speed generator sets. A power plant made out of small sets requires less capital, consumes less fuel and is not as likely to loose its generating capacity totally. 16 refs, 10 figs, 21 tabs

  12. LPG as a Fuel for Diesel Engines-Experimental Investigations

    Science.gov (United States)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  13. Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends

    International Nuclear Information System (INIS)

    Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfü; Aydın, Hüseyin

    2017-01-01

    High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene. - Highlights: • Effects of kerosene and diesel addition to biodiesel in a diesel engine were investigated. • B80&K10 and B80&K10&D10 were tested and comparisons have been made with D2. • Similar fuel properties and combustion parameters have been found for all fuels. • Heat release initiated earlier for B80&K10 and B80&K10&D10. • CO and NOx emissions are lowered for B80&K10 and B80&K10&D10.

  14. Considerations on the DEMO pellet fuelling system

    Energy Technology Data Exchange (ETDEWEB)

    Lang, P.T., E-mail: peter.lang@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Day, Ch. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Fable, E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Igitkhanov, Y. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Köchl, F. [Association EURATOM-Ö AW/ATI, Atominstitut, TU Wien, 1020 Vienna (Austria); Mooney, R. [Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Pegourie, B. [CEA, IRFM, 13108 Saint-Paul-lez-Durance (France); Ploeckl, B. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Wenninger, R. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); EFDA, Garching (Germany); Zohm, H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Graphical abstract: - Highlights: • Considerations are made for a core particle fuelling system covering all DEMO requirements. • Particle deposition beyond the pedestal top is needed to achieve efficient fuelling. • Conventional pellet technology enabling launching from the torus inboard side can be used. • Efforts have been taken for integrating a suitable pellet guiding system into the EU DEMO model. • In addition, further techniques bearing potential for advanced fuelling performance are considered. - Abstract: The Demonstration Fusion Power Reactor DEMO is the step foreseen to bridge the gap between ITER and the first commercial fusion power plant. One key element in the European work plan for DEMO is the elaboration of a conceptual design for a suitable core particle fuelling system. First considerations for such a system are presented in this contribution. Following the well-considered ITER solution, most analysis performed in this study assumes conventional pellet technology will be used for the fuelling system. However, taking advantage of the less compressed time frame for the DEMO project, several other techniques thought to bear potential for advanced fuelling performance are considered as well. In a first, basic analysis all actuation parameters at hand and their implications on the fuelling performance were considered. Tentative transport modeling of a reference scenario strongly indicates only particles deposited inside the plasma pedestal allow for efficient fuelling. Shallow edge fuelling results in an unbearable burden on the fuel cycle. Sufficiently deep particle deposition seems technically achievable, provided pellets are launched from the torus inboard at sufficient speed. All components required for a DEMO pellet system capable for high speed inboard pellet launch are already available or can be developed in due time with reasonable efforts. Furthermore, steps to integrate this solution into the EU DEMO model are taken.

  15. Fuelling with flow at Bruce A

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M G [Canadian General Electric Co. Ltd., Peterborough, ON (Canada)

    1997-12-31

    Fuelling with flow is the solution chosen by Bruce A to overcome the potential power pulse caused by a major inlet header failure. Fuelling with flow solves the problem by rearranging the core to place new fuel at the channel inlet and irradiated fuel at the channel outlet. The change has a significant impact on the Bruce A fuel handling system which was designed primarily to do on power fuelling in the against flow direction. Mechanical changes to the fuelling machine include a modification to the existing ram head and the replacement of standard fuel carriers with new fuelling with flow fuel carriers having the capability of opening the channel latch. Changes to the control system are more involved. A new set of operational sequences are required for both the upstream and downstream fuelling machines to achieve the fuel change. Steps based on sensitive ram push are added to reduce the risk of failing to close the latch at the correct position to properly support the fuel string. Changes are also required to the protective interlocks to allow fuelling with flow and reduce risk. A new fuel string supporting shield plug was designed and tested to reduce the risk of endplate cracking that could occur on the irradiated bundle that would have been supported directly by the channel latch. Some operational changes have been incorporated to accommodate this new shield plug. Considerable testing has been carried out on all aspects of fuel handling where fuelling with flow differs from the reference fuelling against flow. (author). 3 figs.

  16. Considerations on the DEMO pellet fuelling system

    International Nuclear Information System (INIS)

    Lang, P.T.; Day, Ch.; Fable, E.; Igitkhanov, Y.; Köchl, F.; Mooney, R.; Pegourie, B.; Ploeckl, B.; Wenninger, R.; Zohm, H.

    2015-01-01

    Graphical abstract: - Highlights: • Considerations are made for a core particle fuelling system covering all DEMO requirements. • Particle deposition beyond the pedestal top is needed to achieve efficient fuelling. • Conventional pellet technology enabling launching from the torus inboard side can be used. • Efforts have been taken for integrating a suitable pellet guiding system into the EU DEMO model. • In addition, further techniques bearing potential for advanced fuelling performance are considered. - Abstract: The Demonstration Fusion Power Reactor DEMO is the step foreseen to bridge the gap between ITER and the first commercial fusion power plant. One key element in the European work plan for DEMO is the elaboration of a conceptual design for a suitable core particle fuelling system. First considerations for such a system are presented in this contribution. Following the well-considered ITER solution, most analysis performed in this study assumes conventional pellet technology will be used for the fuelling system. However, taking advantage of the less compressed time frame for the DEMO project, several other techniques thought to bear potential for advanced fuelling performance are considered as well. In a first, basic analysis all actuation parameters at hand and their implications on the fuelling performance were considered. Tentative transport modeling of a reference scenario strongly indicates only particles deposited inside the plasma pedestal allow for efficient fuelling. Shallow edge fuelling results in an unbearable burden on the fuel cycle. Sufficiently deep particle deposition seems technically achievable, provided pellets are launched from the torus inboard at sufficient speed. All components required for a DEMO pellet system capable for high speed inboard pellet launch are already available or can be developed in due time with reasonable efforts. Furthermore, steps to integrate this solution into the EU DEMO model are taken.

  17. 500 Watt Diesel Fueled TPV Portable Power Supply

    Science.gov (United States)

    Horne, W. E.; Morgan, M. D.; Sundaram, V. S.; Butcher, T.

    2003-01-01

    A test-bed 500 watt diesel fueled thermophotovoltaic (TPV) portable power supply is described. The goal of the design is a compact, rugged field portable unit weighing less than 15 pounds without fuel. The conversion efficiency goal is set at 15% fuel energy to electric energy delivered to an external load at 24 volts. A burner/recuperator system has been developed to meet the objectives of high combustion air preheat temperatures with a compact heat exchanger, low excess air operation, and high convective heat transfer rates to the silicon carbide emitter surface. The burner incorporates a air blast atomizer with 100% of the combustion air passing through the nozzle. Designed firing rate of 2900 watts at 0.07 gallons of oil per hour. This incorporates a single air supply dc motor/fan set and avoids the need for a system air compressor. The recuperator consists of three annular, concentric laminar flow passages. Heat from the combustion of the diesel fuel is both radiantly and convectively coupled to the inside wall of a cylindrical silicon carbide emitter. The outer wall of the emitter then radiates blackbody energy at the design temperature of 1400°C. The cylindrical emitter is enclosed in a quartz envelope that separates it from the photovoltaic (PV) cells. Spectral control is accomplished by a resonant mesh IR band-pass filter placed between the emitter and the PV array. The narrow band of energy transmitted by the filter is intercepted and converted to electricity by an array of GaSb PV cells. The array consists of 216 1-cm × 1-cm GaSb cells arranged into series and parallel arrays. An array of heat pipes couple the PV cell arrays to a heat exchanger which is cooled by forced air convection. A brief status of the key TPV technologies is presented followed by data characterizing the performance of the 500 watt TPV system.

  18. Analysis of a combustion, performance and emission characteristics of a CNG-B20 fuelled diesel engine under dual fuel mode

    Directory of Open Access Journals (Sweden)

    Pankaj S. Shelke

    2016-09-01

    Full Text Available The Carbon dioxide (CO2 is one of the primary greenhouse gases emitted by various human activities. CO2 is naturally present in the atmosphere as part of carbon cycle. Human activities are altering the carbon cycle by adding or removing CO2 to the atmosphere. The main human activity that emits the CO2 is combustion of fossil fuels for energy and transportation. Compression ignition (CI engines emit high amount of CO2 emission as it is the end product of complete combustion of hydro carbon fuels. Moreover, they emit higher NOx (nitrogen oxides and PM (particulate matter emissions and have higher fuel consumption. In the present study, experimental investigations were carried out on a CI engine under dual fuel mode with biodiesel as a pilot fuel and compressed natural gas (CNG as a main fuel. The effects of 10 % and 20 % CNG energy shares on performance and emission characteristics of the engine at rated (100% loads were studied. Experimental results indicate the beneficial of CNG addition on improvement in the engine efficiency, and reduction in NOx and CO2 emissions. The NOx and CO2 emissions decreased by 14.24 % and 30 % respectively at the rated load with biodiesel + CNG (20 % energy share as compared to base diesel. No knocking combustion was observed during the tests which confirm the smooth operation. The dual fuel operation with combination of CNG-biodiesel is an effective method to reduce NOx and CO2 emissions with an additional benefit of lower specific energy consumption.

  19. Study of In-Cylinder Reactions of High Power-Density Direct Injection Diesel Engines

    National Research Council Canada - National Science Library

    Jansons, M

    2004-01-01

    Direct-injection (DI) Diesel or compression-ignition (CI) engine combustion process is investigated when new design and operational strategies are employed in order to achieve a high power-density (HPD) engine...

  20. Techno-economic Analysis of a Wind-Diesel Hybrid Power System in the South Algeria

    Directory of Open Access Journals (Sweden)

    Khaireddine Allali

    2015-07-01

    Full Text Available The electrical energy is often produced with the help of diesel generators in isolated areas in the Saharan region. While the latter requiring relatively little investment because is generally expensive to exploit due to the transportation to remote areas adds extra cost, significant fuel consumption and relatively high maintenance cost, etc. Moreover, the electricity production by the diesel is ineffective, presents significant environmental risks. But these isolated areas have significant wind energy potential; which is good position for the exploitation of clean and sustainable wind energy. The use of wind-diesel power system is widely recommended especially to reduce fuel consumption and in this way to reduce system operating costs and environmental impact. The subject of this paper is to present the techno-economic analysis of a wind-diesel hybrid power system. In this context, the contribution envisaged with this research is to collaborate on the optimal design of a hybrid power system including a wind turbine generator, a diesel generator and an energy storage system for powering a continuous way an isolated site in the South Algerian installed power of 120 kW.This system has a high control strategy for the management of different power sources (wind, diesel, battery that depending to weather conditions, especially wind speed values and the power demanded by the consumer load.

  1. Research on H2 speed governor for diesel engine of marine power station

    Science.gov (United States)

    Huang, Man-Lei

    2007-09-01

    The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.

  2. Optimal construction and combined wind and diesel power production in a regional power purchase

    Energy Technology Data Exchange (ETDEWEB)

    Lautala, P.; Antila, H.; Raekkoelaeinen, J.; Heikkilae, H. [Tampere Univ. of Technology (Finland). Automation and Control Inst.

    1998-12-31

    A weak electricity transmission and distribution network and a wind generator were modelled by a non-linear dynamic model. Energy purchase of a small utility was modelled as a linear mixed integer optimisation problem. The dynamic model was used to simulate the effects of distance between the wind generator and a regional power grid and the effects of changes in the production of the wind generator. The optimisation model was used to investigate the effect of the combined diesel and wind production. In this case the results show that if the distance between the generator and the network grid is more than 70 km, then voltage fluctuations exceed acceptable levels. The optimisation provides the value of the combined diesel and wind production. (orig.)

  3. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    International Nuclear Information System (INIS)

    Bansal, R.C.

    2008-01-01

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n q ) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n q . It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC

  4. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, R.C. [Electrical and Electronics Engineering Division, School of Engineering and Physics, The University of the South Pacific, Suva (Fiji)

    2008-02-15

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n{sub q}) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n{sub q}. It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC. (author)

  5. Statistical inquiry on the reliability of emergency diesel stations in German nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This statistic inquiry is based on 692 occurrances in 40 diesel stations of 10 German nuclear power plants. Various parameters influencing the failure behaviour of diesel stations were investigated on only significant plant-specific influences and the impact of diesel station circuitry on failure behaviour were established. According to the results of this inquiry, running time, start-up number and increasing operational experience do not apparently influence the failure behaviour of diesel stations. The expected failure probability of diesel stations varies with the different nuclear power plants. Taking into account both start-up and operational failures, (with monthly inspections and running times of up to 2 h), this value is in the range of 1.6 x 10 -2 to 1.7 x 10 -3 per application. Considering failure data of all diesel stations, the failure probability (start-up and operational failures) is 8.1 x 10 -3 per application. On account of the two common-mode failures registered, a common-mode failure probability of 10 -3 was established. The inquiry also showed that non-availability of diesel stations is essentially determined by maintenance intervals. (orig.) [de

  6. Reliability of diesel generators at the Finnish and Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pulkkinen, Urho [Technical Research Centre of Finland, Vuorimiehentie 5, SF-02150, Espoo (Finland)

    1986-02-15

    The operating experiences of 40 stand-by diesel generators at the Finnish and Swedish nuclear power plants have been analysed with special emphasis on the impact of the frequency of surveillance testing and of the test procedure on diesel generator reliability, the contribution of design, manufacturing, testing and maintenance errors and the potential and actual common cause failures, The results pf the analyses consisted both practical recommendations and mathematical reliability models and useful reliability data. (author)

  7. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    International Nuclear Information System (INIS)

    Hu, Yu; Morales, Juan M.; Pineda, Salvador; Sánchez, María Jesús; Solana, Pablo

    2015-01-01

    Highlights: • Optimal decision-making model for isolated hybrid wind–diesel power system is proposed. • Wind power uncertainty and conditional operating cost are considered. • Battery wear cost of the energy storage system is included in the model. • The results are compared with deterministic dispatch strategies. - Abstract: An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi-stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. A numerical case study is analyzed and it is demonstrated that the proposed stochastic dynamic optimization model significantly outperforms the traditional deterministic dispatch strategies

  8. Analysis of the ecological parameters of the diesel engine powered with biodiesel fuel containing methyl esters from Camelina sativa oil

    Directory of Open Access Journals (Sweden)

    S. Lebedevas

    2010-03-01

    Full Text Available The article explores the possibilities of using fatty acid methyl esters derived from the oil of a new species of oily plant Camelina sativa not demanding on soil. The performed research on the physical and chemical properties of pure methyl esters from Camelina sativa show that biofuels do not meet requirements for the biodiesel fuel standard (LST EN 14214:2009 of a high iodine value and high content of linoleic acid methyl ester, so they must be mixed with methyl esters produced from pork lard the content of which in the mixture must be not less than 32%. This article presents the results of tests on combustion emission obtained when three-cylinder diesel engine VALMET 320 DMG was fuelled with a mixture containing 30% of this new kind of fuel with fossil diesel fuel comparing with emissions obtained when the engine was fuelled with a fuel mixture containing 30% of conventional biodiesel fuel (rapeseed oil methyl esters with fossil diesel fuel. The obtained results show that using both types of fuel, no significant differences in CO and NOx concentrations were observed throughout the tested load range. When operating on fuels containing methyl esters from Camelina sativa, HC emissions decreased by 10 to 12% and the smokeness of exhaust gas by 12 to 25%.

  9. ANALYSIS OF OPERATING PARAMETERS AND INDICATORS OF A COMPRESSION IGNITION ENGINE FUELLED WITH LPG

    Directory of Open Access Journals (Sweden)

    Krzysztof GARBALA

    2016-12-01

    Full Text Available This article presents the possibilities for using alternative fuels to power vehicles equipped with compression ignition (CI engines (diesel. Systems for using such fuels have been discussed. Detailed analysis and research covered the LPG STAG autogas system, which is used to power dual-fuel engine units (LPG+diesel. A description of the operation of the autogas system and installation in a vehicle has been presented. The basic algorithms of the controller, which is an actuating element of the whole system, have been discussed. Protection systems of a serial production engine unit to guarantee its factorycontrolled durability standards have been presented. A long-distance test drive and examinations of the engine over 150,000 km in a Toyota Hilux have been performed. Operating parameters and performance indicators of the engine with STAG LPG+diesel fuelling have been verified. Directions and perspectives for the further development of such a system in diesel-powered cars have been also indicated.

  10. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  11. A light-weight, yet powerful diesel locomotive from Vossloh

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Mariano [Vossloh Rail Vehicles, Albuixech/Valencia (Spain)

    2013-05-15

    The EUROLIGHT is an eight-wheeled diesel-electric locomotive developed by Vossloh Rail Vehicles for interoperable rail traffic. With its low axle load of less than 20 tonnes, it can be deployed flexibly on both main lines and secondary ones.

  12. Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants

    Directory of Open Access Journals (Sweden)

    Petr Procházka

    2018-02-01

    Full Text Available Indonesia needs to find an alternative fuel to substitute diesel in their power plants in order to reduce the use of nonrenewable energy sources. The Indonesian government has a target to reduce oil fuel consumption while improving the efficiency of energy utilization. Crude palm oil is proposed to be used for this substitution. In this paper, the authors conduct an economic analysis of the replacement of diesel by crude palm oil. To predict future prices, a time series analysis is conducted using AutoRegressive Integrated Moving-Average method. A financial analysis of a specific project (0.75-MW power plant is conducted using static financial indicators (payback period, return on investment. Results show that replacing diesel with crude palm oil may be profitable. This is especially true for the proposed prospects of diesel price evolution. Analysis shows that the price of crude oil, which is the main factor in the pricing of diesel, may go up. Also, recently Indonesian currency depreciated against the US dollar, which also implies a higher cost of diesel.

  13. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available A solar-based power supply system, such as a photovoltaic (PV)-diesel-battery system, is a particularly attractive option for decentralised power supply in southern Africa where solar radiation is ubiquitous in most countries. Such systems can make...

  14. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2010-01-01

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  15. PM-10 emissions and power of a Diesel engine fueled with crude and refined Biodiesel from salmon oil

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Reyes; M.A. Sepulveda [University of Concepcion (Chile). Department of Mechanization and Energy, Faculty of Agricultural Engineering

    2006-09-15

    Power response and level of particulate emissions were assessed for blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel. Crude Biodiesel and refined Biodiesel or methyl ester, were made from salmon oil with high content of free fatty acids, throughout a process of acid esterification followed by alkaline transesterification. Blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel were tested in a diesel engine to measure simultaneously the dynamometric response and the particulate material (PM-10) emission performance. The results indicate a maximum power loss of about 3.5% and also near 50% of PM-10 reduction with respect to diesel when a 100% of refined Biodiesel is used. For blends with less content of either crude Biodiesel or refined Biodiesel, the observed power losses are lower but at the same time lower reduction in PM-10 emissions are attained. 21 refs., 4 figs., 2 tabs.

  16. The feature of emergency diesel generator relaying protection in Tianwan nuclear power station

    International Nuclear Information System (INIS)

    Jiang Xiaopeng; Shi Yan; Li Cong

    2014-01-01

    This paper mainly introduces the function and feature of emergency diesel generator in nuclear power plant, which plays an important role in nuclear accident. It minutely tells about the feature and configuration of relay protection and discusses the rationality of protection scheme, which shows that it can be completely contented all kinds of operation states. It is an analysis and argument about the principle of relay protection in detail, that would operate correctly when emergency diesel generator be in abnormal operating and serious fault conditions, such as cut off emergency diesel generator in order to avoid more harm to emergency diesel generator. It analyzes how the relay responses quickly and locks up the protection action under perturbations in the external power, so it can avoid unnecessary resection of emergency diesel generator to emergency power supply loss and effect of nuclear safety. It also analyzes the flexible use of protection setting of the protective relay to meet various operating status. It elaborates the particularity of relay protection which is due to the particularity of nuclear safety. It analyses the possibility of relay protection which has to be applied to other equipment and the protection setting that was provided by design institute, and puts forward the author's viewpoints. (authors)

  17. Diesel-generator reliability at nuclear power plants: data and preliminary analysis. Interim report

    International Nuclear Information System (INIS)

    McClymont, A.; McLagan, G.

    1982-06-01

    This report summarizes work performed under RP1233-1 relating to the collection and analysis of data pertaining to diesel generator reliability in nuclear power plants. Drawing from data collected on-site at plants, data supplied by utilites, and data from Licensee Event Reports (LERs), the report describes methods of deriving reliability estimates from data for use in probabilistic risk assessment and presents results when these methods are applied to data collected from 14 plants. Specifically, data are used to estimate diesel failure probabilities for failures to start and failure rates for failures to continue to run. A sampling theory approach and a Bayesian approach to failure probability estimation are compared. The data are used to derive estimates of diesel repair time for some plants, maintenance outages, and multiple diesel failure rates. In addition, a section is included that presents suggestions for failure-rate estimation when an accurate count of diesel start attempts at a plant is not available. The final section presents an analysis of diesel failures based on data from LERs, including a breakdown of failure event by subsystem, failure mode, and failure cause. Appendixes include detailed summaries of the data used in the analysis of previous sections

  18. An analysis of the performance benefits of short-term energy storage in wind-diesel hybrid power systems

    International Nuclear Information System (INIS)

    Shirazi, M.; Drouilhet, S.

    1996-01-01

    A variety of prototype high penetration wind-diesel hybrid power systems have been implemented with different amounts of energy storage. They range from systems with no energy storage to those with many hours worth of energy storage. There has been little consensus among wind-diesel system developers as to the appropriate role and amount of energy storage in such systems. Some researchers advocate providing only enough storage capacity to supply power during the time it takes the diesel genset to start. Others install large battery banks to allow the diesel(s) to operate at full load and/or to time-shift the availability of wind-generated electricity to match the demand. Prior studies indicate that for high penetration wind-diesel systems, short-term energy storage provides the largest operational and economic benefit. This study uses data collected in Deering, Alaska, a small diesel-powered village, and the hybrid systems modeling software Hybrid2 to determine the optimum amount of short-term storage for a particular high penetration wind-diesel system. These findings were then generalized by determining how wind penetration, turbulence intensity, and load variability affect the value of short term energy storage as measured in terms of fuel savings, total diesel run time, and the number of diesel starts

  19. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    Science.gov (United States)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  20. TRANSIENT ANALYSIS OF WIND DIESEL POWER SYSTEM WITH FLYWHEEL ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    S. SUJITH

    2017-10-01

    Full Text Available Wind-Diesel Hybrid power generation is a viable alternative for generating continuous power to isolated power system areas which have inconsistent but potential wind power. The unpredictable nature of variable power from Wind generator to the system is compensated by Diesel generator, which supplies the deficit in generated power from wind to meet the instantaneous system load. However, one of the major challenges for such a system is the higher probability of transients in the form of wind and load fluctuations. This paper analyses the application of Flywheel Energy storage system (FESS to meet the transients during wind-speed and load fluctuations around high wind operation. The power system architecture, the distributed control mechanism governing the flow of power transfer and the modelling of major system components has been discussed and the system performances have been validated using MATLAB /Simulink software. Two cases of transient stages around the high wind system operation are discussed. The simulation results highlight the effective usage of FESS in reducing the peak overshoot of active power transients, smoothes the active power curves and helps in reducing the diesel consumption during the flywheel discharge period, without affecting the continuous power supply for meeting the instantaneous load demand.

  1. Generation of electric power through wind-diesel hybrid system for a hospital; Geracao de energia eletrica atraves de sistema hibrido diesel-eolico para um hospital

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Silvio Carlos Anibal de; Freire, Raphael Lopes [Universidade Federal do Rio de Janeiro (DEM/UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica], e-mail: silvioa@gmail.com, e-mail: raphaellfreire@gmail.com

    2008-07-01

    This paper presents a wind-diesel hybrid power simulation using the software Homer. The model is applied to the case study of Hospital das Clinicas da UNICAMP Analysis of several alternative energy facilities like wind, photovoltaic (PV), and connection of the isolated system with the grid is done. The costs used in the simulation indicated that the best results were obtained with the wind-diesel system. The payback period for the investment in the system is 8 years. (author)

  2. A reliability program for emergency diesel generators at nuclear power plants: Maintenance, surveillance, and condition monitoring

    International Nuclear Information System (INIS)

    Lofgren, E.V.; Henderson, W.; Burghardt, D.; Kripps, L.; Rothleder, B.

    1988-12-01

    This report is a companion report on NUREG/CR-5078, Volume 1, ''A Reliability Program for Emergency Diesel Generators at Nuclear Power Plants: Program Structure.'' The purpose of this report is to provide technical findings and insights related to: failure evaluation, troubleshooting, maintenance, surveillance, and condition monitoring. Examples and recommendations are provided for each of these areas based on actual emergency diesel generator (EDG) operating experience and the opinions of diesel generator experts. This report expands the more general guidance provided in Volume 1. In addition, a discussion of EDG interactions with other plant systems (e.g., instrument, air, service water, dc power) is provided since experience has shown that these support systems and their operation can adversely affect EDG reliability. Portions of this report have been designed for use by onsite personnel for evaluating operational characteristics of EDGs. 5 refs., 8 figs., 7 tabs

  3. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  4. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    Science.gov (United States)

    King, W. R.; Johnson, B. L., III

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study.

  5. Perspectives of new fossil-fuelled power plants with CO2 capture in the liberalised European electricity market

    International Nuclear Information System (INIS)

    Kober, Tom

    2014-01-01

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO 2 emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO 2 storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger influence on the

  6. CNG Fuelling Stations Design Philosophy

    International Nuclear Information System (INIS)

    Radwan, H.

    2004-01-01

    I. Overview (a) Compressed Natural Gas - CNG:- Natural Gas, as an alternative fuel for vehicles, is supplied from the Natural Gas Distribution Network to the CNG fuelling stations to be compressed to 250 bars. It is then dispensed, to be stored on board of the vehicle at about 200 bars in a cylinder installed in the rear, under carriage, or on top of the vehicle. When the Natural Gas is required by the engine, it leaves the cylinder traveling through a high pressure pipe to a high pressure regulator, where the pressure is reduced close to atmospheric pressure, through a specially designed mixer, where it is properly mixed with air. The mixture then flows into the engine's combustion chamber, and is ignited to create the power required to drive the vehicle. (b) CNG Fuelling Stations General Description: as Supply and Metering The incoming gas supply and metering installation primarily depend on the pressure and flow demands of the gas compressor. Natural Gas Compressor In general, gas compressors for natural gas filling stations have relatively low flow rates

  7. Possible alternatives for diesel powered mobile equipment for the conditions of deep mines

    Energy Technology Data Exchange (ETDEWEB)

    Paraszczak, J.; Kotersi, O [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining, Metallurgical and Materials Engineering

    2008-07-01

    The challenges associated with mining at considerable depths were discussed. Mines such as Kidd Creek, LaRonde and Creighton are deeper than 2500 m. High rock temperature is among the challenges that operators face in such conditions. Conventional diesel powered load-hauling equipment constitute an additional source of heat and noxious gases. As such, more intense ventilation is needed in order to keep ambient temperature and air quality at a level that is acceptable for human workers. This paper examined possible alternatives for diesel powered equipment, including those that are commercially available as well as those that are underdevelopment or in the prototype stage. The equipment was reviewed with reference to the required infrastructure, stage of technology development and progress. The flexibility, practicality and economic viability of the equipment was also investigated. The potential for its use in deep Canadian mines was discussed along with the most promising drive alternatives for vehicles designed for deep mine operations. Electric drives have proven to be effective in many mining applications since they have significant advantages over diesel drives. The characteristics of cable powered equipment, trolley-wire powered equipment, and battery powered equipment were described. The key advantages and disadvantages of hybrid diesel electric equipment were also reviewed along with the viability of power plants based on the use of hydrogen. The principle types of hydrogen power plants include hydrogen combustion engines; HY-Drive systems and fuel cells. It was concluded that although there is no viable alternative for diesel engines at present, Canadian mining companies operating at great depths have made significant progress in these fields and remain among the leaders in mining innovation. 17 refs.

  8. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  9. Common cause failure rate estimates for diesel generators in nuclear power plants

    International Nuclear Information System (INIS)

    Steverson, J.A.; Atwood, C.L.

    1982-01-01

    Common cause fault rates for diesel generators in nuclear power plants are estimated, using Licensee Event Reports for the years 1976 through 1978. The binomial failure rate method, used for obtaining the estimates, is briefly explained. Issues discussed include correct classification of common cause events, grouping of the events into homogeneous data subsets, and dealing with plant-to-plant variation

  10. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  11. A simple, robust and reliable wind diesel concept for remote power supply

    DEFF Research Database (Denmark)

    Lundsager, P.; Bindner, H.

    1994-01-01

    The paper introduces a Wind Diesel concept suitable for remote communities, the 'Simple, Robust and Reliable Concept' developed at Riso. All components are standard components, the system is self regulating using the component controllers and there is no power electronics. The paper documents...

  12. IMPROVMENT OF EFFECTIVE POWER OF THE DIESEL, ENGINE OPERATING ON MIXED BIODIESEL FUEL

    Directory of Open Access Journals (Sweden)

    A. Levterov

    2014-02-01

    Full Text Available The results of calculation and experimental studies of ways to increase the effective power of the bіodiesel engine and determine the effect of this increase on the economic and environmental performance of the diesel engine are presented in the given paper.

  13. Verification of voltage/ frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling

    International Nuclear Information System (INIS)

    Hur, J.S.; Roh, M.S.

    2013-01-01

    Full-text: One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase. (author)

  14. Device on a diesel motor to supply power to emergency aggregates

    International Nuclear Information System (INIS)

    Koch, C.; Boekemeier, V.; Schilling, R.

    1977-01-01

    The invented arrangement of a diesel motor for the emergency supply of a nuclear power plant ensures that in the case of a fire in the environment of the emergency feeding building, no air with too much flue gas reaches the diesel motor via the suction pipe. The discharge pipe with a nozzle-shaped discharge opening and the suction pipe running above it pass horizontally through a wall of the building. There are vertical walls on both sides of the openings which prevent a sideways flowing of air to the exhaust gas flow in the vicinity of the building. (HGOE) [de

  15. Gas fuelled heavy-duty trucks for municipal services

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, A. (City of Helsinki Construction Services (Finland)); Hietanen, L. (Lassila and Tikanoja, Jyvaeskylae (Finland)); Nylund, N.-O. (TEC TransEnergy Consulting, Espoo (Finland))

    2009-07-01

    Helsinki City Public Works Department (HKR) and the environmental management company Lassila and Tikanoja joined forces to demonstrate the suitability of heavy-duty gas fuelled trucks for municipal services. HKR acquired two and Lassila and Tikanoja five Mercedes-Benz Econic trucks. HKR's trucks are equipped with interchangeable platforms, Lassila an Tikanoja's trucks with refuse collection equipment. The trucks are subjected to a two-year follow-up study to establish reliability, operational costs and exhaust emissions. Diesel trucks representing up-to-date technology are used as reference. If the gas fuelled trucks perform well, this can lead to increased numbers of natural gas trucks in municipal services, and in the long run to the introduction of biogas fuelled trucks. (orig.)

  16. Smoothing of Grid-connected Wind-Diesel Power Output Using Energy Capacitor System

    Directory of Open Access Journals (Sweden)

    Adel A. Elbaset

    2014-06-01

    Full Text Available This paper presents a small hybrid power system consists of two types of power generation; wind turbine and diesel generation, DG connected to power distribution system. The fluctuations like random nature of wind power, turbulent wind, and sudden changes in load demand create imbalances in power distribution that can affect the frequency and the voltage in the power system. So, addition of Energy capacitor System, ECS is useful for compensation of fluctuating power, since it is capable of controlling both active and reactive power simultaneously and can smooth the output power flow. Hence, this paper proposes herein a dynamic model and simulation of a grid connected wind/DG based-ECS with power flow controllers between load and generation. Moreover, the paper presents a study to analyze the leveling of output fluctuation of wind power with the installation of ECS. To control the power exchanged between the ECS system and the AC grid, a load Following Control, LFC based supervisor is proposed with the aim to minimize variations of the power generated by the diesel generator. The interesting performance of the proposed supervisor is shown with the help of simulations. The computer simulation program is confirmed on a realistic circuit model which implemented in the Simulink environment of Matlab and works as if on line.

  17. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  18. Remote power supply by wind/diesel/battery systems - operational experience and economy

    International Nuclear Information System (INIS)

    Kniehl, R.; Cramer, G.; Toenges, K.H.

    1995-01-01

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these 'Intelligent Power Systems (IPS)' have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  19. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G; Toenges, K H [SMA Regelsysteme GmbH, Niestetal (Germany)

    1996-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  20. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R. [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G.; Toenges, K.H. [SMA Regelsysteme GmbH, Niestetal (Germany)

    1995-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  1. The indigenisation of Lubriplate 630-2 and development of Servo-Nuclease-2 grease for the fuelling machine of pressurised heavy water power reactors

    International Nuclear Information System (INIS)

    Srivastava, S.B.; Thomas, V.G.

    1980-01-01

    A new grease of NLGI-2 consistency was developed for application in nuclear environments. The evaluation consisted of both static tests employing a cobalt-60 γ-ray source and dynamic tests carried out on specially designed rigs in Fuelling Machine Vaults of RAPS. (auth.)

  2. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    Energy Technology Data Exchange (ETDEWEB)

    Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  3. Application of diagnostic system for diesel engines in nuclear power plant

    International Nuclear Information System (INIS)

    Yoshinaga, Takeshi

    2004-01-01

    The diagnostic system for diesel engines makes a diagnosis of secular change and abnormal indications of diesel engines (DG) by combination of characteristic analysis of engine, lubricating oil, fuel oil, and cooling water. The principles of diagnostic system for DG, results of confirmation of the efficiency and the maintenance plan for DG in the Japan Atomic Power Company are described. DG in the company is classified to a safety device in order to supply the power source to the Emergency Core Cooling System etc., when the power source in the plant is lost, for example, at lightning struck. Characteristics of DG, outline of the diagnostic system for DG, diagnostic technologies such as engine signature analysis, chemical analysis of samples, temperature measurement, degradation mode of DG, and training in the company are stated. (S.Y.)

