WorldWideScience

Sample records for fuel-induced immune suppression

  1. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  2. Poppers: more evidence of suppressed immunity.

    Science.gov (United States)

    James, J S

    1999-08-20

    Evidence from studies in mice shows that exposure to isobutyl nitrite suppresses the immune system. This immune suppression allows for bacterial growth in the lungs and livers of infected mice and can inhibit the ability of mediastinal lymph nodes to respond to antigen-specific stimulation. The mechanism for immune suppression may be a reduction in CD4+ and CD8+ T cell populations in the mediastinal lymph nodes following pulmonary infection with Listeria monocytogenes.

  3. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  4. Regulatory T cells: immune suppression and beyond

    OpenAIRE

    Wan, Yisong Y

    2010-01-01

    Foxp3-expressing regulatory T cells (Tregs) were originally identified as critical in maintaining self-tolerance and immune homeostasis. The immunosuppressive functions of Tregs are widely acknowledged and have been extensively studied. Recent studies have revealed many diverse roles of Tregs in shaping the immune system and the inflammatory response. This review will discuss our efforts as well as the efforts of others towards understanding the multifaceted function of Treg...

  5. Suppression of immune surveillance in melanoma [Immunotherapy of metastatic melanoma by reversal of immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eiselein, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2001-06-01

    In this paper we develop the hypothesis that a significant fraction of patients with advanced melanoma can be successfully treated with immunotherapy. Reversal of antigen-specific immune suppression to melanoma polypeptide antigens is an essential, first step. We postulate the key regulation of CTL responses resides within the CD4+ T-lymphocytes and macrophage/dendritic cells. There is a pluri-potential cell within this regulatory arm that functions either as a Th1 cell or as a suppressor T-cell, Ths, depending on how antigen is presented. We have shown that poliovirus 1 Sabin will lyse human melanoma cells in tissue culture, and a special "vaccine" prepared from this lysis actively stimulates Ths cell function. The Ths arm of the regulatory system can be down-regulated with cyclophosphamide given 24 hours after the vaccine. The capacity to generate a CTL response is retained. The summary conclusion is that a phase 1 clinical trial in advanced melanoma using the special viral-tumor-lysate followed by cyclophosphamide, plus expanded autologous dendritic cells sensitized with the polypeptide epitopes captained in the viral-lysate will produce beneficial results.

  6. Novel "Elements" of Immune Suppression within the Tumor Microenvironment.

    Science.gov (United States)

    Gurusamy, Devikala; Clever, David; Eil, Robert; Restifo, Nicholas P

    2017-06-01

    Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Innate immune reconstitution with suppression of HIV-1.

    Science.gov (United States)

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  8. Measles immune suppression: lessons from the macaque model.

    Directory of Open Access Journals (Sweden)

    Rory D de Vries

    Full Text Available Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression.

  9. Suppression of adoptive antituberculosis immunity by normal recipient animals

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1983-01-01

    Adoptive immunity is poorly expressed in normal syngeneic mice. This phenomenon was studied by using experimental antituberculosis immunity as a model system representing pure cell-mediated immunity. Expression of adoptive immunity was facilitated by pretreating recipients with sublethal ionizing radiation (500 rads) or high doses (200 mg/kg) of cyclophosphamide or by using adult thymectomized, lethally irradiated, bone-marrow-reconstituted (TXB) mice. Adult thymectomy was less effective, and a low dose of cyclophosphamide (20 mg/kg) was completely ineffective. The beneficial effect of sublethal irradiation was reduced over time; it persisted for 4 weeks and was absent after 8 weeks. Attempts to restore the suppressed state of normal mice to sublethally irradiated mice by using normal spleen or thymus cells did not succeed. Even in rats, which express adoptive antituberculosis immunity without immunosuppressive treatment, the use of sublethally irradiated or TXB recipients potentiated adoptive immunity. It was concluded that suppression of adoptive immunization in normal recipient mice is mediated predominantly, if not exclusively, by T lymphocytes that are sensitive to a number of immunosuppressive agents. The suppressor cells are long-lived and can be regenerated from precursors that are resistant to 500 but not to 900 rads of ionizing radiation

  10. Viral degradasome hijacks mitochondria to suppress innate immunity

    Science.gov (United States)

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  11. Suppressing epidemics with a limited amount of immunization units.

    Science.gov (United States)

    Schneider, Christian M; Mihaljev, Tamara; Havlin, Shlomo; Herrmann, Hans J

    2011-12-01

    The way diseases spread through schools, epidemics through countries, and viruses through the internet is crucial in determining their risk. Although each of these threats has its own characteristics, its underlying network determines the spreading. To restrain the spreading, a widely used approach is the fragmentation of these networks through immunization, so that epidemics cannot spread. Here we develop an immunization approach based on optimizing the susceptible size, which outperforms the best known strategy based on immunizing the highest-betweenness links or nodes. We find that the network's vulnerability can be significantly reduced, demonstrating this on three different real networks: the global flight network, a school friendship network, and the internet. In all cases, we find that not only is the average infection probability significantly suppressed, but also for the most relevant case of a small and limited number of immunization units the infection probability can be reduced by up to 55%.

  12. The role of epidermal cytokines in the generation of cutaneous immune reactions and ultraviolet radiation-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, S.E.

    1995-01-01

    The immune suppression generated by UV exposure is a major risk factor for skin cancer patients. This finding has fuelled efforts to understand the mechanisms involved in the immune suppression induced by exposure to UV radiation. This article reviews the recent findings on the role of epidermal cytokines in the generation of an immune response and their role in the induction of immune suppression induced by UV exposure. (UK)

  13. Purulent pericarditis in a dog administered immune-suppressing drugs

    International Nuclear Information System (INIS)

    Mohri, T.; Takashima, K.; Yamane, T.; Sato, H.; Yamane, Y.

    2009-01-01

    A 5-year-old castrated mongrel dog was brought to our hospital with anorexia and vomiting. Laboratory testing revealed immune-mediated hemolytic anemia (IMHA), and so treatment was initiated with multiple immune-suppressing drugs, achieving partial remission from IMHA. However, cardiac tamponade due to purulent pericarditis was identified as a secondary disease. Culture of pericardial fluid yielded numerous Candida albicans and multidrug-resistant Acinetobacter sp. Pericardiocentesis was performed, and the condition of the dog improved. However, the dog died the next day

  14. Poppers: large cancer increase and immune suppression in animal tests.

    Science.gov (United States)

    James, J S

    1999-04-16

    A study on mice injected with cancer cells and then exposed to isobutyl nitrite (poppers) revealed that inhalant-treated mice developed tumors more readily and rapidly than control mice. The control mice were also injected with cancer cells, but only breathed air. Related studies found that poppers suppress certain immune functions involved in killing tumor cells. These studies suggest that further research of persons with HIV/AIDS who use poppers is needed to determine if they are at a high risk for developing malignancies.

  15. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  16. Manganese induced immune suppression of the lobster, Nephrops norvegicus

    International Nuclear Information System (INIS)

    Hernroth, Bodil; Baden, Susanne P.; Holm, Kristina; Andre, Tove; Soederhaell, Irene

    2004-01-01

    Manganese (Mn) is one of the most abundant elements on earth, particularly in the soft bottom sediments of the oceans. As a micronutrient Mn is essential in the metabolic processes of organisms. However, at high concentrations the metal becomes a neurotoxin with well-documented effects. As a consequence of euthrophication, manganese is released from bottom sediments of coastal areas and the Norway lobsters, Nephrops norvegicus, can experience high levels of bioavailable Mn 2+ . Here, we present the first report showing that Mn also affects several fundamental processes in the mobilisation and activation of immunoactive haemocytes. When N. norvegicus was exposed to a realistic [Mn 2+ ] of 20 mg l -1 for 10 days 24.1 μg ml -1 was recorded in the haemolymph. At this concentration the total haemocyte count was reduced by ca. 60%. By using BrdU as a tracer for cell division, it was shown that the proliferation rate in the haematopoietic tissue did not increase, despite the haemocytepenia. A gene coding for a Runt-domain protein, known to be involved in maturation of immune active haemocytes in a variety of organisms, was identified also in haemocytes of N. norvegicus. The expression of this gene was >40% lower in the Mn-exposed lobsters as judged by using a cDNA probe and the in situ hybridisation technique. In response to non-self molecules, like lipopolysaccharide (LPS), the granular haemocytes of arthropods are known to degranulate and thereby release and activate the prophenoloxidase system, necessary for their immune defence. A degranulation assay, tested on isolated granular haemocytes, showed about 75% lower activity in the Mn-exposed lobsters than that for the unexposed. Furthermore, using an enzymatic assay, the activation per se of prophenoloxidase by LPS was found blocked in the Mn-exposed lobsters. Taken together, these results show that Mn exposure suppressed fundamental immune mechanisms of Norway lobsters. This identifies a potential harm that also

  17. Manganese induced immune suppression of the lobster, Nephrops norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Hernroth, Bodil [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden)]. E-mail: bodil.hernroth@kmf.gu.se; Baden, Susanne P. [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden); Holm, Kristina [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden); Andre, Tove [Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden); Soederhaell, Irene [Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden)

    2004-12-10

    Manganese (Mn) is one of the most abundant elements on earth, particularly in the soft bottom sediments of the oceans. As a micronutrient Mn is essential in the metabolic processes of organisms. However, at high concentrations the metal becomes a neurotoxin with well-documented effects. As a consequence of euthrophication, manganese is released from bottom sediments of coastal areas and the Norway lobsters, Nephrops norvegicus, can experience high levels of bioavailable Mn{sup 2+}. Here, we present the first report showing that Mn also affects several fundamental processes in the mobilisation and activation of immunoactive haemocytes. When N. norvegicus was exposed to a realistic [Mn{sup 2+}] of 20 mg l{sup -1} for 10 days 24.1 {mu}g ml{sup -1} was recorded in the haemolymph. At this concentration the total haemocyte count was reduced by ca. 60%. By using BrdU as a tracer for cell division, it was shown that the proliferation rate in the haematopoietic tissue did not increase, despite the haemocytepenia. A gene coding for a Runt-domain protein, known to be involved in maturation of immune active haemocytes in a variety of organisms, was identified also in haemocytes of N. norvegicus. The expression of this gene was >40% lower in the Mn-exposed lobsters as judged by using a cDNA probe and the in situ hybridisation technique. In response to non-self molecules, like lipopolysaccharide (LPS), the granular haemocytes of arthropods are known to degranulate and thereby release and activate the prophenoloxidase system, necessary for their immune defence. A degranulation assay, tested on isolated granular haemocytes, showed about 75% lower activity in the Mn-exposed lobsters than that for the unexposed. Furthermore, using an enzymatic assay, the activation per se of prophenoloxidase by LPS was found blocked in the Mn-exposed lobsters. Taken together, these results show that Mn exposure suppressed fundamental immune mechanisms of Norway lobsters. This identifies a potential

  18. UVB-induced immune suppression and infection with Schistosoma mansoni

    International Nuclear Information System (INIS)

    Noonan, F.P.; Lewis, F.A.

    1995-01-01

    Irradiation with ultraviolet B (UVB, 290-320 nm) causes a systematic immunosuppression of cell-mediated immunity. The question of whether UV immunosuppression modulates the course of infectious diseases is important because UVB levels in sunlight are sufficient to predict significant UV-induced immunosuppression at most latitudes. We have investigated the effect of immunosuppressive doses of UVB on the disease caused by the helminth parasite Schistosoma mansoni. C57BL/6 mice were irradiated once or three times weekly over 60-80 days with UV from a bank of FS40 sunlamps. Each UV treatment consisted of an immunosuppressive UV dose, as determined by suppression of contact hypersensitivity to trinitrochlorobenzene, corresponding to about 15-30 min of noonday tropical sunlight exposure under ideal clear sky conditions. Cumulative UV doses were between 80 and 170 kJ/m 2 . Worm and egg burdens, liver granuloma diameters and liver fibrosis showed minimal changes ( 2 administered in six treatments) did not impair the resistance to rechallenge conferred by vaccination with 60 Co-irradiated cercariae. We have observed a dichotomy between UV immnosuppression and both disease and vaccination in this helminth infection, in contrast to the effects of UVB shown in other infectious diseases. (author)

  19. Plasma-mediated immune suppression : a neonatal perspective

    NARCIS (Netherlands)

    Belderbos, Mirjam E.; Levy, Ofer; Meyaard, Linde; Bont, Louis

    Plasma is a rich mixture of immune regulatory factors that shape immune cell function. This immunomodulatory role of plasma is especially important in neonates. To maintain in utero feto-maternal tolerance and to allow for microbial colonization after birth, the neonatal immune system is biased

  20. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-01

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4 + T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4 + T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects

  1. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  2. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  3. Antiretroviral therapy, immune suppression and renal impairment in HIV-positive persons

    DEFF Research Database (Denmark)

    Nielsen, Lene Ryom; Mocroft, Amanda; Lundgren, Jens D

    2014-01-01

    The purpose of this article is to review recent literature on antiretroviral treatment (ART) and immune suppression as risk factors for renal impairment in HIV-positive persons, and to discuss pending research questions within this field.......The purpose of this article is to review recent literature on antiretroviral treatment (ART) and immune suppression as risk factors for renal impairment in HIV-positive persons, and to discuss pending research questions within this field....

  4. How Does Optimism Suppress Immunity? Evaluation of Three Affective Pathways

    OpenAIRE

    Segerstrom, Suzanne C.

    2006-01-01

    Studies have linked optimism to poorer immunity during difficult stressors. In the present report, when first-year law students (N = 46) relocated to attend law school, reducing conflict among curricular and extracurricular goals, optimism predicted larger delayed type hypersensitivity responses, indicating more robust in vivo cellular immunity. However, when students did not relocate, increasing goal conflict, optimism predicted smaller responses. Although this effect has been attributed to ...

  5. Suppressive influences in the immune response to cancer.

    Science.gov (United States)

    Bronte, Vincenzo; Mocellin, Simone

    2009-01-01

    Although much evidence has been gathered demonstrating that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells do evade immune surveillance in most cases. Considering that anticancer active specific immunotherapy seems to have reached a plateau of results and that currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted.

  6. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  7. Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Yang

    2017-11-01

    Full Text Available Interleukin-4 (IL-4 has been considered as one of the tolerogenic cytokines in many autoimmune animal models and clinical settings. Despite its role in antagonizing pathogenic Th1 responses, little is known about whether IL-4 possesses functions that affect regulatory T cells (Tregs. Tregs are specialized cells responsible for the maintenance of peripheral tolerance through their immune modulatory capabilities. Interestingly, it has been suggested that IL-4 supplement at a high concentration protects responder T cells (Tresps from Treg-mediated immune suppression. In addition, such supplement also impedes TGF-β-induced Treg differentiation in vitro. However, these phenomena may contradict the tolerogenic role of IL-4, and the effects of IL-4 on Tregs are therefore needed to be further elucidated. In this study, we utilized IL-4 knockout (KO mice to validate the role of IL-4 on Treg-mediated immune suppression. Although IL-4 KO and control animals harbor similar frequencies of Tregs, Tregs from IL-4 KO mice weakly suppressed autologous Tresp activation. In addition, IL-4 deprivation impaired the ability of Tregs to modulate immune response, whereas IL-4 supplementation reinforced IL-4 KO Tregs in their function in suppressing Tresps. Finally, the presence of IL-4 was associated with increased cell survival and granzyme expression of Tregs. These results suggest the essential role of IL-4 in supporting Treg-mediated immune suppression, which may benefit the development of therapeutic strategies for autoimmune diseases.

  8. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  9. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia

    NARCIS (Netherlands)

    Kannan, Vishnu; Brouwer, Nieske; Hanisch, Uwe-Karsten; Regen, Tommy; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS

  10. Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters.

    Science.gov (United States)

    Butler, Mark J; Behringer, Donald C; Dolan, Thomas W; Moss, Jessica; Shields, Jeffrey D

    2015-01-01

    Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of "behavioral immunity"; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics) practiced by Caribbean spiny lobsters (Panulirus argus) when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA) resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system.

  11. Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters.

    Directory of Open Access Journals (Sweden)

    Mark J Butler

    Full Text Available Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of "behavioral immunity"; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics practiced by Caribbean spiny lobsters (Panulirus argus when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system.

  12. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury.

    Science.gov (United States)

    Wang, Lei; Yu, Wei-bo; Tao, Lian-yuan; Xu, Qing

    2016-01-15

    Spinal cord injury (SCI) is characterized by the loss of motor and sensory functions in areas below the level of the lesion and numerous accompanying deficits. Previous studies have suggested that myeloid-derived suppressor cell (MDSC)-induced immune depression may play a pivotal role in the course of SCI. However, the concrete mechanism of these changes regarding immune suppression remains unknown. Here, we created an SCI mouse model to gain further evidence regarding the relationship between MDSCs following SCI and T lymphocyte suppression. We showed that in the SCI mouse model, the expanding MDSCs have the capacity to suppress T cell proliferation, and this suppression could be reversed by blocking the arginase. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    Science.gov (United States)

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  14. The skin microbiome: Is it affected by UV-induced immune suppression?

    Directory of Open Access Journals (Sweden)

    Vijaykumar Patra

    2016-08-01

    Full Text Available Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation UV-R from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides (AMPs, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs that interfere with UV-induced immune suppression.

  15. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease

    NARCIS (Netherlands)

    Z. Zelinkova (Zuzana); E. Bultman (Evelien); L. Vogelaar (Lauran); C. Bouziane (Cheima); E.J. Kuipers (Ernst); C.J. van der Woude (Janneke)

    2012-01-01

    textabstractAIM: To analyze sex differences in adverse drug reactions (ADR) to the immune suppressive medication in inflammatory bowel disease (IBD) patients. METHODS: All IBD patients attending the IBD outpatient clinic of a referral hospital were identifed through the electronic diagnosis

  16. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  17. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    Science.gov (United States)

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  18. Protein A Suppresses Immune Responses during Staphylococcus aureus Bloodstream Infection in Guinea Pigs

    Science.gov (United States)

    Kim, Hwan Keun; Falugi, Fabiana; Thomer, Lena; Missiakas, Dominique M.

    2015-01-01

    ABSTRACT   Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links VH3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High VH3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host B cell responses. Immunization with SpAKKAA, which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity. Importance  Staphylococcus aureus is the leading cause of soft tissue and bloodstream infections; however, a vaccine with clinical efficacy is not available. Using mice to model staphylococcal infection, earlier work identified protective antigens; however, corresponding human clinical trials did not reach their endpoints. We show that B cell receptor (IgM) cross-linking by protein A is an important immune evasion strategy of S. aureus that can be monitored in a guinea pig model of bloodstream infection. Further, immunization with nontoxigenic protein A enables infected guinea pigs to elicit antibody responses that are protective against S. aureus. Thus, the guinea pig model may support preclinical development of staphylococcal vaccines. PMID:25564466

  19. Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation.

    Directory of Open Access Journals (Sweden)

    Xinghui Li

    Full Text Available Immunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6, and number of IFN-γ (+ CD4(+ and IFN-γ (+ CD8(+ T cells in the spleen and liver. In contrast, CD4(+CD25(+Foxp3(+ Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.

  20. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  1. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  2. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  3. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  4. The Biodistribution and Immune Suppressive Effects of Breast Cancer-Derived Exosomes.

    Science.gov (United States)

    Wen, Shu Wen; Sceneay, Jaclyn; Lima, Luize Goncalves; Wong, Christina S F; Becker, Melanie; Krumeich, Sophie; Lobb, Richard J; Castillo, Vanessa; Wong, Ke Ni; Ellis, Sarah; Parker, Belinda S; Möller, Andreas

    2016-12-01

    Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45 + bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Suppression of Antitumor Immune Responses by Human Papillomavirus through Epigenetic Downregulation of CXCL14

    Directory of Open Access Journals (Sweden)

    Louis Cicchini

    2016-05-01

    Full Text Available High-risk human papillomaviruses (HPVs are causally associated with multiple human cancers. Previous studies have shown that the HPV oncoprotein E7 induces immune suppression; however, the underlying mechanisms remain unknown. To understand the mechanisms by which HPV deregulates host immune responses in the tumor microenvironment, we analyzed gene expression changes of all known chemokines and their receptors using our global gene expression data sets from human HPV-positive and -negative head/neck cancer and cervical tissue specimens in different disease stages. We report that, while many proinflammatory chemokines increase expression throughout cancer progression, CXCL14 is dramatically downregulated in HPV-positive cancers. HPV suppression of CXCL14 is dependent on E7 and associated with DNA hypermethylation in the CXCL14 promoter. Using in vivo mouse models, we revealed that restoration of Cxcl14 expression in HPV-positive mouse oropharyngeal carcinoma cells clears tumors in immunocompetent syngeneic mice, but not in Rag1-deficient mice. Further, Cxcl14 reexpression significantly increases natural killer (NK, CD4+ T, and CD8+ T cell infiltration into the tumor-draining lymph nodes in vivo. In vitro transwell migration assays show that Cxcl14 reexpression induces chemotaxis of NK, CD4+ T, and CD8+ T cells. These results suggest that CXCL14 downregulation by HPV plays an important role in suppression of antitumor immune responses. Our findings provide a new mechanistic understanding of virus-induced immune evasion that contributes to cancer progression.

  6. Induction of the immune response suppression in mice inoculated with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, D E; Sirena, A; de Petrino, S F; Eugenia, M; de Jorrat, B B; de Valdex, M G

    1986-03-01

    There is a controversy in respect to the immunological response (humoral or cellular) concerning the defense against Candida albicans. Candidosis would induce sub-populations of suppressor cells in the host cell-immune response. This report tries to show the effect of different doses of C. albicans (alive or heat-killed) on the expression of cell-mediated and humoral immunity. The effect upon cell immunity was determined by inoculating different lots of singeneic mice, doses of varied concentration of C. albicans and checking for delayed-type hipersensitivity (D.T.H.). D.T.H. was also controlled in syngeneic normal mice which had previously been injected with inoculated mice spleen cells. Humoral immunity was assayed by measuring the induced blastogenesis by Pokeweed Mitogen on spleen mononuclear cells with different doses of C. albicans. Results obtained show that the different doses gave origin to: Suppression of humoral and cell response (10(8) alive); Suppression of only humoral response (10(6) alive); Suppression of cell response and increase of humoral response (10(9) dead); Increase of both responses (10(8) dead).

  7. Interaction Between 2 Nutraceutical Treatments and Host Immune Status in the Pediatric Critical Illness Stress-Induced Immune Suppression Comparative Effectiveness Trial.

    Science.gov (United States)

    Carcillo, Joseph A; Dean, J Michael; Holubkov, Richard; Berger, John; Meert, Kathleen L; Anand, Kanwaljeet J S; Zimmerman, Jerry J; Newth, Christopher J L; Harrison, Rick; Burr, Jeri; Willson, Douglas F; Nicholson, Carol; Bell, Michael J; Berg, Robert A; Shanley, Thomas P; Heidemann, Sabrina M; Dalton, Heidi; Jenkins, Tammara L; Doctor, Allan; Webster, Angie; Tamburro, Robert F

    2017-11-01

    The pediatric Critical Illness Stress-induced Immune Suppression (CRISIS) trial compared the effectiveness of 2 nutraceutical supplementation strategies and found no difference in the development of nosocomial infection and sepsis in the overall population. We performed an exploratory post hoc analysis of interaction between nutraceutical treatments and host immune status related to the development of nosocomial infection/sepsis. Children from the CRISIS trial were analyzed according to 3 admission immune status categories marked by decreasing immune competence: immune competent without lymphopenia, immune competent with lymphopenia, and previously immunocompromised. The comparative effectiveness of the 2 treatments was analyzed for interaction with immune status category. There were 134 immune-competent children without lymphopenia, 79 previously immune-competent children with lymphopenia, and 27 immunocompromised children who received 1 of the 2 treatments. A significant interaction was found between treatment arms and immune status on the time to development of nosocomial infection and sepsis ( P patient characteristic.

  8. Rapamycin delays growth of Wnt-1 tumors in spite of suppression of host immunity

    International Nuclear Information System (INIS)

    Svirshchevskaya, Elena V; Mariotti, Jacopo; Wright, Mollie H; Viskova, Natalia Y; Telford, William; Fowler, Daniel H; Varticovski, Lyuba

    2008-01-01

    Rapamycin, an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. However, the role of Rapamycin-induced immune suppression on tumor progression has not been examined. We developed a transplantation model for generation of mammary tumors in syngeneic recipients that can be used to address the role of the immune system on tumor progression. We examined the effect of Rapamycin on the immune system and growth of MMTV-driven Wnt-1 mammary tumors which were transplanted into irradiated and bone marrow-reconstituted, or naïve mice. Rapamycin induced severe immunosuppression and significantly delayed the growth of Wnt-1 tumors. T cell depletion in spleen and thymus and reduction in T cell cytokine secretion were evident within 7 days of therapy. By day 20, splenic but not thymic T cell counts, and cytokine secretion recovered. We determined whether adoptive T cell therapy enhances the anti-cancer effect using ex vivo generated Rapamycin-resistant T cells. However, T cell transfer during Rapamycin therapy did not improve the outcome relative to drug therapy alone. Thus, we could not confirm that suppression of T cell immunity contributes to tumor growth in this model. Consistent with suppression of the mTOR pathway, decreased 4E-BP1, p70 S6-kinase, and S6 protein phosphorylation correlated with a decrease in Wnt-1 tumor cell proliferation. Rapamycin has a direct anti-tumor effect on Wnt-1 breast cancer in vivo that involves inhibition of the mTOR pathway at doses that also suppress host immune responses

  9. Suppression of the cutaneous immune response following topical application of the prostaglandin PGE2

    International Nuclear Information System (INIS)

    Rheins, L.A.; Barnes, L.; Amornsiripanitch, S.; Collins, C.E.; Nordlund, J.J.

    1987-01-01

    UVB irradiation (290-320 nm) and topical applications of arachidonic acid (AA) in mice decrease the number of identifiable Langerhans cells and alter the cutaneous immune response. Application of contact allergens such as dinitrofluorobenzene (DNFB) to irradiated or AA-treated skin induces antigen-specific tolerance. Indomethacin (IM), a cyclooxygenase inhibitor, administered orally to mice prior to UVB irradiation or prior to the topical application of arachidonic acid, abrogates suppression of contact hypersensitivity (CHS) to DNFB. This suggests a byproduct of arachidonic acid generated through the cyclooxygenase pathway may be involved in the immune suppression. Topical application of various prostaglandins (PGE2, PGD2, PGF2 alpha, and CTXA2) did not cause alterations in the population density of the identifiable Ia+ dendritic Langerhans cells. PGE2, but no other tested agent, produced a suppression of the CHS response to DNFB. These observations suggests that of the various prostaglandins, PGE2 might be one of several biochemical signals which mediate the suppression of contact hypersensitivity reactions following ultraviolet radiation exposure. However, the mechanisms by which PGE2 produces its suppressive effects have not been identified

  10. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters.

    Science.gov (United States)

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Nelson, Randy J

    2011-06-23

    Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.

  11. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  12. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-11-01

    Full Text Available Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD. Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10 chemokine ligands [ITAC (CXCL11 and Mig (CXCL9] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1, and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of

  13. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    Science.gov (United States)

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive. © 2014 Wiley Periodicals, Inc.

  14. Endoplasmic Reticulum Stress Caused by Lipoprotein Accumulation Suppresses Immunity against Bacterial Pathogens and Contributes to Immunosenescence

    Directory of Open Access Journals (Sweden)

    Jogender Singh

    2017-05-01

    Full Text Available The unfolded protein response (UPR is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER, and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins.

  15. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    Science.gov (United States)

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  16. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity.

    Directory of Open Access Journals (Sweden)

    Caline G Matar

    2015-05-01

    Full Text Available Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68 infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission.

  17. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice.

    Science.gov (United States)

    Cheng, Xixi; Wang, Huafeng; Yang, Jinlai; Cheng, Yingnan; Wang, Dan; Yang, Fengrui; Li, Yan; Zhou, Dongmei; Wang, Yanxia; Xue, Zhenyi; Zhang, Lijuan; Zhang, Qi; Yang, Luhong; Zhang, Rongxin; Da, Yurong

    2018-06-01

    As a phenylpropanoid and dibenzylbutyrolactone lignan present in medical plants, such as those used in traditional Chinese herbal medicine, including Arctium lappa (Niubang), arctigenin exhibits antimicrobial, anti-inflammatory, and anticancer activities. In this study, we investigated the protective role of arctigenin in Concanavalin A (ConA)-induced acute hepatitis in mice. Arctigenin remarkably reduced the congestion and necroinflammation of livers, and improved hepatic function (ALT and AST) in ConA-induced acute hepatitis in vivo. The infiltration of CD4 T, NKT and macrophages into the livers was found to be reduced with arctigenin treatment. Arctigenin suppressed ConA-induced T lymphocyte proliferations that might have resulted from enhanced IL-10 production by macrophages and CD4 T cells. These results suggested that arctigenin could be a powerful drug candidate for acute hepatitis through immune suppression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Vitamin K3 suppressed inflammatory and immune responses in a redox-dependent manner.

    Science.gov (United States)

    Checker, Rahul; Sharma, Deepak; Sandur, Santosh K; Khan, Nazir M; Patwardhan, Raghavendra S; Kohli, Vineet; Sainis, Krishna B

    2011-08-01

    Recent investigations suggest that cellular redox status may play a key role in the regulation of several immune functions. Treatment of lymphocytes with vitamin K3 (menadione) resulted in a significant decrease in cellular GSH/GSSG ratio and concomitant increase in the ROS levels. It also suppressed Concanavalin A (Con A)-induced proliferation and cytokine production in lymphocytes and CD4 + T cells in vitro. Immunosuppressive effects of menadione were abrogated only by thiol containing antioxidants. Mass spectrometric analysis showed that menadione directly interacted with thiol antioxidant GSH. Menadione completely suppressed Con A-induced activation of ERK, JNK and NF-κB in lymphocytes. It also significantly decreased the homeostasis driven proliferation of syngeneic CD4 + T cells. Further, menadione significantly delayed graft-vs-host disease morbidity and mortality in mice. Menadione suppressed phytohemagglutinin-induced cytokine production in human peripheral blood mononuclear cells. These results reveal that cellular redox perturbation by menadione is responsible for significant suppression of lymphocyte responses.

  19. Suppression of the immune response to ovalbumin in vivo by anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Grinevich, A.S.; Pinegin, B.V.

    1986-01-01

    Conditions of suppression of the immune response to a food allergin (ovalbumin) were studied with the aid of anti-idiotypic (AID) antibodies. Hen ovalbumin was used and the experiments were performed on mice. Antibodies were isolated from the resulting protein fractions and tested for inhibitor activity by the method of direct radioimmunologic analysis. The test system consisted of the reaction of binding the globulin fraction to the total preparation of antibodies to ovalbumin from mice and a 125 I-labeled total preparation of antibodies to ovalbumin of the same animals

  20. Suppression of immune response to Lol pI by administration of idiotype.

    Science.gov (United States)

    Boutin, Y; Hébert, J

    1995-03-01

    Allergic diseases are characterized by an increased production of specific IgE antibodies. Suppression of IgE antibody production may be accomplished through idiotypic manipulation. Using an animal model, we explored the effects of anti-Lol pI monoclonal antibody administration on the subsequent IgE and IgG antibody response against Lol pI. Mice were treated with an anti-Lol pI monoclonal antibody (290A-167), which resulted in the production of anti-idiotypic antibodies as evidenced by their ability to bind to the Fab fraction of 290A-167 and to inhibit the binding of rabbit polyclonal anti-idiotypic antibodies to 290A-167. The animals were then immunized with Lol pI adsorbed onto alum, and the immune response to the protein was analyzed. Antigen-specific IgG1 and IgE responses were strongly suppressed as determined by immunoassay. Suppression of anti-Lol pI IgE antibodies was confirmed by a reduction of end-point titers measured by passive cutaneous anaphylaxis. The suppression of antigen-specific antibody was accompanied by a reduction of anti-Lol pI antibody-producing spleen cells. These data indicate that pretreatment with 290A-167 can strongly downregulate the IgE response to the main allergen of ryegrass pollen, which is associated with an increase in anti-idiotypic antibodies. This approach could provide rapid, long-term hyposensitization in patients with grass pollen allergy.

  1. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  2. The Necrosome Promotes Pancreas Oncogenesis via CXCL1 and Mincle Induced Immune Suppression

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H.; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P.; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-01-01

    Neoplastic pancreatic epithelial cells are widely believed to die via Caspase 8-dependant apoptotic cell death and chemotherapy is thought to further promote tumor apoptosis1. Conversely, disruption of apoptosis is a basic modality cancer cells exploit for survival2,3. However, the role of necroptosis, or programmed necrosis, in pancreatic ductal adenocarcinoma (PDA) is uncertain. There are a multitude of potential inducers of necroptosis in PDA including ligation of TNFR1, CD95, TRAIL receptors, Toll-like receptors, ROS, and Chemotherapeutics4,5. Here we report that the principal components of the necrosome, RIP1 and RIP3, are highly expressed in PDA and are further upregulated by chemotherapy. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo RIP3 deletion or RIP1 inhibition was protective against oncogenic progression and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumor microenvironment (TME) associated with intact RIP1/RIP3 signaling was in-part contingent on necroptosis-induced CXCL1 expression whereas CXCL1 blockade was protective against PDA. Moreover, we found that cytoplasmic SAP130 was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle – its cognate receptor – was upregulated in tumor-infiltrating myeloid cells. Mincle ligation by SAP130 promoted oncogenesis whereas Mincle deletion was protective and phenocopied the immunogenic reprogramming of the TME characteristic of RIP3 deletion. Cellular depletion experiments suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects in the context of RIP3 or Mincle deletion. As such, T cells which are dispensable to PDA progression in hosts with intact RIP3 or Mincle signaling become reprogrammed into indispensable mediators of anti-tumor immunity in absence of RIP3 or Mincle. Our work

  3. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells

  4. Physiologic Doses of Bilirubin Contribute to Tolerance of Islet Transplants by Suppressing the Innate Immune Response.

    Science.gov (United States)

    Adin, Christopher A; VanGundy, Zachary C; Papenfuss, Tracey L; Xu, Feng; Ghanem, Mostafa; Lakey, Jonathan; Hadley, Gregg A

    2017-01-24

    Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1β and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation.

  5. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression

    International Nuclear Information System (INIS)

    Choi, Byung-Min; Pae, Hyun-Ock; Jeong, Young-Ran; Kim, Young-Myeong; Chung, Hun-Taeg

    2005-01-01

    Foxp3, which encodes the transcription factor scurfin, is indispensable for the development and function of CD4 + CD25 + regulatory T cells (Treg). Recent data suggest conversion of peripheral CD4 + CD25 - naive T cells to CD4 + CD25 + Treg by acquisition of Foxp3 through costimulation with TCR and TGF-β or forced expression of the gene. One critical question is how Foxp3 causes T cells to become regulatory. In the present work, we demonstrate that Foxp3 can induce heme oxygenase-1 (HO-1) expression and subsequently such regulatory phenotypes as the suppression of nontransfected cells in a cell-cell contact-dependent manner as well as impaired proliferation and production of cytokines upon stimulation in Jurkat T cells. Moreover, we confirm the expression of both Foxp3 and HO-1 in peripheral CD4 + CD25 + Treg and suppressive function of the cells are relieved by the inhibition of HO-1 activity. In summary, we demonstrate that Foxp3 induces HO-1 expression and HO-1 engages in Foxp3-mediated immune suppression

  6. Maternal antibody transfer can lead to suppression of humoral immunity in developing zebra finches (Taeniopygia guttata).

    Science.gov (United States)

    Merrill, Loren; Grindstaff, Jennifer L

    2014-01-01

    Maternally transferred antibodies have been documented in a wide range of taxa and are thought to adaptively provide protection against parasites and pathogens while the offspring immune system is developing. In most birds, transfer occurs when females deposit immunoglobulin Y into the egg yolk, and it is proportional to the amount in the female's plasma. Maternal antibodies can provide short-term passive protection as well as specific and nonspecific immunological priming, but high levels of maternal antibody can result in suppression of the offspring's humoral immune response. We injected adult female zebra finches (Taeniopygia guttata) with one of two antigens (lipopolysaccharide [LPS] or keyhole limpet hemocyanin [KLH]) or a control and then injected offspring with LPS, KLH, or a control on days 5 and 28 posthatch to examine the impact of maternally transferred antibodies on the ontogeny of the offspring's humoral immune system. We found that offspring of females exposed to KLH had elevated levels of KLH-reactive antibody over the first 17-28 days posthatch but reduced KLH-specific antibody production between days 28 and 36. We also found that offspring exposed to either LPS or KLH exhibited reduced total antibody levels, compared to offspring that received a control injection. These results indicate that high levels of maternal antibodies or antigen exposure during development can have negative repercussions on short-term antibody production and may have long-term fitness repercussions for the offspring.

  7. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    Science.gov (United States)

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  8. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  9. Retnla (relmalpha/fizz1 suppresses helminth-induced Th2-type immunity.

