WorldWideScience

Sample records for fuel transport operations

  1. Experience with fuel damage caused by abnormal conditions in handling and transporting operations

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1983-01-01

    Pacific Northwest Laboratory (PNL) conducted a study to determine the expected condition of spent USA light-water reactor (LWR) fuel upon arrival at interim storage or fuel reprocessing facilities or, if fuel is declared a waste, at disposal facilities. Initial findings were described in an earlier PNL paper at PATRAM '80 and in a report. Updated findings are described in this paper, which includes an evaluation of information obtained from the literature and a compilation of cases of known or suspected damage to fuel as a result of handling and/or transporting operations. To date, PNL has evaluated 123 actual cases (98 USA and 25 non-USA). Irradiated fuel was involved in all but 10 of the cases. From this study, it is calculated that the frequency of unusual occurrences involving fuel damage from handling and transporting operations has been low. The damage that did occur was generally minor. The current base of experience with fuel handling and transporting operations indicates that nearly all of these unusual occurrences had only a minor or negligible effect on spent fuel storage facility operations

  2. Transporting spent fuel and reactor waste in Sweden experience from 5 years of operation

    International Nuclear Information System (INIS)

    Dybeck, P.; Gustafsson, B.

    1990-01-01

    This paper reports that since the Final Repository for Reactor Waste, SFR, was taken into operation in 1988, the SKB sea transportation system is operating at full capacity by transporting spent fuel and now also reactor waste from the 12 Swedish reactors to CLAB and SFR. Transports from the National Research Center, Studsvik to the repository has recently also been integrated in the system. CLAB, the central intermediate storage for spent fuel, has been in operation since 1985. The SKB Sea Transportation System consists today of the purpose built ship M/s Sigyn, 10 transport casks for spent fuel, 2 casks for spent core components, 27 IP-2 shielded steel containers for reactor waste and 5 terminal vehicles. During an average year about 250 tonnes of spent fuel and 3 -- 4000 m 3 of reactor waste are transported to CLAB and SFR respectively, corresponding to around 30 sea voyages

  3. Transport of MOX fuel

    International Nuclear Information System (INIS)

    Porter, I.R.; Carr, M.

    1997-01-01

    The regulatory framework which governs the transport of MOX fuel is set out, including packages, transport modes and security requirements. Technical requirements for the packages are reviewed and BNFL's experience in plutonium and MOX fuel transport is described. The safety of such operations and the public perception of safety are described and the question of gaining public acceptance for MOX fuel transport is addressed. The paper concludes by emphasising the need for proactive programmes to improve the public acceptance of these operations. (Author)

  4. MOX fuel transport: the French experience

    International Nuclear Information System (INIS)

    Sanchis, H.; Verdier, A.; Sanchis, H.

    1999-01-01

    In the back-end of the fuel cycle, several leading countries have chosen the Reprocessing, Conditioning, Recycling (RCR) option. Plutonium recycling in the form of MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants an several European countries. The COGEMA Group has developed the industrialized products to master the RCR operation including transport COGEMA subsidiary, TRANSNUCLEAIRE has been operating MOX fuel transports on an industrial scale for more than 10 years. In 1998, around 200 transports of Plutonium materials have been organised by TRANSNUCLEAIRE. These transports have been carried out by road between various facilities in Europe: reprocessing plants, manufacturing plants and power plants. The materials transported are either: PuO 2 and MOX powder; BWR and PWR MOX fuel rods; BWR and PWR MOX fuel assemblies. Because MOX fuel transport is subject to specific safety, security and fuel integrity requirements, the MOX fuel transport system implemented by TRANSNUCLEAIRE is fully dedicated. Packaging have been developed, licensed and manufactured for each kind of MOX material in compliance with relevant regulations. A fleet of vehicles qualified according to existing physical protection regulations is operated by TRANSNUCLEAIRE. TRANSNUCLEAIRE has gained a broad experience in MOX transport in 10 years. Technical and operational know-how has been developed and improved for each step: vehicles and packaging design and qualification; vehicle and packaging maintenance; transport operations. Further developments are underway to increase the payload of the packaging and to improve the transport conditions, safety and security remaining of course top priority. (authors)

  5. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  6. Operation and maintenance of spent fuel storage and transportation casks/containers

    International Nuclear Information System (INIS)

    2007-01-01

    Member States have a growing need for casks for spent fuel storage and transportation. A variety of casks has been developed and is in use at an increasing number of sites. This has resulted in an accumulation of experience that will provide valuable information for other projects in spent fuel management. This publication provides a comprehensive review of information on the cask operation and maintenance associated with spent fuel storage. It draws upon generic knowledge from industrial experience and applications and is intended to serve as a basis for better planning and implementation in future projects

  7. Standard casks for the transport of LWR spent fuel. Storage/transport casks for long cooled spent fuel

    International Nuclear Information System (INIS)

    Blum, P.; Sert, G.; Gagnon, R.

    1983-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks are presently used for European and intercontinental transports and manufactured under TRANSNUCLEAIRE supervision in different countries. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardization faciliting fabrication, operation and spare part supply. Recently, TRANSNUCLEAIRE also developed a new generation of casks for the dry storage and occasional transport of LWR spent fuel which has been cooled for 5 years or 7 years in case of consolidated fuel rods. These casks have an optimum payload which takes into account the shielding requirements and the weight limitations at most sites. This paper deals more particularly with the TN 24 model which exists in 4 versions among which one for 24 PWR 900 fuel assemblies and another one for the consolidated fuel rods from 48 of same fuel assemblies

  8. Spent fuel and HLW transportation the French experience

    International Nuclear Information System (INIS)

    Giraud, J.P.; Charles, J.L.

    1995-01-01

    With 53 nuclear power plants in operation at EDF and a fuel cycle with recycling policy of the valuable materials, COGEMA is faced with the transport of a wide range of radioactive materials. In this framework, the transport activity is a key link in closing the fuel cycle. COGEMA has developed a comprehensive Transport Organization System dealing with all the sectors of the fuel cycle. The paper will describe the status of transportation of spent fuel and HLW in France and the experience gathered. The Transport Organization System clearly defines the role of all actors where COGEMA, acting as the general coordinator, specifies the tasks to be performed and brings technical and commercial support to its various subcontractors: TRANSNUCLEAIRE, specialized in casks engineering and transport operations, supplies packaging and performs transport operations, LEMARECHAL and CELESTIN operate transport by truck in the Vicinity of the nuclear sites while French Railways are in charge of spent fuel transport by train. HLW issued from the French nuclear program is stored for 30 years in an intermediate storage installation located at the La Hague reprocessing plant. Ultimately, these canisters will be transported to the disposal site. COGEMA has set up a comprehensive transport organization covering all operational aspects including adapted procedures, maintenance programs and personnel qualification

  9. European experience with spent fuel transport

    International Nuclear Information System (INIS)

    Hunter, I.A.

    1995-01-01

    Nuclear Transport Ltd has transported 5000 tonnes of spent fuel from 35 reactors in 8 European countries since 1972. Transport management is governed by the Quality Plan for: transport administration, packaging and shipment procedures at the shipping plant, operations at the power plant, and packaging and shipment organization at the power plant. Selection of a suitable carrier device is made with regard to the shipping plant requirements, physical limitations of the reactor, fuel characteristics, and transport route constraints. The transport plan is set up taking into account exploitation of the casks, reactor shut-down requirements, fuel acceptance plans at the reprocessing plant, and cask maintenance periods. A transport cycle involving spent fuel shipment to La Hague or to Sellafield takes typically two or four weeks, respectively. Most transports through Europe are by rail. A special-design railway ferry boat serves transports to the United Kingdom. Both wet or dry casks are employed. Modern casks are designed for high burnups and for oxide fuels. (J.B.)

  10. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  11. Control system of fuel transporting device

    International Nuclear Information System (INIS)

    Yokota, Minoru.

    1981-01-01

    Purpose: To effectively avoid an obstacle in a fuel transporting device by reading the outputs of absolute position detectors mounted on movable trucks, controlling the movements of the trucks, and thereby smoothly and accurately positioning the fuel transporting device at predetermined position and providing a contact detector thereat. Method: The outputs from absolute position detectors which are mounted on a longitudinally movable truck and a laterally movable truck are input to an input/output control circuit. The input/output control circuit serves to compare, the position a fuel transporting device is to be moved to, with the present position on the basis of said input detection signal and a command signal from an operator console, to calculate the amount of movement to be driven, to produce an operation signal therefor to a control panel, and to drive and control the drive motors which are respectively mounted on the trucks for the fuel transfer device. On the other hand, in case that the transfer device comes into contact with an obstacle, the contact detector will immediately operate to produce a stop command through the control panel to the transporting device, and avoid a collision with the obstacle. (Yoshino, Y.)

  12. Comparison of the Transportation Risks Resulting from Accidents during the Transportation of the Spent Fuel

    International Nuclear Information System (INIS)

    Jeong Jong Tae; Cho, Dong Kuen; Choi, Heui Joo; Choi, Jong Won

    2007-01-01

    The safe, environmentally sound and publicly acceptable disposal of high level wastes and spent fuels is becoming a very important issue. The operational safety assessment of a repository including a transportation safety assessment is a fundamental part in order to achieve this goal. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for spent fuels. Also, we estimated and compared the transportation risks resulting from the accidents during the transportation of spent fuels for these four transportation scenarios

  13. Irradiated nuclear fuel transport from Japan to Europe

    International Nuclear Information System (INIS)

    Kavanagh, M.T.; Shimoyama, S.

    1976-01-01

    Irradiated nuclear fuel has been transported from Japan to Europe since 1969, although U.K. experience goes back almost two decades. Both magnox and oxide fuel have been transported, and the technical requirements associated with each type of fuel are outlined. The specialized ships used by British Nuclear Fuels Limited (BNFL) for this transport are described, as well as the ships being developed for future use in the Japan trade. The ship requirements are related to the regulatory position both in the United Kingdom and internationally, and the Japanese regulatory requirements are described. Finally, specific operational experience of a Japanese reactor operator is described

  14. 14 CFR 25.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  15. An Indian perspective for transportation and storage of spent fuel

    International Nuclear Information System (INIS)

    Dey, P.K.

    2005-01-01

    The spent fuel discharged from the reactors are temporarily stored at the reactor pool. After a certain cooling time, the spent fuel is moved to the storage locations either on or off reactor site depending on the spent fuel management strategy. As India has opted for a closed fuel cycle for its nuclear energy development, reprocessing of the spent fuel, recycling of the reprocessed plutonium and uranium and disposal of the wastes from the reprocessing operations forms the spent fuel management strategy. Since the reprocessing operations are planned to match the nuclear energy programme, storage of the spent fuel in ponds are adopted prior to reprocessing. Transport of the spent fuel to the storage locations are carried out adhering to international and national guide lines. India is having 14 operating power reactors and three research reactors. The spent fuel from the two safeguarded BWRs are stored at-reactor (AR) storage pond. A separate wet storage facility away-from-reactor (AFR) has been designed, constructed and made operational since 1991 for additional fuel storage. Storage facilities are provided in ARs at other reactor locations to cater to 10 reactor-years of operation. A much lower capacity spent fuel storage is provided in reprocessing plants on the same lines of AR fuel storage design. Since the reprocessing operations are carried out on a need basis, to cater to the increased storage needs two new spent fuel storage facilities (SFSF) are being designed and constructed near the existing nuclear plant sites. India has mastered the technology for design, construction and operation of wet spent fuel storage facility meeting all the international standards Wet storage of the spent fuel is the most commonly adopted mode all over the world. Recently an alternate mode viz. dry storage has also been considered. India has designed, constructed and operated lead shielded dry storage casks and is operational at one site. A dry storage cask made of concrete

  16. The operational and logistic experience on transportation of Brazilian spent fuel to USA

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens; Frajndlich, Roberto; Mandlae, Martin; Bensberg, Werner; Renger, August; Grabow, Karsten

    2000-01-01

    A shipment of 127 spent MTR fuel assemblies was made from IEA-R1 Research Reactor located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, Brazil to Savannah River Site Laboratory in the United States. This paper describes the operational and logistic experience on this transportation made by IPEN staff and the Consortium NCS/GNS. (author)

  17. Fuel transporting device

    International Nuclear Information System (INIS)

    Shiratori, Hirozo.

    1979-01-01

    Purpose: In a liquid-metal cooled reactor, to reduce the waiting time of fuel handling apparatuses and shorten the fuel exchange time. Constitution: A fuel transporting machine is arranged between a reactor vessel and an out-pile storage tank, thereby dividing the transportation line of the pot for contracting fuel and transporting the same. By assuming such a construction, the flow of fuel transportation which has heretofore been carried out through fuel transportation pipes is not limited to one direction but the take-out of fuels from the reactor and the take-in thereof from the storage tank can be carried out constantly, and much time is not required for fuel exchange. (Kamimura, M.)

  18. Transporting fuel debris from TMI-2 to INEL

    International Nuclear Information System (INIS)

    Quinn, G.J.; Burton, H.M.; Bixby, W.W.; McIntosh, T.W.; McGoff, O.J.; Barkonic, R.J.; Henrie, J.O.

    1986-06-01

    Transportation of the damaged fuel from Unit 2 of Three Mile Island (TMI-2) presented noteworthy technical challenges involving complex institutional issues. The program resulted from both a need to package and remove the accident debris and also the opportunity to receive and study damaged core components. These combined to establish the safe transport of the TMI-2 fuel debris as a high priority for many diverse organizations. The capability of the sending and receiving facilities to handle spent fuel transport casks in the most cost-effective manner was assessed and resulted in the development by Nuclear Packaging Inc. (NuPac) of the NuPac 125-B rail cask. This paper reviews the technical challenges in preparation of the TMI-2 core debris for transport from TMI-2 to the Idaho National Engineering Laboratory (INEL) and receipt and storage of that material at INEL. Challenges discussed include design and testing of fuel debris canisters; design, fabrication and licensing of a new rail cask for spent fuel transport; cask loading operations, equipment and facilities at TMI-2; transportation logistics; and, receipt, storage and core examination operations at INEL. 10 refs

  19. The transportation operations system: A description

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Dixon, L.D.; Peterson, R.W.; Pope, R.B.

    1990-01-01

    This paper presents a description of the system for transporting radioactive waste that may be deployed to accomplish the assigned system mission, which includes accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from waste generator sites and transporting them to the FWMS destination facilities. The system description presented here contains, in part, irradiated fuel and waste casks, ancillary equipments, truck, rail, and barge transporters, cask and vehicle traffic management organizations, maintenance facilities, and other operations elements. The description is for a fully implemented system, which is not expected to be achieved, however, until several years after initial operations. 6 figs

  20. 14 CFR 29.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 29.961...

  1. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  2. Comparison of the transportation risks for the spent fuel in Korea for different transportation scenarios

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Cho, D.K.; Choi, H.J.; Choi, J.W.

    2011-01-01

    According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. At the start of the operation of the final repository (FR), by the year 2065, transport will then take place between the CISF and the FR. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios for a maritime transportation by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for the spent fuels in Korea. And, we estimated and compared the transportation risks for these four transportation scenarios. Also, we estimated and compared the transportation risks resulting from accidents during the transportation of PWR and PHWR spent fuels by road trailers from the CISF and the FR. From the results of this study, we found that risks resulting from accidents during the transportation of the spent fuels have a very low radiological risk activity with a manageable safety and health consequences. The results of this study can be used as basic data for the development of safe and economical logistics for a transportation of the spent fuels in Korea by considering the transportation costs for the four scenarios which will be needed in the near future.

  3. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  4. Comparative economic efficiency, operating costs and fuel consumption rates of freight transport modes between the largest industrial cities and seaports in South Africa

    Directory of Open Access Journals (Sweden)

    W J (Wessel Pienaar

    2013-09-01

    Full Text Available The paper deals with aspects of efficiency within the five modes of freight transport, with special reference to the operating cost and fuel consumption rates between South Africa’s largest industrial cities and seaports. In particular, the paper deals with (a the opportunities that exist for the achievement of efficiency in freight transport; (b the subgroups of economies that can enhance efficiency attainment in the freight transport industry; (c prevailing cost structures, operating cost and fuel consumption rates within the five modes of freight transport; and (d the salient economic features of the freight transport market. The research approach and methodology combine (a a literature survey; (b empiric research, (c an analysis of the cost structures of freight transport operators from different modes of transport; and (d interviews conducted with specialists in the freight transport industry.

  5. Development of transportation operations requirements

    International Nuclear Information System (INIS)

    Grady, S.T.; Best, R.E.; Danese, F.L.; Peterson, R.W.; Pope, R.B.

    1990-01-01

    Transport conditions at various utility sties vary dramatically in terms of characteristics at and near the site, requirements, administrative procedures, and other factors. Continuation of design efforts for the OCRWM transportation operations system requires that the operating requirements for the transportation system -- quantity of fuel per unit time per site -- be identified so that the effect the variations have on the system can be accommodated. The approach outlined in this paper provides for an identification of specific sites, evaluation of shipment capabilities at each site, and integration of the sites into multi-site shipping campaigns to scope the logistics management problem for the transportation operations system. 1 fig., 1 tab

  6. EDF energy generation UK transport of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    James, R. [EDF Energy, London, (United Kingdom)

    2015-07-01

    This paper give an overview of irradiated fuel transport in the UK. It describes the design of irradiated fuel flask used by EDF Energy; operational experience and good practices learnt from over 50 years of irradiated fuel transport. The AGRs can store approximately 9 months generation of spent fuel, hence the ability to transport irradiated fuel is vital. Movements are by road to the nearest railhead, typically less than 2 miles and then by rail to Sellafield, up to 400 miles, for reprocessing or long term storage. Road and rail vehicles are covered. To date in the UK: over 30,000 Magnox flask journeys and over 15,000 AGR A2 flask journeys have been carried out.

  7. Transportation of spent fuel from light water reactors

    International Nuclear Information System (INIS)

    Bernard, H.

    1993-01-01

    The French 'Compagnie Generale des Matieres Nucleaires' - COGEMA - is involved in the whole nuclear fuel cycle about 20 years. Among the different parts of the cycle, the Transport of Radioactive Materials, acting as a link between the differents plants has a great importance. As nuclear material transportation is the only fuel cycle step to be performed on public grounds, the industrial task has to be performed with the utmost stringent safety criteria. COGEMA and associates is now operating a fully mature commercial activity, with some 300 spent fuel shipments per year from its reprocessing customer's reactors to the LA HAGUE plant, either by rail, road or sea. The paper will review the organization of COGEMA transportation business, the level of technology with an update of the casks used for spent fuel, and the operational experience, with a particular view of the maintenance policy. (author)

  8. Real driving emissions and fuel consumption characteristics of Istanbul public transportation

    Directory of Open Access Journals (Sweden)

    Ozener Orkun

    2017-01-01

    Full Text Available Public transportation, which uses intra city lines frequently, has vital importance on the cities air pollution. The fossil fuel based drive units, which emits pollutants, are the primary source of this interest. Also, the fuel consumption is another major concern because of economic aspects. For an efficient and clear transportation, the pollutants and fuel consumption has to be analyzed, considering the operating conditions. In this context, the Metrobus line of Istanbul city which crosses from European side to Asian side of the city was analyzed with portable emission measurement system and portable fuel consumption meter devices. The relevant bus operating data were also collected during the operation. The data were analyzed while considering the operating modes like acceleration, deceleration, and constant speed cruises. The emission factors were developed. The pollutant emissions generally decreased as the vehicle speed increased while the fuel consumption increased for the same acceleration level. These results show the importance of operating conditions and their non-linear effect on emissions and fuel consumption Istanbul public transportation.

  9. Design of a transportation cask for irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Nash, K.E.; Gavin, M.E.

    1983-01-01

    A major step in the development of a large-scale transportation system for irradiated CANDU fuel is being made by Ontario Hydro in the design and construction of a demonstration cask by 1988/89. The system being designed is based on dry transportation with the eventual fully developed system providing for dry fuel loading and unloading. Research carried out to date has demonstrated that it is possible to transport irradiated CANDU fuel in a operationally efficient and simple manner without any damage which would prejudice subsequent automated fuel handling

  10. Transport equations in an enzymatic glucose fuel cell

    Science.gov (United States)

    Jariwala, Soham; Krishnamurthy, Balaji

    2018-01-01

    A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.

  11. Estimated routine radiation doses to transportation workers in alternative spent-fuel transportation systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Smith, R.I.; Daling, P.M.; Ross, W.A.; McNair, G.W.

    1988-01-01

    The federal system for the management of spent fuel and high-level radioactive waste includes the acceptance by the US Department of Energy (DOE) of the spent fuel or waste loaded in casks at the reactor or other waste generators, its transportation to a repository, and its handling and final emplacement in the repository. The DOE plans to implement a transportation system that is safe, secure, efficient, and cost-effective and will meet applicable regulatory safety and security requirements. The DOE commissioned the Pacific Northwest Laboratory (PNL) to develop estimates of the routine radiation doses that would result from the operation of a system postulated using current designs and practices. From that evaluation, PNL identified activities/operations that result in the higher fraction of doses, proposed conceptual alternatives that would effectively reduce such exposures, and evaluated the cost-effectiveness of such alternatives. The study is one of a series used in making overall system design and operational decisions in the development of the DOE's spent-fuel/high-level waste transportation system. This paper contains the highlights from the PNL study of the estimated radiation doses to the transportation workers in a postulated reference transportation system and potential alternatives to that system

  12. Analysis of near-term spent fuel transportation hardware requirements and transportation costs

    International Nuclear Information System (INIS)

    Daling, P.M.; Engel, R.L.

    1983-01-01

    A computer model was developed to quantify the transportation hardware requirements and transportation costs associated with shipping spent fuel in the commercial nucler fuel cycle in the near future. Results from this study indicate that alternative spent fuel shipping systems (consolidated or disassembled fuel elements and new casks designed for older fuel) will significantly reduce the transportation hardware requirements and costs for shipping spent fuel in the commercial nuclear fuel cycle, if there is no significant change in their operating/handling characteristics. It was also found that a more modest cost reduction results from increasing the fraction of spent fuel shipped by truck from 25% to 50%. Larger transportation cost reductions could be realized with further increases in the truck shipping fraction. Using the given set of assumptions, it was found that the existing spent fuel cask fleet size is generally adequate to perform the needed transportation services until a fuel reprocessing plant (FRP) begins to receive fuel (assumed in 1987). Once the FRP opens, up to 7 additional truck systems and 16 additional rail systems are required at the reference truck shipping fraction of 25%. For the 50% truck shipping fraction, 17 additional truck systems and 9 additional rail systems are required. If consolidated fuel only is shipped (25% by truck), 5 additional rail casks are required and the current truck cask fleet is more than adequate until at least 1995. Changes in assumptions could affect the results. Transportation costs for a federal interim storage program could total about $25M if the FRP begins receiving fuel in 1987 or about $95M if the FRP is delayed until 1989. This is due to an increased utilization of federal interim storage facility from 350 MTU for the reference scenario to about 750 MTU if reprocessing is delayed by two years

  13. Transport of volatile fission products in the fuel-to-sheath gap of defective fuel elements during normal and reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bonin, H.W.

    1995-01-01

    An analytical treatment has been used to model the vapour transport of radioactive fission products released into the fuel-to-sheath gap of defective nuclear fuel elements. The model accounts for both diffusive and bulk-convective transport. Convective transport becomes important as a result of a significant release of gaseous fission products into the gap during a high-temperature reactor accident. However, during normal reactor operation, diffusion is shown to be the dominant process of transport. The model is based on an analysis of several in-reactor tests with operating defective fuel elements, and high-temperature annealing experiments with irradiated fuel specimens. ((orig.))

  14. DOE perspective on fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, and cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.

  15. Liquid-fueled SOFC power sources for transportation

    Science.gov (United States)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  16. Transport of nuclear used fuel and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J. [World Nuclear Transport Institute, London (United Kingdom)

    2015-07-01

    20 millions consignments of radioactive materials are routinely transported annually on public roads, railways and ships. 5% of these are nuclear fuel cycle related. International Atomic Energy Agency Regulations have been in force since 1961. The sector has an excellent safety record spanning over 50 years. Back end transport covers the operations concerned with spent fuel that leaves reactors and wastes. Since 1971, there have been 70,000 shipments of used fuel (i.e. over 80,000 tonnes) with no damage to property or person. The excellent safety record spanning over 50 years praised every year by the General Conference of the International Atomic Energy Agency. More than 200 sea voyages over a distance of more than 8 million kilometres of transport of used fuel or high-level wastes.

  17. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  18. Proposal of guidelines for selecting optimum options in packagings and transportation systems of spent fuel

    International Nuclear Information System (INIS)

    Saegusa, T.; Abe, H.; Fukuda, S.

    1983-01-01

    Type and size of spent fuel shipping packagings and packaging transport ships in spent fuel transport system would have been determined separately in response to technical requirements etc. of reactor sites and reprocessing plants. However, since more and more spent fuel will be generated from world's nuclear power plants and will be transported much frequently to reprocessing plants or storage facilities, the current spent fuel transport system will have to be necessarily reexamined from the operational and economical aspects or an optimum transport system may have to be newly determined in the near future. In the literature, a variety of options are found, particularly of spent fuel packagings. This paper listed and classified options of spent fuel packagings and packaging transport ships in the transportation systems of spent fuel on the basis of literature surveys. These options were discussed from viewpoints of designers and users and compared in terms of transport efficiency. Finally, one way to determine an optimum transport system of spent fuel was indicated considering the total transport system in the light of safety, operational efficiency and economy

  19. Some UK experience and practice in the packaging and transport of irradiated fuel

    International Nuclear Information System (INIS)

    Edney, C.J.; Rutter, R.L.

    1977-01-01

    The origin and growth of irradiated fuel transport within and to the U.K. is described and the role of the organisations presently carrying out transport operations is explained. An explanation of the relevant U.K. regulations and laws affecting irradiated fuel transport and the role of the controlling body, the Department of the Environment is given. An explanation is given of the technical requirements for the transport of irradiated Magnox fuel and of the type of flask used, and the transport arrangements, both within the U.K. and to the U.K., from overseas is discussed. The technical requirements for the transport of C.A.G.R. fuel are outlined and the flask and transport arrangements are discussed. The transport requirements of oxide fuel from water reactors is outlined and the flask and shipping arrangements under which this fuel is brought to the U.K. from overseas is explained. The shipping arrangements are explained with particular reference to current international and national requirements. The requirements of the transport of M.T.R. fuel are discussed and the flask type explained. The expected future expansion of the transport of irradiated fuel within and to the U.K. is outlined and the proposed operating methods are briefly discussed. A summary is given of the U.K. experience and the lessons to be drawn from that experience

  20. Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel

    International Nuclear Information System (INIS)

    Lewis, B.J.; Thompson, W.T.; Akbari, F.; Thompson, D.M.; Thurgood, C.; Higgs, J.

    2004-01-01

    A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor

  1. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1985-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufacturer under TRANSNUCLEAIRE supervision in different countries and are presently used for European and intercontinental transports. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardisation facilitating fabrication, operation and spare part supply [fr

  2. Transportation fuel from plastic: Two cases of study.

    Science.gov (United States)

    Faussone, Gian Claudio

    2018-03-01

    Synthesis of liquid fuels from waste is a promising pathway for reducing the carbon footprint of transportation industry and optimizing waste management towards zero landfilling. The study of commercial plants that conduct pyrolysis of plastics from post-consumer recycled materials and directly mine from old landfills without any pre-treatment has revealed two cases that show the feasibility of manufacturing transportation fuels via these methods. Pyrolysis oil, consisting of almost 26% hydrocarbons within the gasoline range and almost 70% within the diesel range, is upgraded to transportation fuel in the existing refinery. A batch operating plant is able to deliver relatively good quality pyrolysis oil from post-consumer plastic waste, owing to the catalyst employed. Simple distillation was also evaluated as an alternative and cheaper upgrading process into transportation fuels, meeting EN590 diesel and ISO8217 marine fuel standards. Even though the two installations are outside the European Union, they represent good examples of the "circular economy" concept envisaged by the European Union via its ambitious "Circular Economy Package [1]", providing real world data for comparison with other experimental and lab results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. World-wide French experience in research reactor fuel cycle transportation

    International Nuclear Information System (INIS)

    Raisonnier, D.

    1997-01-01

    Since 1963 Transnucleaire has safely performed a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied suitable packagings for all types of nuclear fuel cycle radioactive material from front-end and back-end products and for power or for research reactors. Transportation of the nuclear fuel material for power reactors is made on a regular and industrial basis. The transportation of material for the research reactor fuel cycle is quite different due to the small quantities involved, the categorisation of material and the numerous places of delivery world-wide. Adapted solutions exist, which require a reactive organisation dealing with all the transportation issues for LEU and HEU products as metal, oxide, fresh fuel elements, spent fuel elements including supply of necessary transport packaging and equipment. This presentation will: - explain the choices made by Transnucleaire and its associates to provide and optimise the corresponding services, - demonstrate the capability to achieve, through reliable partnership, transport operations involving new routes, specific equipment and new political constraints while respecting sophisticated safety and security regulations. (author)

  4. Research reactor fuel transport in the U.K

    Energy Technology Data Exchange (ETDEWEB)

    Panter, R [U.K. Atomic Energy Authority, Harwell (United Kingdom)

    1983-09-01

    This paper describes the containers currently used for transport of fresh or spent fuel elements for Research and Materials Test Reactors in the U.K., their status, operating procedures and some of the practical difficulties. In the U.K., MTR fuel cycle work is almost entirely the responsibility of the U.K. Atomic Energy Authority.

  5. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1996-03-01

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  6. Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984

    International Nuclear Information System (INIS)

    1986-04-01

    This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984

  7. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1986-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufactured in different countries and are presently used for european and intercontinental transports. The main advantages of these casks are: large payload, moderate cost, reliability, standardisation facilitating fabrication, operation and spare part supply [fr

  8. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  9. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Mustin, Tracy P.; Massey, Charles D.