  4. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant

    International Nuclear Information System (INIS)

    Rehman, S.; Ahmad, F.; Shaahid, S.M.; Shash, A.; El-Amin, I.M.; Al-Shehri, A.M.; Bakhashwain, J.M.

    2007-01-01

    The green sources of energy are being encouraged to reduce the environmental pollution and combat the global warming of the planet. A target of 12% usage of wind energy only has been agreed by the UNO country members to achieve by 2020. So, the power of the wind is being used to generate electricity both as grid connected and isolated wind-diesel hybrid power plants. This paper performed a pre-feasibility of wind penetration into an existing diesel plant of a village in north eastern part of Saudi Arabia. For simulation purpose, wind speed data from a near by airport and the load data from the village have been used. The hybrid system design tool HOMER has been used to perform the feasibility study. In the present scenario, for wind speed less than 6.0m/s the, the existing diesel power plant is the only feasible solution over the range of fuel prices used in the simulation. The wind diesel hybrid system becomes feasible at a wind speed of 6.0m/s or more and a fuel price of 0.1$/L or more. If the carbon tax is taken into consideration and subsidy is abolished then it is expected that the hybrid system become feasible. The maximum annual capacity shortage did not have any effect on the cost of energy which may be accounted for larger sizes of wind machines and diesel generators. It is recommended that the wind data must be collected at the village at three different heights using a wind mast of 40m for a minimum of one complete year and then the hybrid system must be re-designed. (author)

  5. POWER PERFOMANCE UNDER CONSTANT SPEED TEST WITH PALM OIL BIODIESEL AND ITS BLENDS WITH DIESEL

    Directory of Open Access Journals (Sweden)

    E. U. U. Ituen

    2010-06-01

    Full Text Available The torque and power performance tests were carried out with a single cylinder techno four-stroke diesel engine under constant speeds of 2000, 1500 and 1100 rpm. Five fuels, the Dura Palm Oil biodiesel/diesel blend at 10/90 vol/vol, B210 and the diesel or Automotive gas oil (ago, the reference fuel, were involved. Brake torque and brake power data were plotted against brake mean effective pressure (Bmep since the latter is independent of engine speed and size and it is an indication of how power and torque are obtained per litre of fuel. The curves for the torque versus Bmep for the five fuels merged into single straight line curve which extended to the origin and with a gradient of 0.0719 m3 for all the three speed tests of 2000, 1500 and 1100 rpm. Similarly, the power versus Bmep curves for the five fuels merged into one straight curve which also extended to the origin but with different gradients of 0.0151, 0.0113, 0.0083 for 2000, 1500 and 1100 rpm respectively. Therefore, the five fuels had similar torque and power performance characteristics in the engine. The straight line curve which can be extrapolated to any value can be used for the engine designs, that is determining vd from the relation, T=V/4 or Bp=VdN/2

  6. Performance, Emission, Energy, and Exergy Analysis of a C.I. Engine Using Mahua Biodiesel Blends with Diesel.

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2014-01-01

    This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel.

  7. THE HYDROGEN-FUELLED INTERNAL COMBUSTION ENGINES FOR MARINE APPLICATIONS WITH A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Ibrahim S. Seddiek

    2015-03-01

    Full Text Available Modern marine power plants have been designed to improve the overall ship’s efficiency. This pushed the designers of marine machinery to search for unconventional fuels for these plants. During the previous years, diesel oil has been extensively used on-board ships. Due to the high price of light diesel oil and the environmental problems resulting from the use of heavy fuel oil, it has become necessary to search for an alternative to traditional fuels. As a result, natural gas fuel has been used on-board some types of ships, especially short-voyage cruise ships. Unfortunately, there are still some technical and logistic problems related to the use of natural gas as a fuel, especially as it is considered a non-renewable energy source. The use of hydrogen fuel on-board ships, particularly in modern power plants may contribute to overcoming the above problems. The present paper considers the possibility of the use of hydrogen fuel for marine applications and discusses different stages of hydrogen gas cycle beginning with hydrogen generation process from clean energy until using it as fuel for internal combustion engines on-board one RO/RO ship, named Taba, operating in the Mediterranean Sea. Compared to the diesel engine, the hydrogen fuelled engine is found to be lower in thermal efficiency and fuel consumption, however, some adjustments are needed.

  8. Deposition and effects on some aquatic organisms of particulate matter emitted from some peat fuelled power plants in Finland. Deposition och effekter paa naagra vattenlevande organismer av emitterat stoft fraan naagra torveldade kraftverk i Finland

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, C; Fischer, S; Hellstroem, T; Notini, M; Steen, B; Waltersson, E; Landner, L

    1982-01-01

    At three different peat fuelled plants in Finland, environmental studies have been carried out with the aim of obtaining part of the background data necessary for the formulation of environmental guidelines in relation to the future use of peat for energy and heat production in Sweden. The present project was comprised of (a) field studies of the composition pattern of polyaromatic hydrocarbons (PAH) and of heavy metals in the surroundings of some existing peat fuelled power plants, and (b) laboratory tests with a few aquatic organisms to check the possible biological effects induced by emitted particles. The results of these studies indicate that the deposition of (PAH) in the surroundings of three power plants (measured by snow sampling and by analysis of kale grown in the area) did not exceed the background level, whereas the deposition of heavy metals emitted from one power plant resulted in increased concentrations of Fe, Mn, Pb, Zn and possibly of Hg, compared to the assumed background level. Biological tests with particles originating from two different peat fuelled power plants showed that only weak, but obvious, effects could be detected at concentrations corresponding to realistic deposition levels. These effects are supposed to be due to the metal content of the particles rather than to the PAH content. When evaluating the lab results, it should be considered that a certain fixation of metals dissolved in the snow melting water may take place in the soil surface. Therefore, the biological effect studies, carried out so far, do not indicate that peat combustion at the investigated power plants, using efficient flue gas cleaning systems, cause any considerable biological effects in the surroundings of the plants. However, it is evident that the present set of data does not allow a general evaluation of the over-all environmental impact of peat combustion.

  9. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  10. New control approach for a PV-diesel autonomous power system

    Energy Technology Data Exchange (ETDEWEB)

    Rashed, Mohamed; Elmitwally, A.; Kaddah, Sahar [Electrical Engineering Department, Mansoura University, Mansoura 35516 (Egypt)

    2008-06-15

    A new control scheme for the hybrid photovoltaic-diesel single-phase autonomous power system is proposed. The main advantage of this scheme is that the voltage control is accomplished by the interface inverter without need to the automatic voltage regulator of the diesel-driven generator. Unlike three-phase systems, frequency and voltage control in single-phase autonomous power systems imposes additional complexity. This is due to the pulsating nature of the single-phase loads instantaneous power at twice the rated frequency that may degrade the control efficacy. This obstacle is addressed in this paper and a new scheme is presented. The approach includes three control loops for maximum power tracking, voltage control and frequency control. The generator field current is held constant at its nominal value avoiding the saturation in the field circuit. A robust fuzzy logic controller is adopted for the speed control loop of the diesel engine. The dynamic performance of the system is investigated under different operating conditions. (author)

  11. Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants

    International Nuclear Information System (INIS)

    Mohammadi Khoshkar Vandani, Amin; Joda, Fatemeh; Bozorgmehry Boozarjomehry, Ramin

    2016-01-01

    Highlights: • Investigating the effect of natural gas and diesel on the power plant performance. • Exergy, economic and environmental evaluation of a combined cycle power plant. • Using life cycle assessment (LCA) to perform the environmental evaluation. • Optimizing the power plant in terms of exergy and economic. • Better performance of natural gas with respect to diesel. - Abstract: Combined cycle power plants (CCPPs) play an important role in electricity production throughout the world. Their energy efficiency is relatively high and their production rates of greenhouse gases are considerably low. In a country like Iran with huge oil and gas resources, most CCPP’s use natural gas as primary fuel and diesel as secondary fuel. In this study, effect of using diesel instead of natural gas for a selected power plant will be investigated in terms of exergy, economic and environmental impacts. The environmental evaluation is performed using life cycle assessment (LCA). In the second step, the operation of the plant will be optimized using exergy and economic objective functions. The results show that the exergy efficiency of the plant with natural gas as fuel is equal to 43.11%, while this efficiency with diesel will be 42.03%. Furthermore, the annual cost of plant using diesel is twice as that of plant using natural gas. Finally, diesel utilization leads to more contaminants production. Thus, environmental effects of diesel are much higher than that of natural gas. The optimization results demonstrate that in case of natural gas, exergy efficiency and annual cost of the power plant improve 2.34% and 4.99%, respectively. While these improvements for diesel are 2.36% and 1.97%.

  12. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Warner, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  13. Long term trend analysis of emergency power diesel generator reliability in german nuclear power plants

    International Nuclear Information System (INIS)

    Kotthoff, K.; Maqua, M.

    1990-01-01

    The paper deals with a long-term investigation on the availability of diesel generators. This investigation has been performed in two steps in 1980/81 and 1988/89. It is based on the operating experiences of a total of 110 diesel generators in 20 German NPP's. The overall probability of diesel failure during start and short-time operation amounts to about 5E-3/demand. Compared to the result of the first part of the investigation (8E-3/demand) there has been some further improvement of diesel generator performance in recent years. The upper limit calculated for the probability of common mode failures (about 6E-4/demand) is approximately one order of magnitude smaller. The influence of various parameters on the failure probability has been discussed. A statistically significant dependence could not be identified

  14. Development of a Cost-Effective Solar/Diesel Independent Power Plant for a Remote Station

    Directory of Open Access Journals (Sweden)

    Okeolu Samuel Omogoye

    2015-01-01

    Full Text Available The paper discusses the design, simulation, and optimization of a solar/diesel hybrid power supply system for a remote station. The design involves determination of the station total energy demand as well as obtaining the station solar radiation data. This information was used to size the components of the hybrid power supply system (HPSS and to determine its configuration. Specifically, an appropriate software package, HOMER, was used to determine the number of solar panels, deep-cycle batteries, and rating of the inverter that comprise the solar section of the HPSS. A suitable diesel generator was also selected for the HPSS after careful technical and cost analysis of those available in the market. The designed system was simulated using the HOMER software package and the simulation results were used to carry out the optimization of the system. The final design adequately meets the station energy requirement. Based on a life expectancy of twenty-five years, a cost-benefit analysis of the HPSS was carried out. This analysis shows that the HPSS has a lower cost as compared to a conventional diesel generator power supply, thus recommending the HPSS as a more cost-effective solution for this application.

  15. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    Energy Technology Data Exchange (ETDEWEB)

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus

  16. Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis

    International Nuclear Information System (INIS)

    Silveira, Jose Luz; de Carvalho, Joao Andrade; de Castro Villela, Iraides Aparecida

    2007-01-01

    The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO 2 ), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ). (author)

  17. Generator gas as a fuel to power a diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2014-01-01

    Full Text Available The results of gasification process of dried sewage sludge and use of generator gas as a fuel for dual fuel turbocharged compression ignition engine are presented. The results of gasifying showed that during gasification of sewage sludge is possible to obtain generator gas of a calorific value in the range of 2.15  2.59 MJ/m3. It turned out that the generator gas can be effectively used as a fuel to the compression ignition engine. Because of gas composition, it was possible to run engine with partload conditions. In dual fuel operation the high value of indicated efficiency was achieved equal to 35%, so better than the efficiency of 30% attainable when being fed with 100% liquid fuel. The dual fuel engine version developed within the project can be recommended to be used in practice in a dried sewage sludge gasification plant as a dual fuel engine driving the electric generator loaded with the active electric power limited to 40 kW (which accounts for approx. 50% of its rated power, because it is at this power that the optimal conditions of operation of an engine dual fuel powered by liquid fuel and generator gas are achieved. An additional advantage is the utilization of waste generated in the wastewater treatment plant.

  18. Feasibility of Hybrid Retrofits to Off-Grid Diesel Power Plants in the Philippines

    International Nuclear Information System (INIS)

    Abergas, R.L.; Barley, C.D.; Barruela, R.B.

    1999-01-01

    The Strategic Power Utilities Group (SPUG) of the National Power Corporation (NPC) in the Philippines owns and operates about 100 power plants, mostly fueled by diesel, ranging in energy production from about 15 kilowatt-hours (kWh)/day to 106,000 kWh/day. Reducing the consumption of diesel fuel in these plants, along with the associated financial losses, is a priority for SPUG. The purpose of this study is to estimate the potential fuel and cost savings that might be achieved by retrofitting hybrid power systems to these existing diesel plants. As used in this report, the term ''hybrid system'' refers to any combination of wind turbine generators (WTGs), photovoltaic (PV) modules, lead-acid batteries, and an AC/DC power converter (either an electronic inverter or a rotary converter), in addition to the existing diesel gensets. The resources available for this study did not permit a detailed design analysis for each of the plants. Instead, the following five-step process was used: 1.Tabulate some important characteristics of all the plants. 2.Group the plants into categories (six classes) with similar characteristics. 3.For each class of system, identify one plant that is representative of the class. 4.For each representative plant, perform a moderately detailed prefeasibility analysis of design options. 5.Summarize and interpret the results. The analysis of each representative plant involved the use of time-series computer simulation models to estimate the fuel usage, maintenance expenses, and cash flow resulting from various designs, and to search the domain of possible designs for the one leading to the lowest life-cycle cost. Cost items that would be unaffected by the retrofit, such as operator salaries and the capital cost of existing equipment, were not included in the analysis. Thus, the results are reported as levelized cost of energy (COE) savings: the difference between the cost of the existing diesel-only system and that of an optimized hybrid system

  19. Fuel consumption and greenhouse gas calculator for diesel and biodiesel-powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Factors that influence fuel consumption include environmental conditions, maintenance, poor driving techniques, and driving speed. Developed by Natural Resources Canada, the SmartDriver training programs were designed to help fleet managers, drivers, and instructors to learn methods of improving fuel economy. This fuel consumption and greenhouse gas (GHG) calculator for diesel and biodiesel-powered vehicles provides drivers with a method of calculating fuel consumption rates when driving. It includes a log-book in which to record odometer readings and a slide-rule in which to determine the litres of fuel used during a trip. The scale showed the number of kg of GHGs produced by burning a particular amount of fuel for both biodiesel and diesel fuels. 1 fig.

  20. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  1. Economic analysis of hybrid power systems (PV/diesel) in different climatic zones of Tamil Nadu

    International Nuclear Information System (INIS)

    Suresh Kumar, U.; Manoharan, P.S.

    2014-01-01

    Highlights: • Investigation on economic feasibility of PV/diesel system in various climatic zones. • HOMER is used to solve economic feasibility analysis. • By the sensitivity analysis, the net present cost is reduced. • Optimum climatic zone in Tamil Nadu, India is recommended. - Abstract: With the increasing threat to environment and the fast depleting fossil fuel resources, hybrid power systems consisting of two or more renewable energy sources such as solar PV, wind, biomass, ocean thermal-with or without the back up of diesel generator have come to the forefront. These hybrid systems are normally integrated with battery banks for total reliability; such systems have brought about better quality of life in remote areas of developing economics. The remote areas in the state of Tamil Nadu in India possess excellent renewable energy sources. These areas fall under different climatic zones, are sparsely populated and are in the process of development. Though these areas are connected to the grid, Tamil Nadu grid is not stable; it is currently experiencing 40% short fall in generation. Thus grid power is available to these remote areas only for 10 h a day and even when available, there are voltage frequency problems. This paper analyses the economic feasibility of installing and operating hybrid systems in these areas. The areas are divided into different climatic zones and the hybrid system economy is analyzed for each climatic zone on the basis of NPC (net present cost), consumption of diesel and renewable fraction for all climate zones. The analysis indicates that the interior climatic zone – the area would be the optimum climatic zone to install HPS PV/diesel. The sensitivity analysis proves that the NPC of such a system can be reduced. It is suggested that due to high initial cost, government subsidy is necessary to adopt the system on a large scale. Such a profit will encourage development of renewable energy utilization and bring about rapid

  2. Status of evaluations and modifications of diesel generator status annunciator systems at various US nuclear power plants

    International Nuclear Information System (INIS)

    Shindell, B.M.; Rumble, R.P.

    1979-10-01

    This report documents the current status of evaluations and modifications to the diesel generator status annunciators in a number of US nuclear power plants. These modifications may be required in order to: ensure that all conditions which might render the diesel generators incapable of automatic starting are annunciated in the control room; ensure that the wording on the control room annunciator clearly indicates to the operator that the diesel generator is unavailable if such is the case; and separate disabling and non-disabling annunciation

  3. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Shihnan, A.H.; Nasri, N.S.; Sharer, Z.

    2014-01-01

    Highlights: • Engine and emission characteristics of biodiesel DDF engine system were measured. • Biodiesel DDF fuelled system produced high engine performance. • Lower hydrocarbons and carbon dioxide was emitted by biodiesel DDF system. • Biodiesel DDF produced slightly higher carbon monoxide and nitric oxides emission. - Abstract: Biodiesel derived from biomass is a renewable source of fuel. It is renovated to be the possible fuel to replace fossil derived diesel due to its properties and combustion characteristics. The integration of compressed natural gas (CNG) in diesel engine known as diesel dual fuel (DDF) system offered better exhaust emission thus become an attractive option for reducing the pollutants emitted from transportation fleets. In the present study, the engine performance and exhaust emission of HINO H07C DDF engine; fuelled by diesel, biodiesel, diesel–CNG, and biodiesel–CNG, were experimentally studied. Biodiesel and diesel fuelled engine system respectively generated 455 N m and 287 N m of torque. The horse power of biodiesel was found to be 10–20% higher compared to diesel. Biodiesel–CNG at 20% (B20-DDF) produced the highest engine torque compared to other fuel blends Biodiesel significantly increase the carbon monoxide (15–32%) and nitric oxides (6.67–7.03%) but in contrast reduce the unburned hydrocarbons (5.76–6.25%) and carbon dioxide (0.47–0.58%) emissions level. These results indicated that biodiesel could be used without any engine modifications as an alternative and environmentally friendly fuel especially the heavy transportation fleets

  4. Comparative study of performance and emissions of a diesel engine using Chinese pistache and jatropha biodiesel

    International Nuclear Information System (INIS)

    Huang, Jincheng; Wang, Yaodong; Qin, Jian-bin; Roskilly, Anthony P.

    2010-01-01

    An experimental study of the performances and emissions of a diesel engine is carried out using two different biodiesels derived from Chinese pistache oil and jatropha oil compared with pure diesel. The results show that the diesel engine works well and the power outputs are stable running with the two selected biodiesels at different loads and speeds. The brake thermal efficiencies of the engine run by the biodiesels are comparable to that run by pure diesel, with some increases of fuel consumptions. It is found that the emissions are reduced to some extent when using the biodiesels. Carbon monoxide (CO) emissions are reduced when the engine run at engine high loads, so are the hydrocarbon (HC) emissions. Nitrogen oxides (NOx) emissions are also reduced at different engine loads. Smoke emissions from the engine fuelled by the biodiesels are lowered significantly than that fuelled by diesel. It is also found that the engine performance and emissions run by Chinese pistache are very similar to that run by jatropha biodiesel. (author)

  5. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Solantausta, Y; Wilen, C

    1996-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  6. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  7. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  8. FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel.

    Science.gov (United States)

    Popovicheva, Olga B; Kireeva, Elena D; Shonija, Natalia K; Vojtisek-Lom, Michal; Schwarz, Jaroslav

    2015-03-01

    Fourier transform infrared spectroscopy is applied as a powerful analytic technique for the evaluation of the chemical composition of combustion aerosols emitted by off-road engines fuelled by diesel and biofuels. Particles produced by burning diesel, heated rapeseed oil (RO), RO with ethylhexylnitrate, and heated palm oil were sampled from exhausts of representative in-use diesel engines. Multicomponent composition of diesel and biofuel particles reveal the chemistry related to a variety of functional groups containing carbon, hydrogen, oxygen, sulfur, and nitrogen. The most intensive functionalities of diesel particles are saturated C-C-H and unsaturated C=C-H aliphatic groups in alkanes and alkenes, aromatic C=C and C=C-H groups in polyaromatics, as well as sulfates and nitrated ions. The distinguished features of biofuel particles were carbonyl C=O groups in carboxylic acids, ketones, aldehydes, esters, and lactones. NO2, C-N and -NH groups in nitrocompounds and amines are found to dominate biofuel particles. Group identification is confirmed by complementary measurements of organic carbon (OC), elemental carbon, and water-soluble ion species. The relationship between infrared bands of polar oxygenated and non-polar aliphatic functionalities indicates the higher extent of the surface oxidation of biofuel particles. Findings provide functional markers of organic surface structure of off-road diesel emission, allowing for a better evaluation of relation between engine, fuel, operation condition, and particle composition, thus improving the quantification of environmental impacts of alternative energy source emissions.

  9. Performance and emission of CI engine fuelled with camelina sativa oil

    International Nuclear Information System (INIS)

    Kruczyński, Stanisław W.

    2013-01-01

    Highlights: ► Camelina sativa as a potential source of alternative fuel. ► Neat camelina sativa oil as a fuel for CI engine. ► The engine performance and emissions of CI engine fuelled with neat camelina sativa oil. ► Comparison of rate of heat release for camelina sativa oil and diesel oil. - Abstract: The paper describes the results of the tests of CI Perkins 1104C-44 engine fuelled with camelina sativa oil. The engine was not especially calibrated for fuelling with the vegetable fuel. During the test the engine performance and emissions were analysed. For comparison the same speed characteristic was examined for standard fuelling of the engine with diesel oil. In order to understand the engine performance and emission the mass fraction burnt and the rate of heat release was calculated and compared for the same energy provided to the engine cylinder with the injected fuels. The results show that there is possible to receive relatively good engine performance for fuelling the engine with camelina sativa oil but there is a need to change the calibration parameters of the engine fuel system when the engine is fuelled with this fuel.

  10. The Influence of Diesel Fuel Subsidies and Taxes on the Potential for Solar-Powered Hybrid Systems in Africa

    Directory of Open Access Journals (Sweden)

    Paul Bertheau

    2015-08-01

    Full Text Available Many people in African countries lack access to sufficient electricity supply due to missing infrastructure of the centralized conventional power generation system. In order to provide electricity to a wider part of the population, it is necessary to exploit the vast renewable resources in African countries. Therefore, this paper scrutinizes the economic advantages of photovoltaic-based hybrid systems over fossil fuel-based power generation. A simulation model is applied in order to calculate the cost advantage of hybrid systems compared to diesel-only systems for the entire continent on a long term basis by applying two scenarios: one based on world market diesel prices and the other one based on national diesel prices. The results indicate that average power generation costs per country can be reduced by up to 0.11 €/kWh considering world market diesel prices and by up to 0.48 €/kWh considering national diesel prices. Furthermore, the effect of diesel fuel subsidies and taxes on the renewable energy potential and the respective savings are examined. These findings may ameliorate the policy development according to fossil fuel subsidies and taxes and demonstrate the advantages of decentralized renewable hybrid systems especially in rural areas of Africa.

  11. Cost-benefit analysis of remote hybrid wind-diesel power stations: Case study Aegean Sea islands

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kavadias, K.A.

    2007-01-01

    More than one third of world population has no direct access to interconnected electrical networks. Hence, the electrification solution usually considered is based on expensive, though often unreliable, stand-alone systems, mainly small diesel-electric generators. Hybrid wind-diesel power systems are among the most interesting and environmental friendly technological alternatives for the electrification of remote consumers, presenting also increased reliability. More precisely, a hybrid wind-diesel installation, based on an appropriate combination of a small diesel-electric generator and a micro-wind converter, offsets the significant capital cost of the wind turbine and the high operational cost of the diesel-electric generator. In this context, the present study concentrates on a detailed energy production cost analysis in order to estimate the optimum configuration of a wind-diesel-battery stand-alone system used to guarantee the energy autonomy of a typical remote consumer. Accordingly, the influence of the governing parameters-such as wind potential, capital cost, oil price, battery price and first installation cost-on the corresponding electricity production cost is investigated using the developed model. Taking into account the results obtained, hybrid wind-diesel systems may be the most cost-effective electrification solution for numerous isolated consumers located in suitable (average wind speed higher than 6.0 m/s) wind potential regions

  12. Fuel cells fuelled by Saccharides

    International Nuclear Information System (INIS)

    Schechner, P.; Mor, L.; Sabag, N.; Rubin, Z.; Bubis, E.

    2005-01-01

    Full Text:Saccharides, like glucose, fructose and lactose, are ideal renewable fuels. They have high energy content, are safe, transportable, easy to store, non-flammable, non poisonous, non-volatile, odorless, easy to produce anywhere and abundant. Fuel Cells are electro-chemical devices capable to convert chemical energy into electrical energy from fuels, with theoretical efficiencies higher than 0.8 at room temperatures and with low pollutant emissions. Fuel Cells that can produce electricity form saccharides will be able to replace batteries, power electrical plants from biomass wastes, and serve as engines for transportation. In spite of these advantages, saccharide fuelled fuel cells are no available yet. Two obstacles hinder the feasibility of this potentially revolutionary device. The first is the high stability of the saccharides, which requires a good catalyst to extract the electrons from the saccharide fuel. The second is related to the nature of the Fuel Cells: the physical process takes place at the interface surface between the fuel and the electrode. In order to obtain high densities, materials with high surface to volume ratio are needed. Efforts to overcome these obstacles will be described. The use of saccharides as a fuel was treated from the thermodynamic point of view and compared with other common fuels currently used in fuel cells. We summarize measurements performed in a membrane less Alkaline Fuel Cell, using glucose as a fuel and KOH as electrolyte. The anode has incorporated platinum particles and operated at room temperature. Measurements were done, at different concentrations of glucose, of the Open Circuit Voltage, Polarization Curves and Power Density as function of the Current Density. The maximum Power Density reached was 0.61 mW/cm 2 when the Current density was 2.13 mA/cm 2 and the measured Open Circuit Voltage was 0.771 V

  13. Trial application of reliability technology to emergency diesel generators at the Trojan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Wong, S.M.; Boccio, J.L.; Karimian, S.; Azarm, M.A.; Carbonaro, J.; DeMoss, G.

    1986-01-01

    In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness

  14. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    Science.gov (United States)

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  15. An investigation of heat recovery of submarine diesel engines for combined cooling, heating and power systems

    International Nuclear Information System (INIS)

    Daghigh, Roonak; Shafieian, Abdellah

    2016-01-01

    Highlights: • The power output of the cycle is about 53 kW in the mass flow rate of 0.6 kg/s. • The output cooling water temperature of evaporator is 3.64 °C. • The absorption chiller has a coefficient of performance equal to 0.94. - Abstract: High temperature and mass flow rate of the exhaust gases of submarine diesel engines provide an appropriate potential for their thermal recovery. The current study introduces a combined cooling, heating and power system for thermal recovery of submarine diesel engines. The cooling system is composed of a mixed effect absorption chiller with two high and low pressure generators. The exhaust of the diesel engine is used in the high pressure generator, and the low pressure generator was divided into two parts. The required heat for the first and second compartments is supplied by the cooling water of the engine and condensation of the vapor generated in the high pressure generator, respectively. The power generation system is a Rankine cycle with an organic working fluid, which is considered a normal thermal system to supply hot water. The whole system is encoded based on mass stability, condensation and energy equations. The obtained findings showed that the maximum heat recovery for the power cycle occurs in exhaust gas mass ratio of 0.23–0.29 and working fluid mass flow rate of 0.45–0.57 kg/s. Further, for each specific mass ratio of exhaust gas, only a certain range of working fluid mass flow rate is used. In the refrigerant mass flow rate of 0.6 kg/s and exhaust gas mass ratio of 0.27, the power output of the cycle is 53 kW, which can also be achieved by simultaneous increase of refrigerant mass flow rate and exhaust gas mass ratio in a certain range of higher powers. In the next section, the overall distribution diagram of output water temperature of the thermal system is obtained according to the exhaust gas mass ratio in various mass flow rates, which can increase the potential of designing and controlling the

  16. The first of a new generation of diesel engines from General Motors - the efficient and powerful 1.6 liter Euro6 midsize diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Boretto, Gianmarco; Golisano, Roberto; Scotti, Michele; Antonioli, Pierpaolo; Frank, Richard M.; Rovatti, Giovanni [General Motors Powertrain Europe s.r.l., Turin (Italy); Wesslau, Markus [Adam Opel AG, Ruesselsheim (Germany)

    2013-08-01

    The major challenge the automotive industry will face in the next decade is undoubtedly the reduction of CO{sub 2} emissions. Conventional powertrains with internal combustion engines will still play a predominant role: in particular, the diesel engine will be a major contributor to the solution thanks to its intrinsic high thermodynamic efficiency and low-end torque which is a key enabler for downsizing engine displacement and downspeeding. In this context, General Motors has developed an entirely new 1.6 liter four-cylinder Midsize Diesel Engine (MDE), the first of a new generation of efficient and powerful diesel engines. Its development has been focused on the achievement of high power and torque density, superior fuel efficiency and state-of-the-art noise and vibration, while meeting the Euro6 emission standard in a wide range of B-, C- and D-segment vehicles, utilizing different exhaust aftertreatment solutions. The key technical features of the base engine, combustion system and emission reduction technologies, together with the innovative engine control unit, are described in this paper. (orig.)

  17. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.

    Science.gov (United States)

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-01

    This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.

  18. The impact of the type of operation on the parameters of a shunting diesel locomotive with hybrid power plant

    Directory of Open Access Journals (Sweden)

    Falendysh Anatoliy

    2017-01-01

    Full Text Available In designing a traction vehicle it is necessary to take into account the type of field operation it is meant for. It was found out that during shunting operation a ChME3 diesel locomotive is in idling mode for almost half of its general running time. That is why, the introduction of a less powerful engine along with an energy storage device for shunting operations at a shunting diesel locomotive is appropriate. The calculations were made using a modernized shunting diesel locomotive ChME3 with hybrid transmission of power as an example. The dependences of the general running time of a diesel locomotive on the position of the engine driver controller under performing shunting, transportation and hump operation were given in percentages. For every operation mode there was calculated the optimum power of a diesel-generator plant and the optimum energy capacity of an energy storage system taking into account the above-mentioned dependences. It was found out that due to the introduction of a hybrid drive for the section discussed above and the corresponding mass of a train the aggregate fuel consumption will be reduced by 25% and the efficiency of travel will increase by one third.

  19. Core fuelling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1995-01-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. It is shown that with radially 'hollow' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles that are peaked off-axis. The fuelling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fuelling does not require Megavolt particle energies. Even with beam voltages of ∼ 200 keV, however, exceptionally good particle confinement is needed to achieve net electrical power generation. The required ratio of particle to thermal diffusivities is an order of magnitude outside the range reported for tokamaks. In a system with no power production requirement (e.g., neutron sources) neutral beam fuelling should be capable of producing peaked density profiles in devices as large as ITER. Fuelling systems with low energy cost per particle - such as cryogenic pellet injection - must be used in power producing tokamaks when τ P ∼ τ E . Simulations with pellet injection speeds of 7 km/s show that the peaking factor, n e0 / e >, approaches 2. (author). 65 refs, 8 figs

  20. Data Base for Light-Weight Automotive Diesel Power Plants. Volume 2: Discussion and Results.

    Science.gov (United States)

    1979-12-01

    The effects on fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...

  1. Data Base for Light-Weight Automotive Diesel Power Plants: Volume 1. Executive Summary.

    Science.gov (United States)

    1979-12-01

    The effects on fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...

  2. Data Base for Light-Weight Automotive Diesel Power Plants : Volume 3. Miscellaneous Data.

    Science.gov (United States)

    1979-12-01

    The effects of fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...

  3. Aging and service wear of diesel engines used for emergency power at nuclear power stations

    International Nuclear Information System (INIS)

    Dingee, P.A.; Johnson, A.B.

    1985-01-01

    Aging and wear problems associated with emergency standby diesel generators are under study as part of the US Nuclear Regulatory Commission Nuclear Plant Aging Research program. Aging/wear factors identified in this study to date include chemical, mechanical, electrochemical, and bacterial mechanisms. The study also examines the potential of excessive engine testing as a cause of premature wear. To date, the results of this effort are not conclusive. An assessment of current wear mitigation measures such as engine maintenance and surveillance procedures suggests the need for their further development within the nuclear industry

  4. The injection equipment of future high-speed DI diesel engines with respect to power and pollution requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, A. (Monobloc Dieselmotoren GmbH, Vienna (AT))

    1990-01-01

    The development of high specific output DI diesel engines started at the low-speed end some 50 years ago primarily for marine and traction applications. Movement towards the high-speed end has been slow but steady with the majority of truck engines being very conservatively rated. There has been recent major effort on the automotive car and light commercial vehicle diesel application leading to lightweight DI diesel engines with an engine speed of 4000-5000 r/min and a rated power of 50 kW/litre displacement. These are expected to be on the market in a short period of time. The key point of this development has been the injection equipment including combustion control. In this area the use of modulated injection has the possibility of solving power and pollution requirements. (author).

