WorldWideScience

Sample records for fueled carbonate fuel

  1. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  2. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  3. Molten carbonate fuel cell separator

    Science.gov (United States)

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  4. Forest fuel and carbon balances

    International Nuclear Information System (INIS)

    Lundborg, A.

    1994-10-01

    Forest fuel, i.e., branches and tops that remain after felling, are not considered to give a net surplus of carbon dioxide to the atmosphere. In order to, if possible, verify this theory a survey was made of the literature concerning different carbon flows related to forest fuel. Branches and needles that are not utilised as fuel nonetheless eventually become decomposed to carbon dioxide. Branches and stem wood are broken down in occasional cases to 60-80% already within 5-6 years but the decomposition rate varies strongly. A small amount of existing data suggest that branches and stems are broken down almost completely within 60-70 years, and earlier in some cases. Lignin is the component in needles and wood that is the most resistant to decomposition. Decomposition is favoured by optimal temperature and moisture, ground contact and ground animals. Material that is mulched during soil preparation is decomposed considerably faster than material that lies on the soil surface. Felling residues that are left on the soil are a large momentary addition to the soil's reserves of organic material but after a number of years the difference in soil organic material is small between places where fuel has been removed and places where felling residues have been left. High nitrogen deposition, fire control and effective forestry are factors that contribute to the increases in the reserves of soil organic material. It appears to be a good approximation to consider the forest fuel as being a neutral fuel as regards carbon dioxide in a longer perspective. In comparison with other biofuels and fossil fuels, forest fuel appears, together with Salix, to be the fuel that results in very little extra discharge of carbon dioxide or other greenhouse gases during its production, transport and processing. 70 refs, 5 figs, tabs

  5. Carbon-based Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  6. Clean energy from a carbon fuel cell

    Science.gov (United States)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  7. Turning carbon dioxide into fuel.

    Science.gov (United States)

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  8. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R. L. (Rodney L.); Inbody, M. A. (Michael A.); Perry, W. L. (William Lee); Parkinson, W. J. (William Jerry),

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  9. Carbonate fuel cells: Milliwatts to megawatts

    Science.gov (United States)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  10. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  11. Carbon monoxide-fueled solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Homel, Michael; Koh, Joon Ho [Materials and Systems Research, Inc., 5395 West 700 South, Salt Lake City, UT 84104 (United States); Guer, Turgut M. [Direct Carbon Technologies, LLC, 525 University Avenue, Suite 1400, Palo Alto, CA 94301 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Virkar, Anil V. [Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2010-10-01

    This study explored CO as a primary fuel in anode-supported solid oxide fuel cells (SOFCs) of both tubular and planar geometries. Tubular single cells with active areas of 24 cm{sup 2} generated power up to 16 W. Open circuit voltages for various CO/CO{sub 2} mixture compositions agreed well with the expected values. In flowing dry CO, power densities up to 0.67 W cm{sup -2} were achieved at 1 A cm{sup -2} and 850 C. This performance compared well with 0.74 W cm{sup -2} measured for pure H{sub 2} in the same cell and under the same operating conditions. Performance stability of tubular cells was investigated by long-term testing in flowing CO during which no carbon deposition was observed. At a constant current of 9.96 A (or, 0.414 A cm{sup -2}) power output remained unchanged over 375 h of continuous operation at 850 C. In addition, a 50-cell planar SOFC stack was operated at 800 C on 95% CO (balance CO{sub 2}), which generated 1176 W of total power at a power density of 224 mW cm{sup -2}. The results demonstrate that CO is a viable primary fuel for SOFCs. (author)

  12. Challenges in developing direct carbon fuel cells.

    Science.gov (United States)

    Jiang, Cairong; Ma, Jianjun; Corre, Gael; Jain, Sneh L; Irvine, John T S

    2017-05-22

    A direct carbon fuel cell (DCFC) can produce electricity with both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells. Although the first DCFC prototype was proposed in 1896, there was, until the 1970s, little sustained effort to investigate further, because of technology development issues. Interest in DCFCs has recently been reinvigorated as a possible method of replacing conventional coal-fired power plants to meet the demands for lower CO 2 emissions, and indeed for efficient utilisation of waste derived chars. In this article, recent developments in direct carbon conversion are reviewed, with the principal emphasis on the materials involved. The development of electrolytes, anodes and cathodes as well as fuel sources is examined. The activity and chemical stability of the anode materials are a critical concern addressed in the development of new materials. Redox media of molten carbonate or molten metal facilitating the transportation of ions offer promising possibilities for carbon oxidation. The suitability of different carbon fuels in various DCFC systems, in terms of crystal structure, surface properties, impurities and particle size, is also discussed. We explore the influence of a variety of parameters on the electrochemical performance of DCFCs, with regard to their open circuit voltage, power output and lifetime. The challenges faced in developing DCFCs are summarised, and potential prospects of the system are outlined.

  13. FUEL PROCESSING FOR FUEL CELLS: EFFECTS ON CATALYST DURABILITY AND CARBON FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    R. BORUP; M. INBODY; B. MORTON; L. BROWN

    2001-05-01

    On-board production of hydrogen for fuel cells for automotive applications is a challenging developmental task. The fuel processor must show long term durability and under challenging conditions. Fuel processor catalysts in automotive fuel processors will be exposed to large thermal variations, vibrations, exposure to uncontrolled ambient conditions, and various impurities from ambient air and from fuel. For the commercialization of fuel processors, the delineation of effects on catalyst activity and durability are required. We are studying fuels and fuel constituent effects on the fuel processor system as part of the DOE Fuel Cells for Transportation program. Pure fuel components are tested to delineate the fuel component effect on the fuel processor and fuel processor catalysts. Component blends are used to simulate ''real fuels'', with various fuel mixtures being examined such as reformulated gasoline and naptha. The aliphatic, napthenic, olefin and aromatic content are simulated to represent the chemical kinetics of possible detrimental reactions, such as carbon formation, during fuel testing. Testing has examined the fuel processing performance of different fuel components to help elucidate the fuel constituent effects on fuel processing performance and upon catalyst durability. Testing has been conducted with vapor fuels, including natural gas and pure methane. The testing of pure methane and comparable testing with natural gas (97% methane) have shown some measurable differences in performance in the fuel processor. Major gasoline fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared for their effect on the fuel processing performance. Experiments have been conducted using high-purity compounds to observe the fuel processing properties of the individual components and to document individual fuel component performance. The relative carbon formation of different fuel constituents have been measured by

  14. Climate consequences of low-carbon fuels: The United States Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Hill, Jason; Tajibaeva, Liaila; Polasky, Stephen

    2016-01-01

    A common strategy for reducing greenhouse gas (GHG) emissions from energy use is to increase the supply of low-carbon alternatives. However, increasing supply tends to lower energy prices, which encourages additional fuel consumption. This “fuel market rebound effect” can undermine climate change mitigation strategies, even to the point where efforts to reduce GHG emissions by increasing the supply of low-carbon fuels may actually result in increased GHG emissions. Here, we explore how policies that encourage the production of low-carbon fuels may result in increased GHG emissions because the resulting increase in energy use overwhelms the benefits of reduced carbon intensity. We describe how climate change mitigation strategies should follow a simple rule: a low-carbon fuel with a carbon intensity of X% that of a fossil fuel must displace at least X% of that fossil fuel to reduce overall GHG emissions. We apply this rule to the United States Renewable Fuel Standard (RFS2). We show that absent consideration of the fuel market rebound effect, RFS2 appears to reduce GHG emissions, but once the fuel market rebound effect is factored in, RFS2 actually increases GHG emissions when all fuel GHG intensity targets are met. - Highlights: • Low-carbon fuels partially displace petroleum via fuel market rebound effect. • Synthesis of recent analyses shows incomplete petroleum displacement by biofuels. • Fuel market rebound effect can reduce or reverse climate benefit of low-carbon fuels. • Fossil fuel displacement must exceed relative carbon footprint of a low-carbon fuel. • The Renewable Fuel Standard increases greenhouse gas emissions when mandate is met.

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  16. Coal derived fuel gases for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiers operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.

  17. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  18. Carbon-based Fuel Cell. Final report

    International Nuclear Information System (INIS)

    Steven S. C. Chuang

    2005-01-01

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO 2 , and (3) the production of a nearly pure CO 2 exhaust stream for the direct CO 2 sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts

  19. Fuel Mix Impacts from Transportation Fuel Carbon Intensity Standards in Multiple Jurisdictions

    Science.gov (United States)

    Witcover, J.

    2017-12-01

    Fuel carbon intensity standards have emerged as an important policy in jurisdictions looking to target transportation greenhouse gas (GHG) emissions for reduction. A carbon intensity standard rates transportation fuels based on analysis of lifecycle GHG emissions, and uses a system of deficits and tradable, bankable credits to reward increased use of fuels with lower carbon intensity ratings while disincentivizing use of fuels with higher carbon intensity ratings such as conventional fossil fuels. Jurisdictions with carbon intensity standards now in effect include California, Oregon, and British Columbia, all requiring 10% reductions in carbon intensity of the transport fuel pool over a 10-year period. The states and province have committed to grow demand for low carbon fuels in the region as part of collaboration on climate change policies. Canada is developing a carbon intensity standard with broader coverage, for fuels used in transport, industry, and buildings. This study shows a changing fuel mix in affected jurisdictions under the policy in terms of shifting contribution of transportation energy from alternative fuels and trends in shares of particular fuel pathways. It contrasts program designs across the jurisdictions with the policy, highlights the opportunities and challenges these pose for the alternative fuel market, and discusses the impact of having multiple policies alongside federal renewable fuel standards and sometimes local carbon pricing regimes. The results show how the market has responded thus far to a policy that incentivizes carbon saving anywhere along the supply chain at lowest cost, in ways that diverged from a priori policy expectations. Lessons for the policies moving forward are discussed.

  20. Cathode-supported hybrid direct carbon fuel cells

    DEFF Research Database (Denmark)

    Gil, Vanesa; Gurauskis, Jonas; Deleebeeck, Lisa

    2017-01-01

    The direct conversion of coal to heat and electricity by a hybrid direct carbon fuel cell (HDCFC) is a highly efficient and cleaner technology than the conventional combustion power plants. HDCFC is defined as a combination of solid oxide fuel cell and molten carbonate fuel cell. This work...

  1. Carbon as a fuel for efficient electricity generation in carbon solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available In this paper, the impact of the physicochemical properties of carbonaceous solid fuels on the performance of a direct carbon solid oxide fuel cell (DC-SOFC was investigated. High-purity synthetic carbon powders such as carbon black N-220 and Carbo Medicinalis FP5 were chosen for analytical and electrochemical investigations in a DC-SOFC. The research focussed on choosing an optimised, cost-effective, high-purity carbon powder which could be applied as a solid reference fuel for all tests performed on a single DC-SOFC cell as well as on DC-SOFC stack constructions. Most of the electrochemical investigations described in this paper were performed using square DCSOFCs with dimensions of 5 × 5 cm. The relationship between structure, physicochemical properties, and electrochemical reactivity in a DC-SOFC was analysed.

  2. Electrochemical oxidation of carbon-containing fuels and their dynamics in low-temperature fuel cells.

    Science.gov (United States)

    Krewer, Ulrike; Vidakovic-Koch, Tanja; Rihko-Struckmann, Liisa

    2011-10-04

    Fuel cells can convert the energy that is chemically stored in a compound into electrical energy with high efficiency. Hydrogen could be the first choice for chemical energy storage, but its utilization is limited due to storage and transport difficulties. Carbon-containing fuels store chemical energy with significantly higher energy density, which makes them excellent energy carriers. The electro-oxidation of carbon-containing fuels without prior reforming is a more challenging and complex process than anodic hydrogen oxidation. The current understanding of the direct electro-oxidation of carbon-containing fuels in low-temperature fuel cells is reviewed. Furthermore, this review covers various aspects of electro-oxidation for carbon-containing fuels in non-steady-state reaction conditions. Such dynamic investigations open possibilities to elucidate detailed reaction kinetics, to sense fuel concentration, or to diagnose the fuel-cell state during operation. Motivated by the challenge to decrease the consumption of fossil fuel, the production routes of the fuels from renewable resources also are reviewed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fuel cells

    Science.gov (United States)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  4. Method of operating a molten carbonate fuel cell, a fuel cell, a fuel cell stack and an apparatus provided therewith

    NARCIS (Netherlands)

    Hemmes, K.; Dijkema, G.P.J.

    1998-01-01

    A method of operating a molten carbonate fuel cell having an anode and a cathode and in between a matrix comprising molten carbonate. Carbon dioxide is introduced into the matrix at a distance from the cathode. This greatly reduces the cathode's deterioration and in the system design increases the

  5. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  6. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    Science.gov (United States)

    Nolan W. Brewer; Alistair M.S. Smith; Jeffery A. Hatten; Philip E. Higuera; Andrew T. Hudak; Roger D. Ottmar; Wade T. Tinkham

    2013-01-01

    Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-altered carbon is...

  7. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  8. Carbon nanotubes based nafion composite membranes for fuel cell applications

    CSIR Research Space (South Africa)

    Cele, NP

    2009-01-01

    Full Text Available composite membranes. Keywords: Carbon Nanotubes, Conductivity, Fuel Cell, Nafion, Nanocomposite Membranes, Thermal Properties, Water Uptake FUEL CELLS 00, 0000, No. 0, 1–8 ? 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 ORIGINA L RESEAR CH PAPE... used strategies to overcome these drawbacks is the modification of Nafion by using polymer nanocomposite (PNC) technology. PNCs have recently shown a worldwide growth effort especially in the fabrication of high temperature PEM for fuel cells [18...

  9. Critical survey on electrode aging in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K.

    1979-12-01

    To evaluate potential electrodes for molten carbonate fuel cells, we reviewed the literature pertaining to these cells and interviewed investigators working in fuel cell technology. In this critical survey, the effect of three electrode aging processes - corrosion or oxidation, sintering, and poisoning - on these potential fuel-cell electrodes is presented. It is concluded that anodes of stabilized nickel and cathodes of lithium-doped NiO are the most promising electrode materials for molten carbonate fuel cells, but that further research and development of these electrodes are needed. In particular, the effect of contaminants such as H/sub 2/S and HCl on the nickel anode must be investigated, and methods to improve the physical strength and to increase the conductivity of NiO cathodes must be explored. Recommendations are given on areas of applied electrode research that should accelerate the commercialization of the molten carbonate fuel cell. 153 references.

  10. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Berger, R.J.; Doesburg, E.B.M.; Doesburg, E.B.M.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In

  11. Wildland fire emissions, carbon and climate: Characterizing wildland fuels

    Science.gov (United States)

    David R. Weise; Clinton S. Wright

    2013-01-01

    Smoke from biomass fires makes up a substantial portion of global greenhouse gas, aerosol, and black carbon (GHG/A/BC) emissions. Understanding how fuel characteristics and conditions affect fire occurrence and extent, combustion dynamics, and fuel consumption is critical for making accurate, reliable estimates of emissions production at local, regional, national, and...

  12. Protection of porous carbon fuel particles from boudouard corrosion

    Science.gov (United States)

    Cooper, John F.

    2015-05-26

    A system for producing energy that includes infusing porous carbon particles produced by pyrolysis of carbon-containing materials with an off-eutectic salt composition thus producing pore-free carbon particles, and reacting the carbon particles with oxygen in a fuel cell according to the reaction C+O.sub.2=CO.sub.2 to produce electrical energy.

  13. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  14. Results of industrial tests of carbonate additive to fuel oil

    Science.gov (United States)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  15. Carbon Risk and the Fossil Fuel Industry

    International Nuclear Information System (INIS)

    Mathieu, Carole

    2015-04-01

    As calls for ambitious climate action intensify, questions arise concerning the resilience of the fossil fuel industry in a world ever more inclined to favour climate protection. This article will attempt to assess the extent of present risks and show how the strength of debate can affect practices and strategy employed by companies in this sector. (author)

  16. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  17. California's Low-Carbon Fuel Standard - Compliance Trends

    Science.gov (United States)

    Witcover, J.; Yeh, S.

    2013-12-01

    Policies to incentivize lower carbon transport fuels have become more prevalent even as they spark heated debate over their cost and feasibility. California's approach - performance-based regulation called the Low Carbon Fuel Standard (LCFS) - has proved no exception. The LCFS aims to achieve 10% reductions in state transport fuel carbon intensity (CI) by 2020, by setting declining annual CI targets, and rewarding fuels for incremental improvements in CI beyond the targets while penalizing those that fail to meet requirements. Even as debate continues over when new, lower carbon fuels will become widely available at commercial scale, California's transport energy mix is shifting in gradual but noticeable ways under the LCFS. We analyze the changes using available data on LCFS fuels from the California Air Resources Board and other secondary sources, beginning in 2011 (the first compliance year). We examine trends in program compliance (evaluated through carbon credits and deficits generated), and relative importance of various transport energy pathways (fuel types and feedstocks, and their CI ratings, including new pathways added since the program's start). We document a roughly 2% decline in CI for gasoline and diesel substitutes under the program, with compliance achieved through small shifts toward greater reliance on fuels with lower CI ratings within a relatively stable amount of transport energy derived from alternatives to fossil fuel gasoline and diesel. We also discuss price trends in the nascent LCFS credit market. The results are important to the broader policy debate about transportation sector response to market-based policies aimed at reducing the sector's greenhouse gas emissions.

  18. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    OpenAIRE

    Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P. F.; Wang, X.; Brett, D. J.

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion...

  19. First European fuel cell installation with anaerobic digester gas in a molten carbonate fuel cell

    Science.gov (United States)

    Krumbeck, M.; Klinge, T.; Döding, B.

    The City of Ahlen in North Rhine Westphalia, Germany and RWE Fuel Cells GmbH, Essen, cooperate in order to install a molten carbonate fuel cell in the municipal sewage works of Ahlen in May/June 2005. The MCFC unit, a so-called HotModule made by MTU CFC Solutions, Ottobrunn operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Europe. This article outlines the experiences of RWE Fuel Cells with planning, installation and operation of MCFC systems and is focussing on the use of digester gas. The engineering and installation phase is described regarding to the special features of digester gas, for example variation in gas composition and impurities as well as different flow rates. The results of the first months of operation are interpreted and influences to the performance of the fuel cell on digester gas composition are compared. One focus of the recent RWE Fuel Cells projects is the use of MCFC systems using different biofuels. With the results from planning, installation and operation of the MCFC in Ahlen a system design for the application of different fuels can be validated and tested.

  20. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    Science.gov (United States)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-01-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  1. All ceramic structure for molten carbonate fuel cell

    Science.gov (United States)

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  2. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  3. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  4. The Role of Synthetic Fuels for a Carbon Neutral Economy

    Directory of Open Access Journals (Sweden)

    Rui Namorado Rosa

    2017-04-01

    Full Text Available Fossil fuels depletion and increasing environmental impacts arising from their use call for seeking growing supplies from renewable and nuclear primary energy sources. However, it is necessary to simultaneously attend to both the electrical power needs and the specificities of the transport and industrial sector requirements. A major question posed by the shift away from traditional fossil fuels towards renewable energy sources lies in matching the power demand with the daily and seasonal oscillation and the intermittency of these natural energy fluxes. Huge energy storage requirements become necessary or otherwise the decline of the power factor of both the renewable and conventional generation would mean loss of resources. On the other hand, liquid and gaseous fuels, for which there is vast storage and distribution capacity available, appear essential to supply the transport sector for a very long time ahead, besides their domestic and industrial roles. Within this context, the present assessment suggests that proven technologies and sound tested principles are available to develop an integrated energy system, relying on synthetic fuels. These would incorporate carbon capture and utilization in a closed carbon cycle, progressively relying mostly on solar and/or nuclear primary sources, providing both electric power and gaseous/liquid hydrocarbon fuels, having ample storage capacity, and able to timely satisfy all forms of energy demand. The principles and means are already available to develop a carbon-neutral synthetic fuel economy.

  5. Method of making molten carbonate fuel cell ceramic matrix tape

    Science.gov (United States)

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  6. Coated powder for electrolyte matrix for carbonate fuel cell

    International Nuclear Information System (INIS)

    Iacovangelo, C.D.; Browall, K.W.

    1985-01-01

    A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell

  7. Methods for continuous direct carbon fuel cell operation with a circulating electrolyte slurry

    Energy Technology Data Exchange (ETDEWEB)

    Harjes, Daniel I.; Dineen, Jr., D. Andrew; Guo, Liang; Calo, Joseph M.; Bloomfield, Valerie J.

    2017-02-07

    The present invention relates to methods and systems related to fuel cells, and in particular, to direct carbon fuel cells. The methods and systems relate to cleaning and removal of components utilized and produced during operation of the fuel cell, regeneration of components utilized during operation of the fuel cell, and generating power using the fuel cell.

  8. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  9. MODELING AND DESIGN FOR A DIRECT CARBON FUEL CELL WITH ENTRAINED FUEL AND OXIDIZER

    Energy Technology Data Exchange (ETDEWEB)

    Alan A. Kornhauser; Ritesh Agarwal

    2005-04-01

    The novel molten carbonate fuel cell design described in this report uses porous bed electrodes. Molten carbonate, with carbon fuel particles and oxidizer entrained, is circulated through the electrodes. Carbon may be reacted directly, without gasification, in a molten carbonate fuel cell. The cathode reaction is 2CO{sub 2} + O{sub 2} 4e{sup -} {yields} 2CO{sub 3}{sup =}, while the anode reaction can be either C + 2CO{sub 3}{sup =} {yields} 3CO{sub 2} + 4e{sup -} or 2C + CO{sub 3}{sup =} {yields} 3CO + 2e{sup -}. The direct carbon fuel cell has an advantage over fuel cells using coal-derived synthesis gas in that it provides better overall efficiency and reduces equipment requirements. Also, the liquid electrolyte provides a means for transporting the solid carbon. The porous bed cell makes use of this carbon transport ability of the molten salt electrolyte. A one-dimensional model has been developed for predicting the performance of this cell. For the cathode, dependent variables are superficial O{sub 2} and CO{sub 2} fluxes in the gas phase, superficial O{sub 2} and CO{sub 2} fluxes in the liquid phase, superficial current density through the electrolyte, and electrolyte potential. The variables are related by correlations, from the literature, for gas-liquid mass transfer, liquid-solid mass transfer, cathode current density, electrode overpotential, and resistivity of a liquid with entrained gas. For the anode, dependent variables are superficial CO{sub 2} flux in the gas phase, superficial CO{sub 2} flux in the liquid phase, superficial C flux, superficial current density through the electrolyte, and electrolyte potential. The same types of correlations relate the variables as in the cathode, with the addition of a correlation for resistivity of a fluidized bed. CO production is not considered, and axial dispersion is neglected. The model shows behavior typical of porous bed electrodes used in electrochemical processes. Efficiency is comparable to that of

  10. Assessment of technologies to meet a low carbon fuel standard.

    Science.gov (United States)

    Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C

    2009-09-15

    California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada.

  11. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    Science.gov (United States)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  12. Molten carbonate fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  13. Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax

    NARCIS (Netherlands)

    van der Ploeg, F.; Rezai, A.

    2017-01-01

    A stylised analytical framework is used to show how the global carbon tax and the amount of untapped fossil fuel can be calculated from a simple rule given estimates of society's rate of time impatience and intergenerational inequality aversion, the extraction cost technology, the rate of technical

  14. Research and development issues for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  15. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Sci., Vol. 36, No. 4, August 2013, pp. 563–573. c Indian Academy of Sciences. Sulfonated carbon black-based composite membranes for fuel cell applications .... All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR ...

  16. ATTACK ON WATER BY CARBON OF SOLID FUEL

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2008-01-01

    Full Text Available The paper considers a continuous method for attack of high temperature water steam by carbon of solid fuel (coke. Design of water-coal gas generator and experimental stand, methodology for  measurements of parameters of water-coal gasification are described in the paper.

  17. The nuclear fuel cycle versus the carbon cycle

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2005-01-01

    Nuclear power provides approximately 17% of the world's electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 gigatonnes (Gt) of C/yr. This is a modest reduction as compared with global emissions of carbon, ∼7 Gt C/yr. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbon-free sources, such as nuclear power, would have to expand total production of energy by factors of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/yr, depending on the type of carbon-based energy source that is displaced. This three-fold increase utilizing present nuclear technologies would result in 25,000 metric tonnes (t) of spent nuclear fuel (SNF) per year, containing over 200 t of plutonium. This is compared to a present global inventory of approximately 280,000 t of SNF and >1,700 t of Pu. A nuclear weapon can be fashioned from as little as 5 kg of 239 Pu. However, there is considerable technological flexibility in the nuclear fuel cycle. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different types of reactor (such as, thermal and fast neutron reactors). The neutron energy spectrum has a significant effect on the fission product yield, and the consumption of long-lived actinides, by fission, is best achieved by fast neutrons. Within each cycle, the volume and composition of the high-level nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of materials used to immobilize different radionuclides. As an example, a 232 Th-based fuel cycle can be used to breed fissile 233 U with minimum production of Pu. In this paper, I will contrast the production of excess carbon in the form of CO 2 from fossil fuels with

  18. Fossil fuels -- future fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  19. Strategic planning for molten carbonate fuel cell development and commercialization

    Science.gov (United States)

    Williams, M. C.; Mayfield, M. J.

    The molten carbonate fuel cell (MCFC), a high-temperature fuel cell, is a promising energy conversion product for generating electricity. Natural gas availability appears to play a key role in MCFC commercialization; natural gas MCFC and Integrated Gasification MCFC (IGMCFC) are emerging power generation options that are responsive to requirements of Clean Air Act amendments and to guidance in National Energy Strategy. Goal of DOE IGMCFC program is to demonstrate the commercial readiness of this technology by the year 2010. DOE MCFC development objectives and planned activities are outlined.

  20. A Computer Model for Direct Carbonate Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, J.; Patel, P.S.; Farooque, M.; Maru, H.C.

    1997-04-01

    A 3-D computer model, describing fluid flow, heat and mass transfer, and chemical and electrochemical reaction processes, has been developed for guiding the direct carbonate fuel cell (DFC) stack design. This model is able to analyze the direct internal reforming (DIR) as well as the integrated IIR (indirect internal reforming)-DIR designs. Reasonable agreements between computed and fuel cell tested results, such as flow variations, temperature distributions, cell potentials, and exhaust gas compositions as well as methane conversions, were obtained. Details of the model and comparisons of the modeling results with experimental DFC stack data are presented in the paper.

  1. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  2. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  3. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-03

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li + Cl - ), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li + Cl - catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  4. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  5. Performance of carbon dioxide vent for direct methanol fuel cells

    Science.gov (United States)

    Prakash, Shruti; Kohl, Paul A.

    Direct methanol fuel cells have potentially high energy density if the balance of plant and fuel losses can be kept to a minimum. CO 2 accumulation in the fuel tank can lower the efficiency and performance of closed-tank methanol fuel cells. This report discusses the implementation of a passive CO 2 vent fabricated with poly(1-trimethyl silyl propyne) and 1,6-divinylperfluorohexane. The performance of the membrane as a selective vent for carbon dioxide in the presence of methanol has been studied at various operating conditions. First, the selectivity of the vent membrane improved with temperature. Second, the activation energy for permeation through the polymer membrane corresponded to diffusion controlled transport of CO 2 and sorption controlled transport for methanol vapor. The activation energy for CO 2 transport through the poly(1-trimethyl silyl propyne) and 1,6-divinylperfluorohexane membrane was less than that for a pure poly(1-trimethyl silyl propyne) membrane. Finally, the polymer had a high selectivity for carbon dioxide compared to both liquid and vapor phase methanol.

  6. Closing the carbon cycle through rational use of carbon-based fuels.

    Science.gov (United States)

    MacElroy, J M Don

    2016-01-01

    In this paper, a brief overview is presented of natural gas as a fuel resource with subsequent carbon capture and re-use as a means to facilitate reduction and eventual elimination of man-made carbon emissions. A particular focus is shale gas and, to a lesser extent, methane hydrates, with the former believed to provide the most reasonable alternative as a transitional fuel toward a low-carbon future. An emphasis is placed on the gradual elimination of fossil resource usage as a fuel over the coming 35 to 85 years and its eventual replacement with renewable resources and nuclear power. Furthermore, it is proposed that synthesis of chemical feedstocks from recycled carbon dioxide and hydrogen-rich materials should be undertaken for specific applications in the transport sector which require access to high energy density fuels. To achieve the latter, carbon dioxide capture is imperative and possible synthetic routes for chemical feedstock production are briefly reviewed.

  7. Development of a Direct Carbon Fuel Cell for Power and Fuels Cogeneration Directly from Plastic Trash Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop a simple processing concept based-on an advanced direct carbon fuel cell (DCFC) technology enabling...

  8. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  9. Prediction of current distribution in a molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, V.; Selman, J.R.; Sammells, A.F.

    1978-01-01

    A mathematical model has been developed to predict the performance of a molten carbonate fuel cell as a function of anode and cathode gas compositions, gas flow rates, and polarization characteristics. The effect of gas flow modes such as crossflow and coflow and the effect of higher pressures on the current distribution are studied. The predicted polarization curves agree well with the experimentally generated polarization curves. Conditions for incorporating a microscopic porous electrode model into the overall model development are briefly outlined.

  10. Development of large scale internal reforming molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Shinoki, T.; Matsumura, M. [Mitsubishi Electric Corp., Hyogo (Japan)

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  11. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis

    OpenAIRE

    Boldrin, P; Ruiz Trejo, E; Mermelstein, J; Bermudez Menendez, J; Ramirez Reina, T; Brandon, N

    2016-01-01

    Solid oxide fuel cells (SOFCs) are a rapidly emerging energy technology for a low carbon world, providing high efficiency, potential to use carbonaceous fuels and compatibility with carbon capture and storage. However, current state-of-the-art materials have low tolerance to sulfur, a common contaminant of many fuels, and are vulnerable to deactivation due to carbon deposition when using carbon-containing compounds. In this review we first study the theoretical basis behind carbon and sulfur ...

  12. Fossil fuel derivatives with reduced carbon. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  13. Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells

    Directory of Open Access Journals (Sweden)

    Le Quynh Hoa

    2017-11-01

    Full Text Available Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field.

  14. Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells

    Science.gov (United States)

    Vestergaard, Mun’delanji C.; Tamiya, Eiichi

    2017-01-01

    Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field. PMID:29125564

  15. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    Science.gov (United States)

    Roger D. Ottmar

    2014-01-01

    Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic...

  16. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  17. Method to produce carbon-cladded nuclear fuel particles

    International Nuclear Information System (INIS)

    Sturge, D.W.; Meaden, G.W.

    1978-01-01

    In the method charges of micro-spherules of fuel element are designed to have two carbon layers, whereby a one aims to achieve a uniform granulation (standard measurement). Two drums are used for this purpose connected behind one another. The micro-spherules coated with the first layer (phenolformaldehyde resin coated graphite particles) leave the first drum and enter the second one. Following the coating with a second layer, the micro-spherules are introduced into a grain size separator. The spherules that are too small are directly recycled into the second drum and those ones that are too large are recycled into the first drum after removing the graphite layers. The method may also be applied to metal cladded particles to manufacture cermet fuels. (RW) [de

  18. Recent advances in Carbon Nanotube based Enzymatic Fuel Cells

    Directory of Open Access Journals (Sweden)

    Serge eCosnier

    2014-10-01

    Full Text Available This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols or hydrogen at the anode and reduction of oxidants (O2, H2O2 at the cathode in complex media. The combination of carbon nanotubes, enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons, involved in the bio-electrocatalytic processes, can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications.

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  1. Hibiscus fiber carbon for fuel cell device material

    International Nuclear Information System (INIS)

    Nanik Indayaningsih; Anne Zulfia; Dedi Priadi; Suprapedi

    2010-01-01

    The objective of this research is carbon of hibiscus fibers for the application as basic material of fuel cell device. The carbon is made using a pyrolysis process in inert gas (nitrogen) for 1 hour at temperature of 500 °C, 700 °C and 900 °C. The X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and Impedance-Capacitance-Resistance-meter are used to find out the microstructure, morphology and electrical properties respectively. The results of the experiment showed that the carbon had a structure of amorphous, and as the semiconductor material the electrical conductivity was 5 x 10 -5 S.cm -1 to 4.9 x 10 -5 S.cm -1 increasing in accordance with the pyrolysis temperature. The morphology resembled to plaited mats constructed by porous fibers having width of 50 µm to 300 µm, thickness of 25 µm to 35 µm, and the porous size of 0.5 µm to 5 µm. This morphology enables carbon to be applied as a candidate for a basic material of the Proton Exchange Membrane Fuel Cell. (author)

  2. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  3. Reducing the carbon footprint of fuels and petrochemicals. Preprints

    International Nuclear Information System (INIS)

    Ernst, S.; Balfanz, U.; Buchholz, S.; Lichtscheidl, J.; Marchionna, M.; Nees, F.; Santacesaria, E.