    1999-01-01

    Since initiating the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel causing a degradation of the fuel assembly exposing fuel meat and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues and implementation challenges associated with the transport of MTR type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, implementation status, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be of interest to foreign research reactor operators, shippers, and cask vendors in evaluating the condition of their fuel to ensure it can be transported in accordance with appropriate cask certificate requirements. (author)

  10. Present status and prospect of spent fuel transportation

    International Nuclear Information System (INIS)

    Adachi, H.

    1987-01-01

    Problems linked with spent fuel transportation in Japan, where there are 35 NPPs in operation, are considered. Every year about 500 t U are shipped to fuel reprocessing plants in Japan, as well as in France and UK. Four kinds of casks: HZ, EXCELLOX, TN and TK - are used for this purpose. By the mid-1990's it is suggested to build in Japan fuel reprocessing plant with capacity of 800 t U per year

  11. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, C.E.; Mustin, T.P.; Massey, C.D.

    1998-01-01

    Since resuming the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy (DOE) and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues associated with the transport of Materials Testing Reactor (MTR)-type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be important to foreign research reactor operators, shippers, and cask vendors, so that appropriate amendments to the Certificate of Compliance for spent fuel casks can be submitted in a timely manner to facilitate the safe and scheduled transport of FRR SNF

  12. HEU and Leu FueL Shielding Comparative Study Applied for Spent Fuel Transport

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Margeanu, S.; Barbos, D.

    2009-01-01

    INR Pitesti owns and operates a TRIGA dual-core Research Reactor for material testing, power reactor fuel and nuclear safety studies. The dual core concept involves the operation of a 14 MW TRIGA steady-state, high flux research and material testing reactor at one end of a large pool, and the independent operation of an annular-core pulsing reactor (TRIGA-ACPR) at the other end of the pool. The steady-state reactor is mostly used for long term testing of power reactor fuel components (pellets, pins, subassemblies and fuel assemblies) followed by post-irradiation examination. Following the general trend to replace the He fuel type (High Enriched Uranium) by Leu fuel type (Low Enriched Uranium), in the light of international agreements between IAEA and the states using He fuel in their nuclear reactors, Inr Past's have been accomplished the TRIGA research reactor core full conversion on May 2006. The He fuel repatriation in US in the frame of Foreign Research Reactor Spent Nuclear Fuel Return Programme effectively started in 1999, the final stage being achieved in summer of 2008. Taking into account for the possible impact on the human and environment, in all activities associated to nuclear fuel cycle, the spent fuel or radioactive waste characteristics must be well known. Shielding calculations basic tasks consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper is a comparative study of Leu and He fuel utilization effects for the shielding analysis during spent fuel transport. A comparison against the measured data for He spent fuel, available from the last stage of the spent fuel repatriation, is presented. All the geometrical and material data related on the spent fuel shipping cask were considered according to the Nac-Lt Cask approved model. The shielding analysis estimates radiation doses to shipping cask wall surface

  13. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  14. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... surpasses batteries in important areas, fundamental research is still required to improve durability and performance. Particularly the transport of methanol and water within the cell structure is difficult to study in-situ. A demand therefore exist for the fundamental development of mathematical models...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...

  15. Identification of facility constraints that impact transportation operations

    International Nuclear Information System (INIS)

    Peterson, R.W.; Pope, R.B.

    1990-01-01

    As Federal waste Management Systems (FWMS) receiving facilities become available, the US Department of Energy (DOE) intends to begin accepting spent nuclear fuel from US utilities for eventual permanent disposal. Transporting the radioactive spent fuel to the repository will require development of a complex network of equipment, services, and operations personnel that will comprise the Transportation Operations System. This paper identifies and discusses, in a qualitative manner, the key reactor facility constraints that will eventually need to be assessed in detail on a site-specific basis to guide the development of the FWMS transportation cask fleet. This evaluation of constraints is needed to assess their impact on the size, composition, availability, and use of the cask fleet and to assist in the development of the transportation system support facilities such as a cask maintenance facility. Such assessment will also be needed to support decisions on modifying shipping facilities (i.e., reactors), identification and design of interface hardware, and on the designs of receiving facilities

  16. Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation

    International Nuclear Information System (INIS)

    Tabuchi, Yuichiro; Shiomi, Takeshi; Aoki, Osamu; Kubo, Norio; Shinohara, Kazuhiko

    2010-01-01

    Key challenges to the acceptance of polymer electrolyte membrane fuel cells (PEMFCs) for automobiles are the cost reduction and improvement in its power density for compactness. In order to get the solution, the further improvement in a fuel cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFCs has considerable effects on the cell performance. In this study, the impact of heat and water transport on the cell performance under high current density was investigated by experimental evaluation of liquid water distribution and numerical validation. Liquid water distribution in MEA between rib and channel area is evaluated by neutron radiography. In order to neglect the effect of liquid water in gas channels and reactant species concentration distribution in the flow direction, the differential cell was used in this study. Experimental results suggested that liquid water under the channel was dramatically changed with rib/channel width. From the numerical study, it is found that the change of liquid water distribution was significantly affected by temperature distribution in MEA between rib and channel area. In addition, not only heat transport but also water transport through the membrane also significantly affected the cell performance under high current density operation.

  17. Safety assessment of ammonia as a transport fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F.; Lundtang paulsen, Jette

    2005-02-01

    This report describes the safety study performed as part of the EU supported project 'Ammonia Cracking for Clean Electric Power Technology' The study addresses the following activities: safety of operation of the ammonia-powered vehicle under normal and accident (collision) conditions, safety of transport of ammonia to the refuelling stations and safety of the activities at the refuelling station (unloading and refuelling). Comparisons are made between the safety of using ammonia and the safety of other existing or alternative fuels. The conclusion is that the hazards in relation to ammonia need to be controlled by a combination of technical and regulatory measures. The most important requirements are: - Advanced safety systems in the vehicle - Additional technical measures and regulations are required to avoid releases in maintenance workshops and unauthorised maintenance on the fuel system - Road transport of ammonia to refuelling stations in refrigerated form - Sufficient safety zones between refuelling stations and residential or otherwise public areas. When these measures are applied, the use of ammonia as a transport fuel wouldnt cause more risks than currently used fuels (using current practice). (au)

  18. Problems relating to international transport of nuclear fuels

    International Nuclear Information System (INIS)

    Timm, U.E.

    1985-01-01

    Owing to the tremendous geographic distances between uranium deposits of interest, to the various degrees of sophistication of nuclear industry in industrialized countries and to the close international cooperation in the field of nuclear energy, safe international transports, physical protection and transport handling play an important role. It is suggested to better coordinate the activities of nuclear power plant operators, the nuclear industry and specialized transport companies with respect to all national and international issues of nuclear fuel transports. (DG) [de

  19. Testing of a transport cask for research reactor spent fuel

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Silva, Luiz Leite da; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2011-01-01

    Since the beginning of the last decade three Latin American countries which operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the reactors operated in the region. As a step in this direction, a packaging for the transport of irradiated fuel from research reactors was designed by a tri-national team and a half-scale model for MTR fuel constructed in Argentina and tested in Brazil. Two test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. Although the specimen has not successfully performed the tests, its overall performance was considered very satisfactory, and improvements are being introduced to the design. A third test sequence is planned for 2011. (author)

  20. Novel materials for fuel cells operating on liquid fuels

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2017-05-01

    Full Text Available Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.

  1. Probability of spent fuel transportation accidents

    International Nuclear Information System (INIS)

    McClure, J.D.

    1981-07-01

    The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10 -7 spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10 -9 /mile

  2. Transportation operations functions of the federal waste management system

    International Nuclear Information System (INIS)

    Shappert, L.B.; Klimas, M.J.

    1989-01-01

    This paper documents the functions that are necessary to operate the OCRWM transportation system. OCRWM's mission is to accept and transport spent fuel and high-level waste from waste generators to FWMS facilities. The emphasis is on transportation operations and assumes that all necessary facilities are in place and equipment designs and specifications are available to permit the system to operate properly. The information reported in this paper was developed for TOPO and is compatible with the draft revision of the Waste Management System Requirements and Description (SRD). 5 refs

  3. Generation of transportation fuel from solid municipal waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin

    2010-09-15

    Transportation fuels derived from fossil fuels are subjected to the price fluctuations of the global marketplace, and constitute a major expense in the operation of a vehicle. Emissions from the evaporation and combustion of these fuels contribute to a range of environmental problems, causing poor air quality and emitting greenhouse gases that contribute to global warming. Alternative fuels created from domestic sources have been proposed as a solution to these problems, and many fuels are being developed based on biomass and other renewable sources. Natural State Research, Inc. developed different alternative hydrocarbon fuel which is produced from waste plastic materials.

  4. Virginia Power and Department of Energy spent fuel transportation experience

    International Nuclear Information System (INIS)

    Ruska, M.D.; Schoonen, D.H.

    1986-12-01

    Spent fuel assemblies for the Spent Fuel Storage Cask Testing Program conducted by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) were transported to the INEL. A total of 69 spent fuel assemblies (23 shipments) were shipped from Virginia Power's nuclear power plant at Surry, Virginia, to the INEL between July 1985 and June 1986 to fill and test three spent fuel storage casks. The shipments were made over the highway system in Transnuclear, Inc., TN-8L shipping casks on specially constructed trailers. The shipments were moved by diesel tractors owned and operated by Tri-State Motor Transit Company of Joplin, Missouri. The gross vehicle weight for each shipment was 112,000 lb, which was a major consideration when selecting routes for the shipments. Cooperative negotiations with officials for the 17 states involved obtained authorization to transport through their states. The shipping campaign was successfully completed through close communication and cooperation and careful planning and operation by all organizations involved

  5. Method of transporting fuel assemblies

    International Nuclear Information System (INIS)

    Okada, Katsutoshi.

    1979-01-01

    Purpose: To enable safety transportation of fuel assemblies for FBR type reactors by surrounding each of fuel elements in a wrapper tube by a rubbery, hollow cylindrical container and by sealing medium such as air to the inside of the container. Method: A fuel element is contained in a hollow cylindrical rubber-like tube. The fuel element has an upper end plug, a lower end plug and a wire spirally wound around the outer periphery. Upon transportation of the fuel assemblies, each of the fuel elements is covered with the container and arranged in the wrapper tube and then the fuel assemblies are assembled. Then, medium such as air is sealed for each of the fuel elements by way of an opening and then the opening is tightly closed. Before loading the transported fuel assemblies in the reactor, the medium is discharged through the opening and the container is completely extracted and removed from the inside of the wrapper tube. (Seki, T.)

  6. Evolution of PHWR fuel transfer system based on operating experience

    International Nuclear Information System (INIS)

    Parvatikar, R.S.; Singh, Jaipal; Chaturvedi, P.C.; Bhambra, H.S.

    2006-01-01

    Fuel Transfer System facilitates loading of new fuel into Fuelling Machine, receipt of spent fuel from Fuelling Machine and its further transportation to Storage Bay. To overcome the limitations of transferring a pair of bundles in the single tube Airlock and Transfer Arm in RAPS-1 and 2/MAPS, a new concept of six tube Transfer Magazine was introduced in NAPS. This resulted in simultaneous loading of new fuel from Transfer Magazine into the Fuelling Machine and unloading of spent fuel from the Fuelling Machine through the exchange mode. It further facilitated the parallel/simultaneous operation of refuelling by Fuelling Machines on the reactor and transferring of spent fuel bundles from the Transfer Magazine to the bay. This new design of Fuel Transfer System was adopted for all standardised 220 MWe PHWRs. Based on the experience gained in 220 MWe PHWRs in the area of operation and maintenance, a number of improvements have been carried out over the years. These aspects have been further strengthened and refined in the Fuel Transfer System of 540 MWe units. The operating experience of the system indicates that the presence of heavy water in the Transfer Magazine poses limitations in its maintenance in the Fuel Transfer room. Further, Surveillance and maintenance of large number of under water equipment and associated valves, rams and underwater sensors is putting extra burden on the O and M efforts. A new concept of mobile light water filled Transfer Machine has been evolved for proposed 700 MWe PHWR units to simplify Fuel Transfer System. This has been made possible by adopting snout level control in the Fuelling Machine, elimination of Shuttle Transport System and locating the Storage Bay adjacent to the Reactor Building. This paper describes the evolution of Fuel Transfer System concepts and various improvements based on the experience gained in the operation and maintenance of the system. (author)

  7. Studies and research concerning BNFP. Nuclear spent fuel transportation studies

    International Nuclear Information System (INIS)

    Anderson, R.T.; Maier, J.B.

    1979-11-01

    Currently, there are a number of institutional problems associated with the shipment of spent fuel assemblies from commercial nuclear power plants: new and conflicting regulations, embargoing of certain routes, imposition of transport safeguards, physical security in-transit, and a lack of definition of when and where the fuel will be moved. This report presents a summary of these types and kinds of problems. It represents the results of evaluations performed relative to fuel receipt at the Barnwell Nuclear Fuel Plant. Case studies were made which address existing reactor sites with near-term spent fuel transportation needs. Shipment by either highway, rail, water, or intermodal water-rail was considered. The report identifies the impact of new regulations and uncertainty caused by indeterminate regulatory policy and lack of action on spent fuel acceptance and storage. This stagnant situation has made it impossible for industry to determine realistic transportation scenarios for business planning and financial risk analysis. A current lack of private investment in nuclear transportation equipment is expected to further prolong the problems associated with nuclear spent fuel and waste disposition. These problems are expected to intensify in the 1980's and in certain cases will make continuing reactor plant operation difficult or impossible

  8. The dieselization of America: An integrated strategy for future transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, J.J. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    The Diesel Cycle engine has already established itself as the engine-of-choice for the heavy duty transport industry because of its fuel efficiency, durability, and reliability. In addition, it has also been shown to be capable of using alternative fuels, albeit at efficiencies lower than that achieved with petroleum-derived diesel fuel. Alternative fuel dedicated engines have not made significant penetration of the heavy duty truck market because truck fleet operators need a cost-competitive fuel and reliable supply and fueling infrastructure. In lieu of forcing diverse fuels from many diverse domestic feedstocks onto the end-users, the Office of Heavy Vehicle Technologies envisions that a future fuels strategy for the heavy duty transport sector is one where the diverse feedstocks are utilized to provide a single fuel specification (dispensed from the existing fueling infrastructure) that would run efficiently in a single high efficiency energy conversion device, the Diesel Cycle engine. In so doing, the US Commercial transport industry may gain a measure of security from the rapid fuel price increases by relying less on a single feedstock source to meet its increasing fuel requirements.

  9. Transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    1980-01-01

    In response to public interest in the transport by rail through London of containers of irradiated fuel elements on their way from nuclear power stations to Windscale, the Central Electricity Generating Board and British Rail held three information meetings in London in January 1980. One meeting was for representatives of London Borough Councils and Members of Parliament with a known interest in the subject, and the others were for press, radio and television journalists. This booklet contains the main points made by the principal speakers from the CEGB and BR. (The points covered include: brief description of the fuel cycle; effect of the fission process in producing plutonium and fission products in the fuel element; fuel transport; the fuel flasks; protection against accidents; experience of transporting fuel). (U.K.)

  10. Arrival condition of spent fuel after storage, handling, and transportation

    International Nuclear Information System (INIS)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables

  11. Feasibility and incentives for the consideration of spent fuel operating histories in the criticality analysis of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-08-01

    Analyses have been completed that indicate the consideration of spent fuel histories (''burnup credit'') in the design of spent fuel shipping casks is a justifiable concept that would result in cost savings and public risk benefits in the transport of spent nuclear fuel. Since cask capacities could be increased over those of casks without burnup credit, the number of shipments necessary to transport a given amount of fuel could be reduced. Reducing the number of shipments would increase safety benefits by reducing public and occupational exposure to both radiological and nonradiological risks associated with the transport of spent fuel. Economic benefits would include lower in-transit shipping, reduced transportation fleet capital costs, and reduced numbers of cask handling operations at both shipping and receiving facilities. 44 refs., 66 figs., 28 tabs

  12. Spent fuels transportation coming from Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Maritime transportation of spent fuels from Australia to France fits into the contract between COGEMA and ANSTO, signed in 1999. This document proposes nine information cards in this domain: HIFAR a key tool of the nuclear, scientific and technological australian program; a presentation of the ANSTO Australian Nuclear Science and Technology Organization; the HIFAR spent fuel management problem; the COGEMA expertise in favor of the research reactor spent fuel; the spent fuel reprocessing at La Hague; the transports management; the transport safety (2 cards); the regulatory framework of the transports. (A.L.B.)

  13. Solid fuel applications to transportation engines

    Energy Technology Data Exchange (ETDEWEB)

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  14. Transport phenomena in fuel cells : from microscale to macroscale

    Energy Technology Data Exchange (ETDEWEB)

    Djilali, N. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering]|[Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2006-07-01

    Proton Exchange Membrane (PEM) fuel cells rely on an array of thermofluid transport processes for the regulated supply of reactant gases and the removal of by-product heat and water. Flows are characterized by a broad range of length and time scales that take place in conjunction with reaction kinetics in a variety of regimes and structures. This paper examined some of the challenges related to computational fluid dynamics (CFD) modelling of PEM fuel cell transport phenomena. An overview of the main features, components and operation of PEM fuel cells was followed by a discussion of the various strategies used for component modelling of the electrolyte membrane; the gas diffusion layer; microporous layer; and flow channels. A review of integrated CFD models for PEM fuel cells included the coupling of electrochemical thermal and fluid transport with 3-D unit cell simulations; air-breathing micro-structured fuel cells; and stack level modelling. Physical models for modelling of transport at the micro-scale were also discussed. Results of the review indicated that the treatment of electrochemical reactions in a PEM fuel cell currently combines classical reaction kinetics with solutions procedures to resolve charged species transport, which may lead to thermodynamically inconsistent solutions for more complex systems. Proper representation of the surface coverage of all the chemical species at all reaction sites is needed, and secondary reactions such as platinum (Pt) dissolution and oxidation must be accounted for in order to model and understand degradation mechanisms in fuel cells. While progress has been made in CFD-based modelling of fuel cells, functional and predictive capabilities remain a challenge because of fundamental modelling and material characterization deficiencies in ionic and water transport in polymer membranes; 2-phase transport in porous gas diffusion electrodes and gas flow channels; inadequate macroscopic modelling and resolution of catalyst

  15. Convective-diffusive transport of fission products in the gap of a failed fuel element

    International Nuclear Information System (INIS)

    Lian, Z.W.; Carlucci, L.N.; Arimescu, V.I.

    1995-03-01

    A model is presented to describe the transport behaviour of gaseous fission products along the axial fuel-to-sheathe gap of a failed fuel element to the coolant system. The model is applicable to an element having failed under normal operating conditions or loss-of coolant-accident conditions. Because of the large differences in operating parameters, the transport characteristics of gaseous fission products in a failed element under these two operating conditions are significantly different. However, in both cases the transport process can be described by convection-diffusion caused by the continuous release of fission products from the fuel to the gap. Under normal operating conditions, the bulk-flow velocity is found to be negligible, due to the low release rate of fission products from fuel. The process can be well approximated by the diffusion of fission products in a stagnant gas-steam mixture. The effect of convection on the fission product transport, however, becomes significant under loss-of-coolant-accident conditions, where the release rates of fission products from fuel can be several orders of magnitude higher that that under normal operating conditions. The convection of the mixture in the gap not only contributes an additional flux to the gas-mixture transport, but also increases the gradient of fission products concentration across the opening, and therefore increases the diffusion flux to the coolant. As a result of the bulk flow, the transport of fission products along the gap is accelerated and the hold-up of short-lived isotopes in the gap is significantly reduced. Steam ingress through the opening into the gap is obstructed by the bulk flow, resulting in low steam concentrations in the gap under loss-of-coolant-accident conditions. (author). 6 refs., 8 figs

  16. Alternatives to traditional transportation fuels: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  17. Fuel element transport container

    International Nuclear Information System (INIS)

    Benna, P.; Neuenfeldt, W.

    1979-01-01

    The reprocessing system includes a large number of waterfilled ponds next to each other for the intermediate storage of fuel elements from LWR's. The fuel element transport device is allocated to a middle pond. The individual ponds are separated from each other by walls, and are only accessible from the middle pond via narrow passages. The transport device includes a telescopic running rail for a trolley with a grab device for the fuel element. The running rail is supported in turn by a second trolley, which can be moved by wheels on rails. Part of the drive of the first trolley is arranged on the second one. Using this transport device, adjacent ponds can be served through the passage openings. (DG) [de

  18. Usage Inspection of KN-12 Spent Fuel Transport Cask

    International Nuclear Information System (INIS)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K.

    2007-03-01

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse

  19. BNFL's experience in the sea transport of irradiated research reactor fuel to the USA

    International Nuclear Information System (INIS)

    Hudson, I.A.; Porter, I.

    2000-01-01

    BNFL provides worldwide transport for a wide range of nuclear materials. BNFL Transport manages an unique fleet of vessels, designed, built, and operated to the highest safety standards, including the highest rating within the INF Code recommended by the International Maritime Organisation. The company has some 20 years of experience of transporting irradiated research reactor fuel in support of the United States' programme for returning US obligated fuel from around the world. Between 1977 and 1988 BNFL performed 11 shipments of irradiated research reactor fuel from the Japan Atomic Energy Research Institute to the US. Since 1997, a further 3 shipments have been performed as part of an ongoing programme for Japanese research reactor operators. Where possible, shipments of fuel from European countries such as Sweden and Spain have been combined with those from Japan for delivery to the US. (author)

  20. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    A critique is presented of current methods of transporting spent nuclear fuel and the inadequacies of the associated contingency plans, with particular reference to the transportation of irradiated fuel through London. Anti-nuclear and pro-nuclear arguments are presented on a number of factors, including tests on flasks, levels of radiation exposure, routine transport arrangements and contingency arrangements. (U.K.)

  1. One approach to accepting and transporting spent fuel from early-generation reactors with short fuel assemblies

    International Nuclear Information System (INIS)

    Peterson, R.W.; Bentz, E.J. Jr.; Bentz, C.B.

    1993-01-01

    In the early days of development of commercial nuclear power reactors in the U.S., the overall length and uranium loading of the fuel assemblies were considerably less than those of later generation facilities. In turn, some of these early facilities were designed for handling shorter casks than currently-certified casks. The spent fuel assemblies from these facilities are nearly all standard fuel within the definition in the Standard Contract (10 CFR 961) between the utilities and the U.S. Department of Energy (DOE) (the Big Rock Point fuel cross-section is outside the standard fuel dimension), and the utilities involved hold early delivery rights under DOE's oldest-fuel-first (OFF) allocation scenario. However, development of casks suitable for satisfying the acceptance and transportation requirements of some of these facilities is not currently underway in the DOE Cask System Development Program (CSDP). While the total MTU of these fuels is relatively small compared to the total program, the number of assemblies to be transported is significant, especially in the early years of operation according to the OFF allocation scenario. We therefore perceive a need for DOE to develop an approach and to implement plans to satisfy the unique acceptance and transportation requirements of these facilities. One such approach is outlined below. (author)

  2. Thermodynamic analysis of a fuel cell power system for transportation applications

    International Nuclear Information System (INIS)

    Hussain, M.M.; Baschuk, J.J.; Li, X.; Dincer, I.

    2004-01-01

    This study deals with the thermodynamic modeling of a polymer electrolyte membrane (PEM) fuel cell power system for transportation applications. The PEM fuel cell performance model developed previously by two of the authors is incorporated into the present model. The analysis includes the operation of all the components in the system, which consists of two major modules: PEM fuel cell stack module and system module and a cooling pump. System module includes air compressor, heat exchanger, humidifier and a cooling loop. A parametric study is performed to examine the effect of varying operating conditions (e.g., temperature pressure and air stoichiometry) on the energy and exergy efficiencies of the system. Further, thermodynamic irreversibilities in each component of the system are determined. It is found that, with the increase of external load (current density), the difference between the gross stack power and net system power increases. The largest irreversibility rate occurs in the fuel cell stack. Thus, minimization of irreversibility rate in the fuel cell stack is essential to enhance the performance of the system, which in turn reduces the cost and helps in commercialization of fuel cell power system in transportation applications. (author)

  3. Analyses of the transportation of spent research reactor fuel in the United States

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    The Transportation Technology Center at Sandia National Laboratories has analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy (DOE) Office of Defense Programs. This effort represents the first comprehensive analytical evaluation of the risks of transporting high-, medium-, and low-enriched uranium spent research reactor fuel by both sea and land. Two separate shipment programs have been analyzed: the shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). In order to perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study

  4. Analyses of the transportation of spent research reactor fuel in the United States

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    We analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy's (DOE) Office of Defense Programs. Two separate shipment programs were analyzed. The shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). To perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. The risks of transporting spent nuclear fuel and other radioactive materials by all modes have been analyzed extensively. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study

  5. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    Science.gov (United States)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  6. Alternatives to traditional transportation fuels 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  7. Usage Inspection of KN-12 Spent Fuel Transport Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. C.; Seo, K. S.; Bang, K. S.; Cho, I. J.; Kim, D. H.; Min, D. K

    2007-03-15

    The usage inspection of the KN-12 spent nuclear fuel transport package was performed to receive the license for reuse. According to the Korea Atomic Energy Act, all type B transport package should receive and pass the usage inspection every five years. The KN-12 transport cask was designed to transport twelve spent PWR fuel assemblies under wet and dry conditions. The cask was developed and licensed in 2002 in accordance with the Korea and the IAEA's safe transport regulations. The areas of usage inspection include: visual inspection, nondestructive weld inspection, load test, maximum operating pressure test, leakage test, shielding test, thermal test, external surface contamination test. In the results of the usage inspection, the damage or defect could not found out and the performance of the cask was maintained according to the requirements of the regulation. Therefore, the usage inspection was successfully performed to acquire the license for the reuse.

  8. Spent fuel transportation problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.A.

    1977-01-01

    In this paper, problems of transportation of nuclear spent fuel to reprocessing plants are discussed. The solutions proposed are directed toward the achievement of the transportation as economic and safe as possible. The increase of the nuclear power plants number in the USSR and the great distances between these plants and the reprocessing plants involve an intensification of the spent fuel transportation. Higher burnup and holdup time reduction cause the necessity of more bulky casks. In this connection, the economic problems become still more important. One of the ways of the problem solution is the development of rational and cheap cask designs. Also, the enforcement in the world of the environmental and personnel health protection requires to increase the transportation reliability and safety. The paper summarizes safe transportation rules with clarifying the following questions: the increase of the transport unit quantity of the spent fuel; rational shipment organization that minimizes vehicle turnover cycle duration; development of the reliable calculation methods to determine strength, thermal conditions and nuclear safety of transport packaging as applied to the vehicles of high capacity; maximum unification of vehicles, calculation methods and documents; and cask testing on models and in pilot scale on specific test rigs to assure that they meet the international safe fuel shipment rules. Besides, some considerations on the choice and use of structural materials for casks are given, and problems of manufacturing such casks from uranium and lead are considered, as well as problems of the development of fireproof shells, control instrumentation, vehicles decontamination, etc. All the problems are considered from the point of view of normal and accidental shipment conditions. Conclusions are presented [ru

  9. Economics of radioactive material transportation in the light-water reactor nuclear fuel cycle

    International Nuclear Information System (INIS)

    Dupree, S.A.; O'Malley, L.C.

    1980-10-01

    This report presents estimates of certain transportation costs, in 1979 dollars, associated with Light-Water Reactor (LWR) once-through and recycle fuel cycles. Shipment of fuel, high-level waste and low-level waste was considered. Costs were estimated for existing or planned transportation systems and for recommended alternate systems, based on the assumption of mature fuel cycles. The annual radioactive material transportation costs required to support a nominal 1000-MW(e) LWR in a once-through cycle in which spent fuel is shipped to terminal storage or disposal were found to be approx. $490,000. Analogous costs for an average reactor operating in a fuel cycle with uranium and plutonim recycle were determined to be approx. $770,000. These results assume that certain recommended design changes will occur in radioactive material shipping systems as a mature fuel cycle evolves

  10. Analysis of radiation doses for a transportation system and its interface operations for commercial spent fuel

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.; Wilmot, E.L.

    1987-07-01

    This paper gives the results of estimates of aggregated radiation doses to the affected public and workers in the US that would be associated with loading spent fuel at the reactors, transporting the spent fuel by truck and rail, and receiving and unloading the spent fuel at a deep geological repository. The estimates are for a postulated transportation-related system using current state-of-the-art technology, if employed in the high-level waste management system in the future, and the approximate dose reduction from some potential system improvements. The results of the study provide a starting point for the US Department of Energy (DOE) to develop an improved transportation system that is cost effective, safe, and results in low radiation doses. 4 refs., 1 figs., 5 tabs

  11. CNG: a potential transport fuel

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Compressed Natural Gas (CNG) is an alternative transport fuel. Advantages of its use are briefly described. Infra structural requirements, if it is to be used in India are outlined. Applications of CNG as transport fuel for buses and trucks in India are discussed. (P.R.K.). 5 refs

  12. Intermodal transportation of spent fuel

    International Nuclear Information System (INIS)

    Elder, H.K.

    1983-09-01

    Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate

  13. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  14. Waste heat recovery for transport trucks using thermally regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, A.; Wechsler, D.; Whitney, R.; Jessop, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; Davis, B.R. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Carbon emissions associated with transportation can be reduced by increasing the fuel efficiency of transport trucks. This can be achieved with thermally regenerative fuel cells that transform the waste heat from the engine block into electricity. In order to operate such a fuel cell, one needs a fluid which rapidly, reversibly, and selectively undergoes dehydrogenation. Potential fluids have been screened for their ability to dehydrogenate and then rehydrogenate at the appropriate temperatures. An examination of the thermodynamics, kinetics, and selectivities of these processes have shown that the challenge involving hydrogenolysis at high temperature must be addressed. This paper discussed the economics of thermally regenerative fuel cells and the advantages and disadvantages of the identified fluids, and of such systems in general.