    Directory of Open Access Journals (Sweden)

    John T Pesce

    2009-04-01

    Full Text Available Retnla (Resistin-like molecule alpha/FIZZ1 is induced during Th2 cytokine immune responses. However, the role of Retnla in Th2-type immunity is unknown. Here, using Retnla(-/- mice and three distinct helminth models, we show that Retnla functions as a negative regulator of Th2 responses. Pulmonary granuloma formation induced by the eggs of the helminth parasite Schistosoma mansoni is dependent on IL-4 and IL-13 and associated with marked increases in Retnla expression. We found that both primary and secondary pulmonary granuloma formation were exacerbated in the absence of Retlna. The number of granuloma-associated eosinophils and serum IgE titers were also enhanced. Moreover, when chronically infected with S. mansoni cercariae, Retnla(-/- mice displayed significant increases in granulomatous inflammation in the liver and the development of fibrosis and progression to hepatosplenic disease was markedly augmented. Finally, Retnla(-/- mice infected with the gastrointestinal (GI parasite Nippostrongylus brasiliensis had intensified lung pathology to migrating larvae, reduced fecundity, and accelerated expulsion of adult worms from the intestine, suggesting Th2 immunity was enhanced. When their immune responses were compared, helminth infected Retnla(-/- mice developed stronger Th2 responses, which could be reversed by exogenous rRelmalpha treatment. Studies with several cytokine knockout mice showed that expression of Retnla was dependent on IL-4 and IL-13 and inhibited by IFN-gamma, while tissue localization and cell isolation experiments indicated that eosinophils and epithelial cells were the primary producers of Retnla in the liver and lung, respectively. Thus, the Th2-inducible gene Retnla suppresses resistance to GI nematode infection, pulmonary granulomatous inflammation, and fibrosis by negatively regulating Th2-dependent responses.

  10. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  11. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Blokhuis, Gijsbert J.; Diender, Marije G.; Oyen, Wim J.G. [Radboud University Medical Center, Department of Nuclear Medicine, Nijmegen (Netherlands); Bleeker-Rovers, Chantal P. [Radboud University Medical Center, Division of Infectious Diseases, Department of Internal Medicine, Nijmegen (Netherlands); Draaisma, Jos M.T. [Radboud University Medical Center, Department of Paediatrics, Nijmegen (Netherlands); Geus-Oei, Lioe-Fee de [Radboud University Medical Center, Department of Nuclear Medicine, Nijmegen (Netherlands); University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Biomedical Photonic Imaging Group, Enschede (Netherlands)

    2014-10-15

    Fever of unknown origin (FUO) and unexplained fever during immune suppression in children are challenging medical problems. The aim of this study is to investigate the diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET combined with computed tomography (FDG-PET/CT) in children with FUO and in children with unexplained fever during immune suppression. All FDG-PET/(CT) scans performed in the Radboud university medical center for the evaluation of FUO or unexplained fever during immune suppression in the last 10 years were reviewed. Results were compared with the final clinical diagnosis. FDG-PET/(CT) scans were performed in 31 children with FUO. A final diagnosis was established in 16 cases (52 %). Of the total number of scans, 32 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in these patients was 80 % and 78 %, respectively. FDG-PET/(CT) scans were performed in 12 children with unexplained fever during immune suppression. A final diagnosis was established in nine patients (75 %). Of the total number of these scans, 58 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in children with unexplained fever during immune suppression was 78 % and 67 %, respectively. FDG-PET/CT appears a valuable imaging technique in the evaluation of children with FUO and in the diagnostic process of children with unexplained fever during immune suppression. Prospective studies of FDG-PET/CT as part of a structured diagnostic protocol are warranted to assess the additional diagnostic value. (orig.)

  12. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression

    International Nuclear Information System (INIS)

    Blokhuis, Gijsbert J.; Diender, Marije G.; Oyen, Wim J.G.; Bleeker-Rovers, Chantal P.; Draaisma, Jos M.T.; Geus-Oei, Lioe-Fee de

    2014-01-01

    Fever of unknown origin (FUO) and unexplained fever during immune suppression in children are challenging medical problems. The aim of this study is to investigate the diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET combined with computed tomography (FDG-PET/CT) in children with FUO and in children with unexplained fever during immune suppression. All FDG-PET/(CT) scans performed in the Radboud university medical center for the evaluation of FUO or unexplained fever during immune suppression in the last 10 years were reviewed. Results were compared with the final clinical diagnosis. FDG-PET/(CT) scans were performed in 31 children with FUO. A final diagnosis was established in 16 cases (52 %). Of the total number of scans, 32 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in these patients was 80 % and 78 %, respectively. FDG-PET/(CT) scans were performed in 12 children with unexplained fever during immune suppression. A final diagnosis was established in nine patients (75 %). Of the total number of these scans, 58 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in children with unexplained fever during immune suppression was 78 % and 67 %, respectively. FDG-PET/CT appears a valuable imaging technique in the evaluation of children with FUO and in the diagnostic process of children with unexplained fever during immune suppression. Prospective studies of FDG-PET/CT as part of a structured diagnostic protocol are warranted to assess the additional diagnostic value. (orig.)

  13. Cell-mediated immune suppression effect of rocket kerosene through dermal exposure in mice

    Directory of Open Access Journals (Sweden)

    Bing-xin XU

    2015-10-01

    Full Text Available Objective To study the effect of cell-mediated immune suppression effect of rocket kerosene (RK through dermal application in mice. Methods Skin delayed type hypersensitivity (DTH was used to observe the relation of the RK amount the skin exposed and the cellular immune inhibitory function. Different amount of the undiluted fuel was smeared directly onto the dorsal skin of mice. Mice in negative and positive control groups were treated with acetone. After the last exposure, all the mice except those in negative control group were allergized by evenly smearing with 1% dinitrofluorobenzene (DNFB solution on their dorsum. Five days after allergy, 1% DNFB solution was smeared onto right ear of all mice to stimulate the allergic reaction. Twenty-four hours after attack, the auricle swelling, spleen index and thymus index in corresponding mice were determined. In the first series of experiments, different dosages of RK were applied once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 1ml/kg.BW×1 and 2ml/kg.BW×1 group. In the second series of experiments, the certain and same dosage of RK was applied for different times, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 0.5mL/kg.BW×2, 0.5ml/kg.BW×3, 0.5ml/kg.BW×4 and 0.5mL/kg.BW×5 group. In the third series of experiments, the different dosages of RK were applied more than once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×5, 1ml/kg.BW×5 and 2ml/kg.BW×5 group. Lymphocyte proliferation experiment in vitrowas conducted to observe the persistent time of the cell-mediated immune suppression in mice by RK dermal exposure. The lymphocyte proliferation induced by concanavalin A (Con A was analyzed by MTT assay, and T lymphocyte subsets (CD3+, CD4+ and CD

  14. Sulphonylurea usage in melioidosis is associated with severe disease and suppressed immune response.

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2014-04-01

    Full Text Available BACKGROUND: Melioidosis is a problem in the developing tropical regions of Southeast Asia and Northern Australia where the the Gram negative saprophytic bacillus Burkholderia pseudomallei is endemic with the risk of fulminant septicaemia. While diabetes mellitus is a well-established risk factor for melioidiosis, little is known if specific hypoglycemic agents may differentially influence the susceptibility and clinical course of infection with B. pseudomallei (Bp. METHODOLOGY/PRINCIPAL FINDINGS: In this cohort study, patients with pre-existing diabetes and melioidosis were retrospectively studied. OUTCOME MEASURES: mortality, length of stay and development of complications (namely hypotension, intubation, renal failure and septicaemia were studied in relation to prior diabetic treatment regimen. Peripheral blood mononuclear cells (PBMC from diabetic patients and healthy PBMC primed with metformin, glyburide and insulin were stimulated with purified Bp antigens in vitro. Immune response and specific immune pathway mediators were studied to relate to the clinical findings mechanistically. Of 74 subjects, 44 (57.9% had sulphonylurea-containing diabetic regimens. Patient receiving sulphonylureas had more severe septic complications (47.7% versus 16.7% p = 0.006, in particular, hypotension requiring intropes (p = 0.005. There was also a trend towards increased mortality in sulphonylurea-users (15.9% versus 3.3% p = 0.08. In-vitro, glyburide suppressed inflammatory cytokine production in a dose-dependent manner. An effect of the drug was the induction of IL-1R-associated kinase-M at the level of mRNA transcription. CONCLUSION/SIGNIFICANCE: Sulphonylurea treatment results in suppression of host inflammatory response and may put patients at higher risk for adverse outcomes in melioidosis.

  15. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity.

    Science.gov (United States)

    Loo, Tze Mun; Kamachi, Fumitaka; Watanabe, Yoshihiro; Yoshimoto, Shin; Kanda, Hiroaki; Arai, Yuriko; Nakajima-Takagi, Yaeko; Iwama, Atsushi; Koga, Tomoaki; Sugimoto, Yukihiko; Ozawa, Takayuki; Nakamura, Masaru; Kumagai, Miho; Watashi, Koichi; Taketo, Makoto M; Aoki, Tomohiro; Narumiya, Shuh; Oshima, Masanobu; Arita, Makoto; Hara, Eiji; Ohtani, Naoko

    2017-05-01

    Obesity increases the risk of cancers, including hepatocellular carcinomas (HCC). However, the precise molecular mechanisms through which obesity promotes HCC development are still unclear. Recent studies have shown that gut microbiota may influence liver diseases by transferring its metabolites and components. Here, we show that the hepatic translocation of obesity-induced lipoteichoic acid (LTA), a Gram-positive gut microbial component, promotes HCC development by creating a tumor-promoting microenvironment. LTA enhances the senescence-associated secretory phenotype (SASP) of hepatic stellate cells (HSC) collaboratively with an obesity-induced gut microbial metabolite, deoxycholic acid, to upregulate the expression of SASP factors and COX2 through Toll-like receptor 2. Interestingly, COX2-mediated prostaglandin E 2 (PGE 2 ) production suppresses the antitumor immunity through a PTGER4 receptor, thereby contributing to HCC progression. Moreover, COX2 overexpression and excess PGE 2 production were detected in HSCs in human HCCs with noncirrhotic, nonalcoholic steatohepatitis (NASH), indicating that a similar mechanism could function in humans. Significance: We showed the importance of the gut-liver axis in obesity-associated HCC. The gut microbiota-driven COX2 pathway produced the lipid mediator PGE 2 in senescent HSCs in the tumor microenvironment, which plays a pivotal role in suppressing antitumor immunity, suggesting that PGE 2 and its receptor may be novel therapeutic targets for noncirrhotic NASH-associated HCC. Cancer Discov; 7(5); 522-38. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 443 . ©2017 American Association for Cancer Research.

  16. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    Science.gov (United States)

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  17. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    Science.gov (United States)

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  18. Time-course investigation of infection with a low virulent Pasteurella multocida strain in normal and immune-suppressed 12-week-old free-range chickens

    DEFF Research Database (Denmark)

    Mbuthia, P.G.; Njagi, L.W.; Nyaga, P.N.

    2011-01-01

    Twelve-week-old indigenous chickens, either immune-suppressed using dexamethasone (IS) or non-immune-suppressed (NIS), were challenged with a low virulent strain, Pasteurella multocida strain NCTC 10322(T), and developed clinical signs and pathological lesions typical of chronic fowl cholera. NIS...

  19. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Science.gov (United States)

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  20. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes.

    Science.gov (United States)

    Xu, Jin; Xu, Xiaoxia; Shakeel, Muhammad; Li, Shuzhong; Wang, Shuang; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Yu, Xiaoqiang; Jin, Fengliang

    2017-01-01

    Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea . To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella .

  1. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2017-07-01

    Full Text Available Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs. The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea. To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella.

  2. Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: examples of prevention.

    Science.gov (United States)

    Mordak, Ryszard; Stewart, Peter Anthony; Anthony, Stewart Peter

    2015-12-02

    The immune system during the periparturient period is impaired. At this time the most important factor causing immune-suppression in highly productive cows is metabolic stress resulting from hormonal and metabolic fluctuations, a negative energy balance, shortage of proteins, minerals and vitamins which are required to meet the demands of the fetus as well as the onset of lactation. This stress can activate the hypothalamic-pituitary-adrenocortical axis (HPA), which results in increase plasma corticosteroids. As a result, the cortisol concentration during the periparturient period increases by several folds particularly on the day of calving. Cortisol is a powerful immune-suppressive agent. During stress, this hormone causes depression of the leukocyte proliferation and their functions. Decreased phagocytosis of neutrophils, decreased cytotoxic ability of lymphocytes, as well as depressed activity of their cytokines, make it impossible for the normal, efficient maternal immune recognition and rejection of fetal membranes (as a foreign, allogeneic tissue expressed fetal antigens-MHC class I proteins by trophoblast cells) and finally results in their retention in cows. The metabolic periparturient stress also activates production of catecholamines, especially adrenalin. Adrenalin activates adrenoreceptors of the myometrium and then causes hypotony or atony of the uterus. Thus, cortisol and adrenalin inhibit rejection and expulsion of fetal membranes and cause their retention. These mechanisms of retained placenta (RP) often have a metabolic etiology and occur in herds, where important infectious diseases causing placentitis are absent or prevented. The aim of this article is to show the fundamental mechanisms occurring during periparturient stress and the accompanied immune-suppression in cows, as well as their consequences in relation to RP. The paper also gives examples of the symptomatic prevention of RP in cows caused by metabolic and immune suppressive factors

  3. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors.

    Science.gov (United States)

    Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S

    1990-07-01

    Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.

  4. Cigarette smoke-exposed saliva suppresses cellular and humoral immune responses in an animal model

    International Nuclear Information System (INIS)

    Jafarzadeh, A.; Bakhshi, H.; Rezayati, M.T.; Nemati, M.

    2009-01-01

    To evaluate the effects of cigarette smoke (CS)-exposed saliva on cellular and antibody responses in an animal model. The stimulatory and non-stimulatory saliva samples were collected from 10 healthy subjects and were then exposed to CS for 20 or 80 minutes. The CS-exposed saliva samples were administrated intraperitoneally (i.p) to male Balb/c mice. Then the delayed type hypersensitivity (DTH) and antibody responses to sheep red blood cell (SRBC) was assessed. Moreover, the total white blood cells (WBC) counts and the blood lymphocytes counts were determined. The mean of DTH responses of animal groups received 20 minutes or 80 minutes CS-exposed saliva samples was significantly lower than that observed in control group. Moreover, The mean titer of anti-SRBC antibody was significantly lower in animal groups who received 80 minutes CS-exposed stimulatory or non-stimulatory saliva as compared to control group (P<0.04 and P<0.002, respectively). The mean counts of blood lymphocytes in 80 minutes CS exposed-stimulatory saliva group was also significantly lower as compared to control group (P<0.05). These results show that the CS-exposed saliva samples have profound suppressive effects on both cellular and humoral immune response in a mouse animal model (JPMA 59:760; 2009). (author)

  5. A Murine Model of Persistent Inflammation, Immune Suppression, and Catabolism Syndrome

    Directory of Open Access Journals (Sweden)

    Amanda M. Pugh

    2017-08-01

    Full Text Available Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS, which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population.

  6. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  7. Serratia marcescens Suppresses Host Cellular Immunity via the Production of an Adhesion-inhibitory Factor against Immunosurveillance Cells*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686

  8. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-02-28

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  9. Disease susceptibiliy in the zig-zag model of host-microbe Interactions: only a consequence of immune suppression?

    OpenAIRE

    Keller, Harald; Boyer, Laurent; Abad, Pierre

    2016-01-01

    For almost ten years, the Zig-Zag model has provided a convenient framework for explaining the molecular bases of compatibility and incompatibility in plant-microbe interactions (Jones and Dangl, 2006). According to the Zig-Zag model, disease susceptibility is a consequence of the suppression of host immunity during the evolutionary arms race between plants and pathogens. The Zig-Zag model thus fits well with biotrophic interactions, but is less applicable to interactions involving pathogens ...

  10. The carcinogenic potential of tacrolimus ointment beyond immune suppression: a hypothesis creating case report.

    Science.gov (United States)

    Becker, Jürgen C; Houben, Roland; Vetter, Claudia S; Bröcker, Eva B

    2006-01-11

    Since tacrolimus ointment was approved by the U.S. Food and Drug Administration (FDA) as a promising treatment for atopic dermatitis, it has been approved in more than 30 additional countries, including numerous European Union member nations. Moreover, in the current clinical routine the use of this drug is no longer restricted to the approved indication, but has been extended to a wide variety of inflammatory skin diseases including some with the potential of malignant transformation. So far, the side-effects reported from the topical use of tacrolimus have been relatively minor (e.g. burning, pruritus, erythema). Recently, however, the FDA reviewed the safety of topical tacrolimus, which resulted in a warning that the use of calcineurin inhibitors may be associated with an increased risk of cancer. Oral lichen planus (OLP) was diagnosed in a 56-year-old women in February 1999. After several ineffective local and systemic therapeutic measures an off-label treatment of this recalcitrant condition using Tacrolimus 0.1% ointment was initiated in May 2002. After a few weeks of treatment most of the lesions ameliorated, with the exception of the plaques on the sides of the tongue. Nevertheless, the patient became free of symptoms which, however, reoccurred once tacrolimus was weaned, as a consequence treatment was maintained. In April 2005, the plaques on the left side of the tongue appeared increasingly compact and a biopsy specimen confirmed the suspected diagnosis of an oral squamous cell carcinoma. The suspected causal relationship between topical use of tacrolimus and the development of a squamous cell carcinoma prompted us to test the notion that the carcinogenicity of tacrolimus may go beyond mere immune suppression. To this end, tacrolimus has been shown to have an impact on cancer signalling pathways such as the MAPK and the p53 pathway. In the given case, we were able to demonstrate that these pathways had also been altered subsequent to tacrolimus therapy.

  11. The carcinogenic potential of tacrolimus ointment beyond immune suppression: a hypothesis creating case report

    Directory of Open Access Journals (Sweden)

    Vetter Claudia S

    2006-01-01

    Full Text Available Abstract Background Since tacrolimus ointment was approved by the U.S. Food and Drug Administration (FDA as a promising treatment for atopic dermatitis, it has been approved in more than 30 additional countries, including numerous European Union member nations. Moreover, in the current clinical routine the use of this drug is no longer restricted to the approved indication, but has been extended to a wide variety of inflammatory skin diseases including some with the potential of malignant transformation. So far, the side-effects reported from the topical use of tacrolimus have been relatively minor (e.g. burning, pruritus, erythema. Recently, however, the FDA reviewed the safety of topical tacrolimus, which resulted in a warning that the use of calcineurin inhibitors may be associated with an increased risk of cancer. Case presentation Oral lichen planus (OLP was diagnosed in a 56-year-old women in February 1999. After several ineffective local and systemic therapeutic measures an off-label treatment of this recalcitrant condition using Tacrolimus 0.1% ointment was initiated in May 2002. After a few weeks of treatment most of the lesions ameliorated, with the exception of the plaques on the sides of the tongue. Nevertheless, the patient became free of symptoms which, however, reoccurred once tacrolimus was weaned, as a consequence treatment was maintained. In April 2005, the plaques on the left side of the tongue appeared increasingly compact and a biopsy specimen confirmed the suspected diagnosis of an oral squamous cell carcinoma. Conclusion The suspected causal relationship between topical use of tacrolimus and the development of a squamous cell carcinoma prompted us to test the notion that the carcinogenicity of tacrolimus may go beyond mere immune suppression. To this end, tacrolimus has been shown to have an impact on cancer signalling pathways such as the MAPK and the p53 pathway. In the given case, we were able to demonstrate that these

  12. The carcinogenic potential of tacrolimus ointment beyond immune suppression: a hypothesis creating case report

    International Nuclear Information System (INIS)

    Becker, Jürgen C; Houben, Roland; Vetter, Claudia S; Bröcker, Eva B

    2006-01-01

    Since tacrolimus ointment was approved by the U.S. Food and Drug Administration (FDA) as a promising treatment for atopic dermatitis, it has been approved in more than 30 additional countries, including numerous European Union member nations. Moreover, in the current clinical routine the use of this drug is no longer restricted to the approved indication, but has been extended to a wide variety of inflammatory skin diseases including some with the potential of malignant transformation. So far, the side-effects reported from the topical use of tacrolimus have been relatively minor (e.g. burning, pruritus, erythema). Recently, however, the FDA reviewed the safety of topical tacrolimus, which resulted in a warning that the use of calcineurin inhibitors may be associated with an increased risk of cancer. Oral lichen planus (OLP) was diagnosed in a 56-year-old women in February 1999. After several ineffective local and systemic therapeutic measures an off-label treatment of this recalcitrant condition using Tacrolimus 0.1% ointment was initiated in May 2002. After a few weeks of treatment most of the lesions ameliorated, with the exception of the plaques on the sides of the tongue. Nevertheless, the patient became free of symptoms which, however, reoccurred once tacrolimus was weaned, as a consequence treatment was maintained. In April 2005, the plaques on the left side of the tongue appeared increasingly compact and a biopsy specimen confirmed the suspected diagnosis of an oral squamous cell carcinoma. The suspected causal relationship between topical use of tacrolimus and the development of a squamous cell carcinoma prompted us to test the notion that the carcinogenicity of tacrolimus may go beyond mere immune suppression. To this end, tacrolimus has been shown to have an impact on cancer signalling pathways such as the MAPK and the p53 pathway. In the given case, we were able to demonstrate that these pathways had also been altered subsequent to tacrolimus therapy

  13. Sensitivity to Sunburn Is Associated with Susceptibility to Ultraviolet Radiation–Induced Suppression of Cutaneous Cell–Mediated Immunity

    Science.gov (United States)

    Kelly, Deirdre A.; Young, Antony R.; McGregor, Jane M.; Seed, Paul T.; Potten, Christopher S.; Walker, Susan L.

    2000-01-01

    Skin cancer incidence is highest in white-skinned people. Within this group, skin types I/II (sun sensitive/tan poorly) are at greater risk than skin types III/IV (sun tolerant/tan well). Studies in mice demonstrate that ultraviolet radiation (UVR)-induced suppression of cell-mediated immune function plays an important role in the development of skin cancer and induces a susceptibility to infectious disease. A similar role is suspected in humans, but we lack quantitative human data to make risk assessments of ambient solar exposure on human health. This study demonstrates that ambient levels of solar UVR, typically experienced within 1 h of exposure to noonday summer sunlight, can suppress contact hypersensitivity (CHS) responses in healthy white-skinned humans in vivo (n = 93). There was a linear relationship between increase in erythema and suppression of CHS (P sunburn (two minimal erythema doses [2 MED]) was sufficient to suppress CHS in all volunteers by 93%. However, a single suberythemal exposure of either 0.25 or 0.5 MED suppressed CHS responses by 50 and 80%, respectively, in skin types I/II, whereas 1 MED only suppressed CHS by 40% in skin types III/IV. The two- to threefold greater sensitivity of skin types I/II for a given level of sunburn may play a role in their greater sensitivity to skin cancer. PMID:10662801

  14. Permanence of suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryognesis

    International Nuclear Information System (INIS)

    Strand, J.A.; Fujihara, M.P.; Poston, T.M.; Abernethy, C.S.

    1982-01-01

    Previous experiments demonstrated that antibody synthesis in response to a challenge from the bacterium, Flexibacter columnaris, was significantly suppressed in juvenile (5 month) rainbow trout following exposure to tritium at doses as low as 4.0 rads when administered during the first 20 days of embryogenesis. In continuing studies, a secondary challenge to columnaris cells delivered to yearling (17 month) trout was used to test the hypothesis that early embryonic exposure to tritium irradiation (0, 0.04, 0.4, 4.0, and 40.0 rads) resulted in permanent injury to the primary immune process. Results indicated that under the prescribed experimental conditions, suppression of the primary immune response was permanent; that is, the degree of injury in yearling fish (17 months) equaled or exceeded that found in juvenile fish (5 months). At levels in the range of the maximum permissible concentration (MPC), tritium produced measurable, dose dependent, and irreversible suppression of immune capacity in affected fish. The threshold-free and exponential nature of the dose-response curve suggests extrapolation of effects to even lower exposures. (author)

  15. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  17. Polysaccharide isolated from Aloe vera gel suppresses ovalbumin-induced food allergy through inhibition of Th2 immunity in mice.

    Science.gov (United States)

    Lee, Dajeong; Kim, Hyuk Soon; Shin, Eunju; Do, Seon-Gil; Lee, Chong-Kil; Kim, Young Mi; Lee, Min Bum; Min, Keun Young; Koo, Jimo; Kim, Su Jeong; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Choi, Wahn Soo

    2018-05-01

    An allergic reaction occurs when the immune system overreacts to harmless substance called allergen that gains access to the body. Food allergy is a hypersensitive immune reaction to food proteins and the number of patients with food allergy has recently increased. Aloe Vera is used for wellness and medicinal purposes. In particular, Aloe vera has been reported to enhance immunity. However, the effect of Aloe vera on food allergy is not yet known. In this study, we investigated the effects of processed Aloe vera gel (PAG) containing low molecular weight Aloe polysaccharide (AP) on ovalbumin (OVA)-induced food allergy in mice. Allergic symptoms, rectal temperature, and diarrhea were measured in OVA-induced food allergy mice. Other allergic parameters were also analyzed by RT-PCR, ELISA, flow cytometry, and other biochemical methods. As the results, PAG suppressed the decrease of body temperature, diarrhea, and allergic symptoms in OVA-induced food allergy mice. PAG also reduced serum concentrations of type 2 helper T cell (Th2) cytokines (Interleukin-(IL)-4, IL-5, and IL-13) as well as histamine, mast cell protease-1 (MCP-1), and immunoglobulin (Ig)E. PAG blocked the degranulation of mast cells and infiltration of eosinophils in intestine. Furthermore, PAG suppressed the population of Th2 cells in spleen and mesenteric lymph nodes. PAG also increased the production of IL-10 and population of type 1 regulatory T (Tr1) cells in mice with food allergy. Taken together, our findings suggest that PAG suppressed Th2 immune responses through, at least partially, stimulating the secretion of IL-10 in food allergy mice. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity.

    Science.gov (United States)

    Rausch, Matthew P; Sertil, Aparna Ranganathan

    2015-03-01

    The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.

  19. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    Science.gov (United States)

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  20. PERIPHERAL IMMUNE SYSTEM SUPPRESSION IN EARLY ABSTINENT ALCOHOL DEPENDENT INDIVIDUALS: LINKS TO STRESS AND CUE-RELATED CRAVING

    Science.gov (United States)

    Fox, Helen C; Milivojevic, Verica; Angarita, Gustavo A; Stowe, Raymond; Sinha, Rajita

    2017-01-01

    Background Peripheral immune system cytokines may play an integral role in underlying sensitized stress response and alcohol craving during early withdrawal. To date, the nature of these immune changes during early abstinence have not been examined. Methods Thirty-nine early abstinent, treatment-seeking alcohol dependent individuals and 46 socially drinking controls were exposed to three guided imageries: stress, alcohol cue and neutral. These were presented randomly across consecutive days. Plasma measures of tumor necrosis factor alpha (TNFα), tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and interleukin-10 (IL-10), were collected at baseline, immediately after imagery and at various recovery time-points. Ratings of alcohol craving, negative mood and anxiety were also obtained at the same time-points. Results The alcohol group demonstrated decreased basal IL-10 compared with controls particularly following exposure to alcohol cue. They also showed a dampened TNFα and TNFR1 response to stress and cue, respectively, and a generalized suppression of IL-6. In the alcohol group, these immune system adaptations occurred alongside significant elevations in anxiety, negative mood and alcohol craving. Conclusions Findings demonstrate that broad immuno-suppression is still observed in alcohol dependent individuals after three weeks of abstinence and may be linked to motivation for alcohol. PMID:28675117

  1. Morphologic changes in the placentas of HIV-positive women and their association with degree of immune suppression.

    Science.gov (United States)

    Vermaak, Anine; Theron, Gerhard B; Schubert, Pawel T; Kidd, Martin; Rabie, Ursula; Adjiba, Benedict M; Wright, Colleen A

    2012-12-01

    To provide baseline information regarding a possible association between specific histopathologic features of the placentas of HIV-positive women and the degree of immune suppression. A prospective single-blinded laboratory-based pilot study was conducted at Tygerberg Hospital, South Africa. The macroscopic and microscopic features of placentas from HIV-positive (n=91) and HIV-negative women (n=89) were compared and recorded using a standard template. Investigators were blinded to the participants' HIV status and CD4-positive cell count. Placentas from the HIV-positive group were characterized by decreased weight and increased number of marginal infarcts relative to the HIV-negative group. The most important microscopic finding was the increased presence of villitis of unknown etiology (VUE) among the group of untreated HIV-positive women with CD4 cell counts of 200 cells/mm(3) or below. Both macroscopic and microscopic differences relating to the degree of immune suppression were identified, which seemingly contradicts previous reports. Larger studies are warranted to define the function of antiretroviral therapy and VUE in the mechanism of mother-to-fetus transmission of HIV. Furthermore, the potential role of VUE in the pathophysiology of the compromised immune response observed among HIV-exposed but uninfected infants should be investigated. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  2. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    Science.gov (United States)

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  3. Suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryogenesis

    International Nuclear Information System (INIS)

    Strand, J.A.

    1975-01-01

    Antibody synthesis in response to vaccination with a 0.1 cc (1.8 x 10 8 cells/cc) intraperitoneally injected heat-killed strain of Flexibacter columnaris was employed to investigate the effect of tritium irradiation (0, 0.04, 0.4, 4.0 and 40.0 rads total dose for 20 days during embryogenesis) on development of the primary immune response in 5-month rainbow trout, Salmo gairdneri. Total serum protein measurements and electrophoretic separation of blood serum proteins followed by densitometric analyses were performed to assess the potential for qualitative and quantitative changes in blood serum components which conceivably accounted for suppressed immune responsiveness in tritium-irradiated fish. Data on the biological effects of tritium on early life stages in terms of hatchability, abnormality, latent mortality, and growth were also collected. A review of all experiments directed at determining the effects of early radiation exposure on the parameters of hatchability, incidence of abnormality, latent mortality and depressed growth, revealed considerable variation among similar treatments and indicated that significant effects at dose levels of 50 rads and below were not consistently demonstrated. While present experimental results demonstrated that the primary immune response in juvenile rainbow trout was significantly suppressed following embryonic exposure to tritium at essentially the 1.0 μCi/ml level, and perhaps at the 0.1 μCi/ml level, these concentrations are no less than 5 to 6 orders of magnitude above present levels for tritium in the aquatic environment

  4. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  5. Indian Hedgehog Suppresses a Stromal Cell–Driven Intestinal Immune Response

    Directory of Open Access Journals (Sweden)

    B. Florien Westendorp

    2018-01-01

    Conclusions: We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast-derived CXCL12, and migration of immune cells into the lamina propria.

  6. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease

    Directory of Open Access Journals (Sweden)

    Florine E.M. Scholte

    2017-09-01

    Full Text Available Antiviral responses are regulated by conjugation of ubiquitin (Ub and interferon-stimulated gene 15 (ISG15 to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.

  7. Role of pathogen-derived cell wall carbohydrates and prostaglandin E2 in immune response and suppression of fish immunity by the oomycete Saprolegnia parasitica.

    Science.gov (United States)

    Belmonte, Rodrigo; Wang, Tiehui; Duncan, Gary J; Skaar, Ida; Mélida, Hugo; Bulone, Vincent; van West, Pieter; Secombes, Christopher J

    2014-11-01

    Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglandin [corrected] E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity.

    Science.gov (United States)

    Lee, Seung Ah; Jang, Seong Han; Kim, Byung Hyun; Shibata, Toshio; Yoo, Jinwook; Jung, Yunjin; Kawabata, Shun-Ichiro; Lee, Bok Luel

    2018-04-01

    The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    OpenAIRE

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. ...

  10. Corticosterone suppresses immune activity in territorial Galápagos marine iguanas during reproduction.

    Science.gov (United States)

    Berger, Silke; Martin, Lynn B; Wikelski, Martin; Romero, L Michael; Kalko, Elisabeth K V; Vitousek, Maren N; Rödl, Thomas

    2005-04-01

    Individuals that display elaborate sexually selected characters often show reduced immune function. According to the immunocompetence handicap hypothesis, testosterone (T) is responsible for this result as it drives the development and maintenance of sexual characters and causes immunosuppression. But glucocorticoids also have strong influences on immune function and may also be elevated in reproductively active males. Here, we compared immune activity using the phytohemagglutinin (PHA) skin test in three discrete groups of male marine iguanas (Amblyrhynchus cristatus): territorials, satellites, and bachelors. Males of these three reproductive phenotypes had indistinguishable T concentrations during the height of the breeding season, but their corticosterone (cort) concentrations, body condition and hematocrit were significantly different. Territorial males, the animals with the most elaborate sexual ornaments and behaviors, had lower immune responses and body condition but higher cort concentrations and hematocrit than satellites or bachelors. To test directly cort's immunosuppressive role, we elevated cort by either restraining animals or additionally injecting cort and compared their PHA swelling response with the response of free-roaming animals. Such experimental elevation of cort significantly decreased immune activity in both restrained and cort-injected animals. Our data show that cort can induce immunosuppression, but they do not support the immunocompetence handicap hypothesis in its narrow sense because T concentrations were not related to immunosuppression.

  11. Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin.

    Science.gov (United States)

    Katiyar, Santosh K

    2002-12-01

    It is well documented that ultraviolet (UV) light-induced immune suppression and oxidative stress play an important role in the induction of skin cancers. Earlier, we have shown that topical treatment of silymarin, a plant flavonoid from milk thistle (Silybum marianum L. Gaertn.), to mouse skin prevents photocarcinogenesis, but the preventive mechanism of photocarcinogenesis in vivo animal system by silymarin is not well defined and understood. To define the mechanism of prevention, we employed immunostaining, analytical assays and ELISA which revealed that topical treatment of silymarin (1 mg/cm2 skin area) to C3H/HeN mice inhibits UVB (90 mJ/cm2)-induced suppression of contact hypersensitivity (CHS) response to contact sensitizer dinitrofluorobenzene. Prevention of UVB-induced suppression of CHS by silymarin was found to be associated with the inhibition of infiltrating leukocytes, particularly CD11b+ cell type, and myeloperoxidase activity (50-71%). Silymarin treatment also resulted in significant reduction of UVB-induced immunosuppressive cytokine interleukin-10 producing cells and its production (58-72%, pskin cancer risk human population and ii) development of sunscreen containing silymarin as an antioxidant (chemopreventive agent) or silymarin can be supplemented in skin care products.

  12. Immune restoration does not invariably occur following long-term HIV-1 suppression during antiretroviral therapy

    NARCIS (Netherlands)

    Pakker, NG; Otto, SA; Hall, D; Wit, FWNM; Hamann, D; van der Ende, Marchina E.; Claessen, FAP; Kauffmann, RH; Koopmans, PP; Sprenger, HG; Weigel, HM; Montaner, JSG; Lange, JMA; Reiss, P; Schellekens, PTA; Miedema, F; Ten Napel, Chris H. H.

    1999-01-01

    Background: Current antiretroviral treatment can induce significant and sustained virological and immunological responses in HIV-1-infected persons over at least the short- to mid-term. Objectives: In this study, long-term immune reconstitution was investigated during highly active antiretroviral

  13. Visualizing and Quantifying the Suppressive Effects of Glucocorticoids on the Tadpole Immune System in Vivo

    Science.gov (United States)

    Schreiber, Alexander M.

    2011-01-01

    A challenging topic in undergraduate physiology courses is the complex interaction between the vertebrate endocrine system and the immune system. There are relatively few established and accessible laboratory exercises available to instructors to help their students gain a working understanding of these interactions. The present laboratory module…

  14. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection.

    Directory of Open Access Journals (Sweden)

    Rebecca A Elsner

    2015-07-01

    Full Text Available Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host's ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure

  15. Unanticipated Mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications.

    Science.gov (United States)

    Greenstein, Robert J; Su, Liya; Shahidi, Azra; Brown, William D; Clifford, Anya; Brown, Sheldon T

    2014-09-01

    The development of novel antibiotics to treat multidrug-resistant (MDR) tuberculosis is time-consuming and expensive. Multiple immune modulators, immune suppressants, anti-inflammatories, and growth enhancers, and vitamins A and D, inhibit Mycobacterium avium subspecies paratuberculosis (MAP) in culture. We studied the culture inhibition of Mycobacterium tuberculosis complex by these agents. Biosafety level two M. tuberculosis complex (ATCC 19015 and ATCC 25177) was studied in radiometric Bactec or MGIT culture. Agents evaluated included clofazimine, methotrexate, 6-mercaptopurine, cyclosporine A, rapamycin, tacrolimus, monensin, and vitamins A and D. All the agents mentioned above caused dose-dependent inhibition of the M. tuberculosis complex. There was no inhibition by the anti-inflammatory 5-aminosalicylic acid, which causes bacteriostatic inhibition of MAP. We conclude that, at a minimum, studies with virulent M. tuberculosis are indicated with the agents mentioned above, as well as with the thioamide 5-propothiouricil, which has previously been shown to inhibit the M. tuberculosis complex in culture. Our data additionally emphasize the importance of vitamins A and D in treating mycobacterial diseases. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    OpenAIRE

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycli...

  17. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection.

    Directory of Open Access Journals (Sweden)

    Henry J McSorley

    Full Text Available We present immunological data from two clinical trials where the effect of experimental human hookworm (Necator americanus infection on the pathology of celiac disease was evaluated. We found that basal production of Interferon- (IFN-γ and Interleukin- (IL-17A from duodenal biopsy culture was suppressed in hookworm-infected participants compared to uninfected controls. Increased levels of CD4+CD25+Foxp3+ cells in the circulation and mucosa are associated with active celiac disease. We show that this accumulation also occurs during a short-term (1 week oral gluten challenge, and that hookworm infection suppressed the increase of circulating CD4+CD25+Foxp3+ cells during this challenge period. When duodenal biopsies from hookworm-infected participants were restimulated with the immunodominant gliadin peptide QE65, robust production of IL-2, IFN-γ and IL-17A was detected, even prior to gluten challenge while participants were strictly adhering to a gluten-free diet. Intriguingly, IL-5 was produced only after hookworm infection in response to QE65. Thus we hypothesise that hookworm-induced TH2 and IL-10 cross-regulation of the TH1/TH17 inflammatory response may be responsible for the suppression of these responses during experimental hookworm infection.