  5. The design and performance of the first fully automatic non-grid 5 MW multi-diesel / mini hydro / battery converter power stations

    International Nuclear Information System (INIS)

    Ahmad Shadzli Abdul Wahab

    2000-01-01

    Electricity power supply in remote communities and towns are traditionally and hitherto supplied by diesel generator sets of varying capacities and sizes -from few kilowatt to few megawatts. Its proven to be versatile, robust, modular cheaper capital investment, reliable and easy to operate and maintain. These features are what make diesel generators most preferred choice for generating electric power to power hungry remote communities. The main draw back, though, is its increasingly high cost of operation and maintenance, largely due to upward trend in the cost of diesel fuel, high cost of engines spare parts plus the inflationary nature of salary and wages of operators. For these reasons, engineers and technologists have for years worked tirelessly to find ways and means to reduce the O and M costs. One of the novel ideas was to hybrid the conventional diesel generating system with renewable energy resources, such as mini hydro, solar photovoltaic or wind energy. Many prototypes involving several configurations of energy resources eg diesel/PV/ battery, diesel/wind/battery, diesel/mini hydro/battery have been tested but none has so far has been as successful as Sema/ Powercorp automated Intelligent Power System (IPS). Based on microprocessor hardware, powerful computer software programming and satellite communication technology, the IPS -equipped diesel power station can now now be operated fully automatic with capability of remote control and monitoring. The system is versatile in maximising the use of renewable energy energy resources such as wind, mini hydro or solar thereby reducing very significantly the use of diesel fuel. Operation and maintenance costs also are reduced due to the use of minimum manpower and and increase in fuel efficiency of the engines. The tested and proven IPS technology has been operating successfully for the last ten years in remote diesel stations in Northern Territory, Australia, Rathlin Island, Northern Ireland and its latest and

  6. Trend analyses of the emergency diesel generator problem events in Japanese and U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2011-01-01

    Up to 2009, the author and a colleague conducted trend analyses of problem events related to main generators, emergency diesel generators, breakers, motors and transformers which are more likely to cause problems than other electric components in nuclear power plants. Among the electric components with high frequency of defect occurrence, i.e., emergency diesel generators, several years have passed since the last analyses. These are very important components needed to stop a nuclear reactor safely and to cool it down during external power supply loses. Then trend analyses were conducted for the second time. The trend analyses were performed on 80 problem events with emergency diesel generators which had occurred in U.S. nuclear power plants in the five years from 2005 through 2009 among events reported in the Licensee Event Reports (LERs: event reports submitted to NRC by U.S. nuclear power plants) which have been registered in the nuclear information database of the Institute of Nuclear Safety System, Inc. (INSS) , as well as 40 events registered in the Nuclear Information Archives (NUCIA), which occurred in Japanese nuclear power plants in the same time period. It was learned from the trend analyses of the problem events with emergency diesel generators that frequency of defect occurrence are high in both Japanese and US plants during plant operations and functional tests (that is, defects can be discovered effectively in advance), so that implementation of periodical functional tests under plant operation is an important task for the future. (author)

  7. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  8. 30 CFR 75.1710-1 - Canopies or cabs; self-propelled diesel-powered and electric face equipment; installation...

    Science.gov (United States)

    2010-07-01

    ... and electric face equipment; installation requirements. (a) Except as provided in paragraph (f) of this section, all self-propelled diesel-powered and electric face equipment, including shuttle cars... and electric face equipment; installation requirements. 75.1710-1 Section 75.1710-1 Mineral Resources...

  9. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city

    International Nuclear Information System (INIS)

    Rose, Lars; Hussain, Mohammed; Ahmed, Syed; Malek, Kourosh; Costanzo, Robert; Kjeang, Erik

    2013-01-01

    Consumers and organizations worldwide are searching for low-carbon alternatives to conventional gasoline and diesel vehicles to reduce greenhouse gas (GHG) emissions and their impact on the environment. A comprehensive technique used to estimate overall cost and environmental impact of vehicles is known as life cycle assessment (LCA). In this article, a comparative LCA of diesel and compressed natural gas (CNG) powered heavy duty refuse collection vehicles (RCVs) is conducted. The analysis utilizes real-time operational data obtained from the City of Surrey in British Columbia, Canada. The impact of the two alternative vehicles is assessed from various points in their life. No net gain in energy use is found when a diesel powered RCV is replaced by a CNG powered RCV. However, significant reductions (approximately 24% CO 2 -equivalent) in GHG and criteria air contaminant (CAC) emissions are obtained. Moreover, fuel cost estimations based on 2011 price levels and a 5-year lifetime for both RCVs reveal that considerable cost savings may be achieved by switching to CNG vehicles. Thus, CNG RCVs are not only favorable in terms of reduced climate change impact but also cost effective compared to conventional diesel RCVs, and provide a viable and realistic near-term strategy for cities and municipalities to reduce GHG emissions. - Highlights: ► Life cycle analysis is performed on two alternative refuse collection vehicle technologies. ► Real-time operational data obtained by the City of Surrey in British Columbia are utilized. ► The life cycle energy use is similar for diesel and CNG RCVs. ► A 24% reduction of GHG emissions (CO 2 -equivalent) may be realized by switching from diesel to CNG. ► CNG RCVs are estimated to be cost effective and may lead to reduced fuel costs.

  10. Development of reliability program for emergency diesel generators in domestic nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Young Ho; Jung, Hyun Jong; Choi, Kwang Hee; Hong, Seoung Yeul

    2001-01-01

    Surveillance tests of Emergency Diesel Generators (EDGs) in Nuclear Power Plants (NPPs) have been conducted periodically to verify the reliability and integrity of the EDGs, however, it was found that these surveillance methods were so conservative and severe as to accelerate the degradation of the EDGs. Hence, new regulatory guideline, Reg. Guide 1.9 Rev. 3, was established by the U.S. NRC to resolve these problems. But it requires the additional implementation of reliability program of the EDGs to improve the actual reliability of them. In Korea, the EDGs of Yonggwang nuclear units 3 and 4 were the first plant applying new Reg. guide 1.9 rev.3 and implementing EDG reliability program. Furthermore it is expected that new guideline for the EDGs will be applied to other EDGs of Korean NPPs. In this paper, this reliability program is described, and it can be used as a reference for other EDGs in Korean NPPs

  11. Parametric study of power turbine for diesel engine waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong; Chen, Zhen; Li, Zhigang

    2014-01-01

    Turbocompounding is a promising technology to recover waste heat from the exhaust and reduce fuel consumption for internal combustion engine. The design of a power turbine plays a key role in turbocompound engine performance. This paper presents a set of parametric studies of power turbine performed on a turbocompound diesel engine by means of turbine through-flow model developed by the authors. This simulation model was verified and validated using engine performance test data and achieved reasonable accuracy. The paper first analyzed the influence of three key geometrical parameters (blade height, blade radius and nozzle exit blade angle) on turbine expansion ratio and engine fuel consumptions. After that, the impacts of the geometrical parameters on power distribution, air mass flow rate and exhaust temperature were analyzed. Results showed that these parameters had significant effects on engine BSFC and power. At high engine speeds, there existed an optimum value of geometry parameter to obtain the lowest BSFC. At low engine speeds, the engine BSFC kept increasing or decreasing continuously as the geometry parameters changed. Research also found that the engine BSFC was most sensitive to the nozzle exit blade angle, which should be considered carefully during the design process. This paper provides a useful method for matching and designing of a power turbine for turbocompound engine. - Highlights: •Through-flow model of axial-flow power turbine for turbocompound engine was established. •Turbocompound engine performance test was carried out to validate the cycle simulation model. •Influences of power turbine geometry parameters on engine BSFC and power were presented

  12. Survey of modern power plants driven by diesel and gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, S [Turku Polytechnic, Turku (Finland)

    1998-12-31

    This report surveys the latest technology of power plants driven by reciprocating internal combustion (IC) engines, from information collected from publications made mainly during the 1990`s. Diesel and gas engines are considered competitive prime movers in power production due mainly to their high full- and part-load brake thermal efficiency, ability to burn different fuels, short construction time and fast start-ups. The market for engine power plants has grown rapidly, with estimated total orders for reciprocating engines of 1 MW output and more reaching the 5000 unit level, (10 GW), between June 1995 and May 1996. Industrialized countries much prefer combined heat and power (CHP) production. Intense interest has been shown in recent years in alternative gas fuels; natural gas appears to be the most promising, but liquid petroleum gas, gas from sewage disposal plants, landfill gas and other biogases, as well as wood gas have also been recognized as other alternatives. Liquid alternatives such as fuels and pyrolysis oil have also been mentioned, in addition to information on coal burning engines. The percentage of gas engines used has increased and different ones are being developed, based on either the traditional spark ignition (SI), dual-fuel technology or the more recent high pressure gas injection system. In cold climates, energy production is largely based on CHP plants. Waste heat is utilized for local, regional or district heating or for industrial uses like drying, heating, cooling etc. Even radiative and convective heat from gen-set surfaces are employed, and boilers are used with exhaust outlet temperatures of below dew point. Combined cycle schemes, including turbo compound systems and steam turbines, are also incorporated into engine power plants in order to increase output and efficiency. Two-stroke, low-speed diesel engine plants show the highest electric efficiencies, with combined cycle plants reaching up to 54 %, while gas engine plants achieved

  13. Survey of modern power plants driven by diesel and gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, S. [Turku Polytechnic, Turku (Finland)

    1997-12-31

    This report surveys the latest technology of power plants driven by reciprocating internal combustion (IC) engines, from information collected from publications made mainly during the 1990`s. Diesel and gas engines are considered competitive prime movers in power production due mainly to their high full- and part-load brake thermal efficiency, ability to burn different fuels, short construction time and fast start-ups. The market for engine power plants has grown rapidly, with estimated total orders for reciprocating engines of 1 MW output and more reaching the 5000 unit level, (10 GW), between June 1995 and May 1996. Industrialized countries much prefer combined heat and power (CHP) production. Intense interest has been shown in recent years in alternative gas fuels; natural gas appears to be the most promising, but liquid petroleum gas, gas from sewage disposal plants, landfill gas and other biogases, as well as wood gas have also been recognized as other alternatives. Liquid alternatives such as fuels and pyrolysis oil have also been mentioned, in addition to information on coal burning engines. The percentage of gas engines used has increased and different ones are being developed, based on either the traditional spark ignition (SI), dual-fuel technology or the more recent high pressure gas injection system. In cold climates, energy production is largely based on CHP plants. Waste heat is utilized for local, regional or district heating or for industrial uses like drying, heating, cooling etc. Even radiative and convective heat from gen-set surfaces are employed, and boilers are used with exhaust outlet temperatures of below dew point. Combined cycle schemes, including turbo compound systems and steam turbines, are also incorporated into engine power plants in order to increase output and efficiency. Two-stroke, low-speed diesel engine plants show the highest electric efficiencies, with combined cycle plants reaching up to 54 %, while gas engine plants achieved

  14. More safety for emergency diesel engines for the Belgium nuclear power plants

    International Nuclear Information System (INIS)

    Laire, Ch.; Scauflaire, O.; D'ans, G.; Moland, G. de; Bresseleers, J.

    2002-01-01

    Each nuclear plant in Belgium is equipped with a series of ultimate power supply (UPS) units, also called emergency power units. These consist of generators driven by multi-cylinder (typically 18) diesel engines, which are marine derivatives. Unlike marine applications, the steady-state load does not produce pulsating torques. However, these diesel engines are designed to start upon short notice following a blackout and reach full power within a few seconds to guarantee the availability or all safety valves and ventilators. Such sharp and quasi-cold starts, periodically performed to guarantee the UPS availability, may spell utter failures of the crank shaft, as demonstrated by a fatigue failure observed on the fillets connecting the crank pin to the web faces. The fillet cracks initiate in bending mode and then progress in torsion mode to excessive transient torques arising in the power train during successive starts. Aware of the potential risk and conforming to the Belgian nuclear safety rules, the plant operator of Doel sponsored the development of a nondestructive technique enabling the inspection of each fillet for cracks without first removing each piston rod from its crank pin. As a result, Laborelec developed a specific eddy-current probe which avoids fully dismantling the engine, as is done during ten-yearly overhauls with dye-checks for cracks. Inspecting crank shaft fillet integrity with this least obtrusive technique requires 24 hours per engine. It can thus be performed more frequently to prevent total crank shaft failures in time and monitor the engine fatigue caused following the mandatory monthly start-up tests. This promising technique may also find marine applications. Measuring the transient torque arising between the engine and the generator showed that this reached very high values shortly after starting the engine and injecting fuel at full throttle to reach full power within seconds. The pulsating torque of the 18-cylinders engine occurring 9

  15. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    Science.gov (United States)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  16. Optimal placement of biomass fuelled gas turbines for reduced losses

    International Nuclear Information System (INIS)

    Jurado, Francisco; Cano, Antonio

    2006-01-01

    This paper presents a method for the optimal location and sizing of biomass fuelled gas turbine power plants. Both profitability in using biomass and power loss are considered in the cost function. The first step is to assess the plant size that maximizes the profitability of the project. The second step is to determine the optimal location of the gas turbines in the electric system to minimize the power loss of the system

  17. Modeling and Control of a DC-grid Hybrid Power System with Battery and Variable Speed Diesel Generators

    OpenAIRE

    Syverud, Tron Hansen

    2016-01-01

    Hybrid electric power systems (HPS) have successfully been integrated in the road-traffic industry due to enhanced efficiency and environmental benefits. Recently this concept has been implemented in the marine sector. In this master thesis, the construction of a DC hybrid power system for a marine vessel is outlined in detail. The HPS is developed in Matlbat/Simulink and comprises two set of diesel generators with variable speed, six-pulse diode bridges, a battery bank, bidire...

  18. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Gupta, Tarun; Shukla, Pravesh C.; Dhar, Atul

    2015-01-01

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  19. Fuelling a US reaction

    International Nuclear Information System (INIS)

    Wyman, V.

    1989-01-01

    Within half a dozen years, US operators of nuclear power stations are likely to begin turning their backs on their own government's ideas about how they should get their nuclear fuel. Instead, they will sign up with private companies which want to supply them with uranium enrichment, the key service needed to turn natural uranium into the more potent types used in modern nuclear reactors. This change will be good news in particular for Urenco, the European nuclear fuel enrichment company one third owned by British Nuclear Fuels (BNFL). The prospects for Urenco are assessed. (author)

  20. Decentralized/stand-alone hybrid Wind-Diesel power systems to meet residential loads of hot coastal regions

    International Nuclear Information System (INIS)

    Elhadidy, M.A.; Shaahid, S.M.

    2005-01-01

    In view of rising costs, pollution and fears of exhaustion of oil and coal, governments around the world are encouraging to seek energy from renewable/sustainable energy sources such as wind. The utilization of energy from wind (since the oil embargo of the 1970s) is being widely disseminated for displacement of fossil fuel produced energy and to reduce atmospheric degradation. A system that consists of a wind turbine and Diesel genset is called a Wind-Diesel power system.The literature indicates that the commercial/residential buildings in Saudi Arabia consume an estimated 10-40% of the total electric energy generated. In the present study, the hourly mean wind-speed data of the period 1986-1997 recorded at the solar radiation and meteorological station, Dhahran (26 deg. 32'N, 50 deg. 13'E in the Eastern Coastal Region of Saudi Arabia), has been analyzed to investigate the potential of utilizing hybrid (Wind-Diesel) energy conversion systems to meet the load requirements of a hundred typical two bedroom residential buildings (with annual electrical energy demand of 3512 MWh). The long term monthly average wind speeds for Dhahran range from 4.2 to 6.4 m/s. The hybrid systems considered in the present case study consist of different combinations/clusters of 150 kW commercial wind machines supplemented with battery storage and Diesel back-up. The deficit energy generated by the Diesel generator (for different battery capacities) and the number of operational hours of the Diesel system to meet a specific annual electrical energy demand of 3512 MWh have also been presented. The evaluation of the hybrid system shows that with seven 150 kW wind energy conversion system (WECS) and one day of battery storage, the Diesel back-up system has to provide 21.6% of the load demand. Furthermore, with three days of battery storage, the Diesel back-up system has to provide 17.5% of the load demand. However, in the absence of battery storage, about 37% of the load needs to be

  1. Fuelling doubts over BNFL

    International Nuclear Information System (INIS)

    Wyman, V.

    1989-01-01

    The House of Commons Select Committee on Energy has recently questioned the whole philosophy behind one of Britain's largest process plant operators, British Nuclear Fuels (BNFL). The committee's criticisms and recommendations are of significance to more than just BNFL, whose 1988 turnover of Pound 839 million produced a Pound 100 million pretax profit for its owner, the government. For BNFL's fortunes are linked intimately with those of its customers, the nuclear power station operators. The members of Parliament are especially critical of BNFL's right to pass most of its cost increases on to its customers, which will make the nuclear power stations less attractive to investors when they are privatised. The committee also voices other serious concerns about BNFL's operations. These include worry about the future ownership of plutonium produced by BNFL from its customers' spent nuclear fuel; whether resultant nuclear waste is sent back to overseas customers; and the fate of the vast sums being put aside for future decommissioning of BNFL plant. (author)

  2. Small-scale bio fuelled heat and power - requirements for standardized technical and fuel solutions from a systems perspective; Smaaskalig biobraenslebaserad kraftvaerme - foerutsaettningar foer standardiserade loesningar med avseende paa teknik och braenslen i ett systemperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Olle; Johansson, Kent; Steinwall, Pontus [Sycon Energikonsult AB, Malmoe (Sweden)

    2001-01-01

    Different techniques for small-scale heat and power generation have been investigated. The included cycles are steam turbine, diesel engine, Otto engine, Stirling engine, gas turbine and organic Rankine cycle (ORC). For steam turbines, Stirling engine, and indirectly fired gas turbines, the combustion can be placed in a relatively conventional furnace, which gives a fairly free choice of fuel. In other cycles like the traditional gas turbine cycle, diesel engine and Otto engine, the fuel should be in the gas or liquid phase. Experiments are in progress to use wood pf (pulverised fuel) as fuel. The technique for plants based on steam turbine, diesel engine, Otto engine, conventional gas turbine and ORC based on different forms of bio fuel exist already today. For Stirling engine, gas turbine with HAT cycle (Humid Air Turbine) and indirectly fired gas turbine further development is needed before the technique will be commercially available using bio fuel. An interesting process coupling is a gas engine combined with a gasifier. This coupling can be a competitive choice to the other processes if the problems with gas cleaning can be solved.

  3. 30 CFR 75.1914 - Maintenance of diesel-powered equipment.

    Science.gov (United States)

    2010-07-01

    ...) Sampling and analytical methods (including calibration of instrumentation) that are capable of accurately... inspection by an authorized representative of the Secretary and by miners' representatives. (i) Diesel...

  4. Proposals for Enhancing Frequency Control in Weak and Isolated Power Systems: Application to the Wind-Diesel Power System of San Cristobal Island-Ecuador

    Directory of Open Access Journals (Sweden)

    Danny Ochoa

    2018-04-01

    Full Text Available Wind-diesel hybridization has been emerging as common practice for electricity generation in many isolated power systems due to its reliability and its contribution in mitigating environmental issues. However, the weakness of these kind of power systems (due to their small inertia makes the frequency regulation difficult, particularly under high wind conditions, since part of the synchronous generation has to be set offline for ensuring a suitable tracking of the power demand. This reduces the power system’s ability to absorb wind power variations, leading to pronounced grid frequency fluctuations under normal operating conditions. This paper proposes some corrective actions aimed at enhancing the frequency control capability in weak and isolated power systems: a procedure for evaluating the system stability margin intended for readjusting the diesel-generator control gains, a new wind power curtailment strategy, and an inertial control algorithm implemented in the wind turbines. These proposals are tested in the San Cristobal (Galapagos Islands-Ecuador hybrid wind-diesel power system, in which many power outages caused by frequency relays tripping were reported during the windiest season. The proposals benefits have been tested in a simulation environment by considering actual operating conditions based on measurement data recorded at the island.

  5. Research on the Power Recovery of Diesel Engines with Regulated Two-Stage Turbocharging System at Different Altitudes

    Directory of Open Access Journals (Sweden)

    Hualei Li

    2014-01-01

    Full Text Available Recovering the boost pressure is very important in improving the dynamic performance of diesel engines at high altitudes. A regulated two-stage turbocharging system is an adequate solution for power recovery of diesel engines. In the present study, the change of boost pressure and engine power at different altitudes was investigated, and a regulated two-stage turbocharging system was constructed with an original turbocharger and a matched low pressure turbocharger. The valve control strategies for boost pressure recovery, which formed the basis of the power recovery method, are presented here. The simulation results showed that this system was effective in recovering the boost pressure at different speeds and various altitudes. The turbine bypass valve and compressor bypass valve had different modes to adapt to changes in operating conditions. The boost pressure recovery could not ensure power recovery over the entire operating range of the diesel engine, because of variation in overall turbocharger efficiency. The fuel-injection compensation method along with the valve control strategies for boost pressure recovery was able to reach the power recovery target.

  6. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  7. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  8. Effect of beadles from soybean on the exhaust emission of a turbocharged diesel engine

    International Nuclear Information System (INIS)

    Shan, G.E.; Jian, T.; Shah, A.N.

    2009-01-01

    This paper presents the regulated emissions in the light of cylinder pressure and heat release rate (HRR) from a 4-stroke direct injection (DI) diesel engine fuelled with neat soybean oil-based biodiesel, commercial diesel and 20% biodiesel-diesel blend. The engine was run using electrical dynamometer at four different engine conditions. The experimental results revealed that brake power (BP) of the engine decreased but brake specific fuel consumption (BSFC) increased with biodiesel as compared to diesel. Relative to diesel, the maximum combustion pressure (MCP) was higher; however, HRR curves were not much deeper in the ignition delay (ID) periods and the premixed combustion peaks were lower with biodiesel. Carbon monoxide (CO), total hydrocarbons (HC), smoke opacity, and particulate matter (PM) emissions decreased by 3% to 14%, 32.6% to 46%, 56.5% to 83%, and 71% to 87.8%, respectively; however, oxides of nitrogen (NOx) increased by 2% to 10% with biodiesel, compared to the commercial diesel. Both smoke and NOx pollutants were greatly influenced by the MCP, CO, HC, and PM emissions were higher at lower load conditions compared to higher load conditions, but NO/sub x/ and smoke pollutants were higher at higher load conditions relative to lower load conditions. (author)

  9. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    Science.gov (United States)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  10. STUDYING OF INFLUENCE OF BIOFUEL MOTOR QUALITIES ON POWER AND ECOLOGICAL CHARACTERISTICS OF THE DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Levterov, A.

    2012-06-01

    Full Text Available The results of bench tests of D21A (2 Ч 10,5/12 diesel engine at its operation on mixed diesel fuel with improved qualities (Euro and the biofuel synthesized by the way of ethanol intereste-rification of rapeseed oil are offered.

  11. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel

    International Nuclear Information System (INIS)

    Annamalai, M.; Dhinesh, B.; Nanthagopal, K.; SivaramaKrishnan, P.; Isaac JoshuaRamesh Lalvani, J.; Parthasarathy, M.; Annamalai, K.

    2016-01-01

    smoke opacity emission could be achieved compared with the LGO emulsion and diesel fuel at various power outputs. Improvement in BTE was also observed for LGO nano emulsion test fuel compared to neat LGO and LGO emulsion fuels due to improved atomization and rapid evaporation rate of fuel owing to large surface area to volume ratio of CeO_2 nanoparticle.

  12. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    Science.gov (United States)

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria

    OpenAIRE

    Chikhi , Saâdane; Boughedaoui , Ménouèr; Kerbachi , Rabah; Joumard , Robert

    2014-01-01

    International audience; On-board measurements of unit emissions of CO, HC, NOx and CO 2 were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-LPG, gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most eff...

  14. Exposure Assessment of Diesel Bus Emissions

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2006-12-01

    Full Text Available The goal of this study was to measure ultrafine particle concentrations with diameters less than 1 μm emitted by diesel buses and to assess resulting human exposure levels. The study was conducted at the Woolloongabba Busway station in Brisbane, Australia in the winter months of 2002 during which temperature inversions frequently occurred. Most buses that utilize the station are fuelled by diesel, the exhaust of which contains a significant quantity of particle matter. Passengers waiting at the station are exposed to these particles emitted from the buses. During the course of this study, passenger census was conducted, based on video surveillance, yielding person-by-person waiting time data. Furthermore, a bus census revealed accurate information about the total number of diesel versus Compressed Natural Gas (CNG powered buses. Background (outside of the bus station and platform measurements of ultrafine particulate number size distributions were made to determine ambient aerosol concentrations. Particle number exposure concentration ranges from 10 and 40 to 60% of bus related exhaust fumes. This changes dramatically when considering the particle mass exposure concentration, where most passengers are exposed to about 50 to 80% of exhaust fumes. The obtained data can be very significant for comparison with similar work of this type because it is shown in previous studies that exhaust emissions causes cancer in laboratory animals. It was assumed that significant differences between platform and background distributions were due to bus emissions which, combined with passenger waiting times, yielded an estimate of passenger exposure to ultrafine particles from diesel buses. From an exposure point of view, the Busway station analyzed resembles a street canyon. Although the detected exhaust particle concentration at the outbound platform is found to be in the picogram range, exposure increases with the time passengers spend on the platform

  15. Bioethanol E85 as a fuel for dual fuel diesel engine

    International Nuclear Information System (INIS)

    Tutak, Wojciech

    2014-01-01

    Highlights: • An increase in the E85 fraction is changing the nature of the HRR course. • Change of combustion phasing with E85 fraction. • The ignition delay of dual fuel engine decreases with increasing E85 fuel. • Premixed combustion of E85 fuel reduces smoke emissions. - Abstract: This study investigates the potential of E85 fuelling in a diesel engine. Researches were performed using a three-cylinder a direct injection diesel engine. A dual-fuelling technology is implemented such that E85 is introduced into the intake manifold using a port-fuel injector while diesel is injected directly into the cylinder. The primary aim of the study was to determine the operating parameters of the engine powered on E85 bioethanol fuel in dual fuel system. The parameters that were taken into account are: engine efficiency, indicated mean effective pressure, heat release rate, combustion duration and ignition delay, combustion phasing and exhaust toxicity. With E85 fuel participation, NO x and soot emissions were reduced, whereas CO and HC emissions increased considerably. It was found that E85 participation in a combustible mixture reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of nitrogen oxides and soot

  16. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Buono, D.; Senatore, A.; Prati, M.V.

    2012-01-01

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  17. First and second law analysis of diesel engine powered cogeneration systems

    International Nuclear Information System (INIS)

    Abusoglu, Aysegul; Kanoglu, Mehmet

    2008-01-01

    In this article, the thermodynamic analysis of the existing diesel engine cogeneration system is performed. All necessary data are obtained from the actual diesel engine cogeneration plant located at Gaziantep, Turkey. The exergy analysis is aimed to evaluate the exergy destruction in each component as well as the exergetic efficiencies. The thermodynamic performance of a 25.32 MW electricity and 8.1 tons/h steam capacity diesel engine cogeneration system at full load conditions is analyzed. The thermal efficiency of the overall plant is found to be 44.2% and the exergetic efficiency is 40.7%. The exergy balance equations developed in this paper may also be utilized in the exergoeconomic analysis to estimate the production costs depending on various input costs in a diesel cogeneration system

  18. Reliability analysis of Diesel Generator power supply system of Prototype Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pramod Kumar, E-mail: pramodks@igcar.gov.in; Bhuvana, V.; Ramakrishnan, M.

    2016-12-15

    Highlights: • The unavailability of DG success is 4.75E−3 for 2/4 and 1.47E−3 for 1/4. • Modeling includes sub systems like CB, SSWS, Fuel oil system & 220 V DC. • DG-FR, DG-FR-CCF and DG maintenance is major contributors of DG unavailability. • Uncertainty analysis has been carried out through Monte Carlo simulations. • Sensitivity analysis identifies DG mechanical FR as most sensitive part. - Abstract: The unavailability of Diesel Generator power supply system has been evaluated using Fault tree method with ISOGRAPH reliability software and is found to be 4.75E−3 for 2/4 (DG success) and 1.47E−3 for 1/4 (DG success). Common cause failures contribute significantly to the unavailability of the system. Statistical analysis indicates that the DG unavailability is uncertain by Error Factor 4.4 (90% confidence bound) for 2 out of 4 DG system (system success) and by Error Factor 4.1 (90% confidence bound) for 1 out of 4 DG system (system success). Support systems namely Safety related service water system, Fuel oil system and circuit breaker control power supply dependency have been modeled. Results of importance analysis and sensitivity study are used to identify significant contributors to unavailability. DG fails to run, DG fails to run due to CCF and DG maintenance out of service is identified as dominant and important contributors of DG unavailability. Uncertainty analysis has been carried out through Monte Carlo simulations.

  19. Coal fueled diesel system for stationary power applications-technology development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  20. Influence of driving style on fuel consumption and Emissions in diesel-powered passenger car

    OpenAIRE

    Fonseca González, Natalia Elizabeth; Casanova Kindelán, Jesús; Espinosa Zapata, Felipe

    2010-01-01

    This paper presents the main results of a study on the influence of driving style on fuel consumption and pollutant emissions of diesel passenger car in urban traffic. Driving styles (eco, normal or aggressive) patterns were based on the “eco-driving” criteria. The methodology is based on on-board emission measurements in real urban traffic in the city of Madrid. Five diesel passenger cars, have been tested. Through a statistical analysis, a Dynamic Performance Index was defined for die...

  1. Analysis of power tiller noise using diesel-biodiesel fuel blends

    OpenAIRE

    N Keramat Siavash; Gh Najafi; S. R Hassan Beigi Bidgoli; B Ghobadian

    2015-01-01

    Introduction: There are several sources of noise in an industrial and agriculture environment. Machines with rotating or reciprocating engines are sound-producing sources. Also, the audio signal can be analyzed to discover how well a machine operates. Diesel engines complex noise SPL and sound frequency content both strongly depend on fuel combustion, which produces the so-called combustion noise. Actually, the unpleasant sound signature of diesel engines is due to the harsh and irregular sel...

  2. Effects of injection timing, before and after top dead center on the propulsion and power in a diesel engine

    Directory of Open Access Journals (Sweden)

    Nader Raeie

    2014-06-01

    Full Text Available It is well known that injection strategies including the injection timing and pressure play the most important role in determining engine performance, especially in pollutant emissions. However, the injection timing and pressure quantitatively affect the performance of diesel engine with a turbo charger are not well understood. In this paper, the fire computational fluid dynamics (CFD code with an improved spray model has been used to simulate the spray and combustion processes of diesel with early and late injection timings and six different injection pressure (from 275 bar to 1000 bar. It has been concluded that the use of early injection provides lower soot and higher NOx emissions than the late injection. In this study, it has been tried using the change of fuel injection time at these two next steps: before top dead center (BTDC and after top dead center (ATDC in order to achieving optimum emission and power in a specific point.

  3. Thermal design of a natural gas - diesel dual fuel turbocharged V18 engine for ship propulsion and power plant applications

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    A detailed method is presented on the thermal design of a natural gas - diesel dual fuel internal combustion engine. An 18 cylinder four stroke turbocharged engine is considered to operate at a maximum speed of 500 rpm for marine and power plant applications. Thermodynamic, heat transfer and fluid flow phenomena are mathematically analyzed to provide a real cycle analysis together with a complete set of calculated operation conditions, power characteristics and engine efficiencies. The method is found to provide results in close agreement to published data for the actual performance of similar engines such as V18 MAN 51/60DF.

  4. Power supply for pumping systems in northern Chile: Photovoltaics as alternative to grid extension and diesel engines

    International Nuclear Information System (INIS)

    Chueco-Fernandez, Francisco J.; Bayod-Rujula, Angel A.

    2010-01-01

    This paper examines and compares the cost-effectiveness to energize pumping systems in remote areas on northern Chile by means of photovoltaic systems, diesel engines and grid extension. Variables such as the distance to the power grid, the voltage grid, the prices of electricity and fuel, and the required investments, are taken into account. The comparison is made for wide range of variable values, distances and pumping requirements. The results obtained are useful for choosing the best alternative for the power supply of pumping systems in wells in Northern Chile. (author)

  5. Ciclo combinado Diesel-Vapor como repotenciación de una central termoeléctrica: caso de estudio; Combined Cycle Diesel-Steam as Power Plant Repowering: study case

    Directory of Open Access Journals (Sweden)

    Alberto Eduardo Calvo González

    2015-04-01

    Full Text Available La necesidad imperiosa de cubrir el déficit de generación eléctrica ampliando el potencial de generación con motores diesel a fuel oíl, cuya instalación requiere de muy poco tiempo, es una solución adecuada. La idea de aprovechar los nodos del sistema electro energético, como son las subestaciones y las centrales eléctricas, para instalar los grupos electrógenos es una solución apropiada. Pero en el caso de una central termoeléctrica, al montar estas instalaciones de forma independiente, no se aprovechan las posibilidades que la combinación de procesos ofrece como la disminución del consumo de combustible, y de la contaminación ambiental por unidad de energía producida. El presente trabajo explora la posibilidad de instalar plantas eléctricas diesel a fuel oil como ciclo combinado diesel-vapor. Se demuestra la conveniencia de instalar plantas eléctricas diesel a fuel oil como ciclo combinado diesel-vapor, aprovechando la sinergia que se logra por la combinación de los procesos térmicos.  The pressing need of covering generation deficit to satisfy the demand in the shorter possible time, by enlarging the generation potential with fuel oil fueled diesel motors, it’s an appropriate solution. The idea of taking advantage of electric grid existent nodes facilities to place the generating electricity diesel motors is a non-unwise solution. But in the case of the node of steam power station place these motors in an independent way, don't take advantage of the possibilities that the processes combination offers, as the combined cycle diesel vapor for example. The work presented herein explored and showed the possibility of installing the electric diesel plants as a repowering the existing steam power plant by combined cycle diesel-steam taking advantage of the synergy achieved by thermal processes combination.