  15. Conversion of diesel engines to dual fuel (propane/diesel) operations

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S W; DeMaere, D A

    1984-02-01

    A device to convert a diesel engine to dual fuel (propane/diesel) operation was developed and evaluated. Preliminary experimentation has indicated that as much as 30% of the diesel fuel consumed in diesel engines could be displaced with propane, accompanied by an improvement in fuel efficiency, engine maintenance and an overall reduction in emission levels. Dual fuel operations in both transportation and stationary applications would then project a saving of ca 90,000 barrels of diesel fuel per day by the year 1990. A turbo-charged 250 hp diesel engine was directly coupled to a dynamometer under laboratory conditions, and operated at speeds between 500 and 2500 rpm and at various torque levels. At each rpm/torque point the engine first operated on diesel fuel alone, and then increasing quantities of propane were induced into the air intake until detonation occured. Results indicate that the proportion of propane that can be safely induced into a diesel engine varies considerably with rpm and torque so that a sophisticated metering system would be required to maximize diesel oil displacement by propane. Conversion is not cost effective at 1983 price levels.

  16. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...

  17. Towards sustainable urban transportation: Test, demonstration and development of fuel cell and hybrid-electric buses

    International Nuclear Information System (INIS)

    Folkesson, Anders

    2008-05-01

    Several aspects make today's transport system non-sustainable: - Production, transport and combustion of fossil fuels lead to global and local environmental problems. - Oil dependency in the transport sector may lead to economical and political instability. - Air pollution, noise, congestion and land-use may jeopardise public health and quality of life, especially in urban areas. In a sustainable urban transport system most trips are made with public transport because high convenience and comfort makes travelling with public transport attractive. In terms of emissions, including noise, the vehicles are environmentally sustainable, locally as well as globally. Vehicles are energy-efficient and the primary energy stems from renewable sources. Costs are reasonable for all involved, from passengers, bus operators and transport authorities to vehicle manufacturers. The system is thus commercially viable on its own merits. This thesis presents the results from three projects involving different concept buses, all with different powertrains. The first two projects included technical evaluations, including tests, of two different fuel cell buses. The third project focussed on development of a series hybrid-bus with internal combustion engine intended for production around 2010. The research on the fuel cell buses included evaluations of the energy efficiency improvement potential using energy mapping and vehicle simulations. Attitudes to hydrogen fuel cell buses among passengers, bus drivers and bus operators were investigated. Safety aspects of hydrogen as a vehicle fuel were analysed and the use of hydrogen compared to electrical energy storage were also investigated. One main conclusion is that a city bus should be considered as one energy system, because auxiliaries contribute largely to the energy use. Focussing only on the powertrain is not sufficient. The importance of mitigating losses far down an energy conversion chain is emphasised. The Scania hybrid fuel cell

  18. Reshaping transport operations to overcome new challenges

    International Nuclear Information System (INIS)

    Harari, F.; Blachet, L.

    2004-01-01

    After more than 30 years of Spent Fuel Nuclear Fuel (SFN) and High Level Waste (HLW) casks shipments to and from the COGEMA reprocessing factories in LA HAGUE, COGEMA LOGISTICS has demonstrated a unique outstanding performance in transportation for the benefit of its international customers and has integrated all feed-back from past successful operations. While maintaining the highest safety and security records, the last 5 years have been a major challenge to overcome the increase in transport throughputs, regulatory requirements, specific customer demands and new environmental approach (both COGEMA-La Hague and COGEMA LOGISTICS have been certified ISO14001 since 2003). Improvements in procedures, equipments, controls, inspection and organization have been undertaken. Additional important logistics means such as cranes, lifting devices, spreaders were put in operations in the dedicated workshop of our road and maritime facilities as well as in our rail terminals. Thus COGEMA LOGISTICS has developed and improved important logistics means in the Cherbourg area for the loading and unloading operations of heavy casks (i.e. whose weight is between 25 and 120 tons) among three modes of freight (road, railway or maritime transportation). In Valognes, which is currently the most important railway terminal in the world for the transfer of nuclear materials, about 1200 transfers of heavy casks were performed in 2003. New transport equipment and assets were integrated successfully to answer the new requirements for the best interest of our customers. This paper will provide information about equipments and management system developed to overcome these challenges

  19. Reshaping transport operations to overcome new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Harari, F.; Blachet, L. [COGEMA Logistics, (AREVA Group) (France)

    2004-07-01

    After more than 30 years of Spent Fuel Nuclear Fuel (SFN) and High Level Waste (HLW) casks shipments to and from the COGEMA reprocessing factories in LA HAGUE, COGEMA LOGISTICS has demonstrated a unique outstanding performance in transportation for the benefit of its international customers and has integrated all feed-back from past successful operations. While maintaining the highest safety and security records, the last 5 years have been a major challenge to overcome the increase in transport throughputs, regulatory requirements, specific customer demands and new environmental approach (both COGEMA-La Hague and COGEMA LOGISTICS have been certified ISO14001 since 2003). Improvements in procedures, equipments, controls, inspection and organization have been undertaken. Additional important logistics means such as cranes, lifting devices, spreaders were put in operations in the dedicated workshop of our road and maritime facilities as well as in our rail terminals. Thus COGEMA LOGISTICS has developed and improved important logistics means in the Cherbourg area for the loading and unloading operations of heavy casks (i.e. whose weight is between 25 and 120 tons) among three modes of freight (road, railway or maritime transportation). In Valognes, which is currently the most important railway terminal in the world for the transfer of nuclear materials, about 1200 transfers of heavy casks were performed in 2003. New transport equipment and assets were integrated successfully to answer the new requirements for the best interest of our customers. This paper will provide information about equipments and management system developed to overcome these challenges.

  20. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  1. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  2. Estimating road transport fuel consumption in Ecuador

    International Nuclear Information System (INIS)

    Sierra, Jaime Cevallos

    2016-01-01

    Road transport is one of the sectors with highest energy consumptions in the planet, with large dependence of fossil fuels, and contribution for global greenhouse gas emissions. Although, Latin America is not a high-energy consumer, its share in global consumption is expected to grow, especially in the transportation sector. This make essential for developing countries the adoption of better policies to identify the vehicle groups with largest fuel demands. The present study describes the VKT technique to disaggregate road transport energy consumption by vehicle type, applied to the road transportation system of Ecuador. It also describes the procedures performed to estimate the variables required to run the model, and some of the practical applications that be used to create public policies. Results show as the biggest fuel consumers the heavy-duty freight cargo, followed by light duty vehicles. The estimation of greenhouse gas emissions evidence that road transport released 14.3 million tons of CO_2 in 2012. When fuel consumption is compared by it costs, it can be confirmed that Ecuadorean Government covered, through subsidies, for 68% of the annual fuel costs of national road transport, demonstrating the importance of restructuring these expenditures in order to achieve an efficient road transport system. - Highlights: •The vehicle-kilometers traveled has been estimated from local info. •The fuel economy has been calculated from national and international data. •The groups with higher fuel consumption has been located. •The fuel-type dependency has been estimated for each vehicle group. •Greenhouse gas emission, and fuel costs, has been estimated for local road transport.

  3. Experience of European LWR irradiated fuel transport: the first five hundred tonnes

    International Nuclear Information System (INIS)

    Curtis, H.W.

    1978-01-01

    The paper describes the service provided by an international company specializing in the transport of LWR irradiated fuel throughout Europe. Methods of transport used to the reprocessing plants at La Hague and Windscale include road transport of 38 te flasks over the whole route; transport of flasks between 55 and 105 te by rail, with rail-head and the reprocessing plant, where required, performed by road using heavy trailers; roll-on, roll-off sea ferries; and charter ships. Different modes of transport have been developed to cater for the various limitations on access to reactor sites arising from geographical and routing considerations. The experience of transporting more than 500 tonnes of irradiated uranium from twenty-one power reactors is used to illustrate the flexibility which the transport organization requires when the access and handling facilities are different at almost every reactor. Variations in fuel cross sections and lengths of fuel elements used in first generation reactors created the need for first generation flasks with sufficient variants to accommodate all reactor fuels but the trend now is towards standardization of flasks to perhaps two basic types. The safety record of irradiated fuel transport is examined with explanation of the means whereby this has been achieved. The problems of programming the movement of a pool of eighteen flasks for twenty-one reactors in eight countries are discussed together with the steps taken to ensure that the service operates fairly to give priority to those reactors with the greatest problems. The transport of irradiated fuel across several national frontiers is an international task which requires an international company. The transport of European irradiated fuel can be presented as an example of international collaboration which works

  4. Apparatus and method for grounding compressed fuel fueling operator

    Science.gov (United States)

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  5. Methods of producing transportation fuel

    Science.gov (United States)

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  6. Transport of MOX fuel from Europe to Japan

    International Nuclear Information System (INIS)

    2002-01-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  7. Experience of European irradiated fuel transport - the first four hundred tonnes

    International Nuclear Information System (INIS)

    Curtis, H.W.

    1977-01-01

    The paper describes the successful integration of the experience of its three shareholders into an international company providing an irradiated fuel transport service throughout Europe. The experience of transporting more than 400 tonnes of irradiated uranium from fifteen power reactors is used to illustrate the flexibility which the transport organisation requires when the access and handling facilities are different at almost every reactor. Variations in fuel cross sections and lengths of fuel elements used in first generation reactors created the need for first generation flasks with sufficient variants to accommodate all reactor fuels but the trend now is towards standardisation of flasks to perhaps two basic types. Increases in fuel rating have raised the flask shielding and heat dissipation requirements and have influenced the design of later flasks. More stringent criticality acceptance criteria have tended to reduce the flask capacity below the maximum number of elements which could physically be contained. Reprocessing plant acceptance criteria initiated because of the presence of substantial quantities of loose crud released in the flask and the need to transport substantial numbers of failed elements have also reduced the flask capacity. Different modes of transport have been developed to cater for the various limitations on access to reactor sites arising from geographical and routing considerations. The safety record of irradiated fuel transport is examined with explanation of the means whereby this has been achieved. The problems of programming the movement of a pool of flasks for fifteen reactors in eight countries are discussed together with the steps taken to ensure that the service operates fairly to give priority to those reactors with the greatest problems. The transport of European irradiated fuel can be presented as an example of international collaboration which works

  8. Spent fuel transport in fuel cycle

    International Nuclear Information System (INIS)

    Labrousse, M.

    1977-01-01

    The transport of radioactive substances is a minor part of the fuel cycle because the quantities of matter involved are very small. However the length and complexity of the cycle, the weight of the packing, the respective distances between stations, enrichment plants and reprocessing plants are such that the problem is not negligible. In addition these transports have considerable psychological importance. The most interesting is spent fuel transport which requires exceptionally efficient packaging, especially where thermal and mechanical resistance are concerned. To meet the safety criteria necessary for the protection of both public and users it was decided to use the maximum capacity consistent with rail transport and to avoid coolant fluids under pressure. Since no single type of packing is suitable for all existing stations an effort has been made to standardise handling accessories, and future trands are towards maximum automation. A discussion on the various technical solutions available for the construction of these packing systems is followed by a description of those used for the two types of packaging ordered by COGEMA [fr

  9. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    Energy Technology Data Exchange (ETDEWEB)

    APOLONIO DEL TORO

    2008-05-27

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  10. Maintenance of the packagings used for the transport of spent fuel

    International Nuclear Information System (INIS)

    Lazarevitch, S.; Cooke, B.

    1987-01-01

    Regular maintenance of packagings used for the transport of spent fuel has been carried out in Europe for the past three years. The three companies involved in this kind of transport (Cogema, Nuclear Transport and Pacific Nuclear Transport) have agreed on a common policy for these operations and, in practice, perform the maintenance work at a special facility (AMEC) at the La Hague reprocessing plant in France. This facility was erected in 1983, and commissioned in January 1984. The paper deals with the typical maintenance operations at the AMEC facility, the principles of control applied during maintenance, maintenance experience and future development and prospects. (author)

  11. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  12. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  13. Safety of handling, storing and transportation of spent nuclear fuel and vitrified high-level wastes

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1977-11-01

    The safety of handling and transportation of spent fuel and vitrified high-level waste has been studied. Only the operations which are performed in Sweden are included. That is: - Transportation of spent fuel from the reactors to an independant spent fuel storage installation (ISFSI). - Temporary storage of spent fuel in the ISFSI. - Transportation of the spent fuel from the ISFSI to a foreign reprocessing plant. - Transportation of vitrified high-level waste to an interim storage facility. - Interim storage of vitrified high-level waste. - Handling of the vitrified high-level waste in a repository for ultimate disposal. For each stage in the handling sequence above the following items are given: - A brief technical description. - A description of precautionary measures considered in the design. - An analysis of the discharges of radioactive materials to the environment in normal operation. - An analysis of the discharges of radioactive materials due to postulated accidents. The dose to the public has been roughly and conservatively estimated for both normal and accident conditions. The expected rate of occurence are given for the accidents. The results show that above described handling sequence gives only a minor risk contribution to the public

  14. Phenomena in thermal transport in fuels

    International Nuclear Information System (INIS)

    Chernatynskiy, A.; Tulenko, J.S.; Phillpot, S.R.; El-Azab, A.

    2015-01-01

    Thermal transport in nuclear fuels is a key performance metric that affects not only the power output, but is also an important consideration in potential accident situations. While the fundamental theory of the thermal transport in crystalline solids was extensively developed in the 1950's and 1960's, the pertinent analytic approaches contained significant simplifications of the physical processes. While these approaches enabled estimates of the thermal conductivity in bulk materials with microstructure, they were not comprehensive enough to provide the detailed guidance needed for the in-pile fuel performance. Rather, this guidance has come from data painfully accumulated over 50 years of experiments on irradiated uranium dioxide, the most widely used nuclear fuel. At this point, a fundamental theoretical understanding of the interplay between the microstructure and thermal conductivity of irradiated uranium dioxide fuel is still lacking. In this chapter, recent advances are summarised in the modelling approaches for thermal transport of uranium dioxide fuel. Being computational in nature, these modelling approaches can, at least in principle, describe in detail virtually all mechanisms affecting thermal transport at the atomistic level, while permitting the coupling of the atomistic-level simulations to the mesoscale continuum theory and thus enable the capture of the impact of microstructural evolution in fuel on thermal transport. While the subject of current studies is uranium dioxide, potential applications of the methods described in this chapter extend to the thermal performance of other fuel forms. (authors)

  15. Fuel Mix Impacts from Transportation Fuel Carbon Intensity Standards in Multiple Jurisdictions

    Science.gov (United States)

    Witcover, J.

    2017-12-01

    Fuel carbon intensity standards have emerged as an important policy in jurisdictions looking to target transportation greenhouse gas (GHG) emissions for reduction. A carbon intensity standard rates transportation fuels based on analysis of lifecycle GHG emissions, and uses a system of deficits and tradable, bankable credits to reward increased use of fuels with lower carbon intensity ratings while disincentivizing use of fuels with higher carbon intensity ratings such as conventional fossil fuels. Jurisdictions with carbon intensity standards now in effect include California, Oregon, and British Columbia, all requiring 10% reductions in carbon intensity of the transport fuel pool over a 10-year period. The states and province have committed to grow demand for low carbon fuels in the region as part of collaboration on climate change policies. Canada is developing a carbon intensity standard with broader coverage, for fuels used in transport, industry, and buildings. This study shows a changing fuel mix in affected jurisdictions under the policy in terms of shifting contribution of transportation energy from alternative fuels and trends in shares of particular fuel pathways. It contrasts program designs across the jurisdictions with the policy, highlights the opportunities and challenges these pose for the alternative fuel market, and discusses the impact of having multiple policies alongside federal renewable fuel standards and sometimes local carbon pricing regimes. The results show how the market has responded thus far to a policy that incentivizes carbon saving anywhere along the supply chain at lowest cost, in ways that diverged from a priori policy expectations. Lessons for the policies moving forward are discussed.

  16. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  17. Development of a transport cask for spent fuel elements of research reactors

    International Nuclear Information System (INIS)

    Quintana, F.; Saliba, R.O.; Furnari, J.C.; Mourao, R.P; Leite da Silva, L.; Novara, O.; Alexandre Miranda, C.; Mattar Neto, M.

    2012-01-01

    This article presents an overview of the development of a research reactor spent fuel transport cask. Through a project funded by the IAEA, Argentina, Brazil and Chile have collaborated to enhance regional capacity in the management of spent fuel elements from research reactors operated in the region. A packaging for the transport of research reactors spent fuel was developed. It was designed by a team of researchers from the countries mentioned and a 1:2 scale model for MTR type fuel was constructed in Argentina and subsequently tested in CDTN facilities in Belo Horizonte, Brazil. There were three test sequences to test the cask for normal transport and hypothetical accident conditions. It has successfully passed the tests and the overall performance was considered satisfactory. As part of the licensing process, a test sequence with the presence of regulatory authorities is scheduled for December, 2012 (author)

  18. 77 FR 45921 - Alaskan Fuel Hauling as a Restricted Category Special Purpose Flight Operation

    Science.gov (United States)

    2012-08-02

    ... operations, each aircraft used to transport fuel will be required to receive FAA certification for the... regulations. The special purpose of Alaskan fuel hauling was considered for aircraft type-certificated under... required for this special purpose. The fuel hauling system must be shown to meet the applicable...

  19. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  20. Spent nuclear fuel transport: Problem state and analysis of modern approaches

    International Nuclear Information System (INIS)

    Nosovs'kij, A.V.; Yatsenko, M.V.

    2018-01-01

    The paper presents the review of international and national experience related to transport of spent nuclear fuel (SNF) and trends in the development of transport containers. The analysis covers the vectors for the future improvement of packaging and the regulatory framework on SNF transport in Ukraine and other countries. The tasks for future research were identified. The results of this research will be used during the operation of the CSNSF.

  1. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  2. Transport device for nuclear fuel powder

    International Nuclear Information System (INIS)

    Adelmann, M.

    1987-01-01

    The transport device for nuclear fuel powder, which does not disintegrate during transport, has a transport pipe which starts with its entry end from the floor or a closed container and opens with its outlet end at the top into a closed separation container connect via a powder filter to a suction pump. By alternate regular opening and closing of a first control valve for transport gas fitted to a transport pipe to a supply duct and a second control valve for transport gas fitted to the container to an additional supply duct, alternating plugs of nuclear fuel powder and transport gas cushions are formed and are transported to the outlet end of the transport pipe. (orig./HP) [de

  3. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Science.gov (United States)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  4. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jie; Lee, Seung Jae [Energy Lab, Samsung Advanced Institute of Technology, Mt. 14-1 Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-712 (Korea, Republic of)

    2006-11-22

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T>=393K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement. (author)

  5. Alternatives to traditional transportation fuels 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

  6. Cost of transporting irradiated fuels and maintenance costs of a chemical treatment plant for irradiated fuels

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1964-01-01

    Numerous studies have been made of the cost of a fuel cycle, but many of them are based on a priori studies and are therefore to be treated with reserve. Thus, in the part dealing with the treatment of irradiated fuels, some important factors in the cost have only rarely been given on the basis of practical experience: the cost of transporting the fuels themselves and the plant maintenance costs. Investigations relating to transport costs are generally based on calculations made from somewhat arbitrary data. The studies carried out in France on the transport of irradiated uranium between the EDF reactors at Chinon and the retreatment plant at La Hague of the irradiated uranium from research reactors to foreign retreatment plants, are reported; they show that by a suitable choice of transport containers and details of expedition it has been possible to reduce the costs very considerably. This has been achieved either by combining rail and road transport or by increasing the writ capacities of the transport containers: an example is given of a container for swimming-pool pile elements which can transport a complete pile core at one time, thus substantially reducing the cost. Studies concerning the maintenance costs of retreatment plants are rarer still, although in direct maintenance plants these figures represent an appreciable fraction of the total treatment cost. An attempt has been made, on the basis of operational experience of a plant, to obtain some idea of these costs. Only maintenance proper has been considered, excluding subsidiary operations such as the final decontamination of apparatus, the burial of contaminated material and radioprotection operations Maintenance has been divided into three sections: mechanical maintenance, maintenance of electrical equipment and maintenance of control and adjustment apparatus. In each of these sections the distinction has been made between manpower and the material side. In order to allow comparisons to be made with

  7. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    Science.gov (United States)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  8. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  9. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  10. Cask operation and maintenance for spent fuel storage

    International Nuclear Information System (INIS)

    Lee, J.S.

    2004-01-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage

  11. Spent nuclear fuel and high level radioactive waste transportation. White paper

    International Nuclear Information System (INIS)

    1985-06-01

    The High-Level Radioactive Waste Committee of the Western Interstate Energy Board has been involved in a year-long cooperative project with the US Department of Energy (DOE) to develop an information base on the transportation of spent nuclear fuel and high-level radioactive waste (HLW) so that western states can be constructive and informed participants in the repository program under the Nuclear Waste Policy Act (NWPA). The historical safety record of transportation of HLW and spent fuel is excellent; no release of these radioactive materials has ever occurred during transportation. Projected shipments under the NWPA will, however, greatly exceed current shipments in the US. For example, over the past five years, 119 metric tons of civilian spent fuel have been shipped in this country, while shipments to the first and second repository are each expected to peak at 3000 metric tons per year. The Committee believes that the successful development and operation of a national HLW/spent fuel transportation system can best be accomplished through an open process based on the common sense approach of taking all reasonable measures to minimize public risk and performing whatever actions are reasonably required to promote public acceptance. Therefore, the Committee recommends that the Department of Energy further the goals of the NWPA by developing a Comprehensive Transportation Plan which adopts a systematic, comprehensive, and integrated approach to resolving all spent fuel and HLW transportation issues in a timely manner. The suggested scope of such a plan is discussed in this White paper. Many of the suggested elements of such a plan are similar to those being developed by the Department of energy for inclusion in the Department's Transportation Institutional Plan

  12. Transportation 2000. Spent fuel transportation trends in the new millenium

    International Nuclear Information System (INIS)

    Blee, David; Viebrock, James; Patterson, John

    1999-01-01

    The paper will provide a comparison of foreign research reactor spent fuel transportation today verses the assumptions used by the Department of Energy in the Environmental Impact Statement. In addition, it will suggest changes that are likely to occur in transportation logistics through the remainder of the U.S. spent fuel returns program. Cask availability, certification status, shipment strategy, cost issues, and public acceptance are among the topical areas that will be examined. Transportation requirements will be assessed in light of current participation in the returns program and the tendency for shipment plans to shift toward spent fuel return toward the end of the 13 year period of eligibility. (author)

  13. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2014-01-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport i...

  14. Notification determining technical details concerning measures for transportation of nuclear fuel materials

    International Nuclear Information System (INIS)

    1977-01-01

    These provisions are established on the basis of and to enforce ''The regulation for installation and operation of reactor'', ''The regulation concerning the fabricating business of nuclear fuel'' and ''The regulations concerning the reprocessing business of spent fuel''. The terms used hereinafter are according to those used in such regulations. The limit of radioactivity concentration of things contaminated by the nuclear fuel materials which are not required to be enclosed in vessels is defined in the lists attached. In the applications for the approval of the measures concerning the transport of things remarkably difficult to be enclosed in vessels, the name and the address of the applicant, the kind, quantity, form and constitution of the thing contaminated by the nuclear fuel materials to be transported, the date and route of the transport and the measures for the prevention of injuries during the transport must be written. The limit of quantity of nuclear fuel materials classifying the performance of vessels is defined respectively in the lists attached. The radiation dose rates provided for by the Director General of the Science and Technology Agency concerning transported things and transporting apparatuses are 200 millirem per hour on the surfaces of such things and containers. The nuclear fission materials specified, for which the measures for the prevention of criticality are especially required, include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, and the chemical compounds of such substances, and the nuclear fuel materials containing one or two and more of such substances, excluding the nuclear fuel materials with less than 15 grams of such uranium and plutonium. (Okada, K.)

  15. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.; Milora, S.L.

    1977-01-01

    The effects of cold particle fueling profiles on particle and energy transport in an ignition sized tokamak plasma are investigated in this study with a one-dimensional, multifluid transport model. A density gradient driven trapped particle microinstability model for plasma transport is used to demonstrate potential effects of fueling profiles on ignition requirements. Important criteria for the development of improved transport models under the conditions of shallow particle fueling profiles are outlined. A discrete pellet fueling model indicates that large fluctuations in density and temperature may occur in the outer regions of the plasma with large, shallowly penetrating pellets, but fluctuations in the pressure profile are small. The hot central core of the plasma remains unaffected by the large fluctuations near the plasma edge

  16. Potential exposures and health effects from spent fuel transportation

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Rogers, V.C.

    1986-01-01

    The radiation exposures and consequent health effects associated with normal operations and accidents during transportation of spent fuel have been analyzed and evaluated. This study was performed for the U.S. Department of Energy (DOE) as contributory data for response to specific public inquires regarding the Draft Environmental Assessments issued by DOE in 1984. Large quantities of spent fuel from power reactors will be shipped by truck and/or rail from the site of generation or temporary storage to nuclear waste repositories. This transportation activity has the potential for increasing radiation exposures and risks above normal background levels in the vicinity of the transportation route. For normal, accident-free transport of spent fuel, radiation exposures arise from both gamma and neutron sources within the spent fuel cask. U.S. regulations limit the radiation dose equivalent rate to 10 millirem per hour at any point 2 meters from the outer lateral surfaces of the transport vehicle. Computer program PATHRAE-T was developed and employed to determine the total, combined dose field. PATHRAE-T was used to estimate the maximum individual doses from rail cask accidents. The maximum individual exposure, primarily due to inhalation, is about 10 rem and occurs about 70 meters downwind. Ground deposited nuclides account for 99 percent of the population dose. The maximum population dose accident could result in about 22 latent health effects for the urban population. The same case rail cask accidents were also evaluated for a maximum water pathway contamination scenario. The nuclide contaminated plume was assumed to be transported over a large reservoir used for domestic and agricultural water. This accident could result in a 63,000 person-rem dose causing about 13 latent health effects in the absence of any natural and industrial processes for nuclide removal from the water

  17. Safe transport of spent fuels after long-term storage

    International Nuclear Information System (INIS)

    Aritomi, M.; Takeda, T.; Ozaki, S.

    2004-01-01

    Considering the scarcity of energy resources in Japan, a nuclear energy policy pertaining to the spent fuel storage has been adopted. The nuclear energy policy sets the rules that spent fuels generated from LWRs shall be reprocessed and that plutonium and unburnt uranium shall be recovered and reused. For this purpose, a reprocessing plant, which has a reprocessing capability of 800 ton/yr, is under construction at Rokkasho Village. However, it is anticipated that the start of its operation will be delayed. In addition, the amount of spent fuels generated from nuclear power plants exceeds its reprocessing capability. Therefore, the establishment of storage technology for spent fuels becomes an urgent problem in Japan in order to continue smoothly the LWR operations. In this paper, the background of nuclear power generation in Japan is introduced at first. Next, the policy of spent fuel storage in Japan and circumstances surrounding the spent fuels in Japan are mentioned. Furthermore, the major subjects for discussions to settle and improve 'Standard for Safety Design and Inspection of Metal Casks for Spent Fuel Interim Storage Facility' in Atomic Energy Society of Japan are discussed, such as the integrity of fuel cladding, basket, shielding material and metal gasket for the long term storage for achieving safe transport of spent fuels after the storage. Finally, solutions to the unsolved subject in establishing the spent fuel interim storage technologies ase introduced accordingly

  18. Worldwide spent fuel transportation logistics

    International Nuclear Information System (INIS)

    Best, R.E.; Garrison, R.F.

    1978-01-01

    This paper presents an overview of the worldwide transportation requirements for spent fuel. Included are estimates of numbers and types of shipments by mode and cask type for 1985 and the year 2000. In addition, projected capital and transportation costs are presented. For the year 1977 and prior years inclusive, there is a cumulative worldwide requirement for approximately 300 MTU of spent fuel storage at away-from-reactor (AFR) facilities. The cumulative requirements for years through 1985 are projected to be nearly 10,000 MTU, and for the years through 2000 the requirements are conservatively expected to exceed 60,000 MTU. These AFR requirements may be related directly to spent fuel transportation requirements. In total nearly 77,000 total cask shipments of spent fuel will be required between 1977 and 2000. These shipments will include truck, rail, and intermodal moves with many ocean and coastal water shipments. A limited number of shipments by air may also occur. The US fraction of these is expected to include 39,000 truck shipments and 14,000 rail shipments. European shipments to regional facilities are expected to be primarily by rail or water mode and are projected to account for 16,000 moves. Pacific basin shipments will account for 4500 moves. The remaining are from other regions. Over 400 casks will be needed to meet the transportation demands. Capital investment is expected to reach $800,000,000 in 1977 dollars. Cumulative transport costs will be a staggering $4.4 billion dollars

  19. Transport device of spent fuel

    International Nuclear Information System (INIS)

    Watanabe, Takashi.

    1976-01-01

    Object: To provide a transport device of spent fuel particularly used in a fast breeder, which can enhance accessibility to travelling mechanism portions and exchangeability thereof to facilitate maintenance in the event of failure. Structure: On a travelling floor, which has a function to shield radioactive rays, extending in a direction of transporting spent fuel and being formed with a break passing through in a direction wall thickness, a travelling body is moved along the break. The travelling body has a support rod member mounted thereon, and the support rod member is moved within the break, the support rod member having a fuel support pocket suspended therefrom. (Furukawa, Y.)

  20. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  1. BNFL's new spent fuel transport flask - Excellox 8

    International Nuclear Information System (INIS)

    McWilliam, D.S.

    2002-01-01

    Since British Nuclear Fuels plc (BNFL) was formed in 1971 its transport service has safely moved spent light water reactor fuel from many locations abroad to its fuel handling plants at Sellafield in the UK. To support this business a number of types of flasks have been designed and used. One of the types used has been the Excellox family of water-filled flasks. To support future business opportunities a new flask, designed to meet the requirements of the new IAEA transport regulations TS-R-1 (ST-1, Revised), has been developed. The flask will be a type B(U)F. This new flask design will maximise fuel carrying capacity to minimise transport costs. The design capacity of the new Excellox 8 flask is to be 12 pressurised water reactor or 32 boiling water reactor fuel assemblies. The objective of this BNFL project is to provide another economic spent nuclear fuel transport system, in support of BNFL transport business. (author)

  2. Thirty years of transport package development for spent fuels

    International Nuclear Information System (INIS)

    Cory, A.R.