    2012-01-01

    Within the DGMK conference between 08th and 10th October, 2012, in Berlin (Federal Republic of Germany) the following lectures were held: (1) Energy demand and mix for global welfare and stable ecosystems (A. Jess); (2) The EU's roadmap for moving to a low-carbon economy - Aspirations and reality for refiners (J. Lichtscheidl); (3) Applications of CCS technology to the oil and gas industries (M. Marchionna); (4) A new chemical system solution for acid gas removal (M. Seiler); (5) Hydrogenation of carbon dioxide towards synthetic natural gas - A route to effective future energy storage (M. Schoder); (6) Bio-MTBE - How to reduce CO 2 footprint in fuels with a well known premium gasoline component (O. Busch); (7) Use of waste materials for Biodiesel production (R. Vitiello); (8) From algae to diesel and kerosene - Tailored fuels via selective catalysis (C. Zhao); (9) Chemo-catalytic valorization of cellulose (R. Palkovits); (10) Cellulosic ethanol: Potential, technology and development status (M. Rarbach); (11) Methanation of carbon oxides - History, status quo and future perspectives (W. Kaltner); (12) Chemical storage of renewable electricity in hydrocarbon fuels via H 2 (H. Eilers); (13) Materials for the 21st century: Can the carbon come from CO 2 (S. Kissling); (14) Effect of CO 2 admixture on the catalytic performance of Ni-Nb-M-O catalysts in oxidative dehydrogenation of ethane to ethylene (A. Qiao); (15) Oxidative dehydrogenation of light alkanes (A. Meiswinkel); (16) Low carbon fuel and chemical production from waste gases (S. Simpson); (17) Methanol to propylene: From development to commercialization (S. Haag); (18) On the impact of olefins and aromatics in the methanol-to-hydrocarbon conversion over H-ZSM-5 catalysts (X. Sun); (19) Mn-Na 2 WO 4 /SiO 2 - An industrial catalyst for methane coupling (M. Yildiz); (20) Biorefineries - Prerequisites for the realization of a future bioeconomy (K. Wagemann); (21) A new process for the valorisation of a bio

  4. Reducing the carbon footprint of fuels and petrochemicals. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Balfanz, U.; Buchholz, S.; Lichtscheidl, J.; Marchionna, M.; Nees, F.; Santacesaria, E. (eds.)

    2012-07-01

    Within the DGMK conference between 08th and 10th October, 2012, in Berlin (Federal Republic of Germany) the following lectures were held: (1) Energy demand and mix for global welfare and stable ecosystems (A. Jess); (2) The EU's roadmap for moving to a low-carbon economy - Aspirations and reality for refiners (J. Lichtscheidl); (3) Applications of CCS technology to the oil and gas industries (M. Marchionna); (4) A new chemical system solution for acid gas removal (M. Seiler); (5) Hydrogenation of carbon dioxide towards synthetic natural gas - A route to effective future energy storage (M. Schoder); (6) Bio-MTBE - How to reduce CO{sub 2} footprint in fuels with a well known premium gasoline component (O. Busch); (7) Use of waste materials for Biodiesel production (R. Vitiello); (8) From algae to diesel and kerosene - Tailored fuels via selective catalysis (C. Zhao); (9) Chemo-catalytic valorization of cellulose (R. Palkovits); (10) Cellulosic ethanol: Potential, technology and development status (M. Rarbach); (11) Methanation of carbon oxides - History, status quo and future perspectives (W. Kaltner); (12) Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2} (H. Eilers); (13) Materials for the 21st century: Can the carbon come from CO{sub 2} (S. Kissling); (14) Effect of CO{sub 2} admixture on the catalytic performance of Ni-Nb-M-O catalysts in oxidative dehydrogenation of ethane to ethylene (A. Qiao); (15) Oxidative dehydrogenation of light alkanes (A. Meiswinkel); (16) Low carbon fuel and chemical production from waste gases (S. Simpson); (17) Methanol to propylene: From development to commercialization (S. Haag); (18) On the impact of olefins and aromatics in the methanol-to-hydrocarbon conversion over H-ZSM-5 catalysts (X. Sun); (19) Mn-Na{sub 2}WO{sub 4}/SiO{sub 2} - An industrial catalyst for methane coupling (M. Yildiz); (20) Biorefineries - Prerequisites for the realization of a future bioeconomy (K. Wagemann); (21) A new process

  5. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  6. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  7. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  8. A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chong Luo

    2015-01-01

    Full Text Available The fuel cell has the nature of high energy conversion efficiency and low pollutant emission. Carbon nanotubes used for fuel cells can decrease the needs of noble metals which are used for catalyst and improve the performance of fuel cells. The application of carbon nanotubes in fuel cells is summarized and discussed. The following aspects are described in this paper: the method used to reduce the platinum, the effect of carbon nanotubes on the fuel cell, improving the performance of fuel cell catalysts, the interaction between catalyst and carbon nanotube support, and the synthetic conditions of carbon nanotube supported catalyst. We summarize some of the results of previous studies and raise expectations for the microscopic state study of carbon nanotubes in the future.

  9. Examining fuel economy and carbon standards for light vehicles

    International Nuclear Information System (INIS)

    Plotkin, Steven E.

    2009-01-01

    This paper examines fuel economy and carbon standards for light vehicles (passenger cars and light trucks), discussing the rationale for standards, appropriate degrees of stringency and timing, regulatory structure, and ways to deal with 'real world' fuel economy issues that may not be dealt with by the standards. There is no optimum method of establishing the stringency of a standard, but policymakers can be informed by analyses of technology cost-effectiveness from the viewpoint of different actors (e.g., society, vehicle purchasers) and of 'top runners'-vehicles in the current fleet, or projections of future leading vehicles, that can serve as models for average vehicles some years later. The focus of the paper is on the US light vehicle fleet, with some discussion of applications to the European Union. A 'leading edge' midsize car for the 2020 timeframe is identified, and various types of attribute-based standards are discussed. For the US, a 12-15 year target for new vehicle fleet improvement of 30-50% seems a reasonable starting point for negotiations. For 2030 or so, doubling current fuel economy is possible. In both cases, adjustments must be made in response to changing economic circumstances and government and societal priorities.

  10. Overview of molten carbonate fuel cell technology development

    Science.gov (United States)

    Williams, M. C.; Parsons, E. L., Jr.; Mayfield, M. J.

    The molten carbonate fuel cell (MCFC) has been identified as a promising energy conversion product for development and commercialization. Overall DOE MCFC program goal is to develop and commercialize low-cost, simple fuel cell systems. Objective of the MCFC program is to develop and demonstrate MCFC power plant systems. Significant progress has already been made in developing the MCFC technology in the U.S. Manufacturing and test facility development and testing by the MCFC developers has also been significant. Product improvement issues need to be resolved to vector the MCFC technology from its current status to a multi-fuel, integrated, simple, low-cost, modular, market-responsive power plant product. MCFC's must undergo continuing product refinement to ensure that durability and cost reduction through modularization and stack manufacturing scale-up occurs. MCFC developers need to continue to be responsive to end-users in potential markets. MCFC's appear to have a place in a decentralized power industry future. Natural gas availability appears to play a key role in MCFC commercialization.

  11. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-01-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  12. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-05-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  13. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  14. Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions

    Science.gov (United States)

    M. North; M Hurteau; J Innes

    2009-01-01

    Depending on management, forests can be an important sink or source of carbon that if released as CO2 could contribute to global warming. Many forests in the western United States are being treated to reduce fuels, yet the effects of these treatments on forest carbon are not well understood. We compared the immediate effects of fuels treatments on carbon stocks and...

  15. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  16. Hydrothermal carbonization of tobacco stalk for fuel application.

    Science.gov (United States)

    Cai, Jiaxiao; Li, Bin; Chen, Chaoying; Wang, Jing; Zhao, Min; Zhang, Ke

    2016-11-01

    Tobacco stalks are an abundant biomass resource which are otherwise treated as waste. In this work, the effect of hydrothermal carbonization temperature and time on the structures, chemical compositions and combustion characteristics of hydrochars obtained from tobacco stalks were evaluated. The carbon content, higher heating value, and energy yield increased with accompanying decrease in hydrogen and oxygen contents with the increase of treatment temperature and time. The evolution of the H/C and O/C atomic ratios indicated dehydration and devolatilization processes occurred during hydrothermal carbonization. The weight loss, combustion range and characteristic temperatures of tobacco stalks were significantly modified after hydrothermal carbonization, resulting in higher ignition temperatures and higher energy density. The kinetics model, Coats-Redfern method revealed the activation energy of hydrochars in zone 2 and 3 were among 43.7-74.8kJ/mol and 46.7-85.8kJ/mol, respectively. Our results show that hydrothermal carbonization reaction can facilitate transforming tobacco stalks into energy-rich solid fuel. Copyright © 2016. Published by Elsevier Ltd.

  17. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  18. Thermodynamic analysis of gasification-driven direct carbon fuel cells

    Science.gov (United States)

    Lee, Andrew C.; Mitchell, Reginald E.; Gür, Turgut M.

    The gasification-driven direct carbon fuel cell (GD-DCFC) system is compared with systems using separate gasification steps prior to work extraction, under autothermal or indirect constraints. Using simple system exergy analysis, the maximum work output of the indirect gasification scheme is 4-7% lower than the unconstrained direct approach, while the work output of the autothermal gasification approach is 12-13% lower than the unconstrained case. A more detailed calculation for the DCFC and indirect gasification plants, using common solid fuel compositions, gives conversion efficiencies in the range of 51-58% at an operating voltage of 0.7 V selected for both systems in this study. In contrast, the conversion efficiency of the autothermal gasification approach is estimated to be 33-35% at 0.7 V. DCFC efficiencies can be increased to over 60% by an increase in operating voltage and/or inclusion of a bottoming cycle. The thermodynamic model also indicates that steam gasification yields similar work output and thermal efficiency as for CO 2 gasification. Open circuit potential measurements agree with equilibrium calculations both for the C-O and C-H-O gasification systems, confirming the governing mechanism and feasibility of the GD-DCFC. Current-voltage measurements on an un-optimized system demonstrate power densities of 220 mW cm -2 at 0.68 V during operation at 1178 K.

  19. Thermodynamic analysis of gasification-driven direct carbon fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew C.; Mitchell, Reginald E. [Department of Mechanical Engineering, Stanford University, 452 Escondido Mall, Building 520, Stanford, CA 94305 (United States); Guer, Turgut M. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Durand Building, Stanford, CA 94305 (United States); Direct Carbon Technologies, LLC, Palo Alto, CA 94301 USA

    2009-12-01

    The gasification-driven direct carbon fuel cell (GD-DCFC) system is compared with systems using separate gasification steps prior to work extraction, under autothermal or indirect constraints. Using simple system exergy analysis, the maximum work output of the indirect gasification scheme is 4-7% lower than the unconstrained direct approach, while the work output of the autothermal gasification approach is 12-13% lower than the unconstrained case. A more detailed calculation for the DCFC and indirect gasification plants, using common solid fuel compositions, gives conversion efficiencies in the range of 51-58% at an operating voltage of 0.7 V selected for both systems in this study. In contrast, the conversion efficiency of the autothermal gasification approach is estimated to be 33-35% at 0.7 V. DCFC efficiencies can be increased to over 60% by an increase in operating voltage and/or inclusion of a bottoming cycle. The thermodynamic model also indicates that steam gasification yields similar work output and thermal efficiency as for CO{sub 2} gasification. Open circuit potential measurements agree with equilibrium calculations both for the C-O and C-H-O gasification systems, confirming the governing mechanism and feasibility of the GD-DCFC. Current-voltage measurements on an un-optimized system demonstrate power densities of 220 mW cm{sup -2} at 0.68 V during operation at 1178 K. (author)

  20. Estimating diesel fuel consumption and carbon dioxide emissions from forest road construction

    Science.gov (United States)

    Dan Loeffler; Greg Jones; Nikolaus Vonessen; Sean Healey; Woodam Chung

    2009-01-01

    Forest access road construction is a necessary component of many on-the-ground forest vegetation treatment projects. However, the fuel energy requirements and associated carbon dioxide emissions from forest road construction are unknown. We present a method for estimating diesel fuel consumed and related carbon dioxide emissions from constructing forest roads using...

  1. Electrode reaction mechanisms in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Selman, J.R.; Nishina, T.; Lin, Y.P.; Yeager, E.B.; Tryk, D.A.

    1989-07-01

    This report describes the results of a joint research effort at Illinois Institute of Technology (IIT) and Case Western Reserve University (CWRU) to elucidate the reaction mechanism of oxygen reduction at the cathode of the molten carbonate fuel cell (MCFC). This research project was aimed at developing novel experimental approaches to the chemistry and electrode kinetics of oxygen reduction under MCFC conditions, and improving our fundamental understanding of the reaction mechanism as it applies to the MCFC. IIT's contribution was focused on developing and using rotating electrodes with well-defined mass-transfer properties, to characterize the electrode kinetics of oxygen reduction in molten carbonate. CWRU's contribution was focused on developing and using micro-electrodes for the same purpose, and also on developing spectroscopic cells and carrying out various types of spectroscopic measurements to characterize the oxygen species in molten carbonate under MCFC conditions. This report is divided into two main parts. Part 1 provides the technical background of the questions concerning oxygen reduction in molten carbonate as they apply to the MCFC system. The methodological approach and the objectives of the research are also presented. The second part describes the development of the rotating electrodes, micro-electrodes and spectroscopic cells and the results of measurements, as well as the interpretation of the data. Conclusions of this project, including some recommendations for further research, are also given in this part. 111 refs., 69 figs., 7 tabs.

  2. Trends and Issues in California's Low Carbon Fuel Standard - Learning from Response to Existing Climate Policy

    Science.gov (United States)

    Witcover, J.

    2015-12-01

    Debate over lower greenhouse gas (GHG) emissions from transportation has included heated discussion about appropriate policies and their cost and feasibility. One prominent policy mechanism, a carbon intensity standard, rates transport fuels based on analysis of lifecycle GHG emissions, and targets lower fuel pool carbon intensity through a market mechanism that uses a system of tradable, bankable credits and deficits. California instituted such a policy -- the Low Carbon Fuel Standard (LCFS) - in 2010, which targets a 10% carbon intensity (CI) reduction by 2020. The program rolled out amid concerns over slow development of new fuels expected to be very low carbon (such as cellulosic) and has faced court challenges that added considerable policy uncertainty. Since the program's start, state transport energy mix has shifted modestly but noticeably. Looking ahead, emerging issues for the program include amendments and re-adoption in response to a court ruling, potential interaction with California's multi-sector cap on carbon emissions (which started covering transport fuels in 2015), and impacts from similar CI standards in other jurisdictions. This study provides an analysis of fuel mix changes since the LCFS was implemented in 2011, and a discussion of emerging issues focusing on policy interaction. Descriptive statistics on alternative fuel use, available fuel pathways, and CI ratings are presented based on data from the California Air Resources Board (which runs the program). They document a shift towards more alternative fuels in a more diverse mix, with lower average CI ratings for most alternative fuel types. Financial incentives for various fuels are compared under the LCFS and the US federal Renewable Fuel Standard; disincentives from conceptually different carbon pricing schemes under the LCFS and the Cap-and-Trade are also outlined. The results provide important information on response to an existing market-based policy mechanism for addressing GHG

  3. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions,...

  4. Molten carbonate fuel cell: dynamic numerical modeling and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Elisangela Martins [National Institute for Space Research, Cachoeira Paulista, SP (Brazil). Combustion and Propulsion Lab.], e-mail: elisangela@lcp.inpe.br; Jabbari, Faryar [University of California, Irvine, CA (United States). Mechanical and Aerospace Engineering Dept.], e-mail: fjabbari@uci.edu; Brouwer, Jacob [University of California, Irvine, CA (United States). National Fuel Cell Research Center], e-mail: jb@nfcrc.uci.edu

    2006-07-01

    In this paper, a detailed model incorporating simplified geometric resolution of a molten carbonate fuel cell (MCFC) with detailed and dynamic simulation of all physical, chemical, and electrochemical processes in the stream-wise direction is presented. The model was developed using mass and momentum conservation, electrochemical and chemical reaction mechanisms, and heat transfer. Results from the model are compared with data from an experimental MCFC unit. Furthermore, the model was applied to predict dynamic variations of voltage, current and temperature in an MCFC as it responds to varying load demands. The voltage was evaluated by applying a model developed by Yu h and Selman (1991a, 1991b). The results show that the model can be used to predict voltage and dynamic response characteristics of an MCFC accurately and consistently for a variety of temperatures and pressures. (author)

  5. Fuel management

    International Nuclear Information System (INIS)

    Schwarz, E.R.

    1975-01-01

    Description of the operation of power plants and the respective procurement of fuel to fulfil the needs of the grid. The operation of the plants shall be optimised with respect to the fuel cost. (orig./RW) [de

  6. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  7. Gauging citizen support for a low carbon fuel standard

    International Nuclear Information System (INIS)

    Rhodes, Ekaterina; Axsen, Jonn; Jaccard, Mark

    2015-01-01

    Since 2007, several variations of a low carbon fuel standard (LCFS) have been implemented around the world. While emerging research tends to focus on greenhouse gas emission reductions from an LCFS, no studies have assessed the policy's political acceptability—a critical component of implementation. We elicit public support for an existing LCFS in British Columbia and a hypothetical (proposed) LCFS for the rest of Canada using survey data collected from a representative sample of Canadian citizens (n=1306). Specifically, we assess: (1) citizen awareness of British Columbia's LCFS, (2) stated citizen support for the LCFS, and (3) how individual characteristics relate to levels of citizen support. We find that British Columbia's LCFS is almost unknown among British Columbia respondents, but once explained, 90% of respondents support it. We refer to this combination of low knowledge and high support as “passive support.” We find similarly broad support in all other Canadian provinces, implying that citizen opposition is unlikely in jurisdictions considering an LCFS. Statistical analysis identifies some individual characteristics associated with LCFS support, including attitudes, demographics, and contextual factors. Results indicate where policymakers might anticipate opposition if it arises due to increased policy stringency or media coverage. - Highlights: • Most citizens are unaware of British Columbia's low carbon fuel standard (LCFS). • We observe passive support: low awareness and high support of the policy. • An LCFS achieves broad support among British Columbia's and Canadian citizens. • Households relying on single occupancy vehicles are less likely to support an LCFS

  8. Fuel input substitution under tradable carbon permits system. Evidence from Finnish energy plants 2003-2007

    Energy Technology Data Exchange (ETDEWEB)

    Linden, M. (Joensuu Univ. (Finland), Dept. of Business and Economics., email:mika.linden@joensuu.fi); Maekelae, M.; Uusivuori, J. (The Finnish Forest Reserch Institute (Metla), Vantaa (Finland))

    2009-07-01

    Following the Kyoto protocol and the European Union climate policies larger than 20 MW energy plants are part of the EU's emissions-trading scheme (ETS). This greenhouse gas emission mitigation strategy, tradable carbon quota system, started in 2005. The scheme is not mandatory for the firms with size less than 20MW. Also the firms using renewable fuels will not pay for allowances. Advanced energy production technologies enable power and heating plants to use both nonrenewable fossil fuels and renewable wood fuels in energy production. Wood fuel demand may constitute a substitute for fossil fuel demand if the price of tradable carbon allowances is relatively high. In this context plant level panel data from years 2003 - 2007 in Finland is analyzed with panel and mixed models. Econometric demand equations are specified for the ratio of wood and fossil fuel. The results show that high allowance prices in the years 2005 and 2006 compared to the years 2003 and 2004 decreased the use of fossil fuels and the demand for wood fuels increased. This increase was the larger the smaller proportional user of wood-fuel a plant was. However the downturn of allowance prices in year 2007 ended this process. The heterogeneity of energy plants in size, industry and location determines the intensity and extension of fuel use but their role is limited in the fuel substitution. (orig.)

  9. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  10. Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells

    Science.gov (United States)

    Tewari, A.; Sambhy, V.; Urquidi Macdonald, M.; Sen, A.

    Carbon dioxide intolerance has impeded the development of alkaline fuel cells as an alternate source of power supply. The CO 2, in a fuel cell system, could come from the anode side (if "dirty" H 2 is used as fuel), from the cathode side (if air instead of pure O 2 is used as an oxidant) or from inside the electrolyte (if methanol is used as a fuel). In this work, an novel analytical approach is proposed to study and quantify the carbon dioxide poisoning problem. Accelerated tests were carried out in an alkaline fuel cell using methanol as a fuel with different electrical loads and varying the concentration of carbon dioxide in a mixture CO 2/O 2 used as oxidant. Two characteristic quantities, t max and R max, were specified which were shown to comprehensively define the nature and extent of carbon dioxide poisoning in alkaline fuel cells. The poisoning phenomenon was successfully quantified by determining the dependence of these characteristic quantities on the operating parameters, viz. atmospheric carbon dioxide concentration and applied electrical load. Such quantification enabled the prediction of the output of a fuel cell operating in a carbon dioxide enriched atmosphere. In addition, static and dynamic analyses of electrolytes were carried out to determine the dependence of cell current on the electrolyte composition in a fuel cell undergoing poisoning. It was observed that there is a critical concentration of KOH in the electrolyte only below which the effect of carbon dioxide poisoning is reflected on the cell performance. Potentiostatic polarization tests confirmed that the underlying reason for the decreased cell performance because of carbon dioxide poisoning is the sluggish kinetics of methanol oxidation in the presence of potassium carbonate in the electrolyte. Moreover, the decreased conductivity of the electrolyte resulting from hydroxide to carbonate conversion was also shown to increase the ohmic loses in an alkaline fuel cell leading to lower

  11. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  12. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  13. Corrosion Behaviour of Carbon Steel in Biodiesel–Diesel–Ethanol (BDE Fuel Blend

    Directory of Open Access Journals (Sweden)

    Thangavelu Saravana Kannan

    2015-01-01

    Full Text Available The biodiesel–diesel–ethanol blend represents an important alternative fuel for diesel engines; however, changes in the fuel composition and the introduction of new alternative fuel often results in corrosion and degradation of the automobile fuel system parts. In this present study, the corrosion behavior of carbon steel in B20D70E10 (biodiesel 20%, diesel 70% and ethanol 10% fuel blend was studied by static immersion at room temperature and 60 °C. The effect of B20D70E10 fuel blend on corrosion rate, morphology of corrosion products, and chemical structure of carbon steel were studied. In addition, the change of fuel properties, namely, total acid number, density, viscosity, calorific value, flash point, and color changes were also investigated. Moreover, fuel compositional changes, such as water content and oxidation product level in the fuel blends were examined. The results showed that the degradation of fuel properties and corrosion rate of carbon steel in B20D70E10 are lower than neat biodiesel (B100, whereas slightly higher than petro-diesel (B0

  14. Carbon nanotube fiber mats for microbial fuel cell electrodes.

    Science.gov (United States)

    Delord, Brigitte; Neri, Wilfrid; Bertaux, Karen; Derre, Alain; Ly, Isabelle; Mano, Nicolas; Poulin, Philippe

    2017-11-01

    Novel carbon nanotube based electrodes of microbial fuel cells (MFC) have been developed. MFC is a promising technology for the wastewater treatment and the production of electrical energy from redox reactions of natural substrates. Performances of such bio-electrochemical systems depend critically on the structure and properties of the electrodes. The presently developed materials are made by weaving fibers solely comprised of carbon nanotubes. They exhibit a large scale porosity controlled by the weaving process. This porosity allows an easy colonization by electroactive bacteria. In addition, the fibers display a nanostructuration that promotes excellent growth and adhesion of the bacteria at the surface of the electrodes. This unique combination of large scale porosity and nanostructuration allows the present electrodes to perform better than carbon reference. When used as anode in a bioelectrochemical reactor in presence of Geobacter sulfurreducens bacteria, the present electrodes show a maximal current density of about 7.5mA/cm 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis.

    Science.gov (United States)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Mermelstein, Joshua; Bermúdez Menéndez, José Miguel; Ramı Rez Reina, Tomás; Brandon, Nigel P

    2016-11-23

    Solid oxide fuel cells (SOFCs) are a rapidly emerging energy technology for a low carbon world, providing high efficiency, potential to use carbonaceous fuels, and compatibility with carbon capture and storage. However, current state-of-the-art materials have low tolerance to sulfur, a common contaminant of many fuels, and are vulnerable to deactivation due to carbon deposition when using carbon-containing compounds. In this review, we first study the theoretical basis behind carbon and sulfur poisoning, before examining the strategies toward carbon and sulfur tolerance used so far in the SOFC literature. We then study the more extensive relevant heterogeneous catalysis literature for strategies and materials which could be incorporated into carbon and sulfur tolerant fuel cells.

  16. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...... collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector...

  17. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance...... spectroscopy (EIS). Catalytic activity was evaluated as a function of various physical characteristics of doped ceria and manganese-based materials....

  18. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakamura, Mitsuya; Yamashita, Jun-ichi; Mochida, Takaaki.

    1986-01-01

    Purpose: To improve the fuel economy by increasing the reactivity at the latter burning stage of fuel assemblies and thereby increasing the burn-up degree. Constitution: At the later stage of the burning where the infinite multiplication factor of a fuel assembly is lowered, fuel rods are partially discharged to increase the fuel-moderator volume ratio in the fuel assembly. Then, plutonium is positively burnt by bringing the ratio near to an optimum point where the infinite multiplication factor becomes maximum and the reactivity of the fuel assembly is increased by utilizing the spectral shift effect. The number of the fuel rods to be removed is selected so as to approach the fuel-moderator atom number ratio where the infinite multiplication factor is maximum. Further, the positions where the thermal neutron fluxes are low are most effective for removing the rods and those positions between which no fuel rods are present and which are adjacent with neither the channel box nor the water rods are preferred. The rods should be removed at the time when the burning is proceeded at lest for one cycle. The reactivity is thus increased and the burn-up degree of fuels upon taking-out can be improved. (Kamimura, M.)

  19. FUEL/CARBON PRICE VS. ABATEMENT TECHNOLOGY IN FREIGHT TRANSPORT

    Directory of Open Access Journals (Sweden)

    Eugen Ferdinand Spangenberg

    2017-12-01

    Full Text Available The current situation is the exponential increase in greenhouse gases (GHG, which is mainly caused by industrial and transport activities. The recent Paris agreement in 2015 (Framework Convention on Climate Change COP21, UNFCCC made it clear to everyone that CO2 emissions are to be limited in all areas of life. Alternative fuels with a lower environmental impact than carbon (CO2 emissions are hard to find if the overall footprint is to be taken into account. Nevertheless, there are some fuels that have less impact on climate change. One the other hand, the production of biofuels is a controversial matter, although it is a viable alternative to emissions reduction. CNG or LNG-powered vehicles are also better in terms of environmental pollution, but are hardly better with regard to CO2 impact when a Life Cycle Assessment (LCA is carried out. LNG (liquid natural gas, for example, is the future fuel in the maritime sector because of the stricter environmental regulations (SOx,NOx in the shipping industry. The battery-powered vehicle is another example of an environmentally friendly solution. The afore-mentioned measures can be considered as “abatement“ necessary in order to limit CO2 impact. The study shows that there are significant differences in the environmental impact between transport systems and the corresponding drive-system or associated energy base. The polluter should pay, which is a common basic principle in economic research. The Emission Trading Scheme (ETS has been introduced in order to ensure a reduction in CO2 output – emissions come with a price tag. An overall view is necessary, both en-vironmental and economic impact must be reconciled (cf. Spangenberg - TQI. The future viability of the transport system as we know it may change significantly over time if new environmental requirements or e.g. CO2 taxes or ETS are introduced in the freight sector. The abatement of CO2 should be effected primarily through technological

  20. Carbon nanotube modification of microbial fuel cell electrodes.

    Science.gov (United States)

    Yazdi, Alireza Ahmadian; D'Angelo, Lorenzo; Omer, Nada; Windiasti, Gracia; Lu, Xiaonan; Xu, Jie

    2016-11-15

    The use of carbon nanotubes (CNTs) for energy harvesting devices is preferable due to their unique mechanical, thermal, and electrical properties. On the other hand, microbial fuel cells (MFCs) are promising devices to recover carbon-neutral energy from the organic matters, and have been hindered with major setbacks towards commercialization. Nanoengineered CNT-based materials show remarkable electrochemical properties, and therefore have provided routes towards highly effective modification of MFC compartments to ultimately reach the theoretical limits of biomass energy recovery, low-cost power production, and thus the commercialization of MFCs. Moreover, these CNT-based composites offer significant flexibility in the design of MFCs that enable their use for a broad spectrum of applications ranging from scaled-up power generation to medically related devices. This article reviews the recent advances in the modification of MFCs using CNTs and CNT-based composites, and the extent to which each modification route impacts MFC power and current generation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  2. A review of low carbon fuel policies: Principles, program status and future directions

    International Nuclear Information System (INIS)

    Yeh, Sonia; Witcover, Julie; Lade, Gabriel E.; Sperling, Daniel

    2016-01-01

    A low carbon fuel standard (LCFS) is a market-based policy that specifies declining standards for the average lifecycle fuel carbon intensity (AFCI) of transportation fuels sold in a region. This paper: (i) compares transportation fuel carbon policies in terms of their economic efficiency, fuel price impacts, greenhouse gas emission reductions, and incentives for innovation; (ii) discusses key regulatory design features of LCFS policies; and (iii) provides an update on the implementation status of LCFS policies in California, the European Union, British Columbia, and Oregon. The economics literature finds that an intensity standard implicitly taxes emissions and subsidizes output. The output subsidy results in an intensity standard being inferior to a carbon tax in a first-best world, although the inefficiency can be corrected with a properly designed consumption tax (or mitigated by a properly designed carbon tax or cap-and-trade program). In California, from 2011 to 2015 the share of alternative fuels in the regulated transportation fuels pool increased by 30%, and the reported AFCI of all alternative fuels declined 21%. LCFS credit prices have varied considerably, rising to above $100/credit in the first half of 2016. LCFS programs in other jurisdictions share many features with California's, but have distinct provisions as well. - Highlights: • LCFS is a market-based policy that sets standards for carbon intensity of fuels. • We compare efficiency, price impacts, GHG emissions, and innovation of C policies. • In California, reported carbon intensity of alternative fuels declined 21% 2011–2015. • LCFS credit prices have varied considerably, rising to above $100/credit in the first half of 2016. • Other LCFS programs share many features with CA's and have distinct provisions.

  3. C1-carbon sources for chemical and fuel production by microbial gas fermentation.

    Science.gov (United States)

    Dürre, Peter; Eikmanns, Bernhard J

    2015-12-01

    Fossil resources for production of fuels and chemicals are finite and fuel use contributes to greenhouse gas emissions and global warming. Thus, sustainable fuel supply, security, and prices necessitate the implementation of alternative routes to the production of chemicals and fuels. Much attention has been focussed on use of cellulosic material, particularly through microbial-based processes. However, this is still costly and proving challenging, as are catalytic routes to biofuels from whole biomass. An alternative strategy is to directly capture carbon before incorporation into lignocellulosic biomass. Autotrophic acetogenic, carboxidotrophic, and methanotrophic bacteria are able to capture carbon as CO, CO2, or CH4, respectively, and reuse that carbon in products that displace their fossil-derived counterparts. Thus, gas fermentation represents a versatile industrial platform for the sustainable production of commodity chemicals and fuels from diverse gas resources derived from industrial processes, coal, biomass, municipal solid waste (MSW), and extracted natural gas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Fuel assemblies

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki.

    1986-01-01

    Purpose: To maintain a satisfactory integrity by preventing the increase of corrosion at the outer surface of a fuel can near the point of contact between the fuel can and the spacer due to the use of fuel pellets incorporated with burnable poisons. Constitution: Since reactor coolants are at high temperature and high pressure, zirconium and water are brought into reaction to proceed oxidation at the outer surface of a fuel can to form uniform oxidation layers. However, abrasion corrosion is additionally formed at the contact portion between the spacer and the fuel can, by which the corrosion is increased by about 25 %. For preventing such nodular corrosion, fuel pellets not incorporated with burnable poisons are charged at a portion of the fuel rod where the spacer is supported and fuel pellets incorporated with burnable poisons are charged at the positions other than about to thereby suppress the amount of the corrosion at the portion where the corrosion of the fuel can is most liable to be increased to thereby improve the fuel integrity. That is, radiolysis of coolants due to gamma-rays produced from gadolinium is lowered to reduce the oxygen concentration near the outer surface thereby preventing the corrosion. (Kawakami, Y.)