  6. Ciclo combinado Diesel-Vapor como repotenciación de una central termoeléctrica: caso de estudio; Combined Cycle Diesel-Steam as Power Plant Repowering: study case

    Directory of Open Access Journals (Sweden)

    Alberto Eduardo Calvo González

    2014-06-01

    Full Text Available La necesidad imperiosa de cubrir el déficit de generación eléctrica ampliando el potencial de generación con motores diesel a fuel oíl, cuya instalación requiere de muy poco tiempo, es una solución adecuada. La idea de aprovechar los nodos del sistema electro energético, como son las subestaciones y las centrales eléctricas, para instalar los grupos electrógenos es una solución apropiada. Pero en el caso de una central termoeléctrica, al montar estas instalaciones de forma independiente, no se aprovechan las posibilidades que la combinación de procesos ofrece como la disminución del consumo de combustible, y de la contaminación ambiental por unidad de energía producida. El presente trabajo explora la posibilidad de instalar plantas eléctricas diesel a fuel oil como ciclo combinado diesel-vapor. Se demuestra la conveniencia de instalar plantas eléctricas diesel a fuel oil como ciclo combinado diesel-vapor, aprovechando la sinergia que se logra por la combinación de los procesos térmicos. The pressing need of covering generation deficit to satisfy the demand in the shorter possible time, by enlarging the generation potential with fuel oil fueled diesel motors, it’s an appropriate solution. The idea of taking advantage of electric grid existent nodes facilities to place the generating electricity diesel motors is a non-unwise solution. But in the case of the node of steam power station place these motors in an independent way, don't take advantage of the possibilities that the processes combination offers, as the combined cycle diesel vapor for example. The work presented herein explored and showed the possibility of installing the electric diesel plants as a repowering the existing steam power plant by combined cycle diesel-steam taking advantage of the synergy achieved by thermal processes combination.

  7. Prediction of an optimum biodiesel-diesel blended fuel for compression ignition engine using GT-power

    International Nuclear Information System (INIS)

    Shah, A.N.; Shah, F.H.; Shahid, E.M.; Gardezi, S.A.R.

    2014-01-01

    This paper describes the development of a turbocharged direct-injection compression ignition (CI) engine model using fluid-dynamic engine simulation codes through a simulating tool known as GT Power. The model was first fueled with diesel, and then with various blends of biodiesel and diesel by allotting suitable parameters to predict an optimum blended fuel. During the optimization, main focus was on the engine performance, combustion, and one of the major regulated gaseous pollutants known as oxides of nitrogen (NOx). The combustion parameters such as Premix Duration (DP), Main Duration (DM), Premix Fraction (FP), Main Exponent (EM) and ignition delay (ID) affect the start of injection (SOI) angle, and thus played significant role in the prediction of optimum blended fuel. The SOI angle ranging from 5.2 to 5.7 degree crank angle (DCA) measured before top dead center (TDC) revealed an optimum biodiesel-diesel blend known as B20 (20% biodiesel and 80% diesel by volume). B20 exhibited the minimum possible NOx emissions, better combustion and acceptable engine performance. Moreover, experiments were performed to validate the simulated results by fueling the engine with B20 fuel and operating it on AC electrical dynamometer. Both the experimental and simulated results were in good agreement revealing maximum deviations of only 3%, 3.4%, 4.2%, and 5.1% for NOx, maximum combustion pressure (MCP), engine brake power (BP), and brake specific fuel consumption (BSFC), respectively. Meanwhile, a positive correlation was found between MCP and NOx showing that both the parameters are higher at lower speeds, relative to higher engine speeds. (author)

  8. Diesel engine power generating set efficiency for nuclear power plant electrical energy supply in case of emergency

    International Nuclear Information System (INIS)

    Popovic, I.; Aksamija, R.; Tumpa, M.

    1984-01-01

    Working ability of diesel engine set to starting and functioning reliability during operation is evaluated within study of efficiency. methods of calculation are applied: data compilation method and Markov method. The evaluation is that a diesel engine set has efficiency of 0.993285. It is a high efficiency which ensures a safe start, load take over and safe operation. This evaluation makes a basis for similar calculations which will be needed for national nuclear program. (author)

  9. Characterisation of perovskite-type high-temperature membranes used for oxygen supply in fossil fuelled power plant processes; Charakterisierung perowskitischer Hochtemperaturmembranen zur Sauerstoffbereitstellung fuer fossil gefeuerte Kraftwerksprozesse

    Energy Technology Data Exchange (ETDEWEB)

    Moebius, Sigrid Annett

    2010-03-12

    In this thesis thermochemical properties of mixed conducting perovskite-type materials were investigated. Those materials are assumed to be applicable as gas separation membranes in the oxyfuel process. Here, the materials are aimed to produce the required oxygen for the combustion more energy-efficient than using cryogenic air separation. High-temperature materials which are applicable for this purpose must be gastight and should exhibit a high oxygen permeation rate and a preferably low thermal expansion coefficient. Moreover, the materials need to be long-term stable under power plant relevant conditions. The aim of this work is a better understanding of the material behaviour. Furthermore, on the basis of the results it should be possible to draw conclusions concerning the suitability of the material for application in oxyfuel power plant processes. Therefor, the influence of the chemical composition (doping elements and stoichiometry) of the perovskites, the temperature and the oxygen content in the ambient atmosphere on the thermochemical properties are studied systematically. In the framework of this thesis it could be stated that the thermochemical behaviour of prospective membrane materials strongly depends on the above mentioned parameters. In addition, the degradation behaviour (thermochemical stability) of the materials was investigated. The degradation behaviour influences the suitability of the material to be used in oxyfuel power plant processes. Here, the influence of the chemical composition of the perovskites, the temperature and the CO{sub 2}-concentration in dry and humid atmospheres was also studied. On the basis of the results it could be stated that the thermochemical stability strongly depends on the surrounding atmosphere and on the chemical composition of the perovskites. (orig.)

  10. Power generation using coir-pith and wood derived producer gas in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673 601, Kerala State (India)

    2006-10-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the potential of coir-pith and wood chips as the feedstock for gasifier is analyzed. The performance of the gasifier-engine system is analyzed by running the engine for various producer gas-air flow ratios and at different load conditions. The system is experimentally optimized with respect to maximum diesel savings and lower emissions in the dual fuel mode operation while using coir-pith and wood chips separately. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine while using wood chips in the dual mode operation is higher than that of coir-pith. The CO emission is higher in the case of dual fuel mode of operation as compared to that of diesel mode. In the dual fuel mode of operation, the higher diesel savings is achieved while using wood chips as compared to that of coir-pith. The comparison of the performance and emission characteristics of the dual fuel engine with diesel engine is also described. (author)

  11. The use of Koroch seed oil methyl ester blends as fuel in a diesel engine

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2011-01-01

    An experimental investigation was carried out on a small direct injection (DI) diesel engine, fuelling the engine with 10% (B10), 20% (B20), 30% (B30) and 40% (B40) blending of Koroch seed oil methyl ester (KSOME) with diesel. The performance and combustion characteristics of the engine at various loads are compared and analyzed. The results showed higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE) for the KSOME blends. The engine indicated power (IP) was more for the blends up to B30, but found to be reduced for the blend B40 when compared to that of diesel. The engine combustion parameters such as pressure crank angle diagram, peak pressure, time of occurrence of peak pressure, net heat-release rate, cumulative heat release, ignition delay and combustion duration were computed. The KSOME blends exhibited similar combustion trend with diesel. However, the blends showed an early start of combustion with shorter ignition delay period. The study reveals the suitability of KSOME blends up to B30 as fuel for a diesel engine mainly used in generating sets and the agricultural applications in India without any significant drop in engine performance.

  12. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    SENDILVELAN S.

    2017-11-01

    Full Text Available Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize the blends for reducing emission and improving performance. Results show improved performance with B10 blends compared to neat fuel for all conditions of the engine. Other blends recorded marginal decrease in brake thermal efficiency. The maximum efficiency for B30, B50 blends at peak load are 26.3%, 25.2% respectively against 29.1% for sole fuel. NOx emissions were found to be high or the blends. Peak pressure and rate of pressure rise are increased with increase in dioxane ratio due to improved combustion rate. Heat release pattern shows higher premixed combustion rate with the blends. Higher ignition delay and lower combustion duration are found with all blends than neat diesel fuel.

  13. Use of high ash fuel in diesel power plants II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Vestergren, R; Normen, E; Hellen, G [Wartsila Diesel International Ltd Oy, Vaasa (Finland); and others

    1997-10-01

    Heavy fuel oils containing a large amount of ash are used in some geographically restricted areas. The ash components can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The LIEKKI 2 programs Use of high ash fuel in diesel power plants, Part I and II, have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuels with a very high ash content. The chemistry during combustion has been studied. The chemical and physical properties of the particles in the exhaust gas, of the deposits, and of exhaust valves have been investigated. Exhaust gas particle measurements have been performed when running on high ash fuel, both with and without deposit modifying fuel additive. Theories for the mechanisms mentioned above have been developed. On the practical side two long time field tests are going on, one with an ash/deposit modifying fuel additive (vanadium chemistry alteration), one with fuel water washing (sodium removal). Seven different reports have been written. (orig.)

  14. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria.

    Science.gov (United States)

    Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2014-08-01

    On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. Copyright © 2014. Published by Elsevier B.V.

  15. The case for wood-fuelled heating

    International Nuclear Information System (INIS)

    Bent, Ewan

    2001-01-01

    This article looks at the wood heating industry in the UK and examines the heat market and the growth potential in the domestic, public, agricultural and commercial sectors. The current status of wood-fueled heating technology is considered, along with log and chip boilers, and the use of pellet fuel. The economics of wood-fuelled heating, the higher level of utilisation of wood-fuelled heating by utilities in northern European countries compared with the UK, and the barriers to the exploitation of wood fuelled heating are examined

  16. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs

    Directory of Open Access Journals (Sweden)

    Daniel Maraver

    2014-04-01

    Full Text Available This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs, coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling demands in the tertiary sector. The thermodynamic approach was complemented, to avoid its possible limitations, by the technological constraints of the expander, the heat exchangers and the pump of the ORC. The working fluids considered are: n-pentane, n-heptane, octamethyltrisiloxane, toluene and dodecamethylcyclohexasiloxane. In addition, the energy and environmental performance of the different optimal CCHP plants was investigated. The optimal plant from the energy and environmental point of view is the one integrated by a toluene recuperative ORC, although it is limited to a development with a turbine type expander. Also, the trigeneration plant could be developed in an energy and environmental efficient way with an n-pentane recuperative ORC and a volumetric type expander.

  17. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  18. Optimal sizing study of hybrid wind/PV/diesel power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Belfkira, Rachid; Zhang, Lu; Barakat, Georges [Groupe de Recherche en Electrotechnique et Automatique du Havre, University of Le Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

    2011-01-15

    In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented. The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system. (author)

  19. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  20. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.

    Science.gov (United States)

    Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P

    2003-07-01

    A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling

  1. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  2. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    International Nuclear Information System (INIS)

    Nordin, Adzuieen; Amin, M; Majid, A

    2013-01-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO 2 to the environment. This study analyzes the amount of CO 2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO 2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants

  3. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  4. Sixth international wind-diesel workshop

    International Nuclear Information System (INIS)

    1992-01-01

    At a workshop on hybrid wind/diesel power generation systems, papers were presented on international research programs, demonstration projects, wind/diesel deployment strategies and requirements, wind/diesel market development and economics, wind turbine design requirements, and wind/diesel models and analytical tools. Separate abstracts have been prepared for 11 papers from this workshop

  5. Sixth international wind-diesel workshop

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    At a workshop on hybrid wind/diesel power generation systems, papers were presented on international research programs, demonstration projects, wind/diesel deployment strategies and requirements, wind/diesel market development and economics, wind turbine design requirements, and wind/diesel models and analytical tools. Separate abstracts have been prepared for 11 papers from this workshop.

  6. A technical and environmental approach of the utilization of the Diesel instead of the natural gas in thermoelectric power plants in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Villela, Iraides Aparecida de Castro [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). College of Engineering]. E-mail: iraides@debas.eel.usp.br; Silveira, Jose Luz [UNESP, Guaratingueta, SP (Brazil). Energy Dept.]. E-mail: joseluz@feg.unesp.br; www.feg.unesp.br/gose

    2008-07-01

    This work analyses the Thermodynamic and Ecological Performance of a thermoelectric power plant with nominal power of 310 MW in combined cycle. In the worldwide scenery, combined cycle power plants have become more and more known, due to the stage of development of the technology as well as to its high efficiency and low levels of atmospherical emissions when compared with conventional thermodynamic cycles. In Brazil, unfortunately, the diesel oil has been utilized in thermoelectric power plants, for the natural gas has not met the demand, in face of the problems in the contract with Bolivia. The study of the operation of these thermoelectric power plants with a second combustible, as the diesel, for instance, becomes more necessary, seen that the levels of thermal efficiency and of emissions undergo considerable alterations. This work aims to analyze the thermal and ecological efficiency of this thermoelectric power plant, through a comparison between the natural gas and the diesel. And analysis of the First Law of Thermodynamics is made and the ecological efficiency of the plant being studied for the two combustibles is determined. From the results obtained, it is inferred that the utilization of the natural associated to the use of the technology of the combined cycle presents better energetic and ecological efficiency when compared to the diesel. (author)

  7. Techno Economical Study of PV-Diesel Power System for a Remote Island in Indonesia : A Case Study of Miangas Island

    Science.gov (United States)

    Rumbayan, M.; Nagasaka, K.

    2018-05-01

    The purpose of this study is to conduct the techno economical study of PC-Diesel power system based on renewable energy available locally in a remote island. This research is a case study for Miangas island which is the border island between Indonesia and Philipines. It is located in Talaud Island regency of North Sulawesi province of Indonesia. The monthly average daily radiation in Miangas island is 5.52 kWh/m2.The research methods used are data collection and data analysis using software HOMER. Based on the simulation result, the techno economic study of PV-Diesel power plant system based on energy demand in Miangas island can be obtained. The Cost of Energy (COE), Net Present Cost (NPC) and operating cost for proposed hybrid PV-Diesel power generation can be assessed for the design power systems uses Canadian solar Max Power C56x-325P of 150 KW PV, 18 string of Surette 6CS25P, Diesel Generator 50 kW and converter Magnum MS4448PAE 25 kW. The annual electricity production from the PV Diesel system for Miangas island is 309.589 kWh in which 80.7% electricity comes from PV, 19.3% electricity comes from diesel with the 109.063 kWh excess electricity. The cost of generating electrical energy in the term of cost of energy (COE), Net Present Cost (NPC) and operating cost are 0.318 US/kWh, 719.673 US and 36.857 US respectively.

  8. Simulation of a heavy-duty diesel engine with electrical turbocompounding system using operating charts for turbocharger components and power turbine

    International Nuclear Information System (INIS)

    Katsanos, C.O.; Hountalas, D.T.; Zannis, T.C.

    2013-01-01

    Highlights: • A diesel model was developed using charts for turbocharger and power turbine. • The maximum value of bsfc improvement is 4.1% at 100% engine load. • The generated electric power ranges from 23 kW to 62 kW. • Turbocharger turbine efficiency decreases slightly with the power turbine speed. • Turbocompounding increases the average pressure value in the exhaust manifold. - Abstract: In diesel engines, approximately 30–40% of the energy supplied by the fuel is rejected to the ambience through exhaust gases. Therefore, there is a potentiality for further considerable increase of diesel engine efficiency with the utilization of exhaust gas heat and its conversion to mechanical or electrical energy. In the present study, the operational behavior of a heavy-duty (HD) diesel truck engine equipped with an electric turbocompounding system is examined on a theoretical basis. The electrical turbocompounding configuration comprised of a power turbine coupled to an electric generator, which is installed downstream to the turbocharger (T/C) turbine. A diesel engine simulation model has been developed using operating charts for both turbocharger and power turbine. A method for introducing the operating charts into the engine model is described thoroughly. A parametric analysis is conducted with the developed simulation tool, where the varying parameter is the rotational speed of power turbine shaft. In this study, the interaction between the power turbine and the turbocharged diesel engine is examined in detail. The effect of power turbine speed on T/C components efficiencies, power turbine efficiency, exhaust pressure and temperature, engine boost pressure and air to fuel ratio is evaluated. In addition, theoretical results for the potential impact of electrical turbocompounding on the generated electric power, net engine power and relative improvement of brake specific fuel consumption (bsfc) are provided. The critical evaluation of the theoretical

  9. Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system

    International Nuclear Information System (INIS)

    Wen, Shuli; Lan, Hai; Hong, Ying-Yi; Yu, David C.; Zhang, Lijun; Cheng, Peng

    2016-01-01

    Highlights: • An uncertainty model of PV generation on board is developed based on the experiments. • The moving and swinging of the ship are considered in the optimal ESS sizing problem. • Optimal sizing of ESS in a hybrid PV/diesel/ESS ship power system is gained by the interval optimization method. • Different cases were studied to show the significance of the proposed method considering the swinging effects on the cost. - Abstract: Owing to low efficiency of traditional ships and the serious environmental pollution that they cause, the use of solar energy and an energy storage system (ESS) in a ship’s power system is increasingly attracting attention. However, the swinging of a ship raises crucial challenges in designing an optimal system for a large oil tanker ship, which are associated with uncertainties in solar energy. In this study, a series of experiments are performed to investigate the characteristics of a photovoltaic (PV) system on a moving ship. Based on the experimental results, an interval uncertainty model of on-board PV generation is established, which considers the effect of the swinging of the ship. Due to the power balance equations, the outputs of the diesel generator and the ESS on a large oil tanker are also modeled using interval variables. An interval optimization method is developed to determine the optimal size of the ESS in this hybrid ship power system to reduce the fuel cost, capital cost of the ESS, and emissions of greenhouse gases. Variations of the ship load are analyzed using a new method, taking five operating conditions into account. Several cases are compared in detail to demonstrate the effectiveness of the proposed algorithm.

  10. Understanding Combustion and Soot Formation in Diesel Engines

    Science.gov (United States)

    2016-09-09

    distributions of PLII signals help understand the soot distributions within diesel/ biodiesel flames. In addition, planar laser-induced Figure 1. Transported ...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 9/14/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll This project investigated biodiesel ...emissions testing. 1 FINAL REPORT Project title: Understanding combustion and soot formation in biodiesel fuelled diesel engines Lead Institute and

  11. Pellet fuelling and ELMy H-mode physics at JET

    International Nuclear Information System (INIS)

    Horton, L.D.

    2001-01-01

    As the reference operating regime for ITER, investigations of the ELMy H-mode have received high priority in the JET experimental programme. Recent experiments have concentrated in particular on operation simultaneously at high density and high confinement using high field side (HFS) pellet launch. The enhanced fuelling efficiency of HFS pellet fuelling is found to scale favourably to a large machine such as JET. The achievable density of ELMy H-mode plasmas in JET has been significantly increased using HFS fuelling although at the expense of confinement degradation back to L-mode levels. Initial experiments using control of the pellet injection frequency have shown that density and confinement can simultaneously be increased close to the values necessary for ITER. The boundaries of the available ELMy H-mode operational space have also been extensively explored. The power necessary to maintain the high confinement normally associated with ELMy H-mode operation is found to be substantially higher than the H-mode threshold power. The compatibility of ELMy H-modes with divertor operation acceptable for a fusion device has been studied. Narrow energy scrape-off widths are measured which place stringent limits on divertor power handling. Deuterium and tritium codeposition profiles are measured to be strongly in/out asymmetric. Successful modelling of these profiles requires the inclusion of the (measured) scrape-off layer flows and of the production in the divertor of hydrocarbon molecules with sticking coefficients below unity. Helium exhaust and compression are found to be within the limits sufficient for a reactor. (author)

  12. Modelling the economics of combined wind/hydro/diesel power systems

    International Nuclear Information System (INIS)

    Sinha, A.

    1993-01-01

    A model that stimulates the performance and economics of a combined wind/hydro/diesel plant with pumped storage has been developed. It is applied to a hypothetical site to demonstrate how a subset of the cheapest configuration of plant sizes may be identified, illustrating in particular the trade-off between the hydro storage capacity and the wind turbine penetration. It seems that, with the wind and water regimes employed, pumped storage is unlikely to have significant benefits, but may be beneficial in areas without natural inflow, in which case the reservoir is used as a store for excess wind output. (author)

  13. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Taylor, R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  14. Measurement of Exhaust Emissions from Diesel-Powered Forklifts during Operations in Ammunition Storage Magazines.

    Science.gov (United States)

    1984-05-01

    to CO over a work period can cause central nervous system depression , blackouts, coma, and eventual death at the concentrations that could be reached...Camel, Jr., Eds., National Cancer Institute Monograph No. 9, p. 225, 1962. 11.6 Sawicki, E., R. C. Corey, A. E. Dooley,J. B. Gisclard, J. L. Monkman, R...tum wmammmmm ~m mamas aB-mm7 B-27 1K PEDCO INVIRONMENTAL. INC ARMY DIESEL FORKLIFT STUDY Location THREE TOt Description TEST SI Date: DECEMIER 6. 1103

  15. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines

    Czech Academy of Sciences Publication Activity Database

    Topinka, Jan; Milcová, Alena; Schmuczerová, Jana; Mazac, M.; Pechout, M.; Vojtíšek-Lom, M.

    2012-01-01

    Roč. 212, č. 1 (2012), s. 11-17 ISSN 0378-4274 R&D Projects: GA ČR GAP503/11/0142; GA ČR(CZ) GBP503/12/G147 Grant - others:project MEDETOX(XE) LIFE10ENV/CZ/651 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : biodiesel * diesel emissions * DNA adducts Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.145, year: 2012

  16. Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine

    International Nuclear Information System (INIS)

    Porpatham, E.; Ramesh, A.; Nagalingam, B.

    2013-01-01

    Highlights: • Tests were conducted on a biogas fuelled SI engine with normal and masked valve. • Improvement in brake power and brake thermal efficiency with masked valve. • Lean misfire limit is extended with enhanced swirl from 0.68 to 0.65. • Enhanced swirl decreases HC level from1530 ppm to 1340 ppm and increases NO emission from 2250 ppm to 3440 ppm. • The reduction in ignition delay and higher heat release rate with enhanced swirl. - Abstract: The influence of swirl on the performance, emissions and combustion in a constant speed Spark Ignition (SI) engine was studied experimentally. A single cylinder diesel engine was modified to operate as a biogas operated spark ignition engine. The engine was operated at 1500 rpm at throttle opening of 25% and 100% at various equivalence ratios. The tests covered a range of equivalence ratios from rich to lean operating limits and also at an optimum compression ratio of 13:1 with normal and masked intake valve to enhance swirl. The spark timing was set to MBT (Minimum advance for Best Torque). It was found that masked valve configuration enhanced the power output and brake thermal efficiency at full throttle. The lean limit of combustion also got extended. Heat release rates indicated enhanced combustion rates with masked valve, which are mainly responsible for the improvement in thermal efficiency. NO level increased with masked valve as compared to normal configuration. The spark timings were to be retarded by about 6 °CA and 4 °CA when compared to normal configuration at 25% and 100% throttle respectively

  17. Natural gas fuelling stations installation code

    Energy Technology Data Exchange (ETDEWEB)

    Barrigar, C; Burford, G; Adragna, M; Hawryn, S

    2004-07-01

    This Canadian Standard applies to natural gas fuelling stations that can be used for fleet and public dispensing operations. This document is divided into 11 sections that address the scope of the Standard; definitions and reference publications; general requirements; compressors; storage; dispensing; flow control devices; storage vessel dispatch and receiving; design, installation and testing of piping, tubing and fittings; and installation of vehicle refuelling appliances (VRAs) connected to storage piping. The most recent revision to the Standard includes requirements for indoor fuelling of natural gas vehicles. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2004. tabs., figs.

  18. A reliability program for emergency diesel generators at nuclear power plants: Program structure

    International Nuclear Information System (INIS)

    Lofgren, E.V.; DeMoss, G.M.; Fragola, J.R.; Appignani, P.L.; Delarche, G.; Boccio, J.

    1988-04-01

    The purpose of this report is to provide technical guidelines for NRC staff use in the development of positions for evaluating emergency diesel generator (EDG) reliability programs. Such reviews will likely result following resolution of USI A-44 and GSI B-56. The diesel generator reliability program is a management system for achieving and maintaining a selected (or target) level of reliability. This can be achieved by: (1) understanding the factors that control the EDG reliability and (2) then applying reliability and maintenance techniques in the proper proportion to achieve selected performance goals. The concepts and guidelines discussed in this report are concepts and approaches that have been successful in applications where high levels of reliability must be maintained. Both an EDG reliability program process and a set of review items for NRC use are provided. The review items represent a checklist for reviewing EDG reliability programs. They do not, in themselves, constitute a reliability program. Rather, the review items are those distinctive features of a reliability program that must be present for the program to be effective

  19. A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system

    International Nuclear Information System (INIS)

    Howlader, Abdul Motin; Izumi, Yuya; Uehara, Akie; Urasaki, Naomitsu; Senjyu, Tomonobu; Yona, Atsushi; Saber, Ahmed Yousuf

    2012-01-01

    Wind energy is a fluctuating resource which can diverge quickly and causes the frequency deviation. To overcome this problem, the current paper deals with a frequency control scheme for a small power system by a coordinated control strategy of a wind turbine generator (WTG) and a battery energy storage system (BESS). The small power system composes of a wind turbine, a battery storage and a diesel generator. A minimal order observer is utilized as a disturbance observer to estimate the load of the power system. The load deviations are considered in a frequency domain. The low frequency component is reduced by the pitch angle control system of the WTG, while the high frequency component is reduced by the charge/discharge of the BESS, respectively. The output power command of the BESS is determined according to the state of charge, the high frequency component of the frequency deviation and the load variation. The proposed method is compared with the conventional method in different cases. By using the proposed method, the capacity of the battery is decreased by the charge/discharge of the BESS in long term. To enhance the control performance, the generalized predictive control (GPC) method is introduced to the pitch angle control system of the WTG. Effectiveness of the proposed method is verified by the numerical simulations. -- Highlights: ► A coordinated control method for a WTG and a BESS in the small power system. ► To achieve this objective, a minimal order observer is utilized. ► The output power command of the WTG is based on the wind speed and the estimated frequency deviations. ► The output power the WTG is controlled by the GPC based robust pitch angle control system. ► The output power command of the BESS is determined by the state of charge and the estimated frequency deviations.

  20. Aerosol particles generated by diesel-powered school buses at urban schools as a source of children’s exposure

    Science.gov (United States)

    Hochstetler, Heather A.; Yermakov, Mikhail; Reponen, Tiina; Ryan, Patrick H.; Grinshpun, Sergey A.

    2015-01-01

    Various heath effects in children have been associated with exposure to traffic-related particulate matter (PM), including emissions from school buses. In this study, the indoor and outdoor aerosol at four urban elementary schools serviced by diesel-powered school buses was characterized with respect to the particle number concentrations and size distributions as well as the PM2.5 mass concentrations and elemental compositions. It was determined that the presence of school buses significantly affected the outdoor particle size distribution, specifically in the ultrafine fraction. The time-weighted average of the total number concentration measured outside the schools was significantly associated with the bus and the car counts. The concentration increase was consistently observed during the morning drop-off hours and in most of the days during the afternoon pick-up period (although at a lower degree). Outdoor PM2.5 mass concentrations measured at schools ranged from 3.8 to 27.6 µg m−3. The school with the highest number of operating buses exhibited the highest average PM2.5 mass concentration. The outdoor mass concentrations of elemental carbon (EC) and organic carbon (OC) were also highest at the school with the greatest number of buses. Most (47/55) correlations between traffic-related elements identified in the outdoor PM2.5 were significant with elements identified in the indoor PM2.5. Significant associations were observed between indoor and outdoor aerosols for EC, EC/OC, and the total particle number concentration. Day-to-day and school-to-school variations in Indoor/Outdoor (I/O) ratios were related to the observed differences in opening windows and doors, which enhanced the particle penetration, as well as indoor activities at schools. Overall, the results on I/O ratio obtained in this study reflect the sizes of particles emitted by diesel-powered school bus engines (primarily, an ultrafine fraction capable of penetrating indoors). PMID:25904818

  1. Aerosol particles generated by diesel-powered school buses at urban schools as a source of children's exposure.

    Science.gov (United States)

    Hochstetler, Heather A; Yermakov, Mikhail; Reponen, Tiina; Ryan, Patrick H; Grinshpun, Sergey A

    2011-03-01

    Various heath effects in children have been associated with exposure to traffic-related particulate matter (PM), including emissions from school buses. In this study, the indoor and outdoor aerosol at four urban elementary schools serviced by diesel-powered school buses was characterized with respect to the particle number concentrations and size distributions as well as the PM2.5 mass concentrations and elemental compositions. It was determined that the presence of school buses significantly affected the outdoor particle size distribution, specifically in the ultrafine fraction. The time-weighted average of the total number concentration measured outside the schools was significantly associated with the bus and the car counts. The concentration increase was consistently observed during the morning drop-off hours and in most of the days during the afternoon pick-up period (although at a lower degree). Outdoor PM2.5 mass concentrations measured at schools ranged from 3.8 to 27.6 µg m -3 . The school with the highest number of operating buses exhibited the highest average PM2.5 mass concentration. The outdoor mass concentrations of elemental carbon (EC) and organic carbon (OC) were also highest at the school with the greatest number of buses. Most (47/55) correlations between traffic-related elements identified in the outdoor PM2.5 were significant with elements identified in the indoor PM2.5. Significant associations were observed between indoor and outdoor aerosols for EC, EC/OC, and the total particle number concentration. Day-to-day and school-to-school variations in Indoor/Outdoor (I/O) ratios were related to the observed differences in opening windows and doors, which enhanced the particle penetration, as well as indoor activities at schools. Overall, the results on I/O ratio obtained in this study reflect the sizes of particles emitted by diesel-powered school bus engines (primarily, an ultrafine fraction capable of penetrating indoors).

  2. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  3. Conceptual design of coal-fueled diesel system for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  4. Rudolph Diesel

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Rudolph Diesel. Articles written in Resonance – Journal of Science Education. Volume 17 Issue 4 April 2012 pp 406-424 Classics. Diesel's Rational Heat Motor · Rudolph Diesel · More Details Fulltext PDF ...

  5. Advanced fuelling system for use as a burn control tool in a burning plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Raman, R. [Washington Univ., Seattle, WA (United States)

    2007-07-01

    Steady-state Advanced Tokamak (AT) scenarios rely on optimized density and pressure profiles to maximize the bootstrap current fraction. Under this mode of operation, the fuelling system must deposit small amounts of fuel where it is needed, and as often as needed, so as to compensate for fuel losses, but not to adversely alter the established density and pressure profiles. Conventional fuelling methods have not demonstrated successful fuelling of ATtype discharges and may be incapable of deep fuelling long pulse ELM-free discharges in ITER. The capability to deposit fuel at any desired radial location within the tokamak would provide burn control capability through alteration of the density profile. The ability to peak the density profile would ease ignition requirements, while operating ITER with density profiles that are peaked would increase the fusion power output. An advanced fuelling system should also be capable of fuelling well past internal transport barriers. Compact Toroid (CT) fuelling [R. Raman, et al., 'Experimental demonstration of tokamak fuelling by compact toroid injection,' Nucl. Fusion, 37, 967 (1997)] has the potential to meet these needs, while simultaneously providing a source of toroidal momentum input. A CT is a selfcontained toroidal plasmoid with embedded magnetic fields. The 20 Hz injector consists of the formation region, compression, acceleration and transport regions. Fuel gas is puffed into the formation region, and a combination of magnetic field and electric current ionizes this gas and creates a self-contained plasma ring (the 'CT'). Then a fast current pulse compresses and accelerates the CT by electromagnetic forces. The accelerated CT will travel at a speed of over 30 cm/{mu}s and for reactors will create a particle inventory perturbation of < 1% per pulse. At this level of particle inventory perturbation, optimized density profiles will not be adversely perturbed. Experimental data needed for the design of

  6. Free-Piston Diesel-Fueled Linear Alternator for Auxiliary Power Unit Applications

    National Research Council Canada - National Science Library

    Atkinson, Christopher

    1999-01-01

    .... Previous studies of free-piston engine designs have indicated that they would be useful where linear power delivery could be used, such as in fluid power delivery, or in electrical energy applications.