  18. A case of preventable pulmonary tuberculosis in a Greenlandic, heavily immune suppressed patient

    DEFF Research Database (Denmark)

    Christensen, Anne-Sophie H; Johansen, Isik S

    2012-01-01

    Immune modulating therapy, such as tumour necrosis factor (TNF)-alpha inhibitors, is becoming increasingly more widespread in the treatment of many autoimmune diseases. One of the well-documented side effects of TNF-alpha inhibitors is an increased risk of reactivating latent tuberculosis infecti...... initiating anti-TNF-α treatment and secondly, as part of routine tuberculosis contact tracing. He subsequently developed severe pulmonary tuberculosis and was hospitalised for 6 weeks.......Immune modulating therapy, such as tumour necrosis factor (TNF)-alpha inhibitors, is becoming increasingly more widespread in the treatment of many autoimmune diseases. One of the well-documented side effects of TNF-alpha inhibitors is an increased risk of reactivating latent tuberculosis infection...

  19. Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.

    Science.gov (United States)

    Westendorp, B Florien; Büller, Nikè V J A; Karpus, Olga N; van Dop, Willemijn A; Koster, Jan; Versteeg, Rogier; Koelink, Pim J; Snel, Clinton Y; Meisner, Sander; Roelofs, Joris J T H; Uhmann, Anja; Ver Loren van Themaat, Emiel; Heijmans, Jarom; Hahn, Heidi; Muncan, Vanesa; Wildenberg, Manon E; van den Brink, Gijs R

    2018-01-01

    Upon intestinal epithelial damage a complex wound healing response is initiated to restore epithelial integrity and defend against pathogenic invasion. Epithelium-derived Indian Hedgehog (Ihh) functions as a critical sensor in this process. Signaling occurs in a paracrine manner because the receptor for Ihh is expressed only in the mesenchyme, but the exact Hedgehog target cell has remained elusive. The aim of this study was to elucidate further the nature of this target cell in the context of intestinal inflammation. Hedgehog activity was modulated genetically in both cell type-specific and body-wide models and the resulting animals were analyzed for gene expression profiles and sensitivity for dextran sodium sulfate (DSS) colitis. To characterize the Hedgehog target cell, Gli1-CreERT2-Rosa26-ZsGreen animals were generated, which express ZsGreen in all Hedgehog-responsive cells. These cells were characterized using flow cytometry and immunofluorescence. Loss of Indian Hedgehog from the intestinal epithelium resulted in a rapid increase in expression of inflammation-related genes, accompanied by increased influx of immune cells. Animals with epithelium-specific deletion of Ihh or lacking the Hedgehog receptor Smoothened from Hedgehog target cells were more sensitive to DSS colitis. In contrast, specific deletion of Smoothened in the myeloid compartment did not alter the response to DSS. This suggests that Hedgehog signaling does not repress intestinal immunity through an effect on myeloid cells. Indeed, we found that Hedgehog-responsive cells expressed gp38, smooth muscle actin, and desmin, indicating a fibroblastic nature. Ihh signaling inhibited expression of C-X-C motif chemokine ligand 12 (CXCL12) in fibroblasts in vitro and in vivo, thereby impairing the recruitment of immune cells. We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast

  20. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  1. Randomized controlled trial of oral omega-3 PUFA in solar-simulated radiation-induced suppression of human cutaneous immune responses1-3

    OpenAIRE

    Pilkington, Suzanne M.; Massey, Karen A.; Bennett, Susan P.; Al-Aasswad, Naser M I; Roshdy, Khaled; Gibbs, Neil K.; Friedmann, Peter S.; Nicolaou, Anna; Rhodes, Lesley E.

    2013-01-01

    BACKGROUND: Skin cancer is a major public health concern, and the majority of cases are caused by solar ultraviolet radiation (UVR) exposure, which suppresses skin immunity. Omega-3 (n-3) PUFAs protect against photoimmunosuppression and skin cancer in mice, but the impact in humans is unknown.OBJECTIVES: We hypothesized that EPA-rich n-3 PUFA would abrogate photoimmunosuppression in humans. Therefore, a nutritional study was performed to assess the effect on UVR suppression of cutaneous cell-...

  2. Suppression of in vitro primary immune response by L1210 cells and their culture supernatant: evidence for cytotoxic effects

    International Nuclear Information System (INIS)

    Huget, R.P.; Flad, H.D.; Opitz, H.G.

    1977-01-01

    L1210 cells and their culture supernatants were found to inhibit the generation of PFC in the in vitro primary immune response of spleen cells to SRBC. As few as 1 percent of L1210 cells and 1 percent of culture fluid were inhibitory. Inhibition of DNA or protein synthesis of L1210 cells did not abolish their immunosuppressive activity, excluding exhaustion of culture medium as a possible mechanism of inhibition of PFC. Heating of the supernatant completely abrogated the suppressive effect and resulted in a marked increase of PFC. Daily evaluation of cell viability in the cultures revealed that, in the presence of L1210 and supernatants, the fraction of surviving cells is markedly reduced. We conclude that a direct cytotoxic effect on splenic lymphocytes and macrophages is the predominant immunosuppressive mechanism of L1210 cells and their culture supernatants

  3. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia.

    Science.gov (United States)

    Gosmann, Christina; Mattarollo, Stephen R; Bridge, Jennifer A; Frazer, Ian H; Blumenthal, Antje

    2014-09-01

    Persistent infection with high-risk human papillomaviruses (HPV) causes epithelial hyperplasia that can progress to cancer and is thought to depend on immunosuppressive mechanisms that prevent viral clearance by the host. IL-17 is a cytokine with diverse functions in host defense and in the pathology of autoimmune disorders, chronic inflammatory diseases, and cancer. We analyzed biopsies from patients with HPV-associated cervical intraepithelial neoplasia grade 2/3 and murine skin displaying HPV16 E7 protein-induced epithelial hyperplasia, which closely models hyperplasia in chronic HPV lesions. Expression of IL-17 and IL-23, a major inducer of IL-17, was elevated in both human HPV-infected and murine E7-expressing lesions. Using a skin-grafting model, we demonstrated that IL-17 in HPV16 E7 transgenic skin grafts inhibited effective host immune responses against the graft. IL-17 was produced by CD3(+) T cells, predominantly CD4(+) T cells in human, and CD4(+) and γδ T cells in mouse hyperplastic lesions. IL-23 and IL-1β, but not IL-18, induced IL-17 production in E7 transgenic skin. Together, these findings demonstrate an immunosuppressive role for IL-17 in HPV-associated epithelial hyperplasia and suggest that blocking IL-17 in persistent viral infection may promote antiviral immunity and prevent progression to cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation.

    Science.gov (United States)

    Papaspyridonos, Marianna; Matei, Irina; Huang, Yujie; do Rosario Andre, Maria; Brazier-Mitouart, Helene; Waite, Janelle C; Chan, April S; Kalter, Julie; Ramos, Ilyssa; Wu, Qi; Williams, Caitlin; Wolchok, Jedd D; Chapman, Paul B; Peinado, Hector; Anandasabapathy, Niroshana; Ocean, Allyson J; Kaplan, Rosandra N; Greenfield, Jeffrey P; Bromberg, Jacqueline; Skokos, Dimitris; Lyden, David

    2015-04-29

    A central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive 'macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it. Id1 overexpression leads to systemic immunosuppression by downregulation of key molecules involved in DC differentiation and suppression of CD8 T-cell proliferation, thus promoting primary tumour growth and metastatic progression. Furthermore, advanced melanoma patients have increased plasma TGFβ levels and express higher levels of ID1 in myeloid peripheral blood cells. This study reveals a critical role for Id1 in suppressing the anti-tumour immune response during tumour progression and metastasis.

  5. Experimental murine fascioliasis derives early immune suppression with increased levels of TGF-β and IL-4.

    Science.gov (United States)

    Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon

    2012-12-01

    In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.

  6. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke.

    Science.gov (United States)

    Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E; Pawlak, Erica A; Glista-Baker, Ellen; Benowitz, Neal L; Fry, Rebecca C; Jaspers, Ilona

    2016-07-01

    Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa. Copyright © 2016 the American Physiological Society.

  7. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity.

    Directory of Open Access Journals (Sweden)

    Xiangzi Zheng

    2014-04-01

    Full Text Available Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs, such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs, the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI, significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the

  8. Immune Suppression in Tumors as a Surmountable Obstacle to Clinical Efficacy of Cancer Vaccines

    International Nuclear Information System (INIS)

    Wieërs, Grégoire; Demotte, Nathalie; Godelaine, Danièle; Bruggen, Pierre van der

    2011-01-01

    Human tumors are usually not spontaneously eliminated by the immune system and therapeutic vaccination of cancer patients with defined antigens is followed by tumor regressions only in a small minority of the patients. The poor vaccination effectiveness could be explained by an immunosuppressive tumor microenvironment. Because T cells that infiltrate tumor metastases have an impaired ability to lyse target cells or to secrete cytokine, many researchers are trying to decipher the underlying immunosuppressive mechanisms. We will review these here, in particular those considered as potential therapeutic targets. A special attention will be given to galectins, a family of carbohydrate binding proteins. These lectins have often been implicated in inflammation and cancer and may be useful targets for the development of new anti-cancer therapies

  9. DAF-16-dependent suppression of immunity during reproduction in Caenorhabditis elegans.

    Science.gov (United States)

    Miyata, Sachiko; Begun, Jakob; Troemel, Emily R; Ausubel, Frederick M

    2008-02-01

    To further understand how the nematode Caenorhabditis elegans defends itself against pathogen attack, we analyzed enhanced pathogen resistance (epr) mutants obtained from a forward genetic screen. We also examined several well-characterized sterile mutants that exhibit an Epr phenotype. We found that sterility and pathogen resistance are highly correlated and that resistance in both epr and sterile mutants is dependent on DAF-16 activity. Our data indicate that a DAF-16-dependent signaling pathway distinct from previously described pathways is involved in the activation of genes that confer resistance to bacterial pathogens. The timing of DAF-16-dependent gene activation in sterile mutants coincides with the onset of embryonic development in wild-type animals, suggesting that signals from developing embryos normally downregulate the immune response.

  10. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Carrillo-Salinas, Francisco J; Navarrete, Carmen; Mecha, Miriam; Feliú, Ana; Collado, Juan A; Cantarero, Irene; Bellido, María L; Muñoz, Eduardo; Guaza, Carmen

    2014-01-01

    Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS). Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅) immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the therapeutic potential

  11. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Francisco J Carrillo-Salinas

    Full Text Available Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS. Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅ immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the

  12. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity—Suppression of Tumor Immunity in the Intestine

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.

  13. Survival of primates following orthotopic cardiac transplantation treated with total lymphoid irradiation and chemical immune suppression

    International Nuclear Information System (INIS)

    Pennock, J.L.; Reitz, B.A.; Beiber, C.P.; Aziz, S.; Oyer, P.E.; Strober, S.; Hoppe, R.; Kaplan, H.S.; Stinson, E.B.; Shumway, N.E.

    1981-01-01

    Fractionated total lymphoid irradiation (TLI) has been used for attempts at induction of a donor-specific tolerant-like state in allograft recipients and for immunosuppressive effects. Cyclosporin A (Cy A) has been shown to suppress rejection of organ grafts in many species including man. The present study was designed to test the effectiveness of TLI in combination with either Cy A or rabbit anticynomolgus thymocyte globulin (ATG) and azathioprine. Thirty-one orthotopic cardiac allografts were performed using surface cooling and total circulatory arrest in outbred cynomolgus monkeys. TLI was administered preoperatively in fractions of 100 rad until a total of 600 or 1800 rad was achieved. Cy A was administered 17 mg/kg/day. All treatment groups demonstrated extended survival. Myocardial biopsies as early as 4 weeks were consistent with mild rejection in all treatment groups. No significant synergistic effect upon survival could be demonstrated utilizing TLI (1800 rad) plus ATG and azathioprine was associated with a high incidence of early death attributable to leukopenia and infection. Cy A alone or in combination with TLI was associated with the development of lymphoid malignancy

  14. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlin, Christopher R.; Bornholdt, Zachary A.; Li, Sheng; Woods, Jr., Virgil L.; MacRae, Ian J.; Saphire, Erica Ollmann (Scripps); (UCSD)

    2010-03-12

    Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.

  15. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  16. Measles, immune suppression and vaccination: direct and indirect nonspecific vaccine benefits.

    Science.gov (United States)

    Mina, Michael J

    2017-06-01

    The measles virus is among the most transmissible viruses known to infect humans. Prior to measles vaccination programs, measles infected over 95% of all children and was responsible for over 4 million deaths each year. Measles vaccination programs have been among the greatest public health achievements reducing, eliminating endemic measles in the whole of the Americas and across much of the globe. Where measles vaccines are introduced, unexpectedly large reductions in all-cause childhood mortality have been observed. These gains appear to derive in part from direct heterologous benefits of measles vaccines that enhance innate and adaptive immune responses. Additionally, by preventing measles infections, vaccination prevents measles-associated short- and long-term immunomodulating effects. Before vaccination, these invisible hallmarks of measles infections increased vulnerability to non-measles infections in nearly all children for weeks, months, or years following acute infections. By depleting measles incidence, vaccination has had important indirect benefits to reduce non-measles mortality. Delineating the relative importance of these two modes of survival benefits following measles vaccine introduction is of critical public health importance. While both support continued unwavering global commitments to measles vaccination programs until measles eradication is complete, direct heterologous benefits of measles vaccination further support continued commitment to measles vaccination programs indefinitely. We discuss what is known about direct and indirect nonspecific measles vaccine benefits, and their implications for continued measles vaccination programs. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  17. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  18. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2016-05-15

    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. © 2016. Published by The Company of Biologists Ltd.

  19. Immune restoration does not invariably occur following long-term HIV-1 suppression during antiretroviral therapy. INCAS Study Group.

    Science.gov (United States)

    Pakker, N G; Kroon, E D; Roos, M T; Otto, S A; Hall, D; Wit, F W; Hamann, D; van der Ende, M E; Claessen, F A; Kauffmann, R H; Koopmans, P P; Kroon, F P; ten Napel, C H; Sprenger, H G; Weigel, H M; Montaner, J S; Lange, J M; Reiss, P; Schellekens, P T; Miedema, F

    1999-02-04

    Current antiretroviral treatment can induce significant and sustained virological and immunological responses in HIV-1-infected persons over at least the short- to mid-term. In this study, long-term immune reconstitution was investigated during highly active antiretroviral therapy. Patients enrolled in the INCAS study in The Netherlands were treated for 102 weeks (range 52-144 weeks) with nevirapine (NVP) + zidovudine (ZDV) (n = 9), didanosine (ddl) + ZDV (n = 10), or NVP + ddl + ZDV (n = 10). Memory and naïve CD4+ and CD8+ T cells were measured using CD45RA and CD27 monoclonal antibodies (mAb), T-cell function was assayed by CD3 + CD28 mAb stimulation, and plasma HIV-1 RNA load was measured by ultra-direct assay (cut-off < 20 copies/ml). Compared to both double combination regimens the triple combination regimen resulted in the most sustained increase in CD4+ T cells (change in CD4+, + 253 x 10(6) cells/l; standard error, 79 x 10(6) cells/l) and reduction of plasma HIV-1 RNA. In nine patients (31%) (ddl + ZDV, n = 2; NVP + ddl + ZDV, n = 7) plasma HIV-1 RNA levels remained below cut-off for at least 2 years. On average, these long-term virological responders demonstrated a significantly higher increase of naïve and memory CD4+ T cells (P = 0.01 and 0.02, respectively) as compared with patients with a virological failure, and showed improved T-cell function and normalization of the naïve; memory CD8+ T-cell ratio. However, individual virological success or failure did not predict the degree of immunological response. T-cell patterns were independent of baseline CD4+ T-cell count, T-cell function, HIV-1 RNA load or age. Low numbers of naïve CD4+ T cells at baseline resulted in modest long-term naïve T-cell recovery. Patients with prolonged undetectable plasma HIV-1 RNA levels during antiretroviral therapy do not invariably show immune restoration. Naïve T-cell recovery in the setting of complete viral suppression is a gradual process, similar to that reported

  20. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Science.gov (United States)

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  1. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Mariangela Lecciso

    2017-12-01

    Full Text Available Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML, ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1, was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1, which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  2. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  3. SUPPRESSION OF HUMORAL IMMUNE RESPONSES BY 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN INTERCALATED IN SMECTITE CLAY

    Science.gov (United States)

    Boyd, Stephen A.; Johnston, Cliff T.; Pinnavaia, Thomas J.; Kaminski, Norbert E.; Teppen, Brian J.; Li, Hui; Khan, Bushra; Crawford, Robert B.; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L.F.

    2018-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. PMID:21994089

  4. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  5. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression.

    Science.gov (United States)

    Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao

    2017-04-01

    Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin intercalated in smectite clay.

    Science.gov (United States)

    Boyd, Stephen A; Johnston, Cliff T; Pinnavaia, Thomas J; Kaminski, Norbert E; Teppen, Brian J; Li, Hui; Khan, Bushra; Crawford, Robert B; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L F

    2011-12-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. Copyright © 2011 SETAC.

  7. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  8. Inhibition of Langerhans cell maturation by human papillomavirus type 16: a novel role for the annexin A2 heterotetramer in immune suppression.

    Science.gov (United States)

    Woodham, Andrew W; Raff, Adam B; Raff, Laura M; Da Silva, Diane M; Yan, Lisa; Skeate, Joseph G; Wong, Michael K; Lin, Yvonne G; Kast, W Martin

    2014-05-15

    High-risk human papillomaviruses (HPVs) are sexually transmitted viruses causally associated with several cancers. During its natural life cycle, HPV16, the most common high-risk genotype, infects the epithelial basal cells in a process facilitated through a recently identified receptor, the annexin A2 heterotetramer (A2t). During infection, HPV16 also interacts with Langerhans cells (LC), the APC of the epithelium, inducing immune suppression, which is mediated by the HPV16 L2 minor capsid protein. Despite the importance of these virus-immune cell interactions, the specific mechanisms of HPV16 entry into LC and HPV16-induced immune suppression remain undefined. An N-terminal peptide of HPV16 L2 (aa 108-126) has been shown to specifically interact with A2t. In this study, we show that incubation of human LC with this peptide blocks binding of HPV16. Inhibiting this interaction with an A2t ligand or by small interfering RNA downregulation of A2t significantly decreases HPV16 internalization into LC in an L2-dependent manner. A2t is associated with suppression of LC maturation as demonstrated through attenuated secretion of Th1-associated cytokines and decreased surface expression of MHC class II on LC exposed to A2t. Conversely, small molecule inhibition of A2t prevents HPV16-induced suppression of LC immune function as indicated by significantly increased secretion of inflammatory cytokines and surface expression of CD86 in HPV16 treated LC pre-exposed to A2t inhibitors. These results demonstrate that HPV16 suppresses LC maturation through an interaction with A2t, revealing a novel role for this protein.

  9. Inhibition of Langerhans cell maturation by human papillomavirus type 16: a novel role for the annexin A2 heterotetramer in immune suppression1

    Science.gov (United States)

    Woodham, Andrew W.; Raff, Adam B.; Raff, Laura M.; Da Silva, Diane M.; Yan, Lisa; Skeate, Joseph G.; Wong, Michael K.; Lin, Yvonne G.; Kast, W. Martin

    2014-01-01

    High-risk human papillomaviruses (HPV) are sexually transmitted viruses causally associated with several cancers. During its natural life cycle, HPV16, the most common high-risk genotype, infects the epithelial basal cellsin a process facilitated through a recently identified receptor, the annexin A2 heterotetramer (A2t). During infection, HPV16 also interacts with Langerhans cells (LC), the antigen presenting cells of the epithelium, inducing immune suppression, which is mediated by the HPV16 L2 minor capsid protein. Despite the importance of these virus-immune cell interactions, the specific mechanisms of HPV16 entry into LC and HPV16-induced immune suppression remain undefined. An N-terminal peptide of HPV16 L2 (aa 108-126) has been shown to specifically interact with A2t. Here, we show that incubation of human LC with this peptide blocks binding of HPV16. Inhibiting this interaction with an A2t ligand or by siRNA downregulation of A2t, significantly decreases HPV16 internalization into LC in an L2-dependent manner. A2t is associated with suppression of LC maturation as demonstrated through attenuated secretion of Th1-associated cytokines and decreased surface expression of MHC II on LC exposed to A2t. Conversely, small molecule inhibition of A2t prevents HPV16-induced suppression of LC immune function as indicated by significantly increased secretion of inflammatory cytokines and surface expression of CD86 in HPV16 treated LC pre-exposed to A2t inhibitors. These results demonstrate that HPV16 suppresses LC maturation through an interaction with A2t, revealing a novel role for this protein. PMID:24719459

  10. Low Risk of Pneumonia From Pneumocystis jirovecii Infection in Patients With Inflammatory Bowel Disease Receiving Immune Suppression.

    Science.gov (United States)

    Cotter, Thomas G; Gathaiya, Nicola; Catania, Jelena; Loftus, Edward V; Tremaine, William J; Baddour, Larry M; Harmsen, W Scott; Zinsmeister, Alan R; Sandborn, William J; Limper, Andrew H; Pardi, Darrell S

    2017-06-01

    Use of immunosuppressants and inflammatory bowel disease (IBD) may increase the risk of pneumonia caused by Pneumocystis jirovecii (PJP). We assessed the risk of PJP in a population-based cohort of patients with IBD treated with corticosteroids, immune-suppressive medications, and biologics. We performed a population-based cohort study of residents of Olmsted County, Minnesota, diagnosed with Crohn's disease (n = 427) or ulcerative colitis (n = 510) from 1970 through 2011. Records of patients were reviewed to identify all episodes of immunosuppressive therapies and concomitant PJP prophylaxis through February 2016. We reviewed charts to identify cases of PJP, cross-referenced with the Rochester Epidemiology Project database (using diagnostic codes for PJP) and the Mayo Clinic and Olmsted Medical Center databases. The primary outcome was risk of PJP associated with the use of corticosteroids, immune-suppressive medications, and biologics by patients with IBD. Our analysis included 937 patients and 6066 patient-years of follow-up evaluation (median, 14.8 y per patient). Medications used included corticosteroids (520 patients; 55.5%; 555.4 patient-years of exposure), immunosuppressants (304 patients; 32.4%; 1555.7 patient-years of exposure), and biologics (193 patients; 20.5%; 670 patient-years of exposure). Double therapy (corticosteroids and either immunosuppressants and biologics) was used by 236 patients (25.2%), with 173 patient-years of exposure. Triple therapy (corticosteroids, immunosuppressants, and biologics) was used by 70 patients (7.5%) with 18.9 patient-years of exposure. There were 3 cases of PJP, conferring a risk of 0.2 (95% CI, 0.01-1.0) to corticosteroids, 0.1 (95% CI, 0.02-0.5) cases per 100 patient-years of exposure to immunosuppressants, 0.3 (95% CI, 0.04-1.1) cases per 100 patient-years of exposure to biologics, 0.6 (95% CI, 0.01-3.2) cases per 100 patient-years of exposure to double therapy, and 0 (95% CI, 0.0-19.5) cases per 100 patient

  11. Evolution of equine infectious anaemia in naturally infected mules with different serological reactivity patterns prior and after immune suppression.

    Science.gov (United States)

    Autorino, Gian Luca; Eleni, Claudia; Manna, Giuseppe; Frontoso, Raffaele; Nardini, Roberto; Cocumelli, Cristiano; Rosone, Francesca; Caprioli, Andrea; Alfieri, Lavinia; Scicluna, Maria Teresa

    2016-06-30

    Information on equine infectious anaemia (EIA) in mules, including those with an equivocal reaction in agar gel immunodiffusion test (AGIDT), is scarce. For this, a study was conducted to evaluate the clinical, viral loads and pathological findings of two groups of naturally infected asymptomatic mules, respectively with a negative/equivocal and positive AGIDT reactivity, which were subjected to pharmacological immune suppression (IS). A non-infected control was included in the study that remained negative during the observation period. Throughout the whole study, even repeated episodes of recrudescence of EIA were observed in 9 infected mules, independently from their AGIDT reactivity. These events were generally characterised by mild, transient alterations, typical of the EIA acute form represented by hyperthermia and thrombocytopenia, in concomitance with viral RNA (vRNA) peaks that were higher in the Post-IS period, reaching values similar to those of horses during the clinical acute phase of EIA. Total tissue viral nucleic acid loads were greatest in animals with the major vRNA activity and in particular in those with negative/equivocal AGIDT reactivity. vRNA replication levels were around 10-1000 times lower than those reported in horses, with the animals still presenting typical alterations of EIA reactivation. Macroscopic lesions were absent in all the infected animals while histological alterations were characterised by lymphomonocyte infiltrates and moderate hemosiderosis in the cytoplasm of macrophages. On the basis of the above results, even mules with an equivocal/negative AGIDT reaction may act as EIAV reservoirs. Moreover, such animals could escape detection due to the low AGIDT sensitivity and therefore contribute to the maintenance and spread of the infection. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies.

    Science.gov (United States)

    Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K; Mall, Christine; Zamora, Anthony E; Mirsoian, Annie; Chen, Mingyi; Kol, Amir; Shiao, Stephen L; Reddy, Abhinav; Perks, Julian R; T N Culp, William; Sparger, Ellen E; Canter, Robert J; Sckisel, Gail D; Murphy, William J

    2016-09-01

    Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Increased Plasma Levels of Danger-Associated Molecular Patterns Are Associated With Immune Suppression and Postoperative Infections in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy

    Directory of Open Access Journals (Sweden)

    Guus P. Leijte

    2018-04-01

    Full Text Available IntroductionDanger-associated molecular patterns (DAMPs can elicit immune responses and may subsequently induce an immune-suppressed state. Previous work showed that increased plasma levels of DAMPs are associated with immune suppression and increased susceptibility toward infections in trauma patients. Like trauma, major surgical procedures, such as cytoreductive surgery (CRS combined with hyperthermic intraperitoneal chemotherapy (HIPEC, are also thought to cause profound DAMP release. Furthermore, the incidence of postoperative infections in these patients, ranging from 10 to 36%, is very high compared to that observed in patients undergoing other major surgical procedures. We hypothesized that the double hit of surgical trauma (CRS in combination with HIPEC causes excessive DAMP release, which in turn contributes to the development of immune suppression. To investigate this, we assessed DAMP release in patients undergoing CRS-HIPEC, and investigated its relationship with immune suppression and postoperative infections.MethodsIn 20 patients undergoing CRS-HIPEC, blood was obtained at five time points: just before surgery (baseline, after CRS, after HIPEC, at ICU admission, and 1 day after surgery. Circulating levels of DAMPs [heat shock protein (HSP70, high mobility group box (HMGB1, S100A12, S100A8/S100A9, nuclear (nDNA, mitochondrial (mtDNA, lactate dehydrogenase (LDH, a marker of unscheduled cell death], and cytokines [tumor necrosis factor (TNFα, IL-6, IL-8, IL-10, macrophage inflammatory protein (MIP-1α, MIP-1β, and MCP-1] were measured. The extent of immune suppression was determined by measuring HLA-DR gene expression and ex vivo leukocytic cytokine production capacity.ResultsPlasma levels of DAMPs (maximum fold increases of HSP70: 2.1 [1.5–2.8], HMGB1: 5.9 [3.2–9.8], S100A8/S100A9: 3.6 [1.8–5.6], S100A12: 2.6 [1.8–4.3], nDNA 3.9 [1.0–10.8], LDH 1.7 [1.2–2.5], and all measured cytokines increased profoundly following

  14. Oral administration of type-II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collagen-induced arthritis.

    Science.gov (United States)

    Zhu, Ping; Li, Xiao-Yan; Wang, Hong-Kun; Jia, Jun-Feng; Zheng, Zhao-Hui; Ding, Jin; Fan, Chun-Mei

    2007-01-01

    Oral antigen is an attractive approach for the treatment of autoimmune and inflammatory diseases. Establishment of immune markers and methods in evaluating the effects of antigen-specific cellular and humoral immune responses will help the application of oral tolerance in the treatment of human diseases. The present article observed the effects of chicken collagen II (CII), the recombinant polymerized human collagen II 250-270 (rhCII 250-270) peptide and synthesized human CII 250-270 (syCII 250-270) peptide on the induction of antigen-specific autoimmune response in rheumatoid arthritis (RA) peripheral blood mononuclear cells (PBMC) and on the specific cellular and humoral immune response in collagen-induced arthritis (CIA) and mice fed with CII (250-270) prior to immunization with CII. In the study, proliferation, activation and intracellular cytokine production of antigen-specific T lymphocytes were simultaneously analyzed by bromodeoxyuridine (BrdU) incorporation and flow cytometry at the single-cell level. The antigen-specific antibody and antibody-forming cells were detected by ELISA and ELISPOT, respectively. CII (250-270) was found to have stimulated the response of specific lymphocytes in PBMC from RA patients, including the increase expression of surface activation antigen marker CD69 and CD25, and DNA synthesis. Mice, fed with CII (250-270) before CII immunization, had significantly lower arthritic scores than the mice immunized with CII alone, and the body weight of the former increased during the study period. Furthermore, the specific T cell activity, proliferation and secretion of interferon (IFN)-gamma in spleen cells were actively suppressed in CII (250-270)-fed mice, and the serum anti-CII, anti-CII (250-270) antibody activities and the frequency of specific antibody-forming spleen cells were significantly lower in CII (250-270)-fed mice than in mice immunized with CII alone. These observations suggest that oral administration of CII (250-270) can

  15. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology

    International Nuclear Information System (INIS)

    De Fabo, E.C.; Noonan, F.P.

    1983-01-01

    UV irradiation of mice causes a systemic immune alteration that can be detected either by suppression of the immunologic rejection of UV-induced tumors, or by suppression of contact hypersensitivity (CHS). Suppression of these two immunologic responses has similar photobiologic characteristics and in both cases is associated with the generation of antigen-specific suppressor T cells. To identify whether a specific photoreceptor for this effect exists, the relative wavelength effectiveness (action spectrum) was determined for the UV-induced suppression of CHS. Narrow bands of UV (half bandwidth 3 nm) were used at 10 wavelengths from 250 to 320 nm to obtain dose-response curves. The action spectrum derived from the dose-response curves has a maximum between 260 and 270 nm, a shoulder at 280-290 nm, and declines steadily to approximately 3% of maximum at 320 nm. The finding of such a clearly defined wavelength dependence implies the presence of a specific photoreceptor for this effect. Removing the stratum corneum by tape stripping before UV irradiation prevented the suppression of CHS using 254-nm radiation, suggesting the photoreceptor is superficially located in the skin. The hypothesis is advanced that the photoreceptor for systemic UV-induced immunosuppression of contact hypersensitivity may be urocanic acid. As such, it may also play a role in UV-induced carcinogenesis via the production of tumor-specific suppressor cells

  16. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity.

    Science.gov (United States)

    Kapoor, A K; Nash, A A; Wildy, P

    1982-07-01

    B cell responses of Balb/c mice were suppressed using sheep anti-mouse IgM serum. At 4 weeks, both B cell-suppressed and normal littermates were infected in the ear pinna with herpes simplex virus type 1 (HSV-1). The B cell-suppressed mice failed to produce neutralizing herpes antibodies in their sera but had a normal cell-mediated immunity (CMI) response as measured by a delayed hypersensitivity skin test. Although the infection was eliminated from the ear in both B cell-suppressed and normal mice by day 10 after infection, there was an indication that B cell-suppressed mice had a more florid primary infection of the peripheral and central nervous system and also a higher incidence of a latent infection. These results support the hypothesis that antibody is important in restricting the spread of virus to the central nervous system, whereas CMI is important in clearing the primary infection in the ear pinna.

  17. Macrophage Immune Response Suppression by Recombinant Mycobacterium tuberculosis Antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 Fusion Proteins

    Science.gov (United States)

    Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh

    2016-01-01

    Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at Pproteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551

  18. Inmunoterapia del cáncer: Importancia de controlar la inmunosupresión Cancer immunotherapy: Importance of overcoming immune suppression

    Directory of Open Access Journals (Sweden)

    Mariana Malvicini

    2010-12-01

    Full Text Available Es cada vez mayor la evidencia experimental y clínica de que el sistema inmunitario interviene activamente en la patogénesis y el control de la progresión tumoral. Una respuesta antitumoral efectiva depende de la correcta interacción de varios componentes del sistema inmunitario, como las células presentadoras de antígeno y diferentes sub-poblaciones de linfocitos T. Sin embargo, los tumores malignos desarrollan numerosos mecanismos para evadir el reconocimiento y su eliminación por parte del sistema inmunitario. En esta revisión discutiremos algunos de esos mecanismos y posibles estrategias terapéuticas para contrarrestarlos.Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.

  19. Hidden Consequences of Living in a Wormy World : Nematode-Induced Immune Suppression Facilitates Tuberculosis Invasion in African Buffalo

    NARCIS (Netherlands)

    Ezenwa, Vanessa O.; Etienne, Rampal S.; Luikart, Gordon; Beja-Pereira, Albano; Jolles, Anna E.

    2010-01-01

    Most hosts are infected with multiple parasites, and responses of the immune system to co occurring parasites may influence disease spread. Helminth infection can bias the host immune response toward a T-helper type 2 Th2) over a type 1 Th1) response, impairing the host's ability to control

  20. Venom allergen-like proteins in secretions of plant-parasitic nematodes activate and suppress extracellular plant immune receptors

    NARCIS (Netherlands)

    Lozano Torres, J.L.

    2014-01-01

    Parasitic worms threaten human, animal and plant health by infecting people, livestock and crops worldwide. Animals and plants share an anciently evolved innate immune system. Parasites modulate this immune system by secreting proteins to maintain their parasitic lifestyle. This thesis

  1. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.

    Science.gov (United States)

    Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong

    2016-05-31

    Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63.

  2. The reciprocal interaction of sympathetic nervous system and cAMP-PKA-NF-kB pathway in immune suppression after experimental stroke.

    Science.gov (United States)

    Zuo, Lei; Shi, Luhang; Yan, Fuling

    2016-08-03

    Sympathetic nervous system(SNS) is involved in the mechanism of immune suppression after stroke. Furthermore, as the pro-inflammatory effect of nuclear factor kappa B(NF-kB) is inhibited after stroke, which is regulated by cyclic adenosine monophosphate(cAMP) and proteinkinase A(PKA). The cAMP-PKA-NF-kB pathway might play an important role in noradrenergic-mediated immune dysfunction. The purpose of our research is to analyze how SNS interfere with the immune system after acute stroke and the underlying mechanism of cAMP-PKA-NF-kB pathway in regulating the inflammation. 32 healthy male Sprague-Dawley rats were divided into 4 groups equally and randomly (1) Sham operation group; (2) middle cerebral artery occlusion; (MCAO) control group; (3) propranolol MCAO group; (4) isopropylarterenol sham group. 72h later after MCAO or sham operation, tumor necrosis factor-α(TNF-α)and interleukine-10(IL-10) in serum as well as cAMP, PKA and NF-kB in spleen cells were tested. TNF-α decreased while IL-10 increased in serum after acute ischemia stroke (pkB was inhibited (pkB is down-regulated. Since the pro-inflammatory effect of NF-kB slacked, the immune system may be inhibited after stroke. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Suppression of Innate Immune Response by Primary Human Keratinocytes Expressing HPV-16 E6 and E7

    National Research Council Canada - National Science Library

    Guess, Jennifer L

    2005-01-01

    Human papillomavims (HPV) types infect the skin and mucosal epithelium. Lesions resulting from HPV infection can linger for months or years suggesting that HPV - presence goes unnoticed by the host immune system...

  4. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  5. Phase Ib Study of Immune Biomarker Modulation with Neoadjuvant Cetuximab and TLR8 Stimulation in Head and Neck Cancer to Overcome Suppressive Myeloid Signals.