  5. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  6. Carbon Tolerant Fuel Electrodes for Reversible Sofc Operating on Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Papazisi Kalliopi Maria

    2017-01-01

    Full Text Available A challenging barrier for the broad, successful implementation of Reversible Solid Oxide Fuel Cell (RSOFC technology for Mars application utilizing CO2 from the Martian atmosphere as primary reactant, remains the long term stability by the effective control and minimization of degradation resulting from carbon built up. The perovskitic type oxide material La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF has been developed and studied for its performance and tolerance to carbon deposition, employed as bi-functional fuel electrode in a Reversible SOFC operating on the CO2 cycle (Solid Oxide Electrolysis Cell/SOEC: CO2 electrolysis, Solid Oxide Fuel Cell/SOFC: power generation through the electrochemical reaction of CO and oxygen. A commercial state-of-the-art NiO-YSZ (8% mol Y2O3 stabilized ZrO2 cermet was used as reference material. CO2 electrolysis and fuel cell operation in 70% CO/CO2 were studied in the temperature range of 900-1000°C. YSZ was used as electrolyte while LSM-YSZ/LSM (La0.2Sr0.8MnO3 as oxygen electrode. Results showed that LSCF had high and stable performance under RSOFC operation.

  7. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  9. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  10. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  11. Carbon dioxide vent for direct methanol fuel cells

    Science.gov (United States)

    Prakash, Shruti; Mustain, William; Kohl, Paul A.

    Passive, stand-alone, direct methanol fuel cells require a pressure management system that releases CO 2 produced in the anode chamber. However, this must be done without allowing the methanol fuel to escape. In this paper, two siloxane membranes are investigated and shown to selectively vent CO 2 from the anode chamber. The addition of hydrophobic additives, 1,6-divinylperfluorohexane and 1,9-decadiene, improved the selectivity of the siloxane membranes. The best performing CO 2 vent was obtained with 50:50 wt% poly(1-trimethyl silyl propyne) and 1,6-divinylperfluorohexane.

  12. Carbon nanotubes based methanol sensor for fuel cells application.

    Science.gov (United States)

    Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J

    2006-11-01

    An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.

  13. Assessment of commercial prospects of molten carbonate fuel cells

    Science.gov (United States)

    Dicks, Andrew; Siddle, Angie

    The commercial prospects of molten carbonate fuel cells have been evaluated. Market applications, and the commercial criteria that the MCFC will need to satisfy for these applications, were identified through interviews with leading MCFC developers. Strengths, weaknesses, opportunities and threats (SWOT) analyses were carried out to critically evaluate the prospects for commercialisation. There are many competing technologies, but it is anticipated that MCFCs can make significant penetration into markets where their attributes, such as quality of power, low emissions and availability, give them a leading position in comparison with, for example, engine and turbine-based power generation systems. Analysis suggests that choosing the size for MCFC plant is more important than the target market sector/niche. Opportunities will exist in many market sectors, though the commercial market would be easier to penetrate initially. Developers are optimistic about the commercial prospects for the MCFC. Most believe that early commercial MCFC plants may start to appear in the first decade of the next century, the earliest date suggested for initial market entry being 2002.

  14. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  15. Fuel assembly

    International Nuclear Information System (INIS)

    Nomata, Terumitsu.

    1993-01-01

    Among fuel pellets to be loaded to fuel cans of a fuel assembly, fuel pellets having a small thermal power are charged in a region from the end of each of spacers up to about 50mm on the upstream of coolants that flow vertically at the periphery of fuel rods. Coolants at the periphery of fuel rods are heated by the heat generation, to result in voids. However, since cooling effect on the upstream of the spacers is low due to influences of the spacers. Further, since the fuel pellets disposed in the upstream region have small thermal power, a void coefficient is not increased. Even if a thermal power exceeding cooling performance should be generated, there is no worry of causing burnout in the upstream region. Even if burnout should be caused, safety margin and reliability relative to burnout are improved, to increase an allowable thermal power, thereby enabling to improve integrity and reliability of fuel rods and fuel assemblies. (N.H.)

  16. Palliative effects of H2 on SOFCs operating with carbon containing fuels

    Science.gov (United States)

    Reeping, Kyle W.; Bohn, Jessie M.; Walker, Robert A.

    2017-12-01

    Chlorine can accelerate degradation of solid oxide fuel cell (SOFC) Ni-based anodes operating on carbon containing fuels through several different mechanisms. However, supplementing the fuel with a small percentage of excess molecular hydrogen effectively masks the degradation to the catalytic activity of the Ni and carbon fuel cracking reaction reactions. Experiments described in this work explore the chemistry behind the "palliative" effect of hydrogen on SOFCs operating with chlorine-contaminated, carbon-containing fuels using a suite of independent, complementary techniques. Operando Raman spectroscopy is used to monitor carbon accumulation and, by inference, Ni catalytic activity while electrochemical techniques including electrochemical impedance spectroscopy and voltammetry are used to monitor overall cell performance. Briefly, hydrogen not only completely hides degradation observed with chlorine-contaminated carbon-containing fuels, but also actively removes adsorbed chlorine from the surface of the Ni, allowing for the methane cracking reaction to continue, albeit at a slower rate. When hydrogen is removed from the fuel stream the cell fails immediately due to chlorine occupation of methane/biogas reaction sites.

  17. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    Directory of Open Access Journals (Sweden)

    A. A. Ager

    2010-12-01

    Full Text Available Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon pools to account for stochastic wildfire occurrence. The study area was a 68 474 ha watershed located on the Fremont-Winema National Forest in southeastern Oregon, USA. Fuel reduction treatments were simulated on 10% of the watershed (19% of federal forestland. We simulated 30 000 wildfires with random ignition locations under both treated and untreated landscapes to estimate the change in burn probability by flame length class resulting from the treatments. Carbon loss functions were then calculated with the Forest Vegetation Simulator for each stand in the study area to quantify change in carbon as a function of flame length. We then calculated the expected change in carbon from a random ignition and wildfire as the sum of the product of the carbon loss and the burn probabilities by flame length class. The expected carbon difference between the non-treatment and treatment scenarios was then calculated to quantify the effect of fuel treatments. Overall, the results show that the carbon loss from implementing fuel reduction treatments exceeded the expected carbon benefit associated with lowered burn probabilities and reduced fire severity on the treated landscape. Thus, fuel management activities resulted in an expected net loss of carbon immediately after treatment. However, the findings represent a point in time estimate (wildfire immediately after treatments, and a temporal analysis with a probabilistic framework used here is needed to model carbon dynamics over the life cycle of the fuel treatments. Of particular importance is the long-term balance between emissions from the

  18. The fuel cycle

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the fuel cycle is presented. The following fuel cycle steps are described: (1) Front of the fuel cycle (Mining and milling; Treatment; Refining, conversion and enrichment; Fuel fabrication); (2) Use of fuel in nuclear reactors; (3) Back end of the fuel cycle (Interim storage of spent fuel; spent fuel reprocessing; Final disposal of spent fuel)

  19. Development and Demonstration of Carbon Fuel Cell Final Report CRADA No. TC02091.0

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berner, J. K. [Contained Energy, Inc., Shaker Heights, OH (United States)

    2017-09-08

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Contained Energy, Inc. (CEI), to conduct necessary research and to develop, fabricate and test a multi-cell carbon fuel cell.

  20. Hybrid direct carbon fuel cells and their reaction mechanisms - a review

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2014-01-01

    As coal is expected to continue to dominate power generation demands worldwide, it is advisable to pursue the development of more efficient coal power generation technologies. Fuel cells show a much higher fuel utilization efficiency, emit fewer pollutants (NOx, SOx), and are more easily combined...... with carbon capture and storage (CCS) due to the high purity of CO2 emitted in the exhaust gas. Direct carbon (or coal) fuel cells (DCFCs) are directly fed with solid carbon to the anode chamber. The fuel cell converts the carbon at the anode and the oxygen at the cathode into electricity, heat and reaction...... (fresh water consumed, solid waste produced, CO2 emitted, ease of combination with CCS) and economics (levelized cost of electricity)....

  1. High-temperature molten-carbonate fuel cells. Technical progress report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Progress on the design, development, fabrication, performance testing, and modeling of molten carbonate fuel cells is reported. Component development including electrode structures, electrolyte powder, electrolyte tiles, and cell frame and current collectors is described. (WHK)

  2. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of ...

  3. Energy Conversion Efficiency Potential for Forward-Deployed Generation Using Direct Carbon Fuel Cells

    Science.gov (United States)

    2012-05-01

    ficiency of any other conversion technology and twice that of standard coal-fired power plants . For the same electrical output, a power generation system...efficiency — well beyond the efficiency of any other conversion tech- nology and twice that of standard coal-fired power plants . The challenge with the DCFC...carbon is being de- rived from waste or from pyrolysis of a liquid fuel. The carbon powder produced by pyrolysis of waste or fuel would have to be

  4. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  5. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  6. Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies.

    Science.gov (United States)

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    The climate change impacts of U.S. petroleum-based fuels consumption have contributed to the development of legislation supporting the introduction of low carbon alternatives, such as biofuels. However, the potential greenhouse gas (GHG) emissions reductions estimated for these policies using life cycle assessment methods are predominantly based on deterministic approaches that do not account for any uncertainty in outcomes. This may lead to unreliable and expensive decision making. In this study, the uncertainty in life cycle GHG emissions associated with petroleum-based fuels consumed in the U.S. is determined using a process-based framework and statistical modeling methods. Probability distributions fitted to available data were used to represent uncertain parameters in the life cycle model. Where data were not readily available, a partial least-squares (PLS) regression model based on existing data was developed. This was used in conjunction with probability mixture models to select appropriate distributions for specific life cycle stages. Finally, a Monte Carlo simulation was performed to generate sample output distributions. As an example of results from using these methods, the uncertainty range in life cycle GHG emissions from gasoline was shown to be 13%-higher than the typical 10% minimum emissions reductions targets specified by low carbon fuel policies.

  7. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    Science.gov (United States)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  8. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...

  9. Fuel assembly

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitosi.

    1993-01-01

    Fuel pellets containing burnable poison and fuel pellets not containing burnable poison are used together in burnable poison-incorporated fuel rods which is disposed at the outermost layer of a cluster. Since the burnable poison-incorporated fuel rods are disposed at the outermost layer of the cluster where a neutron flux level is high and, accordingly, the power is high originally, local power peaking can be suppressed and, simultaneously, fuels can be burnt effectively without increasing the fuel concentration in the inner and the intermediate layers than that of the outermost layer. In addition, a problem of lacking a reactor core reactivity at an initial stage is solved by disposing both of the fuel pellets together, even if burnable poisons of high concentration are used. This is because the extent of the lowering of the reactivity due to the burnable poison-incorporated fuels is mainly determined by the surface area thereof and the remaining period of the burnable poison is mainly determined by the concentration thereof. As a result, the burnup degree can be improved without lowering the reactor reactivity so much. (N.H.)

  10. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  11. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  12. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  13. Fuel assemblies

    International Nuclear Information System (INIS)

    Echigoya, Hironori; Nomata, Terumitsu.

    1983-01-01

    Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)

  14. Temperature and voltage responses of a molten carbonate fuel cell in the presence of a hydrogen fuel leakage

    International Nuclear Information System (INIS)

    Law, M C; Wee, S K; Liang, G V Y; Lee, V C C

    2015-01-01

    A two dimensional (2-D), dynamic model of a molten carbonate fuel cell (MCFC) was developed using COMSOL Multi-physics. The model was used to investigate the dynamic behaviour of the MCFC in the presence of hydrogen fuel leakage. A leakage was modelled as a known outflow velocity at the anode gas channel. The effects of leakage velocity and the leakage location were investigated. The simulations show that anode electrode temperature increases as the leakage velocity increases. The voltage generated is shown to decrease at the start of the leakage occurrence due to loss of hydrogen gas. Later the voltage increases as the anode temperature increases. The results also show that the changes of temperature and voltage are more significant if a leakage occurs nearer to the inlet compared to that at the outlet of anode gas channel. (paper)

  15. Effects of H2S on molten carbonate fuel cells. Literature review on the impact of SO2 in the oxidant supplied to molten carbonate fuel cells

    Science.gov (United States)

    Remick, R. J.

    1985-05-01

    The purpose is to identify available information regarding the impact upon fuel cell performance of sulfur dioxide at ppM levels in oxidant gases supplied to molten carbonate fuel cells (MCFC). The general conclusions are as follows: (1) the major source of sulfur dioxide in the oxidant is oxidized sulfur species coming from the fuel; (2) sulfur dioxide in the oxidant can react with oxygen and carbonate to produce sulfate in the electrolyte; (3) sulfate in the electrolyte is Faradaically transported to the anode where it is reduced to hydrogen sulfide; (4) the major and thus far only identifiable mechanism for performance loss in MCFC is caused by this hydrogen sulfide forming nickel sulfide on the anode; and (5) there are a number of other chemical reactions in which sulfur dioxide may participate which have not been investigated. Included in this group are the oxidation to sulfur trioxide and the corrosion of nickel and nickel oxide.

  16. An investigation into carbon nanostructured materials as catalyst support in proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune

    than carbon blacks. Even then the possible durability of the platinum containing catalyst is a major concern for fuel cell degradation during operation. In order to evaluate platinum containing electrocatalysts for proton exchange membrane fuel cells (PEMFC), the rotating disc electrode (RDE......Polymer electrolyte fuel cells (PEFCs) are among the key research areas concerning clean cost-effective energy. Carbon nano fibres (CNF), single walled carbon nano tubes (SWCNT), multi walled carbon nano tubes (MWCNT) and other related materials are among the possible successors to standard carbon...... black support materials for low platinum containing electrocatalyst. This is partly due to their high electronic conductivity. Partly due to their high surface area needed for the dispersion of nanoparticulate metal-clusters. In addition carbon nano-structures (CNF, SWCNT, MWCNT etc.) are more durable...

  17. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis

    Science.gov (United States)

    John L. Campbell; Alan A. Ager

    2013-01-01

    Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term...

  18. Preliminary evaluation of the air and fuel specific-impulse characteristics of several potential ram-jet fuels IV : hydrogen, a-methylnaphthalene, and carbon / Benson E. Gammon

    Science.gov (United States)

    Gammon, Benson E

    1951-01-01

    A preliminary analytical evaluation of the air and fuel specific-impulse characteristics of hydrogen, a-methylnapthalene, and graphite carbon has been made. Adiabatic constant-pressure combustion flame temperatures for each fuel at several equivalence ratios were calculated for an initial air temperature of 560 degrees R and a pressure of 2 atmospheres.

  19. Fuel cell-fuel cell hybrid system

    Science.gov (United States)

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  20. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments

    OpenAIRE

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Background Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass ...

  1. Applying life-cycle assessment to low carbon fuel standards-How allocation choices influence carbon intensity for renewable transportation fuels

    International Nuclear Information System (INIS)

    Kaufman, Andrew S.; Meier, Paul J.; Sinistore, Julie C.; Reinemann, Douglas J.

    2010-01-01

    The Energy Independence and Security Act (EISA) of 2007 requires life-cycle assessment (LCA) for quantifying greenhouse gas emissions (GHGs) from expanded U.S. biofuel production. To qualify under the Renewable Fuel Standard, cellulosic ethanol and new corn ethanol must demonstrate 60% and 20% lower emissions than petroleum fuels, respectively. A combined corn-grain and corn-stover ethanol system could potentially satisfy a major portion of renewable fuel production goals. This work examines multiple LCA allocation procedures for a hypothetical system producing ethanol from both corn grain and corn stover. Allocation choice is known to strongly influence GHG emission results for corn-ethanol. Stover-derived ethanol production further complicates allocation practices because additional products result from the same corn production system. This study measures the carbon intensity of ethanol fuels against EISA limits using multiple allocation approaches. Allocation decisions are shown to be paramount. Under varying approaches, carbon intensity for corn ethanol was 36-79% that of gasoline, while carbon intensity for stover-derived ethanol was -10% to 44% that of gasoline. Producing corn-stover ethanol dramatically reduced carbon intensity for corn-grain ethanol, because substantially more ethanol is produced with only minor increases in emissions. Regulatory considerations for applying LCA are discussed.

  2. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  3. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  4. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    Science.gov (United States)

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. FUEL ELEMENT

    Science.gov (United States)

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  6. Characterization of carbon, sulfur and volatile compounds in nuclear fuel U3SI2-AL

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Coelho, Felipe P.; Bustillos, Jose O.V.

    2013-01-01

    The scope of this work is to describe the characterization of Carbon, Sulfur and Volatile Compounds in nuclear fuel U 3 Si 2 -Al used in a research pool type reactor with 5 KW power capacities, located in Sao Paulo, Brazil. This reactor produces a large range of radioisotopes for radiopharmaceutical needed in Brazil nuclear medicine. The fabrication of the fuel U 3 Si 2 -Al plate is the key of the whole assembly production and its quality directly affects the safety and reliability of the fuel assembly performance. For this reason, it is very necessary to analyze the Carbon, Sulfur and Volatile Compounds to avoid damage in the fuel plate. The Carbon and Sulfur are characterized by the method of radio frequency furnace gas extraction system coupled with infrared cell detector. The Volatile Compounds are characterized by the method of heat gas extraction coupled with gravimetric technique. These methods are recommended by American Society for Testing Materials ASTM for nuclear materials. The average carbon and sulfur analyzed are 30 μg/g and 3 μg/g, respectively. The average for Volatile Compounds is 40 μg/g. These results represent satisfactory performance of the fuel inside the nuclear reactor. A statistical laboratory program has been set to validate the data generated in the nuclear fuel material to specify any agreement with the recommended ASTM methods. (author)

  7. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    Directory of Open Access Journals (Sweden)

    G. S. Jones

    2011-01-01

    Full Text Available Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC, produces a positive radiative forcing of about +0.25 Wm−2 over the 20th century, compared with +2.52 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, −0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  8. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Science.gov (United States)

    2010-07-01

    ... HFET-based fuel economy and carbon-related exhaust emission values for vehicle configurations. 600.206... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for... Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for...

  9. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Science.gov (United States)

    2010-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. (a) Fuel...

  10. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which......Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...

  11. Effects of coal-derived trace species on the performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  12. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DEFF Research Database (Denmark)

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms......; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions...... dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed...

  13. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  14. Design and Test of a Carbon-Tolerant Alkaline Fuel Cell

    OpenAIRE

    Urquidi-Macdonald, Mirna; Sen, Ayusman; Grimes, Patrick; Tewari, Ashutosh; Sambhy, Varun

    2005-01-01

    This paper presents new results which may constitute a breakthrough in the effort to develop fuel cells truly suitable for use in cars and trucks. For decades, researchers have known that the alkaline fuel cell (AFC) is much cheaper to make, more efficient and more durable than the more popular PEM fuel cell; however, "carbon poisoning" (either from CO2 in air or from contaminants in reformed methanol) causes big problems in the kind of oxygen-hydrogen AFC commonly used in space. This paper r...

  15. Organic fuel cells and fuel cell conducting sheets

    Science.gov (United States)

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  17. Thermal design and analysis of the HTGR fuel element vertical carbonizing and annealing furnace

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-06-01

    Computer analyses of the thermal design for the proposed HTGR fuel element vertical carbonizing and annealing furnace were performed to verify its capability and to determine the required power input and distribution. Although the furnace is designed for continuous operation, steady-state temperature distributions were obtained by assuming internal heat generation in the fuel elements to simulate their mass movement. The furnace thermal design, the analysis methods, and the results are discussed herein

  18. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  19. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  20. Are Solar Fuels Sustainable?

    NARCIS (Netherlands)

    Meuwese, Anne

    2012-01-01

    Summary The combined problems of too little fossil fuels to supply the world’s future energy needs and the possible negative environmental effects of carbon dioxide emissions which are coupled to their usage has led to the development of fuels based on s

  1. Ammonia as a Suitable Fuel for Fuel Cells

    International Nuclear Information System (INIS)

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  2. Ammonia as a Suitable Fuel for Fuel Cells

    OpenAIRE

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel ...

  3. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  4. Handbook of fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  5. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst

    International Nuclear Information System (INIS)

    Cai, Weizi; Zhou, Qian; Xie, Yongmin; Liu, Jiang; Long, Guohui; Cheng, Shuang; Liu, Meilin

    2016-01-01

    Graphical abstract: A plant-derived biochar, with biologically accumulated chemical elements as catalyst for the Boudouard reaction, is a superior fuel to the all-solid-state direct carbon solid oxide fuel cells (DC-SOFCs), and, it enables DC-SOFCs to be a novel technology, of high efficient, low cost and environmental friendliness, for distributed power generation. - Highlights: • Orchid leaf char is a good fuel of all-solid-state DC-SOFCs. • Performance of DC-SOFC with leaf char is better than that with Fe-loaded carbon. • Biologically accumulated Ca in leaf char acts as catalyst for Boudouard reaction. • Leaf char with natural Ca performs better than C with Ca added by mechanical mixing. • Biochar with natural catalyst provides low cost and low pollutant fuel to DC-SOFCs. - Abstract: Biochar derived from orchid tree leaves is utilised as the fuel of a direct carbon solid oxide fuel cell (DC-SOFC), with yttrium stabilized zirconia (YSZ) as electrolyte and cermet of silver and gadolinium doped ceria (Ag-GDC) as the material of both cathode and anode, operating without any liquid medium or feeding gas. The performance of the DC-SOFC operated on the leaf char is higher than that operated on the best reported carbon fuel for DC-SOFCs, Fe-loaded activated carbon. XRD, Raman spectroscopy, SEM and EDX are applied to characterize the leaf char. It turns out that the leaf char is with porous structure and there is much Ca along with some K and Mg uniformly distributing in the leaf char. The effects of the naturally existing alkaline earth metal and alkaline metal and their distribution on the performance of the DC-SOFCs operated on the leaf char are analyzed in detail.

  6. Carbon deposition in an SOFC fueled by tar-laden biomass gas: a thermodynamic analysis

    Science.gov (United States)

    Singh, Devinder; Hernández-Pacheco, Eduardo; Hutton, Phillip N.; Patel, Nikhil; Mann, Michael D.

    This work presents a thermodynamic analysis of the carbon deposition in a solid oxide fuel cell (SOFC) fueled by a biomass gasifier. Integrated biomass-SOFC units offer considerable benefits in terms of efficiency and fewer emissions. SOFC-based power plants can achieve a system efficiency of 70-80% (including heat utilization) as compared to 30-37% for conventional systems. The fuel from the biomass gasifier can contain considerable amounts of tars depending on the type of gasifier used. These tars can lead to the deposition of carbon at the anode side of SOFCs and affect the performance of the fuel cells. This paper thermodynamically studies the risk of carbon deposition due to the tars present in the feed stream and the effect various parameters like current density, steam, and temperature have on carbon deposition. Since tar is a complex mixture of aromatics, it is represented by a mixture of toluene, naphthalene, phenol, and pyrene. A total of 32 species are considered for the thermodynamic analysis, which is done by the Gibbs energy minimization technique. The carbon deposition is shown to decrease with an increase in current density and becomes zero after a critical current density. Steam in the feed stream also decreases the amount of carbon deposition. With the increase in temperature the amount of carbon first decreases and then increases.

  7. Fuel rods

    International Nuclear Information System (INIS)

    Hattori, Shinji; Kajiwara, Koichi.

    1980-01-01

    Purpose: To ensure the safety for the fuel rod failures by adapting plenum springs to function when small forces such as during transportation of fuel rods is exerted and not to function the resilient force when a relatively great force is exerted. Constitution: Between an upper end plug and a plenum spring in a fuel rod, is disposed an insertion member to the lower portion of which is mounted a pin. This pin is kept upright and causes the plenum spring to function resiliently to the pellets against the loads due to accelerations and mechanical vibrations exerted during transportation of the fuel rods. While on the other hand, if a compression force of a relatively high level is exerted to the plenum spring during reactor operation, the pin of the insertion member is buckled and the insertion member is inserted to the inside of the plenum spring, whereby the pellets are allowed to expand freely and the failures in the fuel elements can be prevented. (Moriyama, K.)

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.

    1992-01-01

    The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)

  9. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co

  10. Canadian power reactor fuel

    International Nuclear Information System (INIS)

    Page, R.D.

    1976-03-01

    The following subjects are covered: the basic CANDU fuel design, the history of the bundle design, the significant differences between CANDU and LWR fuel, bundle manufacture, fissile and structural materials and coolants used in the CANDU fuel program, fuel and material behaviour, and performance under irradiation, fuel physics and management, booster rods and reactivity mechanisms, fuel procurement, organization and industry, and fuel costs. (author)

  11. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    Science.gov (United States)

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the

  12. Study of a molten carbonate fuel cell combined heat, hydrogen and power system: Energy analysis

    International Nuclear Information System (INIS)

    Agll, Abdulhakim Amer A.; Hamad, Yousif M.; Hamad, Tarek A.; Thomas, Mathew; Bapat, Sushrut; Martin, Kevin B.; Sheffield, John W.

    2013-01-01

    Countries around the world are trying to use alternative fuels and renewable energy to reduce the energy consumption and greenhouse gas emissions. Biogas contains methane is considered a potential source of clean renewable energy. This paper discusses the design of a combined heat, hydrogen and power system, which generated by methane with use of Fuelcell, for the campus of Missouri University of Science and Technology located in Rolla, Missouri, USA. An energy flow and resource availability study was performed to identify sustainable type and source of feedstock needed to run the Fuelcell at its maximum capacity. FuelCell Energy's DFC1500 unit (a molten carbonate Fuelcell) was selected as the Fuelcell for the tri-generation (heat, hydrogen and electric power) system. This tri-generation system provides electric power to the campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, backup power and other applications on the campus. In conclusion, the combined heat, hydrogen and power system reduces fossil fuel usage, and greenhouse gas emissions at the university campus. -- Highlights: • Combined heat, hydrogen and power (CHHP) using a molten carbonate fuel cell. • Energy saving and alternative fuel of the products are determined. • Energy saving is increased when CHHP technology is implemented. • CHHP system reduces the greenhouse gas emissions and fuel consumption

  13. Formulating energy policies related to fossil fuel use: Critical uncertainties in the global carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Post, W.M.; Dale, V.H.; DeAngelis, D.L.; Mann, L.K.; Mulholland, P.J.; O' Neill, R.V.; Peng, T.-H.; Farrell, M.P.

    1990-01-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs. 87 refs.

  14. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    Science.gov (United States)

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  15. High pressure anode operation of direct methanol fuel cells for carbon dioxide management

    Science.gov (United States)

    Lundin, Michael D.; McCready, Mark J.

    Experiments with independent pressurization of the direct methanol fuel cell anode and cathode allow for the observation of DMFC operation with carbon dioxide gas formation suppressed. Results indicate that the limiting current density is strongly related to the applied pressure, and, therefore, to the presence of CO 2 in the liquid phase. An additional experiment where CO 2 is allowed to accumulate in recycled anode fuel solution over a period of time and is then stripped from solution using nitrogen gas indicates that the presence of CO 2 in anode fuel solution at any pressure contributes to significant decreases in power and current density. Because CO 2 bubbles are ubiquitous in direct methanol fuel cells, this finding is key to the optimization of these systems.

  16. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Steward, Darlene [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vimmerstedt, Laura [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Webster, Karen W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-04-01

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  17. Reforming of fuel inside fuel cell generator

    Science.gov (United States)

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  18. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    OpenAIRE

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Garland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng

    2015-01-01

    This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature14677 Nearly three-quarters of the growth in global carbon emission from burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 varied by 0.3 GtC, or 15 per cent. The primary sources of this uncertainty are c...

  19. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Science.gov (United States)

    The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions, fuel economy, and powertrain technology trends for new personal vehicles in the United States. The ??Trends?? report has been published annually since 1975 and covers all passenger cars, sport utility vehicles, minivans, and all but the largest pickup trucks and vans. This report does not provide formal compliance values for EPA CO2 emissions standards and NHTSA CAFE standards. The downloadable data are available in PDF or spreadsheet (XLS) formats.

  20. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes

    Science.gov (United States)

    Nabil, Y.; Cavaliere, S.; Harkness, I. A.; Sharman, J. D. B.; Jones, D. J.; Rozière, J.

    2017-09-01

    Niobium carbide/carbon nanotubular porous structures have been prepared using electrospinning and used as electrocatalyst supports for proton exchange membrane fuel cells. They were functionalised with 3.1 nm Pt particles synthesised by a microwave-assisted polyol method and characterised for their electrochemical properties. The novel NbC-based electrocatalyst demonstrated electroactivity towards the oxygen reduction reaction as well as greater stability over high potential cycling than a commercial carbon-based electrocatalyst. Pt/NbC/C was integrated at the cathode of a membrane electrode assembly and characterised in a single fuel cell showing promising activity and power density.

  1. Interaction of carbon reduction and green energy promotion in a small fossil-fuel importing economy

    International Nuclear Information System (INIS)

    Pethig, Ruediger; Wittlich, Christian

    2009-01-01

    We study the incidence of carbon-reduction and green-energy promotion policies in an open fossil-fuel importing general equilibrium economy. The focus is on mixed price-based or quantity-based policies. Instruments directed toward promoting green energy are shown to reduce also carbon emissions and vice versa. Their direct effects are stronger than their side effects, the more so, the greater is the elasticity of substitution in consumption between energy and the consumption good. We calculate the effects of variations in individual policy parameters, especially on energy prices and welfare costs, and determine the impact of exogenous fossil-fuel price shocks on the economy. (orig.)

  2. CANDU fuel

    International Nuclear Information System (INIS)

    MacEwan, J.R.; Notley, M.J.F.; Wood, J.C.; Gacesa, M.

    1982-09-01

    The direction of CANDU fuel development was set in 1957 with the decision to build pressure tube reactors. Short - 50 cm long - rodded bundles of natural UO 2 clad in Zircaloy were adopted to facilitate on-power fuelling to improve uranium utilization. Progressive improvements were made during 25 years of development, involving 650 man years and 180 million dollars. Today's CANDU bundle is based on the knowledge gained from extensive irradiation testing and experience in power reactors. The main thrust of future development is to demonstrate that the present bundle is suitable, with minor modifications, for thorium fuels

  3. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Hong, Jun Ki; Kjeang, Erik

    2012-01-01

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  4. Fuels characterization studies. [jet fuels

    Science.gov (United States)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  5. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  6. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  7. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  8. Fuel rods

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1984-01-01

    Purpose: To reduce the size of the reactor core upper mechanisms and the reactor container, as well as decrease the nuclear power plant construction costs in reactors using liquid metals as the coolants. Constitution: Isotope capturing devices comprising a plurality of pipes are disposed to the gas plenum portion of a nuclear fuel rod main body at the most downstream end in the flowing direction of the coolants. Each of the capturing devices is made of nickel, nickel alloys, stainless steel applied with nickel plating on the surface, nickel alloys applied with nickel plating on the surface or the like. Thus, radioactive nuclides incorporated in the coolants are surely captured by the capturing devices disposed at the most downstream end of the nuclear fuel main body as the coolants flow along the nuclear fuel main body. Accordingly, since discharging of radioactive nuclides to the intermediate fuel exchange system can be prevented, the maintenance or reparing work for the system can be facilitated. (Moriyama, K.)

  9. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  10. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  11. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells.

    Science.gov (United States)

    García, Gonzalo; Koper, Marc T M

    2011-08-01

    Herein the general concepts of fuel cells are discussed, with special attention to low temperature fuel cells working in alkaline media. Alkaline low temperature fuel cells could well be one of the energy sources in the next future. This technology has the potential to provide power to portable devices, transportation and stationary sectors. With the aim to solve the principal catalytic problems at the anode of low temperature fuel cells, a fundamental study of the mechanism and kinetics of carbon monoxide as well as water dissociation on stepped platinum surfaces in alkaline medium is discussed and compared with those in acidic media. Furthermore, cations involved as promoters for catalytic surface reactions are also considered. Therefore, the aim of the present work is not only to provide the new fundamental advances in the electrocatalysis field, but also to understand the reactions occurring at fuel cell catalysts, which may help to improve the fabrication of novel electrodes in order to enhance the performance and to decrease the cost of low temperature fuel cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Carbon Monitoring System Flux for Fossil Fuel L4 V1 (CMSFluxFossilfuel) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Fossil Fuel. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  13. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  14. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  15. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  16. Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios

    Directory of Open Access Journals (Sweden)

    F. Dalir

    2017-12-01

    Full Text Available In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient condition effect on carbon footprint assessment of fossil fuel power plant is the specific feature of the proposed model. To evaluate the model, a sensitivity analysis is performed under different scenarios covering all possible choices for investigated parameters. The results show that carbon footprint of fossil fuel electrical energy that is produced, transmitted and distributed, varies from 321 g CO2 eq/kWh to 980 g CO2 equivalent /kWh. Carbon footprint of combined cycle with natural gas as main fuel is the minimum carbon footprint. Other factors can also cause indicative variation. Fuel type causes a variation of 28%. Ambient condition may change the result up to 13%. Transmission makes the carbon footprint larger by 4%. Internal consumption and degradation influence the result by 2 and 2.5%, respectively. Therefore, to minimize the carbon footprint of fossil fuel electricity, it is recommended to construct natural gas ignited combined cycles in low lands where the temperature is low and relative humidity is high. And the internal consumption is as least as possible and the maintenance and overhaul is as regular as possible.