    2005-01-01

    By June 2005, when shipments of spent fuel for reprocessing from Germany are concluded, BNFL flask types will have been responsible for transporting more than 2000 tonnes of heavy metal in Europe in the form of spent fuel. Several thousand more tonnes of spent fuel have been transported by sea from Japan over the last thirty years. The design of spent fuel packages has not stood still for that time. In order to anticipate the changing needs of the nuclear power generation industry, advances have been made both in package design and analysis. Thirty years ago spent fuel burnup and initial enrichment were considerably lower, which was reflected in the different demands placed on the shielding design of packages, and in the design of the internal basket to separate the fuel assemblies. Technical development of both 'wet' (water-filled cavity) and 'dry' packages has progressed in parallel, and the relative merits and peculiarities of each type is explored. BNFL has considerable experience in the operation of both types, and is well placed to comment on practical and functional issues associated with both types. While there have been certain evolutionary changes affecting package design, there have also been more significant changes in the Design Safety Case. These have sometimes been necessary to meet changes in IAEA Regulations, or the challenges posed by the regulators themselves. In other cases advantage has been taken of improvements in analytical techniques to demonstrate increased margins of operational safety. Where possible these margins have also been increased by other means, such as taking advantage of commercial trends to reduce package thermal loads. A key factor over the last thirty years has been the increasing influence of the Regulating Authorities and the development of the IAEA Regulations. The various Competent Authorities now tend to have a higher proportion of technical experts, often recruited from the nuclear industry, and are thus more able to

  3. Transportation fuels of the future?

    International Nuclear Information System (INIS)

    Piel, W.J.

    2001-01-01

    Society is putting more emphasis on the mobile transportation sector to achieve future goals of sustainability and a cleaner environment. To achieve these goals, does society need to jump to a new combination of fuel and vehicle technology or can we just continue to improve on the current fuels and drive train technology that has powered us the past 70 or more years? Do we need to move to more exotic energy conversion technology (fuel cell vehicles?), or can improving fuel properties further allow us to continue using combustion engines to power our vehicles? What fuel properties can still be improved in gasoline and diesel? Besides removing sulfur, should there be less aromatics in fuels? Should aromatics be eliminated? Is there a role for oxygenates in gasoline and diesel? Do blending oxygenates in fuels help or hinder in achieving the environmental goals? Can we and should we reduce our dependency on crude oil for transportation energy? Why have not the previous government-sponsored Alternative Fuel programs displaced crude oil? The marketplace will determine which fuel and vehicle technology combination will eventually be used in the future. Does the information we know today give us insight to this future? This paper will attempt to address some of the key issues and questions on the role fuels may play in that marketplace decision

  4. Fuels and Combustion | Transportation Research | NREL

    Science.gov (United States)

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  5. Transportation of spent MTR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  6. Transportation of spent MTR fuels

    International Nuclear Information System (INIS)

    Raisonnier, D.

    1997-01-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs

  7. Used Fuel Logistics: Decades of Experience with transportation and Interim storage solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orban, G.; Shelton, C.

    2015-07-01

    Used fuel inventories are growing worldwide. While some countries have opted for a closed cycle with recycling, numerous countries must expand their interim storage solutions as implementation of permanent repositories is taking more time than foreseen. In both cases transportation capabilities will have to be developed. AREVA TN has an unparalleled expertise with transportation of used fuel. For more than 50 years AREVA TN has safely shipped more than 7,000 used fuel transport casks. The transportation model that was initially developed in the 1970s has been adapted and enhanced over the years to meet more restrictive regulatory requirements and evolving customer needs, and to address public concerns. The numerous “lessons learned” have offered data and guidance that have allowed for also efficient and consistent improvement over the decades. AREVA TN has also an extensive experience with interim dry storage solutions in many countries on-site but also is working with partners to developed consolidated interim storage facility. Both expertise with storage and transportation contribute to safe, secure and smooth continuity of the operations. This paper will describe decades of experience with a very successful transportation program as well as interim storage solutions. (Author)

  8. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  9. Transport experience of NH-25 spent fuel shipping cask for post irradiation examination

    International Nuclear Information System (INIS)

    Mori, Ryuji

    1982-01-01

    Since the Japan Atomic Energy Research Institute and Nippon Nuclear Fuel Development Co. hot laboratories are located far off from the port which can handle spent fuel shipping casks, it is necessary to use a trailer-mounted cask which can be transported by public roads, bridges and intersections for the transportation of spent fuel specimens to these hot laboratories. Model NH-25 shipping cask was designed, manufactured and oualification tested to meet Japanese regulations and was officially registered as a BM type cask. The NH-25 cask accomodates two BWR fuel assemblies, one PWR assembly or one ATR fuel assembly using interchangeable inner containers. The cask weight is 29.2 t. The cask has three concentric stainless steel shells. Gamma shielding is lead cast between the inner shell and the intermediate shell. Neutro n shielding consists of ethylene-glycol-aqueous solution layer formed between the intermediate shell and the outer shell. The NH-25 cask now has been in operation for 2.5 yr. It was used for the transportation of spent fuel assemblies from six LWR power plants to the port on shipping cask carrier ''Hinouramaru'' on the sea, as well as from the port to the hot laboratory on a trailer. The capability of safe handling and transporting of spent fuel assemblies has been well demonstrated. (author)

  10. Transporting spent nuclear fuel: an overview

    International Nuclear Information System (INIS)

    1986-03-01

    Although high-level radioactive waste from both commercial and defense activities will be shipped to the repository, this booklet focuses on various aspects of transporting commercial spent fuel, which accounts for the majority of the material to be shipped. The booklet is intended to give the reader a basic understanding of the following: the reasons for transportation of spent nuclear fuel, the methods by which it is shipped, the safety and security precautions taken for its transportation, emergency response procedures in the event of an accident, and the DOE program to develop a system uniquely appropriate to NWPA transportation requirements

  11. Transportation of radioactive wastes from nuclear fuel cycles

    International Nuclear Information System (INIS)

    1979-09-01

    This paper discusses current and foreseen radioactive waste transportation systems as they apply to the INFCE Working Group 7 study. The types of wastes considered include spent fuel, which is treated as a waste in once-through fuel cycles; high-, medium-, and low-level waste; and gaseous waste. Regulatory classification of waste quantities and containers applicable to these classifications are discussed. Radioactive wastes are presently being transported in a safe and satisfactory manner. None of the INFCE candidate fuel cycles pose any extraordinary problems to future radioactive waste transportation and such transportation will not constitute a decisive factor in the choice of a preferred fuel cycle

  12. The transportation of PuO2 and MOX fuel and management of irradiated MOX fuel

    International Nuclear Information System (INIS)

    Dyck, H.P.; Rawl, R.; Durpel, L. van den

    2000-01-01

    Information is given on the transportation of PuO 2 and mixed-oxide (MOX) fuel, the regulatory requirements for transportation, the packages used and the security provisions for transports. The experience with and management of irradiated MOX fuel and the reprocessing of MOX fuel are described. Information on the amount of MOX fuel irradiated is provided. (author)

  13. Fuel performance and operation experience of WWER-440 fuel in improved fuel cycle

    International Nuclear Information System (INIS)

    Gagarinski, A.; Proselkov, V.; Semchenkov, Yu.

    2007-01-01

    The paper summarizes WWER-440 second-generation fuel operation experience in improved fuel cycles using the example of Kola NPP units 3 and 4. Basic parameters of fuel assemblies, fuel rods and uranium-gadolinium fuel rods, as well as the principal neutronic parameters and burn-up achieved in fuel assemblies are presented. The paper also contains some data concerning the activity of coolant during operation (Authors)

  14. Transport control of forest fuels by fleet manager, mobile terminals and GPS

    International Nuclear Information System (INIS)

    Sikanen, Lauri; Asikainen, Antti; Lehikoinen, Mikko

    2005-01-01

    Chip transportation is undertaken by private transportation enterprises that are contracted by a larger wood fuel trader. Compared with industrial roundwood supply the volumes and value of wood fuel supply are markedly lower. As a result, the possibilities to invest in information systems for transport management are limited. New portable, wireless communication techniques and internet-based systems for fleet management enable more cost-efficient control systems with low investment costs in hard and software and also low operating costs. Mobile handsets with GPS, digital road map display and global positioning systems (GPS) or general purpose radio service data transfer protocol can be used as mobile terminals in chippers and trucks. In addition, transport management personnel can use them to locate in-forest wood fuel storage piles into the map database as well as point suitable routing to the storage piles. In a pilot study, conducted in Central Finland, an internet based management tool, Arbonaut Fleet ManagerTM, was tailored for forest fuel supply chain management and trailed for three months. It was found that use of mobile handsets with GPS and map display assisted especially in exact location of in-forest wood fuel storage piles by managers. They assisted also trucks and chippers in navigation to storages and landings, but the screen was too small for reading during driving. The management system was found helpful in stock accounting and GPS-based vehicle tracking gave transportation distances directly for invoicing

  15. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  16. Transport of encapsulated nuclear fuels

    International Nuclear Information System (INIS)

    Broman, Ulrika; Dybeck, Peter; Ekendahl, Ann-Mari

    2005-12-01

    The transport system for encapsulated fuel is described, including a preliminary drawing of a transport container. In the report, the encapsulation plant is assumed to be located to Oskarshamn, and the repository to Oskarshamn or Forsmark

  17. Improvement of the environmental and operational characteristics of vehicles through decreasing the motor fuel density.

    Science.gov (United States)

    Magaril, Elena

    2016-04-01

    The environmental and operational characteristics of motor transport, one of the main consumers of motor fuel and source of toxic emissions, soot, and greenhouse gases, are determined to a large extent by the fuel quality which is characterized by many parameters. Fuel density is one of these parameters and it can serve as an indicator of fuel quality. It has been theoretically substantiated that an increased density of motor fuel has a negative impact both on the environmental and operational characteristics of motor transport. The use of fuels with a high density leads to an increase in carbonization within the engine, adversely affecting the vehicle performance and increasing environmental pollution. A program of technological measures targeted at reducing the density of the fuel used was offered. It includes a solution to the problem posed by changes in the refining capacities ratio and the temperature range of gasoline and diesel fuel boiling, by introducing fuel additives and adding butanes to the gasoline. An environmental tax has been developed which allows oil refineries to have a direct impact on the production of fuels with improved environmental performance, taking into account the need to minimize the density of the fuel within a given category of quality.

  18. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    Preece, A.H.

    1980-01-01

    The report falls under the headings: introduction (explaining the special interest of the London Borough of Brent, as forming part of the route for transportation of irradiated fuel elements); nuclear power (with special reference to transport of spent fuel and radioactive wastes); the flask aspect (design, safety regulations, criticisms, tests, etc.); the accident aspect (working manual for rail staff, train formation, responsibility, postulated accident situations); the emergency arrangements aspect; the monitoring aspect (health and safety reports); legislation; contingency plans; radiation - relevant background information. (U.K.)

  19. Status and future aspects of nuclear fuel cycle transports in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Blechschmidt, M.; Keese, H.

    1977-01-01

    The transport practices in the Federal Republic of Germany for materials of the nuclear fuel cycle are discussed. Particularly containers and modes of transport for UF 6 , fresh and spent fuel elements, plutonium and radwaste are described, with main emphasis on transport to reprocessing and waste storage facilities. In most cases nuclear materials have to be shipped across the borders because at present neither an enrichment nor an industrial reprocessing plant exists in the Federal Republic of Germany. Transports are therefore carried out according to international standards, such as the IAEA recommendations laid down in legal traffic regulations. Control and physical protection are being exercised on the basis of national regulations. The paper summarizes the experience gained in performing quite a number of various shipments and deals with the application of the relevant transport regulations. It also gives a brief outlook on future aspects, such as the increasing transport volume, and transport problems related to decommissioning and the operation of a nuclear fuel cycle center

  20. An improved assembly for the transport of fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1979-01-01

    An improved assembly for the transport and storage of radioactive nuclear fuel elements is described. The fuel element transport canister is of the type in which the fuel elements are submerged in liquid with a self regulating ullage system, so that the fuel elements are always submerged in the liquid even when the assembly is used in one orientation during loading and another orientation during transportation. (UK)

  1. Alternatives to traditional transportation fuels 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  2. Preliminary Concept of Operations for the Spent Fuel Management System--WM2017

    Energy Technology Data Exchange (ETDEWEB)

    Cumberland, Riley M [ORNL; Adeniyi, Abiodun Idowu [ORNL; Howard, Rob L [ORNL; Joseph III, Robert Anthony [ORNL; Jarrell, Joshua J [ORNL; Nutt, Mark [Argonne National Laboratory (ANL)

    2017-01-01

    The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project team is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component

  3. Contributions to LWR spent fuel storage and transport

    International Nuclear Information System (INIS)

    The papers included in this document describe the aspects of spent LWR fuel storage and transport-behaviour of spent fuel during storage; use of compact storage packs; safety of storage; design of storage facilities AR and AFR; description of transport casks and transport procedures

  4. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  5. Nuclear-electrolytic hydrogen as a transportation fuel

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1989-01-01

    Hydrogen is a very attractive transportation fuel in three important ways: it is the least polluting fuel that can be used in an internal combustion engine, it produces no greenhouse gases, and it is potentially available anywhere there is water and a clean source of power. The prospect of a clean, widely available transportation fuel has motivated much of the research on hydrogen fuels. This paper is a state-of-the art review of the production, storage, performance, environmental impacts, safety, and cost of nuclear-electrolytic hydrogen for highway vehicles

  6. Surface contamination of spent fuel convoys - resumption of transport in France

    International Nuclear Information System (INIS)

    Pertuis, V.

    2000-01-01

    In France, 1998 was marked by the transport of spent fuel from EDF plants being suspended and then resumed. From the time the first inspections were carried out by the Nuclear Installations Safety Directorate (NISD), in charge of monitoring radioactive and fissile material for civil use since June 1997, surface contamination was found in a high percentage of packages and/or wagons containing spent fuel. The different expert appraisals showed that this had no consequences for the health of the public or of workers. Aiming at the resumption of transport, EDF and Cogema presented to the safety authority a plan of action including an increase in monitoring (number of points and cross-checking by SGS Qualitest), more widespread observance of good practices resulting from analyses by EDF and conclusions of its nuclear inspectorate, and an improvement in radiological cleanliness in the area where casks were loaded. During the inspections carried out at EDF plants, the NISD verified the application of this plan. Several observations were, nevertheless, made regarding maintenance of equipment, failure to apply procedures on a corporate level and the traceability of certain operations. The measures taken to sufficiently inform the public were applied. The NISD is continuing its monitoring actions to ensure that all EDF plants adopt best practices. However, the overall clean-up of EDF plants is a long-term operation. Finally, the NISD is continuing its monitoring of the different stages of spent fuel transport as well as other types of transport of radioactive materials associated with nuclear activities. (author)

  7. The transport of irradiated fuel. An activity closely related to reprocessing

    International Nuclear Information System (INIS)

    Lenail, B.; Curtis, H.W.

    1987-01-01

    With a proven reprocessing capacity of 400 tonnes of uranium per year and the rapid expansion of this capacity, the need to feed the reprocessing plants at La Hague has become vital to ensure continuous and economic reprocessing. The programming of transports by the reprocessor and transporter to ensure a constant supply of fuel for reprocessing has therefore become increasingly important. These transports use the public roads and the railway system and the reprocessor and transporter must cooperate in maintaining the highest possible standards of safety. Safety must take priority over all other factors, including the economics of the operation

  8. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  9. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Mense, A.T.; Houlberg, W.A.; Attenberger, S.E.; Milora, S.L.

    1978-04-01

    A one-dimensional (1-D), multifluid transport model is used to investigate the effects of particle fueling profiles on plasma transport in an ignition-sized tokamak (TNS). Normal diffusive properties of plasmas will likely maintain the density at the center of the discharge even if no active fueling is provided there. This significantly relaxes the requirements for fuel penetration. Not only is lower fuel penetration easier to achieve, but it may have the advantage of reducing or eliminating density gradient-driven trapped particle microinstabilities. Simulation of discrete pellet fueling indicates that relatively low velocity (approximately 10 3 m/sec) pellets may be sufficient to fuel a TNS-sized device (approximately 1.25-m minor radius), to produce a relatively broad, cool edge region of plasma which should reduce the potential for sputtering, and also to reduce the likelihood of trapped particle mode dominated transport. Low penetrating pellets containing up to 10 to 20 percent of the total plasma ions can produce fluctuations in density and temperature at the plasma edge, but the pressure profile and fusion alpha production remain almost constant

  10. Alternative transport fuels: supply, consumption and conservation

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1990-01-01

    Road-based passenger and freight transport almost exclusively uses petroleum/hydrocarbon fuels in the fluid form. These fuels will probably continue to be major transport fuels well into the 21st century. As such there is need to prolong their use which can be done through: (1) conservation of fuel by increasing efficiency of internal combustion engines, and (2) conversion of natural gas, coal and peat, and biomass into alternate fuels such as ethanol, methanol, CNG, LNG, LPG, low heat-content (producer) gas and vegetable oils. Research, development and demonstration (RD and D) priorities in supply, consumption and conservation of these alternate fuels are identified and ranked in the context of situation prevailing in Brazil. Author has assigned the highest priority for research in the impact of pricing, economic, fiscal and trade policies, capital allocation criteria and institutional and legislative framework. It has also been emphasised that an integrated or systems approach is mandatory to achieve net energy gains in transport sector. (M.G.B.). 33 refs., 11 tabs., 4 figs

  11. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  12. Behaviour of short-lived iodines in operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Lipsett, J.J.; Hastings, I.J.; Hunt, C.E.L.

    1984-11-01

    Sweep gas experiments have been done to determine the behaviour of short-lived fission products within operating UO 2 fuel elements at linear powers of 45, 54, and 60 KW/m, and to burnups of 70, 80, and 50 MWh/kgU respectively. Although radioiodine transport was not observed directly during normal operation, equilibrium gap inventories for I-131 were deduced from the shutdown decay behaviour of the fission gases. These inventories were a strong function of fuel power and ranged from 10 GBq (0.27 Ci) to 100 GBq (2.7 Ci) over the range tested. We conclude that the iodine inventory was adsorbed onto the fuel and/or sheath surfaces with a volatile fraction of less than 10 -2 and a charcoal-filter-penetrating fraction of less than 2x10 -4

  13. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, Satish G. [Rochester Inst. of Technology, Rochester, NY (United States); Lu, Zijie [Rochester Inst. of Technology, Rochester, NY (United States); Rao, Navalgund [Rochester Inst. of Technology, Rochester, NY (United States); Sergi, Jacqueline [Rochester Inst. of Technology, Rochester, NY (United States); Rath, Cody [Rochester Inst. of Technology, Rochester, NY (United States); McDade, Christopher [Rochester Inst. of Technology, Rochester, NY (United States); Trabold, Thomas [General Motors, Honeoye Falls, NY (United States); Owejan, Jon [General Motors, Honeoye Falls, NY (United States); Gagliardo, Jeffrey [General Motors, Honeoye Falls, NY (United States); Allen, Jeffrey [Michigan Technological Univ., Houghton, MI (United States); Yassar, Reza S. [Michigan Technological Univ., Houghton, MI (United States); Medici, Ezequiel [Michigan Technological Univ., Houghton, MI (United States); Herescu, Alexandru [Michigan Technological Univ., Houghton, MI (United States)

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions.

  14. Risk assessment in spent fuel storage and transportation

    International Nuclear Information System (INIS)

    Pandimani, S.

    1989-01-01

    Risk assessment in various stages of nuclear fuel cycle is still an active area of Nuclear safety studies. From the results of risk assessment available in literature, it can be determined that the risk resulting from shipments of plutonium and spent-fuel are much greater than that resulting from the transport of other materials within the nuclear fuel cycle. In India spent fuels are kept in Spent Fuel Storage Pool (SFSP) for about 240-400 days, which is relatively a longer period compared to the usual 120 days as recommended by regulatory authorities. After cooling spent fuels are transported to the reprocessing sites which are mostly situated close to the plants. India has two high level waste treatment facilities, one PREFRE (Plutonium Reprocessing and Fuel Recycling) at Tarapur and the other one, a unit of Nuclear Fuel Complex at Hyderabad. This paper presents the risk associated with spent fuel storage and transportation for the Indian conditions. All calculations are based on a typical CANDU reactor system. Simple fault tree models are evolved for SFSP and for Transportation Accident Mode (TAM) for both road and rail. Fault tree quantification and risk assessment are done to each of these models. All necessary data for SFSP are taken mostly from Reactor Safety Study, (1975). Similarly, the data for rail TAM are taken from Annual Statistical Statements, (1987-8) and that for road TAM from Special Issue on Motor Vehicle Accident Statistics in India, (1986). Simulation method is used wherever necessary. Risk is also estimated for normal/accident free transport

  15. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  16. French experience in research reactor fuel transportation

    International Nuclear Information System (INIS)

    Raisonnier, Daniele

    1996-01-01

    Since 1963 Transnucleaire has safely performed a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied suitable packaging for all types of nuclear fuel cycle radioactive material from front-end and back-end products and for power or for research reactors. Transportation of spent fuel from power reactors are made on a regular and industrial basis, but this is not yet the case for the transport of spent fuel coming from research reactors. Each shipment is a permanent challenge and requires a reactive organization dealing with all the transportation issues. This presentation will explain the choices made by Transnucleaire and its associates to provide and optimize the corresponding services while remaining in full compliance with the applicable regulations and customer requirements. (author)

  17. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  18. Fuel Behaviour in Transport after Dry Storage: a Key Issue for the Management of used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, Herve

    2014-01-01

    Interim used fuel dry storage has been developed in many countries providing an intermediate solution while waiting for evaluation and decisions concerning future use (such as recycling) or disposal sites. There is an important industrial experience feedback and excellent safety records. It appears that the duration of interim storage may become longer than initially expected. At the start of storage operations 40 years was considered sufficiently long to make a decision on either recycling or direct disposal of used nuclear fuel. Now it is said that storage time may have to be extended. Whatever the choice for the management of used fuel, it will finally have to be transported from the storage facility to another location, for recycling or final disposal. Bearing in mind the important principle that radioactive waste shall be managed in such a way that undue burdens will not be imposed on future generations, there is no guarantee that the fuel characteristics can be maintained in perpetuity. On the other hand, transport accident conditions from applicable regulation (IAEA SSR-6) are very severe for irradiated materials. Therefore, in compliance with transport regulations, the safety analysis of the fuel in transport after storage is mandatory. This paper will give an overview of the current situation related to the used fuel behaviour in transport after dry storage. On this matter there are some elements of information already available as well as some gaps of knowledge. Several national R and D programs and international teams are presently addressing these gaps. A lot of R and D work has already been done. An objective of these R and D projects is to aid decision makers. It is important to fix a limit and not to multiply intermediate operations because it means higher costs and more uncertainties. The identified gaps concern the following issues especially for high burn-up (HBU) fuels: thermal model for casks, degradation process of fuel material, cladding creep

  19. Spent fuels transportation coming from Australia; Transport de combustible use en provenance d'Australie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Maritime transportation of spent fuels from Australia to France fits into the contract between COGEMA and ANSTO, signed in 1999. This document proposes nine information cards in this domain: HIFAR a key tool of the nuclear, scientific and technological australian program; a presentation of the ANSTO Australian Nuclear Science and Technology Organization; the HIFAR spent fuel management problem; the COGEMA expertise in favor of the research reactor spent fuel; the spent fuel reprocessing at La Hague; the transports management; the transport safety (2 cards); the regulatory framework of the transports. (A.L.B.)

  20. Human error prediction and countermeasures based on CREAM in spent nuclear fuel (SNF) transportation

    International Nuclear Information System (INIS)

    Kim, Jae San

    2007-02-01

    Since the 1980s, in order to secure the storage capacity of spent nuclear fuel (SNF) at NPPs, SNF assemblies have been transported on-site from one unit to another unit nearby. However in the future the amount of the spent fuel will approach capacity in the areas used, and some of these SNFs will have to be transported to an off-site spent fuel repository. Most SNF materials used at NPPs will be transported by general cargo ships from abroad, and these SNFs will be stored in an interim storage facility. In the process of transporting SNF, human interactions will involve inspecting and preparing the cask and spent fuel, loading the cask onto the vehicle or ship, transferring the cask as well as storage or monitoring the cask. The transportation of SNF involves a number of activities that depend on reliable human performance. In the case of the transport of a cask, human errors may include spent fuel bundle misidentification or cask transport accidents among others. Reviews of accident events when transporting the Radioactive Material (RAM) throughout the world indicate that human error is the major causes for more than 65% of significant events. For the safety of SNF transportation, it is very important to predict human error and to deduce a method that minimizes the human error. This study examines the human factor effects on the safety of transporting spent nuclear fuel (SNF). It predicts and identifies the possible human errors in the SNF transport process (loading, transfer and storage of the SNF). After evaluating the human error mode in each transport process, countermeasures to minimize the human error are deduced. The human errors in SNF transportation were analyzed using Hollnagel's Cognitive Reliability and Error Analysis Method (CREAM). After determining the important factors for each process, countermeasures to minimize human error are provided in three parts: System design, Operational environment, and Human ability

  1. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  2. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  3. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  4. Summary of the transportation of spent fuel attitude survey

    International Nuclear Information System (INIS)

    Roop, E.; Price, D.L.; Paquet, V.L.

    1992-01-01

    The proposed repository at Yucca Mountain, Nevada will increase highway and railway transportation of spent fuel and high level nuclear wastes. The purpose of the survey was to determine the attitudes and differences in attitudes of important actors in the transportation of spent fuel. The three major areas of investigation were 1) perceived risks associated with the transportation of spent fuel, 2) confidence in the government and others responsible for transporting spent fuel, and 3) certain transportation requirements. Response was 34.3% of the original mailing and included: 193 safety personnel, 141 employees of the nuclear industry, 260 government employees, 34 native Americans, and 9 employees of environmental organizations. This paper summarizes overall and group attitudes and opinions for the three areas mentioned above. (author)

  5. High Burnup Fuel: Implications and Operational Experience. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2016-08-01

    This publication reports on the outcome of a technical meeting on high burnup fuel experience and economics, held in Buenos Aires, Argentina in 2013. The purpose of the meeting was to revisit and update the current operational experience and economic conditions associated with high burnup fuel. International experts with significant experience in experimental programmes on high burnup fuel discussed and evaluated physical limitations at pellet, cladding and structural component levels, with a wide focus including fabrication, core behaviour, transport and intermediate storage for most types of commercial nuclear power plants

  6. Development of nuclear spent fuel Maritime transportation scenario

    International Nuclear Information System (INIS)

    Yoo, Min; Kang, Hyun Gook

    2014-01-01

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability

  7. Development of nuclear spent fuel Maritime transportation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Min; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability.

  8. Risk of transporting spent nuclear fuel by train

    International Nuclear Information System (INIS)

    Elder, H.K.

    1981-12-01

    This paper presents results of a study which analyzes the risk of transporting spent fuel by train. The risk assessment methodology consists of 4 basic steps: (1) a description of the system being analyzed; (2) identification of sequences of events that could lead to a release of material during transportation; (3) evaluation of the probability and consequences of each release sequence; and (4) assessment of the risk and evaluation of the results. The conclusion reached was that considering the substantial benefits derived from the fuel, the current spent fuel transportation system poses reasonably low risks

  9. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas

    Science.gov (United States)

    Tree Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative

  10. Impact of Transmutation Scenarios on Fuel Transportation

    International Nuclear Information System (INIS)

    Saturnin, A.; Duret, B.; Allou, A.; Jasserand, F.; Fillastre, E.; Giffard, F.X.; Chabert, C.; Caron-Charles, M.; Garzenne, C.; Laugier, F.

    2015-01-01

    Minor actinides transmutation scenarios have been studied in the frame of the French Sustainable Radioactive Waste Management Act of 28 June 2006. Transmutation scenarios supposed the introduction of a sodium-cooled fast reactor fleet using homogeneous or heterogeneous recycling modes for the minor actinides. Americium, neptunium and curium (MA) or americium alone (Am) can be transmuted together in a homogeneous way embedded in FR-MOX fuel or incorporated in MA or Am-Bearing radial Blankets (MABB or AmBB). MA transmutation in Accelerator Driven System has also been studied while plutonium is being recycled in SFR. Assessments and comparisons of these advanced cycles have been performed considering technical and economic criteria. Transportation needs for fresh and used transmutation fuels is one of these criteria. Transmutation fuels have specific characteristics in terms of thermal load and neutron emissions. Thermal, radiation and criticality constraints have been taken into account in this study to suggest cask concepts for routine conditions of transport, to estimate the number of assemblies to be transported in a cask and the number of annual transports. Comparison with the no transmutation option, i.e. management of uranium and plutonium in SFRs, is also presented. Regarding these matters, no high difficulties appear for assemblies with limited content of Am (homogeneous or heterogeneous recycling modes). When fuels contain curium, technical transport uncertainties increase because of the important heat release requiring dividing fresh fuels and technological innovations development (MABB and ADS). (authors)

  11. Road transport fuels in europe: the explosion of demand for diesel fuel

    International Nuclear Information System (INIS)

    Bensaid, B.

    2004-01-01

    In the last 20 years, road transport fuel consumption has more than doubled in European countries, due to strong growth on the diesel passenger car segment and in the transport of road freight. In an economy heavily dependent on oil, European authorities are seeking to promote alternative energy solutions, such as motor fuels produced from biomass

  12. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  13. Transportation risks in the US nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rhoads, R.E.; Andrews, W.B.