  7. Diesel fuel filtration system

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel's hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system

  8. Economic analysis and performance of a low power diesel engine using soybean oil refined; Analise economica e de desempenho de um motor diesel de baixa potencia utilizando oleo de soja refinado

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Guilherme Ladeira dos; Fernandes, Haroldo Carlos; Alvarenga, Cleyton Batista de; Leite, Daniel Mariano; Siqueira, Wagner da Cunha [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mails: glsantos@yahoo.com.br, haroldo@ufv.br, cleyton.alvarenga@ufv.br, daniel.mariano@ufv.br, wagner.siqueira@ufv.br

    2011-07-01

    Oil is the main source of energy available to power internal combustion engines, enabling its transformation into mechanical energy. To meet the production of vegetable oils, many cultures can be used, according to regional conditions, especially those that are already commercially exploited, such as peanuts, Soybeans, Corn, Palm oil, Sunflower and Canola, and other public regional and castor oil, Andiroba, Pequi, Buriti, Inaja, Carnauba, Jatropha, among others. The objective of this work make an economic analysis of replacing diesel fuel by mixing and compare performance on the engine and using B{sub 2} biodiesel fuel mixture of diesel with 2 % Refined Soybean Oil (SAB). The loads applied by the dynamometer in the engine were 7, 9, 11, 13, 15, 17, 19 and 21.5 lbs. The engine was coupled to the dynamometer with the aid of pulleys and belts of the type V with gear ratio of 1:1,9. Apparently, the best vegetable oil mixture was 30 %, both in terms of specific consumption and cost from R$ kW{sup -1} h{sup -1}. Providing the same cost of pure diesel. (author)

  9. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: ► We analyzed solar data in the location under consideration. ► We developed a program to simulate the operation of the PV-diesel generator hybrid system. ► We analyzed different scenarios to select and design the optimal system. ► It is cost effective to power houses in remote areas with such hybrid systems. ► The hybrid system had lower CO 2 emissions compared to a diesel generator only operation. - Abstract: A techno-economic analysis and the design of a complete hybrid system, consisting of photovoltaic (PV) panels, a battery system and a diesel generator as a backup power source for a typical Malaysian village household is presented in this paper. The specifications of the different components constructing the hybrid system were also determined. A scenario depending on a standalone PV and other scenario depending on a diesel generator only were also analyzed. A simulation program was developed to simulate the operation of these different scenarios. The scenario that achieves the minimum cost while meeting the load requirement was selected. The optimal tilt angle of the PV panels in order to increase the generated energy was obtained using genetic algorithm. In addition, sensitivity analysis was undertaken to evaluate the effect of change of some parameters on the cost of energy. The results indicated that the optimal scenario is the one that consists of a combination of the PV panels, battery bank and a diesel generator. Powering a rural house using this hybrid system is advantageous as it decreases operating cost, increases efficiencies, and reduces pollutant emissions

  10. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Science.gov (United States)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  11. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  12. Characteristics of paddy operations with biodiesel fuelled tractor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Park, S.H.; Kim, C.K.; Im, D.H.; Kim, H.J.; Chung, S.C. [National Academy of Agricultural Science, Seodundong, Suwon (Korea, Democratic People' s Republic of); Kim, S.S. [Daedong Industrial Co., Chang Nyong-Kun, Kyungnam (Korea, Democratic People' s Republic of)

    2010-07-01

    This paper reported on a study in which biofuels were tested for their power and competitiveness in various paddy operations, such as plowing and rotary tilling of paddy fields. The study considered the use of diesel fuel as well as 20 per cent biodiesel (BD20) and 100 per cent biodiesel (BD100) as an alternative fuel for tractors. Ignition problems or abrupt stopping were not monitored during operations of plowing, rotary tilling and travelling on the road. According to tractor power take-off (PTO) test codes, there was no considerable power difference between the 3 fuels. However, fuel consumption rates were quite different between the biodiesels and diesel fuel in the paddy works. Fuel consumption increased when biodiesel content increased. Approximately 35 to 40 per cent more fuel was needed for rotary tilling operations than plowing operations. Within the operations, the maximum difference occurred during the rotary tilling of wet paddy fields. This difference was as high as 20 per cent , between BD100 and diesel fuel. In terms of exhaust gases, more carbon dioxide was discharged from diesel fuel than biodiesels, but more nitrous oxide was discharged with biodiesels. It was difficult to differentiate quantities of carbon monoxide between the 3 different fuels.

  13. Fuelling clean air : municipal fuel purchasing policies that reduce emissions contributing to poor air quality and climate change

    International Nuclear Information System (INIS)

    Perrotta, K.

    2003-03-01

    Air quality can be improved by low sulphur fuels in two ways: through the direct reduction of sulphates, sulphur dioxide and PM; and by improving the effectiveness of existing emission control devices. This report examined three case studies involving the fuel purchasing policies in three Ontario municipalities: Toronto, Waterloo, and Brampton. Toronto favors purchasing conventional fuels with lower sulphur levels. Waterloo will purchase on-road diesel for its off-road diesel fleet; ultra low sulphur diesel (ULSD) for buses; and 10 per cent ethanol blended with 90 per cent gasoline (E10) for its gasoline-fuelled fleet. Brampton purchased 20 per cent biodiesel blended with 80 per cent on-road diesel (B20). Two approaches were examined for lowering emissions from gasoline fuelled vehicles: favouring gasoline with the lowest sulphur levels, and purchasing E10. It was recommended that the Greater Toronto Area (GTA) Clean Air Council look into: ownership of emissions trading credits created as a result of fuel purchasing policies; the benefits of, and mechanisms available for, pooling fuel purchases; and, establishing a subcommittee to monitor developments related to fuels, vehicles and emission control technologies. 48 refs., 18 tabs

  14. Optimal Sizing Of An Off-Grid Small Hydro-Photovoltaic-Diesel Generator Hybrid Power System For A Distant Village

    Directory of Open Access Journals (Sweden)

    Adebanji B.

    2017-08-01

    Full Text Available This paper presented an optimal sizing technique for an off-grid hybrid system consisting of Small Hydro SHP system Photovoltaic PV modules Battery BATT banks and Diesel Generator DG. The objective cost function Annualized Cost System and the Loss of Power Supply Probability LPSP were minimized with application of Genetic Algorithm GA in order to reduce the Cost of Energy COE generation. GA compared to other convectional optimization methods has the ability to attain global optimum easily. The decision variables are the number of small hydro turbines NSHP number of solar panels NPV number of battery banks NBATT and the capacity of DG PDG. The proposed method was applied to a typical rural village Itapaji-Ekiti in Nigeria. The monthly average solar irradiance data were converted into hourly solar irradiance data for uniformity. Sensitivity analysis was also performed to identify the most important parameter influencing the optimized hybrid system. The optimal sizing result of the HPS is 954 kW of SHP 290 kW of PV panels 9500 sets of 600Ah battery strings and 350 kW of DG. The optimal Loss of Power Supply Probability LPSP is 0.0054 and the Renewable Fraction RF is 0.62 which is indeed a significant improvement on the environment and comparatively better than any other combinations in the system.

  15. A GUI Based Software for Sizing Stand Alone AC Coupled Hybrid PV-Diesel Power System under Malaysia Climate

    Science.gov (United States)

    Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd

    2018-03-01

    This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.

  16. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    Science.gov (United States)

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  17. Hybrid PV/diesel solar power system design using multi-level factor analysis optimization

    Science.gov (United States)

    Drake, Joshua P.

    Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.

  18. Diesel Engine Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  19. Removing fuelling transient using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, S.; Chan, P.K.; Bonin, H.W., E-mail: Stephane.Paquette@rmc.ca [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, Ontario (Canada); Pant, A. [Cameco Fuel Manufacturing, Port Hope, Ontario (Canada)

    2012-07-01

    Preliminary criticality and burnup calculation results indicate that by employing a small amount of neutron absorber the fuelling transient, currently occurring in a CANDU 37-element fuel bundle, can be significantly reduced. A parametric study using the Los Alamos National Laboratories' MCNP 5 code and Atomic Energy of Canada Limited's WIMS-AECL 3.1 is presented in this paper. (author)

  20. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadian, B.; Rahimi, H.; Nikbakht, A.M.; Najafi, G. [Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran); Yusaf, T.F. [University of Southern Queensland, Toowoomba 4350 QLD (Australia)

    2009-04-15

    This study deals with artificial neural network (ANN) modeling of a diesel engine using waste cooking biodiesel fuel to predict the brake power, torque, specific fuel consumption and exhaust emissions of the engine. To acquire data for training and testing the proposed ANN, a two cylinders, four-stroke diesel engine was fuelled with waste vegetable cooking biodiesel and diesel fuel blends and operated at different engine speeds. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The experimental results revealed that blends of waste vegetable oil methyl ester with diesel fuel provide better engine performance and improved emission characteristics. Using some of the experimental data for training, an ANN model was developed based on standard Back-Propagation algorithm for the engine. Multi layer perception network (MLP) was used for non-linear mapping between the input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.9487, 0.999, 0.929 and 0.999 for the engine torque, SFC, CO and HC emissions, respectively. The prediction MSE (Mean Square Error) error was between the desired outputs as measured values and the simulated values were obtained as 0.0004 by the model. (author)

  1. Gas market. Fuelling the future

    International Nuclear Information System (INIS)

    Thomas, M.

    1996-01-01

    The article relates to the natural gas market in Europe. The continued surge in European gas demand into the next century raises serious questions over the future security of supplies into the region. Around 72% of the total gas volumes consumed are imported from countries outside the region, the most important of which are Russia and Algeria. Natural gas has played a key role in reducing dependence on oil and will increasingly become the fuel of choice for environmental reasons, especially for power generation. Themes like liberalization plans, total production increase, and innovative delivery alternatives are discussed. 1 fig

  2. Publication of the KTA 3702.1 safety rule of the Kerntechnischer Ausschuss from July 3, 1980. Stand-by units with diesel aggregates in nuclear power plants. Pt. 1

    International Nuclear Information System (INIS)

    1980-01-01

    The rule applies to stationary nuclear power plants. Depending on their application, one of the following diesel aggregates should be chosen: Stand-by aggregates, fast emergency aggregates, or no-delay emergency aggregates. (HP) [de

  3. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  4. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2010-04-01

    Full Text Available The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO, nitrogen oxides (NOx, benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5, and black carbon (BC. These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95–97% of each aromatic species, 72–85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel

  5. Selection, design, qualification, testing, and reliability of emergency diesel generator units used as Class 1E onsite electric power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1992-04-01

    This guide has been prepared for the resolution of Generic Safety Issue B-56, ''Diesel Generator Reliability,'' and is related to Unresolved Safety Issue (USI) A-44, ''Station Blackout.'' The resolution of USI A-44 established a need for an emergency diesel generator (EDG) reliability program that has the capability to achieve and maintain the emergency diesel generator reliability levels in the range of 0.95 per demand or better to cope with station blackout

  6. NOx, Soot, and Fuel Consumption Predictions under Transient Operating Cycle for Common Rail High Power Density Diesel Engines

    Directory of Open Access Journals (Sweden)

    N. H. Walke

    2016-01-01

    Full Text Available Diesel engine is presently facing the challenge of controlling NOx and soot emissions on transient cycles, to meet stricter emission norms and to control emissions during field operations. Development of a simulation tool for NOx and soot emissions prediction on transient operating cycles has become the most important objective, which can significantly reduce the experimentation time and cost required for tuning these emissions. Hence, in this work, a 0D comprehensive predictive model has been formulated with selection and coupling of appropriate combustion and emissions models to engine cycle models. Selected combustion and emissions models are further modified to improve their prediction accuracy in the full operating zone. Responses of the combustion and emissions models have been validated for load and “start of injection” changes. Model predicted transient fuel consumption, air handling system parameters, and NOx and soot emissions are in good agreement with measured data on a turbocharged high power density common rail engine for the “nonroad transient cycle” (NRTC. It can be concluded that 0D models can be used for prediction of transient emissions on modern engines. How the formulated approach can also be extended to transient emissions prediction for other applications and fuels is also discussed.

  7. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation.

    Science.gov (United States)

    Petranović, Zvonimir; Bešenić, Tibor; Vujanović, Milan; Duić, Neven

    2017-12-01

    In order to reduce the harmful effect on the environment, European Union allowed using the biofuel blends as fuel for the internal combustion engines. Experimental studies have been carried on, dealing with the biodiesel influence on the emission concentrations, showing inconclusive results. In this paper numerical model for pollutant prediction in internal combustion engines is presented. It describes the processes leading towards the pollutant emissions, such as spray particles model, fuel disintegration and evaporation model, combustion and the chemical model for pollutant formation. Presented numerical model, implemented in proprietary software FIRE ® , is able to capture chemical phenomena and to predict pollutant emission concentration trends. Using the presented model, numerical simulations of the diesel fuelled internal combustion engine have been performed, with the results validated against the experimental data. Additionally, biodiesel has been used as fuel and the levels of pollutant emissions have been compared to the diesel case. Results have shown that the biodiesel blends release lower nitrogen oxide emissions than the engines powered with the regular diesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Intensive use of diesels underground

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, R W

    1980-07-01

    At a US mine, coal is extracted by room and pillar mining. Tyred diesel vehicles are used to transport men and materials, to spread gravel on the roadway, and to tow and provide hydraulic power to rock dusting machines. Hydraulic power take-offs from the vehicles are used to operate equipment such as drills and chain saws. A deisel ambulance is kept underground, and diesel lubrication units and maintenance tracks are used. A diesel generator provides electrical power when or where no permanent electricity supply is available e.g. for tramming continuous miners in to or out of the mine.

  9. On-board power supply with fuel cells. Liquid gas fuelled system enables stand alone off-grid power supply; Bordstromversorgung mit Brennstoffzellen. Fluessiggas-betriebenes System ermoeglicht autarke, netzunabhaengige Stromversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, Gerhard

    2011-07-01

    You reach your final destination for the day, switch off the engine of your motorhome, and sit back to enjoy the view. Cicadas chirping and the music of nature are the only sounds you can hear. And then, far away from the nearest mains outlet, you get your laptop out to check your emails and plan your route for the next day. Quietly, and with low emissions, the electrical power you need is produced by your own on-board fuel cell generator. You know that with the fuel cell, your vehicle battery will always be fully charged. Now that the funded research and testing work has been done, fuel cell hybrid systems are ready for the market. (orig.)

  10. Electrical Energy Forecasting and Optimal Allocation of ESS in a Hybrid Wind-Diesel Power System

    Directory of Open Access Journals (Sweden)

    Hai Lan

    2017-02-01

    Full Text Available Due to the increasingly serious energy crisis and environmental pollution problem, traditional fossil energy is gradually being replaced by renewable energy in recent years. However, the introduction of renewable energy into power systems will lead to large voltage fluctuations and high capital costs. To solve these problems, an energy storage system (ESS is employed into a power system to reduce total costs and greenhouse gas emissions. Hence, this paper proposes a two-stage method based on a back-propagation neural network (BPNN and hybrid multi-objective particle swarm optimization (HMOPSO to determine the optimal placements and sizes of ESSs in a transmission system. Owing to the uncertainties of renewable energy, a BPNN is utilized to forecast the outputs of the wind power and load demand based on historic data in the city of Madison, USA. Furthermore, power-voltage (P-V sensitivity analysis is conducted in this paper to improve the converge speed of the proposed algorithm, and continuous wind distribution is discretized by a three-point estimation method. The Institute of Electrical and Electronic Engineers (IEEE 30-bus system is adopted to perform case studies. The simulation results of each case clearly demonstrate the necessity for optimal storage allocation and the efficiency of the proposed method.

  11. Modular simulation of a hybrid power system with diesel, photovoltaic inverter and wind turbine generation

    Directory of Open Access Journals (Sweden)

    Klimis Ch. Karasavvas

    2008-05-01

    Full Text Available The dynamic behavior and stability of an isolated electric power system, fed by a conventional energy plant and a re-newable energy system, is presented in this paper. Matlab/Simulink is the used software for simulating the whole system.

  12. An assessment on performance, emission and combustion characteristics of single cylinder diesel engine powered by Cymbopogon flexuosus biofuel

    International Nuclear Information System (INIS)

    Dhinesh, B.; Isaac JoshuaRamesh Lalvani, J.; Parthasarathy, M.; Annamalai, K.

    2016-01-01

    Highlights: • Cymbopogon Flexuosus biofuel is used as an alternative energy source. • Cymbopogon flexuosus biofuel 20% + Diesel 80% blend profile stayed close to diesel. • Resulting in higher thermal efficiency and reduced fuel consumption. • Reduced hydrocarbon, carbon monoxide and smoke emission. • Oxides of nitrogen and carbon di-oxide emission was marginally higher. - Abstract: The novelty of this manuscript is that it discusses about the experimental analysis of a new biofuel feedstock as an alternative fuel that has not drawn much attention among the researchers. An exploration for a new biofuel feedstock resulted in Cymbopogon flexuosus as an alternative energy source. Raw oil of Cymbopogon flexuosus was obtained through steam distillation process. Cymbopogon flexuosus biofuel was blended with diesel fuel in various proportions on volume basis, namely 10, 20, 30, 40, and 100 percent and its properties were assessed according to American Society for Testing and Materials standards. The considered test fuel was experimentally analysed in a single cylinder diesel engine at 1500 rpm for its performance, emission and combustion characteristics. Among various blends, Fuel blend of Cymbopogon flexuosus biofuel 20% + diesel 80% fuel profile stayed close to diesel fuel resulting in higher thermal efficiency and lower hydrocarbon, carbon monoxide, and smoke emission. However, oxides of nitrogen and carbon dioxide emission was marginally higher for the test fuel considered. Cylinder pressure and heat release rate curves were lower at full load condition as compared with diesel fuel. Against the grim background of fossil fuel depletion, Fuel blend of Cymbopogon flexuosus biofuel 20% + diesel 80% fuel acts as a promising alternative fuel and brings hope to the nation as well as the research world.

  13. Development of innovative fuelling systems for fusion energy science

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.

    1996-01-01

    The development of innovative fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear Experimental Reactor (ITER), is described. The ITER fuelling system will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. This combination will provide a flexible fuelling source with D-T pellets penetrating beyond the separatrix to sustain the ignited fusion plasma and with deuterium-rich gas fuelling the edge region to meet divertor requirements in a process called isotopic fuelling. More advanced systems with potential for deeper penetration, such as multistage pellet guns and compact toroid injection, are also described

  14. Ninth international conference on CANDU fuel, 'fuelling a clean future'

    International Nuclear Information System (INIS)

    2005-01-01

    The Canadian Nuclear Society's 9th International Conference on CANDU fuel took place in Belleville, Ontario on September 18-21, 2005. The theme for this year's conference was 'Fuelling a Clean Future' bringing together over 80 delegates ranging from: designers, engineers, manufacturers, researchers, modellers, safety specialists and managers to share the wealth of their knowledge and experience. This international event took place at an important turning point of the CANDU technology when new fuel design is being developed for commercial application, the Advanced CANDU Reactor is being considered for projects and nuclear power is enjoying a renaissance as the source energy for our future. Most of the conference was devoted to the presentation of technical papers in four parallel sessions. The topics of these sessions were: Design and Development; Fuel Safety; Fuel Modelling; Fuel Performance; Fuel Manufacturing; Fuel Management; Thermalhydraulics; and, Spent Fuel Management and Criticalty

  15. Small wind power plants : results of the Nordic wind diesel projects for large telecommunications companies; Implantation d'une centrale eolienne comme source d'energie d'appoint pour des stations de telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Ilinca, A.; Chaumel, J.L. [ATI Eolien, Rimouski, PQ (Canada); Thibault, G. [Entreprises MB, PQ (Canada)

    2005-07-01

    Two wind-diesel generating stations have been installed at telecommunication towers in the remote communities of Kuujjuarapik and Lac Julien in northern Quebec. The use of wind power contributes to the sustainable development in these remote areas by lowering the reliance on costly helicopter-transported diesel fuel and by reducing the release of greenhouse gases to the atmosphere. The technical characteristics of the Bergey 100 kW turbine with battery charger were presented along with the technical characteristics of the EolDie control panel that controls the supply of electricity from either the wind or diesel power generators. For the first time, the ATI-Wind technology system that was installed can supply the needs of the large telecommunication towers of Bell Canada and Telebec from either the wind or the diesel generators. The system is also capable of shutting down the diesel generators when wind energy is sufficient to take over. Early results from June 2005 showed that the diesel generators could be turned off for 55 per cent of the time. Preliminary results of these 2 projects were discussed by the firms in charge of the diesel and wind aspects and recommendations for improvements to the control systems were presented. 11 figs.

  16. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel

    KAUST Repository

    Subramanian, Thiyagarajan

    2018-03-21

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO emissions, fuel additives such as diglyme (DGE)—a cetane enhancer, cumene (CU)—an antioxidant, and eugenol (EU) and acetone (A)—bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  17. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel.

    Science.gov (United States)

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Ganapathy, Saravanan; Vedharaj, S; Vallinayagam, R

    2018-06-01

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO X emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO X emissions, fuel additives such as diglyme (DGE)-a cetane enhancer, cumene (CU)-an antioxidant, and eugenol (EU) and acetone (A)-bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO X emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO X emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  18. Role of fuel additives on reduction of NOX emission from a diesel engine powered by camphor oil biofuel

    KAUST Repository

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Ganapathy, Saravanan; Vedharaj, S.; Vallinayagam, R.

    2018-01-01

    The present study intends to explore the effect of the addition of fuel additives with camphor oil (CMO) on the characteristics of a twin-cylinder compression ignition (CI) engine. The lower viscosity and boiling point of CMO when compared to diesel could improve the fuel atomization, evaporation, and air/fuel mixing process. However, the lower cetane index of CMO limits its use as a drop in fuel for diesel in CI engine. In general, NO emission increases for less viscous and low cetane (LVLC) fuels due to pronounced premixed combustion phase. To improve the ignition characteristics and decrease NO emissions, fuel additives such as diglyme (DGE)—a cetane enhancer, cumene (CU)—an antioxidant, and eugenol (EU) and acetone (A)—bio-additives, are added 10% by volume with CMO. The engine used for the experimentation is a twin-cylinder tractor engine that runs at a constant speed of 1500 rpm. The engine was operated with diesel initially to attain warm-up condition, which facilitates the operation of neat CMO. At full load condition, brake thermal efficiency (BTE) for CMO is higher (29.6%) than that of diesel (28.1%), while NO emission is increased by 9.4%. With DGE10 (10% DGE + 90% CMO), the ignition characteristics of CMO are improved and BTE is increased to 31.7% at full load condition. With EU10 (10% EU + 90% CMO) and A10 (10% A + 90% CMO), NO emission is decreased by 24.6 and 17.8% when compared to diesel, while BTE is comparable to diesel. While HC and CO emission decreased for DGE10 and CU10, they increased for EU10 and A10 when compared to baseline diesel and CMO.

  19. Particle and gaseous emissions from individual diesel and CNG buses

    Directory of Open Access Journals (Sweden)

    Å. M. Hallquist

    2013-05-01

    Full Text Available In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz. The gaseous constituents (CO, HC and NO were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.. Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs with different after-treatment, including selective catalytic reduction (SCR, exhaust gas recirculation (EGR and with and without diesel particulate filter (DPF. The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel−1 and for the CNG buses 41

  20. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  1. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    OpenAIRE

    Abdullah Mohd Fareez Edzuan; Zhing Sim Shu; Bilong Bugik Clarence

    2017-01-01

    As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM) emissions however nitrogen oxides (NOx) emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coco...

  2. Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load

    International Nuclear Information System (INIS)

    Koohi-Kamali, Sam; Rahim, N.A.; Mokhlis, H.

    2014-01-01

    Highlights: • A novel power management algorithm is developed. • An effective power smoothing index is derived. • Application of battery storage in smoothing the power fluctuations is investigated. • An applicable battery sizing and designing algorithm is proposed. • An efficient battery current control algorithm is designed. - Abstract: Integration of utility scaled solar electricity generator into power networks can negatively affect the performance of next generation smartgrid. Rapidly changing output power of this kind is unpredictable and thus one solution is to mitigate it by short-term to mid-term electrical storage systems like battery. The main objective of this paper is to propose a power management system (PMS) which is capable of suppressing these adverse impacts on the main supply. A smart microgrid (MG) including diesel, battery storage, and solar plants has been suggested for this purpose. MG is able to supply its local load based on operator decision and decline the power oscillations caused by solar system together with variable loads. A guideline algorithm is also proposed which helps to precisely design the battery plant. A novel application of time domain signal processing approach to filter oscillating output power of the solar plant is presented as well. In this case, a power smoothing index (PSI) is formulated, which considers both load and generation, and used to dispatch the battery plant. A droop reference estimator to schedule generation is also introduced where diesel plant can share the local load with grid. A current control algorithm is designed as well which adjusts for PSI to ensure battery current magnitude is allowable. MG along with its communication platform and PMS are simulated using PSCAD software. PMS is tested under different scenarios using real load profiles and environmental data in Malaysia to verify the operational abilities of proposed MG. The results indicate that PMS can effectively control the MG

  3. Sistema híbrido eólico-diesel para el abastecimiento de energía eléctrica de 20 cabañas turísticas en Cayo Caguamas. // Eolic-Diesel hybrid system for electric power supply of 20 tourist cabins in Caguamas Key.

    Directory of Open Access Journals (Sweden)

    R. Alarcón Fernández

    2001-10-01

    Full Text Available Se presentan los aspectos técnicos y económicos de la planificación de un sistema híbrido eólico-diesel para elabastecimiento de energía eléctrica de 20 cabañas turísticas en Cayo Caguamas. Se determina la demanda de energía y lacurva de carga de la instalación turística. Se dimensiona un sistema híbrido eólico-diesel formado por 6 aerogeneradores de10 kW y dos generadores Diesel de 75 kW cada uno. Finalmente se determina la influencia de la variación de algunosparámetros importantes sobre la rentabilidad del proyectoPalabras claves: Sistema eólico-diesel, generación eléctrica, aerogeneradores, planificación económica._____________________________________________________________________AbstractThe technical and economic aspects of the planning of an Eolic-Diesel hybrid system for the supply of electric power of 20tourist cabins in Caguamas Key are presented. The energy demand and the load curve of the tourist installation isdetermined. An Eolic-Diesel hybrid system formed by six 10 kW windmills and two Diesel generators of 75 kW each oneare dimensioned. Finally the influence of variation of some important parameters about the profitability of the project arestated.Key words:.Eolic-Diesel system, electic power generation, windmillgenerator, economic planning.

  4. A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    Highlights: ► We model thermodynamic ideal cycle of a new hybrid pneumaticcombustion engine. ► We optimize commands of all modes and calculate maps of fuel and air consumption. ► We evaluate fuel economy for Wind–Diesel system function of tank volume and wind penetration. ► We find up to 10% of fuel economy i.e. 80 t/year with 100% wind penetration. ► Fuel economy increases with wind penetration and with volume but has asymptotic value. -- Abstract: This paper presents an evaluation of an optimized Hybrid Pneumatic-Combustion Engine (HPCE) concept that permits reducing fuel consumption for electricity production in non-interconnected remote areas, originally equipped with hybrid Wind–Diesel System (WDS). Up to now, most of the studies on the pneumatic hybridization of Internal Combustion Engines (ICE) have dealt with two-stroke pure pneumatic mode. The few studies that have dealt with hybrid pneumatic-combustion four-stroke mode require adding a supplementary valve to charge compressed air in the combustion chamber. This modification means that a new cylinder head should be fabricated. Moreover, those studies focus on spark ignition engines and are not yet validated for Diesel engines. Present HPCE is capable of making a Diesel engine operate under two-stroke pneumatic motor mode, two-stroke pneumatic pump mode and four-stroke hybrid mode, without needing an additional valve in the combustion chamber. This fact constitutes this study’s strength and innovation. The evaluation of the concept is based on ideal thermodynamic cycle modeling. The optimized valve actuation timings for all modes lead to generic maps that are independent of the engine size. The fuel economy is calculated for a known site during a whole year, function of the air storage volume and the wind power penetration rate.

  5. Evaluation of Emissions Bio diesel

    International Nuclear Information System (INIS)

    Rodriguez Maroto, J. J.; Dorronsoro Arenal, J. L.; Rojas Garcia, E.; Perez Pastor, R.; Garcia Alonso, S.

    2007-01-01

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs

  6. Evaluation of Emissions Bio diesel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J J; Dorronsoro Arenal, J L; Rojas Garcia, E; Perez Pastor, R; Garcia Alonso, S

    2007-09-27

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs.

  7. Evaluation of the environmental impact of modern passenger cars on petrol, diesel, automotive LPG and CNG

    NARCIS (Netherlands)

    Hendriksen, P.; Vermeulen, R.J.; Rijkeboer, R.C.; Bremmers, D.A.C.M.; Smokers, R.T.M.; Winkel, R.G.

    2003-01-01

    The project reported here concerns an investigation into the environmental performance of modern passenger cars on four different fuels: petrol, diesel, automotive LPG and CNG. The objectives of the project were twofold: - To make a valid and useful comparison between modern vehicles fuelled by

  8. Techno-economy optimization of PV-diesel hybrid / stand-alone systems for remote area power supply based on empirical analysis for Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Budiono, Chayun [Komplek BPP Teknologi, Jl. Teknologi VII, Jakarta (Indonesia)

    2007-07-01

    The techno-economy assessment of photovoltaic (PV) system applications for remote area power supply (RAPS) in combination with operation of diesel generating set (DGS) in Indonesia based on an empirical model is formulated. This model has shown that it helps the project owner to easily optimise the sub-system size (i.e. PV array, auxiliary generator and battery sizes) based on the financial constraints needed for the investment and operation of the system. Two major markets of RAPS in Indonesia are currently for rural electrification and telecommunication systems (orig.)

  9. Pressurized diesel fuel processing using hydrogen peroxide for the fuel cell power unit in low-oxygen environments

    Science.gov (United States)

    Lee, Kwangho; Han, Gwangwoo; Cho, Sungbaek; Bae, Joongmyeon

    2018-03-01

    A novel concept for diesel fuel processing utilizing H2O2 is suggested to obtain the high-purity H2 required for air-independent propulsion using polymer electrolyte membrane fuel cells for use in submarines and unmanned underwater vehicles. The core components include 1) a diesel-H2O2 autothermal reforming (ATR) reactor to produce H2-rich gas, 2) a water-gas shift (WGS) reactor to convert CO to H2, and 3) a H2 separation membrane to separate only high-purity H2. Diesel and H2O2 can easily be pressurized as they are liquids. The application of the H2 separation membrane without a compressor in the middle of the process is thus advantageous. In this paper, the characteristics of pressurized ATR and WGS reactions are investigated according to the operating conditions. In both reactors, the methanation reaction is enhanced as the pressure increases. Then, permeation experiments with a H2 separation membrane are performed while varying the temperature, pressure difference, and inlet gas composition. In particular, approximately 90% of the H2 is recovered when the steam-separated rear gas of the WGS reactor is used in the H2 separation membrane. Finally, based on the experimental results, design points are suggested for maximizing the efficiency of the diesel-H2O2 fuel processor.

  10. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  11. energy characteristics of ethanol-diesel mix for automotive use

    African Journals Online (AJOL)

    This research work investigates the power output obtained from ethanol- diesel mix from a diesel engine. A 1% to 5% by volume of 99.6% ethanol was mixed with diesel fuel. A 500ml of each mix was used to power a 9.545kW diesel engine and the engine speed, torque, power and specific fuel consumption (sfc) were ...

  12. Gas Fuelling System for SST-1Tokamak

    Science.gov (United States)

    Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata

    2017-04-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.

  13. Inflow of atomic gas fuelling star formation

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, Jeppe

    2016-01-01

    Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation in these ga......Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation...... in these galaxies may be fuelled by recent inflow of metal-poor atomic gas. While this process is debated, it can happen in low-metallicity gas near the onset of star formation because gas cooling (necessary for star formation) is faster than the Hi-to-H2 conversion....

  14. Scrutinizing the combustion, performance and emissions of safflower biodiesel–kerosene fueled diesel engine used as power source for a generator

    International Nuclear Information System (INIS)

    Aydın, Hüseyin

    2016-01-01

    Highlights: • Effects of kerosene addition to biodiesel in a diesel engine were investigated. • S90&K10, S75&K25 and S50&K50 were tested and comparisons have been made with D2. • Patterns of combustion parameters have found be quite similar for blend fuels and D2. • The highest efficiency value is obtained for S50&K50 blend. • HC emissions a bit increased and NOx emissions were decreased. - Abstract: When neat biodiesel or its blends with diesel fuel that contain high amounts of biodiesel are used in diesel engines some operational problems such as poor injection, bad atomization and incomplete combustion occur mainly due to higher viscosity and surface tension. Engine problems with the use of biodiesel–fuel blends that contain higher percentages of biodiesel need to be solved in order to utilize the advantages of biodiesel in environmental and economical ways. The mentioned problems can also be solved by blending biodiesel with another low density or viscosity fuel such as kerosene. In present study biodiesel was produced from safflower oil. S90&K10, S75&K25 and S50&K50 were prepared by blending biodiesel with kerosene. A 4 cylinder diesel engine that was used to drive an electric generator was used to deeply investigate the similarity of combustion, performance and emission characteristics of the blend fuels to D2. All experiments were carried out at constant loads of 3.6, 7.2 and 10.8 kW generated powers. Patterns of combustion parameters found to be quite similar for blends and D2 fuel. NO_x emissions were considerably decreased with percentages of 68.2%, 56.9% and 55.1% for S50&K50, S75&K25 and S90&K10, respectively while unburned HC emissions were a bit increased. Mass fuel consumption and BSFC were slightly increased for S75&K25 and S90&K10, but they were decreased with an average increase in BTE by 3.84% for S50&K50 fuel when compared to D2. Eventually, it was concluded that high percentages of safflower oil biodiesel can be a potential

  15. Practical testing of diesel generators

    International Nuclear Information System (INIS)

    Angle, C.W.; Meyer, S.P.

    1985-01-01

    The testing of diesel generators is a very important facet of the safe operation of nuclear power plants. Improper testing can lead to increased failures and unavailability of the engines resulting in a reduced safety factor for a nuclear plant. For a testing program to be successful it must be well planned and effectively implemented. In addition, inspections and maintenance activities also impact diesel generator availability. This paper describes elements of a suggested diesel generator testing program as well as some of the pitfalls to be avoided

  16. Performance of bio fuels in diesel engines

    International Nuclear Information System (INIS)

    Nunez I, Manuel L; Prada V, Laura P

    2007-01-01

    This paper shows the preliminary results of pilot plant tests developed in oil catalytic hydrotreating process, where the crude palm oil or a mixture of crude palm oil and mineral diesel is treated with an injection of 99% pure hydrogen flux, in a fixed bed reactor at high pressures and temperatures, in a presence of Nickel Molybdenum catalyst supported on alumina bed. The main product of this process is a fuel (bio diesel) which has the same or better properties than the diesel obtained by petroleum refining. It has been made some performance fuel tests in diesel engine? with good results in terms of power, torque and fuel consumption, without any changes in engine configuration. Considering the characteristics of the Catalytic hydrotreated bio diesel compare to conventional diesel, both fuels have similar distillation range? however, bio diesel has better flash point, cetane index and thermal stability. Gas fuels (methane, ethane, and propane) CO 2 and water are the secondary products of the process.

  17. Displacing the dinosaurs. [Diesel engine electric generators

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1992-05-01

    This article describes how giant power stations are being replaced by smaller, cleaner units. These include plants using combined-cycle gas turbines and diesel engines of low, medium and high speeds. The use of these diesel engines in power generation is discussed. (UK).

  18. Candu 600 fuelling machine testing, the romanian experience

    International Nuclear Information System (INIS)

    Valeca, S.; Doca, C.; Iorga, C.