  17. 1986 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  18. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission

    Directory of Open Access Journals (Sweden)

    Robert J. Andres

    2014-07-01

    Full Text Available Three uncertainty assessments associated with the global total of carbon dioxide emitted from fossil fuel use and cement production are presented. Each assessment has its own strengths and weaknesses and none give a full uncertainty assessment of the emission estimates. This approach grew out of the lack of independent measurements at the spatial and temporal scales of interest. Issues of dependent and independent data are considered as well as the temporal and spatial relationships of the data. The result is a multifaceted examination of the uncertainty associated with fossil fuel carbon dioxide emission estimates. The three assessments collectively give a range that spans from 1.0 to 13% (2 σ. Greatly simplifying the assessments give a global fossil fuel carbon dioxide uncertainty value of 8.4% (2 σ. In the largest context presented, the determination of fossil fuel emission uncertainty is important for a better understanding of the global carbon cycle and its implications for the physical, economic and political world.

  19. Climate Policy and the Optimal Extraction of High- and Low-Carbon Fossil Fuels

    NARCIS (Netherlands)

    Smulders, J.A.; van der Werf, E.H.

    2005-01-01

    We study how restricting CO2 emissions affcts resource prices and depletion over time.We use a Hotelling-style model with two nonrenewable fossil fuels that differ in their carbon content (e.g. coal and natural gas) and that are imperfect substitutes in final good production.We study both an

  20. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios

    Science.gov (United States)

    M. Hurteau; M. North

    2009-01-01

    Forests are viewed as a potential sink for carbon (C) that might otherwise contribute to climate change. It is unclear, however, how to manage forests with frequent fire regimes to maximize C storage while reducing C emissions from prescribed burns or wildfire. We modeled the effects of eight different fuel treatments on treebased C storage and release over a century,...

  1. Materials and Concepts for Full Ceramic SOFCs with Focus on Carbon Containing Fuels

    DEFF Research Database (Denmark)

    Holtappels, Peter; Sudireddy, Bhaskar Reddy; Veltzé, Sune

    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In a recent European project full ceramic cells comprising CGO/Ni infiltrated Nb...

  2. Cycle Analysis of Micro Gas Turbine-Molten Carbonate Fuel Cell Hybrid System

    Science.gov (United States)

    Kimijima, Shinji; Kasagi, Nobuhide

    A hybrid system based on a micro gas turbine (µGT) and a high-temperature fuel cell, i.e., molten carbonate fuel cell (MCFC) or solid oxide fuel cell (SOFC), is expected to achieve a much higher efficiency than conventional distributed power generation systems. In this study, a cycle analysis method and the performance evaluation of a µGT-MCFC hybrid system, of which the power output is 30kW, are investigated to clarify its feasibility. We developed a general design strategy in which a low fuel input to a combustor and higher MCFC operating temperature result in a high power generation efficiency. A high recuperator temperature effectiveness and a moderate steam-carbon ratio are the requirements for obtaining a high material strength in a turbine. In addition, by employing a combustor for complete oxidation of MCFC effluents without additional fuel input, i.e., a catalytic combustor, the power generation efficiency of a µGT-MCFC is achieved at over 60%(LHV).

  3. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.

    Science.gov (United States)

    Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B

    2012-06-01

    Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.

  4. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 2: solid fuels.

    Science.gov (United States)

    Claxton, Larry D

    2014-01-01

    The combustion of solid fuels (like wood, animal dung, and coal) usually involves elevated temperatures and altered pressures and genotoxicants (e.g., PAHs) are likely to form. These substances are carcinogenic in experimental animals, and epidemiological studies implicate these fuels (especially their emissions) as carcinogens in man. Globally, ∼50% of all households and ∼90% of all rural households use solid fuels for cooking or heating and these fuels often are burnt in simple stoves with very incomplete combustion. Exposed women and children often exhibit low birth weight, increased infant and perinatal mortality, head and neck cancer, and lung cancer although few studies have measured exposure directly. Today, households that cannot meet the expense of fuels like kerosene, liquefied petroleum gas, and electricity resort to collecting wood, agricultural residue, and animal dung to use as household fuels. In the more developed countries, solid fuels are often used for electric power generation providing more than half of the electricity generated in the United States. The world's coal reserves, which equal approximately one exagram, equal ∼1 trillion barrels of crude oil (comparable to all the world's known oil reserves) and could last for 600 years. Studies show that the PAHs that are identified in solid fuel emissions react with NO2 to form direct-acting mutagens. In summary, many of the measured genotoxicants found in both the indoor and electricity-generating combustors are the same; therefore, the severity of the health effects vary with exposure and with the health status of the exposed population. Copyright © 2014. Published by Elsevier B.V.

  5. Measurements on high temperature fuel cells with carbon monoxide-containing fuel gases; Messungen an Hochtemperatur-Brennstoffzellen mit kohlenmonoxidhaltigen Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Apfel, Holger

    2012-10-10

    In the present work the different power density of anode-supported high-temperature solid oxide fuel cells (ASC-SOFCs) were examined for carbon monoxide-containing fuels. In addition to wet hydrogen / carbon monoxide mixtures the cells were run with synthetic gas mixtures resembling the products of an autothermal reformer, and actual reformate generated by a 2 kW autothermal reformer. It was found that the power-voltage characteristics of an ASC depends primarily on the open circuit voltages of different gas mixtures, but is nearly independent of the hydrogen concentration of the fuel, although the reaction rates of other potential fuels within the gas mixture, namely carbon monoxide and methane, are much lower that the hydrogen reaction rate. The probable reason is that the main fuel for the electrochemical oxidation within the cell is hydrogen, while the nickel in the base layer of the anode acts as a reformer which replenishes the hydrogen by water reduction via carbon monoxide and methane oxidation.

  6. Enhancing hybrid direct carbon fuel cell anode performance using Ag2O

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    A hybrid-direct carbon fuel cell (HDCFC), consisting of a molten slurry of solid carbon black and (Li-K)2CO3 added to the anode chamber of a solid oxide fuel cell, was characterized using current-potential-power density curves, electrochemical impedance spectroscopy, and cyclic voltammetry. Two...... types of experimental setups were employed in this study, an anode-supported full cell configuration (two electrodes, two atmospheres setup) and a 3-electrode electrolyte-supported half-cell setup (single atmosphere). Anode processes with and without catalysts were investigated as a function...... of temperature (700-800 °C) and anode sweep gas (N2, 4-100% CO2 in N2-CO2). It was shown that the addition of silver based catalysts (Ag, Ag2O, Ag2CO3) into the carbon-carbonate slurry enhanced the performance of the HDCFC....

  7. FUEL CELL MANPACK POWER SOURCE.

    Science.gov (United States)

    battery provides required power density and instantly available power while the fuel cell efficiently converts a primary fuel to electrical power at a...field supply, afford an extremely high energy density making the hybrid fuel cell system competitive on cost per kilowatt hour with standard military zinc-carbon primary batteries. (Author)

  8. Commercialization of fuel-cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O' Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  9. Polypropylene oil as fuel for solid oxide fuel cell with samarium doped-ceria (SDC)-carbonate as electrolyte

    Science.gov (United States)

    Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.

    2017-03-01

    The research focusses on converting polypropylene oil as pyrolysis product of polypropylene plastic into an electricity. The converter was a direct liquid fuel-solid oxide fuel cell (SOFC) with cerium oxide based material as electrolyte. The polypropylene vapor flowed into fuel cell, in the anode side and undergo oxidation reaction, meanwhile, the Oxygen in atmosphere reduced into oxygen ion at cathode. The fuel cell test was conducted at 400 - 600 °C. According to GC-MS analysis, the polypropylene oil consist of C8 to C27 hydrocarbon chain. The XRD analysis result shows that Na2CO3 did not change the crystal structure of SDC even increases the electrical conductivity. The maximum power density is 0.079 mW.cm-2 at 773 K. The open circuite voltage is 0.77 volt. Chemical stability test by analysing the single cell at before and after fuel cell test found that ionic migration occured during fuel cell operation. It is supported by the change of elemental composition in the point position of electrolyte and at the electrolyte-electrode interface

  10. Distributional effects of a carbon tax on car fuels in France

    OpenAIRE

    Bureau, Benjamin

    2011-01-01

    CERNA WORKING PAPER SERIES 2010-19; This paper analyses the distributional effects of alternative scenarios of carbon taxes on car fuels using disaggregated French panel data from 2003 to 2006. It incorporates household price responsiveness that differs across income groups into a consumer surplus measure of tax burden. Carbon taxation is regressive before revenue recycling. However, taking into account the benefits from congestion reduction induced by the tax mitigates regressivity. We show ...

  11. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    Science.gov (United States)

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  12. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  13. Fuel trading

    International Nuclear Information System (INIS)

    2015-01-01

    A first part of this report proposes an overview of trends and predictions. After a synthesis on the sector changes and trends, it indicates and comments the most recent predictions for the consumption of refined oil products and for the turnover of the fuel wholesale market, reports the main highlights concerning the sector's life, and gives a dashboard of the sector activity. The second part proposes the annual report on trends and competition. It presents the main operator profiles and fuel categories, the main determining factors of the activity, the evolution of the sector context between 2005 and 2015 (consumptions, prices, temperature evolution). It analyses the evolution of the sector activity and indicators (sales, turnovers, prices, imports). Financial performances of enterprises are presented. The economic structure of the sector is described (evolution of the economic fabric, structural characteristics, French foreign trade). Actors are then presented and ranked in terms of turnover, of added value, and of result

  14. The US Molten Carbonate Fuel-Cell development and commercialization effort

    Science.gov (United States)

    Williams, Mark C.; Parsons, Edward L., Jr.; Mayfield, M. J.

    The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the US, including the role of the US Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. The authors describe major fundamental stack research issues, as well as MCFC power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

  15. The value of retrofitting carbon-saving measures into fuel poor social housing

    International Nuclear Information System (INIS)

    Jenkins, D.P.

    2010-01-01

    With current fuel poverty and carbon-saving policies continuing to miss their targets in the UK, the synergy between the two problems is investigated to highlight an approach that could be mutually beneficial. Focussing on the 550,000 fuel poor socially housed dwellings in the UK, costs of between Pounds 3.9 and Pounds 17.5 bn are estimated as the required capital investment for achieving deep-cut carbon savings (defined as at least 50%) across this section of the housing stock, with a potential total annual carbon saving of 1.7 MtCO 2 . It is assumed that such costs would be largely (or totally) state-funded, though additional private investment could clearly increase the possible carbon savings across this section of the stock. The use of these socially housed fuel poor dwellings as low-carbon exemplars is discussed, and benefits for the private housing sector are postulated. The study also focuses on the problem of installing non-cost effective measures, i.e. technologies that would not currently be encouraged by existing subsidy schemes, but which might be necessary for achieving large carbon-saving targets.

  16. The annual cycle of fossil-fuel carbon dioxide emissions in the United States

    International Nuclear Information System (INIS)

    Blasing, T.J.; Marland, G.; Broniak, C.T.

    2005-01-01

    Time-series of estimated monthly carbon dioxide emissions from consumption of coal, petroleum and natural gas in the United States from 1981 to 2002 have been derived from energy consumption data. The data series for coal and natural gas each reveal a consistent seasonal pattern, with a winter peak for gas and two peaks (summer and winter) for coal. The annual cycle of total emissions has an amplitude of about 20 Tg-C, and is dominated by CO 2 released from consumption of natural gas. Summation of the monthly estimates to obtain annual values reveals good agreement with other estimates of CO 2 emissions. The varying proportions of CO 2 emitted from each fuel type over the course of a year lead to an annual cycle in the carbon isotope ratio ( 13 C), with a range of about 2 . These monthly carbon emissions estimates should be helpful in understanding the carbon cycle by providing (1) monthly/seasonal input for carbon cycle models, (2) estimates of the annual cycle of the 13 C isotope ratio in fossil-fuel CO 2 emissions and (3) data at fine enough time intervals to investigate effects of seasonal climate variations and changes in seasonally dependent use patterns of certain appliances (e.g. air conditioners) on fossil-fuel carbon emissions

  17. Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency

    Science.gov (United States)

    Caillard, Amaël; Charles, Christine; Boswell, Rod; Brault, Pascal; Coutanceau, Christophe

    2007-05-01

    Improved platinum catalytic utilization has been achieved by creating an open support structure based on aligned carbon nanofibers (CNFs) attached to carbon loaded carbon cloth electrodes [known as gas diffusion layer (GDL)]. The nickel catalyst used to initiate the CNFs growth; the CNFs themselves and the 5nm Pt nanoaggregates were deposited sequentially in the same low pressure plasma reactor. This oriented catalyst structure was incorporated into a membrane electrode assembly and tested with and without CNFs and on carbon paper or GDL. The performance of the fuel cells based on CNFs and GDL was better over the entire range of operating current.

  18. Removal of carbon dioxide in reprocessing spent nuclear fuel off gas by adsorption

    International Nuclear Information System (INIS)

    Fukumatsu, Teruki; Munakata, Kenzo; Tanaka, Kenji; Yamatsuki, Satoshi; Nishikawa, Masabumi

    1998-01-01

    The off gas produced by reprocessing spent nuclear fuel includes various radioactivities and these nuclei should be removed. In particular, 14 C mainly released as the form of carbon dioxide is one of the most required gaseous radioactivities to be removed because it has long a half-life. One of the methods to remove gaseous nuclei is the use of adsorption technique. The off gas contains water vapor which influences adsorption process of carbon dioxide. In this report, behavior of adsorption of carbon dioxide on various adsorbent and influence on adsorption behavior of carbon dioxide by containing water vapor are discussed. (author)

  19. 40 CFR 600.113-12 - Fuel economy and carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy and carbon-related... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-12 Fuel economy and carbon-related exhaust emission...

  20. Performance effects of coal-derived contaminants on the carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A. [Energy Research Corp., Danbury, CT (United States); Wilemski, G. [Physical Sciences, Inc., Andover, MA (United States)

    1993-05-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980`s when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH{sub 3}, H{sub 2}S [COS], HCl, AsH{sub 3}[As{sub 2}(v)], Zn(v), Pb(v), Cd(v), H{sub 2} Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  1. Performance effects of coal-derived contaminants on the carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A. (Energy Research Corp., Danbury, CT (United States)); Wilemski, G. (Physical Sciences, Inc., Andover, MA (United States))

    1993-01-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980's when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH[sub 3], H[sub 2]S [COS], HCl, AsH[sub 3][As[sub 2](v)], Zn(v), Pb(v), Cd(v), H[sub 2] Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  2. Relative importance of thermal versus carbon dioxide induced warming from fossil-fuel combustion

    Science.gov (United States)

    Zhang, X.; Caldeira, K.

    2015-12-01

    The Earth is heated both when reduced carbon is oxidized to carbon dioxide and when outgoing longwave radiation is trapped by carbon dioxide in the atmosphere (CO2 greenhouse effect). The purpose of this study is to improve our understanding of time scales and relative magnitudes of climate forcing increase over time from pulse, continuous, and historical CO2 and thermal emissions. To estimate the amount of global warming that would be produced by thermal and CO2 emissions from fossil fuel combustion, we calculate thermal emissions with thermal contents of fossil fuels and estimate CO2 emissions with emission factors from Intergovernmental Panel on Climate Change (IPCC) AR5. We then use a schematic climate model mimicking Coupled Model Intercomparison Project Phase 5 to investigate the climate forcing and the time-integrated climate forcing. We show that, considered globally, direct thermal forcing from fossil fuel combustion is about 1.71% the radiative forcing from CO2 that has accumulated in the atmosphere from past fossil fuel combustion. When a new power plant comes on line, the radiative forcing from the accumulation of released CO2 exceeds the thermal emissions from the power plant in less than half a year (and about 3 months for coal plants). Due to the long lifetime of CO2 in the atmosphere, CO2 radiative forcing greatly overwhelms direct thermal forcing on longer time scales. Ultimately, the cumulative radiative forcing from the CO2 exceeds the direct thermal forcing by a factor of ~100,000.

  3. Evaluation of fuel injection configurations to control carbon and soot formation in small GT combustors

    Science.gov (United States)

    Rosfjord, T. J.; Briehl, D.

    1982-01-01

    An experimental program to investigate hardware configurations which attempt to minimize carbon formation and soot production without sacrificing performance in small gas turbine combustors has been conducted at the United Technologies Research Center. Four fuel injectors, embodying either airblast atomization, pressure atomization, or fuel vaporization techniques, were combined with nozzle air swirlers and injector sheaths, and evaluated at test conditions which included and extended beyond standard small gas turbine combustor operation. Extensive testing was accomplished with configurations embodying either a spill return or a T-vaporizer injector. Minimal carbon deposits were observed on the spill return nozzle for tests using either Jet A or ERBS test fuel. A more extensive film of soft carbon was observed on the vaporizer after operation at standard engine conditions, with large carbonaceous growths forming on the device during off-design operation at low combustor inlet temperature. Test results indicated that smoke emission levels depended on the combustor fluid mechanics (especially the mixing rates near the injector), the atomization quality of the injector and the fuel hydrogen content.

  4. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  5. Carbon dioxide: a raw material and a future chemical fuel for a sustainable energy industry

    Science.gov (United States)

    Amouroux, J.; Siffert, P.

    2011-03-01

    Carbon dioxide is a major raw material of the future, for the capture plants which use amines, aminoacids, ammonia or zeolites. This very high purity raw material (99.9 %) opens the way of a new industrial revolution in agreement with the proposal of Nobel Prize laureates and the DOE strategy. Our goal is to explain the large advantages and the main routes for CO2 valorization, which are starting around the world. The most promising ways for this valorization are methanol synthesis as fuel for transportation and methane formation for electricity network regulation. The first way allows the use of liquid fuels, as distribution infrastructure already exists; instead of gaseous fuels (H2), for which there is storage, distribution problems and no infrastructure exist. The second way is methane synthesis during off-peak hours and burning of this methane during peak hours in order to regulate the electric network.

  6. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants

    Science.gov (United States)

    Jablonski, G.; Hamm, J. R.; Alvin, M. A.; Wenglarz, R. A.; Patel, P.

    1982-10-01

    Coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants are listed. Those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed are characterized. An analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC was developed. An analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals was developed. The candidate gasifier/cleanup systems those most suitable for MCFC-based power plants are discussed. A reference wet cleanup system, parametric analyses of the coal gasifiers and gas cleanup systems, efficiency, investment, cost of electricity, operability, and environmental effect rankings, and a final report are discussed.

  7. Simultaneous carbonation and sulfation of CaO in Oxy-Fuel CFB combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [School of Energy and Power Engineering, North China Electric Power University, Baoding City, Hebei Province (China); Jia, L.; Tan, Y. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A 1M1 (Canada)

    2011-10-15

    For anthracites and petroleum cokes, the typical combustion temperature in a circulating fluidized bed (CFB) is > 900 C. At CO{sub 2} concentrations of 80-85 % (typical of oxy-fuel CFBC conditions), limestone still calcines. When the ash which includes unreacted CaO cools to the calcination temperature, carbonation of fly ash deposited on cool surfaces may occur. At the same time, indirect and direct sulfation of limestone also will occur, possibly leading to more deposition. In this study, CaO was carbonated and sulfated simultaneously in a thermogravimetric analyzer (TGA) under conditions expected in an oxy-fuel CFBC. It was found that temperature, and concentrations of CO{sub 2}, SO{sub 2}, and especially H{sub 2}O are important factors in determining the carbonation/sulfation reactions of CaO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Molten carbonate fuel cells fed with biogas: combating H(2)S.

    Science.gov (United States)

    Ciccoli, R; Cigolotti, V; Lo Presti, R; Massi, E; McPhail, S J; Monteleone, G; Moreno, A; Naticchioni, V; Paoletti, C; Simonetti, E; Zaza, F

    2010-06-01

    The use of biomass and waste to produce alternative fuels, due to environmental and energy security reasons, is a high-quality solution especially when integrated with high efficiency fuel cell applications. In this article we look into the coupling of an anaerobic digestion process of organic residues to electrochemical conversion to electricity and heat through a molten carbonate fuel cell (MCFC). In particular the pathway of the exceedingly harmful compound hydrogen sulphide (H(2)S) in these phases is analysed. Hydrogen sulphide production in the biogas is strongly interrelated with methane and/or hydrogen yield, as well as with operating conditions like temperature and pH. When present in the produced biogas, this compound has multiple negative effects on the performance and durability of an MCFC. Therefore, there are important issues of integration to be solved. Three general approaches to solve the sulphur problem in the MCFC are possible. The first is to prevent the formation of hydrogen sulphide at the source: favouring conditions that inhibit its production during fermentation. Secondly, to identify the sulphur tolerance levels of the fuel cell components currently in use and develop sulphur-tolerant components that show long-term electrochemical performance and corrosion stability. The third approach is to remove the generated sulphur species to very low levels before the gas enters the fuel cell. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes.

    Science.gov (United States)

    Grattieri, Matteo; Shivel, Nelson D; Sifat, Iram; Bestetti, Massimiliano; Minteer, Shelley D

    2017-05-09

    Microbial fuel cells are an emerging technology for wastewater treatment, but to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable, and reliable. In this study, recyclable polymeric supports were explored for the development of anode electrodes to be applied in single-chamber microbial fuel cells operated in field under hypersaline conditions. The support was covered with a carbon nanotube (CNT) based conductive paint, and biofilms were able to colonize the electrodes. The single-chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation to achieve 12±1 mW m -2 at a current density of 69±7 mA m -2 . The decrease of the performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments in which the cathode was replaced and the fuel cell performance was regenerated. The results of these studies show the feasibility of polymeric supports coated with CNT-based paint for microbial fuel cell applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon-14 in waste packages for spent fuel in a tuff repository

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Smith, C.F.; Culham, H.W.; Smith, H.D.

    1986-01-01

    Carbon-14 is produced naturally by cosmic ray neutrons in the upper atmosphere. It is also produced in nuclear reactors, in amounts much smaller than the global inventory. About one-third of this is released directly to the atmosphere, and the other two-thirds remains in the spent fuel. Both the Environmental Protection Agency and the Nuclear Regulatory Commission have established limits on release of the 14 C in spent fuel. This is of particular concern for the proposed repository in tuff, because of the unsaturated conditions and the consequent possibility of gaseous transport of 14 C as CO 2 . Existing measurements and calculations of the 14 C inventory in spent fuel are reviewed. The physical distribution and chemical forms of the 14 C are discussed. Available data on the release of 14 C from spent fuel in aqueous solutions and in gaseous environments of air, nitrogen, and helium are reviewed. Projected 14 C behavior in a tuff repository is described. It is concluded that 14 C release measurements from spent fuel into moist air at temperatures both above and below the in situ boiling point of water as well as detailed transport calculations for the tuff geological environment will be needed to determine whether the 10CFR60 and 40CFR191 requirements can be met. 56 refs., 1 tab

  11. Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers

    International Nuclear Information System (INIS)

    Mansor, Noramalina; Miller, Thomas S.; Dedigama, Ishanka; Jorge, Ana Belen; Jia, Jingjing; Brázdová, Veronika; Mattevi, Cecilia; Gibbs, Chris; Hodgson, David; Shearing, Paul R.; Howard, Christopher A.; Corà, Furio; Shaffer, Milo; Brett, Daniel J.L.

    2016-01-01

    Highlights: • Graphitic carbon nitride (gCN) describes many materials with different structures. • gCNs can exhibit excellent mechanical, chemical and thermal resistance. • A major obstacle for pure gCN catalyst supports is limited electronic conductivity. • Composite/Hybrid gCN structures show excellent performance as catalyst supports. • gCNs have great potential for use in fuel calls and water electrolyzers. - Abstract: Electrochemical power sources, such as polymer electrolyte membrane fuel cells (PEMFCs), require the use of precious metal catalysts which are deposited as nanoparticles onto supports in order to minimize their mass loading and therefore cost. State-of-the-art/commercial supports are based on forms of carbon black. However, carbon supports present disadvantages including corrosion in the operating fuel cell environment and loss of catalyst activity. Here we review recent work examining the potential of different varieties of graphitic carbon nitride (gCN) as catalyst supports, highlighting their likely benefits, as well as the challenges associated with their implementation. The performance of gCN and hybrid gCN-carbon materials as PEMFC electrodes is discussed, as well as their potential for use in alkaline systems and water electrolyzers. We illustrate the discussion with examples taken from our own recent studies.

  12. The history, genotoxicity and carcinogenicity of carbon-based fuels and their emissions: part 4 - alternative fuels.

    Science.gov (United States)

    Claxton, Larry D

    2015-01-01

    Much progress has been made in reducing the pollutants emitted from various combustors (including diesel engines and power plants) by the use of alternative fuels; however, much more progress is needed. Not only must researchers improve fuels and combustors, but also there is a need to improve the toxicology testing and analytical chemistry methods associated with these complex mixtures. Emissions from many alternative carbonaceous fuels are mutagenic and carcinogenic. Depending on their source and derivation, alternative carbonaceous fuels before combustion may or may not be genotoxic; however, in order to know their genotoxicity, appropriate chemical analysis and/or bioassay must be performed. Newly developed fuels and combustors must be tested to determine if they provide a public health advantage over existing technologies - including what tradeoffs can be expected (e.g., decreasing levels of PAHs versus increasing levels of NOx and possibly nitroarenes in ambient air). Another need is to improve exposure estimations which presently are a weak link in doing risk analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells

    KAUST Repository

    Luo, Yong

    2011-11-01

    An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m-2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m-2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth. © 2011 Elsevier B.V.

  14. Fuel rod and fuel assembly

    International Nuclear Information System (INIS)

    Takekawa, Tetsuya.

    1993-01-01

    Burnable poisons are contained in a portion of a pellet constituting a fuel rod. A distribution density of the burnable poison-containing pellets and a concentration of the burnable poisons in the pellet are varied depending on the axial position of the fuel rod. That is, the distribution density of the burnable poison containing-pellets is increased at the central portion of the fuel rod and it is decreased at both ends thereof, and a concentration of the burnable poisons of the burnable poison containing-pellet disposed at the end portions thereof is decreased to less than a concentration of the burnable poison-containing pellet at the central portion. With such a constitution, a central peaking at an early stage of the combustion cycle is decreased. Accordingly, power at the central portion is increased than that in the end portions at the latter half of the cycle, to flatten the power distribution. Further, a burnable poison concentration of the pellets at the end portions is decreased to promote burning of burnable poisons at the end portions which are less burnable relatively, thereby enabling to prevent worsening of neutron economy. (T.M.)

  15. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  16. Influence of Ionomer/Carbon Ratio on the Performance of a Polymer Electrolyte Fuel Cell

    Directory of Open Access Journals (Sweden)

    Toshihiro Ando

    2012-11-01

    Full Text Available We have used fibrous carbon materials as polymer electrolyte fuel cell (PEFC electrodes. We have examined the influence of the ionomer/carbon ratio on the performance of the PEFCs. The Marimo carbon is a kind of carbon with a spherical shape, and consists of carbon nanofilaments. Fibrous carbon materials have large specific surface areas without fine pores. The reactant gases and generated water can easily diffuse among the nanofilaments. The ionomer plays two roles; one is a proton transfer activity, and the other is binding the catalyst electrodes. An excess ionomer interferes with the diffusion of gases. The ionomer/carbon ratio should affect the performance of the PEFC, especially at a high current density.

  17. Transport and low-carbon fuel: A study of public preferences in Spain

    International Nuclear Information System (INIS)

    Loureiro, Maria L.; Labandeira, Xavier; Hanemann, Michael

    2013-01-01

    Transport is essential for the control of future greenhouse gas (GHG) emissions and thus a target for active policy intervention in the future. Yet, social preferences for policies are likely to play an important role. In this paper we first review the existing literature on preferences regarding low-GHG car fuels, but also covering policy instruments and strategies in this area. We then present the results of a survey of Spanish households aimed at measuring preferences for climate change policies. We find a positive willingness to pay (WTP) (in the form of higher car fuel prices) for a policy to reduce GHG emissions through biofuels. There is, however, significant heterogeneity in public preferences due to personal motivations (accounted for via factor analysis of responses to attitudinal questions) and to socio-demographic variables. - Highlights: • Road transport is the cause of important energy-related problems, particularly the emission of greenhouse gases and local pollution. • This paper explores public attitudes and preferences towards low-carbon fuel policies in Spain via contingent valuation. • A factor analysis is performed, showing the existence of pro-social and economic factors related to preferences for policies. • Drivers were willing to pay an extra of 115.5 Euros per year for low-carbon fuels, roughly an extra 0.07 (0.08) Euros/liter for gasoline (diesel). • The results encourage the use of these low-GHG policies as feasible alternatives for climate policies in the transport area

  18. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  19. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  20. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells

    Science.gov (United States)

    Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie

    2018-02-01

    Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.

  1. Effect of landscape-level fuel treatments on carbon emissions and storage over a 50 yr time cycle

    Science.gov (United States)

    K. Osborne; C. Dicus; C. Isbell; Alan Ager; D. Weise; M. Landram

    2011-01-01

    We investigated how multiple fuel treatment types, organized in varying spatial arrangements, and at increasing proportions of a mixed-conifer forest in the Klamath Mountains of northern California (~20,000 ha) variably affect carbon sequestration and emissions over a 50 year time period. Preliminary analysis of three fuel treatment scenarios (fire only, mechanical...

  2. Distributional effects of a carbon tax on car fuels in France

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, Benjamin [MINES Paris Tech, CERNA (France)

    2011-01-15

    This paper analyses the distributional effects of alternative scenarios of carbon taxes on car fuels using disaggregated French panel data from 2003 to 2006. It incorporates household price responsiveness that differs across income groups into a consumer surplus measure of tax burden. Carbon taxation is regressive before revenue recycling. However, taking into account the benefits from congestion reduction induced by the tax mitigates regressivity. We show also that recycling additional revenues from the carbon tax either in equal amounts to each household or according to household size makes poorest households better off. (author)

  3. Distributional effects of a carbon tax on car fuels in France

    International Nuclear Information System (INIS)

    Bureau, Benjamin

    2011-01-01

    This paper analyses the distributional effects of alternative scenarios of carbon taxes on car fuels using disaggregated French panel data from 2003 to 2006. It incorporates household price responsiveness that differs across income groups into a consumer surplus measure of tax burden. Carbon taxation is regressive before revenue recycling. However, taking into account the benefits from congestion reduction induced by the tax mitigates regressivity. We show also that recycling additional revenues from the carbon tax either in equal amounts to each household or according to household size makes poorest households better off. (author)

  4. Distributional effects of a carbon tax on car fuels in France

    International Nuclear Information System (INIS)

    Bureau, B.

    2010-01-01

    This paper analyses the distributional effects of alternative scenarios of carbon taxes on car fuels using dis-aggregated French panel data from 2003 to 2006. It incorporates household price responsiveness that differs across income groups into a consumer surplus measure of tax burden. Carbon taxation is regressive before revenue recycling. However, taking into account the benefits from congestion reduction induced by the tax mitigates regressiveness. We show also that recycling additional revenues from the carbon tax either in equal amounts to each household or according to household size makes poorest households better off. (author)

  5. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Science.gov (United States)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  6. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  7. Limits to the potential of bio-fuels and bio-sequestration of carbon

    International Nuclear Information System (INIS)

    Pearman, Graeme I.