    1980-01-01

    Estimated risks associated with accidental releases of materials transported for each step of the nuclear fuel cycle are presented. The risk estimates include both immediate and latent fatilities caused by releases of these materials in transportation accidents. Studies of the risk of transporting yellowcake, fresh nuclear and low level wastes from the front end of the fuel cycle have not been completed. Existing information does permit estimates of the risks to be made. The estimates presented result from the very low hazards associated with release of these materials. These estimates are consistent with the results of other studies. The results show that risks from all the fuel cycle transportation steps are low. The results also indicate that the total transportation risks associated with the nuclear fuel cycle are distributed about evenly between the fuel supply end and waste management end of the cycle. Risks in the front end of the cycle result primarily from the chemical toxicity of the materials transported. The results of the risk analysis studies for transportation of nuclear fuel cycle materials are compared with the results for the three studies that have been completed for non-nuclear systems. The risk analysis methodology used in these studies identifies the complete spectrum of potential accident consequences and estimates the probability of events producing that level of consequence. The maximum number of fatalities predicted for each material is presented. A variety of risk measures have been used because of the inherent difficulties in making risk comparisons. Examination of a number of risk measures can provide additional insights and help guard against conclusions that are dependent on the way the risk information has been developed and displayed. The results indicate that the risks from transporting these materials are all relatively low in comparison to other risks in society

  14. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    International Nuclear Information System (INIS)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-01-01

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research

  15. Three-dimensional multi-phase flow computational fluid dynamics model for analysis of transport phenomena and thermal stresses in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maher, A.R.; Al-Baghdadi, S. [International Technological Univ., London (United Kingdom). Dept. of Mechanical Engineering; Haroun, A.K.; Al-Janabi, S. [Babylon Univ., Babylon (Iraq). Dept. of Mechanical Engineering

    2007-07-01

    Fuel cell technology is expected to play an important role in meeting the growing demand for distributed generation because it can convert the chemical energy of a clean fuel directly into electrical energy. An operating fuel cell has varying local conditions of temperature, humidity, and power generation across the active area of the fuel cell in 3D. This paper presented a model that was developed to improve the basic understanding of the transport phenomena and thermal stresses in PEM fuel cells, and to investigate the behaviour of polymer membrane under hygro and thermal stresses during the cell operation. This comprehensive 3D, multiphase, non-isothermal model accounts for the major transport phenomena in a PEM fuel cell, notably convective and diffusive heat and mass transfer; electrode kinetics; transport and phase change mechanism of water; and potential fields. The model accounts for the liquid water flux inside the gas diffusion layers by viscous and capillary forces and can therefore predict the amount of liquid water inside the gas diffusion layers. This study also investigated the key parameters affecting fuel cell performance including geometry, materials and operating conditions. The model considers the many interacting, complex electrochemical, transport phenomena, thermal stresses and deformation that cannot be studied experimentally. It was concluded that the model can provide a computer-aided tool for the design and optimization of future fuel cells with much higher power density and lower cost. 21 refs., 2 tabs., 14 figs.

  16. German Approach for the Transport of Spent Fuel Packages after Interim Storage

    International Nuclear Information System (INIS)

    Wille, Frank; Wolff, Dietmar; Droste, Bernhard; Voelzke, Holger

    2014-01-01

    In Germany the concept of dry interim storage of spent nuclear fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently (in 2012) revised 'Guidelines for dry cask storage of spent nuclear fuel and heat-generating waste' by the German Waste management Commission (ESK) which are very similar to the former RSK (reactor safety commission) guidelines. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties which satisfy the proofs for the compliance of the safety objectives at that time. In recent years the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report including evaluation of long term behavior of components and specific operating procedures of the package. Present research and knowledge concerning the long term behavior of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behavior of aged metal and elastomeric seals under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period (aged package). Assessment methods for the material compatibility, the behavior of fuel assemblies and the aging behavior of shielding parts are issues as well. This paper describes the state

  17. Transport of MOX fuel from Europe to Japan; Transport de combustible mox d' Europe vers le Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  18. Sources of expertise in transportation planning, management, and operations: Information received as of September 25, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The DOE Office of Storage and Transportation Systems is responsible for the development and management of a transportation system to provide all the necessary services for the transportation of the spent fuel and wastes from reactor sites to repositories. DOE/ORO has requested Oak Ridge Associated Universities (ORAU) to assist DOE in developing rosters of sources of transportation expertise in: (1) carrier operations; (2) transportation management, planning, and logistics; (3) transportation equipment; (4) transportation facilities design and operation; (5) vehicle safety; and (6) transportation operations quality assurance; as related to truck, rail, barge, and intermodal transportation. Persons or organizations with experience in shipping of non-hazardous materials, spent nuclear fuel, other radioactive materials, and/or other hazardous materials were included in the information system. A mailed inquiry was sent to over 2300 potential sources of transportation expertise. Responses were received from 207 persons and 254 organizations. Section 1 contains the identification numbers of the individuals and organizations that responded. Section 2 contains identification codes, names, addresses, and phone numbers of each of the individual and organization respondents. The reader can refer to Section 2 for the name and address of the respondents for the identification codes listed for each technical area/experience base in Section 1

  19. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  20. Studies of Lanthanide Transport in Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Taylor, Christopher

    2018-04-02

    Metallic nuclear fuels were tested in fast reactor programs and performed well. However, metallic fuels have shown the phenomenon of FCCI that are due to deleterious reactions between lanthanide fission products and cladding material. As the burnup is increased, lanthanide fission products that contact with the cladding could react with cladding constituents such as iron and chrome. These reactions produce higher-melting intermetallic compounds and low-melting alloys, and weaken the mechanical integrity. The lanthanide interaction with clad in metallic fuels is recognized as a long-term, high-burnup cause of the clad failures. Therefore, one of the key concerns of using metallic fuels is the redistribution of lanthanide fission products and migration to the fuel surface. It is believed that lanthanide migration is in part due to the thermal gradient between the center and the fuel-cladding interface, but also largely in part due to the low solubility of lanthanides within the uranium-based metal fuel. PIE of EBR-II fuels shows that lanthanides precipitate directly and do not dissolve to an appreciable extent in the fuel matrix. Based on the PIE data from EBR-II, a recent study recommended a so-called “liquid-like” transport mechanism for lanthanides and certain other species. The liquid-like transport model readily accounts for redistribution of Ln, noble metal fission products, and cladding components in the fuel matrix. According to the novel mechanism, fission products can transport as solutes in liquid metals, such as liquid cesium or liquid cesium–sodium, and on pore surfaces and fracture surfaces for metals near their melting temperatures. Transport in such solutions is expected to be much more rapid than solid-state diffusion. The mechanism could explain the Ln migration to the fuel slug peripheral surface and their deposition with a sludge-like form. Lanthanides have high solubility in liquid cesium but have low solubility in liquid sodium. As a

  1. Spent-fuel transportation - a success story

    International Nuclear Information System (INIS)

    Gertz, C.P.; Schoonen, D.H.; Wakeman, B.H.

    1986-01-01

    Spent nuclear fuel research and development (R and D) demonstrations and associated transportation activities are being performed as a part of the storage cask performance testing programs at the Idaho National Engineering Laboratory (INEL). These spent-fuel programs support the Nuclear Waste Policy Act (NWPA) and US Department of Energy (DOE) objectives for cooperative demonstrations with the utilities, testing at federal sites, and alternatives for viable transportation systems. A cooperative demonstration program with the private sector to develop dry storage technologies that the US Nuclear Regulatory Commission (NRC) can generically approve is in place as well as cost-shared dry storage R and D program at a federal facility to collect the necessary licensing data. In addition to the accomplishments in the cask performance and testing demonstrations, the long-distance transportation of a large number of spent-fuel assemblies is considered a success story. The evaluation and implementation of applicable requirements, industry perspective, and extensive planning all contributed to this achievement

  2. Routine methods for post-transportation accident recovery of spent fuel casks

    International Nuclear Information System (INIS)

    Shappert, L.B.; Pope, R.B.; Best, R.E.; Jones, R.H.

    1991-01-01

    Spent fuel casks and other large radioactive material packages have been examined to determine whether the designs are adequate to allow the casks to be recovered using conventional recovery methods following a transportation accident. Casks and similar packages are typically designed with, and handled by, trunnions that support the package during transport. These trunnions are considered the best cask feature with which to grapple the cask once it is no longer in its usual shipping mode. Following a transport accident, the trunnions may be buried or entangled so that they are not readily accessible to initiate the recovery process. To evaluate the effectiveness of applying traditional recovery methods to spent fuel casks, a workshop was held in which a series of accidents involving casks were postulated; the modes of transportation considered included truck, rail, and barge. These participants knowledgeable in transport, handling, and, in some cases, recovery of large, heavy containers attended. Participants concluded that the physical recovery of a cask involved in an accident, irrespective of where the accident occurs, would be a straightforward rigging operation and that the addition of specific recovery features (e.g., additional trunnions) to the cask appears unnecessary

  3. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-01-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  4. Agricultural transportation fuels

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The recommendations on the title subject are focused on the question whether advantages and disadvantages of agricultural fuels compared to fossil fuels justify the Dutch policy promotion of the use of agricultural products as basic materials for agricultural fuels. Attention is paid to energetic, environmental and economical aspects of both fuel types. Four options to apply agricultural transportation fuels are discussed: (1) 10% bio-ethanol in euro-unleaded gasoline for engines of passenger cars, equipped with a three-way catalyst; (2) the substitution of 15% methyl tertiair butyl ether (MTBE) by ethyl tertiair butyl ether (ETBE) as a substituent for lead in unleaded super plus gasoline (Sp 98) for engines of passenger cars, equipped with a three-way catalyst; (3) 50% KME (rapeseed oil ester) in low-sulfur diesel (0.05%S D) for engines of vans without a catalyst; and (4) the substitution of 0.05% S D by bio-ethanol or KME for buses with fuel-adjusted engines, equipped with a catalyst. Also the substitution by liquefied petroleum gas (LPG), compressed natural gas (CNG) or E 95 was investigated in option four. Each of the options investigated can contribute to a reduction of the use of fossil energy and the environmental effects of the use of fossil fuels, although some environmental effects from agricultural fuels must be taken into consideration. It is recommended to seriously pay attention to the promotion of agricultural fuels, not only in the Netherlands, but also in an international context. Policy instruments to be used in the stimulation of the use of such fuels are the existing European Community subsidies on fallow lands, exemption of the European Community energy levy, and the use of tax differentiation. Large-scale demonstration projects must be started to quantify hazardous emissions and to solve still existing technical problems. 8 figs., 3 tabs., refs., 4 appendices

  5. Transfer tunnel transporter system for the Fuels and Materials Examination Facility

    International Nuclear Information System (INIS)

    Petty, J.A.; Miller, S.C.; Richards, J.T.

    1981-01-01

    The detail design is complete and fabrication is approximately 75% complete on the Transfer Tunnel Transporter System. This system provides material handling capability for large, bulky equipment between two hot cells in a new Breeder Reactor Program support facility, the Fuels and Materials Examination Facility. One hot cell has an air atmosphere, the other a high purity inert gas atmosphere which must be maintained during transfer operations. System design features, operational capabilities and remote recovery provisions are described

  6. Considerations for the transportation of spent fuel

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1984-01-01

    In our society today the transportation of radioactive materials, and most particularly spent reactor fuel, is surrounded by considerable emotion and a wealth of information, good and bad. The transportation of these materials is viewed as unique and distinct from the transportation of other hazardous materials and as a particularly vulnerable component of the nuclear power activities of this nation. Added to this is the concept, widely held, that almost everyone is an expert on the transportation of radioactive materials. One significant contribution to this level of emotion is the notion that all roads (rail and highway), on which these goods will be transported, somehow traverse everyone's backyard. The issue of the transportation of spent fuel has thus become a political battleground. Perhaps this should not be surprising since it has all of the right characteristics for such politicization in that it is pervasive, emotional, and visible. In order that those involved in the discussion of this activity might be able to reach some rational conclusions, this paper offers some background information which might be useful to a broad range of individuals in developing their own perspectives. The intent is to address the safety of transporting spent fuel from a technical standpoint without the emotional content which is frequently a part of this argument

  7. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  8. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  9. The thermal analysis of BR-100: A barge/rail nuclear spent fuel transportation container

    International Nuclear Information System (INIS)

    Copsey, A.B.

    1992-01-01

    B ampersand W Fuel Company is designing a spent-fuel container called BR-100 that can be used for either barge or rail transport. This paper presents the thermal design and analysis. Both normal operation and hypothetical accident thermal transient conditions are evaluated. The BR-100 cask has a concrete layer than contains free water. During a hypothetical accident, the free water vaporizes and flows from the cask, removing a significant amount of thermal transient energy. The BR-100 transportation package meets the thermal requirements of 10CFR71. It additionally offers substantial margins to established material temperature limits

  10. Determination of prerequisites for the estimation of transportation cost of spent fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Kim, Seong Ki; Cha, Jeong Hoon; Choi, Jong Won

    2007-10-01

    The cost for the spent fuel management includes the costs for the interim storage, the transportation, and the permanent disposal of the spent fuels. The scope of this report is limited to the cost for the spent fuel transportation. KAERI is developing a cost estimation method for the spent fuel transportation through a joint study with the French AREVA TN. Several prerequisites should be fixed in order to estimate the cost for the spent fuel transportation properly. In this report we produced them considering the Korean current status on the management of spent fuels. The representative characteristics of a spent fuel generated from the six nuclear reactors at the YG site were determined. Total 7,200 tons of spent fuels are projected with the lifespan of 60 years. As the transportation mode, sea transportation and road transportation is recommended considering the location of the YG site and the hypothetical Centralized Interim Storage Facility (CISF) and Final Repository (FR). The sea route and transportation time were analyzed by using a sea distance analysis program which the NORI (National Oceanographic Research Institute) supplies on a web. Based on the results of the analysis, the shipping rates were determined. The regulations related to the spent fuel transportation were reviewed. The characteristics of the transportation vessel and a trailer were suggested. The handling and transportation systems at the YG site, Centralized Interim Storage Facility, and the Final Repository were described in detail for the purpose of the cost estimation of the spent fuel transportation. From the detail description the major components of the transportation system were determined for the conceptual design. It is believed that the conceptual design of the transportation system developed in this report will be used for the analysis of transportation logistics and the cost estimation of spent fuels

  11. Analysis of the transportation logistics for spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Ko, Won Il; Seo, Ki Seok

    2010-01-01

    As a part of the back-end fuel cycle, transportation of spent nuclear fuel (SNF) from nuclear power plants (NPP s ) to a fuel storage facility is very important in establishing a nuclear fuel cycle. In Korea, the accumulated amount of SNF in the NPP pools is troublesome since the temporary storage facilities at these NPP pools are expected to be full of SNF within ten years. Therefore, Korea cannot help but plan for the construction of an interim storage facility to solve this problem in the near future. Especially, a decision on several factors, such as where the interim storage facility should be located, how many casks a transport ship can carry at a time and how many casks are initially required, affect the configuration of the transportation system. In order to analyze the various possible candidate scenarios, we assumed four cases for the interim storage facility location, three cases for the load capacity that a transport ship can carry and two cases for the total amount of casks used for transportation. First, this study considered the currently accumulated amount of SNF in Korea, and the amount of SNF generated from NPP s until all NPP s are shut down. Then, how much SNF per year must be transported from theNPP s to an interim storage facility was calculated during an assumed transportation period. Second, 24 candidate transportation scenarios were constructed by a combination of the decision factors. To construct viable yearly transportation schedules for the selected 24 scenarios, we created a spreadsheet program named TranScenario, which was developed by using MS EXCEL. TranScenario can help schedulers input shipping routes and allocate transportation casks. Also,TranScenario provides information on the cask distribution in the NPP s and in the interim storage facility automatically, by displaying it in real time according to the shipping routes, cask types and cask numbers that the user generates. Once a yearly transportation schedule is established

  12. Conventional transport fuels quality and ATF : recent Asian experience

    Energy Technology Data Exchange (ETDEWEB)

    Desbiens, R. [Consultec, Montreal, PQ (Canada)

    2002-07-01

    The experience gained in Manila, Philippines, with regard to transport fuels, was discussed during this presentation. It is estimated that 70 to 80 per cent of air pollution in the city of Manila is generated by vehicular traffic. Diesel-fueled vehicles operate all hours of the day, and motorized tricycles powered by a two-stroke engine, are cause for concern for local authorities. Several factors play a role in the problems experienced: vehicle ownership, poor air, congestion and noise in urban areas, poor transport infrastructure, coupled with policy problems such as fuel and vehicle quality standards, poor monitoring, ancient technologies, etc. The motorization of cities was examined, and special emphasis was places on the situation in Asia. The situation in China was looked at, where approximately 15 million automobiles are in use, with an annual increase of 11 to 13 per cent. The air pollution caused by motor vehicles in China was discussed, and new vehicle emission standards for China were presented. The issue of fuel injection systems for motorcycles in China was discussed, and the author mentioned that cost and reliability problems require further improvement. The use of compressed natural gas vehicles in Beijing was looked at, and some of the barriers are lack of public awareness, capital shortages, high price of natural gas, and shortage of advanced technologies. A feasibility study for the introduction of compressed natural gas vehicles in Beijing was conducted and the main findings presented. Public transport management in Hong Kong was reviewed, including the use of alternative environmentally friendly vehicles and fuel. A look at India, and specifically Delhi, was presented. The norms concerning vehicle emissions in India were briefly reviewed, followed by fuel quality improvements, and compressed natural gas vehicles. The author then discussed alternative fuels in Korea and the country's compressed natural gas bus promotion policy. The next

  13. Fuel consumption in the transport of technical broadleaf roundwood in lowland areas

    Directory of Open Access Journals (Sweden)

    Danilović Milorad

    2015-01-01

    Full Text Available This paper presents the results of an analysis of fuel consumption in the transport of technical roundwood of soft broadleaves from the felling site to a roadside landing using forwarders and tractor assemblies. The research was performed in various operating conditions in the area of FE "Banat" Pančevo. On the basis of the results of the analysis of variance, the data recorded in a variety of conditions were grouped. In addition, the dependence of fuel consumption on the average volume of tour was estimated. The results of the conducted analysis indicate that operating conditions significantly affect fuel consumption of the investigated vehicles. The elements of statistical analysis of the dependence of fuel consumption on the volume of load indicate that an increase in load causes increased fuel consumption per unit of production. Having in mind the results of the analysis of variance, unique norms of fuel consumption were adopted for practical purposes. The highest average consumption (1.21 L/m3 was achieved by a tractor assembly (Same Laser 130 tractor and Imako TP12 trailer with a Loglift 61F hydraulic crane, while significantly lower consumption was achieved by a John Deere 1210E forwarder (1.06 L/m3. In favourable operating conditions, consumption of the forwarder was about 0.9 L/m3.

  14. Environmental economics of lignin derived transport fuels

    OpenAIRE

    Obydenkova, SV; Kouris, P Panagiotis; Hensen, EJM Emiel; Heeres, Hero J; Boot, MD Michael

    2017-01-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability....

  15. The transports of nuclear fuel cycle: An essential activity, safely managed

    International Nuclear Information System (INIS)

    Lenail, B.; Savornin, B.; Curtis, H.W.

    1989-01-01

    Transports associated with the nuclear fuel cycle normally use public means of transport by rail, road, sea and air and it might therefore be expected that they would be the Achilles heel of the cycle from a safety point of view. In fact, despite a few minor accidents, no radioactive releases resulting in a significant exposure of the public or the environment have occurred. On the other hand, during the last quarter, the news media have reported major spillages of crude oil and chemicals of high toxicity which have jeopardized the environment, the explosion of gas tankers with dozens of fatalities, and even the sinking of a nuclear submarine. All reports show that the radiation exposure to the public resulting from transports is negligible, i.e., far below 1% of that due to the whole nuclear industry. Similarly, the radiation exposure of transport workers has been lower than anticipated over several decades. The demonstrations and attacks by opponents of the nuclear industry against transports have been limited and have been used as an attempt to freeze the activity of different plants or disposal sites, and to focus public attention on the nuclear issue, rather than to question the fuel cycle transports themselves or the safety principles ruling them. When looking for explanations of such a favorable situation, which they should endeavour to perpetuate, without being surprised if any incident occurs, one finds two major reasons: First, the awareness by the fuel cycle operators, of the vital importance of a safe and reliable implementation of the necessary transports. Secondly, the results of assessments of safety conducted by international organizations and most countries, which have resulted in detailed international recommendations, as well as uniform national and modal regulations, thus establishing the necessary link between the basic rules for radioprotection and the needs of the Transport Industry

  16. Transport of MOX fuel from Europe to Japan; Transport de combustible mox d' Europe vers le Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  17. Safety evaluation on MOX new fuel at marine transport

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Ito, Chihiro; Saegusa, Toshiari; Maruyama, Koki

    2000-01-01

    In the Central Research Institute of Electric Power Industry, in order to confirm effects of MOX new fuel on the public are as small as possible even when its marine transport goes down, some exposed radiation dose has previously conducted on imaginary shipwreck of marine transport on used nuclear fuel, plutonium dioxide, and high level return glass solid. Under a base of such informations, some investigations on safety on marine transport of the MOX new fuel was conducted. On September, 1999, five transport vessels of the MOX new fuel was at first transported on marine. The value of five times of estimated exposed radiation dose (max. 8.1 x 10 -8 mSv/y) corresponds to an evaluation result assumed by shipwreck in marine transport this time. As a result, it was found that the exposed radiation dose estimated on this case would be sufficiently less than an effective dose equivalent limit (1 mSv/y) of public exposure according to the recommendation of ICRP in both coastal and oceanic areas. (G.K.)

  18. A study of the operational logistics in the disposal plant for spent nuclear fuel

    International Nuclear Information System (INIS)

    Sylvaenne, O.; Kaskinen, T.; Kuussaari, P.

    2003-02-01

    The final disposal plant for spent nuclear fuel comprises an encapsulation facility that will be built on the surface, other support activities above ground, and a repository that will be constructed deep in the bedrock. This report analyses the final repository operational logistics. The desktop research report is compiled of data taken from several existing planning reports covering the planning periods 1997-2002. The logistics specialised description of the final repository considers most areas in the daily operation of the facility. Among these are: Disposal tunnel excavation; construction and transports; Tunnel preparation for canisters; Reception of spent nuclear fuel transport casks; Encapsulation process; Preparation of bentonite blocks for canister holes, block laying; Final disposal of canisters; and Preparation of backfilling material and backfilling. The transport and handling volumes have certain cycles. Rock will be excavated during one contiguous period in 3 years, backfilling takes two weeks in a month and the deposition of canisters also two weeks. Thus the material flows vary greatly due to their cyclical nature. The transport and handling volumes are considerable, by far largest single item being excavated rock with about 5000 annual truck loads during the active excavation period, backfilling is about 1300 loads yearly at a steady pace. The report covers and summarises material flows, handling methods and equipment, buffering, storage and transports. It suggests some changes to operational procedures. Proposals have been made as to the location of the encapsulation facility and the methods of material transport. The logistical 'hot' issues, entry of the main transport ramp, rock field, rock crushing process, bentonite storage, bentonite brick production and backfiller production are all proposed to be located close to each other to minimise driving distance. It has also been proposed that the bentonite block buffer should rather be located at

  19. The resistance to impact of spent Magnox fuel transport flasks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This book completes the papers of the four-year programme of research and demonstrations embarked upon by the CEGB in 1981, culminating in the spectacular train crash at Old Dalby in July 1984. It explains the CEGB's operations in relation to the transportation of spent Magnox fuel. The public tests described in this book are more effective in improving public understanding and confidence than any amount of explanations could have been, raising the wider question of how best the scientific community can respond to the legitimate concerns of the man and woman in the street about the generating of electricity from nuclear power. The contents are: Taking care; irradiated fuel transport in the UK; programming for flask safety; the use of scale models in impact testing; flask analytical studies; drop test facilities; demonstration drop test; a study of flask transport impact hazards; impact of Magnox irradiated fuel transport flasks into rock and concrete; rail crash demonstration scenarios; horizontal impact testing of quarter scale flasks using masonry targets; horizontal crash testing and analysis of model flatrols; flatrol test; analysis of full scale impact into an abutment; analysis of primary impact forces in the train crash demonstration; horizontal impact tests of quarter scale Magnox flasks and stylised model locomotives; predictive estimates for behaviour in the train crash demonstration; design and organization of the crash; execution of the crash demonstration by British Rail; instrumentation for the train crash demonstration; photography for the crash demonstration; a summary of the CEGB's flask accident impact studies

  20. Regulation on the transport of nuclear fuel materials by vehicles

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations applying to the transport of nuclear fuel materials by vehicles, mentioned in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The transport is for outside of the factories and the site of enterprises by such modes of transport as rail, trucks, etc. Covered are the following: definitions of terms, places of fuel materials handling, loading methods, limitations on mix loading with other cargo, radiation dose rates concerning the containers and the vehicles, transport indexes, signs and indications, limitations on train linkage during transport by rail, security guards, transport of empty containers, etc. together with ordinary rail cargo and so on. (Mori, K.)

  1. Quality assurance of nuclear fuel

    International Nuclear Information System (INIS)

    1994-01-01

    The guide presents the quality assurance requirements to be completed with in the procurement, design, manufacture, transport, handling and operation of the nuclear fuel. The guide also applies to the procurement of the control rods and the shield elements to be placed in the reactor. The guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organizations whose activities affect fuel quality, the safety of fuel transport, storage and operation. (2 refs.)

  2. Monitored Retrievable Storage (MRS) Facility and its impact on spent fuel transportation

    International Nuclear Information System (INIS)

    Joy, D.S.; Jolley, R.L.

    1986-01-01

    The Department of Energy has identified nine potential sites for a repository to permanently dispose of radioactive wastes. DOE has released several sets of maps and tables identifying expected transportation routes between nuclear reactors and repository sites. More recently, the DOE has announced three potential Monitored Retrievable Storage Facility (MRS) sites in the state of Tennessee. Obviously, if a large portion of the spent fuel is routed to Tennessee for consolidation and repackaging, there will be significant changes in the estimated routes. For typical scenarios, the number of shipments in the vicinity of the repository will be reduced. For example, with direct reactor to repository shipments, 995 highway and 262 rail shipments are expected to arrive at the repository annually. With a MRS these numbers are reduced to 201 and 30, respectively. The remaining consolidated fuel would be transported from the MRS in 22 dedicated trains (each train transporting five casks). Conversely, the MRS would result in an increase in the number of spent fuel shipments traveling through the eastern part of Tennessee. However, the operation of a MRS would significantly reduce the number of shipments through the central and western parts of the state

  3. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  4. Experience feedback from the transportation of Framatome fuel assemblies

    International Nuclear Information System (INIS)

    Robin, M.E.; Gaillard, G.; Aubin, C.

    1998-01-01

    Framatome, the foremost world nuclear fuel manufacturer, has for 25 years been delivering fuel elements from its three factories (Dessel, Romans, Pierrelatte) to the various sites in France and abroad (Germany, Sweden, Belgium, China, Korea, South Africa, Switzerland). During this period, Framatome has built up experience and expertise in fuel element transportation by road, rail and sea. In this filed, the range of constraints is very wide: safety and environmental protection constraints; constraints arising from the control and protection of nuclear materials, contractual and financial constraints, media watchdogs. Through the experience feedback from the transportation of FRAMATOME assemblies, this paper addresses all the phases in the transportation of fresh fuel assemblies. (authors)

  5. The emergence of rural transport strategies in response to rising fuel costs

    International Nuclear Information System (INIS)

    Shapiro, Dana; Pearlmutter, David; Schwartz, Moshe

    2012-01-01

    Rising and sometimes volatile fuel prices pose a challenge for rural organizations reliant on long distance transport. To understand the coping mechanisms used by such organizations, we survey rural business strategies in Israel, where fuel prices are high and urban development is concentrated in the country's geographic center. The businesses surveyed are operated by kibbutzim, historically collective communities that are now in various stages of privatization. Analysis of the ‘transport strategies’ employed by nearly 100 organizations in three regions of varying remoteness and isolation shows that firms rely on distinct strategies such as localization and high value density. Localization was found to be prevalent in all regions, as it requires little capital investment. Strategies exploiting high value density, including information-based services, were prevalent in remote and isolated regions where sensitivity to transport costs is acute. Non-remote firms were less inclined toward strategic adaptation, preferring non-disruptive changes such as cheaper shipping modes. The development implications of these transport strategies are consistent with rural economic trends observed throughout the developed world. If transport costs continue to rise, rural firms may shrink the radius of their sales and labor pools, or search for more lucrative products to reduce their relative transport costs. - Highlights: ► We survey transport strategies used by rural businesses in Israeli kibbutzim. ► The seven distinct strategies identified include localization and value density. ► Localization is used in all regions and value density in remote and isolated regions. ► Development implications are consistent with economic trends in other rural regions. ► Rural firms will likely respond to high fuel costs by strategic transport adaptation.