    2013-01-01

    The Candu 600 Fuelling Machine is a complex mechanism which must run in safety conditions and with high reliability in the Candu Reactor. The testing and commissioning process of this nuclear equipment meets the high standards of NPPs requirements using special technological facilities, modern measurement instruments as well the appropriate IT resources for data acquisition and processing. The paper presents the experience of the Institute for Nuclear Research Pitesti, Romania, in testing Candu 600 Fuelling Machines, inclusive the implied facilities, and in development of four simulators: two dedicated for the training of the Candu 600 Fuelling Machine Operators, and another two to simulate some process signals and actions. (authors)

  19. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... facility. (g) Diesel fuel piping systems from the surface shall only be used to transport diesel fuel... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power... entry as electric cables or power lines. Where it is necessary for piping systems to cross electric...

  20. Emission Characterization of Diesel Engine Run on Coconut Oil ...

    African Journals Online (AJOL)

    PROF HORSFALL

    KEYWORDS: Diesel engine, diesel, coconut oil biodiesel, blends, emissions. Introduction ... Automobile exhaust ... power loss, the increase in fuel consumption and the increase in ... diesel fuel in terms of power and torque and none or ... gas analyzer (Motorscan 8050) made in Italy which .... different injection pressures.

  1. Plasma heating and fuelling in the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Gusev, V.K.; Barsukov, A.G.; Belyakov, V.A.

    2005-01-01

    The results of the last two years of plasma investigations at Globus-M are presented. Described are improvements helping to achieve high performance OH plasmas, which are used as the target for auxiliary heating and fuelling experiments. Increased energy content, high beta poloidal and good confinement are reported. Experiments on NBI plasma heating with a wide range of plasma parameters were performed. Some results are presented and analyzed. Experiments on RF plasma heating in the frequency range of fundamental ion cyclotron harmonics are described. In some experiments which were performed for the first time in spherical tokamaks, promising results were achieved. Noticeable ion heating was recorded at low launched power and a high concentration of hydrogen minority in deuterium plasmas. Simulations of RF wave absorption are briefly discussed. Described also are modification of the plasma gun and test-stand experiments. Fuelling experiments performed at Globus-M are discussed. (author)

  2. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Erol [Program of Energy Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey); Cihangir Ozcanli, S.; Ozerdem, Baris [Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey)

    2007-08-15

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effective pressure, exhaust gas temperature, and emissions of NO{sub x}, CO, CO{sub 2}, HC, and O{sub 2} versus engine speed are compared for a carbureted SI engine operating on gasoline and hydrogen. Energy analysis also has studied for comparison purpose. The test results have been demonstrated that power loss occurs at low speed hydrogen operation whereas high speed characteristics compete well with gasoline operation. Fast burning characteristics of hydrogen have permitted high speed engine operation. Less heat loss has occurred for hydrogen than gasoline. NO{sub x} emission of hydrogen fuelled engine is about 10 times lower than gasoline fuelled engine. Finally, both first and second law efficiencies have improved with hydrogen fuelled engine compared to gasoline engine. It has been proved that hydrogen is a very good candidate as an engine fuel. The obtained data are also very useful for operational changes needed to optimize the hydrogen fueled SI engine design. (author)

  3. 150 years of Rudolf Diesel; 150 Jahre Rudolf Diesel

    Energy Technology Data Exchange (ETDEWEB)

    Basshuysen, R. van; Siebenpfeiffer, W. (eds.)

    2008-03-15

    'My engine is still making great progress', Rudolf Diesel wrote in a letter to his wife on 3 July 1895. The fact that Diesel's statement still holds true can be seen every day on our roads and at sea. But it is equally true that the idea of this eccentric and doubter who wanted to dedicate himself with an over-inflated self-belief to the welfare of humanity, needed a certain time to take a form that others could recognise in order to continuously refine this life's work. Diesel himself did not live to see most of the milestones that were repeatedly set thanks to his engine. It was not until 23 years after his unexplained death in 1913 that people were able to buy the first passenger car to be equipped with a diesel engine - with a top speed of 90 km/h. Today, diesel cars can easily reach speeds of up to 300 km/h, and even if there is little point in such excessive speeds outside racetracks like Le Mans, they are nevertheless clear evidence of the incredible evolution of the noisy, smoky truck engine to a high-tech racing power unit, from the ear-splitting rattle of the pre-chamber diesel to the highly refined, soot-free, common-rail diesel engine of today. The Publisher hopes you enjoy reading this unique progress report. (orig.)

  4. Modelling and Simulation of Packed Bed Catalytic Converter for Oxidation of Soot in Diesel Powered Vehicles Flue Gas

    Directory of Open Access Journals (Sweden)

    Mohammad Nasikin

    2010-10-01

    Full Text Available Diesel vehicle is used in Indonesia in very big number. This vehicle exhausts pollutants especially diesel soot that can be reduces by using a catalytic converter to convert the soot to CO2. To obtain the optimal dimension of catalytic converter it is needed a model that can represent the profile of soot weight, temperature and pressure along the catalytic converter. In this study, a model is developed for packed bed catalytic converter in an adiabatic condition based on a kinetic study that has been  reported previously. Calculation of developed equations in this model uses Polymath 5.X solver with Range Kutta Method. The simulation result shows that temperature profile along catalytic converter increases with the decrease of soot weight,  while pressure profile decreases. The increase of soot weight in entering gas increases the needed converter length. On the other hand, the increase of catalyst diameter does not affect to soot weight along converter and temperature profile, but results a less pressure drop. For 2.500 c diesel engine, packed bed catalytic converter with ellipse's cross sectional of 14,5X7,5 cm diagonal and 0,8 cm catalyst particle diameter, needs 4,1 cm length.

  5. Fuelling study of CANDU reactors using neutron absorber poisoned fuel

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.J.; Chan, P.K.; Bonin, H.W., E-mail: s25815@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    A comparative fuelling study is conducted to determine the potential gain in operating margin for CANDU reactors incurred by implementing a change to the design of the conventional 37-element natural uranium (NU) fuel. The change involves insertion of minute quantities of neutron absorbers, Gd{sub 2}O{sub 3} and Eu{sub 2}O{sub 3}, into the fuel pellets. The Reactor Fuelling Simulation Program (RFSP) is used to conduct core-following simulations, for the regular 37-element NU fuel, which is to be used as control for comparison. Preliminary results are presented for fuelling with the regular 37-element NU fuel, which indicate constraints on fuelling that may be relaxed with addition of neutron absorbers. (author)

  6. Fuelling Economic Growth: The Role of Public–Private Sector ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2009-04-26

    Apr 26, 2009 ... At the same time, however, traditional sources of research funding – from ... Fuelling Economic Growth: The Role of Public–Private Sector ... IDRC congratulates first cohort of Women in Climate Change Science Fellows.

  7. moteur diesel

    African Journals Online (AJOL)

    A board diagnostic system based on the use of fuzzy pattern recognition techniques was ... with model - Classification. ... ensemble de modèles du moteur diesel avec et .... classes). Nous nous plaçons dans le cas d'un apprentissage non supervisé car on ne connait ..... of noise in clustering, Pattern Recognition Letters,.

  8. Rudolf Diesel

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 4. Rudolf Diesel - The Rational Inventor of a Heat Engine. Tilottama Shrinivasa. Article-in-a-Box Volume 17 Issue 4 April 2012 pp 319-320. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Perspectives of new fossil-fuelled power plants with CO{sub 2} capture in the liberalised European electricity market; Energiewirtschaftliche Anforderungen an neue fossil befeuerte Kraftwerke mit CO{sub 2}-Abscheidung im liberalisierten europaeischen Elektrizitaetsmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Tom

    2014-03-15

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO{sub 2} emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO{sub 2} storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger

  10. Experimental Investigation of Embedded Controlled Diesel Engine

    OpenAIRE

    R.Govindaraju; M.Bharathiraja; Dr. K.Ramani; Dr.K.R.Govindan

    2012-01-01

    Diesel engines are widely used in Automobiles, Agriculture and Power generation sectors in a large scale. The modern techniques have contributed a lot in the saving of fuel in these diesel engines. However, from 1970 onwards the fuel consumption becomes a serious concern because of a manifold increase of automobiles and fast depletion of non renewable sources of energy. Since the fuel injection system plays a major role in the consumption of fuel in diesel engines, various control measures we...

  11. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications

    International Nuclear Information System (INIS)

    Michos, Constantine N.; Lion, Simone; Vlaskos, Ioannis; Taccani, Rodolfo

    2017-01-01

    Highlights: • Waste heat recovery on internal combustion engines is studied. • The backpressure effect of the Organic Rankine Cycle boiler has been evaluated. • Three different state-of-the art turbocharging technologies have been assessed. • Six different fluids for medium-high temperature recovery have been considered. • A reduction up to 10% in fuel consumption can be achieved. - Abstract: In marine and power generation sectors, waste heat recovery technologies are attracting growing attention in order to increase heavy duty diesel engines efficiency and decrease fuel consumption, with the purpose of respecting stringent emissions legislations. In this work, the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged, V12 heavy duty diesel engine, for typical marine and power generation applications has been investigated using the commercial software Ricardo WAVE. Three different state-of-the art turbocharging strategies are assessed in order to counterbalance the increased pumping losses of the engine due to the boiler installation: fixed turbine, Waste-Gate (WG) and Variable Geometry Turbine (VGT). At the same time, the steady-state thermodynamic performance of two different ORC configurations, simple tail-pipe evaporator and recuperated simple tail-pipe evaporator layouts, are assessed, with the scope of further increasing the engine power output, recovering unutilized exhaust gas heat. Several different working fluids, suitable for medium-high temperature waste heat recovery, are evaluated and screened, considering, as well, health and safety issues. Thermodynamic cycle parameters such as, for example, evaporation and condensing pressures, working fluid mass flow and cycle temperatures, are optimized in order to obtain the maximum improvement in Brake Specific Fuel Consumption (bsfc). From the engine side point of view, a VGT turbocharger is the most favorable solution to withstand increased

  12. A quantitative analysis of a risk impact due to a starting time extension of the emergency diesel generator in optimized power reactor-1000

    International Nuclear Information System (INIS)

    Lim, Ho-Gon; Yang, Joon-Eon; Hwang, Mee-Jeong

    2007-01-01

    An emergency diesel generator (EDG) is the ultimate electric power supply source for the operation of emergency engineered safety features when a nuclear power plant experiences a loss of off-site power (LOOP). If a loss of coolant accident (LOCA) with a simultaneous LOOP occurs, the EDG should be in the state of a full power within 10 s, which is a prescribed regulatory requirement in the technical specifications (TS) of the Optimized Power Reactor-1000 (OPR-1000). Recently, the US nuclear regulatory commission (NRC) has been preparing a new risk-informed emergency core cooling system (ECCS) rule called 10 CFR 50.46. The new rule redefines the size for the design basis LOCA and it relaxes some of the requirements such as the single failure criteria, simultaneous LOOP, and the methods of analysis. The revision of the ECCS rule will provide flexibility for plant changes if the plant risks are checked and balanced with the specified criteria. The present study performed a quantitative analysis of the plant risk impact due to the EDG starting time extension given that the new rule will be applied to OPR-1000. The thermal-hydraulic analysis and OPR-1000 probabilistic safety assessment (PSA) model were combined to estimate the whole plant risk impact. Also, sensitivity analyses were implemented for the important uncertainty parameters

  13. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  14. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  15. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  16. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  17. Revalidation program for nuclear standby diesel generators

    International Nuclear Information System (INIS)

    Muschick, R.P.

    1985-01-01

    This paper describes the program which Duke Power Company carried out to revalidate the diesel engines used in diesel generators for nuclear standby service at Unit 1 of the Catawba Nuclear Station. The diesels operated satisfactorily during the tests, and only relatively minor conditions were noted during the test and inspections, with one exception. This exception was that cracks were detected in the piston skirts. The piston skirts have been replaced with improved design skirts. The diesels have been fully revalidated for their intended service, and have been declared operable

  18. Experimental investigations of LPG use at the automotive diesel engine

    Directory of Open Access Journals (Sweden)

    Nutu Cristian

    2017-01-01

    Full Text Available The liquefied petroleum gas has a great potential to improve energetically and pollution performance of compression ignition engines due to its good combustion properties. This paper presents results of the researches carried on a car compression ignition engine with a 1.5 dm3 displacement, fuelled with diesel fuel and liquefied petroleum gas by diesel-gas method at the operating regimens of 70% and 55% engine load, engine speed of 2000 rpm and for substitute ratios between (6–19%. A specific objective of this paper is to establish a correlation between the optimum adjustments and the substitute ratio of the diesel fuel with liquefied petroleum gas for the investigated regimens to limit the maximum pressure and smoke level, knock and rough engine functioning and having regard to decrease the fuel consumption and the level of the pollutant emissions.

  19. Producer gas fuelling of a 20kW output engine by gasification of solid biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hollingdale, A C; Breag, G R; Pearce, D

    1988-11-01

    Motive power requirements in the range up to 100 kW shaft power are common in developing country processing operations. Producer gas-fuelled systems based upon a relatively cheap and simple manually operated gasifier or reactor using readily available biomass feedstock can offer in some cases an attractive alternative to fossil-fuelled power units. This bulletin outlines research and development work by the Industrial Development Department of the Overseas Development Natural Resources Institute for 20 kW shaft power output from producer gas derived from solid biomass. Biomass materials such as wood or shells can be carbonized to form charcoal or left in the natural uncarbonized state. In this work both carbonized and uncarbonized biomass fuel has been used to provide producer gas to fuel a Ford 2274E engine, an industrial version of a standard vehicle spark-ignition engine. Cross-draught and down-draught reactor designs were evaluated during trials with this engine. Also different gas cleaning and cooling arrangements were tested. Particular emphasis was placed on practical aspects of reactor/engine operation. This work follows earlier work with a 4 kW shaft power output system using charcoal-derived producer gas. (author).

  20. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  1. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  2. Efficiency evaluation of gas fuelled and electric driven buses in the public transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, Tobias Alexander

    2013-07-01

    The following report evaluates the efficiency of gas fuelled and electric driven buses in the public transport sector on a theoretical basis. The results indicate that the combination of CHP power plants and electric driven buses reach an overall efficiency of about 51% throughout the production chain (Well-to-Wheel), including heat distribution losses. The overall Well-to-Wheel efficiency for conventional gas turbines without heat recovery decreases to around 28%. For gas fuelled buses the Well-to-Wheel efficiency is about 30%. The Co2-emissions are evaluated based on the example of a #Left Double Quotation Mark#Volvo B10L CNG#Right Double Quotation Mark# gas bus and the electric driven #Left Double Quotation Mark#Eurabus 600#Right Double Quotation Mark#. The low energy consumption of the electric driven bus results in Co2-emissions of only 181.4 g Co2/km (Grid-to-Wheel). Depending on the utilised power plant technology the overall Co2-emissions (Well-to-Wheel) amount to 307.5 g Co2/km for a CHP power plant and 553.5 g Co2/km for a conventional gas turbine. On the other hand, gas fuelled buses emit about 1.25 kg Co2/km (Tank-to-Wheel), which is eightfold the emissions of an electrical bus. The Well-to-Tank emissions further increase to about 1.32 kg Co2/km. The emission calculation is based on real gas consumption data from a Norwegian public transport utility. The results indicate that the combination of CHP plants and electrical buses provide a much higher efficiency while reducing Co2-emissions. (author)

  3. Experience with emergency diesels at the Swiss NPP Goesgen (KKG)

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, W. [Federal Office of Energy, Swiss Federal Nuclear Safety Inspectorate, CH-5303 Wuerenlingen (Switzerland)

    1986-02-15

    The Goesgen nuclear power plant, a 970 MWe KWU pressurized water reactor, is fitted with 4 x 50 X emergency diesels and 2 x 100 % special emergency (Notstand) diesel units. Since the start-up tests of the diesels in 1977 several severe incidents occurred. As a consequence, different back-fitting actions were taken on the diesels and the emergency electrical System. The presentation will treat the following subjects: - lay-out of the onsite electrical power sources, - experiences and problems, - back-fitting measures, - periodic testing of the diesels. (author)

  4. Experience with emergency diesels at the Swiss NPP Goesgen (KKG)

    International Nuclear Information System (INIS)

    Steffen, W.

    1986-01-01

    The Goesgen nuclear power plant, a 970 MWe KWU pressurized water reactor, is fitted with 4 x 50 X emergency diesels and 2 x 100 % special emergency (Notstand) diesel units. Since the start-up tests of the diesels in 1977 several severe incidents occurred. As a consequence, different back-fitting actions were taken on the diesels and the emergency electrical System. The presentation will treat the following subjects: - lay-out of the onsite electrical power sources, - experiences and problems, - back-fitting measures, - periodic testing of the diesels. (author)

  5. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    Science.gov (United States)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  6. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  7. The design and development of AGR fuelling machines

    International Nuclear Information System (INIS)

    Calnan, J.P.; Hardon, L.

    1986-01-01

    The main functional requirements and essential generic design aspects of the UK AGR fuelling machines are listed and described as a precursor to reviewing some detail features of the individual station designs. The paper highlights the variability of engineering solutions adopted to meet the common challenge of on-load refuelling the first generation AGR stations. Design development from first to second generation stations is illustrated by detailed reference to the Hinkley B/Hunterston B and Heysham II/Torness fuelling machine designs. The paper concludes with a brief speculative view on the possible direction of future design development. (author)

  8. From the idea to the construction of a biomass fuelled plant. The marketing potential

    International Nuclear Information System (INIS)

    Beyer, Ranveig Vaa

    2000-12-01

    The report deals with the case handling in connection with the planning of a biomass fuelled plant as well as the market potential for a biomass fuelled Stirling engines and direct combustion of biomass with a steam circuit

  9. OTTO-PAP: An alternative option to the PBMR fuelling philosophy

    International Nuclear Information System (INIS)

    Mulder, E.; Teuchert, E.

    1997-01-01

    Once Through Then Out, Power Adjusted by Poison (OTTO-PAP) fuelling of a high temperature pebble-bed reactor offers a simple alternative to the MEDUL (Mehrfachdurchlauf = German for multi-pass) fuelling regime followed in pebble bed reactor designs to date. The prerequisite for a modular reactor unit of maximum power output, subject to observing passive safety characteristics is a sufficiently flat axial neutron flux profile. This is achieved by introducing B 4 C coated particles of pre-calculated size and packing density within the fuel spheres. In accordance with AVR operating practise the temperature profile is radially equalised by introducing a 2-zone core loading. Adding pure graphite spheres loosely into the centre column area of the core effectively reduced the maximum power in the middle. Increasing the reactor diameter is enabled by the introduction of noses. A 3-D geometric modeller developed in cylindrical co-ordinates enables a given flow description of the pebbles adjacent to the nose boundaries and in the vicinity of the shut down/control rods. After translation of the geometric data the neutronic behaviour of the reactor is followed in 3-D by the CITATION code. This study is aimed towards achieving an optimal core layout with a LEU (Low Enriched Uranium) fuel cycle. Physical properties of the OTTO-PAP, 150 MWt reference design is reported, while computations performed observe results obtained by the reference HTR-MODUL design. (author)

  10. Solar and tank. Down under, a power plant is producing electric power from diesel fuel and from solar energy; Sonne und Tank. Am Ende der Welt produziert ein Kraftwerk Strom aus Diesel - und aus Sonnenenergie

    Energy Technology Data Exchange (ETDEWEB)

    Podewils, Christoph

    2011-12-15

    Most Australians live in the big city, but some live in remote areas without infrastructure but with an existing power supply grid. One of these places is the former prospector town of Marble Bar, eight hours from Sydney by plane and by car. The town has an interesting power plant that could be exemplary for many regions of the world.

  11. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  12. Dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit

    International Nuclear Information System (INIS)

    Thameem Ansari, M.Md.; Velusami, S.

    2010-01-01

    A design of dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The hybrid genetic algorithm-simulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed controller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.

  13. The Performance Evaluation of Overall Heat Transfer and Pumping Power of γ-Al2O3/water Nanofluid as Coolant in Automotive Diesel Engine Radiator

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2013-05-01

    Full Text Available The efficiency of γ-Al2O3/water nanofluid as coolant is investigated in the present study. γ-Al2O3 nanoparticles with diameters of 20 nm dispersed in water with volume concentrations up 2% are selected and their performance in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions are numerically studied. The performance of an automobile radiator is a function of overall heat transfer coefficient and total heat transfer area. The heat transfer relations between nanofluid and airflow have been investigated to evaluate the overall heat transfer and the pumping power of γ-Al2O3/water nanofluid in the radiator with a given heat exchange capacity. In the present paper, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. As an example, the results show that for 2% γ-Al2O3 nanoparticles in water with Renf=6000 in the radiator while the automotive speed is 50 mph, the overall heat transfer coefficient and pumping power are approximately 11.11% and 29.17% more than that of water for given conditions, respectively. These results confirm that γ-Al2O3/water nanofluid offers higher overall heat transfer performance than water and can be reduced the total heat transfer area of the radiator.

  14. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  15. Comparative exergy analyses of gasoline and hydrogen fuelled ices

    International Nuclear Information System (INIS)

    Nieminen, J.; Dincer, I.; Yang, Y.

    2009-01-01

    Comparative exergy models for naturally aspirated gasoline and hydrogen fuelled spark ignition internal combustion engines were developed according to the second laws of thermodynamics. A thorough graphical analysis of heat transfer, work, thermo mechanical, and intake charge exergy functions was made. An irreversibility function was developed as a function of entropy generation and graphed. A second law analysis yielded a proportional exergy distribution as a fraction of the intake charge exergy. It was found that the hydrogen fuelled engine had a greater proportion of the intake charge exergy converted into work exergy, indicating a second law efficiency of 50.13% as opposed to 44.34% for a gasoline fuelled engine. The greater exergy due to heat transfer or thermal availability associated with the hydrogen fuelled engine is postulated to be a part of the reason for decreased work output of a hydrogen engine. Finally, a second law analysis of both hydrogen and gasoline combustion reactions indicate a greater combustion irreversibility associated with gasoline combustion. A percentage breakdown of the combustion irreversibilities were also constructed according to information found in literature searches. (author)

  16. A practical multi-objective design approach for optimum exhaust heat recovery from hybrid stand-alone PV-diesel power systems

    International Nuclear Information System (INIS)

    Yousefi, Moslem; Kim, Joong Hoon; Hooshyar, Danial; Yousefi, Milad; Sahari, Khairul Salleh Mohamed; Ahmad, Rodina Binti

    2017-01-01

    Highlights: • Heat recovery exchanger is designed based on practical conditions of a hybrid power system. • Off-the-grid electricity system modeling and analysis using micro-grid analysis software HOMER. • NSGA-II is used for the multi-objective design optimization task. • A new local search is proposed to incorporate the engineering knowledge in NSGA-II. • The proposed approach outperforms the existing ones. - Abstract: Integration of solar power and diesel generators (DGs) together with battery storage has proven to be an efficient choice for stand-alone power systems (SAPS). For higher energy efficiency, heat recovery from exhaust gas of the DG can also be employed to supply all or a portion of the thermal energy demand. Although the design of such heat recovery systems (HRSs) has been studied, the effect of solar power integration has not been taken into account. In this paper, a new approach for practical design of these systems based on varying engine loads is presented. Fast and elitist non-dominated sorting genetic algorithm (NSGA-II) equipped with a novel local search was used for the design process, considering conflicting objectives of annual energy recovery and total cost of the system, and six design variables. An integrated power system, designed for a remote SAPS, was used to evaluate the design approach. The optimum power supply system was first designed using the commercial software Hybrid Optimization of Multiple Energy Resources (HOMER), based on power demand and global solar energy in the region. Heat recovery design was based on the outcome of HOMER for DG hourly load, considering different power scenarios. The proposed approach improves the annual heat recovery of the PV/DG/battery system by 4%, PV/battery by 1.7%, and stand-alone DG by 1.8% when compared with a conventional design based on nominal DG load. The results prove that the proposed approach is effective and that load calculations should be taken into account prior to

  17. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  18. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  19. Dependent failures of diesel generators

    International Nuclear Information System (INIS)

    Mankamo, T.; Pulkkinen, U.

    1982-01-01

    This survey of dependent failures (common-cause failures) is based on the data of diesel generator failures in U. S. nuclear power plants as reported in Licensee Event Reports. Failures were classified into random and potentially dependent failures. All failures due to design errors, manufacturing or installation errors, maintenance errors, or deviations in the operational environment were classified as potentially dependent failures.The statistical dependence between failures was estimated from the relative portion of multiple failures. Results confirm the earlier view of the significance of statistical dependence, a strong dependence on the age of the diesel generator was found in each failure class excluding random failures and maintenance errors, which had a nearly constant frequency independent of diesel generator age

  20. Hydrodesulfurization device for diesel fuel

    International Nuclear Information System (INIS)

    Al Asadi, Nadija

    2004-01-01

    New gas oil hydrodesulfurization unit was erected in OKTA Refinery. This unit is meant to produce low sulfur diesel. Capacity of the unit s 363.000 tons. Actually unit is producing diesel fuel with sulfur content of 0.035% wt, with possibility of decreasing sulfur content up to 0.005% wt. With this possibility OKTA reaches the target to supply market with diesel fuel satisfying local, and European fuel specifications. Feedstock for this unit are two gas oil fractions from the Crude oil atmospheric distillation column. As a result of new generation of CoMo and NiMo catalysts performance, high degree of desulfurization is reached at lower temperatures. Milder conditions enables longer operating period between two regenerations, savings of fuel, power etc. With further investments, and practically without changes, the unit will be able of producing diesel with sulfur content of 50 ppm and later with upgrading, 10 ppm. This means that OKTA has solved diesel quality problem for longer period. (Author)

  1. Long term reliability analysis of standby diesel generators

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1988-01-01

    The long term reliability of 11 diesel generators of 125 to 250 kV A size has been analysed from 26 years of data base information on individual diesel service as standby power supplies for the Chalk River research reactor facilities. Failure to start on demand and failure to run data is presented and failure by diesel subsystem and multiple failures are also analysed. A brief comparison is made with reliability studies of larger diesel generator units used for standby power service in nuclear power plants. (author)

  2. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  3. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  4. System requirements of diesel reforming for the SOFC

    International Nuclear Information System (INIS)

    Harasti, P.T.; Amphlett, J.C.; Mann, R.F.; Peppley, B.A.; Thurgood, C.P.

    2003-01-01

    Diesel fuels are currently a very attractive source of hydrogen due to the global infrastructure for production and distribution that exists today. In order to extract the hydrogen, the hydrocarbon molecules must be chemically reformed into manageable, hydrogen-rich product gases that can be directly used in electrochemical energy conversion devices such as fuel cells. High temperature fuel cells are particularly attractive for diesel-fuelled systems due to the possibility of thermal integration with the high temperature reformer. The methods available for diesel fuel processing are: Steam Reforming, Partial Oxidation, and Auto-Thermal Reforming. The latter two methods introduce air into the process in order to cause exothermic oxidation reactions, which complement the endothermic heating requirement of the reforming reactions. This helps to achieve the high temperature required, but also introduces nitrogen, which can yield unwanted NO x emissions. The components of the reformer should include: an injection system to mix and vaporize the diesel fuel and steam while avoiding the formation of carbon deposits inside the reactor; a temperature and heat management system; and a method of sulphur removal. This presentation will discuss the operating conditions and design requirements of a diesel fuel processor for a solid oxide fuel cell (SOFC) system. (author)

  5. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  6. Influence of distillation on performance, emission, and combustion of a DI diesel engine, using tyre pyrolysis oil diesel blends

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2008-01-01

    Full Text Available Conversion of waste to energy is one of the recent trends in minimizing not only the waste disposal but also could be used as an alternate fuel for internal combustion engines. Fuels like wood pyrolysis oil, rubber pyrolysis oil are also derived through waste to energy conversion method. Early investigations report that tyre pyrolysis oil derived from vacuum pyrolysis method seemed to possess properties similar to diesel fuel. In the present work, the crude tyre pyrolisis oil was desulphurised and distilled to improve the properties and studied the use of it. Experimental studies were conducted on a single cylinder four-stroke air cooled engine fuelled with two different blends, 30% tyre pyrolysis oil and 70% diesel fuel (TPO 30 and 30% distilled tyre pyrolysis oil and 70% diesel fuel (DTPO 30. The results of the performance, emission and combustion characteristics of the engine indicated that NOx is reduced by about 8% compared to tire pyrolysis oil and by about 10% compared to diesel fuel. Hydrocarbon emission is reduced by about 2% compared to TPO 30 operation. Smoke increased for DTPO 30 compared to TPO 30 and diesel fuel.

  7. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    Science.gov (United States)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  8. Design of a thorium fuelled Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    2009-01-01

    Full text: The main objective for development of Advanced Heavy Water Reactor (AHWR) is to demonstrate thorium fuel cycle technologies, along with several other advanced technologies required for next generation reactors, so that these are readily available in time for launching the third stage. The AHWR under design is a 300 MWe vertical pressure tube type thorium-based reactor cooled by boiling light water and moderated by heavy water. The fuel consists of (Th-Pu)O 2 and ( 233 ThU)O 2 pins. The fuel cluster is designed to generate maximum energy out of 233 U, which is bred in-situ from thorium and has a slightly negative void coefficient of reactivity, negative fuel temperature coefficient and negative power coefficient. For the AHWR, the well -proven pressure tube technology and online fuelling have been adopted. Core heat removal is by natural circulation of coolant during normal operation and shutdown conditions. Thus, it combines the advantages of light water reactors and PHWRs and removes the disadvantages of PHWRs. It has several passive safety systems for reactor normal operation, decay heat removal, emergency core cooling, confinement of radioactivity etc. The fuel cycle is based on the in-situ conversion of naturally available thorium into fissile 233 U in self sustaining mode. The uranium in the spent fuel will be reprocessed and recycled back into the reactor. The plutonium inventory will be kept a minimum and will come from fuel irradiated in Indian PHWRs. The 233 U required initially can come from the fast reactor programme or it can be produced by specially designing the initial core of AHWR using (Th,Pu)MOX fuel. There will be gradual transition from the initial core which will not contain any 233 U to an equilibrium core, which will have ( 233 U, Th) MOX fuel pins also in a composite cluster. The self sustenance is being achieved by a differential fuel loading of low and a relatively higher Pu in the composite clusters. The AHWR burns the

  9. Performance diagnostic system for emergency diesel generators

    International Nuclear Information System (INIS)

    Logan, K.P.

    1991-01-01

    Diesel generators are commonly used for emergency backup power at nuclear stations. Emergency diesel generators (EDGs) are subject to both start-up and operating failures, due to infrequent and fast-start use. EDG reliability can be critical to plant safety, particularly when station blackout occurs. This paper describes an expert diagnostic system designed to consistently evaluate the operating performance of diesel generators. The prototype system is comprised of a suite of sensor monitoring, cylinder combustion analyzing, and diagnostic workstation computers. On-demand assessments of generator and auxiliary equipment performance are provided along with color trend displays comparing measured performance to reference-normal conditions

  10. Demonstrating the compatibility of Canflex fuel bundles with a CANDU 6 fuelling machine

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, P; Oldaker, I E [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Suk, H C; Choi, C B [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1997-12-31

    CANFLEX is a new 43-element fuel bundle, designed for high operating margins. It has many small-diameter elements in its two outer rings, and large-diameter elements in its centre rings. By this means, the linear heat ratings are lower than those of standard 37-element bundles for similar power outputs. A necessary part of the out-reactor qualification program for the CANFLEX fuel bundle design, is a demonstration of the bundle`s compatibility with the mechanical components in a CANDU 6 Fuelling Machine (FM) under typical conditions of pressure, flow and temperature. The diameter of the CANFLEX bundle is the same as that of a 37-element bundle, but the smaller-diameter elements in the outer ring result in a slightly larger end-plate diameter. Therefore, to minimize any risk of unanticipated damage to the CANDU 6 FM sidestops, a series of measurements and static laboratory tests were undertaken prior to the fuelling machine tests. The tests and measurements showed that; a) the CANFLEX bundle end plate is compatible with the FM sidestops, b) all the dimensions of the CANFLEX fuel bundle are within the specified limits. (author). 3 tabs., 3 figs.

  11. Mechanism of crud migration into the fuelling machine and its effects

    International Nuclear Information System (INIS)

    Sie, T.

    2003-01-01

    'Full text:' The objective of this paper is to summarize the opinion of experts on the mechanism of crud deposit formation and its migration into the fueling machine. Also to point out the negative effects of crud on the performance of the fueling machine head and the head overhaul / maintenance program in general. There are numerous moving/rotating components (ball screws, linear and rotating bearings, mechanical gears, mechanical seals, etc.) inside the fueling machine. By design, all these are lubricated by D2O. Because of the delicate nature of the moving components, crud contaminated D2O is obviously not a good choice of lubricant. Crud causes poor performance of the FM drive systems, premature wear of the mechanical seals, and other internal components. Due to the fuelling machine's role in maintaining reactor power and safety related functions, it is of extreme importance that the performance of the fueling machine is controlled. Major field functional failures must be prevented. In the extreme case the effect of the crud contaminated D2O could lead to a major functional failure while the fueling machine is locked on channel or has irradiated fuel on board. The next worse scenario is intolerably frequent process stops, thus requiring costly and premature fuelling machine overhaul / repairs with its associated negative effects: maintenance cost, radiation exposure, reduced fueling rates, and major upsets to the general head overhaul schedule. (author)

  12. Stress analysis of fuelling machine magazine housing of PHWR

    International Nuclear Information System (INIS)

    Singh, R.K.; Mehra, V.K.; Charan, J.J.; Kakodkar, A.

    1983-01-01

    PWR has fuelling machines for on-line refuelling of the core. Magazine housing of this fuelling machine is a thick pressure vessel. It has a cylindrical vessel with flat head on one side and reservable flange closure on the other side. The vessel has many small and big openings. This paper describes the two sets of experiments conducted for its stress analysis. First set of experiment was conducted on a 1:5 photoelastic model which was stress frozen under load of internal pressure. The second set of experiment involved strain gauge measurements at some important locations of the magazine housing. The paper summarises results of the experiments. In conclusion comparison is made between the experimental results and the results of finite element analysis. (orig.)