    2013-01-01

    This document examines bio-physical limits of bio-fuels and bio-sequestration of carbon by examining available solar radiation and observed efficiencies with which natural ecosystems and agricultural systems convert that energy to biomass. It compares these energy/carbon exchanges with national levels of energy use and carbon emissions for Australia, Brazil, China, Japan, Republic of Korea, New Zealand, Papua New Guinea, Singapore, Sweden, United Kingdom and United States. Globally primary energy consumption (related carbon emissions) is currently equivalent to ∼0.06% of the incident solar energy, and 43% of the energy (carbon) captured by photosynthesis. The nations fall into three categories. Those with primary energy consumption that is: 1–10% (Japan, Korea and Singapore); ∼0.1% (China, UK and the US) and; 0.1–0.01% (Australia, Brazil, Papua New Guinea, New Zealand and Sweden) of incident solar radiation. The percentage of energy captured in biomass follows this pattern, but generally lower by ∼3 orders of magnitude. The energy content of traded wheat, corn and rice represents conversion efficiencies of solar radiation of 0.08–0.17% and for sugar close to 1%, ignoring energy use in production and conversion of biomass to fuels. The study implies that bio-fuels or bio-sequestration can only be a small part of an inclusive portfolio of actions towards a low carbon future and minimised net emissions of carbon to the atmosphere. - Highlights: • Global energy consumption is ∼0.06% of solar; 43% of net primary production. • 11 nations studied fall into 3 groups: consumption/solar=1–10%; ∼0.1%; 0.1–0.01%. • % of energy captured in biomass is lower by ∼3 orders of magnitude. • Crops and natural ecosystems capture 0.1–0.3% and sugar 1% of solar energy. • Significant bio-energy/carbon sequestration via biomass is unrealistic

  8. Effect of inlet fuel type on the degradation of Ni/YSZ anode of solid oxide fuel cell by carbon deposition

    Directory of Open Access Journals (Sweden)

    Suttichai Assabumrungrat

    2006-11-01

    Full Text Available According to the high operating temperature of Solid Oxide Fuel Cell (SOFC (700-1100ºC, it is known that some hydrocarbon fuels can be directly used as inlet fuel instead of hydrogen by feeding straight to the anode. This operation is called a direct internal reforming SOFC (DIR-SOFC. However, the major difficulty of this operation is the possible degradation of anode by the carbon deposition, as the carbon species are easily formed. In the present work, the effect of inlet fuel (i.e. H2, synthesis gas (H2+CO, CH4, CH4+H2O, CH3OH+H2O, and C2H5OH+H2O on the degradation of nickel cermet (Ni/YSZ, which is the most common anode material of SOFC, was studied.It was found from the work that hydrogen and synthesis gas (CO+H2 are proper to be used as direct inlet fuels for DIR-SOFC with Ni/YSZ anode, since the carbon formation on Ni/YSZ occurred in the small quantity. The mixture of methane and steam (CH4+H2O can also be used as the inlet feed, but the H2O/CH4 ratio plays an important role. In contrast, pure methane (CH4, methanol with steam (CH3OH+H2O and ethanol with steam (C2H5OH+H2O are not suitable for using as direct inlet fuel for DIR-SOFC with Ni/YSZ anode even the higher H2O/CH3OH and H2O/C2H5OH ratios were applied.

  9. The synthesis of carbon nanocomposites as fuel cell catalyst support and the characterization of fuel cell catalysts by spatially resolved scanning mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan

    2007-07-01

    Ammonia decomposition over Ni/SiO{sub 2} and Ni/MgO was investigated by temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) in order to produce CO{sub x} free hydrogen fuel for fuel cell application. A highly efficient route for the synthesis of carbon nanocomposites based on electrochemical deposition and iron catalyzed chemical vapor deposition (CVD) was developed in order to obtain a promising substrate for fuel cell catalysts. The duration of electrochemical deposition, temperature and time for the carbon nanotubes (CNTs) growth had been optimized to achieve higher surface area after the growth. Hierarchically structured CNTs composites had been synthesized and electrochemical studies provided evidence for the strong interaction among the substrate and grown CNTs, which are essential for the application in fuel cells. A straightforward strategy was developed to synthesize well dispersed gold nanoparticles with a diameter of 4 to 6 nm on the sidewall of multi-walled carbon nanotubes (MWNTs). A gas flow set-up was developed for the evaluation of fuel cell catalysts by performing scanning mass spectrometry with integrated constant-distance positioning. Methanol oxidation was identified as a suitable test reaction. The diameter of scanning probe was reduced in order to achieve higher spatial resolution. Spatially resolved scanning mass spectrometry was successfully applied to visualize the catalytic activity over Pt-based catalysts and monitor the local activity of a catalysts coated membrane (CCM). The gas-solid phase reaction results were proved to be accurate, reliable and independent of the sample topography. This analytical method opens the way for fast quality control of the catalyst coating with respect to even coating and absence of damages, and for a better understanding of the CCM degradation in polymer membrane electrolyte fuel cells (PEMFCs). (orig.)

  10. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...... be used as a versatile feedstock in the chemical industry. Currently the production of carbon-containing commodity chemicals is dependent on fossil resources, and more than 95% of these chemicals are produced from non-renewable carbon resources. The question is: what will be the optimal use of bioethanol...

  11. Fuel cells: Trends in research and applications

    Science.gov (United States)

    Appleby, A. J.

    Various aspects of fuel cells are discussed. The subjects addressed include: fuel cells for electric power production; phosphoric acid fuel cells; long-term testing of an air-cooled 2.5 kW PAFC stack in Italy; status of fuel cell research and technology in the Netherlands, Bulgaria, PRC, UK, Sweden, India, Japan, and Brazil; fuel cells from the manufacturer's viewpoint; and fuel cells using biomass-derived fuels. Also examined are: solid oxide electrolye fuel cells; aluminum-air batteries with neutral chloride electrolyte; materials research for advanced solid-state fuel cells at the Energy Research Laboratory in Denmark; molten carbonate fuel cells; the impact of the Siemens program; fuel cells at Sorapec; impact of fuel cells on the electric power generation systems in industrial and developing countries; and application of fuel cells to large vehicles.

  12. Investigation of altenative carbon materials for fuel-cell catalyst support

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul

    samples. Generally, the measurements using this method suffered from poor electrode homogeneity due to the problem of dispersing the CNT and CNF material on the electrode disc. For the carbon samples the peroxide percentage was 25–75 % at 0.066 V vs. the dynamic hydrogen electrode (DHE), but no ORR......In order to ensure high utilization of the catalyst material in a polymer electrolyte membrane fuel cell (PEMFC) it is usually fixed in the form of nanoparticles on a supporting material. The catalyst is platinum or a platinum alloy, and the commonly used support is carbon black (CB). Although...... structured carbon forms such as graphitized CBs, carbon nanotubes (CNTs), and carbon nanofibres (CNFs). This thesis concerns the investigation of an array of different materials which may prospec-tively replace the conventional materials used in the catalyst. The study comprised 13 carbon samples which...

  13. Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

    International Nuclear Information System (INIS)

    Choi, Min Ho; Beam, Won Jin; Park, Chan Jin

    2010-01-01

    This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at 75 .deg. C than 25 .deg. C. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution

  14. Regulatory and mixed policy options for reducing fuel use and carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Swisher, J.N. [UNEP Collaborating Centre on Energy and Environment, Risoe National Lab. (Denmark)

    1995-06-01

    As the Framework Convention on Climate Change (FCCC) goes into effect, some 20 industrialized countries have made commitments to stabilize or reduce future carbon emissions. To achieve the existing reduction targets, not to mention those necessary to stabilize the atmosphere, technological changes will be necessary to reduce the fossil fuel-intensity of most countries` energy system (supply-side measures) and to improve the efficiency with which fuels and electricity are used (demand-side measures). The possible policy instruments with which to stimulate these changes are many. At the international level, most discussion has centred on various forms of carbon emission taxes and to some extent on tradable emission offsets or permits. At the national level, where most real energy policy changes would have to be implemented, other non-fiscal policy instruments are common. (EG) 79 refs.

  15. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.

    2016-01-01

    by infiltrating nano-sized CGO orNiCGO on top of SFM, while still sustaining the high electronicconductivity. Ohmic resistance of the electrodes was thuspractically eliminated and performance comparable to, or betterthan, state-of-the-art fuel electrodes was achieved. The Nicontaining cells were damaged by carbon......To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...... deposition in a CO/CO2-atmosphere, while none of the non-nickel cells catalyzed carbon.Stability towards redox cycles was also proven....

  16. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    Science.gov (United States)

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  18. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  19. Corrosion of materials in Molten Carbonate Fuel Cells (MCFC): Literature review

    Science.gov (United States)

    1987-01-01

    Molten carbonate fuel cell (MCFC) separator plates are subjected to corrosive environments. This review focuses on the most comprehensive compiled available data from the major government contractors like ERC and UTC, together with a basic review of alloys resistant to oxidation, sulfidation, carburization, and hot corrosion. Results of this review are used in selecting test materials for the current program. A number of metal oxides were examined. This review discusses the tests performed by UTC and ERC on separator plate materials.

  20. Photomicrobial fuel cell (PFC) for simultaneous organic carbon, nutrients removal and energy production

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Safa, Jafar; Angelidaki, Irini

    2014-01-01

    A sediment-type photomicrobial fuel cell (PFC), based on the synergistic interaction between microalgae (Chlorella vulgaris) and electrochemically active bacteria, was developed to remove carbon and nutrients from wastewater, and produce electricity and algal biomass simultaneously. Under...... mechanism of nitrogen and phosphorus was algae biomass uptake (75% and 93%, respectively), while nitrification and denitrification process contributed to part of nitrogen removal (22%). In addition, the effect of illumination period on the performance of PFC was investigated. Except notable fluctuation...

  1. Microbial fuel cell-driven caustic potash production from wastewater for carbon sequestration

    OpenAIRE

    Gajda, I.; Greenman, J.; Melhuish, C.; Santoro, C.; Ieropoulos, I.

    2016-01-01

    This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassium-rich wastewater as a fuel for microorganisms to generate electricity in the anode chamber, has resulted in the formation of caustic catholyte directly on the surface of the cathode electrode. Analysis of this liquid has shown to be highly alkaline (pH>13) and act ...

  2. Molten carbonate fuel cells to improve the perfomance of CHP in wastewater treatment facilities

    OpenAIRE

    Sánchez Martínez, David Tomás; Monje Brenes, Benjamín; Chacartegui, R.; Campanari, S.; Sánchez Lencero, Tomás Manuel

    2011-01-01

    The concern about environmental sustainability brought about by global warming in the last decades along with the scarcity of fossil fuel resources has fostered the research in renewable energies, high efficiency power generation systems and carbon dioxide capture and storage opportunities. The present work shows the performance of a system closely related to these three research areas. It focuses on a hybrid system composed by a reciprocating engine set (ICE) fuelled with biogas (BG) and a ...

  3. Fuel Cell Platinum Catalysts Supported on Mediate Surface Area Carbon Black Supports

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Odgaard, M.

    2015-01-01

    Roč. 43, č. 2015 (2015), s. 913-918 ISSN 1974-9791. [International Conference on Chemical and Process Engineering - ICheaP12 /12./. Milano, 19.05.2015-22.05.2015] R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * platinum catalyst * fuel cell Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  4. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available resin-CB composites (with 70wt% loading). Keywords: Polydimethylsiloxane (PDMS); Polymer nanocomposite, Carbon black; Thermal conductivity; Thermal stability; Fuel cell Biographical notes: Hao Chen received his bachelor degree honours in physics... initiative (SANi), his current main research focus is related to smart and engineered nano-materials for photonics and renewable energy applications. Prof. V. Vasudeva Rao holds Bachelors Degree in Mechanical Engineering, Masters Degree...

  5. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper

    Science.gov (United States)

    Li, Christina W.; Ciston, Jim; Kanan, Matthew W.

    2014-04-01

    The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O (`oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

  6. Factors affecting defective fraction of biso-coated HTGR fuel particles during in-block carbonization

    International Nuclear Information System (INIS)

    Caputo, A.J.; Johnson, D.R.; Bayne, C.K.

    1977-01-01

    The performance of Biso-coated thoria fuel particles during the in-block processing step of HTGR fuel element refabrication was evaluated. The effect of various process variables (heating rate, particle crushing strength, horizontal and/or vertical position in the fuel element blocks, and fuel hole permeability) on pitch coke yield, defective fraction of fuel particles, matrix structure, and matrix porosity was evaluated. Of the variables tested, only heating rate had a significant effect on pitch coke yield while both heating rate and particle crushing strength had a significant effect on defective fraction of fuel particles

  7. Pyrolysis result of polyethylene waste as fuel for solid oxide fuel cell with samarium doped-ceria (SDC)-carbonate as electrolyte

    Science.gov (United States)

    Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.

    2017-02-01

    In this research, the result of pyrolysis on polyethylene was used as fuel for a solid oxide fuel cell (SOFC). The pyrolysis result is a liquid which consists of hydrocarbon chains. According to GC-MS analysis, the hydrocarbons mainly consist of C7 to C20 hydrocarbon chain. Then, the liquid was applied to a single cell of NSDC-L | NSDC | NSDC-L. NSDC is a composite SDC (samarium doped-ceria) with sodium carbonate. Meanwhile, NSDC-L is a composite of NSDC with LiNiCuO (LNC). NSDC and LNC were analyzed by X-ray diffraction to understand their crystal structure. The result shows that presence of carbonate did not change the crystal structure of SDC. SEM EDX analysis for fuel cell before and after being loaded with polyethylene oil to get information of element diffusion to the electrolyte. Meanwhile, the conductivity properties were investigated through impedance measurement. The presence of carbonate even increases the electrical conductivity. The single cell test with the pyrolysis result of polyethylene at 300 - 600 °C, found that the highest power density is at 600 °C with the maximum power density of 0.14 mW/cm2 and open circuit voltage of 0.4 Volt. Elemental analysis at three point spots of single cell NDSC-L |NSDC|NSDC-L found that a migration of ions was occurred during fuel operation at 300 - 600 °C.

  8. SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Calo

    2004-12-01

    This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence

  9. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  10. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    Science.gov (United States)

    Li, Shuangbin; Jiang, Cairong; Liu, Juan; Tao, Haoliang; Meng, Xie; Connor, Paul; Hui, Jianing; Wang, Shaorong; Ma, Jianjun; Irvine, John T. S.

    2018-04-01

    Biomass is expected to play a significant role in power generation in the near future. With the uprising of carbon fuel cells, hybrid direct carbon fuel cells (HDCFCs) show its intrinsic and incomparable advantages in the generation of clean energy with higher efficiency. In this study, two types of biomass treated by physical sieve and pyrolysis from raw sawdust are investigated on an anode-supported HDCFC. The structure and thermal analysis indicate that raw sawdust has well-formed cellulose I phase with very low ash. Electrochemical performance behaviors for sieved and pyrolyzed sawdust combined with various weight ratios of carbonate are compared in N2 and CO2 purge gas. The results show that the power output of sieved sawdust with 789 mWcm-2 is superior to that of pyrolyzed sawdust in CO2 flowing, as well as in N2 flowing. The anode reaction mechanism for the discrepancy of two fuels is explained and the emphasis is also placed on the modified oxygen-reduction cycle mechanism of catalytic effects of Li2CO3 and K2CO3 salts in promoting cell performance.

  11. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge

    International Nuclear Information System (INIS)

    Lin, Yousheng; Ma, Xiaoqian; Peng, Xiaowei; Hu, Shanchao; Yu, Zhaosheng; Fang, Shiwen

    2015-01-01

    Different temperatures in the range of 180–300 °C were applied to evaluate the effect of hydrothermal carbonization (HTC) temperature on hydrochar fuel characteristics and thermal behavior. The hydrochar produced at 210 °C had the maximum heating value (9763 kJ/kg) with the highest energetic recovery efficiency (90.12%). Therefore, 210 °C could be the optimum temperature for HTC of paper sludge. With raising the temperature, noticeable decreases in nitrogen and sulfur contents with lower oxygen/carbon and hydrogen/carbon atomic ratios were observed. In addition, the slagging and fouling problems were dramatically mitigated due to efficiently remove of major ash forming contents, especially for chlorine, sodium and potassium. Finally, thermal gravimetric analysis showed that HTC temperature had a significant impact on combustion behavior and activation energy of hydrochars. The first combustion decomposition peak of hydrochars treated at 180, 210 and 240 °C, were much higher that other samples, leading to a better combustion performance. - Highlights: • Higher heating value was increased by all hydrochars tests by up to 8%. • Hydrochars showed lower N, S contents and higher fuel ratio. • High removal rates of Cl, Na and K contents were achieved during HTC process. • The optimal temperature of HTC was approximately 210 °C to make clean solid fuel.

  12. Fuel composition effects on transportation fuel cell reforming

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rod L.; Inbody, Michael A.; Semelsberger, Troy A.; Tafoya, Jose I.; Guidry, Dennis R. [Los Alamos National Laboratory, MST-11, MS J579, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2005-01-30

    This work examines the effect of various hydrocarbons on fuel processor light-off and reforming. Major hydrocarbon fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared with the fuel processing performance of blended fuel components and reformulated gasoline to examine synergistic or detrimental effects the fuel components have in a real fuel blend. Short chained aliphatic hydrocarbons tend to have favorable light-off and reforming characteristics for catalytic autothermal reforming compared with longer-chained and aromatic components. Oxygenated hydrocarbons have lower light-off requirements than do pure hydrocarbons. Gas phase oxidation favors higher cetane number fuels, which tend to be longer chained hydrocarbons. Energy consumption during the start-up process shows a large fuel effect. Methanol and dimethylether (DME) show lower start-up energy demands for the fuel processor start-up than do high temperature reforming hydrocarbon fuels such as methane, gasoline and ethanol. Aromatics and longer chained hydrocarbons show a higher tendency for carbon formation, increasing the amount of carbon formed during the light-off phase while the addition of oxygenates tends to lower the carbon formed during the start-up process.

  13. Development and Implementation of Carbon Nanofoam Cathode Structures for Magnesium-Hydrogen Peroxide Semi-Fuel Cells

    National Research Council Canada - National Science Library

    Renninger, Christopher H

    2008-01-01

    ...); consequently, this Trident project has sought to improve the electrochemical performance of Mg-H2O2 semi-fuel cells by fabricating porous carbon nanofoam composites as nanostructured electrode...

  14. Molted carbonate fuel cell product design and improvement - 4th quarter, 1995. Quarterly report, October 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The primary objective of this project is to establish the commercial readiness of MW-class IMHEX Molten Carbonate Fuel Cell power plants. Progress is described on marketing, systems design and analysis, product options and manufacturing.

  15. Assessment of low carbon energy technologies: fossil fuels and CCS

    NARCIS (Netherlands)

    Ramirez, C.A.; Bakshi, B.; Gibon, T.; Hertwich, E.

    2013-01-01

    This paper presents results that are part of a larger effort driven by the International Resource Panel of the United Nations Environment Program. The reports aims to identify and, when possible, quantify the trade-offs, benefits, and risks of low carbon energy technologies. In order to provide a

  16. Highly Loaded Carbon Black Supported Pt Catalysts for Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Vít, Zdeněk; Šolcová, Olga; Soukup, Karel; Koštejn, Martin; Bonde, J.L.; Maixnerová, Lucie; Odgaard, M.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 375-383 ISSN 0920-5861 R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * fuell cell * electrocatalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.312, year: 2015

  17. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    C/min under nitrogen atmosphere. All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR spectra were recorded for mem- branes using Perkin Elmer Pyris 1 FTIR spectrophoto- meter. Membrane and carbon black ...

  18. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  19. Improvement of biogas as a fuel in molten carbonate fuel cells (MCFC); Aprovechamiento del biogas como combustible en pilas de combustible de carbonatos fundidos (MCFC)

    Energy Technology Data Exchange (ETDEWEB)

    Gil Diez, J.

    2002-07-01

    Molten carbonate fuel cells (MCFC) have a high efficiency of approx 50% when using biogas as a fuel and are among all types of FC the best suited for biogas. A precondition for use biogas in fuel cells is the reduction of accompanying traces of detrimental gases, therefore the RTD-work is two fold: A Preprocessing unit must be developed and the expected endurance must be confirmed. As a lesson learned in prior projects major reasons why renewable energy projects fail is the one-sided focus on technical aspects, that is why non-technical barriers shall be taken into account and realistic recommendations have to be established to overcome possible economic, logistic, legal and social problems. (Author)

  20. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    Science.gov (United States)

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  1. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  2. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  3. Renewable Fuel Standard Program

    Science.gov (United States)

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  4. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  5. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  6. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  7. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  8. Immobilization of carbon 14 contained in spent fuel hulls through melting-solidification treatment

    International Nuclear Information System (INIS)

    Mizuno, T.; Maeda, T.; Nakayama, S.; Banba, T.

    2004-01-01

    The melting-solidification treatment of spent nuclear fuel hulls is a potential technique to improve immobilization/stabilization of carbon-14 which is mobile in the environment due to its weakly absorbing properties. Carbon-14 can be immobilized in a solid during the treatment under an inert gas atmosphere, where carbon is not oxidized to gaseous form and remains in the solid. A series of laboratory scale experiments on retention of carbon into an alloy waste form was conducted. Metallic zirconium was melted with metallic copper (Zr/Cu=8/2 in weight) at 1200 deg C under an argon atmosphere. Almost all of the carbon remained in the resulting zirconium-copper alloy. (authors)

  9. Fuel storage

    International Nuclear Information System (INIS)

    Palacios, C.; Alvarez-Miranda, A.

    2009-01-01

    ENSA is a well known manufacturer of multi-system primary components for the nuclear industry and is totally prepared to satisfy future market requirements in this industry. At the same time that ENSA has been gaining a reputation world wider for the supply of primary components, has been strengthening its commitment and experience in supplying spent fuel components, either pool racks or storage and transportation casks, and offers not only fabrication but also design capabilities for its products. ENSA has supplied Spent Fuel Pool Racks, in spain, Finland, Taiwan, Korea, China, and currently it is in the process of licensing its own rack design in the United States of America for the ESBWR along with Ge-Hitachi. ENSA has supplied racks for 20 pools and 22 different reactors and it has also manufactured racks under all available technologies and developed a design known as Interlock Cell Matrix whose main features are outlined in this article. Another ENSA achievement in rack technology is the use of remote control for re-racking activities instead of using divers, which improves the ALARA requirements. Regarding casks for storage and transportation, ENSA also has al leading worldwide position, with exports prevailing over the Spanish market where ENSA has supplied 16 storage and transportation casks to the Spanish nuclear power Trillo. In some cases, ENSA acts as subcontractor for other clients. Foreign markets are still a major challenge for ENSA. ENSA-is well known for its manufacturing capabilities in the nuclear industry, but has been always involved in design activities through its engineering division, which carries out different tasks: components Design; Tooling Design; Engineering and Documentation; Project Engineering; Calculations, Design and Development Engineering. (Author)

  10. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  11. CANDU fuel performance

    International Nuclear Information System (INIS)

    Ivanoff, N.V.; Bazeley, E.G.; Hastings, I.J.

    1982-01-01

    CANDU fuel has operated successfully in Ontario Hydro's power reactors since 1962. In the 19 years of experience, about 99.9% of all fuel bundles have performed as designed. Most defects occurred before 1979 and subsequent changes in fuel design, fuel management, reactor control, and manufacturing quality control have reduced the current defect rate to near zero. Loss of power production due to defective fuel has been negligible. The outstanding performance continues while maintaining a low unit energy cost for fuel

  12. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  13. An overview of alternative fossil fuel price and carbon regulation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2004-10-01

    The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2

  14. Fuel processor for fuel cell power system

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  15. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  16. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  17. Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weimin; Chen, Jun; Wagner, Pawel; Wallace, Gordon G. [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong NSW 2522 (Australia); Swiegers, Gerhard F. [CSIRO Molecular and Health Technologies, Bag 10, Clayton VIC 3169 (Australia)

    2008-04-15

    A thin-layer of polypyrrole (PPy) film, immobilized with neutral 5,10,15,20-tetraphenylporphyrinato cobalt (II) (Co-TPP), was successfully and uniformly deposited onto mesoporous carbon fibre paper (CFP) via vapor-phase polymerization. The resulting PPy/Co-TPP-modified carbon fibre paper (PPy/Co-TPP-CFP) electrode was characterized by cyclic voltammetry, SEM and EDX-ray mapping. Its electrochemical stability and long-term electrocatalytic performance were investigated in a half-fuel cell testing system. The electrode displayed significant electrocatalytic performance for oxygen reduction at 0.0 V (vs. Ag/AgCl), with notable long-term stability. (author)

  18. Evaluating the viability of dimethyl carbonate as an alternative fuel for the transportation sector.

    Science.gov (United States)

    2017-06-01

    Some of the most important questions in the development of sustainable transportation are : identify fuels that will reduce emissions, provide diversification from fossil fuels, reduce : greenhouse gas emissions, be produced from renewable sources, a...

  19. Ecodriving and carbon footprinting : understanding how public education can reduce greenhouse gas emissions and fuel use.

    Science.gov (United States)

    2012-04-01

    Ecodriving is a collection of changes to driving behavior and vehicle maintenance designed to impact fuel consumption and greenhouse gas (GHG) emissions in existing vehicles. Because of its promise to improve fuel economy within the existing fleet, e...

  20. Hydrothermal carbonization of rice husk for fuel upgrading

    Science.gov (United States)

    Suteerawattananonda, N.; Kongkaew, N.; Patumsawad, S.

    2018-01-01

    The biomass is popularly used as renewable energy. In Thailand rice is the most consume agricultural products. Agricultural residues from rice husk can be an energy resource. However, alkali and alkali earth materials (AAEMs) in biomass ash are the causes of corrosion and erosion problem in the heat exchanger equipment, while the acidity of ash affects the slagging agglomeration problem. Reduction of alkali and alkali earth materials can minimize the problem. In order to challenge the reduction of alkali and alkali earth materials in biomass ash, hydrothermal carbonization process was selected. Thai rice husk was used as sample to compare the result of treatment. The rice husk was heated under the condition of different temperature ranged from 180°C to 250°C, at operate pressure ranges from 12 bar to 42 bar with residence holding reaction time 1 hour. The results of proximate analysis show that the percentage by mass of fixed carbon are increased 2 times, but volatile matter is decreased by 40% and ash content is decreased by 11% due to the increment of temperature. Meanwhile, the X-Ray fluorescence (XRF) analysis results show the decreasing of alkali and alkali earth materials are reduced.

  1. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  2. Fuel performance experience

    International Nuclear Information System (INIS)

    Sofer, G.A.

    1986-01-01

    The history of LWR fuel supply has been characterized by a wide range of design developments and fuel cycle cost improvements. Exxon Nuclear Company, Inc. has pursued an aggressive fuel research and development program aimed at improved fuel performance. Exxon Nuclear has introduced many design innovations which have improved fuel cycle economics and operating flexibility while fuel failures remain at very low levels. The removable upper tie plate feature of Exxon Nuclear assemblies has helped accelerate this development, enabling repeated inspections during successive plant outages. Also, this design feature has made it possible to repair damaged fuel assemblies during refueling outages, thereby minimizing the economic impact of fuel failure from all causes

  3. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  4. A nondestructive examination program for unclad carbon-composite reactor fuel elements

    International Nuclear Information System (INIS)

    Fullbright, H.J.

    1976-01-01

    A nondestructive testing program for the examination of (U,Zr)C-C reactor fuel elements is described. Radiography and eddy current data were used to eliminate defective fuel rods from the program. Mass per unit length data, uranium distribution data, and the thermal conductivity information could be used to calculate anticipated fuel element performance. Each generation of the development program yielded materials properties information that was used to design fuel rods

  5. Influence of Fuel Load Dynamics on Carbon Emission by Wildfires in the Clay Belt Boreal Landscape

    Directory of Open Access Journals (Sweden)

    Aurélie Terrier

    2016-12-01

    Full Text Available Old-growth forests play a decisive role in preserving biodiversity and ecological functions. In an environment frequently disturbed by fire, the importance of old-growth forests as both a carbon stock as well as a source of emissions when burnt is not fully understood. Here, we report on carbon accumulation with time since the last fire (TSF in the dominant forest types of the Clay Belt region in eastern North America. To do so, we performed a fuel inventory (tree biomass, herbs and shrubs, dead woody debris, and duff loads along four chronosequences. Carbon emissions by fire through successional stages were simulated using the Canadian Fire Effects Model. Our results show that fuel accumulates with TSF, especially in coniferous forests. Potential carbon emissions were on average 11.9 t·ha−1 and 29.5 t·ha−1 for old-growth and young forests, respectively. In conclusion, maintaining old-growth forests in the Clay Belt landscape not only ensures a sustainable management of the boreal forest, but it also optimizes the carbon storage.

  6. Non-linear model reduction and control of molten carbonate fuel cell systems with internal reforming

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Min

    2007-10-12

    Currently, the process design of fuel cells and the development of control strategies is mainly based on heuristic methods. Fuel cell models are often too complex for control purposes, or they are developed for a specific type of fuel cell and valid only in a small range of operation conditions. The application of fuel cell models to controller design is still limited. Furthermore, suitable and simple-to-implement design strategies for fuel cell control remain an open area. There is thus a motivation for simplifying dynamic models for process control applications and for designing suitable control strategies for fuel cells. This is the main objective of this work. As an application example, the 250 kW industrial molten carbonate fuel cell (MCFC) system HotModule by MTU CFC Solutions, Germany is considered. A detailed dynamic two-dimensional spatially distributed cross-flow model of a MCFC from literature is taken as a starting point for the investigation. In Chapter 2, two simplified model versions are derived by incorporating additional physical assumptions. One of the simplified models is extended to a three-dimensional stack model to deal with physical and chemical phenomena in the stack. Simulations of the stack model are performed in Chapter 3 in order to calculate the mass and temperature distributions in the direction perpendicular to the electrode area. The other simplified model forms the basis for a low order reduced model that is derived in Chapter 4. The reduced-order model is constructed by application of the Karhunen-Loeve Galerkin method. The spatial temperature, concentration and potential profiles are approximated by a set of orthogonal time independent spatial basis functions. Problem specific basis functions are generated numerically from simulation data of the detailed reference model. The advantage of this approach is that a small number of basis functions suffices in order to approximate the solution of the detailed model very well. The

  7. Internal reforming fuel cell assembly with simplified fuel feed

    Science.gov (United States)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  8. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M.

    2005-01-01

    A comprehensive study of the particle and carbon dioxide emissions from a fleet of six dedicated liquefied petroleum gas (LPG) powered and five unleaded petrol (ULP) powered new Ford Falcon Forte passenger vehicles was carried out on a chassis dynamometer at four different vehicle speeds-0 (idle), 40, 60, 80 and 100 km h -1 . Emission factors and their relative values between the two fuel types together with a statistical significance for any difference were estimated for each parameter. In general, LPG was found to be a 'cleaner' fuel, although in most cases, the differences were not statistically significant owing to the large variations between emissions from different vehicles. The particle number emission factors ranged from 10 11 to 10 13 km -1 and was over 70% less with LPG compared to ULP. Corresponding differences in particle mass emission factor between the two fuels were small and ranged from the order of 10 μg km -1 at 40 to about 1000 μg km -1 at 100 km h -1 . The count median particle diameter (CMD) ranged from 20 to 35 nm and was larger with LPG than with ULP in all modes except the idle mode. Carbon dioxide emission factors ranged from about 300 to 400 g km -1 at 40 km h -1 , falling with increasing speed to about 200 g km -1 at 100 km h -1 . At all speeds, the values were 10% to 18% greater with ULP than with LPG

  9. Time scales and ratios of climate forcing due to thermal versus carbon dioxide emissions from fossil fuels

    Science.gov (United States)

    Zhang, Xiaochun; Caldeira, Ken

    2015-06-01

    The Earth warms both when fossil fuel carbon is oxidized to carbon dioxide and when greenhouse effect of carbon dioxide inhibits longwave radiation from escaping to space. Various important time scales and ratios comparing these two climate forcings have not previously been quantified. For example, the global and time-integrated radiative forcing from burning a fossil fuel exceeds the heat released upon combustion within 2 months. Over the long lifetime of CO2 in the atmosphere, the cumulative CO2-radiative forcing exceeds the amount of energy released upon combustion by a factor >100,000. For a new power plant, the radiative forcing from the accumulation of released CO2 exceeds the direct thermal emissions in less than half a year. Furthermore, we show that the energy released from the combustion of fossil fuels is now about 1.71% of the radiative forcing from CO2 that has accumulated in the atmosphere as a consequence of historical fossil fuel combustion.

  10. A Global Emission Inventory of Black Carbon and Primary Organic Carbon from Fossil-Fuel and Biofuel Combustion

    Science.gov (United States)

    Bond, T. C.; Streets, D. G.; Nelson, S. M.