    Science.gov (United States)

    Shayan, Gulidanna; Kansy, Benjamin A; Gibson, Sandra P; Srivastava, Raghvendra M; Bryan, James Kyle; Bauman, Julie E; Ohr, James; Kim, Seungwon; Duvvuri, Umamaheswar; Clump, David A; Heron, Dwight E; Johnson, Jonas T; Hershberg, Robert M; Ferris, Robert L

    2018-01-01

    Purpose: The response rate of patients with head and neck squamous cell carcinoma (HNSCC) to cetuximab therapy is only 15% to 20%, despite frequent EGFR overexpression. Because immunosuppression is common in HNSCC, we hypothesized that adding a proinflammatory TLR8 agonist to cetuximab therapy might result in enhanced T-lymphocyte stimulation and anti-EGFR-specific priming. Experimental Design: Fourteen patients with previously untreated HNSCC were enrolled in this neoadjuvant trial and treated preoperatively with 3 to 4 weekly doses of motolimod (2.5 mg/m 2 ) and cetuximab. Correlative tumor and peripheral blood specimens were obtained at baseline and at the time of surgical resection and analyzed for immune biomarker changes. Preclinical in vitro studies were also performed to assess the effect of cetuximab plus motolimod on myeloid cells. Results: TLR8 stimulation skewed monocytes toward an M1 phenotype and reversed myeloid-derived suppressor cell (MDSC) suppression of T-cell proliferation in vitro These data were validated in a prospective phase Ib neoadjuvant trial, in which fewer MDSC and increased M1 monocyte infiltration were found in tumor-infiltrating lymphocytes. Motolimod plus cetuximab also decreased induction of Treg and reduced markers of suppression, including CTLA-4, CD73, and membrane-bound TGFβ. Significantly increased circulating EGFR-specific T cells were observed, concomitant with enhanced CD8 + T-cell infiltration into tumors. These T cells manifested increased T-cell receptor (TCR) clonality, upregulation of the costimulatory receptor CD27, and downregulation of inhibitory receptor TIGIT. Conclusions: Enhanced inflammatory stimulation in the tumor microenvironment using a TLR agonist overcomes suppressive myeloid and regulatory cells, enhancing the cellular antitumor immune response by therapeutic mAb in HNSCC. Clin Cancer Res; 24(1); 62-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Benzo[a]pyrene-induced immunotoxicity in Japanese medaka (Oryzias latipes): relationship between lymphoid CYP1A activity and humoral immune suppression

    International Nuclear Information System (INIS)

    Carlson, E.A.; Li, Y.; Zelikoff, J.T.

    2004-01-01

    Exposure to the environmental contaminant benzo[a]pyrene (BaP) results in suppression of immune function in both mammalian and fish species. This laboratory has previously demonstrated that a single intraperitoneal (IP) injection of BaP reduced lymphocyte proliferation, phagocyte-mediated superoxide generation, and antibody-forming cell (AFC) numbers in Japanese medaka (Oryzias latipes). The objective of the current study was to determine the role of BaP metabolism in the observed immunosuppression. Results from rodent studies have suggested that BaP elicits its immunotoxic effects via upregulation of cytochrome P4501A1 (CYP1A1) and the subsequent production of immunosuppressive BaP metabolites. In this study, exposure of medaka to 200 μg BaP/g BW significantly induced CYP1A expression or activity within lymphoid tissue 48 h post-IP injection; induction was observed specifically within distinct subpopulations of kidney mononuclear cells. Concurrent injection of fish with BaP and the CYP1A1 inhibitors α-naphthoflavone (ANF) or dehydroepiandrosterone (DHEA) resulted in inhibition of renal EROD activity and amelioration of BaP-induced suppression of medaka AFC numbers. Results of this study suggest that (1) BaP-induced suppression of medaka humoral immunity relies upon the CYP1A-catalyzed production of immunotoxic BaP metabolites and (2) BaP metabolites may be created in situ, directly by specific cells within kidney lymphoid tissue. Thus, apparently, mechanisms involved in BaP-induced immunosuppression have been phylogenetically conserved from fish to mammals

  7. Sodium methyldithiocarbamate inhibits MAP kinase activation through toll-like receptor 4, alters cytokine production by mouse peritoneal macrophages, and suppresses innate immunity.

    Science.gov (United States)

    Pruett, Stephen B; Zheng, Qiang; Schwab, Carlton; Fan, Ruping

    2005-09-01

    Sodium methyldithiocarbamate (SMD; trade name, Metam Sodium) is an abundantly used soil fumigant that can cause adverse health effects in humans, including some immunological manifestations. The mechanisms by which SMD acts, and its targets within the immune system are not fully understood. Initial experiments demonstrated that SMD administered by oral gavage substantially decreased IL-12 production and increased IL-10 production induced by lipopolysaccharide in mice. The present study was conducted to further characterize these effects and to evaluate our working hypothesis that the mechanism for these effects involves alteration in signaling through toll-like receptor 4 and that this would suppress innate immunity to infection. SMD decreased the activation of MAP kinases and AP-1 but not NF-kappaB in peritoneal macrophages. The expression of mRNA for IL-1alpha, IL-1beta, IL-18, IFN-gamma, IL-12 p35, IL-12 p40, and macrophage migration inhibitory factor (MIF) was inhibited by SMD, whereas mRNA for IL-10 was increased. SMD increased the IL-10 concentration in the peritoneal cavity and serum and decreased the concentration of IL-12 p40 in the serum, peritoneal cavity, and intracellularly in peritoneal cells (which are >80% macrophages). Similar effects on LPS-induced cytokine production were observed following dermal administration of SMD. The major breakdown product of SMD, methylisothiocyanate (MITC), caused similar effects on cytokine production at dosages as low as 17 mg/kg, a dosage relevant to human exposure levels associated with agricultural use of SMD. Treatment of mice with SMD decreased survival following challenge with non-pathogenic Escherichia coli within 24-48 h, demonstrating suppression of innate immunity.

  8. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  9. Immune suppression with supraoptimal doses of antigen in contact sensitivity. I. Demonstration of suppressor cells and their sensitivity to cyclophosphamide.

    Science.gov (United States)

    Sy, M S; Miller, S D; Claman, H N

    1977-07-01

    Immunologic suppression was induced in a mouse model of contact sensitization to DNFB by using supraoptimal doses of antigen. In these studies, in vivo measurement of ear swelling as an indication of immunologic responsiveness correlated well with measurement of in vitro antigen-induced cell proliferation. This unresponsiveness was specific, since supraoptimal doses of DNFB did not interfere with the development of contact sensitivity to another contactant, oxazolone. The decrease in responsiveness is a form of active suppression, as lymphoid cells from supraoptimally sensitized donors transferred suppression to normal recipients. Furthermore, pretreatment with cyclophosphamide (Cy) reversed the suppression seen in supraoptimally sensitized animals but had no effect on the optimal sensitization regimen. These results indicate that supraoptimal doses of contactants can activate suppressor cells and that precursors of these cells are sensitive to Cy. Such suppressors regenerate within 7 to 14 days after Cy treatment. The ability of Cy pretreatment to affect supraoptimal sensitization without affecting optimal sensitization confirms other reports indicating that the observed results of Cy treatment depend critically upon the dose of antigen used.

  10. Immune restoration does not invariably occur following long-term HIV-1 suppression during antiretroviral therapy. INCAS Study Group

    NARCIS (Netherlands)

    Pakker, N. G.; Kroon, E. D.; Roos, M. T.; Otto, S. A.; Hall, D.; Wit, F. W.; Hamann, D.; van der Ende, M. E.; Claessen, F. A.; Kauffmann, R. H.; Koopmans, P. P.; Kroon, F. P.; ten Napel, C. H.; Sprenger, H. G.; Weigel, H. M.; Montaner, J. S.; Lange, J. M.; Reiss, P.; Schellekens, P. T.; Miedema, F.

    1999-01-01

    BACKGROUND: Current antiretroviral treatment can induce significant and sustained virological and immunological responses in HIV-1-infected persons over at least the short- to mid-term. OBJECTIVES: In this study, long-term immune reconstitution was investigated during highly active antiretroviral

  11. Suppression of cellular immunity in obstructive jaundice is caused by endotoxins: a study with germ-free rats

    NARCIS (Netherlands)

    Greve, J. W.; Gouma, D. J.; Soeters, P. B.; Buurman, W. A.

    1990-01-01

    The increased susceptibility to infections after surgery in jaundiced patients is considered to be caused by an impairment of cellular immunity and/or nutritional status. Endotoxins are suggested to play a role in the pathogenesis. However, the mechanism of action is unknown. Germ-free rats were

  12. Suppression or activation of immune responses by predicted secreted proteins of the soybean rust pathogen Phakopsora pachyrhizi

    Science.gov (United States)

    Rust fungi, such as Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are intimately associated with plant cells. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characte...

  13. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes

  14. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity.

    Science.gov (United States)

    Nugent, Lindsey F; Shi, Guangpu; Vistica, Barbara P; Ogbeifun, Osato; Hinshaw, Samuel J H; Gery, Igal

    2013-11-13

    Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.

  15. ITE, A Novel Endogenous Nontoxic Aryl Hydrocarbon Receptor Ligand, Efficiently Suppresses EAU and T-Cell–Mediated Immunity

    Science.gov (United States)

    Nugent, Lindsey F.; Shi, Guangpu; Vistica, Barbara P.; Ogbeifun, Osato; Hinshaw, Samuel J. H.; Gery, Igal

    2013-01-01

    Purpose. Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. Methods. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Results. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. Conclusions. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans. PMID:24150760

  16. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Science.gov (United States)

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  17. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Directory of Open Access Journals (Sweden)

    Satoshi Sekiguchi

    Full Text Available Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV, is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis, liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25, which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-/MxCre((+/- mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor TNF-α and (interleukin IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  18. Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation.

    Science.gov (United States)

    Hattori, Takaaki; Saban, Daniel R; Emami-Naeini, Parisa; Chauhan, Sunil K; Funaki, Toshinari; Ueno, Hiroki; Dana, Reza

    2012-04-01

    Significant interest has been focused on the use of ex vivo-manipulated DCs to optimally induce transplant tolerance and promote allograft survival. Although it is understood that donor-derived, tolerogenic DCs suppress the direct pathway of allosensitization, whether such DCs can similarly suppress the indirect pathway remains unclear. We therefore used the murine model of corneal transplantation to address this, as these allografts are rejected in an indirect pathway-dominant manner. Interestingly, recipients administered with donor bone marrow-derived DCregs, generated via culturing with GM-CSF, IL-10, and TGF-β1, significantly prolonged survival of corneal allografts. Correspondingly, these recipients demonstrated a potent reduction in the frequency of indirectly allosensitized T cells, as determined by ELISPOT. Examination of DCregs relative to mDCs or iDCs showed a resistance to up-regulation of MHC-II and costimulatory molecules, as well as an impaired capacity to stimulate MLRs. In vivo, DCreg administration in corneal-allografted recipients led to inhibition of CD4(+)IFN-γ(+) T cell frequencies and an associated increase in Foxp3 expression in the Treg compartment. We conclude that donor-derived, tolerogenic DCs significantly suppress the indirect pathway, thereby identifying a novel regulatory mechanism for these cells in transplantation.

  19. Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression.

    Science.gov (United States)

    Lee, DaHae; Keymeulen, Bart; Hilbrands, Robert; Ling, Zhidong; Van de Velde, Ursule; Jacobs-Tulleneers-Thevissen, Daniel; Maleux, Geert; Lapauw, Bruno; Crenier, Laurent; De Block, Christophe; Mathieu, Chantal; Pipeleers, Daniel; Gillard, Pieter

    2017-09-01

    Induction therapy with a T cell-depleting agent followed by mycophenolate mofetil and tacrolimus is presently the most frequently used immune suppression (IS) regimen in islet transplantation. This study assesses its safety and tolerability in nonuremic type 1 diabetic recipients. Fifty-one patients (age, between 29 and 63 years) with high glycemic variability and problematic hypoglycemia received intraportal islet grafts under anti-thymocyte globulin-mycophenolate mofetil-tacrolimus protocol. They were followed up for over 48 months for function of the implant and adverse events. Severe hypoglycemia and diabetic ketoacidosis were absent in patients with functioning graft. Immune suppressive therapy was maintained for 48 months in 29 recipients with sustained function (group A), whereas 16 patients stopped earlier due to graft failure (group B) and in 6 for other reasons. Group A was significantly older at the time of implantation and achieved higher graft function at posttransplantation month 6 under similar dose of IS. Prevalence of IS-related side effects was similar in groups A and B, occurring predominantly during the first year posttransplantation. IS-related serious adverse events (SAE) were reported in 47% of patients, with 4 presenting with cytomegalovirus infection and 4 (age, 42-59 years) diagnosed with cancer. Except in 1 patient with cancer, all SAEs resolved after appropriate treatment. These risk/benefit data serve as a basis for clinical decision-making before entering an intraportal islet transplantation protocol. A longer benefit is observed in recipients of higher age (≥40 years), but it is not associated with more side effects and SAE.

  20. Innate-like CD4 T cells selected by thymocytes suppress adaptive immune responses against bacterial infections

    OpenAIRE

    Qiao, Yu; Gray, Brian M.; Sofi, Mohammed H.; Bauler, Laura D.; Eaton, Kathryn A.; O'Riordan, Mary X. D.; Chang, Cheong-Hee

    2011-01-01

    We have reported a new innate-like CD4 T cell population that expresses cell surface makers of effector/memory cells and produce Th1 and Th2 cytokines immediately upon activation. Unlike conventional CD4 T cells that are selected by thymic epithelial cells, these CD4 T cells, named T-CD4 T cells, are selected by MHC class II expressing thymocytes. Previously, we showed that the presence of T-CD4 T cells protected mice from airway inflammation suggesting an immune regulatory role of T-CD4 T ce...

  1. Suppression of cellular immunity by head and neck irradiation. Precipitating factors and reparative mechanisms in an experimental model

    International Nuclear Information System (INIS)

    Gray, W.C.; Hasslinger, B.J.; Suter, C.M.; Blanchard, C.L.; Goldstein, A.L.; Chretien, P.B.

    1986-01-01

    A model was developed in C 3 H mice to investigate the immunosuppressive effects of head and neck irradiation and to explore mechanisms for repair of the defects. Mice receiving 1200 rad (12 Gy) of head and neck irradiation showed significant depression of delayed-type hypersensitivity, peripheral blood lymphocyte counts, spleen cell counts, and spleen cell production of interleukin-2. Treatment with optimal dosages of thymosin alpha 1 (T alpha-1) produced significant increases in all of these values, in some instances to levels higher than in the nonirradiated controls. In identical experiments with mice irradiated to a portal limited to the pelvic region, T alpha-1 induced only partial remission of the abnormalities. The dose response of T alpha-1 with head and neck irradiation showed a relatively limited dose range for immune restoration, a finding that warrants similar determinations in clinical trials with immunomodulating agents. The results suggest a potential clinical usefulness of T alpha-1 and also interleukin-2 in restoring cellular immunity after irradiation for head and neck cancers. The model appears to be useful for investigating immunomodulating agents before they are clinically evaluated as adjuvants with head and neck irradiation regimens

  2. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation.

    Science.gov (United States)

    Arimilli, Subhashini; Schmidt, Eckhardt; Damratoski, Brad E; Prasad, G L

    2017-10-01

    Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.

  3. Systemic agonistic anti-CD40 treatment of tumor bearing mice modulates hepatic myeloid suppressive cells and causes immune-mediated liver damage

    Science.gov (United States)

    Medina-Echeverz, José; Ma, Chi; Duffy, Austin; Eggert, Tobias; Hawk, Nga; Kleiner, David E.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immune stimulatory monoclonal antibodies are currently evaluated as anti tumor agents. Although overall toxicity appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in liver and spleen, serum transaminases and liver histologies were analyzed after antibody administration. Nox2−/−, Cd40−/− as well as bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid derived suppressive cells was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras we demonstrated that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80 and CD40 positive liver CD11b+Gr-1+ immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14+HLA-DRlow PBMC from cancer patients reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced, myeloid cells, caused myeloid dependent hepatotoxicity and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggests that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC. PMID:25637366

  4. Regulation of IgE antibody production by serum molecules. I. Serum from complete Freund's adjuvant-immune donors suppresses irradiation-enhanced IgE production in low responder mouse strains

    International Nuclear Information System (INIS)

    Tung, A.S.; Chiorazzi, N.; Katz, D.H.

    1978-01-01

    Exposure of mice to low doses of x irradiation at or near the time of primary immunization with 2,4-dinitrophenyl (DNP)-Ascaris suum extract (ASC) results in substantial enhancement of IgE anti-DNP antibody responses; the IgG antibody responses of such mice do not increase after such manipulations. This selective enhancement of IgE antibody production occurs in mice of both high and low IgE responder phenotype, although the extent of enhancement compared to unmanipulated control animals is more striking in low IgE responder mice. The studies presented here demonstrate that the irradiation-enhanced IgE antibody responses of low responder SJL and C57BL/6 mice as well as of intermediate responder AKR mice can be effectively suppressed by passive transfer of CFA-immune serum obtained from isologous donor mice. Moreover, adoptive secondary IgE antibody responses in SJL recipients of primed syngeneic spleen cells can be totally abolished by passive transfer of CFA-immune serum or ascitic fluid from CFA-immune mice. The suppressive activity of CFA-immune serum can be diminished or eliminated by exposure of CFA-primed donor mice to low dose x irradiation at an appropriate point during the priming regimen, after a single inoculation of CFA, and before collection of serum. Low dose x irradiation was not effective in eliminating suppressive activity of CFA-induced ascites fluid obtained from donor mice inoculated repeatedly with CFA. In contrast to the capacity of CFA-immune serum from isologous donors to suppress irradiation-enhanced IgE responses of low responder mice, similar sera or ascites fluids were ineffective in suppressing irradiation-enhanced responses of high responder BALB/c or (SJL x BALB/c)F 1 hybrid mice

  5. B7-2 Expressed on EL4 Lymphoma Suppresses Antitumor Immunity by an Interleukin 4–dependent Mechanism

    Science.gov (United States)

    Stremmel, C.; Greenfield, E.A.; Howard, E.; Freeman, G.J.; Kuchroo, V.K.

    1999-01-01

    For T cells to become functionally activated they require at least two signals. The B7 costimulatory molecules B7-1 and B7-2 provide the “second signal” pivotal for T cell activation. In this report, we studied the relative roles of B7-1 and B7-2 molecules in the induction of antitumor immunity to the T cell thymoma, EL4. We generated EL4 tumor cells that expressed B7-1, B7-2, and B7-1+B7-2 by transfecting murine cDNAs. Our results demonstrate that EL4–B7-1 cells are completely rejected in syngeneic mice. Unlike EL4–B7-1 cells, we find that EL4–B7-2 cells are not rejected but progressively grow in the mice. A B7-1– and B7-2–EL4 double transfectant was generated by introducing B7-2 cDNA into the EL4–B7-1 tumor line that regressed in vivo. The EL4–B7-1+B7-2 double transfectant was not rejected when implanted into syngeneic mice but progressively grew to produce tumors. The double transfectant EL4 cells could costimulate T cell proliferation that could be blocked by anti–B7-1 antibodies, anti–B7-2 antibodies, or hCTLA4 immunoglobulin, showing that the B7-1 and B7-2 molecules expressed on the EL4 cells were functional. In vivo, treatment of mice implanted with double-transfected EL4 cells with anti–B7-2 monoclonal antibody resulted in tumor rejection. Furthermore, the EL4–B7-2 and EL4–B7-1+B7-2 cells, but not the wild-type EL4 cells, were rejected in interleukin 4 (IL-4) knockout mice. Our data suggests that B7-2 expressed on some T cell tumors inhibits development of antitumor immunity, and IL-4 appears to play a critical role in abrogation of the antitumor immune response. PMID:10075975

  6. B7-2 expressed on EL4 lymphoma suppresses antitumor immunity by an interleukin 4-dependent mechanism.

    Science.gov (United States)

    Stremmel, C; Greenfield, E A; Howard, E; Freeman, G J; Kuchroo, V K

    1999-03-15

    For T cells to become functionally activated they require at least two signals. The B7 costimulatory molecules B7-1 and B7-2 provide the "second signal" pivotal for T cell activation. In this report, we studied the relative roles of B7-1 and B7-2 molecules in the induction of antitumor immunity to the T cell thymoma, EL4. We generated EL4 tumor cells that expressed B7-1, B7-2, and B7-1+B7-2 by transfecting murine cDNAs. Our results demonstrate that EL4-B7-1 cells are completely rejected in syngeneic mice. Unlike EL4-B7-1 cells, we find that EL4-B7-2 cells are not rejected but progressively grow in the mice. A B7-1- and B7-2-EL4 double transfectant was generated by introducing B7-2 cDNA into the EL4-B7-1 tumor line that regressed in vivo. The EL4-B7-1+B7-2 double transfectant was not rejected when implanted into syngeneic mice but progressively grew to produce tumors. The double transfectant EL4 cells could costimulate T cell proliferation that could be blocked by anti-B7-1 antibodies, anti-B7-2 antibodies, or hCTLA4 immunoglobulin, showing that the B7-1 and B7-2 molecules expressed on the EL4 cells were functional. In vivo, treatment of mice implanted with double-transfected EL4 cells with anti-B7-2 monoclonal antibody resulted in tumor rejection. Furthermore, the EL4-B7-2 and EL4-B7-1+B7-2 cells, but not the wild-type EL4 cells, were rejected in interleukin 4 (IL-4) knockout mice. Our data suggests that B7-2 expressed on some T cell tumors inhibits development of antitumor immunity, and IL-4 appears to play a critical role in abrogation of the antitumor immune response.

  7. B7-2 Expressed on EL4 Lymphoma Suppresses Antitumor Immunity by an Interleukin 4–dependent Mechanism

    OpenAIRE

    Stremmel, C.; Greenfield, E.A.; Howard, E.; Freeman, G.J.; Kuchroo, V.K.

    1999-01-01

    For T cells to become functionally activated they require at least two signals. The B7 costimulatory molecules B7-1 and B7-2 provide the “second signal” pivotal for T cell activation. In this report, we studied the relative roles of B7-1 and B7-2 molecules in the induction of antitumor immunity to the T cell thymoma, EL4. We generated EL4 tumor cells that expressed B7-1, B7-2, and B7-1+B7-2 by transfecting murine cDNAs. Our results demonstrate that EL4–B7-1 cells are completely rejected in sy...

  8. GYF-21, an Epoxide 2-(2-Phenethyl-Chromone Derivative, Suppresses Innate and Adaptive Immunity via Inhibiting STAT1/3 and NF-κB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ran Guo

    2017-05-01

    Full Text Available Multiple sclerosis is a chronic inflammatory autoimmune disease of the central nervous system characterized by demyelinating plaques and axonal loss. Inhibition on over activation of innate and adaptive immunity provides a rationale strategy for treatment of multiple sclerosis. In the present study, we investigated the inhibitory effects of GYF-21, an epoxide 2-(2-phenethyl-chromone derivative isolated from Chinese agarwood, on innate and adaptive immunity for revealing its potential to treat multiple sclerosis. The results showed that GYF-21 markedly inhibited the activation of microglia, and dendritic cells as well as neutrophils, all of which play important roles in innate immunity. Furthermore, GYF-21 significantly suppressed adaptive immunity via inhibiting the differentiation of naive CD4+ T cells into T helper 1 (Th1 and T helper 17 (Th17 cells, and suppressing the activation, proliferation, and IFN-γ secretion of CD8+ T cells. The mechanism study showed that GYF-21 evidently inhibited the activation of STAT1/3 and NF-κB signaling pathways in microglia. In conclusion, we demonstrated that GYF-21 can significantly inhibit innate and adaptive immunity via suppressing STAT1/3 and NF-κB signaling pathways, and has potential to be developed into therapeutic drug for multiple sclerosis.

  9. Immune expulsion of Trichuris muris from resistant mice: suppression by irradiation and restoration by transfer of lymphoid cells

    International Nuclear Information System (INIS)

    Wakelin, D.; Selby, G.R.

    1976-01-01

    Lethal irradiation (850 rads of x rays) of mice made resistant to Trichuris muris markedly depressed their ability to expel a challenge infection. Expulsion was restored within 7 to 10 days when MLNC from uninfected mice were transferred on the day of infection, but no significant restoration was evident after transfer of immune serum. Transfer of Bm alone had no restorative effect within 10 days and no synergism was seen when both BM and MLNC were transferred. MLNC from uninfected donors did not restore challenge expulsion when transfer was delayed until day 7 and the mice were killed 3 days later, although MLNC from resistant donors were effective within this time. When irradiated mice were given BM and the challenge infection allowed to continue for 15 days expulsion was restored, as it was when challenge was delayed for 7 days after BM transfer in thymectomized mice. The results confirm that expulsion of T. muris involves both antibody-mediated and lymphoid cell-mediated phases and offer no evidence for the involvement of other cell types. (author)

  10. Regulation of IgE antibody production by serum molecules. II. Strain-specificity of the suppressive activity of serum from complete Freund's adjuvant-immune low responder mouse donors

    International Nuclear Information System (INIS)

    Katz, D.H.; Tung, A.S.

    1978-01-01

    IgE antibody production in mice of high and low IgE responder phenotypes, respectively, can be appreciably enhanced in magnitude after low-dose whole-body x irradiation. Such enhanced responses, as well as adoptive secondary IgE responses, can be markedly suppressed by passive transfer of CFA-immune serum in low responder strains, but not in high responder strains. The studies presented here demonstrate that the suppressive activity of CFA-immune serum on IgE antibody production is strain specific. This is true even in reciprocal combinations of low IgE responder SJL and C57BL/6 mice, in which it was shown that serum capable of suppressing mice of the isologous strain was ineffective in diminishing IgE antibody production in the other low responder strain. Absence of suppressive activity in CFA-immune sera obtained from H-2 haplotypes while sharing many similarities in the background genome and, conversely, effective suppressive activity of H-2 congenic donor sera when H-2-identities between donor and recipient mice existed, strongly suggested a role, at least in part, of H-2 genes in dictating the strain specificity of such suppressive activity. Additional experiments provided evidence for a possible role of macrophages in catabolism of the active molecules in CFA-immune sera. These observations, together with those presented in the preceding paper, may provide valuable insight toward successful development of appropriate manipulations that could ultimately convert high IgE responder individuals into low responders

  11. Unexpected suppression of anti-Fya and prevention of hemolytic disease of the fetus and newborn after administration of Rh immune globulin.

    Science.gov (United States)

    Branch, Donald R; Scofield, Terry L; Moulds, John J; Swanson, Jane L

    2011-04-01

    Rh immune globulin (RhIG) has been used successfully for many years for the antenatal suppression of anti-D in D- mothers carrying D+ babies to prevent hemolytic disease of the fetus and newborn. Although the mechanism of RhIG-induced immunosuppression remains unknown, a recent report (TRANSFUSION 2006;46:1316-22) has shown that women receiving RhIG produce elevated levels of transforming growth factor (TGF)β-1, a powerful immunosuppressant cytokine. It was suggested that induction of TGFβ-1 and immunosuppression may be independent of cognate antigen recognition by RhIG. Herein, we present a description of a mother and baby that supports this hypothesis. Red blood cells and serum were analyzed using saline-tube indirect antiglobulin test methods. RhIG (RhoGAM) was administered after each amniocentesis performed at 28, 31, and 36 weeks' gestation. A group A, D-(cde), K+, Fy(a-b+), MNs, Jk(a+b+) mother with no detectable anti-D had an anti-Fy(a) titer of 4096 before RhIG but only 256 after RhIG. Mother gave birth to a group O, D-(cde), Fy(a+b+) healthy baby boy having a weak-positive direct antiglobulin test with anti-Fy(a) eluted from his cells and the titer in the cord serum was 4. This case demonstrates the potential immunosuppressive properties of RhIG for down regulation of a possible clinically significant alloantibody, not anti-D, where no D+ antigen is in the circulation of the mother. The case illustrates the potential utility for using RhIG to modulate antibody levels in situations other than for classical suppression of anti-D production. Although the mechanism in this case is unknown, TGFβ-1-mediated or antibody-mediated immunosuppression to soluble nonparticulate antigens are possible mechanisms. © 2010 American Association of Blood Banks.

  12. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    Science.gov (United States)

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  13. Global gene expression profiling reveals a suppressed immune response pathway associated with 3q amplification in squamous carcinoma of the lung

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2015-09-01

    Full Text Available Chromosome 3q26–28 is a critical region of genomic amplification in non-small cell lung cancer (NSCLC, particularly lung squamous cell carcinomas (SCCs. No molecular therapeutic target has shown clinical utility for SCC, in contrast with adenocarcinomas of the lung. To identify novel candidate drivers in this region, we performed both Array Comparative Genomic Hybridization (array CGH, Agilent Human Genome CGH 244A oligo-microarrays and Gene Expression Microarray (Agilent Human Gene Expression 4 × 44 K microarray on 24 untreated lung SCC specimens. Using our previously published integrative genomics approach, we identified 12 top amplified driver genes within this region that are highly correlated and overexpressed in lung SCC. We further demonstrated one of the 12 top amplified driver Fragile X mental retardation-related protein 1 (FXR1 as a novel cancer gene in NSCLC and FXR1 executes its regulatory function by forming a novel complex with two other oncogenes, protein kinase C, iota ( PRKCI and epithelial cell transforming 2 (ECT2 within the same amplicon in lung cancer cell. Here we report that immune response pathways are significantly suppressed in lung SCC and negatively associated with 3q driver gene expression, implying a potential role of 3q drivers in cancer immune-surveillance. In light of the attractive immunotherapy strategy using blockade of negative regulators of T cell function for multiple human cancer including lung SCC, our findings may provide a rationale for targeting 3q drivers in combination of immunotherapies for human tumors harboring the 3q amplicon. The data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE40089.

  14. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation.

    Science.gov (United States)

    Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W

    2014-09-24

    Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.

  15. Erythrocyte Saturation with IgG Is Required for Inducing Antibody-Mediated Immune Suppression and Impacts Both Erythrocyte Clearance and Antigen-Modulation Mechanisms.

    Science.gov (United States)

    Cruz-Leal, Yoelys; Marjoram, Danielle; Lazarus, Alan H

    2018-02-15

    Anti-D prevents hemolytic disease of the fetus and newborn, and this mechanism has been referred to as Ab-mediated immune suppression (AMIS). Anti-D, as well as other polyclonal AMIS-inducing Abs, most often induce both epitope masking and erythrocyte clearance mechanisms. We have previously observed that some Abs that successfully induce AMIS effects could be split into those that mediate epitope masking versus those that induce erythrocyte clearance, allowing the ability to analyze these mechanisms separately. In addition, AMIS-inducing activity has recently been shown to induce Ag modulation (Ag loss from the erythrocyte surface). To assess these mechanisms, we immunized mice with transgenic murine RBCs expressing a single Ag protein comprising a recombinant Ag composed of hen egg lysozyme, OVA sequences comprising aa 251-349, and the human Duffy transmembrane protein (HOD-Ag) with serial doses of polyclonal anti-OVA IgG as the AMIS-inducing Ab. The anti-OVA Ab induced AMIS in the absence of apparent epitope masking. AMIS occurred only when the erythrocytes appeared saturated with IgG. This Ab was capable of inducing HOD-RBC clearance, as well as loss of the OVA epitope at doses of Ab that caused AMIS effects. HOD-RBCs also lost reactivity with Abs specific for the hen egg lysozyme and Duffy portions of the Ag consistent with the initiation of Ag modulation and/or trogocytosis mechanisms. These data support the concept that an AMIS-inducing Ab that does not cause epitope masking can induce AMIS effects in a manner consistent with RBC clearance and/or Ag modulation. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  17. CA125 suppresses amatuximab immune-effector function and elevated serum levels are associated with reduced clinical response in first line mesothelioma patients.

    Science.gov (United States)

    Nicolaides, Nicholas C; Schweizer, Charles; Somers, Elizabeth B; Wang, Wenquan; Fernando, Shawn; Ross, Erin N; Grasso, Luigi; Hassan, Raffit; Kline, J Bradford

    2018-04-13

    The tumor-shed antigen CA125 has recently been found to bind certain monoclonal antibodies (mAbs) and suppress immune-effector mediated killing through perturbation of the Fc domain with CD16a and CD32a Fc-γ activating receptors on immune-effector cells. Amatuximab is a mAb targeting mesothelin whose mechanism of action utilizes in part antibody-dependent cellular cytotoxicity (ADCC). It is being tested for its therapeutic activity in patients with mesothelioma in combination with first line standard-of-care. To determine if CA125 has immunosuppressive effects on amatuximab ADCC and associated clinical outcomes, post hoc subgroup analysis of patients from a Phase 2 study with primary diagnosed stage III/IV unresectable mesothelioma treated with amatuximab plus cisplatin and pemetrexed were conducted. Analysis found patients with baseline CA125 levels no greater than 57 U/m (∼3X the upper limit of normal) had a 2 month improvement in progression free survival (HR = 0.43, p = 0.0062) and a 7 month improvement in overall survival (HR = 0.40, p = 0.0022) as compared to those with CA125 above 57 U/mL. In vitro studies found that CA125 was able to bind amatuximab and perturb ADCC activity via decreased Fc-γ-receptor engagement. These data suggest that clinical trial designs of antibody-based drugs in cancers producing CA125, including mesothelioma, should consider stratifying patients on baseline CA125 levels for mAbs that are experimentally determined to be bound by CA125.

  18. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak; Thoh, M. [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India); Patil, Anand [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Degani, M. [Institute of Chemical Technology, Matunga, Mumbai (India); Gota, Vikram [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India)

    2015-12-01

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71 and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. - Highlights:: • Withaferin A (WA) inhibited T-cell and B-cell mediated immune responses. • WA increased basal ROS levels in lymphocytes. • WA directly interacted with GSH as studied using spectrophotometry and HPLC. • WA inhibited NF-κB nuclear translocation and binding of nuclear NF-κB to DNA. • WA inhibited induction of the graft-versus-host disease in mice.

  19. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Bergot

    2014-10-01

    Full Text Available Human Papillomavirus (HPV 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.

  20. E6D25E, HPV16 Asian variant shows specific proteomic pattern correlating in cells transformation and suppressive innate immune response

    International Nuclear Information System (INIS)

    Chopjitt, Peechanika; Pientong, Chamsai; Sunthamala, Nuchsupha; Kongyingyoes, Bunkerd; Haonon, Ornuma; Boonmars, Thidarut; Kikawa, Satomi; Nakahara, Tomomi; Kiyono, Tohru; Ekalaksananan, Tipaya

    2016-01-01

    HPV16 Asian variant (HPV16As) containing E6D25E oncogene, is commonly associated with cervical cancers of Asian populations. To explore a mechanism of E6D25E oncoprotein in carcinogenesis, we compared protein profiles in human keratinocytes expressing E6D25E with E6 of HPV16 prototype (E6Pro). A human cervical keratinocyte cell line, HCK1T, was transduced with retroviruses containing E6D25E or E6Pro genes. Biological properties of E6D25E or E6Pro transduced HCK1T cells were characterized. Protein profiles of the transduced HCK1T cells were analyzed using 2D-PAGE and characterized by mass spectrometry and western blotting. Reactomes of modulated proteins were analyzed by using the Reactome Knowledgebase. The E6D25E and E6Pro oncoproteins were comparable for their abilities to degrade p53 and suppress the induction of p21, and induce cell proliferation. Interestingly, the protein profiles of the HCK1T cells transduced with E6D25E showed specific proteomic patterns different from those with E6Pro. Among altered proteins, more than 1.5-fold up- or down- regulation was observed in E6D25E-expressing cells for gp96 and keratin7 which involved in activation of TLR signaling and transformation of squamocolumnar junction cells, respectively. This report describes new cellular proteins specifically targeted by E6D25E oncoprotein that may contribute to impair immune response against viral infection and cell transformation associated with oncogenic property of HPV16As variant. - Highlights: • E6D25E HPV16 specifically modulates protein profile of human keratinocytes. • E6D25E HPV16 modulates protein profile which involves in TLR signalling and transformation of squamocolumnar junction cells. • E6D25E oncoprotein may correlate to impair of immune response against viral infection and cells transformation.

  1. E6D25E, HPV16 Asian variant shows specific proteomic pattern correlating in cells transformation and suppressive innate immune response

    Energy Technology Data Exchange (ETDEWEB)

    Chopjitt, Peechanika; Pientong, Chamsai; Sunthamala, Nuchsupha [Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 (Thailand); HPV & EBV and Carcinogenesis Research Group, Khon Kaen University (Thailand); Kongyingyoes, Bunkerd [Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 (Thailand); Haonon, Ornuma; Boonmars, Thidarut [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 (Thailand); Kikawa, Satomi; Nakahara, Tomomi [Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 (Japan); Kiyono, Tohru, E-mail: tkiyono@ncc.go.jp [Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 (Japan); Ekalaksananan, Tipaya, E-mail: tipeka@kku.ac.th [Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 (Thailand); HPV & EBV and Carcinogenesis Research Group, Khon Kaen University (Thailand)

    2016-09-09

    HPV16 Asian variant (HPV16As) containing E6D25E oncogene, is commonly associated with cervical cancers of Asian populations. To explore a mechanism of E6D25E oncoprotein in carcinogenesis, we compared protein profiles in human keratinocytes expressing E6D25E with E6 of HPV16 prototype (E6Pro). A human cervical keratinocyte cell line, HCK1T, was transduced with retroviruses containing E6D25E or E6Pro genes. Biological properties of E6D25E or E6Pro transduced HCK1T cells were characterized. Protein profiles of the transduced HCK1T cells were analyzed using 2D-PAGE and characterized by mass spectrometry and western blotting. Reactomes of modulated proteins were analyzed by using the Reactome Knowledgebase. The E6D25E and E6Pro oncoproteins were comparable for their abilities to degrade p53 and suppress the induction of p21, and induce cell proliferation. Interestingly, the protein profiles of the HCK1T cells transduced with E6D25E showed specific proteomic patterns different from those with E6Pro. Among altered proteins, more than 1.5-fold up- or down- regulation was observed in E6D25E-expressing cells for gp96 and keratin7 which involved in activation of TLR signaling and transformation of squamocolumnar junction cells, respectively. This report describes new cellular proteins specifically targeted by E6D25E oncoprotein that may contribute to impair immune response against viral infection and cell transformation associated with oncogenic property of HPV16As variant. - Highlights: • E6D25E HPV16 specifically modulates protein profile of human keratinocytes. • E6D25E HPV16 modulates protein profile which involves in TLR signalling and transformation of squamocolumnar junction cells. • E6D25E oncoprotein may correlate to impair of immune response against viral infection and cells transformation.