  13. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  14. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Science.gov (United States)

    2010-04-01

    ...)(I) and 4041(d)(1) (the bus rate) if the bus is used to furnish (for compensation) passenger land... section 6427(b)(2)(D)) while the bus is engaged in furnishing (for compensation) intracity passenger land... propulsion engine of a diesel-powered highway vehicle (other than a diesel-powered bus) of— (i) Any diesel...

  15. Application of diagnostic system for diesel engine

    International Nuclear Information System (INIS)

    Yoshinaga, Takeshi; Hayashi, Haruji; Usui, Hiromi; Tsuruzono, Atsuya; Matsuda, Takafumi

    2008-01-01

    The Japan Atomic Power Company (JAPC) began to implement Condition Based Maintenance (CBM) for rotating components (pumps, fans and electric motors) from 1999 and, also has begun to apply diesel engine diagnostic techniques at our three nuclear power plants since 2004. This paper provides a description of the CBM methods used for diesel engines in nuclear standby service, a summary of the procedures to introduce these diagnostic techniques to our nuclear power plants, and experience with the application of these methods to JAPC nuclear power plants. (author)

  16. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte

    2009-11-15

    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  17. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range

    International Nuclear Information System (INIS)

    Wang, Buyu; Wang, Zhi; Shuai, Shijin; Yang, Hongqiang; Wang, Jianxin

    2014-01-01

    Highlights: • Naphtha MPCI can operate stably in wide load range from 0.4 MPa to 1.4 MPa of IMEP. • Naphtha MPCI can achieve high thermal efficiency due to low exhaust loss. • Gasoline MPCI has low heat transfer loss than CDC and naphtha MPCI. • MPCI can produce low NO x emissions (<0.4 g/kW h) with the EGR ratio less than 30%. - Abstract: This paper investigates the effect of naphtha (RON = 65.6) and commercial gasoline (RON = 94.0) on Multiple Premixed Compression Ignition (MPCI) mode. The experiment is conducted on a single cylinder research diesel engine with compression ratio of 16.7. The engine is operated at an engine speed of 1600 rpm for the IMEP from 0.4 to 1.4 MPa. Commercial diesel (CN = 56.5) is also tested in Conventional Diesel Combustion (CDC) mode as a baseline. At each operating point, the injection strategy and intake conditions are adjusted to meet with the criteria (NO x < 0.4 g/kW h, soot < 0.06 m −1 , MPRR < 1 MPa/deg and CA50 < 20 CAD ATDC). The typical two-stage combustion characteristics of MPCI are obtained in both naphtha and gasoline. Stable combustion is achieved by naphtha in wide load range, while the engine fuelled with gasoline cannot operate stably at 0.4 MPa IMEP. The COV of IMEP of gasoline MPCI is higher than that of naphtha and diesel. However, gasoline has the low MPRR and the retarded CA50 at medium and high loads due to its longest ignition delay. As a result of low exhaust loss for naphtha and low heat transfer loss for gasoline, the thermal efficiencies are higher for both naphtha and gasoline in MPCI mode than diesel in CDC mode, even though diesel has the highest combustion efficiency. The separated combustion in MPCI leads to low cylinder temperature, and moderate EGR ratio (less than 30%) is needed to control NO x emissions under the limit of EURO VI

  18. The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria

    Directory of Open Access Journals (Sweden)

    Peter Ozaveshe Oviroh

    2018-03-01

    Full Text Available As more locations gain access to telecommunication, there is a growing demand to provide energy in a reliable, efficient and environmentally friendly manner while effectively addressing growing energy needs. Erratic power supply and rising operation costs (OPEX in Nigeria have increased the need to harness local renewable energy sources. Thus, identifying the right generator schedule with the renewable system to reduce OPEX is a priority for operators and vendors. This study evaluates the energy costs of hybrid systems with different generator schedules in powering base transceiver stations in Nigeria using the Hybrid Optimization Model for Electric Renewable (HOMER. A load range of 4 kW to 8 kW was considered using: (i an optimised generator schedule; (ii forced-on generator schedule and (iii the generator-only schedule. The results showed an optimal LCOE range between averages of USD 0.156/kWh to 0.172/kWh for the 8 kW load. The percent energy contribution by generator ranges from 52.80% to 60.90%, and by the solar PV system, 39.10% to 47.20%. Excess energy ranges from 0.03% to 14.98%. The optimised generator schedule has the highest solar PV penetration of 56.8%. The OPEX savings on fuel ranges from 41.68% to 47% for the different load schedules and carbon emission savings of 4222 kg to 31,428.36 kg. The simulation results shows that powering base stations using the optimised hybrid system schedule would be a better option for the telecom industry.

  19. Hydrogen fuelled buses: Italian ENEA research program

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.

    1993-01-01

    Current hydrogen automotive fuels research studies being conducted by ENEA (Italian Agency for New Technology, Energy and the Environment) are being targeted towards the development of hydrogen fueled vans and buses for use in highly polluted urban environments where the innovative vehicles' air pollution abatement characteristics would justify their high operating costs as compared with those of conventional automotive alternatives. The demonstration vehicle being used in the experimental studies and performance tests is a two liter minibus with a spark ignition engine power rated at 55 kW with gasoline operation and 45 kW with hydrogen. Detailed design notes are given regarding the retrofitting of the minibus chassis to house the aluminium gas storage tanks and the adaptation of the engine to operate with compressed hydrogen. Attention is given to efforts being made to resolve combustion control and fueling problems. Focus is on the progress being made in the development of an efficient and safe electronically controlled fuel injection system

  20. Biomass fuelled indirect fired micro turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2005-07-01

    This report summarises the findings of a project to further develop and improve a system based on the Bowman TG50 50kWe turbine and a C3(S) combustor with a high temperature heat exchanger for the production of electricity from biomass. Details are given of the specific aims of the project, the manufacture of a new larger biomass combustor, the development of startup and shutdown procedures, waste heat recuperation, adaption of a PC-based mathematical model, and capital equipment costs. The significant levels of carbon emission savings and the commercial prospects of the biomass generator gas turbine combined heat and power (CHP) system are considered, and recommendations are presented.

  1. The economics of a variable speed wind-diesel

    International Nuclear Information System (INIS)

    Moll, W.

    1992-01-01

    A remote community power supply system generating over 1,000 kWH/d will have at least one diesel generator running all the time. If one or more wind turbine generators are added to such a system, the diesel generator will produce less power when wind speeds are adequate, but its fuel efficiency will gradually decrease as load decreases. In the variable speed wind/diesel concept, the diesel rpm is reduced with decreasing load and a high fuel efficiency is maintained over virtually the full power range. The outputs of the diesel and wind turbine generators are fed into an inverter which synthesizes a desired voltage wave-shape with controlled magnitude and frequency. The variable speed wind/diesel concept may make vertical axis wind turbines suitable for remote community power supply because the inverter effectively isolates the power ripple of the wind turbine. A possible wind/diesel system configuration using the variable speed concept is illustrated. The economics of a 50-kW variable speed diesel and a 80-kW variable speed wind turbine generator was analyzed. Going from a constant speed diesel generator to a variable speed generator operating at 55% capacity factor, a 6% fuel saving was achieved. Adding one 80-kW wind turbine increased fuel savings to 32% at 5 m/s wind speed, but the unit energy cost rose 8.5%. At 7 m/s wind speed, fuel savings were 59% and energy savings were 7.8%. Economics are better for a peaking variable speed 50-kW wind/diesel system added to an existing diesel system to extend the installed capacity. At 7 m/s wind speed the fuel savings translate into ca $40,000 over 10 y and purchase of a $150,000 diesel generator is postponed. 7 figs., 1 tab

  2. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  3. A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse

    Science.gov (United States)

    Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.

    2016-08-01

    The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.

  4. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  5. Fuel oil systems for standby diesel-generators

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides the design requirements for fuel oil system for diesel-generators that provide standby power for a nuclear power generating station. The system includes all essential equipment from and including fuel oil storage tanks up to the terminal connection on the diesel-engine. It does not include that portion of the fuel oil system supplied by the diesel-generator manufacturer which is in accordance with Trial-Use Criteria for Diesel-Generator Units Applied as Standby Power Supplies for Nuclear Power Generating Stations, IEEE-387-1972. This definition of scope is intended to exclude only those factory-assembled, engine-mounted appurtances supplied with a diesel-generator unit. Integral tanks are, however, within the scope of this Standard. It also excludes motors, motor control centers, switchgear, cables, and other electrical equipment which is used in operation of the fuel oil system, except to define interface requirements

  6. Polycyclic aromatic hydrocarbons (PAH) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek-Lom, M.; Czerwinski, J.; Leníček, J.; Sekyra, M.; Topinka, Jan

    2012-01-01

    Roč. 60, 14 JUNE (2012), s. 253-261 ISSN 1352-2310 R&D Projects: GA ČR GAP503/11/0142 Grant - others:GA ČR(CZ) GA101/08/1717; GA MŠk(CZ) 1M0568; project MEDETOX(XE) LIFE10ENV/CZ/651 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : diesel engine * diesel emissions * particulate matter Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.110, year: 2012

  7. Visualized fuelling process and 3 dimensional reactivity device and core monitor

    International Nuclear Information System (INIS)

    Patterson, B.; Cusson, R.; Crowell, T.

    2006-01-01

    A new reactor fueling animated graphical display and a 3 dimensional view of the reactor core display are presented that are useful for the physics fuelling engineer, the Control Room Operators, the fuel handling operators and the fuel handling support engineers. Data is downloaded from the online fuelling computer to a data server that is network accessible. The fuelling display and 3Dview display can run on any network connected Computer. The animated graphical fuelling display offers a huge reduction in cognitive workload for all users. The authors recommend that animated graphical displays be developed and utilized wherever personnel have to visualize complex equipment operation. (author)

  8. Dieselization in Sweden

    International Nuclear Information System (INIS)

    Kågeson, Per

    2013-01-01

    In Sweden the market share of diesel cars grew from below 10 per cent in 2005 to 62 per cent in 2011 despite a closing gap between pump prices on diesel oil and gasoline, and diesel cars being less favored than ethanol and biogas cars in terms of tax cuts and other subsidies offered to “environment cars”. The most important factor behind the dieselization was probably the market entrance of a number of low-consuming models. Towards the end of the period a growing number of diesel models were able to meet the 120 g CO 2 threshold applicable to “environment cars” that cannot use ethanol or biogas. This helped such models increase their share of the diesel car market from zero to 41 per cent. Dieselization appears to have had only a minor effect on annual distances driven. The higher average annual mileage of diesel cars is probably to a large extent a result of a self-selection bias. However, the Swedish diesel car fleet is young, and the direct rebound effect stemming from a lower variable driving cost may show up more clearly as the fleet gets older based on the assumption that second owners are more fuel price sensitive than first owners. - Highlights: ► This paper tries to explain the fast dieselization of the new Swedish car fleet. ► It identifies changes in supply and the impact of tax benefits. ► Finally it studies the impact on the annual average mileage

  9. Studies of visible impurity radiation from JET plasmas during heating and fuelling experiments

    International Nuclear Information System (INIS)

    Morgan, P.D.; Hellermann, M. von; Mandl, W.; Stamp, M.F.; Summers, H.P.; Weisen, H.; Forrest, M.J.; Horton, L.; Zinoviev, A.

    1989-01-01

    At JET extensive use is made of visible spectroscopy in the study of plasma impurities. Measurements of absolute line intensities from such species as O II, C III and D I are used to deduce the influxes of light impurities as well as deuterium at the plasma periphery. The absolute continuum emission at 523.5 nm, measured using a 15-telescope poloidal array, is used to determine Z eff (r) and its temporal evolution. Charge-exchange recombination spectroscopy (CXRS) has proved to be a powerful technique during NBI to measure, amongst other parameters, the density of C and O at up to 15 separate points on the plasma minor radius. The combination of these diagnostic techniques permits the global impurity behaviour in the plasma to be followed. In this paper, results are reported pertaining to studies of plasmas heated by NBI and ICRF, and fuelled by the injection of D 2 pellets. (author) 5 refs., 4 figs

  10. Chemical and biological characterization of exhaust emissions from ethanol and ethanol blended diesel fuels in comparison with neat diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R.; Christensen, Anders [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Toernqvist, M. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Ehrenberg, L. [Stockholm Univ. (Sweden). Dept. of Radiobiology; Haupt, D. [Luleaa Univ. of Technology (Sweden)

    1997-12-01

    This report presents results from a project with the aim of investigating the potential environmental and health impact of emissions from ethanol, ethanol blended diesel fuels and to compare these with neat diesel fuels. The exhaust emissions were characterized regarding regulated exhaust components, particulate and semivolatile Polycyclic Aromatic Compounds (PAC) and with bioassays. The bioassays were mutagenicity and TCDD receptor affinity tests. Results: Neat ethanol fuels are `low emission` fuels, while European diesel fuel quality (EDF) and an ethanol blended EDF are `high emission` fuels. Other fuels, such as Swedish Environmental Class one (MK1) and an ethanol blended MK1, are `intermediate` fuels regarding emissions. When using an oxidizing catalyst exhaust after-treatment device a reduction of harmful substances in the exhaust emissions with respect to determined exhaust parameters was found. The relatively low emission of PAH from ethanol fuelled engines would indicate a lower cancer risk from ethanol than from diesel fuels due to this class of compounds. However, the data presented emphasize the importance of considering the PAH profile 27 refs, 3 figs, 19 tabs

  11. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  12. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  13. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

  14. Bruce B fuelling-with-flow operations: fuel damage investigation

    Energy Technology Data Exchange (ETDEWEB)

    Manzer, A.M. [CANTECH Associates Ltd., Burlington, Ontario (Canada); Morikawa, D. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Hains, A.J.; Cichowlas, W.M. [Nuclear Safety Solutions Limited, Toronto, Ontario (Canada); Roberts, J.G.; Wylie, J. [Bruce Power, Ontario (Canada)

    2005-07-01

    This paper summarizes the fuel bundle damage characterization done by Nuclear Safety Solutions Limited (NSS) and the out-reactor flow visualization tests done at Atomic Energy of Canada Limited (AECL) to reproduce the damage observed on irradiated fuel bundles. The bearing pad damage mechanism was identified and the tests showed that a minor change to the fuelling sequence would eliminate the mechanical interaction. The change was implemented in January 2005. Since then, the bearing pad damage appears to have been greatly reduced based on the small number of discharged bundles inspected to date. (author)

  15. Bruce B fuelling-with-flow operations: fuel damage investigation

    International Nuclear Information System (INIS)

    Manzer, A.M.; Morikawa, D.; Hains, A.J.; Cichowlas, W.M.; Roberts, J.G.; Wylie, J.

    2005-01-01

    This paper summarizes the fuel bundle damage characterization done by Nuclear Safety Solutions Limited (NSS) and the out-reactor flow visualization tests done at Atomic Energy of Canada Limited (AECL) to reproduce the damage observed on irradiated fuel bundles. The bearing pad damage mechanism was identified and the tests showed that a minor change to the fuelling sequence would eliminate the mechanical interaction. The change was implemented in January 2005. Since then, the bearing pad damage appears to have been greatly reduced based on the small number of discharged bundles inspected to date. (author)

  16. Natural gas fuelled vehicles, energetic and environmental problems

    International Nuclear Information System (INIS)

    Ciancia, A.; Pede, G.

    1998-03-01

    The present report deals with the analysis and the presentation of the main problems concerning the introduction of the natural gas fuel for vehicles. The offer and demand side of the NGV market are analyzed, together with the presently available NG fuelled vehicles and the status of the technology for engines and on-board storage systems, with particular regard to the energetic and environmental performance of the system. Finally the NGV market development is presented, and the actors on the stage, showing the opportunities together with the possible obstacle to a wider diffusion of this technology [it

  17. Problems of stress analysis of fuelling machine head components

    International Nuclear Information System (INIS)

    Mathur, D.D.

    1975-01-01

    The problem of stress analysis of fuelling machine head components are discussed. To fulfil the functional requirements, the components are required to have certain shapes where stress problems cannot be matched to a catalogue of pre-determined solutions. The areas where complex systems of loading due to hydrostatic pressure, weight, moments and temperature gradients coupled with the intricate shapes of the components make it difficult to arrive at satisfactory solutions. Particularly, the analysis requirements of the magazine housing, end cover, gravloc clamps and centre support are highlighted. An experimental stress analysis programme together with a theoretical finite element analysis is perhaps the answer. (author)

  18. Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Tabatabaei, Meisam; Mohammadi, Pouya; Pourvosoughi, Navid; Nikbakht, Ali M.; Goli, Sayed Amir Hossein

    2015-01-01

    Highlights: • Exergy analysis of diesel engine fuelled with various SBE biodiesel–diesel blends containing EPS. • Profound effect of engine speed and load on exergetic performance parameters of diesel engine. • Selection of B5 containing 50 g EPS/L biodiesel as the best mixture. • Potential application of the applied framework for optimizing sustainability index of IC engines. - Abstract: Exergy analysis of a DI diesel engine running on several biodiesel/diesel blends (B5) containing various quantities of expanded polystyrene (EPS) was carried out. Neat diesel and B5 were also investigated during the engine tests. The biodiesel used was produced using waste oil extracted from spend bleaching earth (SBE). The experiments were conducted to assess the effects of fuel type, engine speed, and load on thermal efficiency, exergetic parameters, and sustainability index of the diesel engine. The obtained results revealed that the exergetic parameters strongly depended on the engine speed and load. Generally, increasing engine speed remarkably decreased the exergy efficiency and sustainability index of the diesel engine. However, increasing engine load initially enhanced the exergy efficiency and sustainability index, while its further augmentation did not profoundly affect these parameters. The maximum exergy efficiency and sustainability index of the diesel engine (i.e. 40.21% and 1.67, respectively) were achieved using B5 containing 50 g EPS/L biodiesel. Generally, the approach presented herein could be a promising strategy for energy recovery from polymer waste, emissions reduction, and performance improvement. The findings of the present study also confirmed that exergy analysis could be employed to minimize the irreversibility and losses occurring in modern engines and to enhance the sustainability index of combustion processes.

  19. Evaluating photovoltaic/energy storage/diesel hybrid power systems for remote area power supplies in the Amazon region of Peru

    International Nuclear Information System (INIS)

    Hurwitch, J.W.; Danley, D.R.

    1998-01-01

    In June 1997, an international memorandum of understanding was signed between the Ministry of Energy and Mines (MEM) in Peru, the Solar Energy Industries Association (SEIA) and the International Lead Zinc Research Organization (ILZRO). This agreement seeks to evaluate the potential for remote area power supplies (RAPS) for electrification of rural villages in the Amazon region. This study, funded by ILZRO, was the first major activity conducted under the aegis of this agreement. The objective of this study was to conduct a preliminary engineering design and feasibility study to assess the potential for Remote Area Power Supplies (RAPS) in the Amazon Region of Peru. This paper presents the results of this preliminary engineering study. (author)

  20. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    Science.gov (United States)

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Experimental evaluation of a diesel-biogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling

    International Nuclear Information System (INIS)

    Cacua, Karen; Olmos-Villalba, Luis; Herrera, Bernardo; Gallego, Anderson

    2016-01-01

    Highlights: • A micro-trigeneration system based in a diesel-biogas dual fuel engine was obtained. • Heat from engine exhaust gases was used for drying and refrigeration applications. • Energy efficiency of the microtrigeneration system in dual mode was 40%. • Peppermint was dried in the microtrigeneration system. - Abstract: A micro-trigeneration system based on a diesel-biogas dual fuel engine was evaluated experimentally. In this system, waste heat from the engine exhaust was used for heating air using a heat pipe exchanger and for driving an absorption unit freezer. The air heated was used in a convective trays dryer designed to dry peppermint. The global energy efficiency of this system at the engine full load was 40% and 31% in diesel and dual mode, respectively, while the same efficiencies of the engine at the original single generation were 23% and 18%, respectively. On the other hand, a maximum diesel substitution level of 50% was achieved in dual mode.

  2. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    International Nuclear Information System (INIS)

    Raheman, H.; Phadatare, A.G.

    2004-01-01

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NO x to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  3. Panorama 2016 - Diesel

    International Nuclear Information System (INIS)

    Monnier, Gaetan; Ivanic, Tanja; Alazard-Toux, Nathalie

    2016-01-01

    Diesel vehicles have been the focus of recent national and world news coverage. This solution, with greater overall efficiency than spark emission engines (gasoline, LPG and natural gas), remains an essential aspect of road freight transport. Diesel has even gained a significant share of the light vehicle market in certain regions of the world. However, diesel is currently the focus of numerous controversies and has been condemned for its negative impact on air quality. (authors)

  4. Diesel particles - a health hazard

    Energy Technology Data Exchange (ETDEWEB)

    Ege, C.

    2004-08-15

    To all appearances, small particles belong to the pollutants presenting the biggest health hazards. Particles come especially from diesel-powered vehicles. According to researchers, particles cause thousands of early deaths each year in the big cities in Denmark alone, and up to 1,250 of these deaths could be prevented by fitting particle filters on diesel-powered vehicles. That is more than deaths caused by traffic accidents. Especially the elderly are affected. In addition, the small particles seem to aggravate asthma incidences, including the many children with asthma. What makes the small particles so very dangerous is that they can enter the smallest of vessels of the lungs. There is a solution within sight to this grave health hazard. The solution is called particle filters, but they will not come automatically. It requires initiatives in the form of legislation, green taxes and subsidies. The EU is introducing stricter regulations regarding particle emission from heavy vehicles from 2006, though only for new vehicles. It will therefore take many years to abate the problem this way. In the present pamphlet, the Danish Ecological Council offers a number of specific proposals on how to further the introduction of filters on diesel vehicles. The Danish government has taken a small step in the right direction by establishing a subsidy scheme for particle filters. Yet the amount allocated is too small and, because it is not followed up by setting taxes on polluting vehicles, it will have little effect. (au)

  5. Crude palm oil as fuel extender for diesel engines

    International Nuclear Information System (INIS)

    Mohamed M El-Awad; Fuad Abas; Mak Kian Sin

    2000-01-01

    In this work an investigation has been conducted into the use of Crude Palm Oil (CPO) as an extender fuel for diesel engines. Mixtures of CPO with normal diesel fuel (with a percentage of 25%, 50% and 75% CPO by volume) were used to fuel a stationary diesel engine and the engine performance variables, i.e., power output, fuel consumption, and exhaust-gas emission, were compared to those of normal diesel fuel. The results obtained, for a fixed throttle opening and variable speed, indicate that at high engine speeds, the engine performance with CP0/diesel mixtures with up to 50% CPO is comparable to that of diesel fuel. However, the results of the 75% CPO mixture showed a higher temperature and emission of CO and NO compared to the diesel fuel. At low engine speeds, the engine performance with CPO mixtures gave higher power output and lower emission of NO compared to that with diesel fuel, but showed higher specific fuel consumption and higher emission of CO. Based on these results, the study recommends that CPO can be used to extend diesel fuel in a mixture of up to 50% CPO by volume for an unmodified engine. (Author)

  6. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Science.gov (United States)

    2010-10-01

    ... furnish natural or powered supply and exhaust ventilation. The total inlet area and the total outlet area... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with...

  7. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  8. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  9. Diesel Consumption of Agriculture in China

    Directory of Open Access Journals (Sweden)

    Shusen Gui

    2012-12-01

    Full Text Available As agricultural mechanization accelerates the development of agriculture in China, to control the growth of the resulting energy consumption of mechanized agriculture without negatively affecting economic development has become a major challenge. A systematic analysis of the factors (total power, unit diesel consumption, etc. influencing diesel consumption using the SECA model, combined with simulations on agricultural diesel flows in China between 1996 and 2010 is performed in this work. Seven agricultural subsectors, fifteen categories of agricultural machinery and five farm operations are considered. The results show that farming and transportation are the two largest diesel consumers, accounting for 86.23% of the total diesel consumption in agriculture in 2010. Technological progress has led to a decrease in the unit diesel consumption and an increase in the unit productivity of all machinery, and there is still much potential for future progress. Additionally, the annual average working hours have decreased rapidly for most agricultural machinery, thereby influencing the development of mechanized agriculture.

  10. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    International Nuclear Information System (INIS)

    Yun, Young-Chul; Chung, Woo-Geun

    2016-01-01

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m 3 /hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability

  11. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young-Chul; Chung, Woo-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m{sup 3}/hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability.

  12. The Feasibility of Pellet Re-Fuelling of a Fusion Reactor

    DEFF Research Database (Denmark)

    Chang, Tinghong; Jørgensen, L. W.; Nielsen, P.

    1980-01-01

    The feasibility of re-fuelling a fusion reactor by injecting pellets of frozen hydrogen isotopes is reviewed. First a general look is taken of the dominant energy fluxes received by the pellet, the re-fuelling rate required and the relation between pellet size, injection speed and frequency...

  13. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  14. Fundamentals of Diesel Engines.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  15. Using simple wind-diesel systems without energy storage to obtain high penetration and market acceptance in the near future

    International Nuclear Information System (INIS)

    Lundsager, P.; Sherwin, R.W. Jr.

    1991-01-01

    A wind/diesel hybrid power system combines wind energy technology with diesel generation to provide continous AC electrical power with reduced fuel consumption. The objectives of this paper are to summarize the reasoning behind the simple Wind-Diesel system concept using low or negative load operation of the diesels, including the diesel backdrive technique proposed by Atlantic Orient, and to outline a strategy within an international framework to make simple Wind-Diesel systems with standard induction generator wind turbines commercially available and accepted by the market. (au) (11 refs.)

  16. Energy efficiency impact of EGR on organizing clean combustion in diesel engines

    International Nuclear Information System (INIS)

    Divekar, Prasad S.; Chen, Xiang; Tjong, Jimi; Zheng, Ming

    2016-01-01

    Highlights: • Studied EGR impact on efficiency and emissions of diesel and dual-fuel combustion. • Quantified effectiveness of intake dilution for NOx reduction using EGR. • Identified suitable EGR ranges for mitigating emissions–efficiency trade-off. • Developed careful control of intake dilution and in-cylinder excess ratio. • Enabled ultra-low NOx in both diesel and dual-fuel combustion via EGR control. - Abstract: Exhaust gas recirculation (EGR) is a commonly recognized primary technique for reducing NOx emissions in IC engines. However, depending on the extent of its use, the application of EGR in diesel engines is associated with an increase in smoke emissions and a reduction in thermal efficiency. In this work, empirical investigations and parametric analyses are carried out to assess the impact of EGR in attaining ultra-low NOx emissions while minimizing the smoke and efficiency penalties. Two fuelling strategies are studied, namely diesel-only injection and dual-fuel injection. In the dual-fuel strategy, a high volatility liquid fuel is injected into the intake ports, and a diesel fuel is injected directly into the cylinder. The results suggest that the reduction in NOx can be directly correlated with the intake dilution caused by EGR and the correlation is largely independent of the fuelling strategy, the intake boost, and the engine load level. Simultaneously ultra-low NOx and smoke emissions can be achieved at high intake boost and intake dilution levels in the diesel-only combustion strategy and at high ethanol fractions in the dual-fuel strategy. The efficiency penalty associated with EGR is attributed to two primary factors; the combustion off-phasing and the reduction in combustion efficiency. The combustion off-phasing can be minimized by the closed loop control of the diesel injection timing in both the fuelling strategies, whereas the combustion efficiency can be improved by limiting the intake dilution to moderate levels. The

  17. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1997-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  18. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  19. Physico-chemical properties and biological effects of diesel and biomass particles

    KAUST Repository

    Longhin, Eleonora

    2016-05-15

    © 2016 Elsevier Ltd. Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  20. Improving the reliability of emergency diesel generators through sustained maintenance

    International Nuclear Information System (INIS)

    Reddy, R.

    2000-01-01

    In Nuclear Power Stations Emergency Diesel Generators are vital safety related equipment which ensures power supply to essential equipment during loss of power. In view of their importance Reliability of Diesel generators should be very high. Since these Diesel generators are standby equipment and operate only during demand or during surveillance checks, their demand failure probability should be very low and once they operate their operational availability should be very high. Madras Atomic Power Station at Kalpakkam, India consists two pressurised heavy water Reactors each rated at 220 MWe. To supply standby power each unit has two Diesel Generators of I 500 kW capacity each. The Diesel Engine is 16 cylinder 'V' type engine and is cranked by Air starting motor and is connected to generator whose rating at 100% load is 1500 KW. During commissioning and in the initial years of operation these Diesel Generators have encountered many problems. Major problem was Diesel Engine failing to start on demand. This was due to non engagement of air motor pinion with ring gear or continued engagement air motor even after the engine had picked up speed and failure of timer to initiate multiple starts after initial incomplete starts Apart from these there were problems like fuel oil leaks, high jacket water temperatures, low fuel oil pressure trips. Another major problem was with excitation system. How these problems were dealt with thereby reducing the demand failure probability and increasing the operational availability are discussed in this paper. (author)

  1. Bio diesel- the Clean, Green Fuel for Diesel Engines

    International Nuclear Information System (INIS)

    Elkareish, S.M.M.

    2004-01-01

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  2. Evaluation of reliability of on-site A.C. power systems based on maintenance records

    International Nuclear Information System (INIS)

    Basso, G.; Pia, S.; Fusari, W.; Soressi, G.; Vaccari, G.

    1986-01-01

    To the end of ascertain in what extent the evaluation of reliability of emergency diesel generators (D.G.) can be improved by means of a deeper knowledge of their operating history a study has been carried-out on 21 D.G. sets: 4 D.G. of the Caorso nuclear plant (BWR, 870 MWe) and 17 D.G. in service at 6 steam-electric fossil-fuelled plants. The major points of interest resulting from this study are: 1) reliability assessments of A.C. on-site power Systems, made on the basis of outcomes of surveillance tests, may lead to results which overestimate the real performance. 2) the unreliability of a redundant System of stand-by components is determined in large extent by unavailabilities due to scheduled and unscheduled maintenance, latent failures, tests. (authors)

  3. Evaluation of reliability of on-site A.C. power systems based on maintenance records

    Energy Technology Data Exchange (ETDEWEB)

    Basso, G.; Pia, S. [ENEA/TERM/VAOEC, C.R.E. Casaccla via Anguillarese, 00100 Roma/Rome (Italy); Fusari, W. [ENEL, Rome (Italy); Soressi, G.; Vaccari, G. [ENEL, Centro di Ricerca Termica e Nucl., Via Rubattino, 54, 1-20134 Mllano/Milan (Italy)

    1986-02-15

    To the end of ascertain in what extent the evaluation of reliability of emergency diesel generators (D.G.) can be improved by means of a deeper knowledge of their operating history a study has been carried-out on 21 D.G. sets: 4 D.G. of the Caorso nuclear plant (BWR, 870 MWe) and 17 D.G. in service at 6 steam-electric fossil-fuelled plants. The major points of interest resulting from this study are: 1) reliability assessments of A.C. on-site power Systems, made on the basis of outcomes of surveillance tests, may lead to results which overestimate the real performance. 2) the unreliability of a redundant System of stand-by components is determined in large extent by unavailabilities due to scheduled and unscheduled maintenance, latent failures, tests. (authors)

  4. Light-fuelled transport of large dendrimers and proteins.

    Science.gov (United States)

    Koskela, Jenni E; Liljeström, Ville; Lim, Jongdoo; Simanek, Eric E; Ras, Robin H A; Priimagi, Arri; Kostiainen, Mauri A

    2014-05-14

    This work presents a facile water-based supramolecular approach for light-induced surface patterning. The method is based upon azobenzene-functionalized high-molecular weight triazine dendrimers up to generation 9, demonstrating that even very large globular supramolecular complexes can be made to move in response to light. We also demonstrate light-fuelled macroscopic movements in native biomolecules, showing that complexes of apoferritin protein and azobenzene can effectively form light-induced surface patterns. Fundamentally, the results establish that thin films comprising both flexible and rigid globular particles of large diameter can be moved with light, whereas the presented material concepts offer new possibilities for the yet marginally explored biological applications of azobenzene surface patterning.

  5. Dazzled by diesel? The impact on carbon dioxide emissions of the shift to diesels in Europe through 2009

    International Nuclear Information System (INIS)

    Schipper, Lee; Fulton, Lew

    2013-01-01

    This paper identifies trends in new gasoline and diesel passenger car characteristics in the European Union between 1995 and 2009. By 2009 diesels had captured over 55% of the new vehicle market. While the diesel version of a given car model may have as much as 35% lower fuel use/km and 25% lower CO 2 emissions than its gasoline equivalent, diesel buyers have chosen increasingly large and more powerful cars than the gasoline market. As a result, new diesels bought in 2009 had only 2% lower average CO 2 emissions than new gasoline cars, a smaller advantage than in 1995. A Laspeyres decomposition investigates which factors were important contributors to the observed emission reductions and which factors offset savings in other areas. More than 95% of the reduction in CO 2 emissions per km from new vehicles arose because both diesel and gasoline new vehicle emissions/km fell, and only 5% arose because of the shift from gasoline to diesel technology. Increases in vehicle mass and power for both gasoline and diesel absorbed much of the technological efficiency improvements offered by both technologies. We also observe changes in the gasoline and diesel fleets in eight EU countries and find changes in fuel and emissions intensities consistent with the changes in new vehicles reported. While diesel cars continue to be driven far farther than gasoline cars, we attribute only some of this difference to a “rebound effect”. We conclude that while diesel technology has permitted significant fuel savings, the switch from gasoline to diesel in the new vehicle market contributed little itself to the observed reductions in CO 2 emissions from new vehicles. - Highlights: ► By 2009 diesels had captured over 55% of the new car market in the EU. ► New diesels in 2009 emitted only 2% lower average CO 2 than new gasoline cars. ► Diesel cars continue to be driven farther than gasoline cars. ► Overall there has been little net CO 2 reduction from the switch to diesels in

  6. Investigations of impurity control in JET using fuelling, and interpretation of experiments using the LIM impurity code

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Stangeby, P.C.; Elder, J.D.