    2001-12-01

    Regional and global climate models rely on emission inventories of black carbon and organic carbon to determine the climatic effects of primary particulate matter (PM) from combustion. The emission of primary carbonaceous particles is highly dependent on fuel type and combustion practice. Therefore, simple categories such as "domestic" or "industrial" combustion are not sufficient to quantify emissions, and the black-carbon and organic-carbon fractions of PM vary with combustion type. We present a global inventory of primary carbonaceous particles that improves on previous "bottom-up" tabulations (e.g. \\textit{Cooke et al.,} 1999) by considering approximately 100 technologies, each representing one combination of fuel, combustion type, and emission controls. For fossil-fuel combustion, we include several categories not found in previous inventories, including "superemitting" and two-stroke vehicles, steel-making. We also include emissions from waste burning and biofuels used for heating and cooking. Open biomass burning is not included. Fuel use, drawn from International Energy Agency (IEA) and United Nations (UN) data, is divided into technologies on a regional basis. We suggest that emissions in developing countries are better characterized by including high-emitting technologies than by invoking emission multipliers. Due to lack of information on emission factors and technologies in use, uncertainties are high. We estimate central values and uncertainties by combining the range of emission factors found in the literature with reasonable estimates of technology divisions. We provide regional totals of central, low and high estimates, identify the sources of greatest uncertainty to be targeted for future work, and compare our results with previous emission inventories. Both central estimates and uncertainties are given on a 1\\deg x1\\deg grid. As we have reported previously for the case of China (\\textit{Streets et al.,} 2001), low-technology combustion

  11. Compositions and methods for treating nuclear fuel

    Science.gov (United States)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  12. Fundamental stack and system issues in molten carbonate fuel cell development

    Science.gov (United States)

    Williams, M. C.; Parsons, E. L., Jr.; Mayfield, M. J.

    Stack research and system issues in molten carbonate fuel cell (MCFC) technology development and commercialization are discussed within context of status of MCFC development and commercialization in US. Status of MCFC development is addressed. Major known fundamental stack research issues remaining for the MCFC technology are identified and discussed. The cathode remains a focal point of performance improvement and cost reduction. The various aspects of MCFC power plant network and systems issues are also addressed and discussed. These include cost, heat loss management, startup and shutdown modes, dynamic response, footprint, packaging and integration, parasitic power losses, pressurization, and reforming. Potential of MCFC networks is discussed. With the initial demonstration of full-area, full-height 250-kW to 2-MW MCFC power plants, the spatial configuration of the MCFC stacks into networks in the fuel cell power plant takes on importance for the first time.

  13. Morphologically controlled fuel cell transport layers enabled via electrospun carbon nonwovens

    Science.gov (United States)

    Todd, Devin; Mérida, Walter

    2015-01-01

    We report on the synthesis and performance of carbon nanofibre substrates for PEM fuel cell transport layer applications. Electrospinning is used for fabrication; by manipulation of spinning properties, morphological control is demonstrated in the product. Our application of the technology and it's manipulability to PEMFC transport layers constitutes a novel approach to the manufacture of such layers. Ex-situ morphology, electrical resistance and water contact angles are reported in additional to in-situ hydrogen/air fuel cell performance. Electrospun transport layers are compared directly to established commercial products in a cathode PTL role. The electrospun transport layers demonstrate approximately 85% of the commercial limiting current density, swifter water transport characteristics, and markedly more stable operating points.

  14. Multiwalled carbon nanotubes and fluoroelastomer antistatic nanocomposite for automotive fuel system components

    International Nuclear Information System (INIS)

    Lee, Seok; Park, Seong Hwan; Ha, Kiryong; Lee, Jong Cheol

    2016-01-01

    Fluoroelastomer (FKM) composites, reinforced with multiwalled carbon nanotubes (MWNTs), were prepared by conventional method to determine the possibility of using MWNTs to develop an antistatic composite in automotive fuel systems. The results obtained from the composite containing 0-9 phr of MWNTs were compared. A 5 points increase in hardness was achieved with the addition of only 1 phr of MWNTs and 9 phr added FKM composite was increased 6.4MPa in tensile strength compared to the MWNTs unfilled FKM composite. In addition, electrical conductivity increased from 0 to 1.039 Scm -1 with increase in the MWNTs concentration, and the dynamic damping property was increased in the rubbery state region accordingly. These phenomena can be explained by the MWNTs networks formed in FKM matrix. This research will therefore be useful in the development of an antistatic rubber composite for fuel system components, which are deformed or vibrated while in operation.

  15. Multiwalled carbon nanotubes and fluoroelastomer antistatic nanocomposite for automotive fuel system components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok; Park, Seong Hwan; Ha, Kiryong [Keimyung University, Daegu (Korea, Republic of); Lee, Jong Cheol [Jin-Yang Oil Seal Co., Ltd., Daegu (Korea, Republic of)

    2016-03-15

    Fluoroelastomer (FKM) composites, reinforced with multiwalled carbon nanotubes (MWNTs), were prepared by conventional method to determine the possibility of using MWNTs to develop an antistatic composite in automotive fuel systems. The results obtained from the composite containing 0-9 phr of MWNTs were compared. A 5 points increase in hardness was achieved with the addition of only 1 phr of MWNTs and 9 phr added FKM composite was increased 6.4MPa in tensile strength compared to the MWNTs unfilled FKM composite. In addition, electrical conductivity increased from 0 to 1.039 Scm{sup -1} with increase in the MWNTs concentration, and the dynamic damping property was increased in the rubbery state region accordingly. These phenomena can be explained by the MWNTs networks formed in FKM matrix. This research will therefore be useful in the development of an antistatic rubber composite for fuel system components, which are deformed or vibrated while in operation.

  16. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    Science.gov (United States)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment

  17. Influence of Carbon Dioxide Bubble on Pore in Fibrous Structure of Direct Methanol Fuel Cell

    Science.gov (United States)

    Sugimura, Masahiko; Fujimoto, Kozo

    Direct methanol fuel cell (DMFC) is promising as new portable power source in various electronics devises. However, the performance of DMFC decreases by many problems which the factor of the structure and material effects each species concentration in the electrode catalyst layer. The anode reaction in DMFC products carbon dioxide, and CO2 bubbles generate in anode electrode. Diffusion layer in DMFC electrode is made carbon paper. The CO2 bubbles resulted in gas slugs blocking the pores in carbon paper. The CO2 bubble is affected by structure and surface characteristics in the diffusion layer. The behavior of bubble is analyzed some structure. We showed the relationship between bubble effect and contact angle of carbon fiber. And also, the model results indicate that the contact angle can improve the cell performance.

  18. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J.; Leo, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); O`Shea, T.P. [Santa Clara Demonstration Project, CA (United States)

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  19. Electrocatalytic activity of carbon-supported catalysts for direct ethanol fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Varela, F.J. [CINVESTAV-Unidad Saltillo, Coahuila, (Mexico). Grupo de Investigacion en Energia; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Proton exchange membrane fuel cells (PEMFCs) can be fueled with hydrogen, alcohols, hydrocarbons and acetals. Ethanol is an important fuel candidate because it can be electro-oxidized to carbon dioxide on platinum (Pt)-based electrocatalysts in a direct ethanol fuel cell (DEFC) at relatively low temperatures. This study investigated the electrocatalytic activity of some carbon-supported electrocatalysts towards the ethanol oxidation (EOR) and the oxygen reduction reaction (ORR) in the presence of ethanol. Compared to other anode catalysts such as Pt, PtRu and Pt oxide, anodes based on PtSn alloys have a higher catalytic activity for the EOR. When tested in a DEFC, the current density at 0.4V and 90 degrees C based on a PtSn/C anode and a Pt/C cathode was 2 times higher than that of a cell based on a PtRu/C-Pt/C membrane electrode assembly (MEA) configuration. In addition, cathode catalysts based on Ru/C had good catalytic activity for the ORR and exhibited high selectivity for this reaction in the presence of ethanol. The results showed that in the presence of 0.125, 0.25 or 0.5 M ethanol concentrations, a decrease in onset potential of about 60, 62 and 68 mV emerged, respectively. These values were about 10 times lower than those measured for some Pt-based cathode catalysts tested in this study in the presence of 0.125 M EtOH. 20 refs., 5 figs.

  20. Fuel dissipater for pressurized fuel cell generators

    Science.gov (United States)

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  1. Fuels from renewable resources

    Science.gov (United States)

    Hoffmann, L.; Schnell, C.; Gieseler, G.

    Consideration is given to fuel substitution based on regenerative plants. Methanol can be produced from regenerative plants by gasification followed by the catalytic hydration of carbon oxides. Ethanol can be used as a replacement fuel in gasoline and diesel engines and its high-knock rating allows it to be mixed with lead-free gasoline. Due to the depletion of oil and gas reserves, fermentation alcohol is being considered. The raw materials for the fermentation process can potentially include: (1) sugar (such as yeasts, beet or cane sugar); (2) starch (from potatoes or grain) and (3) cellulose which can be hydrolized into glucose for fermentation.

  2. Fuel Cell Handbook, Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  3. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  4. A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.

    Science.gov (United States)

    Wu, Wei; Zhang, Yunya; Ding, Dong; He, Ting

    2018-01-01

    Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple-phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid-state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO 2 -Li/Na 2 CO 3 composite electrolyte, and Sm 0.5 Sr 0.5 CoO 3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm -2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm -2 at a constant current density of 0.15 A cm -2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500-600 °C, representing a promising strategy in developing high-performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Yu, Ha Na; Lim, Jun Woo; Suh, Jung Do; Lee, Dai Gil

    A PEMFC (polymer electrolyte membrane fuel cell or proton exchange membrane fuel cell) stack is composed of GDLs (gas diffusion layers), MEAs (membrane electrode assemblies), and bipolar plates. One of the important functions of bipolar plates is to collect and conduct the current from cell to cell, which requires low electrical bulk and interfacial resistances. For a carbon fiber epoxy composite bipolar plate, the interfacial resistance is usually much larger than the bulk resistance due to the resin-rich layer on the composite surface. In this study, a thin graphite layer is coated on the carbon/epoxy composite bipolar plate to decrease the interfacial contact resistance between the bipolar plate and the GDL. The total electrical resistance in the through-thickness direction of the bipolar plate is measured with respect to the thickness of the graphite coating layer, and the ratio of the bulk resistance to the interfacial contact resistance is estimated using the measured data. From the experiment, it is found that the graphite coating on the carbon/epoxy composite bipolar plate has 10% and 4% of the total electrical and interfacial contact resistances of the conventional carbon/epoxy composite bipolar plate, respectively, when the graphite coating thickness is 50 μm.

  6. Calibration method for carbon dioxide sensors to investigate direct methanol fuel cell efficiency

    Science.gov (United States)

    Stähler, M.; Burdzik, A.

    2014-09-01

    Methanol crossover is a process in direct methanol fuel cells which causes significant reduction of cell efficiency. Methanol permeates through the membrane electrode assembly and reacts at the cathode with oxygen to form carbon dioxide. This process is undesirable because it does not generate electric energy, but rather only increases heat production. Different procedures have been used for the investigation of this crossover. One method uses the detection of carbon dioxide in the exhaust gas of the cathode by means of a carbon dioxide sensor. This technique is inexpensive and enables real-time measurements but its disadvantage is the low accuracy. This paper demonstrates a simple method to generate gas mixtures for the calibration of the sensor in order to increase the accuracy. The advantages of this technique consist in the fact that only the existing devices of a direct methanol fuel cell test rig are needed and that the operator can adjust the carbon dioxide concentration for the calibration process. This is important for dealing with nonlinearities of the sensor. A detailed error analysis accompanies the experiments. At the end it is shown that the accuracy of the determined Faraday efficiency can be improved by using the presented calibration technique.

  7. Fuel cell testing of Pt–Ru catalysts supported on differently prepared and pretreated carbon nanotubes

    International Nuclear Information System (INIS)

    Tokarz, Wojciech; Lota, Grzegorz; Frackowiak, Elzbieta; Czerwiński, Andrzej; Piela, Piotr

    2013-01-01

    Proton-exchange membrane fuel cell (PEMFC) testing of Pt–Ru catalysts supported on differently prepared multiwall carbon nanotube (MCNT) supports was performed to elucidate the influence of the different supports on the operating characteristics of the catalysts under real direct methanol fuel cell (DMFC) anode and H 2 -PEMFC anode conditions. The MCNTs were either thin, entangled or thick, disentangled. Pretreatment of the MCNTs was also done and it was either high-temperature KOH etching or annealing (graphitization). The performance of the catalysts was compared against the performance of a commercial Pt–Ru catalyst supported on a high-surface-area carbon black. Among the different MCNT supports, the graphitized, entangled support offered the best performance in all tests, which was equal to the performance of the commercial catalyst, despite the MCNT catalyst layer was ca. 2.2 times thicker than the carbon black catalyst layer. Even for an MCNT catalyst layer, which was almost 7 times thicker than the carbon black catalyst layer, the transport limitations were not prohibitive. This confirmed the expected potential of nanotube supports for providing superior reactant transport properties of the PEMFC catalyst layers

  8. Method and apparatus for capturing carbon dioxide during combustion of carbon containing fuel

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard L.; Kumfer, Benjamin M.; Xia, Fei; Gopan, Akshay; Dhungel, Bhupesh

    2018-04-10

    A boiler system having a series of boilers. Each boiler includes a shell having an upstream end, a downstream end, and a hollow interior. The boilers also have an oxidizer inlet entering the hollow interior adjacent the upstream end of the shell and a fuel nozzle positioned adjacent the upstream end of the shell for introducing fuel into the hollow interior of the shell. Each boiler includes a flue duct connected to the shell adjacent the downstream end for transporting flue gas from the hollow interior. Oxygen is delivered to the oxidizer inlet of the first boiler in the series. Flue gas from the immediately preceding boiler in the series is delivered through the oxidizer inlet of each boiler subsequent to the first boiler in the series.

  9. Fuel assembly

    International Nuclear Information System (INIS)

    Bessho, Yasunori; Ishii, Yoshihiko; Sadaoka, Noriyuki.

    1990-01-01

    Burnable poisons are disposed in the lower portions of a water rod, a channel box and a control rod guide pipe in a fuel assembly, and the amount for each of them is set to burn out in one operation cycle. Since the inner side of the water rod and the control rod guide pipe and gaps are filled with steams at the initial and the intermediate stages of the operation cycle, moderation of neutrons is delayed to harden the spectrum. On the other hand, since the burnable poisons are burnt out in the final stage of the operation cycle, γ-ray heating is not expected and since the insides of the water rod and the control rod guide pipe and the gaps are filled with water of great moderation effect, the neutron spectrum arae softened. In view of the above, void coefficient is increased to promote conversion from U-235 to Pu-239 by utilizing exothermic reaction of burnable poisons at the initial and the intermediate stages in the operation cycle and generation of voids are eliminated at the final stage where the burnable poisons are burnt out, thereby enabling effective burning of Pu-239. (N.H.)

  10. Household consumption, associated fossil fuel demand and carbon dioxide emissions: The case of Greece between 1990 and 2006

    International Nuclear Information System (INIS)

    Papathanasopoulou, Eleni

    2010-01-01

    This paper explores how Greece's household consumption has changed between 1990 and 2006 and its environmental implications in terms of fossil fuel demand and carbon dioxide (CO 2 ) emissions. The results show that the 44% increase in Greece's household expenditure between 1990 and 2006 was accompanied by a 67% increase in fossil fuel demand. Of this total, indirect demand accounted for approximately 60% throughout the 16-year period, increasing by 56% overall, whereas direct fossil fuel demand grew by 80%. The results also show that associated CO 2 emissions increased by 60%, resulting in a 'relative decoupling' from energy demand. This relative decoupling is shown to be due to fossil fuel mix changes from the supply side rather than action from consumers. These insights highlight the opportunities for demand-side policies to further reduce fossil fuel demand and CO 2 emissions, allowing Greece to set more proactive and ambitious post-Kyoto targets.

  11. A carbon-13 and proton nuclear magnetic resonance study of some experimental referee broadened-specification /ERBS/ turbine fuels

    Science.gov (United States)

    Dalling, D. K.; Pugmire, R. J.

    1982-01-01

    Preliminary results of a nuclear magnetic resonance (NMR) spectroscopy study of alternative jet fuels are presented. A referee broadened-specification (ERBS) aviation turbine fuel, a mixture of 65 percent traditional kerosene with 35 percent hydrotreated catalytic gas oil (HCGO) containing 12.8 percent hydrogen, and fuels of lower hydrogen content created by blending the latter with a mixture of HCGO and xylene bottoms were studied. The various samples were examined by carbon-13 and proton NMR at high field strength, and the resulting spectra are shown. In the proton spectrum of the 12.8 percent hydrogen fuel, no prominent single species is seen while for the blending stock, many individual lines are apparent. The ERBS fuels were fractionated by high-performance liquid chromatography and the resulting fractions analyzed by NMR. The species found are identified.

  12. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    Science.gov (United States)

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  13. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  14. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    Science.gov (United States)

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  15. Reformer Fuel Injector

    Science.gov (United States)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  16. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  17. Fuel element development

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, G.

    1983-01-01

    The studies concerning breeders for the development of fuel elements carried out in Karlsruhe aim at: - optimization of fuel, - support of fuel rod and fuel element concepts from steady-state and field irradiation experiments and their evaluation, and - developing appropriate cladding and structural material and its adaptation to the requirements of high-output breeder reactors.

  18. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  19. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    Science.gov (United States)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  20. Carbon dioxide poisoning on proton-exchange-membrane fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Lebedeva, N.P. [ECN Fuel Cell Technology, Petten (Netherlands)

    2005-03-01

    Carbon dioxide, which is present in reformate fuels in concentrations up to 25%, can have a detrimental effect on the fuel cell performance that goes beyond dilution effects associated with an inert gas. The origin of these poisoning effects is the reverse water gas shift reaction, i.e in a fuel cell CO2 can be reduced by hydrogen adsorbed on the catalyst. This reaction results in an adsorbate on the anode catalyst. Fuel cell tests involving various Pt-based catalysts have shown that anode poisoning depends on the composition of the catalyst. The carbon dioxide reduction on Pt-based carbon supported catalysts as a function of the electrode potential was studied using cyclic voltammetry and chronocoulometry. The results indicate the formation of adsorbed species (most likely, carbon monoxide) on the surface of all these catalysts. Closer inspection also revealed differences between the samples. From the kinetic data analysis it is clear that, unlike Pt/C, some bimetallic (PtM/C) catalysts also catalyse the oxidation of the adsorbed species to carbon dioxide at low overpotentials. This ensures a higher equilibrium concentration of the free sites on the surface of this type of catalysts compared to that on Pt/C. Studies with a kinetic model have shown that main effect of CO2 reduction is that a large part of the catalytic surface area becomes inactive for H2 dissociation. Subsequent desorption of CO from the catalyst surface, transport down the gas channel, and subsequent re-adsorption of CO plays a minor role. The main reason for this is that a large blockage of the surface area inhibits further formation of CO in the reduction reaction. It was found that a high rate constant of this reaction increases the anode polarisation losses, as does a reduced rate constant of the hydrogen dissociation reaction. The effects are mitigated by a high ratio of the CO desorption and adsorption rate constants, as well as by a high CO electro-oxidation rate constant.

  1. Trioxane: A Fuel For Direct-Oxidation Fuel Cells

    Science.gov (United States)

    Olah, George A.; Prakash, Surya G.; Narayanan, Sekharipuram R.; Vamos, Eugene; Surampudi, Subbarao

    1995-01-01

    Trioxane identified as high-energy, nontoxic, solid substitute for formaldehyde as water-soluble fuel for use in direct-oxidation fuel cells. Found to undergo facile electrochemical oxidation to water and carbon dioxide at platinum and platinum-alloy electrodes in liquid-feed-type fuel cells that contain acid electrolytes or solid proton-exchange membrane electrolytes. Exhibits less crossover than do such conventional fuels as methanol and formaldehyde. Being solid at ambient temperature, trioxane offers significant advantages in handling and transportation. Synthesized from natural gas with relative ease.

  2. Dimethoxymethane: A Fuel For Direct-Oxidation Fuel Cells

    Science.gov (United States)

    Olah, George A.; Prakash, Surya G.; Narayanan, Sekharipuram R.; Vamos, Eugene; Halpert, Gerald

    1995-01-01

    Dimethoxymethane (DMM) identified as one of several high-energy fuels for direct-oxidation fuel cells. Found to undergo facile electro-oxidation to carbon dioxide and water, with methanol as possible intermediate product. Fuel electro-oxidized at sustained high rates without poisoning electrodes. Performance superior to that of methanol at same temperature. Synthesized from natural gas (methane) and is thus viable alternative to methanol in direct-oxidation fuel cells. Better performance expected at higher temperature and by use of Pt/Sn catalyst. Alternatively, low boiling temperature of DMM also makes it candidate for gas-feed operation.

  3. Durability of solid oxide fuel cells using sulfur containing fuels

    DEFF Research Database (Denmark)

    Hagen, Anke; Rasmussen, Jens Foldager Bregnballe; Thydén, Karl Tor Sune

    2011-01-01

    The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds...... are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24h and for a few hundred hours. In a fuel...

  4. The effects of halides on the performance of coal gas-fueled molten carbonate fuel cells: Final report, October 1986-October 1987

    Energy Technology Data Exchange (ETDEWEB)

    Magee, T.P.; Kunz, H.R.; Krasij, M.; Cote, H.A.

    1987-10-01

    This report presents the results of a program to determine the probable tolerable limits of hydrogen chloride and hydrogen fluoride present in the fuel and oxidant streams of molten carbonate fuel cells that are operating on gasified coal. A literature survey and thermodynamic analyses were performed to determine the likely effects of halides on cell performance and materials. Based on the results of these studies, accelerated corrosion experiments and electrode half-cell performance tests were conducted using electrolyte which contained chloride and fluoride. These data and the results of previous in-cell tests were used to develop a computer for predicting the performance decay due to these halides. The tolerable limits were found to be low (less than 1 PPM) and depend on the power plant system configuration, the operating conditions of the fuel cell stack, the cell design and initial electrolyte inventory, and the ability of the cell to scrub low levels of halide from the reactant streams. The primary decay modes were conversion of the electrolyte from pure carbonate to a carbonate-halide mixture and accelerated electrolyte evaporation. 75 figs., 16 tabs.

  5. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  6. Fuel transfer system

    Science.gov (United States)

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  7. Fuel cells seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  8. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal... Renewable Fuel Standard program regulations. Because EPA received adverse comment, we are withdrawing the...

  9. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Development of 2 kW Molten Carbonate Fuel Cell Stack

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hee Chun [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jung, Jong Soo [SAMSUNG HEAVY INDUSTRY (Korea, Republic of); Hong, Sung Ahn [Korea Institute of science and Technology, Seoul (Korea, Republic of)

    1997-12-31

    The molten carbonate fuel cell (MCFC) has been under intensive development during the last decade as the second generation fuel cell, since it has high efficiency at its operating temperature of 650 deg. C and coal gas can be utilized as the fuel. A 2 kW MCFC stack, consisted of 20 cells, was fabricated with 1,000 cm{sup 2}-area electrode and showed 16 volt at 150 A, producing stable power more than 2.4 kW. The test facility was constructed for the evaluation of the stack. The followings are included in this study : 1. Establishment of the scale-up technology of MCFC components. 2. Settling of the unit cell technology and its long term operation. 3. Manufacturing of a small scale stack and establishment of the stack operation. The feasibility study was carried out for the 100 kW class MCFC pilot plant system through the concept design. (author). 12 refs., figs. tabs.

  11. Process analysis of a molten carbonate fuel cell power plant fed with a biomass syngas

    Science.gov (United States)

    Tomasi, C.; Baratieri, M.; Bosio, B.; Arato, E.; Baggio, P.

    The coupling of renewable energy sources and innovative power generation technologies is of topical interest to meet demands for increased power generation and cleaner environmental performance. Accordingly, biomass is receiving considerable attention as a partial substitute for fossil fuels, as it is more environmentally friendly and provides a profitable way of disposing of waste. In addition, fuel cells are perceived as most promising electrical power generation systems. Today, many plants combining these two concepts are under study; they differ in terms of biomass type and/or power plant configuration. Even if the general feasibility of such applications has been demonstrated, there are still many associated problems to be resolved. This study examines a plant configuration based on a molten carbonate fuel cell (MCFC) and a recirculated fluidized-bed reactor which has been applied to the thermal conversion of many types of biomass. Process analysis is conducted by simulating the entire plant using a commercial code. In particular, an energy assessment is studied by taking account of the energy requirements of auxiliary equipment and the possibility of utilizing the exhaust gases for cogeneration.

  12. Development of molten carbonate fuel cell technology at M-C Power Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, D. [M-C Power Corp., Burr Ridge, IL (United States)

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  13. Effects of coal-derived trace species on the performance of molten carbonate fuel cells. Topical report on thermochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  14. Renewable fuels - a growing future?

    International Nuclear Information System (INIS)

    Blackledge, C.

    1997-01-01

    The production of ethanol fuels, industrial alcohol, vodka, and gasoline additives from barley and corn by Commercial Alcohols and Alberta Bioclean is reported. The reformulated gasoline market, the reduced emission with ethanol fuels, plans for a new alcohol plant, sale of byproduct high protein animal feed and carbon dioxide, and the encouragement offered by the Canadian government are discussed. (UK)

  15. Renewable fuels - a growing future?

    Energy Technology Data Exchange (ETDEWEB)

    Blackledge, C.

    1997-04-07

    The production of ethanol fuels, industrial alcohol, vodka, and gasoline additives from barley and corn by Commercial Alcohols and Alberta Bioclean is reported. The reformulated gasoline market, the reduced emission with ethanol fuels, plans for a new alcohol plant, sale of byproduct high protein animal feed and carbon dioxide, and the encouragement offered by the Canadian government are discussed. (UK)

  16. Reducing the rate of carbon dioxide buildup with biomass fuel under climate change

    International Nuclear Information System (INIS)

    Peart, R.; Curry, R.; Jones, J.; Boote, K.; Allen, L.

    1993-01-01

    The authors have been working for several years on estimating, through crop simulation and crop growth chamber experiments, the changes in yield and in irrigation demand which would be brought about by a doubling of atmospheric greenhouse gases, given the results of three General Circulation Models (GCM) that simulate the climate change that would be expected. They are now beginning to study the impact this might have in relation to biomass fuels. An important question is the effect of the changed climate on crop production, would the increased carbon dioxide concentration outweigh the negative climate change effects on crop yields? Results are quite variable due to different climate change effects at different locations and the differences in historical weather and in soils in different locations. However, on balance, climate change would result in reduced yields of the crops we studied, soybean, maize and peanut. However, US production of these crops could be maintained or increased by the use of irrigation on more acres. Irrigated crops, in general, would have increased yields under climate change because of the increased photosynthetic efficiency with higher carbon dioxide levels. Results on net remediation of carbon dioxide buildup by the use of biomass fuel rather than fossil fuel are not completed, but previous work has shown that Midwest non-irrigated maize production provides much more equivalent biomass energy than is required for its production. The studies with soybean show a ratio of equivalent energy output in the seed to energy used in producing the crop ranging from 4 to almost 9 under climate change

  17. Highly efficient CO 2 bubble removal on carbon nanotube supported nanocatalysts for direct methanol fuel cell

    Science.gov (United States)

    Chen, Soon-Lin; Lin, Chun-Ting; Chieng, Ching-Chang; Tseng, Fan-Gang

    In this paper, we investigate the CO 2 microbubble removal on carbon nanotube (CNT)-supported Pt catalysts in direct methanol fuel cells (DMFCs). The experiments involve the incorporation of near-catalyst-layer bubble visualization and simultaneous electrochemical measurements in a DMFC anodic half cell system, in which CH 3OH electro-oxidation generate carbon dioxide (CO 2) microbubbles. We observe rapid removal of smaller CO 2 bubble sizes and less bubble accumulation on a Pt-coated CNT/CC (Pt/CNT/CC, CC means carbon cloth) electrode. The improved half cell performances of the high CO 2 microbubble removal efficiency on the CNT-modified electrode (Pt/CNT/CC) were 34% and 32% higher than on Pt/CC and Pt/CP electrodes, respectively.

  18. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  19. Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells.

    Science.gov (United States)

    Zhao, Yong; Watanabe, Kazuya; Hashimoto, Kazuhito

    2011-09-07

    We demonstrate the utility of hierarchical micro/nano structures of electrically conductive carbon composites as anodes for microbial fuel cells (MFCs). To construct the hierarchical structures, carbon nanotubes (CNTs) were directly grown on micro-porous graphite felts at high densities. Using the CNT-modified felts as anodes, power outputs from MFCs were increased ∼7 fold compared to those with bare graphite-felt anodes. We also show that this power improvement is sustainable even in MFCs operated with naturally occurring microbial communities. These results suggest the wide utility of the hierarchical micro/nano structures of conductive carbon composites for bio-electrochemical processes. This journal is © the Owner Societies 2011

  20. Fuel cells: principles, types, fuels, and applications.

    Science.gov (United States)

    Carrette, L; Friedrich, K A; Stimming, U

    2000-12-15

    During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  1. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong

    2017-12-01

    Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).

  2. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    Science.gov (United States)

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode.

    Science.gov (United States)

    Kakarla, Ramesh; Min, Booki

    2014-12-01

    Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around -0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of -0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m(2), whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m(2). In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were -31 mA and -850 µA, respectively.

  4. Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals

    DEFF Research Database (Denmark)

    Li, Hu; Riisager, Anders; Saravanamurugan, Shunmugavel

    2017-01-01

    Lignocellulosic biomass is the most abundant organic carbon source and has received a great deal of interest as renewable and sustainable feedstock for the production of potential biofuels and value-added chemicals with a wide range of designed catalytic systems. However, those natural polymeric...... materials are composed of short-chain monomers (typically C6 and C5 sugars) and complex lignin molecules containing plenty of oxygen, resulting in products during the downstream processing having low-grade fuel properties or limited applications in organic syntheses. Accordingly, approaches to increase...

  5. Improving Formate and Methanol Fuels: Catalytic Activity of Single Pd Coated Carbon Nanotubes.

    Science.gov (United States)

    Li, Xiuting; Hodson, Hannah; Batchelor-McAuley, Christopher; Shao, Lidong; Compton, Richard G

    2016-10-07

    The oxidations of formate and methanol on nitrogen-doped carbon nanotubes decorated with palladium nanoparticles were studied at both the single-nanotube and ensemble levels. Significant voltammetric differences were seen. Pd oxide formation as a competitive reaction with formate or methanol oxidation is significantly inhibited at high overpotentials under the high mass transport conditions associated with single-particle materials in comparison with that seen with ensembles, where slower diffusion prevails. Higher electro-oxidation efficiency for the organic fuels is achieved.

  6. Corrosion of the wet-seal area in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Donado, R.A.; Marianowski, L.G.; Maru, H.C.; Selman, J.R.

    1984-11-01

    Severe corrosion can occur in the seal area between the cell housing and the electrolyte tile of a molten carbonate fuel cell even if an optimal selection of the active cell materials has been made. Thermodynamic calculations and an approximate mixed-potential analysis indicate that several minor corrosion cells are active at open circuit, and a major corrosion cell is established when the cell is under load. Extensive corrosion can be expected on the anode side of the wet seal, although effects at the cathode side are minor.

  7. 1990 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  8. Fuel pattern recognition device

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1995-01-01

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  9. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  10. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  11. Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona

    Science.gov (United States)

    Stephens, Scott L.; Boerner, Ralph E.J.; Maghaddas, Jason J.; Maghaddas, Emily E.Y.; Collins, Brandon M.; Dow, Christopher B.; Edminster, Carl; Fiedler, Carl E.; Fry, Danny L.; Hartsough, Bruce R.; Keeley, Jon E.; Knapp, Eric E.; McIver, James D.; Skinner, Carl N.; Youngblood, Andrew P.

    2012-01-01

    Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire. This paper reports the effects of the most common forest fuel reduction treatments on carbon pools composed of live and dead biomass as well as potential wildfire emissions from six different sites in four western U.S. states. Additionally, we predict the median forest product life spans and uses of materials removed during mechanical treatments. Carbon loss from modeled wildfire-induced tree mortality was lowest in the mechanical plus prescribed fire treatments, followed by the prescribed fire-only treatments. Wildfire emissions varied from 10–80 Mg/ha and were lowest in the prescribed fire and mechanical followed by prescribed fire treatments at most sites. Mean biomass removals per site ranged from approximately 30–60 dry Mg/ha; the median lives of products in first use varied considerably (from 50 years). Our research suggests most of the benefits of increased fire resistance can be achieved with relatively small reductions in current carbon stocks. Retaining or growing larger trees also reduced the vulnerability of carbon loss from wildfire. In addition, modeled vulnerabilities to carbon losses and median forest product life spans varied considerably across our study sites, which could be used to help prioritize treatment implementation.