  6. Integrated System for Retrieval, Transportation and Consolidated Storage of Used Nuclear Fuel in the US - 13312

    International Nuclear Information System (INIS)

    Bracey, William; Bondre, Jayant; Shelton, Catherine; Edmonds, Robert

    2013-01-01

    The current inventory of used nuclear fuel assemblies (UNFAs) from commercial reactor operations in the United States totals approximately 65,000 metric tons or approximately 232,000 UNFAs primarily stored at the 104 operational reactors in the US and a small number of decommissioned reactors. This inventory is growing at a rate of roughly 2,000 to 2,400 metric tons each year, (Approx. 7,000 UNFAs) as a result of ongoing commercial reactor operations. Assuming an average of 10 metric tons per storage/transportation casks, this inventory of commercial UNFAs represents about 6,500 casks with an additional of about 220 casks every year. In January 2010, the Blue Ribbon Commission (BRC) [1] was directed to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. The BRC issued their final recommendations in January 2012. One of the main recommendations is for the United States to proceed promptly to develop one or more consolidated storage facilities (CSF) as part of an integrated, comprehensive plan for safely managing the back end of the nuclear fuel cycle. Based on its extensive experience in storage and transportation cask design, analysis, licensing, fabrication, and operations including transportation logistics, Transnuclear, Inc. (TN), an AREVA Subsidiary within the Logistics Business Unit, is engineering an integrated system that will address the complete process of commercial UNFA management. The system will deal with UNFAs in their current storage mode in various configurations, the preparation including handling and additional packaging where required and transportation of UNFAs to a CSF site, and subsequent storage, operation and maintenance at the CSF with eventual transportation to a future repository or recycling site. It is essential to proceed by steps to ensure that the system will be the most efficient and serve at best its purpose by defining: the problem to be resolved, the criteria to

  7. Integrated System for Retrieval, Transportation and Consolidated Storage of Used Nuclear Fuel in the US - 13312

    Energy Technology Data Exchange (ETDEWEB)

    Bracey, William; Bondre, Jayant; Shelton, Catherine [Transnuclear, Inc., 7135 Minstrel Way Suite 300, Columbia MD 21045 (United States); Edmonds, Robert [AREVA Federal Services, 7207 IBM Drive, Charlotte NC 28262 (United States)

    2013-07-01

    The current inventory of used nuclear fuel assemblies (UNFAs) from commercial reactor operations in the United States totals approximately 65,000 metric tons or approximately 232,000 UNFAs primarily stored at the 104 operational reactors in the US and a small number of decommissioned reactors. This inventory is growing at a rate of roughly 2,000 to 2,400 metric tons each year, (Approx. 7,000 UNFAs) as a result of ongoing commercial reactor operations. Assuming an average of 10 metric tons per storage/transportation casks, this inventory of commercial UNFAs represents about 6,500 casks with an additional of about 220 casks every year. In January 2010, the Blue Ribbon Commission (BRC) [1] was directed to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. The BRC issued their final recommendations in January 2012. One of the main recommendations is for the United States to proceed promptly to develop one or more consolidated storage facilities (CSF) as part of an integrated, comprehensive plan for safely managing the back end of the nuclear fuel cycle. Based on its extensive experience in storage and transportation cask design, analysis, licensing, fabrication, and operations including transportation logistics, Transnuclear, Inc. (TN), an AREVA Subsidiary within the Logistics Business Unit, is engineering an integrated system that will address the complete process of commercial UNFA management. The system will deal with UNFAs in their current storage mode in various configurations, the preparation including handling and additional packaging where required and transportation of UNFAs to a CSF site, and subsequent storage, operation and maintenance at the CSF with eventual transportation to a future repository or recycling site. It is essential to proceed by steps to ensure that the system will be the most efficient and serve at best its purpose by defining: the problem to be resolved, the criteria to

  8. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  9. Thermal simulations and tests in the development of a helmet transport spent fuel elements Research Reactor

    International Nuclear Information System (INIS)

    Saliba, R.; Quintana, F.; Márquez Turiello, R.; Furnari, J.C.; Pimenta Mourão, R.

    2013-01-01

    A packaging for the transport of irradiated fuel from research reactors was designed by a group of researchers to improve the capability in the management of spent fuel elements from the reactors operated in the region. Two half-scale models for MTR fuel were constructed and tested so far and a third one for both MTR and TRIGA fuels will be constructed and tested next. Four test campaigns have been carried out, covering both normal and hypothetical accident conditions of transportation. The thermal test is part of the requirements for the qualification of transportation packages for nuclear reactors spent fuel elements. In this paper both the numerical modelling and experimental thermal tests performed are presented and discussed. The cask is briefly described as well as the finite element model developed and the main adopted hypotheses for the thermal phenomena. The results of both numerical runs and experimental tests are discussed as a tool to validate the thermal modelling. The impact limiters, attached to the cask for protection, were not modelled. (author) [es

  10. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  11. Feedback from operational experience in front-end transportation

    International Nuclear Information System (INIS)

    Mondonel, J.L.; Parison, C.

    1998-01-01

    Transport forms an integral part of the nuclear fuel cycle, representing the strategic link between each stage of the cycle. In a way there is a transport cycle that parallels the nuclear fuel cycle. This concerns particularly the front-end of the cycle whose steps - mining conversion, enrichment and fuel fabrication - require numerous transports. Back-end shipments involve a handful of countries, but front-end transports involve all five continents, and many exotic countries. All over Europe such transports are routinely performed with an excellent safety track record. Transnucleaire dominates the French nuclear transportation market and carries out both front and back-end transports. For instance in 1996 more than 28,400 front-end packages were transported as well as more than 3,600 back-end packages. However front-end transport is now a business undergoing much change. A nuclear transportation company must now cope with an evolving picture including new technical requirements, new transportation schemes and new business conditions. This paper describes the latest evolutions in terms of front-end transportation and the way this activity is carried out by Transnucleaire, and goes on to discuss future prospects. (authors)

  12. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  13. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  14. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    International Nuclear Information System (INIS)

    Zhang Yanan; Brown, Robert C; Hu Guiping

    2013-01-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO 2 eq and 0.015 kg CO 2 eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions. (letter)

  15. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  16. Studies and research concerning BNFP. Nuclear transportation studies related to use of the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1981-11-01

    It will be necessary to transport radioactive material on a routine basis if the Barnwell Nuclear Fuel Plant (BNFP) is to be utilized. This report examines the current and projected status of transport of high-level nuclear material, with particular application directed toward the operation of the BNFP. The current domestic US status is one of comparative inactivity in the movement of utility spent fuel. Pending the successful disposition of fuel cycle options such as either Away-from-Reactor (AFR) storage or reprocessing, spent fuel transport to the BNFP will be dormant through the mid-1980's. If fuel movement is initiated, the primary areas of concern will be the maze of local, state, and federal regulations on routing, the availability of spent fuel casks, and the logistic concerns of fuel loading and unloading capability at the reactor and the BNFP. The report examines the application of overweight truck (OWT) shipments of spent fuel casks patterned on current European practice. Overweight shipments, whether by truck or intermodal movement (rail or barge combined with truck shipment), can have a significant impact on resolving logistics problems. It seems obvious from our studies that OWT casks will be utilized, along with legal weight truck and rail shipment. Water transport was also examined. It appears that this mode will only be used in the event that highway and rail problems are insuperable

  17. Moderation control in low enriched 235U uranium hexafluoride packaging operations and transportation

    International Nuclear Information System (INIS)

    Dyer, R.H.; Kovac, F.M.; Pryor, W.A.

    1993-01-01

    Moderation control is the basic parameter for ensuring nuclear criticality safety during the packaging and transport of low 235 U enriched uranium hexafluoride before its conversion to nuclear power reactor fuel. Moderation control has permitted the shipment of bulk quantities in large cylinders instead of in many smaller cylinders and, therefore, has resulted in economies without compromising safety. Overall safety and uranium accountability have been enhanced through the use of the moderation control. This paper discusses moderation control and the operating procedures to ensure that moderation control is maintained during packaging operations and transportation

  18. The influence of the types of marine fuel over the Energy Efficiency Operational Index

    Science.gov (United States)

    Acomi, Nicoleta; Acomi, Ovidiu

    2014-05-01

    One of the main concerns of our society is certainly the environment protection. The international efforts for maintaining the environment clean are various and this paper refers to the efforts in the maritime transport field. Marine pollution consists of the water pollution and also the air pollution. Regardless of the delay in recognizing the later type of pollution, it rapidly gains many organizations to argue on it. The first step was including a dedicated annex (Annex VI) in the International Convention for the Prevention of Pollution from Ships, in 1997, which seeks to minimize the airborne emissions from ships. In order to control and minimize the air pollution, the International Maritime Organization has also developed a series of measures for monitoring the emissions. These measures are grouped in three main directions: technical, operational and management related. The subject of our study is the concept of Energy Efficiency Operational Index (EEOI), developed to provide ship-owners with assistance in the process of establishing the emissions from ships in operation, and to suggest the methods for achieving their reduction. As a monitoring tool, EEOI represents the mass of CO2 emitted per unit of transport work. The actual CO2 emission from combustion of fuel on board a ship during each voyage is calculated by multiplying total fuel consumption for each type of fuel (e.g. diesel oil, gas oil, light fuel oil, heavy fuel oil, liquefied petroleum gas, liquefied natural gas) with the carbon to CO2 conversion factor for the fuel in question. The performed transport work is calculated by multiplying mass of cargo (tonnes, number of TEU/cars, or number of passengers) with the distance in nautical miles corresponding to the transport work done. Using the software developed by the author it will be emphasized the variation of the EEOI value for one vessel using different types of fuel for the voyage's legs (distance to discharge port, distance to loading port, the

  19. Alternative transportation fuels in the USA: government hydrogen vehicle programs

    International Nuclear Information System (INIS)

    Cannon, J.S.

    1993-01-01

    The linkage between natural gas-based transportation and hydrogen-based transportation strategies, two clean burning gaseous fuels, provides a strong policy rationale for increased government sponsorship of hydrogen vehicle research and demonstration programs. Existing federal and state government hydrogen vehicle projects are discussed in this paper: research at the NREL, alternate-fueled buses, Renewable Hydrogen for the State of Hawaii program, New York state alternative transportation fuels program, Colorado program. 9 refs

  20. Integrated modeling for optimized regional transportation with compressed natural gas fuel

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2016-03-01

    Full Text Available Transportation represents major energy consumption where fuel is considered as a primary energy source. Recent development in the vehicle technology revealed possible economical improvements when using natural gas as a fuel source instead of traditional gasoline. There are several fuel alternatives such as electricity, which showed potential for future long-term transportation. However, the move from current situation where gasoline vehicle is dominating shows high cost compared to compressed natural gas vehicle. This paper presents modeling and simulation methodology to optimize performance of transportation based on quantitative study of the risk-based performance of regional transportation. Emission estimation method is demonstrated and used to optimize transportation strategies based on life cycle costing. Different fuel supply scenarios are synthesized and evaluated, which showed strategic use of natural gas as a fuel supply.

  1. Transportation and packaging issues involving the disposition of surplus plutonium as MOX fuel in commercial LWRs

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Welch, D.E.; Best, R.E.; Schmid, S.P.

    1997-08-01

    This report provides a view of anticipated transportation, packaging, and facility handling operations that are expected to occur at mixed-oxide (MOX) fuel fabrication and commercial reactor facilities. This information is intended for use by prospective contractors to the U.S. Department of Energy (DOE) who plan to submit proposals to DOE to manufacture and irradiate MOX fuel assemblies in domestic commercial light-water reactors. The report provides data to prospective consortia regarding packaging and pickup of MOX nuclear fuel assemblies at a MOX fuel manufacturing plant and transport and delivery of the MOX assemblies to nuclear power plants. The report also identifies areas where data are incomplete either because of the status of development or lack of sufficient information and specificity regarding the nuclear power plant(s) where deliveries will take place

  2. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  3. Transportation System Concept of Operations

    Energy Technology Data Exchange (ETDEWEB)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower

  4. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation

    International Nuclear Information System (INIS)

    Lima, D.B.P.L. de; Florio, D.Z. de; Bezerra, M.E.O.

    2016-01-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  5. INTERACTION OF AIR TRANSPORTATION AND FUEL-SUPPLY COMPANIES

    Directory of Open Access Journals (Sweden)

    I. P. Zheleznaya

    2014-01-01

    Full Text Available The article describes the role of aviation fuel in the life of air transport. Fueling industry worldwide solves two main tasks - ensuring the safety and economy of air traffic. In Russia, there is one more task of airlines fuel supply. The article deals with fuel pricing taking into consideration today's realities.

  6. Environmental economics of lignin derived transport fuels.

    Science.gov (United States)

    Obydenkova, Svetlana V; Kouris, Panos D; Hensen, Emiel J M; Heeres, Hero J; Boot, Michael D

    2017-11-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability. The first factor, the logistics scheme, exhibited the disadvantage of the centralized approach, owing to prohibitively expensive transportation costs of the low energy-dense lignin. Life cycle analysis (LCA) displayed the second critical factor related to alternative energy carrier selection. Natural gas (NG) chosen over additional biomass boosts well-to-wheel greenhouse gas emissions (WTW GHG) to a level incompatible with the reduction targets set by the U.S. renewable fuel standard (RFS). Adversely, the process' economics revealed higher profits vs. fossil energy carrier. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Operational considerations in specifying legal weight vehicles for the highway transport of spent nuclear fuel

    International Nuclear Information System (INIS)

    Hill, C.V.; Rutenkroger, E.O.; Ratledge, J.E.

    1990-01-01

    This paper presents the results of a research project in which tractor manufacturers and carrier companies were interviewed to gather information on operational concerns in specifying a tractor to haul legal weight spent fuel casks. The interaction between driver fatigue,safety, and equipment is discussed, as are innovative operating strategies that could save weight

  8. Proceedings of the 2008 transportation technologies and fuels forum

    International Nuclear Information System (INIS)

    2008-01-01

    As a large emitter of pollutants, the transportation industry is now seeking to develop a sustainable transportation plan for the future by developing methods of reducing emissions and improving the fuel efficiency of vehicles. This forum discussed recent innovations in vehicle transportation technologies. Industry leaders, government representatives, and researchers discussed methods of reducing greenhouse gases (GHGs) and air pollution in the transportation sector. Advanced combustion technologies were outlined, and recent developments in hybrid electric-powered vehicles were discussed. Research related to fuel cells, hydrogen fuels and biofuels was presented. The impacts of polluting vehicles on public health were also discussed. The forum was divided into the following 5 sessions: (1) setting the scene, (2) future fuels, (3) emissions, (4) EVs now, and (5) the road to the future. The sessions were followed by a panel on technology roadmaps. The forum featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs.

  9. Drop analysis for structural integrity evaluation of KJRR fuel transport container

    International Nuclear Information System (INIS)

    Yang, Yun Young; Lim, Jong Min; Choi, Woo Seok; Lee, Ju Chan

    2016-01-01

    A fuel transport container for KiJang Research Reactor(KJRR) has been developed to transport fresh fuel assemblies and fission molly targets which are used for a research reactor built in Kijang. The KJRR fuel transport container is a type-A(F) container, which is defined in domestic and foreign regulations of a radioactive substance container. According to Nuclear Safety and Security Commission's notification, the container should meet the accident conditions defined in IAEA safety Standard Series, US NRC and etc. In this study, a structural integrity of the KJRR fuel transport container is evaluated by conducting computational analyses of 9-meter free drop and 1 meter puncture. It is confirmed that structural integrity of the KJRR fuel transport container can be maintained in the transportation accident condition. Hereafter, when the test model is produced, a safety test will be conducted and its result will be compared with the result of drop and puncture analyses.

  10. Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the 2-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These 2 programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  11. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2012-01-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity

  12. Alternate aircraft fuels prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  13. Assessment of the risk of transporting spent nuclear fuel by truck

    International Nuclear Information System (INIS)

    Elder, H.K.

    1978-11-01

    The assessment includes the risks from release of spent fuel materials and radioactive cask cavity cooling water due to transportation accidents. The contribution to the risk of package misclosure and degradation during normal transport was also considered. The results of the risk assessment have been related to a time in the mid-1980's, when it is projected that nuclear plants with an electrical generating capacity of 100 GW will be operating in the U.S. For shipments from reactors to interim storage facilities, it is estimated that a truck carrying spent fuel will be involved in an accident that would not be severe enough to result in a release of spent fuel material about once in 1.1 years. It was estimated that an accident that could result in a small release of radioactive material (primarily contaminated cooling water) would occur once in about 40 years. The frequency of an accident resulting in one or more latent cancer fatalities from release of radioactive materials during a truck shipment of spent fuel to interim storage was estimated to be once in 41,000 years. No accidents were found that would result in acute fatalities from releases of radioactive material. The risk for spent fuel shipments from reactors to reprocessing plants was found to be about 20% less than the risk for shipments to interim storage. Although the average shipment distance for the reprocessing case is larger, the risk is somewhat lower because the shipping routes, on average, are through less populated sections of the country. The total risk from transporting 180-day cooled spent fuel by truck in the reference year is 4.5 x 10 -5 fatalities. An individual in the population at risk would have one chance in 6 x 10 11 of suffering a latent cancer fatality from a release of radioactive material from a truck carrying spent fuel in the reference year

  14. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  15. Transport of fresh MOX fuel assemblies for the Monju initial core

    International Nuclear Information System (INIS)

    Kurakami, J.; Ouchi, Y.; Usami, M.

    1997-01-01

    Transport of fresh MOX fuel assemblies for the prototype FBR MONJU initial core started in July 1992 and ended in March 1994. As many as 205 fresh MOX fuel assemblies for an inner core, 91 assemblies for an outer core and 5 assemblies for testing) were transported in nine transport missions. The packaging for fuel assemblies, which has shielding and shock absorbing material inside, meets IAEA regulatory requirements for Type B(U) packaging including hypothetical accident conditions such as the 9 m drop test, fire test, etc. Moreover, this package design feature such advanced technologies as high performance neutron shielding material and an automatic hold-down mechanism for the fuel assemblies. Every effort was made to carry out safe transport in conjunction with the cooperation of every competent organisation. This effort includes establishment of the transport control centre, communication training, and accompanying of the radiation monitoring expert. No transport accident occurred during the transport and all the transport missions were successfully completed on schedule. (Author)

  16. Fuel improvement and WWER-1000 FA main operational results

    International Nuclear Information System (INIS)

    Rozhkov, V.; Enin, A.; Bezborodov, Y.; Petrov, V.

    2003-01-01

    The JSC NCCP experience of WWER-1000 Fuel Assemblies (FAs) fabrication and operation confirms the adequate feasibility and efficiency of fuel operation in 3-4-x fuel cycles, high operating reliability and competitive capacity as compared with foreign analogues. The work on fuel improvement is aimed at an improvement of the operating reliability and an enhancement of the fuel use efficiency in WWER-1000 advanced FAs

  17. Feasibility study for a transportation operations system cask maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  18. Feasibility study for a transportation operations system cask maintenance facility

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs

  19. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  20. Fuel design and operational experience in Loviisa NPP, future trends in fuel issues

    International Nuclear Information System (INIS)

    Terasvirta, R.

    2001-01-01

    This paper summarizes the past operational experience of nuclear fuel with reference to most significant design changes during the years. In general, the fuel behaviour in Loviisa NPP in terms of leaking fuel assemblies has been good. The major improvements by fuel design changes in Lovissa NPP, including rod elongation margin, change in the pellet design and manufacturing process, upper grid modifications, change of material in the spacer grids and reduction of the shroud tube thickness are discussed and related to the number of failed fuel assemblies. The detailed investigation of fuel failure rates as function of different fuel and operation characteristics allows to classify the leaking fuel assemblies according to the cause of failure. In a brief discussion concerning new changes in the safety guide for nuclear design limits, re-issued by the Finnish Safety Authority (STUK), the frequencies for class 1 and class 2 accidents are determined. Another change in this guide is the introduction of design limits for the number of fuel rods experiencing DNB in class 1 accidents and number of failed rods in class 2 accidents. It is concluded that as far as normal operation is concerned, there seems to be sufficiently large margin between present operational limits in Loviisa and the design limits. The real limits do not come from fuel behaviour in the normal operation or operational occurrences but from the accident behaviour. At the moment, fuel assembly burnup extension beyond 45 MWd/kgU is clearly out of the question before further information and positive results are obtained on high burnup fuel behaviour in accident conditions

  1. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  2. 46 CFR 108.487 - Helicopter deck fueling operations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter deck fueling operations. 108.487 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.487 Helicopter deck fueling operations. (a) Each helicopter landing deck on which fueling operations are...

  3. Memento. Maritime transport of MOX fuels from Europe to Japan

    International Nuclear Information System (INIS)

    1999-07-01

    The maritime transport of MOX fuels from Europe to Japan represents the last of the 3 steps of transport of the nuclear fuel reprocessing-recycling program settled between ORC (Japan), BNFL (UK) and Cogema (France). This document summarizes the different aspects of this program: the companies concerned, the physical protection measures, the US-Japan agreements (accompanying warship), the in-depth safety, the handling of MOX fuels (containers and ships), and the Japan MOX fuel needs. (J.S.)

  4. Cask fleet operations study

    International Nuclear Information System (INIS)

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system

  5. Exorcising spent fuel transportation using comparative hazard assessment methods

    International Nuclear Information System (INIS)

    Pennington, Charles W.

    2003-01-01

    Spent fuel transportation has achieved an exemplary safety record over more than three decades within both the United States (U.S.) and the global community at large. Today, many groups are attempting to precipitate fear of spent fuel transportation within the general public by 'demonizing' this proven technology and by creating a highly charged environment of radiation phobia. The actions of these groups within the U.S. result from the confluence of the terrorist acts of September 11, 2001, and the acceptance by the President and Congress of the U.S. Department of Energy's (DOE) recommendation of Yucca Mountain as the repository site for the disposal of the nation's spent fuel. This paper offers a comparative hazard assessment demonstrating the relative safety of spent fuel transportation in the context of currently accepted practices within society to show that there are no 'demons' associated with spent fuel transportation. The paper provides an assessment of potential population exposures based on more than 25 years of transport cask analysis and testing under beyond-design-basis (BDB) event conditions, including missile attacks, with those from current accepted activities within society that produce high dose exposures to the general public. Over the last quarter of a century, several spent fuel cask test programs have produced data that allow calculation of potential releases and population doses resulting from a terrorist attack. The DOE has used this information to develop projected worst-case population exposures as part of the Final Environmental Impact Statement (FEIS) for the Yucca Mountain repository. The paper discusses these potential releases and population exposures. Additionally, the paper identifies current unregulated activities and practices within societies yielding population exposures that exceed significantly those that would result from such highly hypothetical and improbable events as a terrorist missile attack on a spent fuel

  6. Exorcising spent fuel transportation using comparative hazard assessment methods

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Charles W. [NAC international, Norcross (United States)

    2003-07-01

    Spent fuel transportation has achieved an exemplary safety record over more than three decades within both the United States (U.S.) and the global community at large. Today, many groups are attempting to precipitate fear of spent fuel transportation within the general public by 'demonizing' this proven technology and by creating a highly charged environment of radiation phobia. The actions of these groups within the U.S. result from the confluence of the terrorist acts of September 11, 2001, and the acceptance by the President and Congress of the U.S. Department of Energy's (DOE) recommendation of Yucca Mountain as the repository site for the disposal of the nation's spent fuel. This paper offers a comparative hazard assessment demonstrating the relative safety of spent fuel transportation in the context of currently accepted practices within society to show that there are no 'demons' associated with spent fuel transportation. The paper provides an assessment of potential population exposures based on more than 25 years of transport cask analysis and testing under beyond-design-basis (BDB) event conditions, including missile attacks, with those from current accepted activities within society that produce high dose exposures to the general public. Over the last quarter of a century, several spent fuel cask test programs have produced data that allow calculation of potential releases and population doses resulting from a terrorist attack. The DOE has used this information to develop projected worst-case population exposures as part of the Final Environmental Impact Statement (FEIS) for the Yucca Mountain repository. The paper discusses these potential releases and population exposures. Additionally, the paper identifies current unregulated activities and practices within societies yielding population exposures that exceed significantly those that would result from such highly hypothetical and improbable events as a terrorist missile

  7. Policy issues of transporting spent nuclear fuel by rail

    International Nuclear Information System (INIS)

    Spraggins, H.B.

    1994-01-01

    The topic of this paper is safe and economical transportation of spent nuclear fuel by rail. The cost of safe movement given the liability consequences in the event of a rail accident involving such material is the core issue. Underlying this issue is the ability to access the risk probability of such an accident. The paper delineates how the rail industry and certain governmental agencies perceive and assess such important operational, safety, and economic issues. It also covers benefits and drawbacks of dedicated and regular train movement of such materials

  8. Current status of sea transport of nuclear fuel materials and LLW in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Hiroshi; Akiyama, Hideo

    2000-01-01

    Along with the basic policy of the nuclear fuel cycle of Japan, many fuel cycle facilities have been already constructed in Rokkasho-Mura, Aomori prefecture, such as the uranium enrichment plant, the low level waste disposal center and the receiving pool of the spent nuclear fuels for reprocessing. These facilities belong to the Japan Nuclear Fuel Limited. (JNFL). Domestic sea transport of the spent nuclear fuels (SF) has been carried out since 1977 to the Tokai Reprocessing Plant, and the first sea transport of the SF to the fuel cycle facility in Rokkasho-Mura was done in Oct, 1998 using a new exclusive ship 'Rokuei-Maru'. Sea transport of the low level radioactive wastes (LLW) has been carried out since 1992 to the Rokkasho LLW Disposal Center, and about 130,000 LLW drams were transported from the nuclear power plant sites. These sea transport have demonstrated the safety of the transport of the nuclear fuel cycle materials. It is hoped that the safe sea transport of the nuclear fuel materials will contribute to the more progress of the nuclear fuel cycle activities of Japan. (author)

  9. Remarks on the transportation of spent fuel elements

    International Nuclear Information System (INIS)

    Krull, W.

    1992-01-01

    Information and data are provided on several aspects of the transportation of spent fuel elements. These aspects include contract, transportation, reprocessing batch size, and economical considerations. (author)

  10. BWR-spent fuel transport and storage with the TN trademark 9/4 and TN trademark 24BH casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2004-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks in ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., as Muehleberg Nuclear Power Plant owner, is involved in this process and has selected to store its spent fuel, a new high capacity dual-purpose cask, the TN trademark 24BH. For the transport in a medium size cask, COGEMA LOGISTICS has developed a new cask, the TN trademark 9/4, to replace the NTL9 cask, which performed numerous transports of BWR spent fuel in the past decades. Licensed IAEA 1996, the TN trademark 9/4 is a 40 ton transport cask, for 7 BWR high burn-up spent fuel assemblies. The spent fuel assemblies can be transferred in the ZWILAG hot cell in the TN trademark 24BH cask. The first use of these casks took place in 2003. Ten TN trademark 9/4 transports were performed, and one TN trademark 24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN trademark 24BH high capacity dual purpose cask, the TN trademark 9/4 transport cask and describe in detail their characteristics and possibilities

  11. Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)

    International Nuclear Information System (INIS)

    Christian, Robby; Kang, Hyun Gook

    2017-01-01

    This paper proposes a methodology to assess and reduce risks of maritime spent nuclear fuel transportation with a probabilistic approach. Event trees detailing the progression of collisions leading to transport casks’ damage were constructed. Parallel and crossing collision probabilities were formulated based on the Poisson distribution. Automatic Identification System (AIS) data were processed with the Hough Transform algorithm to estimate possible intersections between the shipment route and the marine traffic. Monte Carlo simulations were done to compute collision probabilities and impact energies at each intersection. Possible safety improvement measures through a proper selection of operational transport parameters were investigated. These parameters include shipment routes, ship's cruise velocity, number of transport casks carried in a shipment, the casks’ stowage configuration and loading order on board the ship. A shipment case study is presented. Waters with high collision probabilities were identified. Effective range of cruising velocity to reduce collision risks were discovered. The number of casks in a shipment and their stowage method which gave low cask damage frequencies were obtained. The proposed methodology was successful in quantifying ship collision and cask damage frequency. It was effective in assisting decision making processes to minimize risks in maritime spent nuclear fuel transportation. - Highlights: • Proposes a probabilistic framework on the safety of spent nuclear fuel transportation by sea. • Developed a marine traffic simulation model using Generalized Hough Transform (GHT) algorithm. • A transportation case study on South Korean waters is presented. • Single-vessel risk reduction method is outlined by optimizing transport parameters.

  12. Risk associated with the transport of radioactive materials in the fuel cycle

    International Nuclear Information System (INIS)

    Lange, F.; Mairs, J.; Niel, C.

    1997-01-01

    This paper sets out the regulatory framework within which nuclear fuel cycle materials are transported. It establishes the basic principles of those safety regulations and explains the graded approach to satisfying those requirements depending on the hazard of the radioactive contents. The paper outlines the minimum performance standards required by the Regulations. It covers the performance standards for Type C packages in a little more detail because these are new to the 1996 Edition of the IAEA's Regulations for the Safe Transport of Radioactive Material and are less well reported elsewhere at present. The paper then gives approximate data on the number of shipments of radioactive materials that service the nuclear fuel cycles in France, Germany and the UK. The quantities are expressed as average annual quantities per GW el installed capacity. There is also a short discussion of the general performance standards required of Type B packages in comparison with tests that have simulated specific accident conditions involving particular packages. There follows a discussion on the probability of packages experiencing accident conditions that are comparable with the tests that Type B packages are required to withstand. Finally there is a summary of the implementation of the Regulations for sea and air transport and a description of ongoing work that may have a bearing on the future development of mode related Regulations. Nuclear fuel cycle materials are transported in accordance with strict and internationally agreed safety regulations which are the result of a permanent and progressive process based on social concern and on the advancement of knowledge provided by research and development. Transport operations take place in the public domain and some become high profile events in the management of these materials, attracting a lot of public, political and media attention. The risks associated with the transport of radioactive materials are low and it is important

  13. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation

    International Nuclear Information System (INIS)

    1976-05-01

    Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives

  14. Emissions of greenhouse gases from the use of transportation fuels and electricity

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO 2 ), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO 2 -equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO 2 -equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles

  15. ANS/ENS tutorial session: Burnup credit issues in spent fuel transportation: Overview and objectives

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1988-01-01

    A number of opportunities exist to increase the efficiency of the next generation of spent fuel shipping casks. Improving cask efficiency will not only reduce life cycle transportation costs, but also is consistent with maintaining public and occupational radiological risks and, more importantly, total risks (radiological and nonradiological) within the guidelines of the ''as low as reasonably achievable'' (ALARA) philosophy. Increases in cask capacities will reduce both the total number of shipments required to transport a given amount of fuel and the number of handling operations at both shipping and receiving facilities. Additional capacity increases can be achieved by implementing various design strategies based on new concepts and/or the actual characteristics of the majority of the spent fuel to be shipped in the future. For example, it has been determined that additional capacity increases can be achieved by taking credit for burnup, the reduced reactivity that results when fuel has been used to produce power in a nuclear reactor. That is, as the fuel is used the atoms of fissile material decrease, and neutron absorbers (or ''poisons'') that tend to retard the fission process are produced. 7 refs., 1 fig

  16. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Bus Evaluations Fuel Cell Electric Bus Evaluations NREL's technology validation team evaluates fuel cell electric buses (FCEBs) to provide comprehensive, unbiased evaluation results of fuel cell bus early transportation applications for fuel cell technology. Buses operate in congested areas where

  17. Safety criteria for spent-fuel transport. Final report

    International Nuclear Information System (INIS)

    Goldmann, K.; Gekler, W.C.