    1994-01-01

    Inhibition of contamination of the plasma core in JET by edge impurities during high power heating of deuterium plasmas in limiter configuration using fuelling is demonstrated. By injecting deuterium gas during heating, in the presence of a much larger recycling deuterium flux, a reduction of more than a factor of 2 was effected in n z (0)/Φ z , the ratio of central impurity density to impurity influx at the plasma edge. The reduction in n z (0) was obtained without much effect on peak electron temperature and density. Reduction of plasma contamination by gas fuelling was observed also when hot spots formed on the limiter, a condition that without simultaneous gas fuelling culminated in runaway plasma contamination. Detailed analysis of the experiments is undertaken with the purpose of identifying the processes by which plasma contamination was inhibited, employing standard limiter plasma contamination modelling. Processes which might produce the observed impurity inhibiting effects of gas injection include: (a) reduction in impurity production at the limiter; (b) increase in impurity screening in the scrape-off layer; (c) increase in radial impurity transport at the plasma edge; (d) increase in average deuteron flow velocity to the limiter along the scrape-off layer. These are examined in detail using the Monte Carlo limiter impurity transport code LIM. Bearing in mind that uncertainties exist both in the choice of appropriate modelling assumptions to be used and in the measurement of required edge plasma parameters, changes in n z (0)/Φ z by a factor of 2 are at the limit of the present modelling capability. However, comparison between LIM code simulations and measurements of plasma impurity content indicate that the standard limiter plasma contamination model may not be adequate and that other processes need to be added in order to be able to describe the experiments in JET. (author). 24 refs, 2 figs, 8 tabs

  7. Predicting emergency diesel starting performance

    International Nuclear Information System (INIS)

    DeBey, T.M.

    1989-01-01

    The US Department of Energy effort to extend the operational lives of commercial nuclear power plants has examined methods for predicting the performance of specific equipment. This effort focuses on performance prediction as a means for reducing equipment surveillance, maintenance, and outages. Realizing these goals will result in nuclear plants that are more reliable, have lower maintenance costs, and have longer lives. This paper describes a monitoring system that has been developed to predict starting performance in emergency diesels. A prototype system has been built and tested on an engine at Sandia National Laboratories. 2 refs

  8. Combustion performance and pollutant emissions analysis using diesel/gasoline/iso-butanol blends in a diesel engine

    International Nuclear Information System (INIS)

    Wei, Mingrui; Li, Song; Xiao, Helin; Guo, Guanlun

    2017-01-01

    Highlights: • The diesel/gasoline/iso-butanol blends were investigated in a CI engine. • Blend with gasoline or iso-butanol produce higher HC emission. • CO increase at low loads and decrease at medium and high loads with blend fuels. • Gasoline or iso-butanol decrease large particles but increase small particles. • Blend fuels reduce total PM number and mass concentrations. - Abstract: In this study, the effects of diesel/gasoline/iso-butanol blends, including pure diesel (D100), diesel (70%)/gasoline (30%) (D70G30, by mass), diesel (70%)/iso-butanol (30%) (D70B30) and diesel (70%)/gasoline (15%)/iso-butanol (15%) (D70G15B15), on combustion and exhaust pollutant emissions characteristics in a four-cylinder diesel engine were experimentally investigated under various engine load conditions with a constant speed of 1800 rpm. The results indicated that D70G30, D70G15B15 and D70B30 delayed the ignition timing and shortened the combustion duration compared to D100. Additionally, CA50 was retarded when engine fuelled with D70G30, D70G15B15 and D70B30 at low engine load conditions, but it was advanced at medium and high engine loads. The maximum pressure rise rates (MPRRs) of D70G30, D70G15B15 and D70B30 were increased compared with D100 except for at engine load of 0.13 MPa BMEP (brake mean effective pressure). Meanwhile, D70G15B15 and D70B30 produced higher brake specific fuel consumption (BSFC) than that of D100. The effects of diesel blend with gasoline or iso-butanol on exhaust pollutant emissions were varied with loads. CO emissions were increased obviously and NOx emissions were decreased under low engine loads. However, CO emissions were decreased and NOx emissions were slightly increased under the medium and high engine load conditions. However, D70G30, D70G15B15 and D70B30 leaded to higher HC emissions than D100 regardless the variation of engine load. Moreover, the particulate matter (PM) (diameter, number and mass concentrations) emissions by using

  9. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  10. The using of alternative energy sources: the case of Small Hydroelectric Power Plants and the natural gas fuelled thermal electric power plants; O uso de fontes alternativas de energia: o caso das Pequenas Centrais Hidreletricas (PCHs) e das termoeletricas movidas a gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Patricia Aparecida Pereira; Mauad, Frederico Fabio [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia. Centro de Recursos Hidricos e Ecologia Aplicada; Leme, Alessandro Andre [Sao Carlos Univ., SP (Brazil). Programa de Pos-graduacao em Ciencias Sociais; Valencio, Norma Felicidade Lopes da Silva [Sao Carlos Univ., SP (Brazil). Dept. de Ciencias Sociais

    2002-07-01

    This paper emphasizes the modifications occurred in the brazilian electric sector at the end of the twenty century. The work also highlight the alternative sources (Small hydroelectric and thermoelectric power plants) as the most feasible in the political and institutional scenery for the complementation of the generator park.

  11. Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM FCs

    International Nuclear Information System (INIS)

    Contestabile, Marcello

    2010-01-01

    Proton exchange membrane fuel cells (PEM FCs) offer a promising alternative to internal combustion engines in road transport. During the last decade PEM FC research, development and demonstration (RD and D) activities have been steadily increasing worldwide, and targets have been set to begin their commercialisation in road transport by 2015-2020. However, there still is considerable uncertainty on whether these targets will actually be met. The picture is complex and market and technology issues are closely interlinked; investment in RD and D projects is essential but not sufficient; the development of suitable early markets is also necessary and policy is set to play an important role. Auxiliary power units (APUs) are generally regarded as one important early market for FCs in transport. This paper analyses the possible future market for diesel PEM FC APUs onboard long-haul trucks and its implications for the development of PEM FCs in general. The analysis, part of the project HyTRAN (EC Contract no. 502577), is aided by the use of a dynamic simulation model of technology and markets developed by the author. Results suggest that an interesting window of opportunity for diesel PEM FC APUs exists but this is subject to additional research particularly targeted at the rapid development of fuel processors.

  12. Performance of jatropha oil blends in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  13. Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health

    Science.gov (United States)

    2016-05-01

    system does not provide direct current power to the preamplifier, equivalent pre-amplifiers with external power inputs were purchased , but the... behaviour of piston ring/cylinder liner interaction in diesel engines using acoustic emission. Tribology International 39 (12) 12 / 01 / 1634-1642...diesel engine using in-cylinder pressure and acoustic emission techniques. Dyanmics for Sustainable Engineering 1 454-463 26. Lowe, D. P., et al

  14. Soft start technique for diesel generator sets

    Energy Technology Data Exchange (ETDEWEB)

    Fredlund, Lars [Swedish State Power Board, Ringhals Nuclear Power Plant, S-430 22, Vaeroebacka (Sweden)

    1986-02-15

    A diesel motor in a nuclear power plant should be of a well-proven design. It is designed for long periods of trouble-free duty, but not for the frequent and rapid test starts called for by the technical specifications. In order to decrease the dynamic forces and thermal stresses, a soft-start scheme has been implemented. By limiting the fuel injection the diesel generator will reach full speed in appr. 30 seconds. The fuel limiter is a pneumatic cylinder which mechanically limits the travel of the terminal shaft of the governor. (author)

  15. Soft start technique for diesel generator sets

    International Nuclear Information System (INIS)

    Fredlund, Lars

    1986-01-01

    A diesel motor in a nuclear power plant should be of a well-proven design. It is designed for long periods of trouble-free duty, but not for the frequent and rapid test starts called for by the technical specifications. In order to decrease the dynamic forces and thermal stresses, a soft-start scheme has been implemented. By limiting the fuel injection the diesel generator will reach full speed in appr. 30 seconds. The fuel limiter is a pneumatic cylinder which mechanically limits the travel of the terminal shaft of the governor. (author)

  16. Diesel engine cogeneration plants in the context of integration of renewable energy sources in power supply; Dieselmotor-Kraft-Waerme-Kopplungsanlagen im Kontext der Integration Erneuerbarer Energien in die Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, John

    2010-10-29

    The aim of this thesis is to investigate and assess future options, potentials, strengths and weaknesses of cogeneration of heat and power. This is carried out against the background of global climate change and the integration of an increasing share of fluctuating renewable energies in power generation considering the necessity of guaranteeing a reliable, efficient, sustainable and cost effective power supply. It is assumed that the transition process to an entirely renewable energy-based electricity generation in Germany will considerably depend on the integration of wind energy because of its economic competitiveness, environmental friendliness and potential. However, power generation using wind energy fluctuates quite considerably. Diesel motors are here investigated as a decentralized integration instrument. Thanks to their great flexibility, high efficiency and relatively low nominal capacity, they perfectly meet the requirements for the simultaneous decentralized use of heat. Boundary conditions of Diesel motor combined heat and power plants (CHP) are analyzed and described in this work, different models for wind energy integration are elaborated, and these models are used for several variations to simulate the balance of wind energy by cogeneration. In this context, environmental impacts are discussed. Common assessment methods on environmental impacts of CHP distort the results. The so-called output method is developed and described, by which the final assessment of environmental impacts is not implicitly mixed - as is commonly the case - with the calculation of environmental impacts. This output method is used to compare CHP generation with other energy conversion processes within the context of power generation including insulation of buildings, the use of different fuels and different applications for cogeneration. This work clearly demonstrates that while bio fuel resources can be optimally used for power generation, cogenerated electricity could also

  17. Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Sidibe, S.S.; Azoumah, Y. [Institut Internationale d' ingenierie de l' Eau et de l' Environnement (2iE), rue de science 01 Ouagadougou 01 BP 594 (Burkina Faso); Blin, J. [Institut Internationale d' ingenierie de l' Eau et de l' Environnement (2iE), rue de science 01 Ouagadougou 01 BP 594 (Burkina Faso); Centre International de Recherche Agronomique pour le Developpement (CIRAD), UPR Biomasse energie, TA B-42/16, 73 rue JF Breton, 34398 Montpellier Cedex 5 (France); Vaitilingom, G. [Centre International de Recherche Agronomique pour le Developpement (CIRAD), UPR Biomasse energie, TA B-42/16, 73 rue JF Breton, 34398 Montpellier Cedex 5 (France)

    2010-12-15

    Many studies have been published on vegetable oil use in diesel engines. The different authors unanimously acknowledge the potential and merits of this renewable fuel. Typically, Straight Vegetable Oils (SVOs) produced locally on a small scale, have proven to be easy to produce with very little environmental impact. However, as their physico-chemical characteristics differ from those of diesel oil, their use in diesel engines can lead to a certain number of technical problems over time. In bibliography, there is substantial disagreement between authors regarding the advanced phenomena linked to this problems and the recommended solutions. Some of these publications treat options individually without any real comparison between them. Another observation is that the literature rarely tackles problems linked to vegetable oil quality. This paper sets out to review the state of the art for SVO use as fuel in diesel engines, based on a bibliographic study (literature review). The first section of the document examines the influence of the type and quality of vegetable oils for fuel use in diesel engines. The second section discusses the advantages and disadvantages of two options recommended for SVO use in diesel engines: dual fuelling and blending with diesel fuel. (author)

  18. The all new BMW top diesel engines; Die neuen Diesel Spitzenmotorisierungen von BMW

    Energy Technology Data Exchange (ETDEWEB)

    Ardey, N.; Wichtl, R.; Steinmayr, T.; Kaufmann, M.; Hiemesch, D.; Stuetz, W. [BMW Motoren GmbH, Steyr (Austria)

    2012-11-01

    From the very beginning, diesel drivetrains have been important components of the BMW EfficientDynamics strategy. High levels of driving dynamics in combination with attractive fuel consumption have become features of a wide range of models. With the introduction of 2-stage turbocharging for passenger car diesel engines in 2004, BMW was able to significantly enhance the power density without increasing the number of cylinders or the cylinder capacity. In the meantime, the BMW TwinPower Turbo diesel engine variants achieve a rated power of up to 160 kW on the 2.0-litre 4-cylinder engine and 230 kW on the 3.0-litre 6-cylinder engine. In order to extend the leading position in the premium segment, a new BMW TwinPower Turbo variant has been developed. The major objectives were to achieve a range of power output, torque and comfort at least at the level of 8-cylinder competitors, but at the same time equal the lower fuel consumption and power/weight ratio that is typical for existing BMW 6-cylinder diesel engines. The new engine will be used for the first time in the emphatically sports-oriented BMW M Performance Automobiles (MPA) of the X5/X6 and 5 Series. The charging and injection technology as well as capability of high cylinder pressures in the core engine are key technologies for the enhancement of performance. The new BMW TwinPower Turbo diesel drivetrain is based on the main dimensions of the existing 3.0-litre 6-cylinder inline diesel engines. The core element of the new engine is a 2-stage turbocharging system, consisting of 3 exhaust turbochargers. A common rail injection system with a system pressure up to 2200 bar is deployed for the first time. The drive unit has been configured for a maximum cylinder pressure of 200 bar, an innovative feature is the aluminium crankcase with its screwed tension anchor connection. The cooling system contains an indirect 2-stage intercooler. The exhaust system of the new BMW diesel engine in the 5 Series is equipped as

  19. Density Limits with Different Fuelling Methods in the HL-2A Tokamak

    International Nuclear Information System (INIS)

    Yan Longwen; Zhou Yan; Chen Chengyuan; Cao Zeng; Song Xianming; Li Wei; Dong Yunbo; Hong Wenyu; Yang Qingwei; Duan Xuru

    2009-01-01

    Density limits with different fuelling methods have been compared in HL-2A, i.e. direct gas puffing and supersonic molecular beam injection (SMBI) from outer midplane, and divertor gas fuelling. The maximum densities for low current discharges are 3.4x10 19 m -3 , 4.3x10 19 m -3 and 4.7x10 19 m -3 for the 3 kinds of fuelling methods. The corresponding density ratios to Greenwald density limit are 0.9, 1.1, 1.2, respectively. The behavior of density limit disruption is analyzed as well. (magnetically confined plasma)

  20. Feasibility study for power generation using off- grid energy system from micro hydro-PV-diesel generator-battery for rural area of Ethiopia: The case of Melkey Hera village, Western Ethiopia

    Directory of Open Access Journals (Sweden)

    Tilahun Nigussie

    2017-07-01

    Full Text Available Electricity supply in Ethiopia is extremely antiquated. Most of the remote rural areas of Ethiopia are not yet electrified. Electrifying these remote areas by extending grid system is difficult and costly. Melkey Hera village is one of a rural community situated in western Ethiopia. In this village, extension of the grid is not yet practical. As the current international trend in rural electrification is to utilize renewable energy resources; solar, wind, biomass, and micro hydro power systems can be seen as alternatives. Therefore, the target of this paper is to investigate the viability of a micro hydro, Photo Voltaic (PV and Diesel Generator-battery hybrid power system options to come up with the best techno-economic and optimum configuration for supplying electricity to this village. The study was performed by an assessment of the predicted village energy demand, the available renewable energy resources, and then using the software called HOMER. The best hybrid system type was described and the optimization of the system configuration was also done. Furthermore, through the simulation of different configuration of the supply system, the optimal mini-grid hybrid system design was established to combine hydro, solar PV, battery energy storage and diesel generator. This system demonstrated to be more reliable in operation, and the most cost-effective for the required level of service. The role of energy storage in system operation also demonstrated to offer additional operational advantages in-terms of reliability and cost savings. Overall, the design results show that the majority of energy obtained from hydropower, which accounts 79%, the PV module covers 20%, and diesel generator is only 1% of the total load consumption. The obtained hybrid system is cost competitive with $\\$$0.133/kWh, which is somewhat good to satisfy the community needs. However, this is more than current energy price in Ethiopia which $\\$$0.06/kWh. If due-merit given

  1. Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Yu; Wang, Mingyue; Liu, Haiquan; Wang, Junjun; Ding, Shangfen; Zhao, Shuli [State Key Laboratory of Automobile Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2008-09-15

    Spark ignition engines fuelled by hydrogen enriched compressed natural gas (HCNG) have many advantages compared to traditional gasoline, diesel and natural gas engines, especially in emission control. Experimental researches have been continuously conducted to improve HCNG engine's configuration and control strategy aimed at making full use of this new fuel. With the same target, this work presents a predictive model used to simulate the working cycle of HCNG engines which is applicable for variable hydrogen blending ratios. The fundamentals of the thermodynamic model, the turbulent flame propagation model and related equation were introduced. Considering that the most important factor influencing the applicability of the model for variable hydrogen blending ratio is the laminar flame speed, the methods of how to deal with the laminar burning velocity in the model were then described in some more detail. After the determination of model constants by calibration, simulation results were compared with experimental cylinder pressure data for various hydrogen blending ratios, spark timings and equivalence ratios. The results show that simulation and experimental results match quite well except for extremely fuel lean conditions where problems of incomplete combustion become severe. (author)

  2. Radium in diesel oil

    International Nuclear Information System (INIS)

    Kulich, J.

    1977-05-01

    In order to determine the addition of radon and radium to the air in mines, originatiny from the combustion of petroleum, measurements of the content of radium in diesel oil have been performed. Knowing the radium content theradon content can easily be calculated. The procedures used for the chemical analysis of radium is desribed. The ash remaining after combustion of the diesel oil is soluted in water and radium is precipiated as sulphate. The radium is detected by a ZnS (Ag) detector. The diesel oils from different petroleum companies contained between o.019-0.5pCi radium - 226. The conclution is that the consumption of diesel oils in motors used in mines does not contribute to the radium - 226 content at the air move than permissible according to norms.(K.K.)

  3. Screw expander for light duty diesel engines

    Science.gov (United States)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  4. Main conditions and effectiveness of gas fuel use for powering of dual fuel IC self-ignition engine

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2015-09-01

    Full Text Available Internal combustion engines are fuelled mostly with liquid fuels (gasoline, diesel. Nowadays the gaseous fuels are applied as driving fuel of combustion engines. In case of spark ignition engines the liquid fuel (petrol can be totally replaced by the gas fuels. This possibility in case of compression engines is essentially restricted through the higher self-ignition temperatures of the combustible gases in comparison to classical diesel oil. Solution if this problem can be achieved by using of the dual fuel system, where for ignition of the prepared fuel gas - air mixture a specified amount of the liquid fuel (diesel oil should be additionally injected into the combustion chamber. For assurance that the combustion process proceeds without mistakes and completely, some basic conditions should be satisfied. In the frame of this work, three main aspects of this problem are taken into account: a. filling efficiency of the engine, b. stoichiometry of the combustion, c. performance of mechanical parameters (torque, power. A complex analysis of these conditions has been done and some achieved important results are presented in the paper.

  5. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  6. The diesel challenge

    International Nuclear Information System (INIS)

    Tobin, Geoff

    1997-01-01

    This article is focused on the challenges being faced by the diesel producer and these include a number of interesting developments which illustrate the highly competitive world of the European refiner. These include: The tightening quality requirements being legislated coupled with the availability of the ''city diesel'' from Scandinavia and elsewhere which is already being sold into the market. For a time there will be a clear means of product differentiation. One of the key questions is whether the consumer will value the quality difference; a growing demand for diesel which is outstripping the growth in gasoline demand and causing refiners headaches when it comes to balancing their supply/demand barrels; the emergence of alternative fuels which are challenging the traditional markets of the refiner and in particular, the niche markets for the higher quality diesel fuels. All of this at a time of poor margins and over-capacity in the industry with further major challenges ahead such as fuel oil disposal, tighter environmental standards and the likelihood of heavier, higher sulphur crude oils in the future. Clearly, in such a difficult and highly-competitive business environment it will be important to find low-cost solutions to the challenges of the diesel quality changes. An innovative approach will be required to identify the cheapest and best route to enable the manufacture of the new quality diesel. (Author)

  7. A techno-economic evaluation of two non-edible vegetable oil based bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Ali, M.

    2010-01-01

    Technical evaluation of Bio diesel, produced from various non-edible oils, was carried out on the basis of emission profile, torque, engine brake power and exhaust temperatures at 10% blend ratio (by volume) with mineral diesel. The performance of engine parameters showed that the castor oil based bio diesel gave the best results. Economic feasibility for bio diesel production was carried out based on available data on cultivation of necessary plants on marginal lands. This economic analysis also included the value of by-products which would be available during the chemical process for the production of bio diesel. It was found that jatropha bio diesel could be produced at a comparable cost to mineral diesel, however, castor bio diesel required substantial subsidies or mass cultivation of plants on marginal lands to enable it to compete economically with mineral diesel. (author)

  8. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Hirschmann, H.; Vennemann, J.

    1980-01-01

    The paper describes the energy policy quandary of developing countries and explains why nuclear power plants of a suitable size - the KKW 200 MW BWR nuclear power plant for electric power and/or process steam generation is briefly presented here - have an economic advantage over fossil-fuelled power plants. (HP) [de

  9. Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2009-01-01

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on the biofuel kinematical viscosity, brake mean effective pressure (bmep), brake specific fuel consumption (bsfc) of a diesel engine and its brake thermal efficiency (bte). Addition into RO from 2.5 to 7.5 vol% of ethanol and petrol its viscosity at ambient temperature of 20 deg. C diminishes by 9.2-28.3% and 14.1-31.7%, respectively. Heating up to the temperature of 60 deg. C the viscosity of pure RO, blends ERO2.5-7.5 and PRO2.5-10 further diminishes 4.2, 3.9-3.8 and 3.9-3.6 times. At 1800 min -1 speed, the maximum brake mean effective pressure (bmep) higher up to 1.6% comparing with that of pure RO (0.77 MPa) ensure three agent blends EPRO5-7.5, whereas at rated 2200 min -1 speed, the bmep higher by 5.6% can be obtained when fuelling the engine with blend PRO2.5. Brake specific fuel consumption (bsfc) at maximum torque (240.2 g/kWh) and rated power (234.0 g/kWh) is correspondingly lower by 3.4% and 5.5% in comparison with pure RO when biofuel blends EPRO5 and PRO2.5 are used. The biggest brake thermal efficiency at maximum torque (0.40-0.41) and rated power (0.42-0.43) relative to that of RO (0.39) suggest blends PRO2.5 and EPRO5-7.5, respectively

  10. Role of recycling flux in gas fuelling in the Large Helical Device

    International Nuclear Information System (INIS)

    Miyazawa, J.; Masuzaki, S.; Yamada, H.

    2004-01-01

    The 'effective' fuelling efficiency of hydrogen gas puffing ranges from 10% to 50% in the Large Helical Device. A local increase in neutral particle pressure at the gas puff port was measured in the experiment. The pressure increase rate corresponds to ∼ 10% of the gas puff flux. The other 90% of the gas puff flux increases the density and/or the plasma outflow. A particle balance model reveals that the recycling flux estimated from the particle flux on the divertor plates increases during the gas puffing. It is shown that the high effective fuelling efficiency is possibly due to the large recycling flux. At the limit of small recycling flux, the effective fuelling efficiency decreases to ∼10%. In the helium gas puff discharge, the effective fuelling efficiency is larger than the hydrogen gas puffing and approaches 100%. This can be related to the large recycling coefficient of more than 0.95. (author)

  11. An example of a diesel generator model with fluctuating engine torque for transient analysis using XTAP

    Directory of Open Access Journals (Sweden)

    Orie Sakamoto

    2016-01-01

    Full Text Available In remote site power systems with small diesel generators, weak distribution feeders with diesel generators may suffer from voltage and power fluctuations due to misfiring of the engine cylinder. An electromagnetic transient (EMT program named XTAP is considered to be useful to analyze these phenomena. In this study, a new diesel generator model with example fluctuating engine torque has been developed using XTAP for analyses of small power systems with those diesel engines. The configuration and verification results of the developed model are presented in the paper.

  12. Performance and emission characteristics of biogas used in diesel engine operation

    International Nuclear Information System (INIS)

    Makareviciene, Violeta; Sendzikiene, Egle; Pukalskas, Saugirdas; Rimkus, Alfredas; Vegneris, Ricardas

    2013-01-01

    Highlights: • Biogas is an environmentally friendly biofuel for diesel engines. • Results of diesel engine tests when fuelling with biogas are presented. • Engine and environmental characteristics depends on carbon dioxide content in biogas. • Using biogas in a diesel engine requires certain operational modifications. - Abstract: The objective of this study it to evaluate the impact of the carbon dioxide concentration in biogas on the operating characteristics and exhaust gas emissions of a diesel engine running on a mixture of biogas and mineral diesel fuel. The tests were carried out in two stages. In the first stage, the impact of different biogas compositions and the exhaust gas recirculation system (EGR) on the engine parameters was determined. Lower pollutant levels were measured in the studies without the EGR system, except for the nitrogen oxides NO x levels. The NO x concentration decrease was directly proportional to the concentration of methane in the common fuel mixture. In the second stage, the gas with the highest methane content was used to determine the impact of the start of injection timing on the engine operating parameters. As the methane content in the common fuel mixture increased, the start of injection timing had to be progressively advanced to increase the thermal efficiency and to lower the fuel consumption, the CO and HC concentrations and the smokiness of the exhaust; however, advancing the start of injection timing increased NO x pollution

  13. Diesel fuel stability; Estabilidade de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marcelo V.; Pinto, Ricardo R.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Zotin, Fatima M.Z. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    The demand for the reduction of the pollutants emissions by diesel engines has led to the adoption of more advanced injection systems and concern about fuel stability. The degradation of the diesel fuel can happen during storage and distribution, according to the acid-catalysed condensation of aromatic compounds such phenalenones and indolic nitrogenated heterocyclic compounds. These precursors appear in several streams used in diesel fuel formulation. In this study the sediment formation in model and real, aromatic and paraffinic fuels, containing such precursors naturally or by addition was analysed. The fuels were submitted to accelerated (16 hours at 90 deg C) and long term (13 weeks at 43 deg C) storage stability tests. The model fuels responded positively to the storage stability tests with formation of sediments, concluding that these methods can be considered adequate to verify the occurrence of the studied degradation process. The real fuels response was even more due to their chemical complexity, composition and impurities. The formation of sediments showed to be affected by the hydrocarbon distribution of the fuels. (author)

  14. The factors affecting MTC of thorium–plutonium-fuelled PWRs

    International Nuclear Information System (INIS)

    Zainuddin, Nurjuanis Zara; Parks, Geoffrey T.; Shwageraus, Eugene

    2016-01-01

    Plutonium loading in a plutonium–thorium (Pu–Th) mixed oxide (MOX) fuelled pressurized water reactor (PWR) core is typically constrained by large maximum radial form factors (RFF) and positive moderator temperature coefficient (MTC). The large form factors in higher Pu content fuels stem from the large differences in burnup, and thus reactivity, between fresh and burnt fuel, while positive MTC can potentially be the result of the high soluble boron concentrations needed to maintain criticality for such reactive fuel. The conventional solution to these problems is the use of burnable poisons (BPs). While BPs are able to reduce RFF, the positive MTC is not entirely due to a large critical boron concentration (CBC) requirement. In fact, analysis shows a positive MTC in Th–Pu fuel is mainly caused by fissioning in the epithermal–fast energy range. A reduction in epithermal–fast fissioning through the use of certain BPs and the strategic employment of loading patterns that encourage leakage are more effective in attaining negative MTC, as a reduction in CBC has a negligible effect on MTC. This paper examines the contributions to positive MTC by isotope and energy and identifies characteristics of BPs that are able to mitigate positive MTC in a Pu–Th MOX PWR core.

  15. Design of fuelling machine bridge and carriage to meet seismic qualification requirements

    International Nuclear Information System (INIS)

    Ghare, A.B.; Chhatre, A.G.; Vyas, A.K.; Bhambra, H.S.

    1996-01-01

    During each refuelling operation, the boundary of Primary heat transport system is extended up to Fuelling Machines. A breach in the pressure boundary of Fuelling Machine in this condition would cause a loss of coolant accident. Fuelling Machines are also used for transit storage of spent fuel bundles till discharged to fuel transfer system. Therefore, a fuelling machine, including its support structures, is required to be seismically qualified for both on-reactor ( coupled ) mode and off-reactor (uncoupled) mode. The fuelling machine carriage used in the first generation of Indian PHWRs is a mobile equipment on wheels moving over fixed rails. As this configuration was found unsuitable for withstanding strong seismic disturbances, a bridge type design with fixed columns was evolved for the next generation of reactors. Initially, the seismic analysis of the fuelling machine bridge and carriage was done using static structural analysis and values of natural frequencies for various structures were computed. The structures were suitably modified based on the results of this analysis. Subsequently, a detailed dynamic seismic analysis using finite element model has been completed for both coupled and uncoupled conditions. The qualification of the structure has been carried out as per ASME section 111 Division 1, sub section NF. Details of the significant design features, static and dynamic analysis, results and conclusions are given in the presentation. (author). 4 refs., 4 tabs., 7 figs

  16. Design of fuelling machine bridge and carriage to meet seismic qualification requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ghare, A B; Chhatre, A G; Vyas, A K; Bhambra, H S [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    During each refuelling operation, the boundary of Primary heat transport system is extended up to Fuelling Machines. A breach in the pressure boundary of Fuelling Machine in this condition would cause a loss of coolant accident. Fuelling Machines are also used for transit storage of spent fuel bundles till discharged to fuel transfer system. Therefore, a fuelling machine, including its support structures, is required to be seismically qualified for both on-reactor ( coupled ) mode and off-reactor (uncoupled) mode. The fuelling machine carriage used in the first generation of Indian PHWRs is a mobile equipment on wheels moving over fixed rails. As this configuration was found unsuitable for withstanding strong seismic disturbances, a bridge type design with fixed columns was evolved for the next generation of reactors. Initially, the seismic analysis of the fuelling machine bridge and carriage was done using static structural analysis and values of natural frequencies for various structures were computed. The structures were suitably modified based on the results of this analysis. Subsequently, a detailed dynamic seismic analysis using finite element model has been completed for both coupled and uncoupled conditions. The qualification of the structure has been carried out as per ASME section 111 Division 1, sub section NF. Details of the significant design features, static and dynamic analysis, results and conclusions are given in the presentation. (author). 4 refs., 4 tabs., 7 figs.

  17. CNG/diesel buses for Texas school districts

    International Nuclear Information System (INIS)

    Armstrong, J.H.

    1993-01-01

    At the present time, the preponderance of trucks, buses and other heavy duty vehicles are powered by diesel engines. The reasons for the change from gasoline to diesel engines are all basically economic, due to the longer life and lower operating costs of diesel engines, as compared to gasoline engines. This provides a compelling reason to continue to use these engines, even if powered by fuel other than diesel. A major strategy within the industry has been the various attempts to adapt diesel engines to alternative fuels. These conversions have been largely to either methanol or natural gas, with propane joining the race just recently. This strategy takes advantage of the remaining life of existing vehicles by converting engines rather than purchasing a new engine (and/or vehicle) designed for and dedicated to an alternate fuel. Although diesel engines have been converted to run on natural gas, there are substantial challenges that must be met. The following describes some of the technical approaches being used for diesel engine conversions

  18. Potential of multi-purpose liquid metallic fuelled fast reactor (MPFR) as a hydrogen production system

    International Nuclear Information System (INIS)

    Endo, H.; Ninokata, H.; Netchaev, A.; Sawada, T.

    2001-01-01

    Nuclear energy is the only effective alternative energy source to fossil fuels in the next century. Therefore future nuclear power plants should satisfy the following three requirements: i) multiple energy conversion capability with high temperature not only for electricity generation but also for hydrogen production, ii) extended siting capability so as to eliminate on-site refuelling, and iii) passive safety features. An aim of this paper is to describe the basic concept of the multi-purpose liquid metallic fuelled fast reactor system (MPFR). The MPFR introduces the U-Pu-X (X: Mn, Fe, Co) liquid metallic alloy with Ta and Ta/TaC structural materials, and satisfies all of the conditions listed above based on the following characteristics of the liquid metallic fuel: high temperature operation between 650 deg C (sodium-cooled system) and 1 200 deg C (lead-cooled system), a core lifetime of 15-30 years without radiation damage of fuel materials, and enhanced passive safety by the thermal expansion of liquid fuel and the avoidance of re-criticality due to local core fuel dispersion at fuel failure events. (authors)

  19. An assessment of methods of calculating Doppler effects in plutonium fuelled sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Reddell, G.

    1979-01-01

    After a survey of the requirements, an assessment of UK methods and data is made on the basis of the following work. First, the analysis of the SEFOR Doppler experiments, carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code and whole reactor diffusion theory calculations of the neutron flux. Second, the analysis of some Japanese FCA central sample perturbation measurements of structural material Doppler effects. Third, an assessment of the accuracy of Doppler predictions in a sodium voided core using results from Zebra 5 and BIZET, and theoretical studies of additional effects relevant to power reactors and not covered by the above analyses, including the following, the calculation of Doppler effects at high temperature, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. The importance of crystalline binding effects in the fuel are discussed as is the importance of reactor material boundaries in the calculation of resonance shielding effects. Some suggestions for further Doppler studies are made. (U.K.)

  20. CRL research reactor diesel generator reliability study 1960 - 1992

    International Nuclear Information System (INIS)

    Winfield, D.J.; McCauley, G.M.

    1994-07-01

    A data base has been provided for the Chalk River Laboratories (CRL) research reactor diesel generator reliability, for use in risk assessment studies of CRL research reactors. Data from 1960 to end of 1992 have been collected, representing 358 diesel generator years of experience. The data is used to provide failure-to-start probabilities and failure-to-run rates. Data is also classified according to subsystem failures, multiple failures and common cause failures. Comparisons with other recent studies of nuclear power plant