  12. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    Zhang, Ning; Kong, Fanbin; Choi, Yongrok; Zhou, P.

    2014-01-01

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  13. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash.

    Science.gov (United States)

    Ni, Peng; Xiong, Zhuo; Tian, Chong; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the high cost of pure CO 2 , carbonation of MSWI fly ash has not been fully developed. It is essential to select a kind of reaction gas with rich CO 2 instead of pure CO 2 . The CO 2 uptake and leaching toxicity of heavy metals in three typical types of municipal solid waste incinerator (MSWI) fly ash were investigated with simulated oxy-fuel combustion flue gas under different reaction temperatures, which was compared with both pure CO 2 and simulated air combustion flue gas. The CO 2 uptake under simulated oxy-fuel combustion flue gas were similar to that of pure CO 2 . The leaching concentration of heavy metals in all MSWI fly ash samples, especially in ash from Changzhou, China (CZ), decreased after carbonation. Specifically, the leached Pb concentration of the CZ MSWI fly ash decreased 92% under oxy-fuel combustion flue gas, 95% under pure CO 2 atmosphere and 84% under the air combustion flue gas. After carbonation, the leaching concentration of Pb was below the Chinese legal limit. The leaching concentration of Zn from CZ sample decreased 69% under oxy-fuel combustion flue gas, which of Cu, As, Cr and Hg decreased 25%, 33%, 11% and 21%, respectively. In the other two samples of Xuzhou, China (XZ) and Wuhan, China (WH), the leaching characteristics of heavy metals were similar to the CZ sample. The speciation of heavy metals was largely changed from the exchangeable to carbonated fraction because of the carbonation reaction under simulated oxy-fuel combustion flue gas. After carbonation reaction, most of heavy metals bound in carbonates became more stable and leached less. Therefore, oxy-fuel combustion flue gas could be a low-cost source for carbonation of MSWI fly ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  15. Alternative fossil-based transportation fuels

    Science.gov (United States)

    2008-01-01

    "Alternative fuels derived from oil sands and from coal liquefaction can cost-effectively diversify fuel supplies, but neither type significantly reduces U.S. carbon-dioxide emissions enough to arrest long-term climate change".

  16. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  17. Fuel injector system

    Science.gov (United States)

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  18. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  19. HTGR Fuel performance basis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  20. Elongated fuel road

    International Nuclear Information System (INIS)

    Williams, A.E.; Linkison, W.S.

    1977-01-01

    A fuel rod is proposed where a reorientation of the fuel in case of a considerable temperature increase, causing the melting of the densified fuel powder, will be avoided. For this purpose, in longitudinal direction of the fuel rod, a number of diameter reductions of the can are applied of certain distances. In the reduction zone the cross-sectional area of the fuel is reduced, as compared to the one of the remaining fuel material in the regions without diameter reduction, but not the density of the fuel. The recess is chosen to that in case of melting of the fuel in the center of the not contracted zone the fuel in the center of the narrowed area will remain solid and keep the molten material in position. (HR) [de

  1. Development of molten-carbonate fuel-cell technology. Final report, February-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

  2. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  3. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.

    Science.gov (United States)

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Li, Baikun; Cristiani, Pierangela; Ieropoulos, Ioannis

    2015-12-01

    In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 μW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    Science.gov (United States)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  5. Supercritical fuel injection system

    Science.gov (United States)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  6. Photomicrobial fuel cell (PFC) for simultaneous organic carbon, nutrients removal and energy production

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Safa, Jafar; Angelidaki, Irini

    2014-01-01

    A sediment-type photomicrobial fuel cell (PFC), based on the synergistic interaction between microalgae (Chlorella vulgaris) and electrochemically active bacteria, was developed to remove carbon and nutrients from wastewater, and produce electricity and algal biomass simultaneously. Under...... illumination, stable power density of 68±5 mW/m2 and biomass of 0.56±0.02 g/L were generated at initial algae concentration of 3.5 g/L. Accordingly, the removal efficiency of organic carbon, nitrogen and phosphorus was 99.6%, 87.6% and 69.8%, respectively. Mass balance analysis suggested the main removal...... mechanism of nitrogen and phosphorus was algae biomass uptake (75% and 93%, respectively), while nitrification and denitrification process contributed to part of nitrogen removal (22%). In addition, the effect of illumination period on the performance of PFC was investigated. Except notable fluctuation...

  7. Electricity generation from carbon monoxide and syngas in a microbial fuel cell.

    Science.gov (United States)

    Hussain, Abid; Guiot, Serge R; Mehta, Punita; Raghavan, Vijaya; Tartakovsky, Boris

    2011-05-01

    Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.

  8. 76 FR 37703 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2011-06-28

    ... Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel... be proposing amendments to the renewable fuel standard program regulations to establish annual...

  9. 75 FR 79964 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-12-21

    ...-AQ31 Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY... the Renewable Fuel Standard program regulations that were published on March 26, 2010, and that took..., distribution, and sale of transportation fuels, including gasoline and diesel fuel and renewable fuels such as...

  10. Microscopic Fuel Particles Produced by Self-Assembly of Actinide Nanoclusters on Carbon Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Na, Chongzheng [Univ. of Notre Dame, IN (United States)

    2016-10-17

    Many consider further development of nuclear power to be essential for sustained development of society; however, the fuel forms currently used are expensive to recycle. In this project, we sought to create the knowledge and knowhow that are needed to produce nanocomposite materials by directly depositing uranium nanoclusters on networks of carbon-­ based nanomaterials. The objectives of the proposed work were to (1) determine the control of uranium nanocluster surface chemistry on nanocomposite formation, (2) determine the control of carbon nanomaterial surface chemistry on nanocomposite formation, and (3) develop protocols for synthesizing uranium-­carbon nanomaterials. After examining a wide variety of synthetic methods, we show that synthesizing graphene-­supported UO2 nanocrystals in polar ethylene glycol compounds by polyol reduction under boiling reflux can enable the use of an inexpensive graphene precursor graphene oxide in the production of uranium-carbon nanocomposites in a one-­pot process. We further show that triethylene glycol is the most suitable solvent for producing nanometer-­sized UO2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-­supported UO2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, preventing oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO nanocrystals for further investigation and development under ambient conditions.

  11. Evaluation of thermal optical analysis method of elemental carbon for marine fuel exhaust.

    Science.gov (United States)

    Lappi, Maija K; Ristimäki, Jyrki M

    2017-12-01

    The awareness of black carbon (BC) as the second largest anthropogenic contributor in global warming and an ice melting enhancer has increased. Due to prospected increase in shipping especially in the Arctic reliability of BC emissions and their invented amounts from ships is gaining more attention. The International Maritime Organization (IMO) is actively working toward estimation of quantities and effects of BC especially in the Arctic. IMO has launched work toward constituting a definition for BC and agreeing appropriate methods for its determination from shipping emission sources. In our study we evaluated the suitability of elemental carbon (EC) analysis by a thermal-optical transmittance (TOT) method to marine exhausts and possible measures to overcome the analysis interferences related to the chemically complex emissions. The measures included drying with CaSO 4, evaporation at 40-180ºC, H 2 O treatment, and variation of the sampling method (in-stack and diluted) and its parameters (e.g., dilution ratio, Dr). A reevaluation of the nominal organic carbon (OC)/EC split point was made. Measurement of residual carbon after solvent extraction (TC-C SOF ) was used as a reference, and later also filter smoke number (FSN) measurement, which is dealt with in a forthcoming paper by the authors. Exhaust sources used for collecting the particle sample were mainly four-stroke marine engines operated with variable loads and marine fuels ranging from light to heavy fuel oils (LFO and HFO) with a sulfur content range of engines will be implemented in the future, a well-defined and at best unequivocal method of BC determination is required for coherent and comparable emission inventories and estimating BC effects. As the aerosol from marine emission sources may be very heterogeneous and low in BC, special attention to the effects of sampling conditions and sample pretreatments on the validity of the results was paid in developing the thermal-optical analysis methodology

  12. A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect

    International Nuclear Information System (INIS)

    Chen, Yuche; Zhang, Yunteng; Fan, Yueyue; Hu, Kejia; Zhao, Jianyou

    2017-01-01

    Highlights: • Dynamic programming method is used in transportation fuel portfolio planning. • The learning effect in new fuel technology is endogenously modeled through an experience curve. • Cellulosic biofuels play critical role in de-carbonization transport sector in near term. • The initial 3–4 billion gallons production is critical to bring down cellulosic biofuels’ cost. • Large penetration of Zero Emission Vehicles will discourage development of cellulosic biofuels. - Abstract: Promoting the adoption of low-carbon technologies in the transportation fuel portfolio is an effective strategy to mitigate greenhouse gas emissions from the transportation sector worldwide. However, as one of the most promising low-carbon fuels, cellulosic biofuel has not fully entered commercial production. Governments could provide guidance in developing cellulosic biofuel technologies, but no systematic approach has been proposed yet. We establish a dynamic programming framework for investigating time-dependent and adaptive decision-making processes to develop advanced fuel technologies. The learning-by-doing effect inherited in the technology development process is included in the framework. The proposed framework is applied in a case study to explore the most economical pathway for California to develop a solid cellulosic biofuel industry under its Low Carbon Fuel Standard. Our results show that cellulosic biofuel technology is playing a critical role in guaranteeing California’s 10% greenhouse gas emission reduction by 2020. Three to four billion gallons of cumulative production are needed to ensure that cellulosic biofuel is cost-competitive with petroleum-based fuels or conventional biofuels. Zero emission vehicle promoting policies will discourage the development of cellulosic biofuel. The proposed framework, with small adjustments, can also be applied to study new technology development in other energy sectors.

  13. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses

    International Nuclear Information System (INIS)

    Lajunen, Antti; Lipman, Timothy

    2016-01-01

    This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels. - Highlights: • Alternative powertrains can significantly improve energy efficiency of transit buses. • Operating environment has an important impact on the lifecycle costs of buses. • Diesel hybrid buses are already cost effective solution for public transportation. • The cost of fuel cell technology is the major challenge for fuel cell hybrid buses. • Fully-electric buses have potential to significantly reduce carbon dioxide emissions.

  14. A Study of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry - Nanostructure - Performance

    Science.gov (United States)

    Workman, Michael J., Jr.

    focused ion beam tomography is modified and optimized for platinum-group metal free catalyst layers, facilitating direct observation of catalyst integration into catalyst layers. I present evidence supporting the hypothesis that atomically dispersed iron coordinated with nitrogen are the dominant active sites in these catalysts. Further, that the concentration of surface oxides in the carbon structure, which can be directly influenced by synthesis parameters, correlates with both the concentration of active sites in the material and with fuel cell performance. Catalyst performance is hindered by the addition of carbon nanotubes and by the presence of metallic iron. Evidence consistent with the catalytic active sites residing in the graphitic plane is also presented.

  15. Preliminary carbon isotope measurements of fossil fuel and biogenic emissions from the Brazilian Southeastern region

    Science.gov (United States)

    Oliveira, F. M.; Santos, G.; Macario, K.; Muniz, M.; Queiroz, E.; Park, J.

    2014-12-01

    Researchers have confirmed that the continuing global rising of atmospheric CO2 content is caused by anthropogenic CO2 contributions. Most of those contributions are essentially associated with burning of fossil fuels (coal, petroleum and natural gas). However, deforestation, biomass burning, and land use changes, can also play important roles. Researchers have showed that 14C measurements of annual plants, such as corn leaf (Hsueh et al. 2007), annual grasses (Wang and Pataki 2012), and leaves of deciduous trees (Park et al. 2013) can be used to obtain time-integrated information of the fossil fuel ration in the atmosphere. Those regional-scale fossil fuel maps are essential for monitoring CO2 emissions mitigation efforts and/or growth spikes around the globe. However, no current data from anthropogenic contributions from both biogenic and fossil carbon has been reported from the major urban areas of Brazil. Here we make use of carbon isotopes (13C and 14C) to infer sources of CO2 in the highly populated Brazilian Southeastern region (over 80 million in 2010). This region leads the country in population, urban population, population density, vehicles, industries, and many other utilities and major infrastructures. For a starting point, we focus on collecting Ipê leaves (Tabebuia, a popular deciduous tree) from across Rio de Janeiro city and state as well as Sao Paulo city during May/June of 2014 to obtain the regional distribution of 13C and 14C of those urban domes. So far, Δ14C range from -10 to 32‰, when δ13C values are running from -26 to -35‰. The result of these preliminary investigations will be presented and discussed.Hsueh et al. 2007 Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters. 34: L02816. doi:10.1029/2006GL027032 Wang and Pataki 2012 Drivers of spatial variability in urban plant and soil isotopic composition in the Los Angeles Basin. Plant and Soil 350: 323

  16. Experiment and numerical simulation on the performance of a kw-scale molten carbonate fuel cell stack

    Directory of Open Access Journals (Sweden)

    L. J. Yu

    2007-12-01

    Full Text Available A high-temperature molten carbonate fuel cell stack was studied experimentally and computationally. Experimental data for fuel cell temperature was obtained when the stack was running under given operational conditions. A 3-D CFD numerical model was set up and used to simulate the central fuel cell in the stack. It includes the mass, momentum and energy conservation equations, the ideal gas law and an empirical equation for cell voltage. The model was used to simulate the transient behavior of the fuel cell under the same operational conditions as those of the experiment. Simulation results show that the transient temperature and current and power densities reach their maximal values at the channel outlet. A comparison of the modeling results and the experimental data shows the good agreement.

  17. A survey of methods to immobilize tritium and carbon-14 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Taylor, P.

    1991-02-01

    This report reviews the literature on methods to separate and immobilize tritium ( 3 H) and carbon-14 ( 14 C) released from U0 2 fuel in a nuclear fuel reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future application in Canada. The calculated inventories of both 3 H and 14 C in used fuel are low; special measures to limit releases of these radionuclides from reprocessing plants are not currently in place, and may not be necessary in future. If required, however, several possible approaches to the concentration and immobilization of both radionuclides are available for development. Technology to control these radionuclides in reactor process streams is in general more highly developed than for reprocessing plant effluent, and some control methods may be adaptable to reprocessing applications

  18. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  19. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  20. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  1. Changes in Carbon Electrode Morphology Affect Microbial Fuel Cell Performance with Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    David V. P. Sanchez

    2015-03-01

    Full Text Available The formation of biofilm-electrodes is crucial for microbial fuel cell current production because optimal performance is often associated with thick biofilms. However, the influence of the electrode structure and morphology on biofilm formation is only beginning to be investigated. This study provides insight on how changing the electrode morphology affects current production of a pure culture of anode-respiring bacteria. Specifically, an analysis of the effects of carbon fiber electrodes with drastically different morphologies on biofilm formation and anode respiration by a pure culture (Shewanella oneidensis MR-1 were examined. Results showed that carbon nanofiber mats had ~10 fold higher current than plain carbon microfiber paper and that the increase was not due to an increase in electrode surface area, conductivity, or the size of the constituent material. Cyclic voltammograms reveal that electron transfer from the carbon nanofiber mats was biofilm-based suggesting that decreasing the diameter of the constituent carbon material from a few microns to a few hundred nanometers is beneficial for electricity production solely because the electrode surface creates a more relevant mesh for biofilm formation by Shewanella oneidensis MR-1.

  2. Nanostructured Carbon Materials as Supports in the Preparation of Direct Methanol Fuel Cell Electrocatalysts

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2013-08-01

    Full Text Available Different advanced nanostructured carbon materials, such as carbon nanocoils, carbon nanofibers, graphitized ordered mesoporous carbons and carbon xerogels, presenting interesting features such as high electrical conductivity and extensively developed porous structure were synthesized and used as supports in the preparation of electrocatalysts for direct methanol fuel cells (DMFCs. The main advantage of these supports is that their physical properties and surface chemistry can be tailored to adapt the carbonaceous material to the catalytic requirements. Moreover, all of them present a highly mesoporous structure, diminishing diffusion problems, and both graphitic character and surface area can be conveniently modified. In the present work, the influence of the particular features of each material on the catalytic activity and stability was analyzed. Results have been compared with those obtained for commercial catalysts supported on Vulcan XC-72R, Pt/C and PtRu/C (ETEK. Both a highly ordered graphitic and mesopore-enriched structure of these advanced nanostructured materials resulted in an improved electrochemical performance in comparison to the commercial catalysts assayed, both towards CO and alcohol oxidation.

  3. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... section; or (ii) For alcohol-fueled model types, the fuel economy value calculated for that model type in...) For alcohol dual fuel model types, for model years 1993 through 2019, the harmonic average of the... combined model type fuel economy value for operation on alcohol fuel as determined in § 600.208-12(b)(5)(ii...

  4. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  5. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  6. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  7. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  8. Fuel cells: Project Volta

    Energy Technology Data Exchange (ETDEWEB)

    Vellone, R.; Di Mario, F.

    1987-09-01

    This paper discusses research and development in the field of fuel cell power plants. Reference is made to the Italian research Project Volta. Problems related to research program financing and fuel cell power plant marketing are discussed.

  9. Nuclear fuel element

    Science.gov (United States)

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  10. Fuel transporting device

    International Nuclear Information System (INIS)

    Shiratori, Hirozo.

    1979-01-01

    Purpose: In a liquid-metal cooled reactor, to reduce the waiting time of fuel handling apparatuses and shorten the fuel exchange time. Constitution: A fuel transporting machine is arranged between a reactor vessel and an out-pile storage tank, thereby dividing the transportation line of the pot for contracting fuel and transporting the same. By assuming such a construction, the flow of fuel transportation which has heretofore been carried out through fuel transportation pipes is not limited to one direction but the take-out of fuels from the reactor and the take-in thereof from the storage tank can be carried out constantly, and much time is not required for fuel exchange. (Kamimura, M.)

  11. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  12. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  13. Production of fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Stead, W.J.; MacDonald Hildon, A.

    1989-07-05

    A method of producing fuel briquettes from a powdered fuel and a binder comprises the step of subjecting the powdered fuel to a treatment (e.g. pressure and/or heating) effective to promote adhesion between the fuel particles and the binder. In a preferred embodiment for producing fuel briquettes from powdered anthracite and a binder such as molasses, the powdered anthracite is dried to a lower-than-usual moisture content below 5% by treatment in a fluidised bed drier operated to raise the temperature of the anthracite to a higher-than-usual temperature about 100 degrees C. The higher temperature treatment promotes improved adhesion between the fuel particles and the binder and so improves 'Green strength' of the fuel briquettes. A detergent may be added to the powdered fuel or binder a mixture thereof.

  14. High utilization fuel assembly

    International Nuclear Information System (INIS)

    Camden, T.M. Jr.

    1986-01-01

    A nuclear fuel assembly is described comprising an array of parallel arranged guide tubes, an inlet nozzle attached to one end of the guide tubes, an outlet nozzle attached to the other end of the guide tubes, grids having the openings therethrough attached to and spaced along the length of the guide tubes, and of parallel arranged fuel rod assemblies each having an upper end and a lower end. The fuel rod assemblies are fitted within the openings in the grids, the fuel rod assemblies being arranged axially offset relative to each adjacent fuel rod assembly and comprising an upper fuel rod and a lower axially aligned fuel rod with a gap therebetween. The gap between the fuel rods each is axially offset relative to each adjacent gap so as to eliminate an axial gap across the core

  15. Loviisa nuclear fuel service

    International Nuclear Information System (INIS)

    Haegg, P.E.; Koskivirta, O.

    1990-01-01

    The nuclear fuel service of the both units of Loviisa NPS is based on longterm fresh fuel purchasing contracts and longterm spent fuel return contracts. These contracts belong to the Soviet delivery package of Loviisa NPS and they have been made separately for the both units for their whole lifetime. The Soviet contract party is v/o Techsnabexport. Fresh fuel is ordered at the beginning of the year preceding the delivery year. The delivery takes place about one and half years earlier than the fuel is loaded into reactor. The irradiation time of the fuel is typically three years (partly two years). Spent fuel is stored at site in different storage pools five years before its returning to tbe Soviet Union. Altogether the nuclear fuel is staying at Loviisa about ten years

  16. Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell

    Science.gov (United States)

    Parrondo, Javier; Mijangos, Federico; Rambabu, B.

    The performance of high temperature polymer electrolyte fuel cell (HT-PEMFC) using platinum supported over tin oxide and Vulcan carbon (Pt/SnOx/C) as cathode catalyst was evaluated at 160-200 °C and compared with Pt/C. This paper reports first time the Pt/SnOx/C preparation, fuel cell performance, and durability test up to 200 h. Pt/SnOx/C of varying SnO compositions were characterized using XRD, SEM, TEM, EDX and EIS. The face-centered cubic structure of nanosized Pt becomes evident from XRD data. TEM and EDX measurements established that the average size of the Pt nanoparticles were ∼6 nm. Low ionic resistances were derived from EIS, which ranged from 0.5 to 5 Ω-cm 2 for cathode and 0.05 to 0.1 Ω-cm 2 for phosphoric acid, doped PBI membrane. The addition of the SnOx to Pt/C significantly promoted the catalytic activity for the oxygen reduction reaction (ORR). The 7 wt.% SnO in Pt/SnO 2/C catalyst showed the highest electro-oxidation activity for ORR. High temperature PEMFC measurements performed at 180 °C under dry gases (H 2 and O 2) showed 0.58 V at a current density of 200 mA cm -2, while only 0.40 V was obtained in the case of Pt/C catalyst. When the catalyst contained higher concentrations of tin oxide, the performance decreased as a result of mass transport limitations within the electrode. Durability tests showed that Pt/SnOx/C catalysts prepared in this work were stable under fuel cell working conditions, during 200 h at 180 °C demonstrate as potential cathode catalyst for HT-PEMFCs.

  17. Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Parrondo, Javier; Rambabu, B. [Solid State Ionics and Surface Science Laboratory, Department of Physics, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Mijangos, Federico [Department of Chemical Engineering, University of the Basque Country, Bilbao, Vizcaya 48940 (Spain)

    2010-07-01

    The performance of high temperature polymer electrolyte fuel cell (HT-PEMFC) using platinum supported over tin oxide and Vulcan carbon (Pt/SnOx/C) as cathode catalyst was evaluated at 160-200 C and compared with Pt/C. This paper reports first time the Pt/SnOx/C preparation, fuel cell performance, and durability test up to 200 h. Pt/SnOx/C of varying SnO compositions were characterized using XRD, SEM, TEM, EDX and EIS. The face-centered cubic structure of nanosized Pt becomes evident from XRD data. TEM and EDX measurements established that the average size of the Pt nanoparticles were {proportional_to}6 nm. Low ionic resistances were derived from EIS, which ranged from 0.5 to 5 {omega}-cm{sup 2} for cathode and 0.05 to 0.1 {omega}-cm{sup 2} for phosphoric acid, doped PBI membrane. The addition of the SnOx to Pt/C significantly promoted the catalytic activity for the oxygen reduction reaction (ORR). The 7 wt.% SnO in Pt/SnO{sub 2}/C catalyst showed the highest electro-oxidation activity for ORR. High temperature PEMFC measurements performed at 180 C under dry gases (H{sub 2} and O{sub 2}) showed 0.58 V at a current density of 200 mA cm{sup -2}, while only 0.40 V was obtained in the case of Pt/C catalyst. When the catalyst contained higher concentrations of tin oxide, the performance decreased as a result of mass transport limitations within the electrode. Durability tests showed that Pt/SnOx/C catalysts prepared in this work were stable under fuel cell working conditions, during 200 h at 180 C demonstrate as potential cathode catalyst for HT-PEMFCs. (author)

  18. 250-kW-fuel cell system. Fields of application and operational experience (carbonate fuel cell technology); 250-kW-Brennstoffzellenanlage. Einsatzbereiche und Betriebserfahrungen (Karbonat-Brennstoffzellen Technologie)

    Energy Technology Data Exchange (ETDEWEB)

    Berger, P. [MTU CFC Solutions GmbH, Muenchen (Germany)

    2005-07-01

    The author shows us a 250 kW-carbonate fuel cell system, describing the technical properties of the system based on the carbonate fuel cell technology. The system operates with relatively high cell temperatures, can be operated using methan as a fuel and it can generate process vapour in addition to electric power. The article shows the fields of application, giving also a concrete example and illustrating the mode of operation of the fuel cell system which is advantageous, from the environment-related point of view. 1. Technical properties fuel cell power plant 2. Advantages in decentralized energy techniques 3. Applications, markets and objective groups 4. A case example for the ITK branch: Deutsche Telekom 5. Renewable and CO2-neutral energy supply.

  19. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Delucchi, Mark

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  20. Spent fuels program

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1983-01-01

    The goal of this task is to support the Domestic Spent Fuel Storage Program through studies involving the transport of spent fuel. A catalog was developed to provide authoritative, timely, and accessible transportation information for persons involved in the transport of irradiated reactor fuel. The catalog, drafted and submitted to the Transportation Technology Center, Sandia National Laboratories, for their review and approval, covers such topics as federal, state, and local regulations, spent fuel characteristics, cask characteristics, transportation costs, and emergency response information

  1. FUEL ROD ASSEMBLY

    Science.gov (United States)

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  2. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  3. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  4. Fireplaces and Fireplace Fuels.

    Science.gov (United States)

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  5. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Gordon, G.M.; Cowan, R.L. II; Davies, J.H.

    1975-01-01

    A nuclear fuel element is described. It includes a central nuclear fuel core and a composite cladding composed of a substrate, the inner face of which is coated with copper, nickel, iron or one of their alloys. The nuclear fuel is selected from uranium compounds, plutonium compounds or mixtures thereof. The substrate is selected from zirconium and zirconium alloys [fr

  6. Plutonium fuel program

    International Nuclear Information System (INIS)

    1979-09-01

    A review is presented of the development of the (UPu)C sphere-pac fuel project during 1978. In particular, the problems encountered in obtaining good fuel quality in the fabrication process and their solution is discussed. The development of a fabrication pilot plant is considered, and the post-irradiation examination of fuel pins is presented. (Auth.)

  7. PWR fuel thermomechanics

    International Nuclear Information System (INIS)

    Traccucci, R.; Leclercq, J.

    1986-01-01

    Fuel thermo-mechanics means the studies of mechanical and thermal effects, and more generally, the studies of the behavior of the fuel assembly under stresses including thermal and mechanical loads, hydraulic effects and phenomena induced by materials irradiation. This paper describes the studies dealing with the fuel assembly behavior, first in normal operating conditions, and then in accidental conditions. 43 refs [fr

  8. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  9. Fuel lock down device

    International Nuclear Information System (INIS)

    Bevilacqua, F.; Groves, M.D.

    1979-01-01

    Disclosed is a lock down device for restraining a nuclear fuel assembly against hydraulic flow forces having cantilever leaf springs on the fuel assembly lower end fitting which lock into recesses in the fuel alignment pins located on the core support plate

  10. CANDU fuel performance

    International Nuclear Information System (INIS)

    Manzer, A.M.

    1998-01-01

    The paper presents a review of CANDU fuel performance including a 28-element bundle for Pickering reactors, a 37-element bundle for the Bruce and Darlington reactors, and a 37-element bundle for the CANDU-6 reactors. Special emphasis is given to the analysis of fuel defect formation and propagation and definition of fuel element operating thresholds for normal operation and accident conditions. (author)

  11. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.

    Science.gov (United States)

    Morris, Amanda J; Meyer, Gerald J; Fujita, Etsuko

    2009-12-21

    The scientific community now agrees that the rise in atmospheric CO(2), the most abundant green house gas, comes from anthropogenic sources such as the burning of fossil fuels. This atmospheric rise in CO(2) results in global climate change. Therefore methods for photochemically transforming CO(2) into a source of fuel could offer an attractive way to decrease atmospheric concentrations. One way to accomplish this conversion is through the light-driven reduction of carbon dioxide to methane (CH(4(g))) or methanol (CH(3)OH((l))) with electrons and protons derived from water. Existing infrastructure already supports the delivery of natural gas and liquid fuels, which makes these possible CO(2) reduction products particularly appealing. This Account focuses on molecular approaches to photochemical CO(2) reduction in homogeneous solution. The reduction of CO(2) by one electron to form CO(2)(*-) is highly unfavorable, having a formal reduction potential of -2.14 V vs SCE. Rapid reduction requires an overpotential of up to 0.6 V, due at least in part to the kinetic restrictions imposed by the structural difference between linear CO(2) and bent CO(2)(*-). An alternative and more favorable pathway is to reduce CO(2) though proton-assisted multiple-electron transfer. The development of catalysts, redox mediators, or both that efficiently drive these reactions remains an important and active area of research. We divide these reactions into two class types. In Type I photocatalysis, a molecular light absorber and a transition metal catalyst work in concert. We also consider a special case of Type 1 photocatalysis, where a saturated hydrocarbon links the catalyst and the light absorber in a supramolecular compound. In Type II photocatalysis, the light absorber and the catalyst are the same molecule. In these reactions, transition-metal coordination compounds often serve as catalysts because they can absorb a significant portion of the solar spectrum and can promote activation

  12. Understanding the physical and chemical properties of carbon-based granular fuels

    Science.gov (United States)

    Marchand, David J.

    Coal and oil have been used as fuel sources for centuries, but the way they have been used has not fundamentally changed: coal is ground into pieces then burned, and oil is distilled into various liquid fractions that are then burned. This dissertation explores newer methods of utilizing those fuel sources. Coal gasification is the process where coal is heated in a low oxygen environment so that the solid carbon is converted into a mixture of gaseous products. But some aspects of gasification, such as the role of catalysts and the structural evolution of coal particles throughout the reaction, remain unclear. These aspects were studied by analyzing, ex situ, the physical and chemical changes of coal feedstock samples extracted from a fluidized bed gasifier at various times throughout gasification. The changes in feed particle composition and size distribution composition showed that the gasification reaction rate was slower than the gas diffusion rates inside the coal particle at a typical catalytic gasification temperature of 800oC. Detailed composition analysis of samples with and without added catalyst showed that the catalyst increased the overall reaction rate by promoting the dissociative oxidation of the coal by gas phase oxidants, which provided more active sites for carbon-carbon bond breakage. The conclusions drawn from studying the feedstock can be combined with the data from in situ analysis of the gasification reactor to provide a fuller picture of the gasification process. Petroleum coke, or petcoke, is a carbonaceous solid produced during oil distillation. Though petcoke could be an important energy source, its use is hindered by practical and environmental concerns. Producing a slurry with petcoke and water has been studied as an alternative method for utilizing petcoke, but the effective use of petcoke slurries requires that they have low viscosity while remaining stable against settling of the particles due to gravity. These rheological properties

  13. Carbon, food and fuel security - will biotechnology solve this irreconcilable trinity?

    Science.gov (United States)

    Martindale, Wayne

    2010-01-01

    The emergence of food security as a key policy issue in developed nations has been concomitant with the need to reduce greenhouse gas emissions and the implementation of Environmental Management Systems in primary industries. Biotechnological interventions such as biorefinery platforms that produce chemicals and fuels provide opportunities to reconcile the security and environmental sustainability criteria increasingly sought after by governments. Indeed, sustainable and more carbon neutral options have been positively benchmarked against scenarios based solely on petrochemical feedstocks. Notably, biotechnology companies are beginning to use Environmental Management Systems employed by other industries to advocate the benefits of green technologies that employ GM, industrial enzymes and bio-materials. Management systems such as Life Cycle Analysis are providing a powerful means to measure benefits and augment change in the biotechnology sector. These methods are discussed here in the context of the emergent 21st Century debates on security. The evidence presented leads to a conclusion where biotechnologies are likely to offer increasingly high impact options for sustainability and security criteria required for food and fuel supply.

  14. Carbon nanotubes paste sensor modified with bismuth film for determination of metallic ions in ethanol fuel

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Gorla

    2015-05-01

    Full Text Available In the present study an anodic stripping voltammetric method using a bismuth film modified carbon nanotubes paste electrode for simultaneous determination of metals Zn2+, Cd2+and Pb2+in ethanol fuel is described. The metallic ions were preconcentrated on the bismuth film in the time and deposition potential of 500 s and -1.2 V and the stripping step was carried out by square wave voltammetry (frequency of 15 Hz, pulse amplitude of 25 mV and potential step of 5 mV. Acetate buffer at 0.1 mol L-1concentration and pH 4.5 was used as support electrolyte. The method showed linearity including the analytical blank up to 48.39 ?g L-1 for the metals and the obtained limits of detection were 3.36, 0.32 and 0.47 ?g L-1for Zn2+, Cd2+and Pb2+, respectively. The proposed method was applied in ethanol fuel samples.