  2. Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2

    Directory of Open Access Journals (Sweden)

    María Pilar Castañeda-Ojeda

    2017-05-01

    Full Text Available The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts.

  3. Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2

    Science.gov (United States)

    Castañeda-Ojeda, María Pilar; Moreno-Pérez, Alba; Ramos, Cayo; López-Solanilla, Emilia

    2017-01-01

    The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E) in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts. PMID:28529516

  4. Tetanus-diphtheria-pertussis vaccine may suppress the immune response to subsequent immunization with pneumococcal CRM197-conjugate vaccine (coadministered with quadrivalent meningococcal TT-conjugate vaccine): a randomized, controlled trial⋆.

    Science.gov (United States)

    Tashani, Mohamed; Heron, Leon; Wong, Melanie; Rashid, Harunor; Booy, Robert

    2017-07-01

    : Due to their antigenic similarities, there is a potential for immunological interaction between tetanus/diphtheria-containing vaccines and carrier proteins presented on conjugate vaccines. The interaction could, unpredictably, result in either enhancement or suppression of the immune response to conjugate vaccines if they are injected soon after or concurrently with diphtheria or tetanus toxoid. We examined this interaction among adult Australian travellers before attending the Hajj pilgrimage of 2015. We randomly assigned each participant to one of three vaccination schedules. Group A received tetanus, diphtheria and acellular pertussis vaccine (Tdap) 3-4 weeks before receiving CRM197-conjugated 13-valent pneumococcal vaccine (PCV13) coadministered with TT-conjugated quadrivalent meningococcal vaccine (MCV4). Group B received all three vaccines concurrently. Group C received PCV13 and MCV4 3-4 weeks before Tdap. Blood samples collected at baseline, at each vaccination visit and 3-4 weeks after vaccination were tested for the pneumococcal opsonophagocytic assay (OPA). A total of 166 participants aged 18-64 (median 42) years were recruited, 159 completed the study. Compared with the other groups, Group A had significantly ( P  vaccination in seven serotypes of PCV13 (1, 3, 4, 5, 14, 18C and 9V). Additionally, Group A had lower frequency of serorises (≥ 4-fold rise in OPA titres) in serotype5 (79%, p = 0.01) and 18C (73.5%, p = 0.06); whereas Groups B and C had significantly lower frequencies of serorises in Serotype 4 (82%) and 6A (73.5%), respectively. No statistically significant difference was detected across the three groups in frequencies achieving OPA titre ≥ 1:8 post-vaccination. Tdap vaccination 3-4 weeks before administration of PCV13 and MCV4 significantly reduced the GMTs to seven of the 13 pneumococcal serotypes in adults. If multiple vaccination is required before travel, deferring tetanus/diphtheria until after administering the

  5. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    Directory of Open Access Journals (Sweden)

    Chia-Fong Wei

    Full Text Available A new pathogen, Pseudomonas syringae pv. averrhoi (Pav, which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta, glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns contributed to induce the PAMP-triggered immunity (PTI. Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  6. Plant Innate Immunity Induced by Flagellin Suppresses the Hypersensitive Response in Non-Host Plants Elicited by Pseudomonas syringae pv. averrhoi

    Science.gov (United States)

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction. PMID:22911741

  7. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice

    Science.gov (United States)

    Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel

    2014-01-01

    More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837

  8. Granulocyte-macrophage stimulating factor (GM-CSF increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Martinez Micaela

    2012-01-01

    Full Text Available Abstract Background Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory. Methods Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322 in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC expression of γ-interferon and T-bet transcription factor (Tbx21 by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points. Dendritic cells were defined as lineage (- and MHC class II high (+. Results 73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02 and ~5x excluding non-responders (3.2% to 14.5%, p Tbx21 levels declined by 75% following each chemotherapy cycle despite administration of GM-CSF (p = 0.02. PBMC γ-interferon expression, however was unchanged. Conclusions This clinical trial confirms the suppressive effects of chemotherapy on Th1 cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid-cycle administration of GM-CSF can significantly increase the proportion of circulating dendritic cells. As the role of dendritic cells in anti-tumor immunity becomes better defined, GM-CSF administration may provide a non-toxic intervention to augment this arm

  9. Natural CD8{sup +}25{sup +} regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim, E-mail: jim.xiang@saskcancer.ca

    2013-08-16

    Highlights: •CD8{sup +}25{sup +} regulatory T cells secrete tolerogenic exosomes. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4{sup +}25{sup +} and CD8{sup +}25{sup +} regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8{sup +}25{sup +} Tr cells from C57BL/6 mouse naive CD8{sup +} T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO{sub Tr}) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO{sub Tr} had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC{sub OVA}) plus Tr cells or EXO{sub Tr}, and then assessed OVA-specific CD8{sup +} T cell responses using PE-H-2K{sup b}/OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10{sub OVA} melanoma cells. We demonstrated that DC{sub OVA}-stimulated CD8{sup +} T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p < 0.05), and from 8/8 to 2/8 and 5/8 mice DC{sub OVA} (p < 0.05) in immunized mice with co-injection of Tr cells and EXO{sub Tr}, respectively. Our results indicate that natural CD8{sup +}25{sup +} Tr cell-released EXOs, alike CD8{sup +}25{sup +} Tr cells, can inhibit CD8{sup +} T cell responses and antitumor immunity. Therefore, EXOs derived from

  10. Loss of PPAR gamma in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Ferrer, Gerardo; Casagran, Oriol; Wankhade, Umesh; Noble, Alexis M; Eizirik, Decio L; Ortis, Fernanda; Cnop, Miriam; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2008-04-01

    Abscisic acid (ABA) is a natural phytohormone and peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that significantly improves insulin sensitivity in db/db mice. Although it has become clear that obesity is associated with macrophage infiltration into white adipose tissue (WAT), the phenotype of adipose tissue macrophages (ATMs) and the mechanisms by which insulin-sensitizing compounds modulate their infiltration remain unknown. We used a loss-of-function approach to investigate whether ABA ameliorates insulin resistance through a mechanism dependent on immune cell PPARgamma. We characterized two phenotypically distinct ATM subsets in db/db mice based on their surface expression of F4/80. F4/80(hi) ATMs were more abundant and expressed greater concentrations of chemokine receptor (CCR) 2 and CCR5 when compared to F4/80(lo) ATMs. ABA significantly decreased CCR2(+) F4/80(hi) infiltration into WAT and suppressed monocyte chemoattractant protein-1 (MCP-1) expression in WAT and plasma. Furthermore, the deficiency of PPARgamma in immune cells, including macrophages, impaired the ability of ABA to suppress the infiltration of F4/80(hi) ATMs into WAT, to repress WAT MCP-1 expression and to improve glucose tolerance. We provide molecular evidence in vivo demonstrating that ABA improves insulin sensitivity and obesity-related inflammation by inhibiting MCP-1 expression and F4/80(hi) ATM infiltration through a PPARgamma-dependent mechanism.

  11. Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    International Nuclear Information System (INIS)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim

    2013-01-01

    Highlights: •CD8 + 25 + regulatory T cells secrete tolerogenic exosomes. •CD8 + 25 + regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8 + 25 + regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4 + 25 + and CD8 + 25 + regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8 + 25 + Tr cells from C57BL/6 mouse naive CD8 + T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO Tr ) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO Tr had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC OVA ) plus Tr cells or EXO Tr , and then assessed OVA-specific CD8 + T cell responses using PE-H-2K b /OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10 OVA melanoma cells. We demonstrated that DC OVA -stimulated CD8 + T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p OVA (p Tr , respectively. Our results indicate that natural CD8 + 25 + Tr cell-released EXOs, alike CD8 + 25 + Tr cells, can inhibit CD8 + T cell responses and antitumor immunity. Therefore, EXOs derived from natural CD4 + 25 + and CD8 + 25 + Tr cells may become an alternative for immunotherapy of autoimmune diseases

  12. Suppression of Brugia malayi (sub-periodic larval development in Aedes aegypti (Liverpool strain fed on blood of animals immunized with microfilariae

    Directory of Open Access Journals (Sweden)

    K Athisaya Mary

    2005-07-01

    Full Text Available Preliminary studies were carried out to investigate the role of filarial specific antibodies, raised in an animal model against the filarial parasite, Brugia malayi (sub-periodic, in blocking their early development in an experimental mosquito host, Aedes aegypti (Liverpool strain. In order to generate filarial specific antibodies, Mongolian gerbils, Meriones unguiculatus, were immunized either with live microfilariae (mf of B. malayi or their homogenate. Mf were harvested from the peritoneal cavity of Mongolian gerbils with patent infection of B. malayi and fed to A. aegypti along with the blood from immunized animals. Development of the parasite in infected mosquitoes was monitored until they reached infective stage larvae (L3. Fewer number of parasites developed to first stage (L1 and subsequently to L2 and L3 in mosquitoes fed with blood of immunized animals, when compared to those fed with blood of control animals. The results thus indicated that filarial parasite specific antibodies present in the blood of the immunized animals resulted in the reduction of number of larvae of B. malayi developing in the mosquito host.

  13. Structure-function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune-suppressing activity from recognition

    NARCIS (Netherlands)

    Di, X.; Cao, L.; Hughes, R.K.; Tintor, N.; Banfield, M.J.; Takken, F.L.W.

    2017-01-01

    Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol

  14. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  15. Reversal of Human Papillomavirus-Specific T Cell Immune Suppression through TLR Agonist Treatment of Langerhans Cells Exposed to Human Papillomavirus Type 161

    Science.gov (United States)

    Fahey, Laura M.; Raff, Adam B.; Da Silva, Diane M.; Kast, W. Martin

    2009-01-01

    Human papillomavirus (HPV) type 16 infects the epithelial layer of cervical mucosa and is causally associated with the generation of cervical cancer. Langerhans cells (LC) are the resident antigen-presenting cells at the site of infection and therefore are responsible for initiating an immune response against HPV16. On the contrary, LC exposed to HPV16 do not induce a specific T cell immune response, which leads to the immune evasion of HPV16. Demonstrating that Toll-like receptor 7 (TLR7) and TLR8 are expressed on human LC, we hypothesized that imidazoquinolines would activate LC exposed to HPV16, leading to the induction of an HPV16-specific cell-mediated immune response. Surprisingly both phenotypic and functional hallmarks of activation are not observed when LC are exposed to HPV16 virus-like particles (VLP) and treated with imiquimod (TLR7 agonist). However, we found that LC are activated by 3M-002 (TLR8 agonist) and resiquimod (TLR8/7 agonist). LC exposed to HPV16 VLP and subsequently treated with 3M-002 or resiquimod highly up-regulate surface activation markers, secrete pro-inflammatory cytokines and chemokines, induce CCL21-directed migration, and initiate an HPV16-specific CD8+ T cell response. These data strongly indicate that 3M-002 and resiquimod are promising therapeutics for treatment of HPV-infections and HPV-induced cervical lesions. This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third

  16. Airway Mucosal Immune-suppression in Neonates of Mothers Receiving A(H1N1)pnd09 Vaccination During Pregnancy

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Bischoff, Anne L.; Folsgaard, Nilofar V.

    2015-01-01

    , IL-5, IL-13, eotaxin-1, eotaxin-3, TARC, MDC, IL-17, IL-1 beta, IL-8, transforming growth factor beta (TGF)-beta 1, IL-10 and IL-2. Infections were monitored the first year of life by daily diary cards and clinical controls. Results: Neonates of mothers vaccinated during pregnancy had significant up...... significant and positive association to up-regulation of TGF-beta 1 levels (P = 0.0003) and significant negative association to other mediators. The study was not powered to study differences in the incidence of infections in early infancy which did not differ between the study groups. Conclusion: Influenza A......(H1N1) pnd09 vaccination during pregnancy up-regulates TGF-beta 1 and down-regulates key mediators of the protective immunity....

  17. microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Anti-tumor Immune Response and Poor Outcomes of Patients.

    Science.gov (United States)

    Mari, Luigi; Hoefnagel, Sanne J M; Zito, Domenico; van de Meent, Marian; van Endert, Peter; Calpe, Silvia; Sancho Serra, Maria Del Carmen; Heemskerk, Mirjam H M; van Laarhoven, Hanneke W M; Hulshof, Maarten C C M; Gisbertz, Susanne S; Medema, Jan Paul; van Berge Henegouwen, Mark I; Meijer, Sybren L; Bergman, Jacques J G H M; Milano, Francesca; Krishnadath, Kausilia K

    2018-06-07

    Immune checkpoint inhibition may affect growth or progression of highly aggressive cancers, such as esophageal adenocarcinoma (EAC). We investigated the regulation of expression of major histocompatibility complex, class 1 (MHC-I) proteins (encoded by HLA-A, HLA-B, and HLA-C) and the immune response to EACs in patient samples. We performed quantitative PCR array analyses of OE33 cells and OE19 cells, which express different levels of the ATP binding cassette subfamily B member 1 (TAP1) and TAP2, required for antigen presentation by MHC-I, to identify microRNAs that regulate their expression. We performed luciferase assays to validate interactions between microRNAs and potential targets. We overexpressed candidate microRNAs in OE33, FLO-1, and OACP4 C cell lines and performed quantitative PCR, immunoblot, and flow cytometry analyses to identify changes in mRNA and protein expression; we studied the effects of cytotoxic T cells. We performed microRNA in situ hybridization, RNA-sequencing, and immunohistochemical analyses of tumor tissues from 51 untreated patients with EAC in the Netherlands. Clinical and survival data were collected for patients, and EACs subtypes were determined. We found OE19 cells to have increased levels of 7 microRNAs. Of these, we found binding sites for microRNA 125a (MIR125a)-5p in the 3'UTR of the TAP2 mRNA and binding sites for MIR148a-3p in 3'UTRs of HLA-A, HLA-B, and HLA-C mRNAs. Overexpression of these microRNAs reduced expression of TAP2 in OE33, FLO-1, and OACP4 C cells, and reduced cell-surface levels of MHC-I. OE33 cells that expressed the viral peptide BZLF1 were killed by cytotoxic T cells, whereas OE33 that overexpressed MIR125a-5p or MIR 148a along with BZLF1 were not. In EAC and non-tumor tissues, levels of MIR125a-5p correlated inversely with levels of TAP2 protein. High expression of TAP1 by EAC correlated with significantly shorter overall survival times of patients. EACs that expressed high levels of TAP1 and genes involved

  18. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas

    DEFF Research Database (Denmark)

    Brown, P J; Wong, K K; Felce, S L

    2016-01-01

    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II......) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes......, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (PABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone...

  19. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Liu, Qinfang; Bing, Guoxia; Hu, Zhe; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua; Sun, Yipeng

    2017-08-01

    Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Epithelium Expressing the E7 Oncoprotein of HPV16 Attracts Immune-Modulatory Dendritic Cells to the Skin and Suppresses Their Antigen-Processing Capacity.

    Directory of Open Access Journals (Sweden)

    Janin Chandra

    Full Text Available Antigen presenting cells (APCs in skin can promote either antigen-specific effector functions or antigen tolerance, and thus determine clearance or persistence of cutaneous viral infections. Human papillomavirus (HPV infections can persist in squamous epithelium in immunocompetent individuals, and some persisting HPV infections, particularly with HPV16, promote malignant epithelial transformation. Here, we investigate whether local expression of the HPV16 protein most associated with malignant transformation, HPV16-E7, affects the phenotype and function of APC subsets in the skin. We demonstrate an expanded population of Langerhans cells in HPV16-E7 transgenic skin with distinct cell surface markers which express immune-modulatory enzymes and cytokines not expressed by cells from non transgenic skin. Furthermore, HPV16-E7 transgene expression in keratinocytes attracts new APC subsets to the epidermis. In vivo migration and transport of antigen to the draining lymph node by these APCs is markedly enhanced in HPV16-E7 expressing skin, whereas antigen-processing, as measured by proteolytic cleavage of DQ-OVA and activation of T cells in vivo by APCs, is significantly impaired. These data suggest that local expression of HPV16-E7 in keratinocytes can contribute to persisting infection with this oncogenic virus, by altering the phenotype and function of local APCs.

  1. Ochratoxin A inhibits the production of tissue factor and plasminogen activator inhibitor-2 by human blood mononuclear cells: Another potential mechanism of immune-suppression

    International Nuclear Information System (INIS)

    Rossiello, Maria R.; Rotunno, Crescenzia; Coluccia, Addolorata; Carratu, Maria R.; Di Santo, Angelomaria; Evangelista, Virgilio; Semeraro, Nicola; Colucci, Mario

    2008-01-01

    The mycotoxin ochratoxin A (OTA), an ubiquitous contaminant of food products endowed with a wide spectrum of toxicity, affects several functions of mononuclear leukocytes. Monocytes/macrophages play a major role in fibrin accumulation associated with immune-inflammatory processes through the production of tissue factor (TF) and plasminogen activator inhibitor 2 (PAI-2). We studied the effect of OTA on TF and PAI-2 production by human blood mononuclear cells (MNC). The cells were incubated for 3 or 18 h at 37 deg. C with non toxic OTA concentrations in the absence and in the presence of lipopolysaccharide (LPS) or other inflammatory agents. TF activity was measured by a one-stage clotting test. Antigen assays were performed by specific ELISAs in cell extracts or conditioned media and specific mRNAs were assessed by RT-PCR. OTA had no direct effect on TF and PAI-2 production by MNC. However, OTA caused a dose-dependent reduction in LPS-induced TF (activity, antigen and mRNA) and PAI-2 (antigen and mRNA) production with > 85% inhibition at 1 μg/ml. Similar results were obtained when monocyte-enriched preparations were used instead of MNC. TF production was also impaired by OTA (1 μg/ml) when MNC were stimulated with phorbol myristate acetate (98% inhibition), IL-1β (83%) or TNF-α (62%). The inhibition of TF and PAI-2 induction might represent a hitherto unrecognized mechanism whereby OTA exerts immunosuppressant activity

  2. Effects of atorvastatin on biomarkers of immune activation, inflammation, and lipids in virologically suppressed, human immunodeficiency virus-1-infected individuals with low-density lipoprotein cholesterol <130 mg/dL (AIDS Clinical Trials Group Study A5275).

    Science.gov (United States)

    Nixon, Daniel E; Bosch, Ronald J; Chan, Ellen S; Funderburg, Nicholas T; Hodder, Sally; Lake, Jordan E; Lederman, Michael M; Klingman, Karin L; Aberg, Judith A

    Persistent immune activation and inflammation in virologically suppressed human immunodeficiency virus (HIV) infection are linked to excess cardiovascular risk. To evaluate atorvastatin as a strategy to reduce cardiovascular risk. A5275 was a multicenter, prospective, randomized, double-blind, placebo-controlled, cross-over pilot study of atorvastatin (10 mg/day for 4 weeks then 20 mg/day for 16 weeks) with a planned enrollment of 97 HIV-infected participants ≥18 years old, receiving boosted protease inhibitor-based antiretroviral therapy for ≥6 months, with plasma HIV-1 RNAs below limits of quantification ≥180 days, and fasting low-density lipoprotein (LDL) cholesterol ≥70 and atorvastatin treatment. Analyses were as-treated. Ninety-eight participants were enrolled at 31 U S sites and 73 completed study treatment. Atorvastatin treatment did not decrease T-lymphocyte or monocyte activation, circulating biomarker levels (interleukin-6, D-dimer, soluble CD14, soluble CD163, monocyte chemoattractant protein-1, interferon-gamma-induced protein-10, high-sensitivity C-reactive protein, CD40L, and P-selectin) or white blood cell Krüppel-like Factor 2/4 messenger RNA levels. Pre-to-post atorvastatin reductions in calculated LDL (-38%), oxidized-LDL (-33%), and lipoprotein-associated phospholipase A2 (-31%) were significant (P atorvastatin did not significantly decrease levels of soluble or cellular biomarkers of immune activation and inflammation but resulted in robust reductions in LDL cholesterol, oxLDL, and lipoprotein-associated phospholipase A 2 , biomarkers associated with cardiovascular risk. Copyright © 2016 National Lipid Association. All rights reserved.

  3. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... inhibitors (PIs), have resulted in significant suppression of viral replication. ... thymus, with the potential for immune reconstitution when ..... HIV-exposed but uninfected Gambian women [published erratum appears in. Nat Med ...

  4. T- and NK-cell populations with regulatory phenotype and markers of apoptosis in circulating lymphocytes of patients with CIN3 or microcarcinoma of the cervix: evidence for potential mechanisms of immune suppression.

    Science.gov (United States)

    Kurmyshkina, Olga V; Kovchur, Pavel I; Schegoleva, Ludmila V; Volkova, Tatyana O

    2017-01-01

    Processes and mechanisms responsible for systemic immune suppression in early-stage cervical cancer remain substantially underinvestigated. In this work, we focused on studying the frequencies of circulating regulatory T (CD4 and CD8 Tregs) and NK (NKregs) cells in parallel with assessment of apoptotic markers expression in T cells from patients with preinvasive and microinvasive cervical cancer, with the aim to determine whether up-regulation of apoptosis-associated markers in Т lymphocytes accompanies cervical cancer development and correlates with the change in percentages of regulatory cell populations at systemic level during the initial stages of invasive cervical cancer progression. Fourty two women with histologically confirmed cervical intraepithelial neoplasia grade 3 (CIN3, including carcinoma in situ) or cervical cancer (stage IA) and 30 healthy women (control) were enrolled in the study. Peripheral blood samples were taken immediately before surgery or any treatment and immediately subjected to multicolor flow cytometry. Analysis of a combination of CD4/CD8, CD25, CD127, and FoxP3 markers revealed a statistically significant increase in the frequencies of Tregs within both the CD4 and CD8 subsets of circulating lymphocytes in patients with CIN3 and stage IA cancer. In contrast, lower numbers of NKregs (defined as CD16 dim/neg CD56 bright subpopulation) and increased CD56 dim /CD56 bright NK ratio were found in patients compared to controls, with the percentage of CD16 bright CD56 dim cells (major subtype of circulating NKs) showing no difference. Patients also exhibited an increased expression of CD95 in total peripheral blood T lymphocytes, along with increased level of Annexin V binding to CD95-positive cells, suggesting higher susceptibility of T cells to apoptosis and potential involvement of CD95-dependent pathway in early-stage cervical cancer. Differential analysis of CD4 and CD8 T cells revealed different trends in the change of CD95

  5. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  6. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  7. Induction of antitumor immunity through xenoplacental immunization

    Directory of Open Access Journals (Sweden)

    Agadjanyan Michael G

    2006-05-01

    Full Text Available Abstract Historically cancer vaccines have yielded suboptimal clinical results. We have developed a novel strategy for eliciting antitumor immunity based upon homology between neoplastic tissue and the developing placenta. Placenta formation shares several key processes with neoplasia, namely: angiogenesis, activation of matrix metalloproteases, and active suppression of immune function. Immune responses against xenoantigens are well known to break self-tolerance. Utilizing xenogeneic placental protein extracts as a vaccine, we have successfully induced anti-tumor immunity against B16 melanoma in C57/BL6 mice, whereas control xenogeneic extracts and B16 tumor extracts where ineffective, or actually promoted tumor growth, respectively. Furthermore, dendritic cells were able to prime tumor immunity when pulsed with the placental xenoantigens. While vaccination-induced tumor regression was abolished in mice depleted of CD4 T cells, both CD4 and CD8 cells were needed to adoptively transfer immunity to naïve mice. Supporting the role of CD8 cells in controlling tumor growth are findings that only freshly isolated CD8 cells from immunized mice were capable of inducing tumor cell caspases-3 activation ex vivo. These data suggest feasibility of using xenogeneic placental preparations as a multivalent vaccine potently targeting not just tumor antigens, but processes that are essential for tumor maintenance of malignant potential.

  8. Evasion and suppression of plant immunity

    NARCIS (Netherlands)

    Pel, M.J.C.

    2013-01-01

    Every year up to 20% of the crop production with an economical value of almost 200 billion euro is lost due to plant diseases. To be able to develop effective and durable strategies to counteract these plant diseases, understanding the mechanisms that enable pathogens to cause disease is essential.

  9. Interocular suppression

    Science.gov (United States)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  10. Immune-Neuroendocrine Interactions and Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Luis J. Jara

    2006-01-01

    Full Text Available The relationship between immune-neuroendocrine system is firmly established. The messengers of this connection are hormones, neuropeptides, neurotransmitters and cytokines. The immune-neuroendocrine system have the capacity to synthesize and release these molecules, which, in turn, can stimulate or suppress the activity of immune or neuroendocrine cells by binding to receptors. In fact, hormones, neuropeptides and neurotransmitters participate in innate and adaptive immune response.

  11. Evaluation of Traditional Medicines III: The Mechanism of Immune ...

    African Journals Online (AJOL)

    These results show that PHELA did not stimulate Th1 cytokines of a normal immune system but stimulated them when the immune system was suppressed by cyclosporine-A. In conclusion, PHELA is an immune-stimulant to a compromised immune system. Key words: PHELA, traditional medicine, cyclosporine-A, cytokines, ...

  12. Immune response gene control of collagen reactivity in man: collagen unresponsiveness in HLA-DR4 negative nonresponders is due to the presence of T-dependent suppressive influences

    International Nuclear Information System (INIS)

    Solinger, A.M.; Stobo, J.D.

    1982-01-01

    To determine whether the failure to detect collagen reactivity in nonresponders represents an absence of collagen-reactive T cells or a preponderance of suppressive influences, the peripheral blood mononuclear cells from HLA-DR4 - individuals were subjected to three procedures capable of separating suppressive influences from LIF-secreting cells; irradiation (1000 rad), discontinuous gradient fractionation, and cytolysis with the monoclonal antibody OKT 8. Each procedure resulted in the specific appearance of reactivity to collagen, which was identical to that seen in HLA-DR4 + individuals with regard to its cellular requirements and antigenic specificity. Addition of unresponsive (i.e., nonirradiated or low-density T cells) to responsive (i.e., irradiated or high-density T cells) autologous populations resulted in specific suppression of collagen reactivity. Radiation-sensitive suppressive influences could not be detected in HLA-DR4 + collagen responders.These studies indicate that the expression of T-dependent reactivity to collagen in man reflects the net influence of collage-reactive vs collagen-suppressive T cells. Moreover, it is the influence of HLA-D-linked genes on the development of suppressive influences rather than on the development of collagen-reactive, LIF-secreting T cells that serves to distinguish HLA-DR4 + collagen responders from HLA-DR4 - collagen nonresponders

  13. Childhood Immunization

    Science.gov (United States)

    ... lowest levels in history, thanks to years of immunization. Children must get at least some vaccines before ... child provide protection for many years, adults need immunizations too. Centers for Disease Control and Prevention

  14. Immunizations - diabetes

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000331.htm Immunizations - diabetes To use the sharing features on this page, please enable JavaScript. Immunizations (vaccines or vaccinations) help protect you from some ...

  15. Immunization Coverage

    Science.gov (United States)

    ... room/fact-sheets/detail/immunization-coverage","@context":"http://schema.org","@type":"Article"}; العربية 中文 français русский español ... Plan Global Health Observatory (GHO) data - Immunization More information on vaccines and immunization News 1 in 10 ...

  16. Dynamics of immune system vulnerabilities

    Science.gov (United States)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  17. Immunizing Children

    Directory of Open Access Journals (Sweden)

    Geraldine Jody Macdonald

    2014-11-01

    Full Text Available This article addresses the complex contexts within which Canadian health professionals engage in immunizing children and focuses on the Canadian practice guidelines and current scientific evidence that direct Canadian health professional competencies. The article begins by presenting two current global vaccine initiatives and links these to immunization in Canada. A selected literature review identifies current best immunization practices. With the purpose of promoting quality improvement, three key Canadian immunization competencies for health professional are highlighted: communication with parents, including those who are experiencing vaccine hesitancy; administration of immunizing agents; and documentation of immunizations. Health professionals are encouraged to reflect on immunization competencies and ensure evidence-based practices underpin vaccine delivery in their primary care settings.

  18. Filoviral Immune Evasion Mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher F. Basler

    2011-09-01

    Full Text Available The Filoviridae family of viruses, which includes the genera Ebolavirus (EBOV and Marburgvirus (MARV, causes severe and often times lethal hemorrhagic fever in humans. Filoviral infections are associated with ineffective innate antiviral responses as a result of virally encoded immune antagonists, which render the host incapable of mounting effective innate or adaptive immune responses. The Type I interferon (IFN response is critical for establishing an antiviral state in the host cell and subsequent activation of the adaptive immune responses. Several filoviral encoded components target Type I IFN responses, and this innate immune suppression is important for viral replication and pathogenesis. For example, EBOV VP35 inhibits the phosphorylation of IRF-3/7 by the TBK-1/IKKε kinases in addition to sequestering viral RNA from detection by RIG-I like receptors. MARV VP40 inhibits STAT1/2 phosphorylation by inhibiting the JAK family kinases. EBOV VP24 inhibits nuclear translocation of activated STAT1 by karyopherin-α. The examples also represent distinct mechanisms utilized by filoviral proteins in order to counter immune responses, which results in limited IFN-α/β production and downstream signaling.

  19. Immunity to fish rhabdoviruses

    Science.gov (United States)

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  20. Immunity to fish rhabdoviruses.

    Science.gov (United States)

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  1. Immunity to Fish Rhabdoviruses

    Directory of Open Access Journals (Sweden)

    Maureen K. Purcell

    2012-01-01

    Full Text Available Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M protein to mediate host-cell shutoff and the non‑virion (NV protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  2. Reversibility of alcohol-induced immune depression

    DEFF Research Database (Denmark)

    Tønnesen, H; Kaiser, A H; Nielsen, B B

    1992-01-01

    Alcohol abusers have suppressed cellular immune function. The aim of the study was to investigate the time of sobriety required to normalize immune function. Delayed hypersensitivity was investigated during disulfiram controlled abstinence in ten heavy alcoholics and in seven moderate drinkers...... months of abstinence. The results suggest that while 2 weeks of abstinence from alcohol will improve the depressed cellular immunity, 2 months of sobriety is necessary to normalize it....

  3. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  4. Malaria in immuno-suppressed individuals on antiretroviral therapy ...

    African Journals Online (AJOL)

    Malaria in immuno-suppressed individuals on antiretroviral therapy (ART) in north-central Nigeria. C.R. Pam, B.T. Abubakar, G.O. Inwang, G.A. Amuga. Abstract. The immune deficiency caused by HIV infection reduces the immune response to malaria parasitaemia and therefore leads to an increased frequency of clinical ...

  5. Immunomodulator, immunosuppression of radiation and immune reconstruction

    International Nuclear Information System (INIS)

    Mao Jianping; Fang Jing; Zhou Ying; Cui Yufang; Jiang Zhujun; Du Li; Ma Qiong

    2010-01-01

    There is a refined and complicated regulatory network between immune cells, and between immune cells and secretory factors. The immune system is kept in a homeostasis and equilibrium by positive activation and negative inhibition. In recent years, the mechanisms of immunosuppression in depth for successful allograft transplantation were studied, and many immunosuppressants and immunosuppressive drugs have been developed for clinical use. Most of them are targeting T cell receptors and three kinds of singnal pathways. The receptors of the immunosuppression were either found highly expressed in immune cells after irradiation. To relieve the suppression by regulating the receptors could help the immune reconstruction out of radiation damage. Many new immunoenhancers have been discovered to improve the immune system function for radiation by Toll-like receptors. The search for new immunoenhancers and agents for relieving immunosuppression is of great importance to immune construction for radiation sickness. (authors)

  6. Immunity booster

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae 558 ) and of the Gram-negative ones (Klebsiella pneumoniae 507 ); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as

  7. Cord blood mesenchymal stem cells suppress DC-T Cell proliferation via prostaglandin B2

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Jansen, B.J.H.; Snowden, S.; Siebers-Vermeulen, K.G.C.; Gilissen, C.; Kogler, G.; Figdor, C.G.; Wheelock, C.E.; Torensma, R.

    2014-01-01

    Immune suppression is a very stable property of multipotent stromal cells also known as mesenchymal stem cells (MSCs). All cell lines tested showed robust immune suppression not affected by a long culture history. Several mechanisms were described to account for this capability. Since several of the

  8. Innate immunity

    African Journals Online (AJOL)

    Ronnie Anderson is Director of the Medical Research Council Unit for Inflammation and Immunity. ... field have included macrophage, T cell, cytokine and cytokine activated killer cell interactions .... monocytes, mast cells, lymphocytes, eccrine.

  9. Childhood immunization

    Science.gov (United States)

    Romain, Sandra; Schillaci, Michael A.

    2009-01-01

    ABSTRACT OBJECTIVE To examine childhood immunization levels relative to the number of family physicians, pediatricians, and public health nurses in Ontario. DESIGN Retrospective comparative analysis of publicly available data on immunization coverage levels and the relative number of family physicians, pediatricians, and public health nurses. SETTING Ontario. PARTICIPANTS Seven-year-old children, family physicians, pediatricians, and public health nurses in Ontario. MAIN OUTCOME MEASURES The association between immunization coverage levels and the relative number of family physicians, pediatricians, and public health nurses. RESULTS We found correlations between immunization coverage levels and the relative number (ie, per 1000 Ontario residents) of family physicians (ρ = 0.60) and pediatricians (ρ = 0.70) and a lower correlation with the relative number of public health nurses (ρ = 0.40), although none of these correlations was significant. A comparison of temporal trends illustrated that variation in the relative number of family physicians and pediatricians in Ontario was associated with similar variation in immunization coverage levels. CONCLUSION Increasing the number of family physicians and pediatricians might help to boost access to immunizations and perhaps other components of cost-saving childhood preventive care. PMID:19910599

  10. State of immune system lesions eymeriozo turkey-invasions histomonoznoyu

    OpenAIRE

    CHARIV I.

    2011-01-01

    The immune system of animals and birds provides resistance against bacterial and viral infections. In the intestinal mucosa and eymeriyi histomonady produce metabolic products that are toxic to different systems and tissues of turkeys. They parasitizing in the intestine, suppress specific phase of immunity provided by antibodies (humoral type), reduce activity sensitized cells (cell type), slow phase of nonspecific immunity, which is represented by various immune cells.

  11. Strategies to enhance immune function for marathon runners : what can be done?

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Pedersen, Bente K

    2007-01-01

    immune cells. During this period of immune suppression, by some referred to as an 'open window' in immune function, it has been hypothesised that viruses and bacteria might gain a foothold, which would increase the risk of infections. In light of this, nutritional interventions that can enhance immune...

  12. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  13. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  14. Deconstructing continuous flash suppression

    OpenAIRE

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in co...

  15. Effects of ultraviolet radiation on the immune system in humans

    International Nuclear Information System (INIS)

    Morison, W.L.

    1989-01-01

    In experimental animals, exposure to UV-B radiation produces selective alterations of immune function which are mainly in the form of suppression of normal immune responses. This immune suppression is important in the development of nonmelanoma skin cancer, may influence the development and course of infectious disease and possibly protects against autoimmune reactions. The evidence that this form of immune suppression occurs in humans is less compelling and very incomplete. The wavelengths of radiation most affected by a depletion of the stratospheric ozone layer are those known to be most immunosuppressive in animals and it is likely that such depletion will increase any suppressive effect of sunlight on immunity in humans. In addition to establishing whether or not UV-B radiation can cause suppression of immune function in humans, studies are required to determine if melanin can provide protection against such suppression, the role of this suppression in the pathogenesis of skin cancer, the development of infectious disease and vaccine effectiveness, and the capacity for humans to develop adaptive, protective mechanisms which may limit damage from continued exposure to UV-B radiation. (author)

  16. Incomplete immune recovery in HIV infection

    DEFF Research Database (Denmark)

    Gaardbo, Julie C; Hartling, Hans J; Gerstoft, Jan

    2012-01-01

    -infected patients do not achieve optimal immune reconstitution despite suppression of viral replication. These patients are referred to as immunological nonresponders (INRs). INRs present with severely altered immunological functions, including malfunction and diminished production of cells within lymphopoetic...... tissue, perturbed frequencies of immune regulators such as regulatory T cells and Th17 cells, and increased immune activation, immunosenescence, and apoptosis. Importantly, INRs have an increased risk of morbidity and mortality compared to HIV-infected patients with an optimal immune reconstitution....... Additional treatment to HAART that may improve immune reconstitution has been investigated, but results thus far have proved disappointing. The reason for immunological nonresponse is incompletely understood. This paper summarizes the known and unknown factors regarding the incomplete immune reconstitution...

  17. Immune function in arctic mammals

    DEFF Research Database (Denmark)

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus...... the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can...... contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility....

  18. Immune tolerance in radiation chimeras

    International Nuclear Information System (INIS)

    Awaya, Kazuhiko; Kuniki, Hiromichi; Neki, Miyuki

    1978-01-01

    Establishment of immune tolerance in radiation chimeras and the mechanism of maintaining it were discussed from certain points. Semiallogeneic radiation chimeras are mostly of long-living, and the hematopoietic organ of this individual consists mainly of the cells derived from the marrow donor, i. e., F 1 -type cells. F 1 -type lymphocytes can distinguish parental strain cells from themselves. In these chimeras, a F 1 -skin graft maintains to be fresh as long as the host is alive, showing immune tolerance effective through its life. In establishment and maintenance of this immune tolerance, the suppressing mechanism of host-type or F 1 -type seems to be involved. The allogeneic radiation chimera has very poor long-survival rate compared with that of the semiallogeneic radiation chimera. To raise this survival rate, efforts are now being made from the immunological point of view. (Ueda, J.)