    1986-10-01

    The focus of this study is on the question, ''Do current regulations provide reasonable assurance of safety for a transport scenario of spent fuel, as presently anticipated by the Department of Energy, under the Nuclear Waste Policy Act.'' This question has been addressed by developing a methodology for identifying the expected frequency of Accidents Which Exceed Regulatory Conditions in Severity (AWERCS) for spent fuel transport casks and then assessing the health effects resulting from that frequency. By applying the methodology to an illustrative case of road transports, it was found that the accidental release of radioactive material from impact AWERCS would make negligible contributions to health effects associated with spent fuel transports by road. It is also concluded that the current regulatory drop test requirements in 10 CFR 71.51 which form the basis for cask design and were used to establish AWERCS screening criteria for this study are adequate, and that no basis was found to conclude that cask performance under expected road accident conditions represents an undue risk to the public

  18. Transport insurance of unirradiated nuclear fuels

    International Nuclear Information System (INIS)

    Matto, H.

    1985-01-01

    Special conditions must be taken into account in transport insurance for nuclear materials even if the nuclear risk involved is negligible, as in shipments of unirradiated nuclear fuels. The shipwreck of the 'Mont Louis' has raised a number of open points which must be solved pragmatically within the framework of transport insurance. Some proposals are outlined in the article. (orig.) [de

  19. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  20. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  1. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET model--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet). Major publications that address GREET development are listed. These reports document methodologies, development, key default assumptions, applications, and results of the GREET model. They are also posted, along with additional materials for the GREET model, on the TTRDC Web site. For a given transportation fuel/technology combination, the GREET model separately calculates: (A)--Fuel-cycle energy consumption for the following three source categories: (1) Total energy (all energy sources), (2) Fossil fuels (petroleum, natural gas [NG], and coal), and (3) Petroleum. (B)--Fuel-cycle emissions of the following three greenhouse gases (GHGs): (1) Carbon dioxide (CO 2 ) (with a global warming potential [GWP] of 1), (2) Methane (CH 4 ) (with a GWP of 21), and (3) Nitrous oxide (N 2 O) (with a GWP of 310). (C)--Fuel-cycle emissions of the following five criteria pollutants (separated into total [T] and urban [U] emissions): (1) Volatile organic compounds (VOCs), (2) Carbon monoxide (CO), (3) Nitrogen oxides (NO x ), (4) Particulate matter with a mean aerodynamic diameter of 10 (micro)m or less (PM 10 ), and (5) Sulfur oxides

  2. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    Science.gov (United States)

    Strogen, Bret Michael

    Production of fuel ethanol in the United States has increased ten-fold since 1993, largely as a result of government programs motivated by goals to improve domestic energy security, economic development, and environmental impacts. Over the next decade, the growth of and eventually the total production of second generation cellulosic biofuels is projected to exceed first generation (e.g., corn-based) biofuels, which will require continued expansion of infrastructure for producing and distributing ethanol and perhaps other biofuels. In addition to identifying potential differences in tailpipe emissions from vehicles operating with ethanol-blended or ethanol-free gasoline, environmental comparison of ethanol to petroleum fuels requires a comprehensive accounting of life-cycle environmental effects. Hundreds of published studies evaluate the life-cycle emissions from biofuels and petroleum, but the operation and maintenance of storage, handling, and distribution infrastructure and equipment for fuels and fuel feedstocks had not been adequately addressed. Little attention has been paid to estimating and minimizing emissions from these complex systems, presumably because they are believed to contribute a small fraction of total emissions for petroleum and first generation biofuels. This research aims to quantify the environmental impacts associated with the major components of fuel distribution infrastructure, and the impacts that will be introduced by expanding the parallel infrastructure needed to accommodate more biofuels in our existing systems. First, the components used in handling, storing, and transporting feedstocks and fuels are physically characterized by typical operating throughput, utilization, and lifespan. US-specific life-cycle GHG emission and water withdrawal factors are developed for each major distribution chain activity by applying a hybrid life-cycle assessment methodology to the manufacturing, construction, maintenance and operation of each

  3. Conceptual Assessment of a Fresh Fuel Transport Package for KJRR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Chan; Choi, W. S.; Bang, K. S.; Yu, S. H.; Park, J. S.; Yang, Y. Y. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The IAEA and domestic regulations stipulate that the fissile material transport package be subjected to the cumulative effects of a 9 m drop, 1 m puncture, 800 ℃ thermal and water leakage tests. A fissile material transport package should be maintained the subcriticality during the normal and accident conditions for contingency of leakage of water into or out of package, rearrangement of the contents, reduction of spaces and temperature changes. KAERI has been developing a fresh fuel transport package for Kijang research reactor (KJRR). This paper describes a conceptual design and preliminary safety analysis of the transport package for KJRR. The transport package was designed for shipment of a fresh fuel and a FM (Fission Molybdenum) target. Low-enriched uranium (LEU) of U-Mo fuel with U-235 enrichment of 19.75 w/o is used as a research reactor fuel. And LEU of UAlx-Al with U-235 enrichment of 19.75 w/o is used as a FM target material. The transport package was designed for shipment of a fresh fuel and a FM target. Safety analyses were conducted on all areas, including criticality, structural, and thermal fields. In the criticality analysis, effective neutron multiplication factors were below the criticality safety limit. In the structural analysis, the maximum stress satisfied the stress requirement stipulated in the ASME code. After 9 m free drop and 1 m puncture test, there was no significant deformation of fuel basket to cause a criticality. In the thermal analysis, the maximum temperatures at each part were lower than the allowable values.

  4. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G [Technische Univ., Berlin (Germany); Hoehlein, B [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  5. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  6. BWR spent fuel transport and storage system for KKL: TN trademark 52L, TN trademark 97L, TN trademark 24 BHL

    International Nuclear Information System (INIS)

    Sicard, D.; Verdier, A.; Monsigny, P.A.

    2004-01-01

    The LEIBSTADT (KKL) nuclear power plant in Switzerland has opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN trademark a52L and TN trademark 97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TNae24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN trademark 52L and TN trademark 97L casks by the KKL and ZWILAG operators

  7. Shielding Performance Measurements of Spent Fuel Transportation Container

    Directory of Open Access Journals (Sweden)

    SUN Hong-chao

    2015-11-01

    Full Text Available The safety supervision of radioactive material transportation package has been further stressed and implemented. The shielding performance measurements of spent fuel transport container is the important content of supervision. However, some of the problems and difficulties reflected in practice need to be solved, such as the neutron dose rate on the surface of package is too difficult to measure exactly, the monitoring results are not always reliable, etc. The monitoring results using different spectrometers were compared and the simulation results of MCNP runs were considered. An improvement was provided to the shielding performance measurements technique and management of spent fuel transport.

  8. The Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the two-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These two programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  9. Software in support of fuel operation in WWERS

    International Nuclear Information System (INIS)

    Evdokimov, I.A; Novikov, V.V; Ugrumov, A.V; Shishkin, A.A

    2013-01-01

    A software package comprising computer codes and fuel monitoring tools is under development in Russia in support of WWER fuel operation. The software package includes an expert computer system designed for failure diagnosis in course of reactor operation, prediction of activity evolution in primary coolant and express analysis of pellet-to-cladding mechanical interaction (PCMI) on rod-by-rod basis under normal and transient modes of operation. Coupled with the expert system, the first version of a graphical interface computer program is developed for NPP operating bodies. One of the features of this program is to launch automatically a fuel performance code for a series of detailed calculations for fuel rods with severe PCMI. The particular rods for calculations are determined by the expert system during the express core analysis. A greater attention is paid to recent results in prediction of fuel behavior after a primary failure has occurred. One of the major risks to further operation of leaking fuel comes from secondary fuel degradation due to massive cladding hydriding. Threshold conditions for initiation of secondary hydriding have been found on the basis of physical modeling. Final criteria of secondary failure occurrence were deduced by applying the model to analysis of post-irradiation examinations of leaking WWER fuel. (authors)

  10. Safe transport of irradiated fuel by sea

    International Nuclear Information System (INIS)

    Miller, M.L.

    1997-01-01

    The development is described of a transport system dedicated to the sea transport of irradiated nuclear fuel. The background is reviewed of why shipments were required and the establishment of a specialist shipping company, Pacific Nuclear Transport Limited. A description of the ships, flasks and other equipment utilised is provided, together with details of key procedures implemented to ensure safety and customer satisfaction. (Author)

  11. The sea transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Miller, M.L.

    1995-01-01

    The paper describes the development of a transport system dedicated to the sea transport of irradiated nuclear fuel. It reviews the background to why shipments were required and the establishment of a specialist shipping company, Pacific Nuclear Transport Limited. A description of the ships, flasks and other equipment utilized is provided, together with details of key procedures implemented to ensure safety and customer satisfaction

  12. Spent fuel storage and transportation - ANSTO experience

    International Nuclear Information System (INIS)

    Irwin, Tony

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10 MW DIDO class High Flux Materials Test Reactor (HIFAR) since 1958. Refuelling the reactor produces about 38 spent fuel elements each year. Australia has no power reactors and only one operating research reactor so that a reprocessing plant in Australia is not an economic proposition. The HEU fuel for HIFAR is manufactured at Dounreay using UK or US origin enriched uranium. Spent fuel was originally sent to Dounreay, UK for reprocessing but this plant was shutdown in 1998. ANSTO participates in the US Foreign Research Reactor Spent Fuel Return program and also has a contract with COGEMA for the reprocessing of non-US origin fuel

  13. Spent fuel transport and storage system for NOK: The TN52L, TN97L, TN24 BHL and TN24 GB casks

    International Nuclear Information System (INIS)

    Wattez, L.; Verdier, A.; Monsigny, P.-A.

    2007-01-01

    NOK nuclear power plants in Switzerland, LEIBSTADT (KKL) BWR nuclear power plant and BEZNAU (KKB) PWR nuclear power plant have opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN52L and TN97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TN24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN52L and TN97L casks by the KKL and ZWILAG operators. In 2004, NOK also ordered three TN24 GB transport and storage casks for PWR fuel types. These casks are presently being manufactured. (author)

  14. Quarterly Progress Report Fuels Development Operation: October - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation; Tobin, J. C. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1960-01-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  15. Quarterly Progress Report Fuels Development Operation: January - March 1958

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation; Tobin, J. C. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1958-04-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  16. Quarterly Progress Report Fuels Development Operation: July - September 1957

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Wallace, W. P. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1957-10-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  17. Comparison of fuel production costs for future transportation

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    The purpose of this poster is to provide an overview of fuel production costs for two types of synthetic fuels – methanol and methane, along with comparable costs for first and second generation biodiesel, two types of second generation bioethanol, and biogas. The model analysed is a 100% renewable...... scenario of Denmark for 2050, where the data for the transport sector has been changed to estimate the fuel production costs for eight different fuel pathways....

  18. Remarks on the transportation of spent fuel elements

    International Nuclear Information System (INIS)

    Krull, W.

    1986-01-01

    In this chapter topics discussed are the need for contracts, a transport company and risk insurance. Also, a section on transportation covers cranes, subpressure, contamination, cask limitations, physical protection and shipping. Reprocessing discusses minimum reprocessing batch and spent fuel. Finally, economical considerations concerning transportation and reprocessing are given

  19. Spent Nuclear Fuel Transportation Risk Assessment Methodology for Homeland Security

    International Nuclear Information System (INIS)

    Teagarden, Grant A.; Canavan, Kenneth T.; Nickell, Robert E.

    2006-01-01

    In response to increased interest in risk-informed decision making regarding terrorism, EPRI was selected by U.S. DHS and ASME to develop and demonstrate a nuclear sector specific methodology for owner / operators to utilize in performing a Risk Analysis and Management for Critical Asset Protection (RAMCAP) assessment for the transportation of spent nuclear fuel (SNF). The objective is to characterize SNF transportation risk for risk management opportunities and to provide consistent information for DHS decision making. The method uses a characterization of risk as a function of Consequence, Vulnerability, and Threat. Worst reasonable case scenarios characterize risk for a benchmark set of threats and consequence types. A trial application was successfully performed and implementation is underway by one utility. (authors)

  20. 14 CFR 27.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 27.961...

  1. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    International Nuclear Information System (INIS)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R ampersand D issues

  2. Spent fuel shipping costs for transportation logistics analyses

    International Nuclear Information System (INIS)

    Cole, B.M.; Cross, R.E.; Cashwell, J.W.

    1983-05-01

    Logistics analyses supplied to the nuclear waste management programs of the U.S. Department of Energy through the Transportation Technology Center (TTC) at Sandia National Laboratories are used to predict nuclear waste material logistics, transportation packaging demands, shipping and receiving rates and transportation-related costs for alternative strategies. This study is an in-depth analysis of the problems and contingencies associated with the costs of shipping irradiated reactor fuel. These costs are extremely variable however, and have changed frequently (sometimes monthly) during the past few years due to changes in capital, fuel, and labor costs. All costs and charges reported in this study are based on January 1982 data using existing transport cask systems and should be used as relative indices only. Actual shipping costs would be negotiable for each origin-destination combination

  3. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  4. Storage, transportation and disposal system for used nuclear fuel assemblies

    Science.gov (United States)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  5. Canadian fuel development program and recent operational experience

    International Nuclear Information System (INIS)

    Cox, D.S.; Kohn, E.; Lau, J.H.K.; Dicke, G.J.; Macici, N.N.; Sancton, R.W.

    1995-01-01

    This paper provides an overview of the current Canadian CANDU fuel R and D programs and operational experience. The details of operational experience for fuel in Canadian reactors are summarized for the period 1991-1994; excellent fuel performance has been sustained, with steady-state bundle defect rates currently as low as 0.02%. The status of introducing long 37-element bundles, and bundles with rounded bearing pads is reviewed. These minor changes in fuel design have been selectively introduced in response to operational constraints (end-plate cracking and pressure-tube fretting) at Ontario Hydro's Bruce-B and Darlington stations. The R and D programs are generating a more complete understanding of CANDU fuel behaviour, while the CANDU Owners Group (COG) Fuel Technology Program is being re-aligned to a more exclusive focus on the needs of operating stations. Technical highlights and realized benefits from the COG program are summarized. Re-organization of AECL to provide a one-company focus, with an outward looking view to new CANDU markets, has strengthened R and D in advanced fuel cycles. Progress in AECL's key fuel cycle programs is also summarized. (author)

  6. Alternative Fuel Guidelines for Alternative Transportation Systems.

    Science.gov (United States)

    2011-01-31

    The Volpe Center documented the increased use of alternative fuels on vehicles owned and operated by federal land management agencies. For each alternative fuel type, the Volpe Center documented the availability of vehicles, fueling mechanisms and pr...

  7. Concerning the order of the Ministry of Transport for the amendment to part of the Rules for the Vehicle Transportation of Nuclear Fuel, the Rules for Ship Transportation and Storage of Dangerous Objects, and the Rules for the Enforcement of the Aviation Act

    International Nuclear Information System (INIS)

    1989-01-01

    The Ministry of Transport is planning to make amendments to the Rules for the Vehicle Transportation of Nuclear Fuel, the Rules for Ship Transportation and Storage of Dangerous objects, and the Rules for the Enforcement of the Aviation Act, on the basis of results of a study carried out by the Working Group for the Protection of Nuclear Material, the Atomic Energy Commission of Japan. The planned amendments to the Rules for the Vehicle Transportation of Nuclear Fuel cover the locking and sealing of containers, the development of transportation plans, the arrangement and operations of responsible persons and guards for its transportation, and improvement in the communications and liaison system. The amendments to the Rules for Ship Transportation and Storage of Dangerous Objects are related to the range of nuclear fuel substances to be protected, the measures to be taken for their protection during transportation by ship, the approval by the Minister of Transport, and the notification to the Regional Maritime Safety Headquarters. The planned amendments to the Rules for the Enforcement of the Aviation Act cover the range of nuclear fuel substances to be protected, etc. (N.K.)

  8. An evaluation of the alternative transport fuel policies for Turkey

    International Nuclear Information System (INIS)

    Arslan, Ridvan; Ulusoy, Yahya; Tekin, Yuecel; Suermen, Ali

    2010-01-01

    The search for alternative fuels and new fuel resources is a top priority for Turkey, as is the case in the majority of countries throughout the world. The fuel policies pursued by governmental or civil authorities are of key importance in the success of alternative fuel use, especially for widespread and efficient use. Following the 1973 petroleum crisis, many users in Turkey, especially in transportation sector, searched for alternative fuels and forms of transportation. Gasoline engines were replaced with diesel engines between the mid-1970s and mid-1980s. In addition, natural gas was introduced to the Turkish market for heating in the early 1990s. Liquid petroleum gas was put into use in the mid-1990s, and bio-diesel was introduced into the market for transportation in 2003. However, after long periods of indifference governmental action, guidance and fuel policies were so weak that they did not make sense. Entrepreneurs and users experienced great economical losses and lost confidence in future attempts to search for other possible alternatives. In the present study, we will look at the history of alternative fuel use in the recent past and investigate the alternative engine fuel potential of Turkey, as well as introduce possible future policies based on experience.

  9. Reduced Gravity Studies of Soret Transport Effects in Liquid Fuel Combustion

    Science.gov (United States)

    Shaw, Benjamin D.

    2004-01-01

    Soret transport, which is mass transport driven by thermal gradients, can be important in practical flames as well as laboratory flames by influencing transport of low molecular weight species (e.g., monatomic and diatomic hydrogen). In addition, gas-phase Soret transport of high molecular weight fuel species that are present in practical liquid fuels (e.g., octane or methanol) can be significant in practical flames (Rosner et al., 2000; Dakhlia et al., 2002) and in high pressure droplet evaporation (Curtis and Farrell, 1992), and it has also been shown that Soret transport effects can be important in determining oxygen diffusion rates in certain classes of microgravity droplet combustion experiments (Aharon and Shaw, 1998). It is thus useful to obtain information on flames under conditions where Soret effects can be clearly observed. This research is concerned with investigating effects of Soret transport on combustion of liquid fuels, in particular liquid fuel droplets. Reduced-gravity is employed to provide an ideal (spherically-symmetrical) experimental model with which to investigate effects of Soret transport on combustion. The research will involve performing reduced-gravity experiments on combustion of liquid fuel droplets in environments where Soret effects significantly influence transport of fuel and oxygen to flame zones. Experiments will also be performed where Soret effects are not expected to be important. Droplets initially in the 0.5 to 1 mm size range will be burned. Data will be obtained on influences of Soret transport on combustion characteristics (e.g., droplet burning rates, droplet lifetimes, gas-phase extinction, and transient flame behaviors) under simplified geometrical conditions that are most amenable to theoretical modeling (i.e., spherical symmetry). The experiments will be compared with existing theoretical models as well as new models that will be developed. Normal gravity experiments will also be performed.

  10. Probabilistic safety analysis of transportation of spent fuel

    International Nuclear Information System (INIS)

    Subramaniam, Chitra

    1999-11-01

    The report presents the results of the study carried out to estimate the accident risk involved in the transport of spent fuel from Rajasthan Atomic Power Station near Kota to the fuel reprocessing plant at Tarapur. The technique of probabilistic safety analysis is used. The fuel considered is the Indian pressurised heavy water reactor fuel with a minimum cooling period of 485 days. The spent fuel is transported in a cuboidal, naturally-cooled shipping cask over a distance of 822 km by rail. The Indian rail accident statistics are used to estimate the basic rail accident frequency. The possible ways in which a release of radioactive material can occur from the spent fuel cask are identified by the fault tree analysis technique. The release sequences identified are classified into eight accident severity categories, and release fractions are assigned to each. The consequences resulting from the release are estimated by the computer code RADTRAN 4. Results of the risk analysis indicate that the accident risk values are very low and hence acceptable. Parametric studies show that the risk would continue to be small even if the controlling parameters were to simultaneously take extreme adverse values. (author)

  11. Fuel cell assembly with electrolyte transport

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  12. Transportation of high-level waste and spent fuel

    International Nuclear Information System (INIS)

    Carlson, J.H.; Lake, W.H.; Thompson, J.H.

    1993-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) transportation program is a multifaceted undertaking to transport spent nuclear fuel from commercial reactors to temporary and permanent storage facilities commencing in 1998. One of the significant ingredients necessary to achieving this goal is the development and acquisition of shipping casks. Efforts to design and acquire high capacity casks is ongoing, as are efforts to purchase casks that can be made available using current technology. By designing casks that are optimized to the specifications of the older cooler spent fuel that will be shipped, and by designing to current NRC requirements, OCRWM's new generation of spent fuel casks will be more efficient and at least as safe as current cask designs. (J.P.N.)

  13. Method to mount defect fuel elements i transport casks

    International Nuclear Information System (INIS)

    Borgers, H.; Deleryd, R.

    1996-01-01

    Leaching or otherwise failed fuel elements are mounted in special containers that fit into specially designed chambers in a transportation cask for transport to reprocessing or long-time storage. The fuel elements are entered into the container under water in a pool. The interior of the container is dried before transfer to the cask. Before closing the cask, its interior, and the exterior of the container are dried. 2 figs

  14. LOFT instrumented fuel design and operating experience

    International Nuclear Information System (INIS)

    Russell, M.L.

    1979-01-01

    A summary description of the Loss-of-Fluid Test (LOFT) system instrumented core construction details and operating experience through reactor startup and loss-of-coolant experiment (LOCE) operations performed to date are discussed. The discussion includes details of the test instrumentation attachment to the fuel assembly, the structural response of the fuel modules to the forces generated by a double-ended break of a pressurized water reactor (PWR) coolant pipe at the inlet to the reactor vessel, the durability of the LOFT fuel and test instrumentation, and the plans for incorporation of improved fuel assembly test instrumentation features in the LOFT core

  15. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Any person who reports the transport of nuclear fuel materials shall file four copies of a notification according to the form attached to the public safety commission of the prefecture in charge of the dispatching place. When the transportation extends over the area in charge of another public safety commission, the commission which has received the notice shall report without delay date and route of the transport, kind and quantity of nuclear fuel materials and other necessary matters to the commission concerned and hear from the latter opinions on the items informed. The designation by the ordinance includes speed of the vehicle loaded with nuclear fuel materials, disposition of an accompanying car, arrangement of the line of the loaded vehicle and accompanying and other escorting cars, location of the parking, place of unloading and temporary storage, etc. Reports concerning troubles and measures taken shall be filed in ten days to the public safety commission which has received the notification, when accidents occur on the way, such as: theft or loss of nuclear fuel materials; traffic accident; irregular leaking of nuclear fuel materials and personal trouble by the transport. (Okada, K.)

  16. International co-operation in the supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    Recent changes in the United States' nuclear policy, in recognition of the increased proliferation risk, have raised questions of US intentions in international nuclear fuel and fuel-cycle service co-operation. This paper details those intentions in relation to the key elements of the new policy. In the past, the USA has been a world leader in peaceful nuclear co-operation with other nations and, mindful of the relationships between civilian nuclear technology and nuclear weapon proliferation, remains strongly committed to the Non-Proliferation Treaty, IAEA safeguards and other elements concerned with international nuclear affairs. Now, in implementing President Carter's nuclear initiatives, the USA will continue its leading role in nuclear fuel and fuel-cycle co-operation in two ways, (1) by increasing its enrichment capacity for providing international LWR fuel supplies and (2) by taking the lead in solving the problems of near and long-term spent fuel storage and disposal. Beyond these specific steps, the USA feels that the international community's past efforts in controlling the proliferation risks of nuclear power are necessary but inadequate for the future. Accordingly, the USA urges other similarly concerned nations to pause with present developments and to join in a programme of international co-operation and participation in a re-assessment of future plans which would include: (1) Mutual assessments of fuel cycles alternative to the current uranium/plutonium cycle for LWRs and breeders, seeking to lessen proliferation risks; (2) co-operative mechanisms for ensuring the ''front-end'' fuel supply including uranium resource exploration, adequate enrichment capacity, and institutional arrangements; (3) means of dealing with short-, medium- and long-term spent fuel storage needs by means of technical co-operation and assistance and possibly establishment of international storage or repository facilities; and (4) for reprocessing plants, and related fuel

  17. European experience in the transport of irradiated light-water reactor fuel

    International Nuclear Information System (INIS)

    Curtis, H.W.

    1979-01-01

    Various methods of transport of irradiated fuel flasks in Europe are described. While many problems in the transport of heavy flasks have been solved some remain and new ones have appeared. Some of these problems are the accumulation of crud on the surface of fuel elements, the problems of failed fuel, stringent criticality criteria, the ''sweating out'' of contaminated flasks, the access, road or rail, to reactor sites, and the maintenance of the transport vehicles. Some future trends in the direction of heavy flasks in the range of 75 to 100 tonnes are indicated

  18. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  19. A Study of Transport Airplane Crash-Resistant Fuel Systems

    National Research Council Canada - National Science Library

    Robertson, S

    2002-01-01

    ...), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S...

  20. Regional analysis of renewable transportation fuels - production and consumption

    Science.gov (United States)

    Liu, Xiaoshuai

    The transportation sector contributes more than a quarter of total U.S. greenhouse gas emissions. Replacing fossil fuels with renewable fuels can be a key solution to mitigate GHG emissions from the transportation sector. Particularly, we have focused on land-based production of renewable fuels from landfills and brownfield in the southeastern region of the United States. These so call marginal lands require no direct land-use change to avoid environmental impact and, furthermore, have rendered opportunities for carbon trading and low-carbon intensity business. The resources potential and production capacity were derived using federal and state energy databases with the aid of GIS techniques. To maximize fuels production and land-use efficiency, a scheme of co-location renewable transportation fuels for production on landfills was conducted as a case study. Results of economic modeling analysis indicate that solar panel installed on landfill sites could generate a positive return within the project duration, but the biofuel production within the landfill facility is relatively uncertain, requiring proper sizing of the onsite processing facility, economic scale of production and available tax credits. From the consumers' perspective, a life-cycle cost analysis has been conducted to determine the economic and environmental implications of different transportation choices by consumers. Without tax credits, only the hybrid electric vehicles have lifetime total costs equivalent to a conventional vehicles differing by about 1 to 7%. With tax credits, electric and hybrid electric vehicles could be affordable and attain similar lifetime total costs as compared to conventional vehicles. The dissertation research has provided policy-makers and consumers a pathway of prioritizing investment on sustainable transportation systems with a balance of environmental benefits and economic feasibility.

  1. 14 CFR 23.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  2. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling

    International Nuclear Information System (INIS)

    Xu, Yanzhi; Gbologah, Franklin E.; Lee, Dong-Yeon; Liu, Haobing; Rodgers, Michael O.; Guensler, Randall L.

    2015-01-01

    Highlights: • We present a practical fuel and emissions modeling tool for alternative fuel buses. • The model assesses well-to-wheels emissions impacts of bus fleet decisions. • Mode-based approach is used to account for duty cycles and local conditions. • A case study using real-world operations data from Atlanta, GA is presented. • Impacts of alternative bus options depend on operating and geographic features. - Abstract: Hybrid and electric powertrains and alternative fuels (e.g., compressed natural gas (CNG), biodiesel, or hydrogen) can often reduce energy consumption and emissions from transit bus operations relative to conventional diesel. However, the magnitude of these energy and emissions savings can vary significantly, due to local conditions and transit operating characteristics. This paper introduces the transit Fuel and Emissions Calculator (FEC), a mode-based life-cycle emissions modeling tool for transit bus and rail technologies that compares the performance of multiple alternative fuels and powertrains across a range of operational characteristics and conditions. The purpose of the FEC is to provide a practical, yet technically sophisticated tool for regulatory agencies and policy analysts in assessing transit fleet options. The FEC’s modal modeling approach estimates emissions as a function of engine load, which in turn is a function of transit service parameters, including duty cycle (idling and speed-acceleration profile), road grade, and passenger loading. This approach allows for customized assessments that account for local conditions. Direct emissions estimates are derived from the scaled tractive power (STP) operating mode bins and emissions factors employed in the U.S. EPA’s MOVES (MOtor Vehicle Emissions Simulator) model. Life-cycle emissions estimates are calculated using emissions factors from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model. The case study presented in this paper

  3. Radiological impact of plutonium recycle in the fuel cycle of LWR type reactors: professional exposure during mormal operation

    International Nuclear Information System (INIS)

    White, I.F.; Kelly, G.N.

    1983-01-01

    The radiological impact of the fuel cycle of light water type reactors using enriched uranium may be changed by plutonium recycle. The impact on human population and on the persons professionally exposed may be different according to the different steps of the fuel cycle. This report analyses the differential radiological impact on the different types of personnel involed in the fuel cycle. Each step of the fuel cycle is separately studied (fuel fabrication, reactor operation, fuel reprocessing), as also the transport of the radioactive materials between the different steps. For the whole fuel cycle, one estimates that, with regard to the fuel cycle using enriched uranium, the plutonium recycle involves a small increase of the professional exposure

  4. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    The traditional assumption used in evaluating criticality safety of spent fuel cask is that the spent fuel is as reactive as when it was fresh (new). This is known as the fresh fuel assumption. It avoids a number of calculational and verification difficulties, but could take a heavy toll in decreased efficiency. The alternative to the fresh fuel assumption is called burnup credit. That is, the reduced reactivity of spent fuel that comes about from depletion of fissile radionuclides and net increase in neutron absorbers (poisons) is taken into account. It is recognizable that the use of burnup credit will in fact increase the percentage of unacceptable or non-specification fuel available for misloading. This could reduce individual cask safety margins if current practices with respect to loading procedures are maintained. As such, additional operational, design, analysis, and validation requirements should be established that, as a minimum, compensate for any potential reduction in fuel loading safety margin. This method is based on a probabilistic (PRA) approach and is called a relative risk comparison. The method assumes a linear risk model, and uses a selected probability function to compare the system of interest and an acceptable reference system by varying the features of each to assess effects on system safety. While risk is the product of an event probability and its consequence, the consequences of criticality in a cask are considered to be both unacceptable and the same, regardless of the initiating sequence. Therefore, only the probability of the event is considered in a relative risk evaluation

  5. L. Transportation of fuel and wastes

    International Nuclear Information System (INIS)

    1976-01-01

    The principles applied to the transport of nuclear fuels and wastes have been founded on the more general provisions governing the transport of radioactive materials. Safe shipment of radioactive materials has historically been sought by specifying required characteristics in the shipping packages and establishing minimum acceptable levels of package integrity. The reason for this is that in the course of transport by road, rail, sea, or air, consignments of radioactive material are in close proximity to members of the public, and in many cases they are loaded or unloaded by transport workers who have had no special training or experience in the handling of such substances. The procedures adopted to ensure transport safety have worked satisfactorily. Both in the USA and the UK, the industry and regulatory authorities have established outstanding safety records in shipping radioactive materials over a period of thirty years. It is claimed that there have been no injuries due to the radioactive nature of the shipments, nor has there been a release of nuclear materials serious enough to be a threat of death or injury. Admittedly, about 95% of the 800,000 shipments estimated in the USA each year involve small quantities for use in industry, medicine, agriculture and education. However the principals underlying the safe packaging of these and reactor fuels are the same, and there is little reason to doubt that a similar safety record can be maintained

  6. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  7. Considerations in the selection of transport modes for spent nuclear fuel shipments

    International Nuclear Information System (INIS)

    Daling, P.M.; McNair, G.W.; Andrews, W.B.