  15. Transport phenomena in the cathode of a molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Berg, P.; Findlay, J. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A molten carbonate fuel cell (MCFC) is an electrochemical energy conversion device that runs on natural gas and uses a molten salt electrolyte. In order to keep the electrolyte in this state, the cell must be kept at a temperature above 500 degrees C to eliminate the need for noble catalysts. This study focused on optimizing the electrode porosity to increase the power output of the fuel cell. The porosity was considered as a function of position, and was optimized using the MATLAB software package. The paper also described a newly developed model for the reaction-diffusion processes within the cathode of an MCFC. The model was developed using Fick Laws for diffusion and Darcy Laws were incorporated for convection. A model for binary diffusion was also discussed and compared to those for Fickian diffusion. There is a limiting case for diffusion across the cathode that depends on the conductivity for the liquid potential, for which there exists an analytical solution. Results were also discussed for varying diffusivities and permeabilities.

  16. Transport phenomena in the cathode of a molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Berg, P.; Findlay, J. [Faculty of Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2009-07-01

    'Full text': A Molten Carbonate Fuel Cell (MCFC) is an electro-chemical energy conversion technology that runs on natural gas and employs a molten salt electrolyte. In order to keep the electrolyte in this state, the cell must be kept at a temperature above 500 C, eliminating the need for noble catalysts. There has been only a limited amount of research on modelling the transport processes inside this device, mainly due to its limited ability for mobile applications. A model for the reaction-diffusion processes within the cathode of a MCFC is developed using Fick's Law for diffusion and incorporating Darcy's Law for convection. A model for Binary Diffusion is also discussed and compared to those for Fickian diffusion. It can be shown that there exists a limiting case for diffusion across the cathode that depends on the conductivity for the liquid potential, for which there exists an analytical solution. Results are also discussed for varying diffusivities and permeabilities. Ultimately, this research focuses on the optimization of the electrode porosity to increase the power output of the fuel cell. The porosity is considered as a function of position, and is optimized using the software package MATLAB. (author)

  17. Analysis of Anodes of Microbial Fuel Cells When Carbon Brushes Are Preheated at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Qiao Yang

    2017-10-01

    Full Text Available The anode electrode is one of the most important components in all microbial electrochemical technologies (METs. Anode materials pretreatment and modification have been shown to be an effective method of improving anode performance. According to mass loss analysis during carbon fiber heating, five temperatures (300, 450, 500, 600, and 750 °C were selected as the pre-heating temperatures of carbon fiber brush anodes. Microbial fuel cell (MFC reactors built up with these pre-heated carbon brush anodes performed with different power densities and Coulombic efficiencies (CEs. Two kinds of measuring methods for power density were applied, and the numerical values of maximum power densities diverged greatly. Reactors with 450 °C anodes, using both methods, had the highest power densities, and the highest CEs were found using 500 °C anode reactors. The surface elements of heat-treated carbon fibers were analyzed using X-ray photoelectron spectra (XPS, and C, O, and N were the main constituents of the carbon fiber. There were four forms of N1s at the surface of the polyacrylonitrile (PAN-based carbon fiber, and their concentrations were different at different temperature samples. The microbial community of the anode surface was analyzed, and microbial species on anodes from every sample were similar. The differences in anode performance may be caused by mass loss and by the surface elements. For carbon brush anodes used in MFCs or other BESs, 450–500 °C preheating was the most suitable temperature range in terms of the power densities and CEs.

  18. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo.

    Science.gov (United States)

    Yang, Wei; Wang, Hui; Zhang, Meng; Zhu, Jiayu; Zhou, Jie; Wu, Shengji

    2016-04-01

    Hydrothermal carbonization, an environmental friendly treatment method was employed to pretreat bamboo for hydrochar preparation in the present study. Hydrothermal carbonization could elevate the fuel properties and combustion behavior of bamboo. The combustion kinetic parameters of raw bamboo and hydrochars were calculated by a simple Arrhenius equation based on the thermogravimetric curves. Two distinct zones were observed for raw bamboo and hydrochars. The activation energies of raw bamboo in zone 1 and zone 2 were 109.5kJ/mol and 46.6kJ/mol, respectively, in the heating rate of 20°C/min. The activation energy of hydrochar in zone 1 increased at the hydrothermal carbonization temperature under 220°C and then decreased at higher hydrothermal carbonization temperature, due to the decomposition of relative reactive compounds in bamboo, and destruction of cellulose and hemicellulose structures, respectively. The activation energies of hydrochars in zone 2 were among 52.3-57.5kJ/mol, lower than that of lignin extracted from bamboo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    Science.gov (United States)

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  20. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells

    Science.gov (United States)

    Zeng, Lizhen; Zhao, Shaofei; He, Miao

    2018-02-01

    The anode material is a crucial factor that significantly affects the cost and performance of microbial fuel cells (MFCs). In this study, a novel macroscale porous, biocompatible, highly conductive and low cost electrode, carbonized polydopamine-modified cotton textile (NC@CCT), is fabricated by using normal cheap waste cotton textiles as raw material via a simple in situ polymerization and carbonization treatment as anode of MFCs. The physical and chemical characterizations show that the macroscale porous and biocompatible NC@CCT electrode is coated by nitrogen-doped carbon nanoparticles and offers a large specific surface area (888.67 m2 g-1) for bacterial cells growth, accordingly greatly increases the loading amount of bacterial cells and facilitates extracellular electron transfer (EET). As a result, the MFC equipped with the NC@CCT anode achieves a maximum power density of 931 ± 61 mW m-2, which is 80.5% higher than that of commercial carbon felt (516 ± 27 mW m-2) anode. Moreover, making full use of the normal cheap waste cotton textiles can greatly reduce the cost of MFCs and the environmental pollution problem.

  1. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.

    Science.gov (United States)

    Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L

    2017-09-06

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

  2. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell

    KAUST Repository

    Deng, Qian

    2010-02-01

    An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m-2, compared to lower values with cathodes made of plain carbon paper (67 mW m-2), carbon felt (77 mW m-2), or platinum-coated carbon paper (124 mW m-2, 0.2 mg-Pt cm-2). The addition of platinum to the ACFF cathode (0.2 mg-Pt cm-2) increases the maximum power density to 391 mW m-2. Power production is further increased to 784 mW m-2 by increasing the cathode surface area and shaping it into a tubular form. With ACFF cutting into granules, the maximum power is 481 mW m-2 (0.5 cm granules), and 667 mW m-2 (1.0 cm granules). These results show that ACFF cathodes lacking metal catalysts can be used to substantially increase power production in UMFC compared to traditional materials lacking a precious metal catalyst. © 2009 Elsevier B.V.

  3. Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis

    KAUST Repository

    Maher, R. C.

    2013-07-30

    Raman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Arenillas, A.; Menendez, J.A.

    2015-01-01

    A 3-electrode half-cell setup consisting of a yttria-stabilized zirconia (YSZ) electrolyte support was employed to investigate the chemical and electrochemical processes occurring in the vicinity of a model hybrid direct carbon fuel cell (HDCFC) anode (Ni-YSZ) in contact with a molten carbon......-alkali carbonate slurry. Electrochemical testing, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), with and without the Ni-YSZ layer highlighted the promotional effect of the Ni-YSZ anode layer, and revealed the contributions of Ni/NiO, and potentially K/K2O, redox couple(s). Treated...... anthracite and bituminous coals, as well as carbon black, were tested, revealing similar open circuit potential and activation energies in mixed 96-4vol% N2-CO2 and 50-50vol% CO-CO2 environments between 700 and 800°C. Bituminous coal showed the highest activity, likely associated to a high O/C ratio...

  5. Fischer-Tropsch-synthesis fuels as diesel engine fuel - Fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

    2000-04-01

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent auto ignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with regular diesel fuel if produced in large volumes. The aim of this investigation is to reveal and analyze the effects of F-T fuels on a research diesel engine performance. Previous engine laboratory tests indicate that F-T fuels are promising alternative fuels because they can be used in unmodified diesel engines, and substantial quantitative exhaust emission reductions can be reached. Also substantial qualitative reductions, e.g. reduction of the number of hazardous chemicals and reduction of the concentration of hazardous chemicals in the exhausts may be realised. Since the engine performance is closely related to in-cylinder processes, a detailed thermodynamic analysis has been performed revealing the real thermochemistry history. The experimental results have shown that F-T fuels have a beneficial effect not only on the emission levels, but also on other energetic parameters of the engine. Heat release analysis have shown that ignition delay, cylinder peak pressure, heat release gradient and indicated efficiency are affected as well. Two different mixtures of FT-fuels with variation in carbon chain branching and, to a certain extent, variation in chain length were tested and their results were compared with those obtained from conventional fuel (MK1). The selected optimized F-T fuels mixture were further tested according to the 13 mode ECE R49 test cycle and were found as good competitive alternative diesel fuels.

  6. Carbon Nanostructure of Diesel Soot Particles Emitted from 2 and 4 Stroke Marine Engines Burning Different Fuels.

    Science.gov (United States)

    Lee, Won-Ju; Park, Seul-Hyun; Jang, Se-Hyun; Kim, Hwajin; Choi, Sung Kuk; Cho, Kwon-Hae; Cho, Ik-Soon; Lee, Sang-Min; Choi, Jae-Hyuk

    2018-03-01

    Diesel soot particles were sampled from 2-stroke and 4-stroke engines that burned two different fuels (Bunker A and C, respectively), and the effects of the engine and fuel types on the structural characteristics of the soot particle were analyzed. The carbon nanostructures of the sampled particles were characterized using various techniques. The results showed that the soot sample collected from the 4-stroke engine, which burned Bunker C, has a higher degree of order of the carbon nanostructure than the sample collected from the 2-stroke engine, which burned Bunker A. Furthermore, the difference in the exhaust gas temperatures originating from the different engine and fuel types can affect the nanostructure of the soot emitted from marine diesel engines.

  7. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  8. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  9. Neutronic fuel element fabrication

    Science.gov (United States)

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  10. Identification and Quantification of Carbon Phases in Conversion Fuel for the Transient Reactor Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Robert; Mata, Angelica; Dunzik-Gougar, Mary Lou; van Rooyen, Isabella

    2016-06-01

    As part of an overall effort to convert US research reactors to low-enriched uranium (LEU) fuel use, a LEU conversion fuel is being designed for the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory. TREAT fuel compacts are comprised of UO2 fuel particles in a graphitic matrix material. In order to refine heat transfer modeling, as well as determine other physical and nuclear characteristics of the fuel, the amount and type of graphite and non-graphite phases within the fuel matrix must be known. In this study, we performed a series of complementary analyses, designed to allow detailed characterization of the graphite and phenolic resin based fuel matrix. Methods included Scanning Electron and Transmission Electron Microscopies, Raman spectroscopy, X-ray Diffraction, and Dual-Beam Focused Ion Beam Tomography. Our results indicate that no single characterization technique will yield all of the desired information; however, through the use of statistical and empirical data analysis, such as curve fitting, partial least squares regression, volume extrapolation and spectra peak ratios, a degree of certainty for the quantity of each phase can be obtained.

  11. A Microbial Fuel Cell Modified with Carbon Nanomaterials for Organic Removal and Denitrification

    Directory of Open Access Journals (Sweden)

    Njud S. Alharbi

    2013-01-01

    Full Text Available This paper investigated microbial denitrification using electrochemical sources to replace organic matter as reductant. The work also involved developing a system that could be optimised for nitrate removal in applied situations such as water processing in fish farming or drinking water, where high nitrate levels represent a potential health problem. Consequently, the study examined a range of developments for the removal of nitrate from water based on the development of electrochemical biotransformation systems for nitrate removal. This also offers considerable scope for the potential application of these systems in broader bionanotechnology based processes. Furthermore, the work discussed the context of improved microbial fuel cell (MFC performance, potential analytic applications, and further innovations using a bionanotechnology approach to analyse cell-electrode interactions. High nitrate removal rate of more than 95% was successfully achieved by using a MFC system modified with carbon nanomaterials.

  12. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2014-12-01

    The high cost of the catalyst material used for the oxygen reduction reaction in microbial fuel cell (MFC) cathodes is one of the factors limiting practical applications of this technology. Mesoporous nitrogen-rich carbon (MNC), prepared at different temperatures, was examined as an oxygen reduction catalyst, and compared in performance to Pt in MFCs and electrochemical cells. MNC calcined at 800 °C produced a maximum power density of 979 ± 131 mW m-2 in MFCs, which was 37% higher than that produced using MNC calined at 600 °C (715 ± 152 mW m-2), and only 14% lower than that obtained with Pt (1143 ± 54 mW m-2). The extent of COD removal and coulombic efficiencies were the same for all cathode materials. These results show that MNC could be used as an alternative to Pt in MFCs. © 2014 Elsevier B.V. All rights reserved.

  13. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro

    2012-06-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  14. Carbon nanostructures as catalyst support for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, S.K.; Hamelin, J. [Quebec Univ., Trois Rivieres, PQ (Canada). Inst. de recherche sur l' hydrogene

    2008-07-01

    This paper reported on a study that investigated potential alternatives to Vulcan XC-72 as a catalyst supports for polymer electrolyte membrane fuel cells (PEMFCs). These included carbon nanostructures (CNS) prepared by high energy ball milling of graphite and transition metal catalysts, followed by heat treatment. Among the key factors discussed were the graphitic content, high surface area, microporous structure, good electrical conductivity and the ability of the material to attach functional groups. Some graphic results supporting the usage of CNS as catalyst support for PEMFCs were presented. Upon chemical oxidation, surface functional groups such as carbonyl, carboxyl, and hydroxyl were populated on the surface of CNS. Nanosized platinum particles with particle size distribution between 3 nm and 5 nm were reduced on the functionalized sites of CNS in a colloidal medium. The paper also presented cyclic voltammograms, XPS, HRTEM and PSD results. 3 refs.

  15. Quantitative carbon detector for enhanced detection of molecules in foods, pharmaceuticals, cosmetics, flavors, and fuels.

    Science.gov (United States)

    Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J

    2016-03-07

    Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.

  16. Proceedings of the 2nd symposium on molten carbonate fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Selman, J.R. (Illinois Institute of Technology, Chicago, IL (US)); Maru, H.C. (Energy Research Corp., Danbury, CT (US)); Shores, D.A. (Univ. of Minnesota, Minneapolis, MN (US)); Uchida, I. (Tohoku Univ., Aoba Aramaki, Sendai (JP))

    1990-01-01

    This book contains papers presented at the International Symposium on Carbonate Fuel Cells held at the 178th meeting of the Electrochemical Society in Seattle, WA, October 1990. The development of the MCFC has been rapidly accelerating during the last decade, and MCFC commercialization has become an international goal. As the emphasis of development has been shifting from single-cell testing to stack design and long-term performance, the role of basic research also has broadened. This volume provides an overview of recent advances in the fundamental knowledge base supporting MCFC development and is intended to help define the future directions of research. As the commercialization of the MCFC becomes a reality, issues of manufacturing technology as well as the need to further improve long-term performance will dictate those directions.

  17. Limitations of Commercializing Fuel Cell Technologies

    Science.gov (United States)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  18. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  19. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  20. Fuel transfer machine

    International Nuclear Information System (INIS)

    Bernstein, I.

    1978-01-01

    A nuclear fuel transfer machine for transferring fuel assemblies through the fuel transfer tube of a nuclear power generating plant containment structure is described. A conventional reversible drive cable is attached to the fuel transfer carriage to drive it horizontally through the tube. A shuttle carrying a sheave at each end is arranged in parallel with the carriage to also travel into the tube. The cable cooperating with the sheaves permit driving a relatively short fuel transfer carriage a large distance without manually installing sheaves or drive apparatus in the tunnel. 8 claims, 3 figures

  1. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  2. Fuel assembly cleaning device

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1981-01-01

    Purpose: To enable efficient and sufficient cleaning of a fuel assembly even in corners without disassembling the assembly and to effectively remove crud. Constitution: Cleaning water mixed with abrasive is injected into a fuel assembly contained within a cleaning device body to remove crud adhering to the fuel assembly. Since a coolant passage from the opening of the bottom surface is of the fuel assembly to the opening of the top surface is utilized as the cleaning water passage at this, the crud can be removed by the abrasive in the water stream even from narrow gaps of the fuel assembly. (Aizawa, K.)

  3. Co-optimization of diesel fuel biodegradation and N2 fixation through the addition of particulate organic carbon

    International Nuclear Information System (INIS)

    Piehler, M.; Swistak, J.; Paerl, H.

    1995-01-01

    Petroleum hydrocarbon pollution in the marine environment is widespread and current bioremedial techniques are often not cost effective for small spills. The formulation of simple and inexpensive bioremedial methods could help reduce the impacts of frequent low volume spills in areas like marinas and ports. Particulate organic carbon (POC) was added to diesel fuel amended samples from inshore marine waters in the form of corn-slash (post-harvest leaves and stems), with and without inorganic nutrients (nitrate and phosphate). Biodegradation of diesel fuel ( 14 C hexadecane mineralization) and N 2 fixation were measured in response to the additions, The addition of POC was necessary for N 2 fixation and diesel fuel biodegradation to co-occur. The effects of diesel fuel and inorganic nutrient additions on N 2 fixation rates were not consistent, with both inhibitory and stimulatory responses to each addition observed. The highest observed diesel fuel biodegradation levels were in response to treatments that included inorganic nutrients. The addition of POC alone increased diesel fuel degradation levels above that observed in the control. In an attempt to determine the effect of the POC on the microbial community, the corn particles were observed microscopically using scanning electron microscopy and light microscopy with tetrazolium salt additions. The corn particles were found to have abundant attached bacterial communities and microscale oxygen concentration gradients occurring on individual particles. The formation of oxygen replete microzones may be essential for the co-occurrence of aerobic diesel fuel biodegradation and oxygen inhibited N2 fixation. Mesocosm experiments are currently underway to further examine the structure and function of this primarily heterotrophic system and to explore the potential contribution of N 2 fixation to the N requirements of diesel fuel biodegradation

  4. Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices

    International Nuclear Information System (INIS)

    Menezes, Lilian M. de; Houllier, Melanie A.; Tamvakis, Michael

    2016-01-01

    Long-run dynamics of electricity prices are expected to reflect fuel price developments, since fuels generally account for a large share in the cost of generation. As an integrated European market for electricity develops, wholesale electricity prices should be converging as a result of market coupling and increased interconnectivity. Electricity mixes are also changing, spurred by a drive to significantly increase the share of renewables. Consequently, the electricity wholesale price dynamics are evolving, and the fuel–electricity price nexus that has been described in the literature is likely to reflect this evolution. This study investigates associations between spot prices from the British, French and Nordpool markets with those in connected electricity markets and fuel input prices, from December 2005 to October 2013. In order to assess the time-varying dynamics of electricity spot price series, localized autocorrelation functions are used. Electricity spot prices in the three markets are found to have stationary and non-stationary periods. When a trend in spot prices is observed, it is likely to reflect the trend in fuel prices. Cointegration analysis is then used to assess co-movement between electricity spot prices and fuel inputs to generation. The results show that British electricity spot prices are associated with fuel prices and not with price developments in connected markets, while the opposite is observed in the French and Nordpool day-ahead markets. - Highlights: • Electricity market integration policies may have altered EU spot electricity prices. • LACF is used to assess the changing nature of electricity spot prices. • EU electricity spot prices show both stationary and non-stationary periods. • Carbon and fuel prices have greater impact on British spot prices. • In continental Europe, electricity prices have decoupled from fuel prices.

  5. Wood Fuel or Carbon Sink? Aspects of Forestry in the Climate Question

    International Nuclear Information System (INIS)

    Bjoernstad, E.; Skonhoft, A.

    2002-01-01

    This paper discusses and contrasts two main roles of forestry in light of the debate on the global climate. As the main problem is related to the increases of the CO2-concentration in the atmosphere, forests may be viewed as part of the alleviation of the problem through their function as (1) a source of biomass for energy production, which may replace fossil fuels and thus indirectly reduce CO2-emissions, and as (2) carbon storage, since a growing forest extracts atmospheric CO2 and fixes it as carbon in biomass. In the Scandinavian forestry, logging residues are increasingly being used for energy production. In this paper the value of forests as a source of bioenergy is added to the traditional timber value. Formulated as a joint production model within the Faustmann framework, the effect of this addition on the optimal rotation length is discussed. Based on data for spruce, the dominant species in the Scandinavian forestry, it is demonstrated that the rotation length is shortened compared to the standard Faustmann model. Shorter rotation length implies less carbon storage. Therefore, in this model without explicit regard to the social carbon storage value of the forest, the gains in terms of the climate problem from utilisation of forest biomass for energy production are being diminished by the value of reduced carbon storage. The carbon value of the forest is then added to complete the model, with the effect of increasing the rotation length, a result that is well known in the literature. Finally, the empirical effects of the interaction of these two climate-related value elements of the forest are discussed

  6. Molybdenum Carbide Synthesis Using Plasmas for Fuel Cells

    Science.gov (United States)

    2013-06-01

    containing a dissolved metal precursor salt (e.g., platinum chloride ) to a high surface area refractory oxide (e.g., alumina). The liquid is added in an...Acid Fuel Cells, Proton Exchange Membrane Fuel Cells, Molten Carbonate Fuel Cells, Solid Oxide Fuel Cell, and Direct and Indirect Methanol Fuel Cell

  7. Porous carbon as electrode material in direct ethanol fuel cells (DEFCs) synthesized by the direct carbonization of MOF-5

    KAUST Repository

    Khan, Inayatali

    2014-01-12

    Porous carbon (PC-900) was prepared by direct carbonization of porous metal-organic framework (MOF)-5 (Zn4O(bdc)3, bdc=1,4-benzenedicarboxylate) at 900 °C. The carbon material was deposited with PtM (M=Fe, Ni, Co, and Cu (20 %) metal loading) nanoparticles using the polyol reduction method, and catalysts PtM/PC-900 were designed for direct ethanol fuel cells (DEFCs). However, herein, we are reporting PtFe/PC-900 catalyst combination which has exhibited superior performance among other options. This catalyst was characterized by powder XRD, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and selected area electron diffraction (SAED) technique. The electrocatalytic capability of the catalyst for ethanol electrooxidation was investigated using cyclic voltammetry and direct ethanol single cell testing. The results were compared with those of PtFe and Pt supported on Vulcan XC72 carbon catalysts (PFe/CX-72 and Pt/XC-72) prepared via the same method. It has been observed that the catalyst PtFe/PC-900 developed in this work showed an outstanding normalized activity per gram of Pt (6.8 mA/g Pt) and superior power density (121 mW/cm2 at 90 °C) compared to commercially available carbon-supported catalysts. © Springer-Verlag Berlin Heidelberg 2014.

  8. Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Ping-Lin; Hsu, Chun-Han; Li, Wan-Ting; Jhan, Jing-Yi; Chen, Wei-Fu [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2010-12-15

    A sea urchin-like carbon (UC) material with high surface area (416 m{sup 2} g{sup -1}), adequate electrical conductivity (59.6 S cm{sup -1}) and good chemical stability was prepared by growing carbon nanotubes onto mesoporous carbon hollow spheres. A uniform dispersion of Pt nanoparticles was then anchored on the UC, where the Pt nanoparticles were prepared using benzylamine as the stabilizer. For this Pt loaded carbon, cyclic voltammogram measurements showed an exceptionally high electrochemically active surface area (EAS) (114.8 m{sup 2} g{sup -1}) compared to the commonly used commercial E-TEK catalyst (65.2 m{sup 2} g{sup -1}). The durability test demonstrates that the carbon used as a support exhibited minor loss in EAS of Pt. Compared to the E-TEK (20 wt%) cathode catalyst, this Pt loaded UC catalyst has greatly enhanced catalytic activity toward the oxygen reduction reaction, less cathode flooding and considerably improved performance, resulting in an enhancement of ca. 37% in power density compared with that of E-TEK. Based on the results obtained, the UC is an excellent support for Pt nanoparticles used as cathode catalysts in proton exchange membrane fuel cells. (author)

  9. The legacy of fossil fuels.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Microbial activities in hydrocarbon-laden wastewaters: Impact on diesel fuel stability and the biocorrosion of carbon steel.

    Science.gov (United States)

    Liang, Renxing; Duncan, Kathleen E; Le Borgne, Sylvie; Davidova, Irene; Yakimov, Michail M; Suflita, Joseph M

    2017-08-20

    Anaerobic hydrocarbon biodegradation not only diminishes fuel quality, but also exacerbates the biocorrosion of the metallic infrastructure. While successional events in marine microbial ecosystems impacted by petroleum are well documented, far less is known about the response of communities chronically exposed to hydrocarbons. Shipboard oily wastewater was used to assess the biotransformation of different diesel fuels and their propensity to impact carbon steel corrosion. When amended with sulfate and an F76 military diesel fuel, the sulfate removal rate in the assay mixtures was elevated (26.8μM/d) relative to incubations receiving a hydroprocessed biofuel (16.1μM/d) or a fuel-unamended control (17.8μM/d). Microbial community analysis revealed the predominance of Anaerolineae and Deltaproteobacteria in F76-amended incubations, in contrast to the Beta- and Gammaproteobacteria in the original wastewater. The dominant Smithella-like sequences suggested the potential for syntrophic hydrocarbon metabolism. The general corrosion rate was relatively low (0.83 - 1.29±0.12mpy) and independent of the particular fuel, but pitting corrosion was more pronounced in F76-amended incubations. Desulfovibrionaceae constituted 50-77% of the sessile organisms on carbon steel coupons. Thus, chronically exposed microflora in oily wastewater were differentially acclimated to the syntrophic metabolism of traditional hydrocarbons but tended to resist isoalkane-laden biofuels. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations

    Science.gov (United States)

    Garland, Charity; Delapena, Samantha; Prasad, Rajendra; L'Orange, Christian; Alexander, Donee; Johnson, Michael

    2017-11-01

    Black carbon (BC) emissions from household cookstoves consuming solid fuel produce approximately 25 percent of total anthropogenic BC emissions. The short atmospheric lifetime of BC means that reducing BC emissions would result in a faster climate response than mitigating CO2 and other long-lived greenhouse gases. This study presents the results of optical BC measurements of two new cookstove emissions field assessments and 17 archived cookstove datasets. BC was determined from attenuation of 880 nm light, which is strongly absorbed by BC, and linearly related between 1 and 125 attenuation units. A relationship was experimentally determined correlating BC mass deposition on quartz filters determined via thermal optical analysis (TOA) and on PTFE and quartz filters using transmissometry, yielding an attenuation cross-section (σATN) for both filter media types. σATN relates TOA measurements to optical measurements on PTFE and quartz (σATN(PTFE) = 13.7 cm-2 μg, R2 = 0.87, σATN(Quartz) = 15.6 cm-2 μg, R2 = 0.87). These filter-specific σATN, optical measurements of archived filters were used to determine BC emission factors and the fraction of particulate matter (PM) in the form of black carbon (BC/PM). The 19 stoves measured fell into five stove classes; simple wood, rocket, advanced biomass, simple charcoal, and advanced charcoal. Advanced biomass stoves include forced- and natural-draft gasifiers which use wood or biomass pellets as fuel. Of these classes, the simple wood and rocket stoves demonstrated the highest median BC emission factors, ranging from 0.051 to 0.14 g MJ-1. The lowest BC emission factors were seen in charcoal stoves, which corresponds to the generally low PM emission factors observed during charcoal combustion, ranging from 0.0084 to 0.014 g MJ-1. The advanced biomass stoves generally showed an improvement in BC emissions factors compared to simple wood and rocket stoves, ranging from 0.0031 to 0.071 g MJ-1. BC/PM ratios were highest for the

  12. Compacting spent fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    A method and apparatus for compacting spent fuel rods comprises transferring the rods from a nuclear fuel rod assembly into a different nuclear fuel rod container having a smaller cross section than the assembly. The individual rods are moved from a fuel assembly and through a transition funnel by movable grippers at opposite ends of the funnel. One movable gripper reciprocates between gripping and release positions in a gap between the fuel assembly and the transition funnel. All of the fuel rods are withdrawn concurrently and are merged towards one another into a tighter array within the transition funnel and emerge as a bundle. A movable and a stationary bundle gripper are provided between the funnel and the storage container to advance the bundle of fuel rods into the container. (author)

  13. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  14. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Vernaz, Etienne

    2015-10-01

    The author proposes an overview of the different steps of the nuclear fuel cycle: uranium mining (applied processes, formation of Yellow Cake), conversion into uranium hexafluoride (UF 6 ) for enrichment purposes, enrichment (physical methods and plants), nuclear fuel fabrication (description of a fuel assembly), physical, chemical and radiological evolution of the nuclear fuel in the reactor, spent fuel warehousing, spent fuel processing (dissolution, methods of liquid/liquid extraction, output products), effluents and by-products, recycling of valuable materials (URE, MOX, RNR and others), waste containment for the different waste types regarding their radioactivity level and lifetime (vitrification, shell compacting, cementation, and other processes). The author also presents the French policy and choices regarding spent fuel processing and waste management

  15. Ducted fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Charles J.

    2018-03-06

    Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas with low peak fuel to charge-gas ratios to enable minimal, or no, generation of soot and other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be located proximate to an opening in a tip of a fuel injector. The duct can comprise of one or more holes along its length to enable charge-gas to be drawn into the bore, and further, the duct can cool the fuel and/or charge-gas prior to combustion.

  16. Fuel element services

    International Nuclear Information System (INIS)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  17. The future of fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Coward, H. (ed.) (Calgary Institute for the Humanities, Calgary, AB (Canada))

    1992-01-01

    This book contains six chapters by different authors on the topics of our current and future use of fossil fuel. The three chapters in the first part of the book deal with the scientific analysis of the current situation and Part Two covers future possibilities from the perspectives of population growth, ethical and economic considerations. The chapters are: earth rhythms through out geological time; the global carbon-cycle, including the atmosphere, hydrosphere, biosphere and geosphere; fossil fuels-global resources; energy conservation and energy alternatives; fossil fuels and future generations; and reducing global carbon emissions: developed versus developing countries. These are the proceedings of the symposium entitled 'The future of fossil fuel', which was cosponsored by the Royal Society of Canada and the University of Calgary. 67 refs., 42 figs., 2 tabs.

  18. Melvin Calvin: Fuels from Plants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.E.; Otvos, J.W.

    1998-11-24

    A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

  19. Proton Exchange Membrane Fuel Cell With Enhanced Durability Using Fluorinated Carbon As Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Ahmad Yasser

    2017-01-01

    Full Text Available This study evaluates the fluorination of a carbon aerogel and its effects on the durability of the resulting electrocatalyst for Proton Exchange Membrane Fuel Cell (PEMFC. Fluorine has been introduced before or after platinum deposition. The different electrocatalysts are physico-chemically and electrochemically characterized, and the results discussed by comparison with commercial Pt/XC72 from E-Tek. The results demonstrate that the level of fluorination of the carbon aerogel can be controlled. The fluorination modifies the texture of the carbons by increasing the pore size and decreasing the specific surface area, but the textures remain appropriate for PEMFC applications. Two fluorination sites are observed, leading to both high covalent C-F bond and weakened ones, the quantity of which depends on whether the treatment is done before or after platinum deposition. The order of the different treatments is very important. The presence of platinum contributes to the fluorination mechanism, but leads to amorphous platinum rather inactive towards the Oxygen Reduction Reaction. Finally, a better durability was demonstrated for the fluorinated then platinized catalyst compared both to the same but not fluorinated catalyst and to the reference commercial material (based on the loss of the electrochemical real surface area after accelerated stress tests.

  20. Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration.

    Science.gov (United States)

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Ieropoulos, Ioannis

    2016-09-01

    This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassium-rich wastewater as a fuel for microorganisms to generate electricity in the anode chamber, has resulted in the formation of caustic catholyte directly on the surface of the cathode electrode. Analysis of this liquid has shown to be highly alkaline (pH>13) and act as a CO2 sorbent. It has been later mineralised to kalicinite thus locking carbon dioxide into potassium bicarbonate salt. This work demonstrates an electricity generation method as a simple, cost-effective and environmentally friendly route towards CO2 sequestration that perhaps leads to a carbon negative economy. Moreover, it shows a potential application for both electricity production and nutrient recovery in the form of minerals from nutrient-rich wastewater streams such as urine for use as fertiliser in the future. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.