  19. Immune System

    Science.gov (United States)

    ... of the Immune System Print en español El sistema inmunitario Whether you're stomping through the showers ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on TeensHealth® is for ...

  20. Immunizing Adults

    Centers for Disease Control (CDC) Podcasts

    Vaccines aren’t just for kids; adults also need to get immunized. Overall, far too many people 19 years and older aren’t getting the vaccines they need and remain unprotected. In this podcast, Dr. Walter Williams discuss the importance of adults being fully vaccinated.

  1. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  2. Adult Immunization

    Directory of Open Access Journals (Sweden)

    Omer Coskun

    2008-04-01

    Full Text Available Despite the many advances in modern medicine, each year thousands of people in the world die from diseases that are easily prevented by safe and effective vaccines. Few measures in preventive medicine are of such proven value and as easy to implement as routine immunization against infectious diseases. Prevention of infection by immunization is a lifelong process. There are a number of vaccines that all adults (¡I18 years require. There are also other vaccines that need to be tailored to meet individual variations in risk resulting from occupation, foreign travel, underlying illness, lifestyle and age. In this study, we tried to review this important subject. [TAF Prev Med Bull 2008; 7(2.000: 159-166

  3. Exosomes as a tumor immune escape mechanism: possible therapeutic implications

    Directory of Open Access Journals (Sweden)

    Hanley Harold H

    2008-07-01

    Full Text Available Abstract Advances in cancer therapy have been substantial in terms of molecular understanding of disease mechanisms, however these advances have not translated into increased survival in the majority of cancer types. One unsolved problem in current cancer therapeutics is the substantial immune suppression seen in patients. Conventionally, investigations in this area have focused on antigen-nonspecific immune suppressive molecules such as cytokines and T cell apoptosis inducing molecules such as Fas ligand. More recently, studies have demonstrated nanovesicle particles termed exosomes are involved not only in stimulation but also inhibition of immunity in physiological conditions. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules such as PD-1L and FasL. Concentrations of exosomes from plasma of cancer patients have been associated with spontaneous T cell apoptosis, which is associated in some situations with shortened survival. In this paper we place the "exosome-immune suppression" concept in perspective of other tumor immune evasion mechanisms. We conclude by discussing a novel therapeutic approach to cancer immune suppression by extracorporeal removal of exosomes using hollow fiber filtration technology

  4. Immunizations for Preterm Babies

    Science.gov (United States)

    ... Issues Health Issues Health Issues Conditions Injuries & Emergencies Vaccine Preventable Diseases ... Children > Safety & Prevention > Immunizations > Immunizations For Preterm Babies Safety & ...

  5. Weakened Immune Systems

    Science.gov (United States)

    ... Issues Health Issues Health Issues Conditions Injuries & Emergencies Vaccine Preventable Diseases ... Children > Safety & Prevention > Immunizations > Weakened Immune Systems Safety & Prevention ...

  6. Immunizations: Active vs. Passive

    Science.gov (United States)

    ... Issues Health Issues Health Issues Conditions Injuries & Emergencies Vaccine Preventable Diseases ... Children > Safety & Prevention > Immunizations > Immunizations: Active vs. Passive Safety & ...

  7. Deconstructing continuous flash suppression.

    Science.gov (United States)

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  8. Innate and Adaptive Immunity to Mucorales.

    Science.gov (United States)

    Ghuman, Harlene; Voelz, Kerstin

    2017-09-05

    Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50-100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system's failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis.

  9. Monounsaturated fats and immune function

    Directory of Open Access Journals (Sweden)

    P. Yaqoob

    1998-04-01

    Full Text Available Animal studies suggest that olive oil is capable of modulating functions of cells of the immune system in a manner similar to, albeit weaker than, fish oils. There is some evidence that the effects of olive oil on immune function in animal studies are due to oleic acid rather than to trace elements or antioxidants. Importantly, several studies have demonstrated effects of oleic acid-containing diets on in vivo immune responses. In contrast, consumption of a monounsaturated fatty acid (MUFA-rich diet by humans does not appear to bring about a general suppression of immune cell functions. The effects of this diet in humans are limited to decreasing aspects of adhesion of peripheral blood mononuclear cells, although there are trends towards decreases in natural killer cell activity and proliferation. The lack of a clear effect of MUFA in humans may be attributable to the higher level of monounsaturated fat used in the animal studies, although it is ultimately of importance to examine the effects of intakes which are in no way extreme. The effects of MUFA on adhesion molecules are potentially important, since these molecules appear to have a role in the pathology of a number of diseases involving the immune system. This area clearly deserves further exploration

  10. Immune restoration in the context of HAART | Martin | Southern ...

    African Journals Online (AJOL)

    HAART induces a sustained effective suppression of HIV replication in most patients and leads to a preservation or restoration of immune function. The restoration of an impaired immune system is assessed by clinical parameters, immunological changes which can be measured in the laboratory and a marked reduction in ...

  11. A role for PML in innate immunity

    NARCIS (Netherlands)

    A. Lunardi (Andrea); M. Gaboli (Mirella); M. Giorgio (Marco); R. Rivi (Roberta); A. Bygrave (Anne); D.D. Drabek (Dubravka); E.A. Dzierzak (Elaine); M. Fagioli (Marta); L. Salmena (Leonardo); M. Antoniou (Michael); M. Botto (Marina); C. Cordon-Cardo (Carlos); L. Luzzatto (Lucio); P.G. Pelicci; F.G. Grosveld (Frank); P.P. Pandolfi

    2011-01-01

    textabstractThe promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune

  12. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion

    DEFF Research Database (Denmark)

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E

    2016-01-01

    Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cel...

  13. The effect of oral immunization on the population of lymphocytes migrating to the mammary gland of the sow

    NARCIS (Netherlands)

    Dijk, J.E. van; Kortbeek-Jacobs, J.M.C.; Kooten, P.J.S. van; Donk, J.A. van der; Rutten, V.P.M.G.

    1984-01-01

    Sows were immunized orally with live Escherichia coli according to various immunization schedules. Six pregnant gilts were used; 4 immunized at various intervals during the last month of gestation, 1 control immunized after parturition following suppression of lactation by weaning and 1

  14. Modulation of immune response by alloactivated suppressor T cells

    International Nuclear Information System (INIS)

    Bernstein, A.; Sopori, M.L.; Gose, J.E.; Sondel, P.M.

    1979-01-01

    These studies show that there may be several different kinds of suppressor cells, each activated by different pathways and able to suppress different parts of the immune response either specifically or nonspecifically. As such, the physiology of one type of suppressor cell need not necessarily apply to that of another type of suppressor. Thus we emphasize the trap that the suppressor cell option provides: that is, virtually any previously inexplicable in vitro and in vivo immune phenomenon can always be adequately accounted for by evoking a suppressor mechanism, either by suppressing the response or suppressing the suppressor

  15. Effects of inhaled insoluble 239PuO2 on immune responses following lung immunization

    International Nuclear Information System (INIS)

    Bice, D.E.; Harris, D.L.; Brooks, A.L.; Mewhinney, J.A.

    1978-01-01

    To determine if inhaled 239 PuO 2 suppresses immunity in lung-associated lymph nodes, Chinese hamsters were exposed to a polydisperse aerosol of 239 PuO 2 produced at 1150 0 C. The mean lung burden of these animals was estimated to be 10 nCi at 8 days after exposure. At 128, 256 and 400 days after exposure, sham exposed controls and experimental animals were immunized by intratracheal instillation of 1 x 10 8 sheep red blood cells (SRBC). Six days later, they were sacrificed and the number of antibody forming cells (AFC) in lung-associated lymph nodes, spleen and cervical lymph nodes was evaluated. Results of these studies indicated that the number of AFC in lung-associated lymph modes was significantly lower in animals exposed to 239 PuO 2 . Only a few AFC were found in spleen and cervical lymph nodes after intratracheal immunization and the number in exposed animals was not significantly different than in the controls. These data indicate that even though the 239 PuO 2 exposure had suppressed immune responses in lung-associated lymph nodes, their filtering capacity was unaffected and antigen did not translocate to the spleen. We conclude that, at the sacrifice intervals evaluated, the immune function of lung-associated lymph nodes was suppressed and that distant lymphoid tissue (e.g., spleen and cervical lymph nodes) did not replace the immune function of the lung-associated lymph nodes

  16. Integrated Circuit Immunity

    Science.gov (United States)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  17. Demonstration and suppression of a radioresistant host-versus-graft reaction

    International Nuclear Information System (INIS)

    Thierfelder, S.; Roessler, R. v.; Ruppelt, W.

    1975-01-01

    The possibilities of suppressing and measuring a radioresistant host-versus-graft reaction are described. According to the authors, the host-versus-graft immune reaction may outlast whole-body irradiation at high doses. (BSC/AK) [de

  18. Complement anaphylatoxins as immune regulators in cancer.

    Science.gov (United States)

    Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T

    2014-08-01

    The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  19. Immunotherapy of metastatic melanoma by reversal of immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, M.W.; Eiselein, J.E.

    1997-01-01

    Beginning with the observation that the human enteorvirus, Poliovirus Sabin 1, will lyse human melanoma cells in culture, clinical trials involving two patients with advance melanoma were performed. Parenteral injection of the viable Poliovirus into cutaneous melanoma metastases followed in 24 hours by oral administration of cyclophosphamide. The results of these two trials are described.

  20. Legionella pneumophila lung abscess associated with immune suppression.

    Science.gov (United States)

    Guy, S D; Worth, L J; Thursky, K A; Francis, P A; Slavin, M A

    2011-10-01

    Legionella species are a common cause of community-acquired pneumonia, infrequently complicated by cavitary disease. We describe Legionella pneumophila pneumonia and abscess formation in an immunosuppressed patient receiving corticosteroid therapy for metastatic breast carcinoma. The predisposing role of corticosteroids is discussed and the management of this complication is reviewed. © 2011 The Authors. Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  1. Immune activation suppresses plasma testosterone level : a meta-analysis

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Ros, Albert H. F.; Verhulst, Simon

    2008-01-01

    Females often select mates on the basis of sexual signals, which can be reliable indicators of male quality when the costliness of these signals prevents cheating. The immunocompetence handicap hypothesis (ICHH) provides a mechanistic explanation of these costs, by proposing a trade-off between

  2. Breast Cancer Vaccines That Overcome Tolerance and Immune Suppression

    Science.gov (United States)

    2011-01-01

    activate healthy donor T cells” American Associaiton of Immunolgists 98th Annual meeting. San- Francisco , CA. May 13-17, 2011, abstract submitted. 9...Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67, 4507-4513 12. Rodriguez , P.C., Hernandez, C.P., Quiceno... Santo , J.P., Apte, R.N. and Vosshenrich, C.A. (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development

  3. Suppressed without a Cause: A Case of Idiopathic Immune Deficiency.

    Science.gov (United States)

    Ayub, Muhammad Talha; Jafar, Munnam S; Khalid, Muhammad; Baig, Muhammad A; Mba, Benjamin

    2018-01-01

    We report a case of a 45-year-old male who presented with a headache, fever, vomiting, somnolence, and difficulty walking for 10 days. His cerebrospinal fluid studies revealed cryptococcal meningitis. Chest and abdominal computed tomography (CT) scans showed splenomegaly along with mediastinal, retroperitoneal and inguinal lymphadenopathy. CD4 count turned out to be 208 μL -1 . Human immunodeficiency virus (HIV) testing, serum protein electrophoresis, serum light chains and quantitative immunoglobulins were non-diagnostic and CD4 lymphopenia was attributed to acute infection. However, a persistent CD4 lymphopenia was seen in subsequent outpatient testing, which prompted a detailed workup for secondary causes of immunodeficiency. Repeated lymph node biopsies with analytic cytometric immunophenotypic analysis were normal, as was the bone marrow biopsy with detailed immunophenotypic and cytogenetic studies. The patient was hence being treated as a case of idiopathic CD4 lymphocytopenia.

  4. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  5. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  6. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    Science.gov (United States)

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Therapeutic potential of helminths in autoimmune diseases: helminth-derived immune-regulators and immune balance.

    Science.gov (United States)

    Wang, Meng; Wu, Linxiang; Weng, Rennan; Zheng, Weihong; Wu, Zhongdao; Lv, Zhiyue

    2017-08-01

    Helminths have accompanied human throughout history by releasing immune-evasion molecules that could counteract an aberrant immune response within the host. In the past decades, helminth infections are becoming less prevalent possibly due to the developed sanitation. Meanwhile, the incidence of autoimmune diseases is increasing, which cannot be exclusively explained by the changes of susceptibility genes. While the hygiene hypothesis casts light on the problem. The infections of helminths are believed to interact with and regulate human immunity with the byproduct of suppressing the autoimmune diseases. Thus, helminths are potential to treat or cure the autoimmune diseases. The therapeutic progresses and possible immune suppression mechanisms are illustrated in the review. The helminths that are studied most intensively include Heligmosomoides polygyrus, Hymenolepis diminuta, Schistosoma mansoni, Trichinella spiralis, and Trichuris suis. Special attentions are paid on the booming animal models and clinical trials that are to detect the efficiency of immune-modulating helminth-derived molecules on autoimmune diseases. These trials provide us with a prosperous clinical perspective, but the precise mechanism of the down-regulatory immune response remains to be clarified. More efforts are needed to be dedicated until these parasite-derived immune modulators could be used in clinic to treat or cure the autoimmune diseases under a standard management.

  8. Exosomes and their roles in immune regulation and cancer.

    Science.gov (United States)

    Greening, David W; Gopal, Shashi K; Xu, Rong; Simpson, Richard J; Chen, Weisan

    2015-04-01

    Exosomes, a subset of extracellular vesicles (EVs), function as a mode of intercellular communication and molecular transfer. Exosomes facilitate the direct extracellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells in vitro and in vivo. The immunological activities of exosomes affect immunoregulation mechanisms including modulating antigen presentation, immune activation, immune suppression, immune surveillance, and intercellular communication. Besides immune cells, cancer cells secrete immunologically active exosomes that influence both physiological and pathological processes. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has enforced the way these membranous vesicles are being considered as potential immunotherapeutic reagents. Indeed, tumour- and immune cell-derived exosomes have been shown to carry tumour antigens and promote immunity, leading to eradication of established tumours by CD8(+) T cells and CD4(+) T cells, as well as directly suppressing tumour growth and resistance to malignant tumour development. Further understanding of these areas of exosome biology, and especially of molecular mechanisms involved in immune cell targeting, interaction and manipulation, is likely to provide significant insights into immunorecognition and therapeutic intervention. Here, we review the emerging roles of exosomes in immune regulation and the therapeutic potential in cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Immune System Quiz

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Quiz: Immune System KidsHealth / For Kids / Quiz: Immune System Print How much do you know about your immune system? Find out by taking this quiz! About Us ...

  10. Immunization Schedules for Adults

    Science.gov (United States)

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedule for Adults (19 Years of Age and ... diseases that can be prevented by vaccines . 2018 Immunization Schedule Recommended Vaccinations for Adults by Age and ...

  11. Immunizations and African Americans

    Science.gov (United States)

    ... Data > Minority Population Profiles > Black/African American > Immunizations Immunizations and African Americans African American adults are less ... 19 to 35 months had comparable rates of immunization. African American women are as likely to have ...

  12. Instant Childhood Immunization Schedule

    Science.gov (United States)

    ... Recommendations Why Immunize? Vaccines: The Basics Instant Childhood Immunization Schedule Recommend on Facebook Tweet Share Compartir Get ... date. See Disclaimer for additional details. Based on Immunization Schedule for Children 0 through 6 Years of ...

  13. Immune intervention in type 1 diabetes.

    Science.gov (United States)

    Michels, Aaron W; Eisenbarth, George S

    2011-06-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results in the specific immune destruction of insulin producing beta cells. Currently there is no cure for T1D and treatment for the disease consists of lifelong administration of insulin. Immunotherapies aimed at preventing beta cell destruction in T1D patients with residual c-peptide or in individuals developing T1D are being evaluated. Networks of researchers such as TrialNet and the Immune Tolerance Network in the U.S. and similar networks in Europe have been established to evaluate such immunotherapies. This review focuses on immune intervention for the prevention and amelioration of human T1D with a focus on potential immune suppressive, antigen specific and environmental therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. An immune origin of type 2 diabetes?

    DEFF Research Database (Denmark)

    Kolb, H; Mandrup-Poulsen, Thomas

    2005-01-01

    Subclinical, low-grade systemic inflammation has been observed in patients with type 2 diabetes and in those at increased risk of the disease. This may be more than an epiphenomenon. Alleles of genes encoding immune/inflammatory mediators are associated with the disease, and the two major...... environmental factors the contribute to the risk of type 2 diabetes-diet and physical activity-have a direct impact on levels of systemic immune mediators. In animal models, targeting of immune genes enhanced or suppressed the development of obesity or diabetes. Obesity is associated with the infiltration...... and proinflammatory activity of macrophages in adipose tissue, and immune mediators may be important regulators of insulin resistance, mitochondrial function, ectopic lipid storage and beta cell dysfunction or death. Intervention studies targeting these pathways would help to determine the contribution...

  15. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  16. Desensitization of delayed-type hypersensitivity in mice: suppressive environment

    Directory of Open Access Journals (Sweden)

    Takashi Katsura

    1993-01-01

    Full Text Available The systemic injection of high doses of antigen into a preimmunized animal results in transient unresponsiveness of cell-mediated immune responses. This phenomenon is known as desensitization. Serum interleukin 2 (IL-2 activity was found transiently in desensitized mice at 3 h after the antigen challenge. These mice could not reveal antigen nonspecific delayed-type hypersensitivity (DTH 1 d after the challenge. Specific suppression of DTH was observed at later stages. Sera from 3 h desensitized mice showed suppressive effects on DTH in preo immunized mice. Administration of recombinant IL-2 into preimmunized mice led to the failure of development of DTH to antigens. These observations suggest that IL-2 plays an important role in the suppressive environment.

  17. Immunization Action Coalition

    Science.gov (United States)

    ... IAC | Contact | A-Z Index | Donate | Shop | SUBSCRIBE Immunization Action Coalition Favorites ACIP Recommendations Package Inserts Additional Immunization Resources Photos Adult Vaccination Screening Checklists Ask the ...

  18. [Evasion of anti-infectious immunity by Brucella - A review].

    Science.gov (United States)

    Quan, Wurong; Yang, Yongjie

    2016-05-04

    Brucellosis, caused by Brucella species, is a worldwide zoonosis. As facultative intracellular pathogens, Brucella possess non-classical virulence factor, but its virulence is very powerful and can elicit chronic infections of both animals and humans. Evasion of host anti-infectious immunity is a prerequisite for chronic infections, this ability appears increasingly crucial for Brucella virulence. As successful pathogens, Brucella can escape or suppress innate immunity and modulate adaptive immunity to establish long lasting infections in host cells. In this review, we address the molecular mechanisms of Brucella to evade anti-infectious immunity. This will shed new insights on Brucella virulence and will, potentially, open new prophylactic avenues.

  19. Burn injury suppresses human dermal dendritic cell and Langerhans cell function

    NARCIS (Netherlands)

    van den Berg, Linda M.; de Jong, Marein A. W. P.; Witte, Lot de; Ulrich, Magda M. W.; Geijtenbeek, Teunis B. H.

    2011-01-01

    Human skin contains epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) that are key players in induction of adaptive immunity upon infection. After major burn injury, suppressed adaptive immunity has been observed in patients. Here we demonstrate that burn injury affects adaptive

  20. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-01-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F 1 (BLCF 1 ) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF 1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF 1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection

  1. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry

    OpenAIRE

    Segerstrom, Suzanne C.; Miller, Gregory E.

    2004-01-01

    The present report meta-analyzes more than 300 empirical articles describing a relationship between psychological stress and parameters of the immune system in human participants. Acute stressors (lasting minutes) were associated with potentially adaptive upregulation of some parameters of natural immunity and downregulation of some functions of specific immunity. Brief naturalistic stressors (such as exams) tended to suppress cellular immunity while preserving humoral immunity. Chronic stres...

  2. The effect of oral immunization on the population of lymphocytes migrating to the mammary gland of the sow

    OpenAIRE

    Dijk, J.E. van; Kortbeek-Jacobs, J.M.C.; Kooten, P.J.S. van; Donk, J.A. van der; Rutten, V.P.M.G.

    1984-01-01

    Sows were immunized orally with live Escherichia coli according to various immunization schedules. Six pregnant gilts were used; 4 immunized at various intervals during the last month of gestation, 1 control immunized after parturition following suppression of lactation by weaning and 1 non-immunized control. The effect of oral vaccination on cell populations from lymphoid organs was studied. The in vitro proliferative responses of the cell populations to K88 antigen, anti-Ig sera and mitogen...

  3. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  4. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  5. Our Immune System

    Science.gov (United States)

    Our Immune System A story for children with primary immunodeficiency diseases Written by Sara LeBien IMMUNE DEFICIENCY FOUNDATION A note ... who are immune deficient to better understand their immune system. What is a “ B-cell, ” a “ T-cell, ” ...

  6. Pressure suppressing device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1980-01-01

    Purpose: To prevent the pressure in the reactor container from excessively increasing even when vapor leaks from the dry well to a space of the suppression chamber, without passing though the suppression pool at the time of loss of coolant accident. Constitution: When vapor of a high temperature and a high pressure at the time of loss of coolant accident flows from the dry well to the suppression chamber without passing through suppression pool water, vapor dose not condense with pool water, and therefore the pressure within the chamber abnormally increases. For this reason, this abnormal pressure is detected by a pressure detector thereby to start the operations of a blower and a pump. By starting the blower, the pressure in the dry well becomes lower than the pressure in the chamber, and vapor entirely passes through the pool water and entirely condenses with the pool water. By starting the pump, the pool water is sprayed over the space of the chamber, and vapor in the space is condensed. (Yoshino, Y.)

  7. Pavlovian conditioning of shock-induced suppression of lymphocyte reactivity: acquisition, extinction, and preexposure effects.

    Science.gov (United States)

    Lysle, D T; Cunnick, J E; Fowler, H; Rabin, B S

    1988-01-01

    Recent research has indicated that physical stressors, such as electric shock, can suppress immune function in rats. The present study investigated whether a nonaversive stimulus that had been associated with electric shock would also impair immune function. Presentation of that conditioned stimulus (CS) by itself produced a pronounced suppression of lymphocyte proliferation in response to the nonspecific mitogens, Concanavalin-A (ConA) and Phytohemagglutinin (PHA). In further evidence of a conditioning effect, the suppression was attenuated by extinction and preexposure manipulations that degraded the associative value of the CS. These results indicate that a psychological or learned stressor can suppress immune reactivity independently of the direct effect of physically aversive stimulation or of ancillary changes in dietary and health-related habits.

  8. Suppressive and immunoprotective functions of Tregs

    Directory of Open Access Journals (Sweden)

    Pushpa ePandiyan

    2011-11-01

    Full Text Available CD4+CD25+Foxp3+ T lymphocytes, known as regulatory T cells or Tregs, have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective "helper" and "cytotoxic" lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of Tregs. There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells (APCs; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4+ effector T cells are directly inhibited by Tregs, it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion (PCD; and 4. Contrary to the current view, we discuss new evidence that Tregs, similar to other T cells lineages, can promote protective immune responses in certain infectious contexts (Pandiyan et al. 2011; Chen et al 2011. Although these points are at variance to varying degrees with the standard model of Treg behavior, we will recount developing findings that support these new concepts.

  9. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Immune and genetic gardening of the intestinal microbiome

    Science.gov (United States)

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  11. Microscale Immune Studies Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Poschet, Jens Fredrich; Carroll-Portillo, Amanda; Wu, Meiye; Manginell, Ronald Paul; Herr, Amy Elizabeth; Martino, Anthony A.; Perroud, Thomas D.; Branda, Catherine; Srivastava, Nimisha; Sinclair, Michael B.; Moorman, Matthew Wallace; Apblett, Christopher Alan; Sale, Kenneth L.; James, Conrad D.; Carles, Elizabeth L.; Lidke, Diane S. (University of New Mexico, Albuquerque, NM); Van Benthem, Mark Hilary; Rebeil, Roberto; Kaiser, Julie; Seaman, William (University of California, San Francisco, CA); Rempe, Susan; Brozik, Susan Marie; Jones, Howland D. T.; Gemperline, Paul (East Carolina University, Greenville, NC); Throckmorton, Daniel J.; Misra, Milind; Murton, Jaclyn K.; Carson, Bryan D.; Zhang, Zhaoduo; Plimpton, Steven James; Renzi, Ronald F.; Lane, Todd W.; Ndiaye-Dulac, Elsa; Singh, Anup K.; Haaland, David Michael; Faulon, Jean-Loup Michel; Davis, Ryan W.; Ricken, James Bryce; Branda, Steven S.; Patel, Kamlesh D.; Joo, Jaewook; Kubiak, Glenn D.; Brennan, James S.; Martin, Shawn Bryan; Brasier, Allan (University of Texas Mecial Branch, Galveston, TX)

    2009-01-01

    The overarching goal is to develop novel technologies to elucidate molecular mechanisms of the innate immune response in host cells to pathogens such as bacteria and viruses including the mechanisms used by pathogens to subvert/suppress/obfuscate the immune response to cause their harmful effects. Innate immunity is our first line of defense against a pathogenic bacteria or virus. A comprehensive 'system-level' understanding of innate immunity pathways such as toll-like receptor (TLR) pathways is the key to deciphering mechanisms of pathogenesis and can lead to improvements in early diagnosis or developing improved therapeutics. Current methods for studying signaling focus on measurements of a limited number of components in a pathway and hence, fail to provide a systems-level understanding. We have developed a systems biology approach to decipher TLR4 pathways in macrophage cell lines in response to exposure to pathogenic bacteria and their lipopolysaccharide (LPS). Our approach integrates biological reagents, a microfluidic cell handling and analysis platform, high-resolution imaging and computational modeling to provide spatially- and temporally-resolved measurement of TLR-network components. The Integrated microfluidic platform is capable of imaging single cells to obtain dynamic translocation data as well as high-throughput acquisition of quantitative protein expression and phosphorylation information of selected cell populations. The platform consists of multiple modules such as single-cell array, cell sorter, and phosphoflow chip to provide confocal imaging, cell sorting, flow cytomtery and phosphorylation assays. The single-cell array module contains fluidic constrictions designed to trap and hold single host cells. Up to 100 single cells can be trapped and monitored for hours, enabling detailed statistically-significant measurements. The module was used to analyze translocation behavior of transcription factor NF-kB in macrophages upon activation

  12. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis.

    Science.gov (United States)

    Kuss-Duerkop, Sharon K; Westrich, Joseph A; Pyeon, Dohun

    2018-02-13

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus-host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  13. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Sharon K. Kuss-Duerkop

    2018-02-01

    Full Text Available Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  14. Approaches Mediating Oxytocin Regulation of the Immune System.

    Science.gov (United States)

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  15. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  16. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  17. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2007-08-01

    role for dopamine in modulating, mainly suppressing immune functions (Qui et al., 1994. Animals treated with bromocriptine, a dopamine agonist, also showed suppression of antibody production to SRBC and LPS (Besedovsky and del Ray, 1996 and suppressed activities of lymphocytes in mixed lymphocyte culture (Hiestand et al., 1986. Moreover, the interest regarding the role of dopamine on immune system becomes more relevant when some of important neurological disease like Parkinson’s disease and schizophrenia with hypo- and hyperactivity (Birtwistle et al., 1988 of central dopamine system are well-correlated with severe abnormalities of immune functions (Muller et al., 1993. Therefore, in the present review, we have evaluated information from our laboratory as well as from others regarding the role of dopamine on immune function in both human and experimental animals in order to understand the current status of dopamine-mediated control of the immunological surveillance system.

  18. Role of Polyamines in Immune Cell Functions

    Directory of Open Access Journals (Sweden)

    Rebecca S. Hesterberg

    2018-03-01

    Full Text Available The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.

  19. In Acute Experimental Autoimmune Encephalomyelitis, Infiltrating Macrophages Are Immune Activated, Whereas Microglia Remain Immune Suppressed

    NARCIS (Netherlands)

    Vainchtein, I. D.; Vinet, J.; Brouwer, N.; Brendecke, S.; Biagini, G.; Biber, K.; Boddeke, H. W. G. M.; Eggen, B. J. L.

    2014-01-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of

  20. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Immune System (For Parents)

    Science.gov (United States)

    ... of the Immune System Print en español El sistema inmunitario The immune system, which is made up ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on KidsHealth® is for ...

  2. Immunity by equilibrium.

    Science.gov (United States)

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  3. Immunity's ancient arms

    OpenAIRE

    Litman, Gary W.; Cannon, John P.

    2009-01-01

    Diverse receptors on two types of cell mediate adaptive immunity in jawed vertebrates. In the lamprey, a jawless vertebrate, immunity is likewise compartmentalized but the molecular mechanics are very different.

  4. Immune System and Disorders

    Science.gov (United States)

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  5. Aging changes in immunity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/004008.htm Aging changes in immunity To use the sharing features ... cells and antibodies that destroy these harmful substances. AGING CHANGES AND THEIR EFFECTS ON THE IMMUNE SYSTEM ...

  6. Immunizations for adult women.

    Science.gov (United States)

    Faubion, Stephanie S; Larkin, Lisa C

    2016-12-01

    Immunizations protect individual persons and contribute to public health by reducing morbidity and mortality associated with common infectious diseases. In this Practice Pearl, we review guidelines for adult immunizations and recent and potential changes in vaccines.

  7. Maternal immunization increases nestling energy expenditure, immune function, and fledging success in a passerine bird

    Directory of Open Access Journals (Sweden)

    Gary Burness

    2018-04-01

    Full Text Available Female birds transfer maternally derived antibodies (matAb to their nestlings, via the egg yolk. These antibodies are thought to provide passive protection, and allow nestlings to avoid the costs associated with mounting an innate immune response. To test whether there is an energetic benefit to nestlings from receiving matAb, we challenged adult female tree swallows (Tachycineta bicolor prior to clutch initiation with either lipopolysaccharide (LPS or saline (Control. Following hatching, one half of each female's nestlings were immunized on day 8 post-hatch with LPS or saline, and the 4-h post-immunization nestling metabolic rate (MR was measured. There was no difference in either LPS-reactive antibodies or total Ig levels between offspring of immunized and non-immunized mothers on day 6 or 14 post-hatch, possibly reflecting a relatively short half-life of matAbs in altricial birds. Additionally, we found no evidence that nestlings from LPS-immunized mothers could avoid the growth suppression that may result from activation of an inflammatory response. Unexpectedly, we found that control nestlings from LPS mothers had higher resting MR than control nestlings of control mothers. We attribute the increased MR to the costs associated with a general non-specific enhancement of immune function in nestlings from LPS-immunized mothers. Consistent with enhanced immune function, nestlings of immunized mothers had a more robust inflammatory response to phytohaemagglutinin and higher fledging success. Our results suggest that maternal antigen exposure pre-laying can result in increased fitness for both mothers and offspring, depending on food availability.

  8. Evasion of host immune defenses by human papillomavirus.

    Science.gov (United States)

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Myc suppression of Nfkb2 accelerates lymphomagenesis

    International Nuclear Information System (INIS)

    Keller, Ulrich; Huber, Jürgen; Nilsson, Jonas A; Fallahi, Mohammad; Hall, Mark A; Peschel, Christian; Cleveland, John L

    2010-01-01

    Deregulated c-Myc expression is a hallmark of several human cancers where it promotes proliferation and an aggressive tumour phenotype. Myc overexpression is associated with reduced activity of Rel/NF-κB, transcription factors that control the immune response, cell survival, and transformation, and that are frequently altered in cancer. The Rel/NF-κB family member NFKB2 is altered by chromosomal translocations or deletions in lymphoid malignancies and deletion of the C-terminal ankyrin domain of NF-κB2 augments lymphocyte proliferation. Precancerous Eμ-Myc-transgenic B cells, Eμ-Myc lymphomas and human Burkitt lymphoma samples were assessed for Nfkb2 expression. The contribution of Nfkb2 to Myc-driven apoptosis, proliferation, and lymphomagenesis was tested genetically in vivo. Here we report that the Myc oncoprotein suppresses Nfkb2 expression in vitro in primary mouse fibroblasts and B cells, and in vivo in the Eμ-Myc transgenic mouse model of human Burkitt lymphoma (BL). NFKB2 suppression by Myc was also confirmed in primary human BL. Promoter-reporter assays indicate that Myc-mediated suppression of Nfkb2 occurs at the level of transcription. The contribution of Nfkb2 to Myc-driven lymphomagenesis was tested in vivo, where Nfkb2 loss was shown to accelerate lymphoma development in Eμ-Myc transgenic mice, by impairing Myc's apoptotic response. Nfkb2 is suppressed by c-Myc and harnesses Myc-driven lymphomagenesis. These data thus link Myc-driven lymphomagenesis to the non-canonical NF-κB pathway

  10. Immune system simulation online

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Lund, Ole; Castiglione, Filippo

    2011-01-01

    MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno...

  11. The Immune System Game

    Science.gov (United States)

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  12. Plant innate immunity

    Indian Academy of Sciences (India)

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and ...

  13. The pressure suppression system

    International Nuclear Information System (INIS)

    Aust, E.

    1985-01-01

    Nuclear plants with boiling water reactors have a safety containment with a pressure suppression system (PSS). Proceeding on significant self-developments, today the three PSS-lines of General Electric Co. (GE), Kraftwerk Union AG (KWU) and ASEA-ATOM are predominant, which are currently represented by the MARK III type, the KWU type 72 and the BWR 75 containment. In addition, there are special developments for the nuclear ship propulsion and for the pressurized water reactors in the Soviet Union. Key design values of the PSS allow a first valuation of its loads during a hypothetical loss-of-coolant accident. (orig.) [de

  14. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    International Nuclear Information System (INIS)

    Norval, M.

    2000-01-01

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  15. Effect of pulmonary irradiation from inhaled 90Y on immunity to Listeria monocytogenes in mice

    International Nuclear Information System (INIS)

    Sanchez, A.; Lundgren, D.L.; McClellan, R.O.

    1976-01-01

    The immunological response of mice subjected to irradiation from particles deposited in the lungs and challenged with Listeria monocytogenes was investigated. Mice, exposed by inhalation to 90 Y (a beta-emitting radionuclide) in relatively insoluble fused aluminosilicate particles, were immunized with L. monocytogenes either before or after exposure. Two additional groups of mice were either immunized or irradiated only. A group of control mice received no irradiation or immunization. The beta radiation dose absorbed by the lungs of each mouse at time of challenge averaged 10,000 rads. Fourteen days after immunization, all mice were challenged with 2 LD 50 doses of L. monocytogenes via the respiratory route. Survival of all immunized mice either with or without exposure to 90 Y varied from 90 to 100% as compared to 10 to 20% for the mice irradiated only and for control mice through 14 days after challenge. Pulmonary clearance of inhaled L. monocytogenes during the first 4 hr after challenge was suppressed in the mice irradiated only but not in those immunized only, or in the immunized and irradiated groups, and control mice. There appeared to be a suppression of proliferation of L. monocytogenes in lungs and spleen in the immunized groups 72 hr after challenge, whereas the lungs and spleens of the mice irradiated only and the control mice had extensive bacterial invasion. It was concluded that the 10,000 rads of beta radiation absorbed by the lungs did not suppress the immune mechanisms of the immunized mice

  16. Cytokine regulation of immune tolerance

    OpenAIRE

    Wu, Jie; Xie, Aini; Chen, Wenhao

    2014-01-01

    The immune system provides defenses against invading pathogens while maintaining immune tolerance to self-antigens. This immune homeostasis is harmonized by the direct interactions between immune cells and the cytokine environment in which immune cells develop and function. Herein, we discuss three non-redundant paradigms by which cytokines maintain or break immune tolerance. We firstly describe how anti-inflammatory cytokines exert direct inhibitory effects on immune cells to enforce immune ...

  17. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  18. Radiation effluent suppression system

    International Nuclear Information System (INIS)

    Watanabe, Atsushi.

    1992-01-01

    In a radiation release suppression system upon accident, an electromotive valve, a pneumatic operation valve or a manual operation valve is disposed to gas ventilation pipelines which are extended from both of a dry well and a wet well of a reactor container to a stuck. In addition, a combination filter of a metal fiber filter made of stainless steel etc. and an activated carbon fiber filter is disposed in the midway of pipelines in a reactor building. With such a constitution, the inside of the container can be depressurized (prevention of ruptures) and the amount of radioactive substances released to circumstances is remarkably suppressed by the effect of radioactive substance capturing effect of the metal fiber filter made of stainless steel etc. disposed in the vent pipe in the container and a radioactive substance capturing effect by the combination filter of the metal fiber filter made of stainless steel, etc. and the activated carbon fiber filter disposed in the gas ventilation pipelines even upon occurrence of an accident exceeding design basis. Systems can be simplified and minimized, and cost down can also be attained. (N.H.)

  19. Planck-suppressed operators

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; McAllister, Liam

    2014-01-01

    We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale Λ. We study a simple effective field theory in which a hidden sector field is coupled to a shift-symmetric inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must be suppressed by a very high scale Λ > 10 5 H. Even if the hidden sector has Gaussian correlations, nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations. In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data requires Λ > 10 2 H

  20. Alternative Immune Systems

    Directory of Open Access Journals (Sweden)

    Luis Fernando Cadavid Gutierrez

    2011-09-01

    Full Text Available The immune system in animals is a complex network of molecules, cells and tissues that coordinately maintain the physiological and genetic integrity of the organism. Traditionally, two classes of immunity have been considered, the innate immunity and the adaptive immunity. The former is ancestral, with limited variability and low discrimination. The latter is highly variable, specific and limited to jawed vertebrates. Adaptive immunity is based on antigen receptors that rearrange somatically to generate a nearly unlimited diversity of molecules. Likely, this mechanism of somatic recombination arose as a consequence of a horizontal transfer of transposons and transposases from bacterial genomes in the ancestor of jawed vertebrates. The recent discovery in jawless vertebrates and invertebrates of alternative adaptive immune mechanisms, suggests during evolution different animal groups have found alternative solutions to the problem of immune recognition.

  1. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  2. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Sorvari, Jouni; Rantala, Liisa M.; Rantala, Markus J.; Hakkarainen, Harri; Eeva, Tapio

    2007-01-01

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  3. Maximizing Tumor Immunity With Fractionated Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2012-07-15

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma} enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  4. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  5. Maximizing Tumor Immunity With Fractionated Radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H.

    2012-01-01

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4 + CD25 hi Foxp3 + T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  6. AllergoOncology : Opposite outcomes of immune tolerance in allergy and cancer

    NARCIS (Netherlands)

    Jensen-Jarolim, E; Bax, H J; Bianchini, R; Crescioli, S; Daniels-Wells, T R; Dombrowicz, D; Fiebiger, Edda; Gould, H J; Irshad, S; Janda, Jozef; Josephs, D H; Levi-Schaffer, F; O Mahony, L; Pellizzari, G; Penichet, M L; Redegeld, F; Roth-Walter, F; Singer, J; Untersmayr, Eva; Vangelista, L; Karagiannis, S N

    2018-01-01

    While desired for the cure of allergy, regulatory immune cell subsets and nonclassical Th2-biased inflammatory mediators in the tumour microenvironment can contribute to immune suppression and escape of tumours from immunological detection and clearance. A key aim in the cancer field is therefore to

  7. Evaluation of immunomodulation by lactobacillus casei shirota: immune function, autoimmunity and gene expression

    NARCIS (Netherlands)

    Baken, A.; Ezendam, J.; Gremmer, E.R.; Klerk, de A.; Pennings, J.L.A.; Matthee, B.; Peijnenburg, A.A.C.M.; Loveren, van H.

    2006-01-01

    Lactic acid bacteria are claimed to have immunomodulating effects. Stimulation as well as suppression of T helper (Th)1 mediated immune responses, have been described for various strains. Experiments involving Lactobacillus casei Shirota (LcS) detected mainly enhancement of innate immune responses

  8. Measuring polio immunity to plan immunization activities.

    Science.gov (United States)

    Voorman, Arend; Lyons, Hil M

    2016-11-21

    The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Friends and foes of tuberculosis: modulation of protective immunity.

    Science.gov (United States)

    Brighenti, Susanna; Joosten, Simone A

    2018-05-27

    Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4 + T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T cell subsets, including classical and non-classical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights in effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common co-morbidities such as HIV, helminthes and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  11. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  12. Restoration of Immune Surveillance in Lung Cancer by Natural Killer Cells

    Science.gov (United States)

    2016-10-01

    smoking affect /suppress the immune systems remains open to explore and is still critical for us to understand the mechanism of smoking to contribute to...the mechanisms that govern innate immune escape in lung cancer, including differences in immune function between smokers , e-cigarette users, and non ... smokers and as a function of smoking cessation. Role: Co-PI Kumar (PI) 07/01/2013 – 06/30/2016 Gateway for Cancer

  13. Cancer Control Related to Stimulation of Immunity by Low-Dose Radiation

    OpenAIRE

    Liu, Shu-Zheng

    2006-01-01

    Previous studies showed that low dose radiation (LDR) could stimulate the immune system in both animal and human populations. This paper reviews the present status of relevant research as support to the use of LDR in clinical practice for cancer prevention and treatment. It has been demonstrated that radiation-induced changes in immune activity follows an inverse J-shaped curve, i.e., low dose stimulation and high dose suppression. The stimulation of immunity by LDR concerns most anticancer p...

  14. SHORT-TERM STRESS ENHANCES CELLULAR IMMUNITY AND INCREASES EARLY RESISTANCE TO SQUAMOUS CELL CARCINOMA

    OpenAIRE

    Dhabhar, Firdaus S.; Saul, Alison N.; Daugherty, Christine; Holmes, Tyson H.; Bouley, Donna M.; Oberyszyn, Tatiana M.

    2009-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposu...

  15. Assessment of hepatitis B immunization status after antineoplastic therapy in children with cancer

    OpenAIRE

    Karaman, Serap; Vural, Sema; Yildirmak, Yildiz; Urganci, Nafiye; Usta, Merve

    2011-01-01

    BACKGROUND AND OBJECTIVES: Hepatitis B is a disease that is preventable with vaccination. Antibody levels after vaccination may be affected by suppression of the immune system due to cancer therapy. Children with cancer have a high risk of hepatitis B virus (HBV) infection. We aimed to assess the pretreatment immunization status against HBV infection and the rate of continuity of immunization after therapy in children with cancer. DESIGN AND SETTING: Retrospective case review of patients trea...

  16. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels

    2009-01-01

    BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance...... to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T...... of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals...

  17. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  18. Screening for suppression in young children: the Polaroid Suppression test

    NARCIS (Netherlands)

    Pott, J.W.R.; Oosterveen, DK; Van Hof-van Duin, J

    1998-01-01

    Background: Assessment of monocular visual impairment during screening of young children is often hampered by lack of cooperation. Because strabismus, amblyopia, or anisometropia may lead to monocular suppression during binocular viewing conditions, a test was developed to screen far suppression in

  19. Glutamine supplementation suppresses herpes simplex virus reactivation.

    Science.gov (United States)

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  20. Probiotics-mediated suppression of cancer.

    Science.gov (United States)

    So, Stephanie S Y; Wan, Murphy L Y; El-Nezami, Hani

    2017-01-01

    Probiotics can be used as an adjuvant for cancer prevention or/and treatment through their abilities to modulate intestinal microbiota and host immune response. Although most of the recent reviews have focused on the potential role of probiotics against colon cancer, only few of them include the probiotic effect on extraintestinal cancers. The present review covers the most important findings from the literature published during the past 20 months (from January 2015 to August 2016) regarding the probiotics-mediated suppression of both gastrointestinal and extraintestinal cancers and the underlying mechanisms. A comprehensive literature search in Pubmed, Science direct and Google scholar databases was conducted to locate all relevant articles that investigated the effect of probiotics on prevention/treatment of both gastrointestinal and extraintestinal cancers. Different mechanisms for the beneficial effects of probiotics against cancer were also discussed, mainly via modulation of gut microbiota which thereby influences host metabolism and immunity. Despite laboratory-based studies having demonstrated encouraging outcomes that probiotics possess antitumor effects, the benefits should not be exaggerated before we get more results from human clinical trials. These are very important before the medical community can accept the use of probiotics as an alternative therapy for cancer control.

  1. Pressure suppression device

    International Nuclear Information System (INIS)

    Yoshida, Toyokazu.

    1976-01-01

    Purpose: To provide a pressure suppression device for a gas cooled reactor wherein the coolant is discharged in a reactor building by a loss-of-coolant accident or the like, the increase in the pressure and temperature is controlled and thermal energy of the discharged coolant of high temperature and high pressure can be absorbed. Constitution: A low heat source unit is provided at the upper part in an inner space of a reactor building provided around the reactor, and at the upper part of the low heat source unit a stirring fan for mixing gas within the building, and a low heat source circulating the low heat source through a pipe is connected to the low heat source unit. The low heat source unit is provided with the pipe arranged in a spiral shape at the upper part of the space of the unit, and a large number of fins are provided at the outer surface of the pipe for increasing the transmission area and improve the heat exchange. When the coolant of high temperature and high pressure has been lost in the building, the thermal energy of the coolant is absorbed by the low heat source unit. (Aizawa, K.)

  2. Does exposure to UV radiation induce a shift to a Th-2-like immune reaction?

    International Nuclear Information System (INIS)

    Ullrich, S.E.

    1996-01-01

    In addition to being the primary cause of skin cancer, UV radiation is immune suppressive and there appears to be a link between the ability of UV to suppress the immune response and induce skin cancer. Cytokines made by UV-irradiated keratinocytes play an essential role in activating immune suppression. In particular, we have found that keratinocyte-derived interleukin (IL)-10 is responsible for the systemic impairment of antigen presenting cell function and the UV-induced suppression of delayed-type hypersenstivity (DTH). Antigen presentation by splenic adherent cells isolated from UV-irradiated mice to T helper-1 type T (Th1) cells is suppressed, whereas antigen presentation to T helper-2 type T (Th2) cells is enhanced. The enhanced antigen presentation to Th2 cells and the impaired presentation to Th1 cells can be reversed in vivo by injecting the UV-irradiated mice with monoclonal anti-IL-10 antibody. Furthermore, immune suppression can be transferred from UV-irradiated mice to normal recipients by adoptive transfer of T cells. Injecting the recipient mice with anti-IL-4 or anti-IL-10 prevents the transfer of immune suppression, suggesting the suppressor cells are Th2 cells. In addition, injecting UV-irradiated mice with IL-12, a cytokine that has been shown to be the primary inducer of Th1 cells, and one that prevents the differentiation of Th2 cells in vivo, reverses UV-induced immune suppression. These findings support the hypothesis that UV exposure activates IL-10 secretion, which depresses the function of Th1 cells, while enhancing the activity of Th2 cells. (Author)

  3. Translational control in plant antiviral immunity

    Directory of Open Access Journals (Sweden)

    João Paulo B. Machado

    Full Text Available Abstract Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP-Interacting Kinase1, is discussed in this review.

  4. Adrenaline influence on the immune response. I

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    The intervention of adrenaline in the immunoregulation was investigated through the modification of the anti-SRBC PFC response of mice after its i.p. administration (4 μg) at various intervals before SRBC antigen. When the interval was less than 24 h, adrenaline accelerated the immune kinetics. This modification was apparent on both direct and indirect PFC, as well as on naive and immune mice. However, mice treated from 2 days showed a suppression of the response. The adrenaline affect subsisted on the adoptive response of spleen cells drug-treated either in vivo or in vitro. The mitogenic response after in vitro PHA or LPS stimulation of spleen cells from adrenaline-treated mice indicated that the T-cells were the drug target. The physiological role of the adrenaline and immunological influences of acute stress are discussed in the paper. The stress was provided by gamma irradiation. (Auth.)

  5. Reinfection immunity in schistosomiasis

    International Nuclear Information System (INIS)

    Kamiya, Haruo

    1987-01-01

    Schistosomiasis is one of the most important parasitic diseases in the world, especially in endemic areas of developing countries. This situation has prompted parasitologist to attempt intensive researches on immune mechanisms, especially those of reinfection immunity associated with eliminating challenge infection. The current knowledge of reinfection immunity against Schistosoma spp. infection was therefore reviewed briefly and discussed with special reference to our data on protective immune responses induced by radiation-attenuated cercarial infection. A recently developed technique of compressed organ autoradiography (COA) has contributed to assessing parasite attrition in immune animals following challenge infection. Our study using COA has demonstrated that major attrition of schistosomula from challenge infection occurs in the skin of CBA/Ca mice vaccinated with 20 Krad gamma radiation-attenuated cercariae of S. mansoni, while in both lungs and liver of similarly vaccinated guinea pig model. Furthermore, gamma-irradiation to cercariae affected their migration potential and surface-antigen profiles. The immunizing stimuli of gamma radiation-attenuated cercariae profoundly affected the expression of responsiveness in vaccinated animals. The change in antigenic profiles and migration potential of those vaccinating population was discussed in relation to the kinetics of reinfection immunity induced in vaccinated amimal models. These works might provide a base line data to develop a practical vaccine for schistosomiasis using defined antigens. It must be emphasized that these vaccines could serve as a practical prophylactic measure for schistosomiasis in the endemic areas, even if the vaccines fail to induce sterilizing immunity. (author). 141 refs

  6. Ethics of Immunization

    NARCIS (Netherlands)

    Verweij, M.F.; Quah, S.R.; Cockerham, W.C.

    2017-01-01

    Collective immunization can be highly effective in protecting societies against infectious diseases, but policy decisions about both the character and the content of immunization policies require ethical justification. This article offers an overview of ethical aspects that should be taken into

  7. Immunity and skin cancer

    International Nuclear Information System (INIS)

    Smith, E.B.; Brysk, M.M.

    1981-01-01

    Observations in humans and animal studies support the theory that immunologic surveillance plays an important role in limiting the development of skin malignancies. These immune responses undergo progressive diminution with age. In addition, other factors, such as bereavement, poor nutrition, and acute and chronic exposure to ultraviolet light, can further diminish immune mechanisms

  8. Immunizations. Position Statement. Revised

    Science.gov (United States)

    Bobo, Nichole; Garrett, Jennifer; Teskey, Carmen; Duncan, Kay; Strasser, Kathy; Burrows-Mezu, Alicia L.

    2015-01-01

    It is the position of the National Association of School Nurses (NASN) that immunizations are essential to primary prevention of disease from infancy through adulthood. Promotion of immunizations by the registered professional school nurse (hereinafter referred to as school nurse) is central to the public health focus of school nursing practice…

  9. Disparity in childhood immunizations

    NARCIS (Netherlands)

    Lemstra, Mark; Neudorf, Cory; Opondo, Johnmark; Toye, Jennifer; Kurji, Ayisha; Kunst, Anton; Tournier, Ceal

    2007-01-01

    BACKGROUND: Incomplete immunization coverage is common in low-income families and Aboriginal children in Canada. OBJECTIVE: To determine whether child immunization coverage rates at two years of age were lower in low-income neighbourhoods of Saskatoon, Saskatchewan. METHODS: Parents who were and

  10. Effect of ionizing radiation on active thyroid immunity

    International Nuclear Information System (INIS)

    Ibrahim, I.I.; Abdelaal, A.E.; AL-Gachari, A.I.; Hindy, O.W.; Abdalla, M.I.; Said, M.M.; Shoucha, M.A.; and Salama, F.M.

    1988-01-01

    The present study was carried out to explore the effect of exposure to ionizing radiation on the immune system in cocks. A total number of 36 mature Fayoumi cocks were randomly assigned to: control, 300 R and 600 r groups. Whole body irradiation was carried out in co-60 unit 24 hours. Prior to induction of immunity. Thyroglobulin (T G) immunity was induced in all birds and sera were collected before, 1, 2, 4, 6, 8 and 16 weeks. After immunization. T G antibodies were evaluated by using radioisotopic techniques: i- Ammonium sulphate method, ii-polyethylene glycol method and iii-The circulating thyroid hormones. The results obtained indicated the formation of thyroglobulin antibodies in all immunized birds at 6 weeks. After immunization and thereafter, although it was detected in some birds at 4 weeks. after immunization. The antibody titer increased sharply after the sixth Th week reaching its peak value at the sixteenth week interval. The suppressive effect of ionizing radiation on the immune response was evident in the irradiated groups, particularly the 600 r group. Some birds in the 600 r group were not able to respond appropriately to the challenge and did not survive until the end of observation period

  11. HIV-1 Reservoir Association with Immune Activation

    Directory of Open Access Journals (Sweden)

    Alejandro Vallejo

    2015-09-01

    Full Text Available In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART. It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  12. Neural circuitry and immunity

    Science.gov (United States)

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  13. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  14. Complex role for the immune system in initiation and progression of pancreatic cancer.

    Science.gov (United States)

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  15. Co-operative suppression of inflammatory responses in human dendritic cells by plant proanthocyanidins and products from the parasitic nematode Trichuris suis

    DEFF Research Database (Denmark)

    Williams, Andrew R; Klaver, Elsenoor J; Laan, Lisa C

    2017-01-01

    Interactions between dendritic cells (DCs) and environmental, dietary and pathogen antigens play a key role in immune homeostasis and regulation of inflammation. Dietary polyphenols such as proanthocyanidins (PAC) may reduce inflammation, and we therefore hypothesized that PAC may suppress lipopo...

  16. Changes in cell-mediated immunity in patients undergoing radiotherapy

    International Nuclear Information System (INIS)

    Rafla, S.; Yang, S.J.; Meleka, F.

    1978-01-01

    The cell-mediated immune status of 147 patients who received radiotherapy was evaluated using in vitro tests (PHA, E-rosette, and spontaneous blastogenesis) both before and 6 weeks after the end of radiation. All patients have verified malignancies, involving the bronchus in 29 cases, breast in 28, female genital system in 26, head and neck in 20 and bladder in 15. Patients suffering from bronchogenic carcinomas or malignancies of the head and neck showed a relative high degree of immune suppression. Our findings indicate a trend towards some improvement in PHA reactivity, as well as in the percentage of E-rosette-forming cells after treatment, which is more noticeable in patients with pelvic or breast tumors. A relationship seems to exist between the tumor load and the immune status, which reverts to a normal pattern when the former is extinguished. Moreover, patients with poor clinical response display a profoundly depressed level of immune status without any improvement after treatment

  17. On Modelling an Immune System

    OpenAIRE

    Monroy, Raúl; Saab, Rosa; Godínez, Fernando

    2004-01-01

    Immune systems of live forms have been an abundant source of inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to challenging problems of modern computing. However, research in artificial immune systems has overlooked establishing a coherent model of known immune system behaviour. This paper aims reports on an preliminary computer model of an immune system, where each immune system component...

  18. Rebuilding immunity with Remune.

    Science.gov (United States)

    Whitfield, L

    1998-01-01

    Remune, an immune response therapy composed of inactivated HIV, is designed to enhance the immune system's ability to recognize and kill HIV proteins. Developed by Dr. Jonas Salk, researchers hope Remune's actions can alter the course of HIV infection and slow disease progression. Remune has gained Food and Drug Administration (FDA) approval to enter the critical Phase III trial stage. Two clinical trials are tracking Remune's immunogenicity (ability to provoke an immune response), its immunogenicity relative to dose level, and its effect on viral load. An ongoing trial, approved in February of 1996, enrolled 2,500 patients at 74 sites. The manufacturer, Immune Response Corporation (IRC), announced earlier this year that treatment with Remune induces an immune response to HIV that cross-reacts with different strains of the virus. This immune response is crucial for developing an effective worldwide treatment. Remune decreases levels of tumor necrosis factor alpha (TNF-a). IRC recently began a Phase I clinical trial in Great Britain that combines Remune with a protease inhibitor, two antiviral nucleoside analogues, and Interleukin-2. The trial is designed to determine the role that the drug may play in restoring immune response.

  19. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P

    2014-07-01

    Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  20. National Network for Immunization Information

    Science.gov (United States)

    ... American College of Obstetricians and Gynecologists . © Copyright National Network for Immunization Information. The information contained in the National Network for Immunization Information Web site should not be ...

  1. Suppressive versus augmenting effect of the same pretreatment regimen in two murine tumor systems with distinct effector mechanisms

    International Nuclear Information System (INIS)

    Fujiwara, Hiromi; Hamaoka, Toshiyuki; Kitagawa, Masayasu

    1978-01-01

    The effect of presensitization with x-irradiated tumor cells on the development of host's immune resistance against the tumor-associated transplantation antigens (TATA) was investigated in two syngeneic tumor systems with distinct effector mechanisms. When X5563 plasmacytoma, to which immune resistance was mediated exclusively by killer T lymphocytes, was intravenously inoculated into syngeneic C3H/He mice with lower number after 7000 R x-irradiation, the mice failed to exhibit any protective immunity against the subsequent challenge with viable tumor cells. Moreover, these mice lost their capability to develop any immune resistance even after an appropriate immunization procedure. The immunodepression induced by such a pretreatment regimen was specific for X5563 tumor. While no suppressor cell activity was detected in the above pretreated mice, serum factor(s) from these mice was virtually responsible for this suppression. When the serum factor mediating this tumor-specific suppression was fractionated on the Sephadex G-200 column, the suppressive activity was found in albumin-corresponding fraction, free of any immunoglobulin component. In contrast, in MM102 mammary tumor system, in which immune resistance is solely mediated by tumor-specific antibody, the pretreatment with x-irradiated MM102 cells augmented the induction of anti-tumor immunity. These results indicate that while tumor antigens given in the form of x-irradiated tumor cells suppress the induction of killer T cell-mediated immunity in one system, the same presensitization regimen of tumor antigens augments the antibody-mediated immunity in another system, thus giving a divergent effect on the distinct effector mechanisms of syngeneic tumor immunity. (author)

  2. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  3. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome.

    Science.gov (United States)

    Meteyer, Carol U; Barber, Daniel; Mandl, Judith N

    2012-11-15

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS). IRIS was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  4. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome

    Science.gov (United States)

    Meteyer, Carol U.; Barber, Daniel; Mandl, Judith N.

    2012-01-01

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS), which was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  5. Immunity: Insect Immune Memory Goes Viral.

    Science.gov (United States)

    Ligoxygakis, Petros

    2017-11-20

    Adaptive memory in insect immunity has been controversial. In this issue, Andino and co-workers propose that acquisition of viral sequences in the host genome gives rise to anti-sense, anti-viral piRNAs. Such sequences can be regarded as both a genomic archive of past infections and as an armour of potential heritable memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  7. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  8. Differences in the effects of host suppression on the adoptive immunotherapy of subcutaneous and visceral tumors

    International Nuclear Information System (INIS)

    Chang, A.E.; Shu, S.Y.; Chou, T.; Lafreniere, R.; Rosenberg, S.A.

    1986-01-01

    A syngeneic transplantable sarcoma induced in C57BL/6 mice, MCA 105, was used in studies to examine host suppression on the adoptive immunotherapy of established intradermal and experimentally induced pulmonary and hepatic metastases. Fresh immune splenocytes were generated from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum. The adoptive immunotherapy of intradermal MCA 105 tumor with immune cells required prior immunosuppression of the recipient by sublethal irradiation with 500 R or T-cell depletion. The effect of whole-body sublethal irradiation appeared to eliminate a systemic host suppression mechanism, since partialbody irradiation involving the tumor-bearing area did not permit successful immunotherapy. Host irradiation was not required to achieve successful immunotherapy of experimentally induced pulmonary or hepatic metastases. In nonirradiated recipients bearing both intradermal and pulmonary tumors, host suppression did not affect the function of transferred immune cells to induce regression of pulmonary metastases. Thus, suppression of adoptive immunotherapy appears to be relevant to tumors confined to the skin and subcutaneous tissue but not to tumor in visceral sites, such as the lung and liver

  9. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  10. HIV and Immunizations

    Science.gov (United States)

    ... AIDS Drugs Clinical Trials Apps skip to content HIV Treatment Home Understanding HIV/AIDS Fact Sheets HIV ... 4 p.m. ET) Send us an email HIV and Immunizations Last Reviewed: February 6, 2018 Key ...

  11. Immunity to parasitic infection

    National Research Council Canada - National Science Library

    Lamb, Tracey J

    2012-01-01

    .... Often endemic in developing countries many parasitic diseases are neglected in terms of research funding and much remains to be understood about parasites and the interactions they have with the immune system...

  12. Exercise and immunity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007165.htm Exercise and immunity To use the sharing features on ... take a daily walk or follow a simple exercise routine a few times a week. Exercise helps ...

  13. Adults Need Immunizations, Too!

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Andrew Kroger from CDC’s National Center for Immunization and Respiratory Diseases discusses simple, safe, and effective ways adults can help protect themselves, their family, and their community from serious and deadly diseases.

  14. [Exosomes and Immune Cells].

    Science.gov (United States)

    Seo, Naohiro

    2017-05-01

    In addition to the cytokines and cytotoxic granules, exosomes have been known as the intercellular communicator and cytotoxic missile of immune cells for the past decade. It has been well known that mature dendritic cell(DC)-derived exosomes participate in the T cell and natural killer(NK)cell activation, while immature DCs secrete tolerogenic exosomes for regulatory T(Treg)cell generation. Treg cell-derived EVs act as a suppressor against pathogenic type-1 T helper(Th1)cell responses. CD8+ T cells produce tumoricidal exosomes for preventing tumor invasion and metastasis transiently after T cell receptor(TCR)-mediated stimulation. Thus, immune cells produce functional exosomes in the activation state- and/or differentiation stage-dependent manner. In this review, the role of immune cell-derived exosomes will be introduced, focusing mainly on immune reaction against tumor.

  15. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  16. Immunity of international organizations

    CERN Document Server

    Schrijver, Nico

    2015-01-01

    Immunity rules are part and parcel of the law of international organizations. It has long been accepted that international organizations and their staff need to enjoy immunity from the jurisdiction of national courts. However, it is the application of these rules in practice that increasingly causes controversy. Claims against international organizations are brought before national courts by those who allegedly suffer from their activities. These can be both natural and legal persons such as companies. National courts, in particular lower courts, have often been less willing to recognize the immunity of the organization concerned than the organization s founding fathers. Likewise, public opinion and legal writings frequently criticize international organizations for invoking their immunity and for the lack of adequate means of redress for claimants. It is against this background that an international conference was organized at Leiden University in June 2013. A number of highly qualified academics and practit...

  17. Vaccines and immunization

    African Journals Online (AJOL)

    Prof Ezechukwu

    vaccines for malaria and HIV infection. Despite the ... decades, effective vaccines against the major causes of ... challenge antibodies, specific helper and effector T lymphocytes ... materials to produced immunity to a disease. It was originally ...

  18. Zinc Signals and Immunity.

    Science.gov (United States)

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  19. Immunization in pregnancy.

    Science.gov (United States)

    Gruslin, Andrée; Steben, Marc; Halperin, Scott; Money, Deborah M; Yudin, Mark H

    2009-11-01

    To review the evidence and provide recommendations on immunization in pregnancy. Outcomes evaluated include effectiveness of immunization, risks and benefits for mother and fetus. The Medline and Cochrane databases were searched for articles published up to June 2008 on the topic of immunization in pregnancy. The evidence obtained was reviewed and evaluated by the Infectious Diseases Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC) under the leadership of the principal authors, and recommendations were made according to guidelines developed by the Canadian Task Force on Preventive Health Care. Implementation of the recommendations in this guideline should result in more appropriate immunization of pregnant and breastfeeding women, decreased risk of contraindicated immunization, and better disease prevention. The quality of evidence reported in this document has been assessed using the evaluation of evidence criteria in the Report of the Canadian Task Force on Preventive Health Care (Table 1). (1) All women of childbearing age should be evaluated for the possibility of pregnancy before immunization. (III-A). (2) Health care providers should obtain a relevant immunization history from all women accessing prenatal care. (III-A). (3) In general, live and/or live-attenuated virus vaccines should not be administered during pregnancy, as there is a, largely theoretical, risk to the fetus. (II-3B). (4) Women who have inadvertently received immunization with live or live-attenuated vaccines during pregnancy should not be counselled to terminate the pregnancy because of a teratogenic risk. (II-2A). (5) Non-pregnant women immunized with a live or live-attenuated vaccine should be counselled to delay pregnancy for at least four weeks. (III-B). (6) Inactivated viral vaccines, bacterial vaccines, and toxoids can be used safely in pregnancy. (II-1A). (7) Women who are breastfeeding can still be immunized (passive-active immunization, live or killed

  20. Immunization alters body odor.

    Science.gov (United States)

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.

  1. Adults Need Immunizations, Too!

    Centers for Disease Control (CDC) Podcasts

    2012-03-19

    In this podcast, Dr. Andrew Kroger from CDC’s National Center for Immunization and Respiratory Diseases discusses simple, safe, and effective ways adults can help protect themselves, their family, and their community from serious and deadly diseases.  Created: 3/19/2012 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 3/19/2012.

  2. Immune dysfunction in cirrhosis

    Science.gov (United States)

    Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria

    2014-01-01

    Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality. PMID:24627592

  3. Immunity to Fish Rhabdoviruses

    OpenAIRE

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabd...

  4. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.

    Science.gov (United States)

    Vinay, Dass S; Ryan, Elizabeth P; Pawelec, Graham; Talib, Wamidh H; Stagg, John; Elkord, Eyad; Lichtor, Terry; Decker, William K; Whelan, Richard L; Kumara, H M C Shantha; Signori, Emanuela; Honoki, Kanya; Georgakilas, Alexandros G; Amin, Amr; Helferich, William G; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Keith, W Nicol; Bilsland, Alan; Bhakta, Dipita; Halicka, Dorota; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan; Choi, Beom K; Kwon, Byoung S

    2015-12-01

    Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. NKT Cell Networks in the Regulation of Tumor Immunity

    Science.gov (United States)

    Robertson, Faith C.; Berzofsky, Jay A.; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting. PMID:25389427

  6. NKT cell networks in the regulation of tumor immunity.

    Science.gov (United States)

    Robertson, Faith C; Berzofsky, Jay A; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8(+) and CD4(+) T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host's ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  7. NKT cell networks in the regulation of tumor immunity

    Directory of Open Access Journals (Sweden)

    Faith C Robertson

    2014-10-01

    Full Text Available CD1d-restricted natural killer T (NKT cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  8. Immune mediated liver failure.

    Science.gov (United States)

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capacity. Direct damage and immune-mediated liver injury are two major factors involved in this process. Increasing evidence has suggested the essential role of immune-mediated liver injury in the pathogenesis of liver failure. Here, we review the evolved concepts concerning the mechanisms of immune-mediated liver injury in liver failure from human and animal studies. Both innate and adaptive immunity, especially the interaction of various immune cells and molecules as well as death receptor signaling system are discussed. In addition, we highlight the concept of "immune coagulation", which has been shown to be related to the disease progression and liver injury exacerbation in HBV related acute-on-chronic liver failure.

  9. Mammalian Gut Immunity

    Science.gov (United States)

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  10. Combined Immune Therapy for the Treatment of Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Rebecca J Faleiro

    2016-02-01

    Full Text Available Chronic disease caused by infections, cancer or autoimmunity can result in profound immune suppression. Immunoregulatory networks are established to prevent tissue damage caused by inflammation. Although these immune checkpoints preserve tissue function, they allow pathogens and tumors to persist, and even expand. Immune checkpoint blockade has recently been successfully employed to treat cancer. This strategy modulates immunoregulatory mechanisms to allow host immune cells to kill or control tumors. However, the utility of this approach for controlling established infections has not been extensively investigated. Here, we examined the potential of modulating glucocorticoid-induced TNF receptor-related protein (GITR on T cells to improve anti-parasitic immunity in blood and spleen tissue from visceral leishmaniasis (VL patients infected with Leishmania donovani. We found little effect on parasite growth or parasite-specific IFNγ production. However, this treatment reversed the improved anti-parasitic immunity achieved by IL-10 signaling blockade. Further investigations using an experimental VL model caused by infection of C57BL/6 mice with L. donovani revealed that this negative effect was prominent in the liver, dependent on parasite burden and associated with an accumulation of Th1 cells expressing high levels of KLRG-1. Nevertheless, combined anti-IL-10 and anti-GITR mAb treatment could improve anti-parasitic immunity when used with sub-optimal doses of anti-parasitic drug. However, additional studies with VL patient samples indicated that targeting GITR had no overall benefit over IL-10 signaling blockade alone at improving anti-parasitic immune responses, even with drug treatment cover. These findings identify several important factors that influence the effectiveness of immune modulation, including parasite burden, target tissue and the use of anti-parasitic drug. Critically, these results also highlight potential negative effects of

  11. Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2

    NARCIS (Netherlands)

    Zak, Krzysztof M.; Grudnik, Przemyslaw; Magiera, Katarzyna; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2017-01-01

    Cancer cells can avoid and suppress immune responses through activation of inhibitory immune checkpoint proteins, such as PD-1, PD-L1, and CTLA-4. Blocking the activities of these proteins with monoclonal antibodies, and thus restoring T cell function, has delivered breakthrough therapies against

  12. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  13. Suppression of developmental anomalies by maternal macrophages in mice

    International Nuclear Information System (INIS)

    Nomura, T.; Hata, S.; Kusafuka, T.

    1990-01-01

    We tested whether nonspecific tumoricidal immune cells can suppress congenital malformations by killing precursor cells destined to cause such defects. Pretreatment of pregnant ICR mice with synthetic (Pyran copolymer) and biological (Bacillus Calmette-Guerin) agents significantly suppressed radiation- and chemical-induced congenital malformations (cleft palate, digit anomalies, tail anomalies, etc.). Such suppressive effects were associated with the activation of maternal macrophages by these agents, but were lost either after the disruption of activated macrophages by supersonic waves or by inhibition of their lysosomal enzyme activity with trypan blue. These results indicate that a live activated macrophage with active lysosomal enzymes can be an effector cell to suppress maldevelopment. A similar reduction by activated macrophages was observed in strain CL/Fr, which has a high spontaneous frequency of cleft lips and palates. Furthermore, Pyran-activated maternal macrophages could pass through the placenta, and enhanced urethane-induced cell killing (but not somatic mutation) in the embryo. It is likely that a maternal immunosurveillance system eliminating preteratogenic cells allows for the replacement with normal totipotent blast cells during the pregnancy to protect abnormal development

  14. Regulatory Eosinophils Suppress T Cells Partly through Galectin-10.

    Science.gov (United States)

    Lingblom, Christine; Andersson, Jennie; Andersson, Kerstin; Wennerås, Christine

    2017-06-15

    Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16 hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16 hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16 neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1

    Directory of Open Access Journals (Sweden)

    Nur Aziz

    2018-05-01

    Full Text Available Interferon regulatory factor (IRF-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN. Thymoquinone (TQ is a compound derived from black cumin (Nigella sativa L. and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB and activator protein-1 (AP-1. However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1, an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities.

  16. Flavivirus RNAi suppression: decoding non-coding RNA.

    Science.gov (United States)

    Pijlman, Gorben P

    2014-08-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fexofenadine Suppresses Delayed-Type Hypersensitivity in the Murine Model of Palladium Allergy

    Directory of Open Access Journals (Sweden)

    Ryota Matsubara

    2017-06-01

    Full Text Available Palladium is frequently used in dental materials, and sometimes causes metal allergy. It has been suggested that the immune response by palladium-specific T cells may be responsible for the pathogenesis of delayed-type hypersensitivity in study of palladium allergic model mice. In the clinical setting, glucocorticoids and antihistamine drugs are commonly used for treatment of contact dermatitis. However, the precise mechanism of immune suppression in palladium allergy remains unknown. We investigated inhibition of the immune response in palladium allergic mice by administration of prednisolone as a glucocorticoid and fexofenadine hydrochloride as an antihistamine. Compared with glucocorticoids, fexofenadine hydrochloride significantly suppressed the number of T cells by interfering with the development of antigen-presenting cells from the sensitization phase. Our results suggest that antihistamine has a beneficial effect on the treatment of palladium allergy compared to glucocorticoids.

  18. Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells.

    Science.gov (United States)

    Lin, Jing-Yi; Ta, Yng-Cun; Liu, I-Lin; Chen, Hsi-Wen; Wang, Li-Fang

    2016-07-01

    Eosinophils are multifunctional innate immune cells involved in many aspects of innate and adaptive immunity. Epicutaneous sensitization with protein allergen is an important sensitization route for atopic dermatitis. In this study, using a murine single protein-patch model, we show that eosinophils of a primed status accumulate in draining lymph nodes following single epicutaneous sensitization. Further, depletion of eosinophils results in enhancement of the induced Th1/Th2 immune responses, whereas IL-5-induced hypereosinophilia suppresses these responses. Mechanistically, primed eosinophils cause a reduction in the numbers and activation status of dermal dendritic cells in draining lymph nodes. Collectively, these results demonstrate that primed eosinophils exert suppressive effects on single epicutaneous sensitization through regulation of dermal dendritic cells. Thus, these findings highlight the critical roles of eosinophils in the pathogenesis of atopic dermatitis with important clinical implications for the prevention of allergen sensitization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Immune responses of eastern fence lizards (Sceloporus undulatus) to repeated acute elevation of corticosterone.

    Science.gov (United States)

    McCormick, Gail L; Langkilde, Tracy

    2014-08-01

    Prolonged elevations of glucocorticoids due to long-duration (chronic) stress can suppress immune function. It is unclear, however, how natural stressors that result in repeated short-duration (acute) stress, such as frequent agonistic social encounters or predator attacks, fit into our current understanding of the immune consequences of stress. Since these types of stressors may activate the immune system due to increased risk of injury, immune suppression may be reduced at sites where individuals are repeatedly exposed to potentially damaging stressors. We tested whether repeated acute elevation of corticosterone (CORT, a glucocorticoid) suppresses immune function in eastern fence lizards (Sceloporus undulatus), and whether this effect varies between lizards from high-stress (high baseline CORT, invaded by predatory fire ants) and low-stress (low baseline CORT, uninvaded) sites. Lizards treated daily with exogenous CORT showed higher hemagglutination of novel proteins by their plasma (a test of constitutive humoral immunity) than control lizards, a pattern that was consistent across sites. There was no significant effect of CORT treatment on bacterial killing ability of plasma. These results suggest that repeated elevations of CORT, which are common in nature, produce immune effects more typical of those expected at the acute end of the acute-chronic spectrum and provide no evidence of modulated consequences of elevated CORT in animals from high-stress sites. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. U.S. Immunization program adult immunization activities and resources

    Science.gov (United States)

    Woods, LaDora O.; Bridges, Carolyn B.; Graitcer, Samuel B.; Lamont, Brock

    2016-01-01

    ABSTRACT Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve

  1. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    Science.gov (United States)

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  2. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  3. Microbial Induction of Immunity, Inflammation And Cancer

    Directory of Open Access Journals (Sweden)

    Stephen John O'Keefe

    2011-01-01

    Full Text Available The human microbiota presents a highly active metabolic that influences the state of health of our gastrointestinal tracts as well as our susceptibility to disease. Although much of our initial microbiota is adopted from our mothers, its final composition and diversity is determined by environmental factors. Westernization has significantly altered our microbial function. Extensive experimental and clinical evidence indicates that the westernized diet, rich in animal products and low in complex carbohydrates, plus the overuse of antibiotics and underuse of breastfeeding, leads to a heightened inflammatory potential of the microbiota. Chronic inflammation leads to the expression of certain diseases in genetically predisposed individuals. Antibiotics and a ‘clean’ environment, termed the ‘hygiene hypothesis’, has been linked to the rise in allergy and inflammatory bowel disease, due to impaired beneficial bacterial exposure and education of the gut immune system, which comprises the largest immune organ within the body. The elevated risk of colon cancer is associated with the suppression of microbial fermentation and butyrate production, as butyrate provides fuel for the mucosa and is anti-inflammatory and anti-proliferative. This article will summarize the work to date highlighting the complicated and dynamic relationship between the gut microbiota and immunity, inflammation and carcinogenesis.

  4. A Role for PML in Innate Immunity

    Science.gov (United States)

    Lunardi, Andrea; Gaboli, Mirella; Giorgio, Marco; Rivi, Roberta; Bygrave, Anne; Antoniou, Michael; Drabek, Dubravka; Dzierzak, Elaine; Fagioli, Marta; Salmena, Leonardo; Botto, Marina; Cordon-Cardo, Carlos; Luzzatto, Lucio; Pelicci, Pier Giuseppe; Grosveld, Frank; Pandolfi, Pier Paolo

    2011-01-01

    The promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune response to viral infection. Herein, we report that Pml −/− mice spontaneously develop an atypical invasive and lethal granulomatous lesion known as botryomycosis (BTM). In Pml −/− mice, BTM is the result of impaired function of macrophages, whereby they fail to become activated and are thus unable to clear pathogenic microorganisms. Accordingly, Pml −/− mice are resistant to lipopolysaccharide (LPS)–induced septic shock as a result of an ineffective production of cytokines and chemokines, suggesting a role for PML in the innate immune Toll-like receptor (TLR)/NF-κB prosurvival pathway. These results not only shed light on a new fundamental function of PML in innate immunity, but they also point to a proto-oncogenic role for PML in certain cellular and pathological contexts. PMID:21779477

  5. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai

    2010-01-01

    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  6. Immune memory in invertebrates.

    Science.gov (United States)

    Milutinović, Barbara; Kurtz, Joachim

    2016-08-01

    Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  8. Aging and repeated thought suppression success.

    Directory of Open Access Journals (Sweden)

    Ann E Lambert

    Full Text Available Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility.

  9. Accentuation-suppression and scaling

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Bundesen, Claus

    2012-01-01

    The limitations of the visual short-term memory (VSTM) system have become an increasingly popular field of study. One line of inquiry has focused on the way attention selects objects for encoding into VSTM. Using the framework of the Theory of Visual Attention (TVA; Bundesen, 1990 Psychological...... a scaling mechanism modulating the decision bias of the observer and also through an accentuation-suppression mechanism that modulates the degree of subjective relevance of objects, contracting attention around fewer, highly relevant objects while suppressing less relevant objects. These mechanisms may...

  10. The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy.

    Science.gov (United States)

    Ghiringhelli, François; Apetoh, Lionel

    2014-01-01

    Preclinical studies have revealed an unexpected ability of the immune system to contribute to the success of chemotherapy and radiotherapy. Anticancer therapies can trigger immune system activation by promoting the release of danger signals from dying tumor cells and/or the elimination of immunosuppressive cells. We have, however, recently discovered that some chemotherapies, such as 5-fluorouracil and gemcitabine, exert conflicting effects on anticancer immune responses. Although 5-fluorouracil and Gem selectively eliminated myeloid-derived suppressive cells in tumor-bearing rodents, these chemotherapies promoted the release of IL-1β and the development of pro-angiogenic IL-17-producing CD4 T cells. The ambivalent effects of chemotherapy on immune responses should thus be carefully considered to design effective combination therapies based on chemotherapy and immune modulators. Herein, we discuss how the initial findings underscoring the key role of the immune system in mediating the antitumor efficacy of anticancer agents could begin to translate into effective therapies in humans.

  11. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    Science.gov (United States)

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  12. Quercetin, Inflammation and Immunity

    Directory of Open Access Journals (Sweden)

    Yao Li

    2016-03-01

    Full Text Available In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.

  13. Pentraxins and immunity

    Directory of Open Access Journals (Sweden)

    Priya Nagar

    2014-01-01

    Full Text Available Pentraxin-3 (PTX3 is a multifactorial protein involved in immunity and inflammation, which is rapidly produced and released by several cell types in response to inflammatory signals. It may be suggested that PTX3 is related to periodontal tissue inflammation. Its salivary concentrations may have a diagnostic potential. Pentraxin-3 (PTX3 is an ancient family of multifactorial proteins involved in immunity and inflammation. They are rapidly produced and released by various types of cells when there are indications of inflammation. PTX3 is related to inflammation in the periodontal tissue and it can be suggested that salivary concentrations may be used for diagnosing the same.

  14. Mucosal immunity to poliovirus.

    Science.gov (United States)

    Ogra, Pearay L; Okayasu, Hiromasa; Czerkinsky, Cecil; Sutter, Roland W

    2011-10-01

    The Global Polio Eradication Initiative (GPEI) currently based on use of oral poliovirus vaccine (OPV) has identified suboptimal immunogenicity of this vaccine as a major impediment to eradication, with a failure to induce protection against paralytic poliomyelitis in certain population segments in some parts of the world. The Mucosal Immunity and Poliovirus Vaccines: Impact on Wild Poliovirus Infection, Transmission and Vaccine Failure conference was organized to obtain a better understanding of the current status of global control of poliomyelitis and identify approaches to improve the immune responsiveness and effectiveness of the orally administered poliovirus vaccines in order to accelerate the global eradication of paralytic poliomyelitis.

  15. Training and natural immunity

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund; Helge, Jørn Wulff; Richter, Erik

    2000-01-01

    these subjects were used to eliminate day-to-day variation in the immunological tests. Independently of diet, training increased the percentage of CD3-CD16+ CD56+ natural killer (NK) cells from [mean (SEM)] 14 (1) % to 20 (3) % (P = 0.05), whereas the NK-cell activity, either unstimulated or stimulated...... influence natural immunity, and suggest that ingestion of a fat-rich diet during training is detrimental to the immune system compared to the effect of a carbohydrate-rich diet....

  16. Vaccines and Immunization Practice.

    Science.gov (United States)

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of antiretroviral therapy on immunity in patients infected with HIV.

    Science.gov (United States)

    Feola, D J; Thornton, A C; Garvy, B A

    2006-01-01

    Drug therapy for human immunodeficiency virus (HIV) is highly effective in suppressing viral replication and restoring immune function in patients with HIV. However, this same treatment can also be associated with immunotoxicity. For example, zidovudine and various other antiretroviral agents are capable of causing bone marrow suppression. Agents used to treat opportunistic infections in these individuals, including ganciclovir, foscarnet, and sulfamethoxazole-trimethoprim, can cause additional hematotoxicity. Drug-drug interactions must also be considered and managed in order to control iatrogenic causes of immunotoxicity. In this review, we examine the normal immune response to HIV, and the benefits of antiretroviral therapy in prolonging immune function. We then discuss immune-related adverse effects of drugs used to treat HIV and the opportunistic infections that are common among these patients. Finally, we address in vitro, animal, and clinical evidence of toxicity associated with various combination use of these agents.

  18. The entomopathogenic fungus Nomuraea rileyi impairs cellular immunity of its host Helicoverpa armigera.

    Science.gov (United States)

    Zhong, Ke; Liu, Zhan-Chi; Wang, Jia-Lin; Liu, Xu-Sheng

    2017-09-01

    In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte-mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph. © 2017 Wiley Periodicals, Inc.

  19. The effect of ionizing radiation on immune system

    International Nuclear Information System (INIS)

    Gyuleva, I.

    1999-01-01

    Delayed radiation effects of irradiation at relatively high doses - 0.52- 2 Gy in result of severe accidents are discussed. The immune response of lymphocyte populations manifested in formation of different kind of mutant cells at Hiroshima-A-bombing and Chernobyl accident are presented. It is of great interest the hypothesis presented launched by RERF (Japanese Foundation for Radiation Effect Research, Hiroshima) for radiation induced predominant of T H2 -lymphocytes in comparison to T H1 as delayed immune response at the Hiroshima-A-bomb survivors. The aspect of immune status is quite different at low doses irradiation (0.02 - 0.2 Gy). There is some stimulation in immune response known as hormesis effect. It is suggested that T-cell activation has key role in immune system stimulation at doses under 0.2 Gy. There is also activation of DNA-reparation mechanisms. Suppression of the hypothalamus-hypophysis-suprarenal axis brings to enhancing of immune potential. Chinese people living in a region with three-times higher background radiation, X-ray examined patients as well as occupationally exposed personnel have been investigated. Radioprotective effect of some cytokines and their influence on the individual radiosensitivity are also discussed.The investigations have to be continued because of some inconsistent results

  20. Hepatitis C, innate immunity and alcohol: friends or foes?

    Science.gov (United States)

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-02-05

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  1. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  2. Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines

    International Nuclear Information System (INIS)

    Weir, Genevieve M.; Liwski, Robert S.; Mansour, Marc

    2011-01-01

    Chemotherapy has been a mainstay in cancer treatment for many years. Despite some success, the cure rate with chemotherapy remains unsatisfactory in some types of cancers, and severe side effects from these treatments are a concern. Recently, understanding of the dynamic interplay between the tumor and immune system has led to the development of novel immunotherapies, including cancer vaccines. Cancer vaccines have many advantageous features, but their use has been hampered by poor immunogenicity. Many developments have increased their potency in pre-clinical models, but cancer vaccines continue to have a poor clinical track record. In part, this could be due to an inability to effectively overcome tumor-induced immune suppression. It had been generally assumed that immune-stimulatory cancer vaccines could not be used in combination with immunosuppressive chemotherapies, but recent evidence has challenged this dogma. Chemotherapies could be used to condition the immune system and tumor to create an environment where cancer vaccines have a better chance of success. Other types of immunotherapies could also be used to modulate the immune system. This review will discuss how immune modulation by chemotherapy or immunotherapy could be used to bolster the effects of cancer vaccines and discuss the advantages and disadvantages of these treatments

  3. Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Weir, Genevieve M. [Suite 411, 1344 Summer St., Immunovaccine Inc., Halifax, NS, B3H 0A8 (Canada); Room 11-L1, Sir Charles Tupper Building, Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS, B3H 1X5 (Canada); Liwski, Robert S. [Room 11-L1, Sir Charles Tupper Building, Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS, B3H 1X5 (Canada); Room 206E, Dr. D. J. Mackenzie Building, Department of Pathology, Dalhousie University, 5788 University Avenue, Halifax, NS, B3H 2Y9 (Canada); Mansour, Marc [Suite 411, 1344 Summer St., Immunovaccine Inc., Halifax, NS, B3H 0A8 (Canada)

    2011-08-05

    Chemotherapy has been a mainstay in cancer treatment for many years. Despite some success, the cure rate with chemotherapy remains unsatisfactory in some types of cancers, and severe side effects from these treatments are a concern. Recently, understanding of the dynamic interplay between the tumor and immune system has led to the development of novel immunotherapies, including cancer vaccines. Cancer vaccines have many advantageous features, but their use has been hampered by poor immunogenicity. Many developments have increased their potency in pre-clinical models, but cancer vaccines continue to have a poor clinical track record. In part, this could be due to an inability to effectively overcome tumor-induced immune suppression. It had been generally assumed that immune-stimulatory cancer vaccines could not be used in combination with immunosuppressive chemotherapies, but recent evidence has challenged this dogma. Chemotherapies could be used to condition the immune system and tumor to create an environment where cancer vaccines have a better chance of success. Other types of immunotherapies could also be used to modulate the immune system. This review will discuss how immune modulation by chemotherapy or immunotherapy could be used to bolster the effects of cancer vaccines and discuss the advantages and disadvantages of these treatments.

  4. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Immune System and Kidney Transplantation.

    Science.gov (United States)

    Shrestha, Badri Man

    2017-01-01

    The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.

  6. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.

    Science.gov (United States)

    Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D

    2016-02-01

    During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Immunity and immunosuppression in experimental visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Goto H.

    2004-01-01

    Full Text Available Leishmaniasis is a disease caused by protozoa of the genus Leishmania, and visceral leishmaniasis is a form in which the inner organs are affected. Since knowledge about immunity in experimental visceral leishmaniasis is poor, we present here a review on immunity and immunosuppression in experimental visceral leishmaniasis in mouse and hamster models. We show the complexity of the mechanisms involved and differences when compared with the cutaneous form of leishmaniasis. Resistance in visceral leishmaniasis involves both CD4+ and CD8+ T cells, and interleukin (IL-2, interferon (IFN- gamma, and IL-12, the latter in a mechanism independent of IFN- gamma and linked to transforming growth factor (TGF-ß production. Susceptibility involves IL-10 but not IL-4, and B cells. In immune animals, upon re-infection, the elements involved in resistance are different, i.e., CD8+ T cells and IL-2. Since one of the immunopathological consequences of active visceral leishmaniasis in humans is suppression of T-cell responses, many studies have been conducted using experimental models. Immunosuppression is mainly Leishmania antigen specific, and T cells, Th2 cells and adherent antigen-presenting cells have been shown to be involved. Interactions of the co-stimulatory molecule family B7-CTLA-4 leading to increased level of TGF-ß as well as apoptosis of CD4+ T cells and inhibition of macrophage apoptosis by Leishmania infection are other components participating in immunosuppression. A better understanding of this complex immune response and the mechanisms of immunosuppression in experimental visceral leishmaniasis will contribute to the study of human disease and to vaccine development.

  8. Disease Heterogeneity and Immune Biomarkers in Preclinical Mouse Models of Ovarian Carcinogenesis

    Science.gov (United States)

    2015-10-01

    cell function. Immune checkpoint blockade has been proven effective in recent clinical trials mostly in melanoma, lung and renal carcinomas. Our...noted between mice with ovarian and oviduct tumors, suggesting that both anatomical locations are similar in inducing an immune suppressive phenotype in...survival based on the anatomical site of mutation activation. (A) Nuclear grade of primary tumor tissues of the ovary, oviduct and the uterus

  9. Molecular Interactions of Autophagy with the Immune System and Cancer

    Directory of Open Access Journals (Sweden)

    Yunho Jin

    2017-08-01

    Full Text Available Autophagy is a highly conserved catabolic mechanism that mediates the degradation of damaged cellular components by inducing their fusion with lysosomes. This process provides cells with an alternative source of energy for the synthesis of new proteins and the maintenance of metabolic homeostasis in stressful environments. Autophagy protects against cancer by mediating both innate and adaptive immune responses. Innate immune receptors and lymphocytes (T and B are modulated by autophagy, which represent innate and adaptive immune responses, respectively. Numerous studies have demonstrated beneficial roles for autophagy induction as well as its suppression of cancer cells. Autophagy may induce either survival or death depending on the cell/tissue type. Radiation therapy is commonly used to treat cancer by inducing autophagy in human cancer cell lines. Additionally, melatonin appears to affect cancer cell death by regulating programmed cell death. In this review, we summarize the current understanding of autophagy and its regulation in cancer.

  10. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  11. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe......-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant...

  12. Report 10. Cooperative immune responses of different generations of mice

    International Nuclear Information System (INIS)

    Savtsova, Z.D.; Kovbasyuk, S.A.; Yudina, O.Yu.; Zaritskaya, M.Yu.; Voejkova, I.M.; Orlovskij, A.A.; Indyk, V.M.; Serkiz, Ya.I.

    1991-01-01

    The immune status of mice has been assessed by the whole complex of data. The permanent action of low-level radiation has been shown to suppress considerably the rate of reactions of the delayed-type hypersensitivity and graft-versus host disease, as well as NK and specific cytolytic T-lymphocyte activity. The dynamics of accumulation and the levels of antibodies in the serum, lung and trachea extracts are virtually invariable. The resistance of experimental animals to influenza is lower than that of non-irradiated mice of the same line and age. The data obtained indicate that the immune disturbances revealed are connected not only with the alteration of lymphoid cell populations, but also with the alteration of the immune regulation mechanisms

  13. Neuroendocrine-immune interaction

    NARCIS (Netherlands)

    Kemenade, van Lidy; Cohen, Nicholas; Chadzinska, Magdalena

    2017-01-01

    It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only

  14. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Lymphoma: Immune Evasion Strategies

    International Nuclear Information System (INIS)

    Upadhyay, Ranjan; Hammerich, Linda; Peng, Paul; Brown, Brian; Merad, Miriam; Brody, Joshua D.

    2015-01-01

    While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care

  16. Lymphoma: Immune Evasion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ranjan; Hammerich, Linda; Peng, Paul [Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Brown, Brian [Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Merad, Miriam [Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Brody, Joshua D., E-mail: joshua.brody@mssm.edu [Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-04-30

    While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care.

  17. Fully immunized child

    DEFF Research Database (Denmark)

    Mutua, Martin Kavao; Kimani-Murage, Elizabeth; Ngomi, Nicholas

    2016-01-01

    Background: More efforts have been put in place to increase full immunization coverage rates in the last decade. Little is known about the levels and consequences of delaying or vaccinating children in different schedules. Vaccine effectiveness depends on the timing of its administration, and it ...

  18. Tick Innate Immunity.

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Petr; Hajdušek, Ondřej; Burešová, Veronika; Daffre, S.

    2010-01-01

    Roč. 708, - (2010), 137-162 ISSN 0065-2598 R&D Projects: GA ČR GAP506/10/2136; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick * pathogen transmission * innate immunity Subject RIV: EC - Immunology Impact factor: 1.379, year: 2010

  19. Distinguishing among potential mechanisms of singleton suppression.

    Science.gov (United States)

    Gaspelin, Nicholas; Luck, Steven J

    2018-04-01

    Previous research has revealed that people can suppress salient stimuli that might otherwise capture visual attention. The present study tests between 3 possible mechanisms of visual suppression. According to first-order feature suppression models , items are suppressed on the basis of simple feature values. According to second-order feature suppression models , items are suppressed on the basis of local discontinuities within a given feature dimension. According to global-salience suppression models , items are suppressed on the basis of their dimension-independent salience levels. The current study distinguished among these models by varying the predictability of the singleton color value. If items are suppressed by virtue of salience alone, then it should not matter whether the singleton color is predictable. However, evidence from probe processing and eye movements indicated that suppression is possible only when the color values are predictable. Moreover, the ability to suppress salient items developed gradually as participants gained experience with the feature that defined the salient distractor. These results are consistent with first-order feature suppression models, and are inconsistent with the other models of suppression. In other words, people primarily suppress salient distractors on the basis of their simple features and not on the basis of salience per se. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Consequences of stereotype suppression and internal suppression motivation : A self-regulation approach

    NARCIS (Netherlands)

    Gordijn, Ernestine H; Hindriks, Inge; Koomen, W; Dijksterhuis, Ap; van Knipppenberg, A.

    The present research studied the effects of suppression of stereotypes on subsequent stereotyping. Moreover, the moderating influence of motivation to suppress stereotypes was examined. The first three experiments showed that suppression of stereotypes leads to the experience of engaging in

  1. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    International Nuclear Information System (INIS)

    Ikuta, Togo; Kurosumi, Masafumi; Yatsuoka, Toshimasa; Nishimura, Yoji

    2016-01-01

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc"M"i"n"/"+mice, AhR expression was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.

  2. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Togo, E-mail: togo@cancer-c.pref.saitama.jp [Department of Cancer Prevention, Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Kurosumi, Masafumi, E-mail: mkurosumi@cancer-c.pref.saitama.jp [Division of Pathology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Yatsuoka, Toshimasa, E-mail: yatsuoka-gi@umin.ac.jp [Division of Gastroenterological Surgery, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Nishimura, Yoji, E-mail: yojinish@cancr-c.pref.saitama.jp [Division of Gastroenterological Surgery, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan)

    2016-05-01

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc{sup Min/+}mice, AhR expression was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.

  3. Frequently Asked Questions about Immunizations

    Science.gov (United States)

    ... will be too late for the vaccine to work. The best time to immunize kids is when they're healthy. Can immunizations cause a bad reaction in my child? The most common reactions to vaccines are minor ...

  4. Technique Selectively Represses Immune System

    Science.gov (United States)

    ... Research Matters December 3, 2012 Technique Selectively Represses Immune System Myelin (green) encases and protects nerve fibers (brown). A new technique prevents the immune system from attacking myelin in a mouse model of ...

  5. Multifaceted effects of synthetic TLR2 ligand and Legionella pneumophilia on Treg-mediated suppression of T cell activation

    Directory of Open Access Journals (Sweden)

    Sutmuller Roger PM

    2011-03-01

    Full Text Available Abstract Background Regulatory T cells (Treg play a crucial role in maintaining immune homeostasis and self-tolerance. The immune suppressive effects of Tregs should however be limited in case effective immunity is required against pathogens or cancer cells. We previously found that the Toll-like receptor 2 (TLR2 agonist, Pam3CysSK4, directly stimulated Tregs to expand and temporarily abrogate their suppressive capabilities. In this study, we evaluate the effect of Pam3CysSK4 and Legionella pneumophila, a natural TLR2 containing infectious agent, on effector T (Teff cells and dendritic cells (DCs individually and in co-cultures with Tregs. Results TLR2 agonists can directly provide a co-stimulatory signal inducing enhanced proliferation and cytokine production of naive CD4+ Teff cells. With respect to cytokine production, DCs appear to be most sensitive to low amounts of TLR agonists. Using wild type and TLR2-deficient cells in Treg suppression assays, we accordingly show that all cells (e.g. Treg, Teff cells and DCs contributed to overcome Treg-mediated suppression of Teff cell proliferation. Furthermore, while TLR2-stimulated Tregs readily lost their ability to suppress Teff cell proliferation, cytokine production by Teff cells was still suppressed. Similar results were obtained upon stimulation with TLR2 ligand containing bacteria, Legionella pneumophila. Conclusions These findings indicate that both synthetic and natural TLR2 agonists affect DCs, Teff cells and Treg directly, resulting in multi-modal modulation of Treg-mediated suppression of Teff cells. Moreover, Treg-mediated suppression of Teff cell proliferation is functionally distinct from suppression of cytokine secretion.

  6. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  7. Serotonergic Chemosensory Neurons Modify the C. elegans Immune Response by Regulating G-Protein Signaling in Epithelial Cells

    Science.gov (United States)

    Anderson, Alexandra; Laurenson-Schafer, Henry; Partridge, Frederick A.; Hodgkin, Jonathan; McMullan, Rachel

    2013-01-01

    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food. PMID:24348250

  8. A survey of suppression of public health information by Australian governments.

    Science.gov (United States)

    Yazahmeidi, Boshra; Holman, C D'Arcy J

    2007-12-01

    It is cause for concern when a democratically elected government suppresses embarrassing information by hindering public health research or the publication of research findings. We conducted a survey of Australian public health academics to estimate the level of acts of suppression of research by Australian governments, to characterise these events, and to gather views on what interventions might be effective in curbing them. A total of 302 academics in 17 institutions completed a postal questionnaire in August 2006 (46% of 652 invited). The instrument sought details of suppression events they had witnessed since 2001. There were 142 suppression events, including 85 personally experienced by 21.2% (n=64) of respondents. The rates were higher in 2005/06 than in earlier years. No State or Territory was immune from suppression. Although governments most commonly hindered research by sanitising, delaying or prohibiting publications (66% of events), no part of the research process was unaffected. Researchers commonly believed their work was targeted because it drew attention to failings in health services (48%), the health status of a vulnerable group (26%), or pointed to a harm in the environment (11%). The government agency seeking to suppress the health information mostly succeeded (87%) and, consequently, the public was left uninformed or given a false impression. Respondents identified a full range of participative, cognitive, structural and legislative control strategies. The suppression of public health information is widely practised by Australian governments. Systemic interventions are necessary to preserve the integrity of public health research conducted with government involvement.

  9. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.

    Science.gov (United States)

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L

    2010-11-01

    To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.

  10. Vitamin E, immunity, and infection

    Science.gov (United States)

    A normally functioning immune system is critical for the body to fight and eliminate invading pathogens from the environment. On the other hand, the immune system also protects the body from internal risks such as neoplasia growing within and autoimmune responses that attack self. The immune system ...

  11. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  12. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  13. Chk1 suppressed cell death

    Directory of Open Access Journals (Sweden)

    Meuth Mark

    2010-09-01

    Full Text Available Abstract The role of Chk1 in the cellular response to DNA replication stress is well established. However recent work indicates a novel role for Chk1 in the suppression of apoptosis following the disruption of DNA replication or DNA damage. This review will consider these findings in the context of known pathways of Chk1 signalling and potential applications of therapies that target Chk1.

  14. Immunity to tumour antigens.

    Science.gov (United States)

    Li, Geng; Ali, Selman A; McArdle, Stephanie E B; Mian, Shahid; Ahmad, Murrium; Miles, Amanda; Rees, Robert C

    2005-01-01

    During the last decade, a large number of human tumour antigens have been identified. These antigens are classified as tumour-specific shared antigens, tissue-specific differentiation antigens, overexpressed antigens, tumour antigens resulting from mutations, viral antigens and fusion proteins. Antigens recognised by effectors of immune system are potential targets for antigen-specific cancer immunotherapy. However, most tumour antigens are self-proteins and are generally of low immunogenicity and the immune response elicited towards these tumour antigens is not always effective. Strategies to induce and enhance the tumour antigen-specific response are needed. This review will summarise the approaches to discovery of tumour antigens, the current status of tumour antigens, and their potential application to cancer treatment.

  15. In-Flight Suppressant Deployment Temperatures

    National Research Council Canada - National Science Library

    Bein, Donald

    2006-01-01

    .... An assessment is made of the model output versus some aircraft measurement data, fire suppressant boiling point criterion, as well as the history of altitude/temperature at which fire suppressants have been deployed...

  16. Agency privileges and immunities

    International Nuclear Information System (INIS)

    1969-01-01

    Switzerland has become the thirty-fifth Member State to be a party to the Agreement on the Privileges and Immunities of the International Atomic Energy Agency. Its Resident Representative, Ambassador Alfred Eschler, deposited his Government's instrument of acceptance on 16 September. This is the fourth such instrument to be deposited with the Agency since the beginning of this year, the others being Ecuador on 16 April, Niger on 17 June and Vietnam on 31 July. (author)

  17. Immune disorders in anorexia

    OpenAIRE

    SŁOTWIŃSKA, SYLWIA MAŁGORZATA; SŁOTWIŃSKI, ROBERT

    2017-01-01

    Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters pla...

  18. Ebola and Immune System

    OpenAIRE

    KOMENAN, Alexis

    2016-01-01

    Ebola hemorrhagic fever is a formidable disease whose surges always result in a high number of victims in sub-Saharan Africa. There is no official treatment against the virus, which makes the task of containment extremely delicate. However, the existence of survivors to the virus demonstrates curable nature of the disease and suggests the existence of favorable factors of immunity. The author examines these factors and their challenges and perspectives in the cure of the disease.

  19. Only small fractions of soluble ß-glucan modulate the mucosal immune system in carp (Cyprinus carpio L.)

    DEFF Research Database (Denmark)

    Przybylska, Dominika Alicja; Nielsen, Michael Engelbrecht

    For decades the ability of β-glucans to modulate immunity through activation of innate cellular components has been observed. However, toxicological effects associated with the systemic administration and dose-related immune-suppression has also been described. The superior aim of this study...... is to understand the effect of β-glucan induced modulation in carp in relation to tissue regeneration, mucosal immunity and host-pathogen interactions. Expression profiles of immune related genes will be measured in fresh water specie – common carp (Cyprinus carpio L.). The methodology of the project involves...

  20. Mechanism of suppressive effect of low dose radiation on cancer cell dissemination in mice

    International Nuclear Information System (INIS)

    Fu Haiqing; Li Xiuyi; Chen Yubing; Zhang Yingchun; Liu Shuzheng

    1997-01-01

    Influence of low dose radiation on immunity in C57 BL/6 mice injected with cancer cells was studied. In mice given 75 mGy WBI 24 h before injection of Lewis lung carcinoma cells or B 16 melanoma cells, the percentage of S-phase thymocytes and CD 3+ thymocytes, the splenic NK cell activity, IL-2 secretion and γIFN secretion were found to be potentiated 2∼8 day after irradiation in comparison with the sham-irradiation mice. The results suggest that low dose radiation might suppress cancer cell dissemination via the enhancement of immune reactivity

  1. Immune disorders in anorexia

    Directory of Open Access Journals (Sweden)

    Sylwia Małgorzata Słotwińska

    2017-10-01

    Full Text Available Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa.

  2. Immune disorders in anorexia.

    Science.gov (United States)

    Słotwińska, Sylwia Małgorzata; Słotwiński, Robert

    2017-01-01

    Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa.

  3. Hyperthermia, immunity and metastases

    International Nuclear Information System (INIS)

    Lopatin, V.F.

    1983-01-01

    The analysis of literature data concerning local hyperthermia effects shows that temperatures over 41-42 deg C (in the whole tumor volume), causing tumor growth inhibition and cell injury, can change antigenic nature of a malignant tissue. The tumor injured by thermal effect is able probably the full length of time of injured tissue resorption to maintain at a sufficiently high level antitumoral immunity and lay obstacles to emergence of metastases or even cause regression of those tumoral foci which have not been exposed to direct effect of the injuring agent. The facts of tumoral foci regression take place also upon radiation effect which is associated as well with participation of immune mechanisms. In.experiments with animals an essential increase of immunogenic character of malignant cells exposed to ionizing radiation effect has been observed. It follows that radiation injury of tumoral tissue as well as thermal one is able to stimulate antitumoral immunity and reduce the probability of emergence of metastases. But in case of radiotherapy immunosuppression effect of ionizing radiation (at the expense of inhibition of proliferation and death of immunocompetent cells) can essentially overlap immunostimulating effect related to the changes in antigenic character of tumoral cells

  4. Linear ubiquitination in immunity.

    Science.gov (United States)

    Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning

    2015-07-01

    Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  5. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  6. Interleukin-6 promotes systemic lupus erythematosus progression with Treg suppression approach in a murine systemic lupus erythematosus model.

    Science.gov (United States)

    Mao, Xiaoli; Wu, Yunyun; Diao, Huitian; Hao, Jianlei; Tian, Gaofei; Jia, Zhenghu; Li, Zheng; Xiong, Sidong; Wu, Zhenzhou; Wang, Puyue; Zhao, Liqing; Yin, Zhinan

    2014-11-01

    Our aim is to reveal the role of interleukin 6 (IL-6) in the pathogenesis of systemic lupus erythematosus (SLE) in a murine model of SLE. Normal female C57BL/6 mice were immunized with syngeneic-activated lymphocyte-derived DNA (ALD-DNA) to induce SLE. Non-immunized mice were used as control. SLE-associated markers, including anti-double-stranded DNA (anti-dsDNA) Abs, urine protein, and kidney histopathology, were assayed to ensure the induction of the disease. Compared with control mice, ALD-DNA immunized mice exhibited high levels of anti-dsDNA Abs, IL-6 expression in vivo and in vitro. We also found that IL-6 knockout (IL-6KO) mice were resistant to ALD-DNA-induced SLE. The activation of CD4(+) T cells in immunized IL-6KO mice was lower than in immunized wild-type (Wt) mice. Intracellular cytokine staining showed that Foxp3 expression in immunized IL-6KO mice was higher than in immunized Wt mice, which might be associated with the disease severity. We further discovered that ALD-DNA-stimulated dendritic cells supernatants could result in higher IL-6 and TNF-α expression and could suppress Foxp3 expression. In addition, blocking IL-6 could up-regulate Foxp3 expression. Therefore, our findings show that IL-6 promotes the progression of SLE via suppressing Treg differentiation.

  7. Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites.

    Directory of Open Access Journals (Sweden)

    Jayanthi Santhanam

    2014-01-01

    Full Text Available Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS by a virulent clone (AJ in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs, background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but

  8. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  9. Impact of pharmacists providing immunizations on adolescent influenza immunization.

    Science.gov (United States)

    Robison, Steve G

    2016-01-01

    To determine if the Oregon law change in 2011 to allow pharmacists to immunize adolescents 11 to 17 years of age increased influenza immunizations or changed existing immunization venues. With the use of Oregon's ALERT Immunization Information System (IIS), 2 measures of impact were developed. First, the change in adolescent age 11-17 influenza immunizations before (2007-2010) and after (2011-2014) the pharmacy law change was evaluated against a reference cohort (aged 7-10) not affected by the law. Community pharmacies were also compared with other types of influenza immunization sites within one of the study influenza seasons (2013-2014). From 2007 to 2014, adolescent influenza immunizations at community pharmacies increased from 36 to 6372 per year. After the 2011 pharmacy law change, adolescents aged 11 to 17 were more likely to receive an influenza immunization compared with the reference population (odds ratio, 1.21; 95% CI, 1.19-1.22). Analysis of the 2013-2014 influenza season suggests that community pharmacies immunized a different population of adolescents than other providers. The 2011 change in Oregon law allowed pharmacists to increase the total of influenza immunizations given to adolescents. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors.

    Science.gov (United States)

    Karmakar, Souvik; Reilly, Karlyne M

    2017-01-01

    With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.

  11. The role of STAT3 in leading the crosstalk between human cancers and the immune system.

    Science.gov (United States)

    Wang, Yu; Shen, Yicheng; Wang, Sinan; Shen, Qiang; Zhou, Xuan

    2018-02-28

    The development and progression of human cancers are continuously and dynamically regulated by intrinsic and extrinsic factors. As a converging point of multiple oncogenic pathways, signal transducer and activator of transcription 3 (STAT3) is constitutively activated both in tumor cells and tumor-infiltrated immune cells. Activated STAT3 persistently triggers tumor progression through direct regulation of oncogenic gene expression. Apart from its oncogenic role in regulating gene expression in tumor cells, STAT3 also paves the way for human cancer growth through immunosuppression. Activated STAT3 in immune cells results in inhibition of immune mediators and promotion of immunosuppressive factors. Therefore, STAT3 modulates the interaction between tumor cells and host immunity. Accumulating evidence suggests that targeting STAT3 may enhance anti-cancer immune responses and rescue the suppressed immunologic microenvironment in tumors. Taken together, STAT3 has emerged as a promising target in cancer immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Minnema-Luiting, Jorien; Vroman, Heleen; Aerts, Joachim; Cornelissen, Robin

    2018-03-30

    Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no "one size fits all" treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME.

  13. STRESS AND DIFFERENTIAL ALTERATIONS IN IMMUNE-SYSTEM FUNCTIONS - CONCLUSIONS FROM SOCIAL STRESS STUDIES IN ANIMALS

    NARCIS (Netherlands)

    BOHUS, B; KOOLHAAS, JM; DERUITER, AJH; HEIJNEN, CJ

    1991-01-01

    Psychosocial factors are implicated in the development, in the course of, and in the recovery from disease. The immune system may be a mediator of the disease. Studies with animal models using social interactions in rodents suggest that short- and long-term social stress does not invariably suppress

  14. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells

    DEFF Research Database (Denmark)

    Laan, Lisa C; Williams, Andrew R; Stavenhagen, Kathrin

    2017-01-01

    Clinical trials have shown that administration of the nematode Trichuris suis can be beneficial in treating various immune disorders. To provide insight into the mechanisms by which this worm suppresses inflammatory responses, an active component was purified from T. suis soluble products (TsSPs)...

  15. Suppression of Langerhans cell activation is conserved amongst human papillomavirus α and β genotypes, but not a µ genotype.

    Science.gov (United States)

    Da Silva, Diane M; Movius, Carly A; Raff, Adam B; Brand, Heike E; Skeate, Joseph G; Wong, Michael K; Kast, W Martin

    2014-03-01

    Human papillomavirus (HPV) has evolved mechanisms that allow it to evade the human immune system. Studies have shown HPV-mediated suppression of activation of Langerhans cells (LC) is a key mechanism through which HPV16 evades initial immune surveillance. However, it has not been established whether high- and low-risk mucosal and cutaneous HPV genotypes share a common mechanism of immune suppression. Here, we demonstrate that LC exposed to capsids of HPV types 18, 31, 45, 11, (alpha-papillomaviruses) and HPV5 (beta-papillomavirus) similarly suppress LC activation, including lack of costimulatory molecule expression, lack of cytokine and chemokine secretion, lack of migration, and deregulated cellular signaling. In contrast, HPV1 (mu-papillomavirus) induced costimulatory molecule and cytokine upregulation, but LC migration and cellular signaling was suppressed. These results suggest that alpha and beta HPV genotypes, and partially a mu genotype, share a conserved mechanism of immune escape that enables these viruses to remain undetected in the absence of other inflammatory events. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    International Nuclear Information System (INIS)

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  17. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin [Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock (Germany); Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Leipzig (Germany); Paape, Daniel; Hildebrandt, Guido, E-mail: guido.hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock (Germany)

    2012-08-24

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  18. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells.

    Science.gov (United States)

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  19. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    Science.gov (United States)

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations

    Science.gov (United States)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong

    2015-11-01

    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.