    1985-07-01

    This paper discusses the factors associated with selecting a particular transport mode for spent fuel shipments. These factors include transportation costs, economics of potential transportation accidents, risk/safety of spent fuel transportation, routing alternatives, shipping cask handling capabilities, and shipping cask availability. Data needed to estimate transportation costs and risks are presented and discussed. The remaining factors are discussed qualitatively and can be used as guidance for selecting a particular transport mode. 15 refs., 3 tabs

  8. Commercializing an alternate transportation fuel: lessons learned from NGV

    International Nuclear Information System (INIS)

    Flynn, P.C.

    2001-01-01

    An alternate transportation fuel, compressed natural gas, was adopted in Canada in the mid-1980s due to the unique conditions present at the time. The factors that had an impact on the limited acceptance of the fuel, keeping its rate of adoption below the critical point were examined in this paper. It was revealed that a lack of infrastructure to support converted vehicles was the deciding factor. Existing refueling stations failed to become profitable, preventing further investment in refueling facilities and resulting in depressed sales of converted vehicles. Excessive parts markup by conversion dealers was another major hurdle, as was exaggerated claims for environmental and economic benefits. In addition, promotional programs were poorly designed. In the late 1980s, the relative values of oil and natural gas shifted, lowering the momentum from sales of conversions. The consequence was major players leaving the market and natural gas remained on the fringe in both Canada and the United States. Different alternate transportation fuels, including electricity and hydrogen, are being favored by new technologies and driving forces. The growth to commercial viability for those fuels will likely be influenced by some of the factors that played a role in the fate of natural gas as a transportation fuel. 4 refs., 1 fig

  9. Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Han, Zandong; Zou, Yirong; Pan, Jiluan

    2015-01-01

    Almost 10,000 spherical fuel elements are transported pneumatically one by one in the pipeline outside the core of a pebble bed reactor every day. Any failure in the transportation will lead to the shutdown of the reactor, even safety accidents. In order to ensure a stable and reliable transportation, it's of great importance to analyze the motion and force condition of the fuel element. In this paper, we focus on the dynamic analysis of the pneumatic transportation of the fuel element and derive kinetic equations. Then we introduce the design of the transportation pipeline. On this basis we calculate some important data such as the velocity of the fuel element, the force between the fuel element and the pipeline and the efficiency of the pneumatic transportation. Then we analyze these results and provide some suggestions for the design of the pipeline. The experiment was carried out on an experimental platform. The velocities of the fuel elements were measured. The experimental results were consistent with and validated the theoretical analysis. The research may offer the basis for the design of the transportation pipeline and the optimization of the fuel elements transportation in a pebble bed reactor. - Highlights: • The kinetic equations of the fuel element in pneumatic transportation are derived. • The dynamic characteristics of the fuel element are analyzed. • Some important parameters are calculated based on the kinetic equations. • The experimental results were consistent with the analysis and verified the analysis. • This paper may offer an important guide to the research of a pebble bed reactor

  10. Fuel failure detection in operating reactors

    International Nuclear Information System (INIS)

    Seigel, B.; Hagen, H.H.

    1977-12-01

    Activity detectors in commercial BWRs and PWRs are examined to determine their capability to detect a small number of fuel rod failures during reactor operation. The off-gas system radiation monitor in a BWR and the letdown line radiation monitor in a PWR are calculated to have this capability, and events are cited that support this analysis. Other common detectors are found to be insensitive to small numbers of fuel failures. While adequate detectors exist for normal and transient operation, those detectors would not perform rapidly enough to be useful during accidents; in most accidents, however, primary system sensors (pressure, temperature, level) would provide adequate warning. Advanced methods of fuel failure detection are mentioned

  11. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  12. The single SNR fuel assembly container (ESBB) to transport unirradiated SNR 300 fuel assemblies

    International Nuclear Information System (INIS)

    Hilbert, F.; Hottenrott, G.

    1998-01-01

    In this paper a new type B(U) package design is presented. The Single SNR Fuel Assembly Container (ESBB) is designed for the transport and storage of a single SNR 300 fuel assembly. This package is the main component for the future interim storage of the fuel assemblies in heavy storage casks. Its benefits are that it is compatible with the Category I transport system of Nuclear Cargo + Service NCS) used in Germany and that it can be easily handled at the current storage locations as well as in an interim storage facility. In total 205 fuel assemblies are currently stored in Hanau, Germany and Dounreay, U.K. Former studies have shown, that heavy transport and storage casks can be handled there only with considerable efforts. But the required category I transport to an interim storage is not reasonably feasible. To overcome these problems the ESBB was designed. It consists of a stainless steel tube with welded bottom, a welded plug as closure system and shock absorbers 26 packages at maximum can be transported in one batch with the NCS security vehicle. The safety analysis shows that the package complies with IAEA 1996. Standard calculations methods and computer codes like HEATING 7.2 (Childs 1993) have been used for the analysis. Criticality safety assessment is based on conservative assumptions as required in IAEA 1996. Drop tests carried out by BAM will be used to verify the design. These tests are scheduled for mid 1998. For the validation of the design prototypes have already been manufactured. Handling tests show that the design complies with the requirements. Preliminary drop tests show that the certification drop tests will be passed positively. (authors)

  13. Basic planning of a newly built exclusive ship for spent fuel transport

    International Nuclear Information System (INIS)

    Obara, I.; Sasao, T.; Akiyama, H.; Kybota, T.

    1998-01-01

    A commercial reprocessing plant is under construction at the Fuel Cycle Facilities in Rokkasho-mura, Aomori Prefecture. To prepare for the transport of spent nuclear fuels (SF) from all Japanese nuclear power stations to this reprocessing plant, the need for an exclusive transport ship was recognized. Nuclear Fuel Transport Co. Ltd. (NFT), in cooperation with electric power utilities planned the construction of such a ship over a period of several years. During this period NFT developed new types of cask to transport high burn-up spent fuels to the reprocessing plant. Six kinds of casks were developed and 40 units are now under fabrication. The ship was designed to carry a maximum of 20 units. Based on the Irradiated Nuclear Fuel (INF) Code adopted by the International Maritime Organization (IMO), the Japanese Ministry of Transport (MoT) issued new domestic regulations in September, 1995 which covered design criteria for ships carrying Irradiated Nuclear Fuels. The new SF transport ship is the first one to which this new regulation was applied. Although the ship will only ply the coastal routes of Japan, she has been designed to conform with all the international requirements for the Class-3 of the INF Code. In May 1995, Nuclear Fuel Shipping Co. Ltd (NFS), a wholly-owned subsidiary of NFT, concluded a contract with Mitsui Engineering and Shipbuilding Co., Ltd. for the construction of the exclusive transport ship. The keel was laid in November 1995. The ship was launched in april 1996 and named 'Rokuei-Maru'. At the end of September, she was completed and delivered to the ship owner, NFS. (authors)

  14. Transport package maintenance requirements and operations

    International Nuclear Information System (INIS)

    Tyacke, M.J.; Ball, L.J.; Ayers, A.L. Jr.; Hayes, G.R.; Anselmo, A.A.

    1988-01-01

    The NuPac 125-B rail cask, which transports the damaged core debris from Three Mile Island Unit 2 (TMI-2) to the Idaho National Engineering Laboratory (INEL), is the only new spent-fuel rail shipping cask to be licensed in the United States within the last decade. EG ampersand G Idaho, Inc. (EG ampersand G), acting on behalf of the US Department of Energy, is responsible for ensuring that those new casks and rail cars are properly maintained per regulatory requirements. Both the casks and rail cars have comprehensive in-service inspection and preventive maintenance programs, which are more involved than implied by the requirements. The TMI-2 shipping campaign is the most ambitious spent-fuel transport activity being conducted in the nuclear industry. The experience gained in this campaign, as it relates to maintenance of a transport system, should be of interest and have direct applicability to similar shipping activities planned in the years ahead

  15. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

    International Nuclear Information System (INIS)

    Tian Yingnan; Chen Yixue; Yang Shouhai

    2013-01-01

    The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

  16. Human reliability and risk management in the transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tuler, S.; Kasperson, R.E.; Ratick, S.

    1989-01-01

    This paper summarizes work on human factor contributions to risks from spent nuclear fuel transportation. Human participation may have significant effects on the levels and types of risks by enabling or initiating incidents and exacerbating adverse consequences. Human errors are defined to be the result of mismatches between perceived system state and actual system state. In complex transportation systems such mismatches may be distributed in time (e.g., during different stages of design, implementation, operation, maintenance) and location (e.g., human error, its identification, and its recovery may be geographically and institutionally separate). Risk management programs may decrease the probability of undesirable events or attenuate the consequences of mismatches. This paper presents a methodology to identify the scope and types of human-task mismatches and to identify potential management options for their prevention, mitigation, or recovery. A review of transportation accident databases, in conjunction with human error models, is used to develop a taxonomy of human errors during design for the pre-identification of potential mismatches or after incidents have occurred to evaluate their causes. Risk management options to improve human reliability are identified by a matrix that relates the multiple stages of a spent nuclear fuel transportation system to management options (e.g., training, data analysis, regulation). The paper concludes with examples to illustrate how the methodology may be applied. (author)

  17. Methanol commercial aviation fuel

    International Nuclear Information System (INIS)

    Price, R.O.

    1992-01-01

    Southern California's heavy reliance on petroleum-fueled transportation has resulted in significant air pollution problems within the south Coast Air Basin (Basin) which stem directly from this near total dependence on fossil fuels. To deal with this pressing issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may exceed emission gains achieved in the ground transportation sector. This paper addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin and the need to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine engines

  18. Alternative Fuel Transportation Optimization Tool : Description, Methodology, and Demonstration Scenarios.

    Science.gov (United States)

    2015-09-01

    This report describes an Alternative Fuel Transportation Optimization Tool (AFTOT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Federal Aviation Administration (FAA)....

  19. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  20. Fuel deposits, chemistry and CANDU® reactor operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2014-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU® reactor, the first being the Nuclear Power Demonstration - 2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channelled to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5. The difference being that during 'hot conditioning' of CANDU® heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  1. Spent Fuel Storage Operation - Lessons Learned

    International Nuclear Information System (INIS)

    2013-12-01

    Experience gained in planning, constructing, licensing, operating, managing and modifying spent fuel storage facilities in some Member States now exceeds 50 years. Continual improvement is only achieved through post-project review and ongoing evaluation of operations and processes. This publication is aimed at collating and sharing lessons learned. Hopefully, the information provided will assist Member States that already have a developed storage capability and also those considering development of a spent nuclear fuel storage capability in making informed decisions when managing their spent nuclear fuel. This publication is expected to complement the ongoing Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III); the scope of which prioritizes facility operational practices in lieu of fuel and structural components behaviour over extended durations. The origins of the current publication stem from a consultants meeting held on 10-12 December 2007 in Vienna, with three participants from the IAEA, Slovenia and USA, where an initial questionnaire on spent fuel storage was formulated (Annex I). The resultant questionnaire was circulated to participants of a technical meeting, Spent Fuel Storage Operations - Lessons Learned. The technical meeting was held in Vienna on 13-16 October 2008, and sixteen participants from ten countries attended. A consultants meeting took place on 18-20 May 2009 in Vienna, with five participants from the IAEA, Slovenia, UK and USA. The participants reviewed the completed questionnaires and produced an initial draft of this publication. A third consultants meeting took place on 9-11 March 2010, which six participants from Canada, Hungary, IAEA, Slovenia and the USA attended. The meeting formulated a second questionnaire (Annex II) as a mechanism for gaining further input for this publication. A final consultants meeting was arranged on 20-22 June 2011 in Vienna. Six participants from Hungary, IAEA, Japan

  2. Determination of technical details concerning measures for transportation of nuclear fuel materials in the works or the enterprise

    International Nuclear Information System (INIS)

    1979-01-01

    The determination is defined under the regulations concerning the fabricating business of nuclear fuel materials, the regulation concerning installation and operation of test reactor, the regulations concerning the reprocessing business of spent fuel and the regulations concerning the uses of nuclear source materials. The notification determining technical details concerning measures for transportation of nuclear fuel materials is abolished. Measures for prevention of hazard designated by the Director General of Science and Technology Agency include such ones not to let radioactive materials easily fly about or leak in regular transport, not to let rain water easily penetrate or make each exterior side of a cubic load more than 10 centi-meters. The application for permission shall be filed for transportation of things highly difficult to be sealed in a vessel, listing name and address of the applicant, kind, quantity, form and nature of the load contaminated by nuclear fuel materials, date and route of transfer and measures taken for prevention of hazard in transport. Radiation doses of load and transporting apparatus are stipulated by the Director for an hour as 200 mili-rem on the surface of load, 10 mili-rem at the distance of 1 meter from the surface of load, and 200 mili-rem on the surface of the vehicle, etc. Dangerous things, signals and radiation dose of particular loads are specified respectively. (Okada, K.)

  3. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  4. The Fuel Efficiency of Maritime Transport. Potential for improvement and analysis of barriers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M. [CE Delft, Delft (Netherlands); Behrends, B. [Marena Ltd., s.l. (United Kingdom); Lee, D.S. [Manchester Metropolitan University, Machester (United Kingdom)

    2012-02-15

    There is significant potential to improve the fuel efficiency of ships and thus contribute to reducing greenhouse gas emissions from maritime transport. It has long been recognised that this potential is not being fully exploited, owing to the existence of non-market barriers. This report analyses the barriers to implementing fuel efficiency improvements, and concludes that the most important of these are the split incentive between ship owners and operators, a lack of trusted data on new technologies, and transaction costs associated with evaluating measures. As a result, in practice about a quarter of the cost-effective abatement potential is unavailable. There are several ways to overcome these barriers. The split incentive can - to some extent - be overcome by providing more detailed information on the fuel efficiency of vessels, making due allowance for operational profiles. This would allow fuel consumption to be more accurately projected and a larger share of efficiency benefits to accrue to ship owners, thus increasing the return on investment in fuel-saving technologies. This would also require changes to standard charter parties. The credibility of information on new technologies can be improved through intensive collaboration between suppliers of new technologies and shipping companies. In order to overcome risk, government subsidies could provide an incentive. This could have the additional benefit that governments could require publication of results.

  5. Effects of fuel particle size distributions on neutron transport in stochastic media

    International Nuclear Information System (INIS)

    Liang, Chao; Pavlou, Andrew T.; Ji, Wei

    2014-01-01

    Highlights: • Effects of fuel particle size distributions on neutron transport are evaluated. • Neutron channeling is identified as the fundamental reason for the effects. • The effects are noticeable at low packing and low optical thickness systems. • Unit cells of realistic reactor designs are studied for different size particles. • Fuel particle size distribution effects are not negligible in realistic designs. - Abstract: This paper presents a study of the fuel particle size distribution effects on neutron transport in three-dimensional stochastic media. Particle fuel is used in gas-cooled nuclear reactor designs and innovative light water reactor designs loaded with accident tolerant fuel. Due to the design requirements and fuel fabrication limits, the size of fuel particles may not be perfectly constant but instead follows a certain distribution. This brings a fundamental question to the radiation transport computation community: how does the fuel particle size distribution affect the neutron transport in particle fuel systems? To answer this question, size distribution effects and their physical interpretations are investigated by performing a series of neutron transport simulations at different fuel particle size distributions. An eigenvalue problem is simulated in a cylindrical container consisting of fissile fuel particles with five different size distributions: constant, uniform, power, exponential and Gaussian. A total of 15 parametric cases are constructed by altering the fissile particle volume packing fraction and its optical thickness, but keeping the mean chord length of the spherical fuel particle the same at different size distributions. The tallied effective multiplication factor (k eff ) and the spatial distribution of fission power density along axial and radial directions are compared between different size distributions. At low packing fraction and low optical thickness, the size distribution shows a noticeable effect on neutron

  6. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98...... by two the converter input-to-output voltage gain. This allows covering the conditions when the fuel cell stack operates in the activation region (maximum output voltage) and increases the degrees of freedom for converter optimization. The transition between operating modes is studied because represents...

  7. Contamination transfers during fuel transport cask loading. A concrete situation

    International Nuclear Information System (INIS)

    Fournel, B.; Turchet, J.P.; Faure, S.; Allinei, P.G.; Briquet, L.; Baubet, D.

    2002-01-01

    In 1998, a number of contamination cases detected during fuel shipments have been pointed out by the french nuclear safety authority. Wagon and casks external surfaces were partly contaminated upon arrival in Valognes railway terminal. Since then, measures taken by nuclear power plants operators in France and abroad solved the problem. In Germany, a report analyzing the situation in depth has been published in which correctives actions have been listed. In France, EDF launched a large cleanliness program (projet proprete radiologique) in order to better understand contamination transfers mechanisms during power plants exploitation and to list remediation actions to avoid further problems. In this context, CEA Department for Wastes Studies at Cadarache (CEA/DEN/DED) was in charge of a study about contamination transfers during fuel elements loading operations. It was decided to lead experiments for a concrete case. The loading of a transport cask at Tricastin-PWR-1 was followed in november 2000 and different analysis comprising water analysis and smear tests analysis were carried out and are detailed in this paper. Results are discussed and qualitatively compared to those obtained in Philippsburg-BWR, Germany for a similar set of tests. (authors)

  8. Electricity as Transportation ``Fuel''

    Science.gov (United States)

    Tamor, Michael

    2013-04-01

    The personal automobile is a surprisingly efficient device, but its place in a sustainable transportation future hinges on its ability use a sustainable fuel. While electricity is widely expected to be such a ``fuel,'' the viability of electric vehicles rests on the validity of three assumptions. First, that the emissions from generation will be significantly lower than those from competing chemical fuels whether `renewable' or fossil. Second, that advances in battery technology will deliver adequate range and durability at an affordable cost. Third, that most customers will accept any functional limitations intrinsic to electrochemical energy storage. While the first two are subjects of active research and vigorous policy debate, the third is treated virtually as a given. Popular statements to the effect that ``because 70% of all daily travel is accomplished in less than 100 miles, mass deployment of 100 mile EVs will electrify 70% of all travel'' are based on collections of one-day travel reports such as the National Household Travel Survey, and so effectively ignore the complexities of individual needs. We have analyzed the day-to-day variations of individual vehicle usage in multiple regions and draw very different conclusions. Most significant is that limited EV range results in a level of inconvenience that is likely to be unacceptable to the vast majority of vehicle owners, and for those who would accept that inconvenience, battery costs must be absurdly low to achieve any economic payback. In contrast, the plug-in hybrid (PHEV) does not suffer range limitations and delivers economic payback for most users at realistic battery costs. More importantly, these findings appear to be universal in developed nations, with labor market population density being a powerful predictor of personal vehicle usage. This ``scalable city'' hypothesis may prove to a powerful predictor of the evolution of transportation in the large cities of the developing world.

  9. Realizing the dream: greenhouse gas free transportation through the application of Canada's fuel cell technology

    International Nuclear Information System (INIS)

    Adams, W.

    2001-01-01

    Fuel cells (FCs) generate electrical power without combustion using electrochemical processes and therefore do not have to first convert the fuel to heat and shaft-power before electricity is produced. They are, therefore, high efficiency energy converters and unlike batteries are able to continuously provide electrical power as long as fuel and air are fed to the electrodes. Fuel cells are now of great interest to the automotive industry throughout the world. The most economic fuel for fuel cells is reformed natural gas that is favoured by the utility industry, but methanol (as well, ethanol is being proposed by a GM, Shell, Argonne study) is one contender for fuel cells being developed for transportation. Several different fuel cell technologies exist. Recent developments in solid oxide fuel cell (SOFC) technology suggest that SOFCs could more easily adapt to conventional gasoline and diesel fuels and are less prone to catalyst poisoning than other fuel cells such as the solid polymer electrolyte (PEM) type, often also called the proton exchange membrane (PEM) fuel cell, being developed by Ballard in Canada. However, there remain significant development problems for SOFC technology related to the high operating temperatures (700 to 1000 deg C). In this paper, the range of fuel cell technologies now being developed will be reviewed since there is a convergence in the use of fuel cells for the production of power in distributed fixed systems and power sources for transportation. The factors that will determine the dominating technologies for automobile and truck propulsion in the future are the same as those currently in play. These factors are: performance, cost and convenience of the technologies. A common feature in these three factors is efficiency from which the environmental impact of the technology is largely determined-Electric propulsion in some form will ultimately be favoured over combustion systems because combustion systems are limited by fundamental

  10. Evaluation of next generation biomass derived fuels for the transport sector

    International Nuclear Information System (INIS)

    Tsita, Katerina G.; Pilavachi, Petros A.

    2013-01-01

    This paper evaluates next generation biomass derived fuels for the transport sector, employing the Analytic Hierarchy Process. Eight different alternatives of fuels are considered in this paper: bio-hydrogen, bio-synthetic natural gas, bio-dimethyl ether, bio-methanol, hydro thermal upgrading diesel, bio-ethanol, algal biofuel and electricity from biomass incineration. The evaluation of alternative fuels is performed according to various criteria that include economic, technical, social and policy aspects. In order to evaluate each alternative fuel, one base scenario and five alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all alternative scenarios. It is concluded that synthetic natural gas and electricity from biomass incineration are the most suitable next generation biomass derived fuels for the transport sector. -- Highlights: •Eight alternative fuels for the transport sector have been evaluated. •The method of the AHP was used. •The evaluation is performed according to economic, technical, social and policy criteria. •Bio-SNG and electricity from biomass incineration are the most suitable fuels

  11. Can lignocellulosic hydrocarbon liquids rival lignocellulose-derived ethanol as a future transport fuel?

    Directory of Open Access Journals (Sweden)

    Yao Ding

    2012-11-01

    Full Text Available Although transport fuels are currently obtained mainly from petroleum, alternative fuels derived from lignocellulosic biomass (LB have drawn much attention in recent years in light of the limited reserves of crude oil and the associated environmental issues. Lignocellulosic ethanol (LE and lignocellulosic hydrocarbons (LH are two typical representatives of the LB-derived transport fuels. This editorial systematically compares LE and LB from production to their application in transport fuels. It can be demonstrated that LH has many advantages over LE relative to such uses. However, most recent studies on the production of the LB-derived transport fuels have focused on LE production. Hence, it is strongly recommended that more research should be aimed at developing an efficient and economically viable process for industrial LH production.

  12. Operational reliability testing of FBR fuel in EBR-II

    International Nuclear Information System (INIS)

    Asaga, Takeo; Ukai, Shigeharu; Nomura, Shigeo; Shikakura, Sakae

    1991-01-01

    The operational reliability testing of FBR fuel has been conducting in EBR-II as a DOE/PNC collaboration program. This paper reviews the achieved summary of Phase-I test as well as outline of progressing Phase-II test. In Phase-I test, the reliability of FBR fuel pins including 'MONJU' fuel was demonstrated at the event of operational transient. Continued operation of the failed pins was also shown to be feasible without affecting the plant operation. The objectives of the Phase-II test is to extend the data base relating with the operational reliability for long life fuel, and to supply the highly quantitative evaluation. The valuable insight obtained in Phase-II test are considerably expected to be useful toward the achievement of commercial FBR. (author)

  13. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  14. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  15. Fuel Consumption Management in the Transportation Sector in Iran

    DEFF Research Database (Denmark)

    Dastjerdi, Aliasghar M.; Araghi, Bahar Namaki

    2011-01-01

    Energy consumption in the transportation sector in Iran is significantly higher than global norms and standards which caused some issues including wasting national resources, deteriorating air quality, GHG emissions etc. The major purpose of this paper is to introduce practical policies, strategies...... and technologies to reduce liquid fuel consumption known as a dominant source of energy in transport sector in Iran. Since, the road subsector has the major share in consuming liquid fuel amongst others, more attention is given to the methods for reducing consumption in this subsector. The relating policies...... and actions were classified by optimization measures according to four separate categories as follows; “Optimization of Supply of Transportation Services”, “Optimization of Transport Demand”, “Optimization of Energy Consumption” and “Optimization of Car Manufacturing”....

  16. Experience of air transport of nuclear fuel material in Japan

    International Nuclear Information System (INIS)

    Yamashita, T.; Toguri, D.; Kawasaki, M.

    2004-01-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport

  17. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  18. Integrated spent fuel storage and transportation system using NUHOMS

    International Nuclear Information System (INIS)

    Lehnert, R.; McConaghy, W.; Rosa, J.

    1990-01-01

    As utilities with nuclear power plants face increasing near term spent fuel store needs, various systems for dry storage such as the NUTECH Horizontal Modular Storage (NUHOMS) system are being implemented to augment existing spent fuel pool storage capacities. These decisions are based on a number of generic and utility specific considerations including both short term and long term economics. Since the US Department of Energy (DOE) is tasked by the Nuclear Waste Policy Act with the future responsibility of transporting spent fuel from commercial nuclear power plants to a Monitored Retrievable Storage (MRS) facility anchor a permanent geologic repository, the interfaces between the utilities at-reactor dry storage system and the DOE's away-from-reactor transportation system become important. This paper presents a study of the interfaces between the current at-reactor NUHOMS system and the future away-from-reactor DOE transportation system being developed under the Office of Civilian Radioactive Waste Management (OCRWM) program. 7 refs., 9 figs., 1 tab

  19. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  20. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  1. Regulations concerning the transport of nuclear fuel materials outside the works or the enterprise

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Basic concepts and terms are explained, such as: vehicle transport; easy transport; nuclear fuel material load, exclusive loading, employee, accumulative dose and exposure dose. Technical standards of vehicle transport are specified in detail on nucler fuel materials as nuclear fuel load, L,A, EM and BU type of load, nuclear fuel load of fission substances, the second and third type of fission load and materials contaminated by nuclear fuel substances to be carried not as nuclear fuel loads. Special exceptional measures to such transport and technical standards of easy transport are also designated. The application for confirmation of the transport shall be filed to the Director General of Science and Technology Agency according to the form attached with documents explaining nuclear fuel materials to be transferred, the vessel of such materials and construction, material and method of production of such a vessel, safety of nuclear materials contained, etc. Measures in dangerous situations shall be taken to fight a fire or prohibit the entrance of persons other than the staff concerned. Reports shall be presented in 10 days to the Director, when theft, loss or irregular leaking of nuclear fuel materials or personal troubles occur on the way. (Okada, K.)

  2. Operational considerations in specifying legal weight vehicles for the highway transport of spent nuclear fuel

    International Nuclear Information System (INIS)

    Hill, C.V.; Rutenkroger, E.O.; Ratledge, J.E.

    1990-01-01

    This paper presents the results of a research project in which tractor manufacturers and carrier companies were interviewed to gather information on operational concerns in specifying a tractor to haul legal weight spent fuel casks. The system was assumed to operate very close to the 80,000 pound legal weight limit. Safety, performance, reliability, and maintainability of equipment were factors given particular attention. The interaction between driver fatigue, safety, and equipment was also discussed. Innovative operating strategies that could save weight were discussed. The paper concluded that operational considerations require that planners working with standard off-the-shelf tractor equipment should allow at least 17,350 pounds for the weight of the tractor as a starting point from which further weight reduction analysis can proceed. 4 refs., 3 figs

  3. Fuel transporting device in nuclear reactor

    International Nuclear Information System (INIS)

    Inoue, Tatsumi.

    1975-01-01

    Object: To obtain a support structure of an excellent quakeproof property for a fuel transporting device provided for the transportation of fuel between a reactor building and an auxiliary building in a pressure tube reactor or the like. Structure: The structure comprises an oblique transfer chute loosely penetrating the reactor building, reactor container and auxiliary building, a transfer chute support outer cylinder surrounding the transfer chute and having one end coupled to the transfer chute and other end coupled to the container, flexible seal members respectively provided on the reactor building side and on the auxiliary building side and surrounding the transfer chute and a slidable support supported on the side of the auxiliary building such that it can be in frictional contact with the outer periphery of the transfer chute. With this construction, the relative displacements of various parts caused by an earthquake or the like can be absorbed by the support outer cylinder, flexible seals and slidable support. (Ikeda, J.)

  4. Analysis of radiation doses from operation of postulated commercial spent fuel transportation systems: Analysis of a system containing a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Smith, R.I.; Daling, P.M.; Faletti, D.W.

    1992-04-01

    This addendum report extends the original study of the estimated radiation doses to the public and to workers resulting from transporting spent nuclear fuel from commercial nuclear power reactor stations through the federal waste management system (FWMS), to a system that contains a monitored retrievable storage (MRS) facility. The system concepts and designs utilized herein are consistent with those used in the original study (circa 1985--1987). Because the FWMS design is still evolving, the results of these analyses may no longer apply to the design for casks and cask handling systems that are currently being considered. Four system scenarios are examined and compared with the reference No-MRS scenario (all spent fuel transported directly from the reactors to the western repository in standard-capacity truck and rail casks). In Scenarios 1 and 2, an MRS facility is located in eastern United States and ships either intact fuel assemblies or consolidated fuel rods and compacted assembly hardware in canisters. In Scenarios 3 and 4, an MRS facility is located in the western United States and ship either intact fuel assemblies or consolidated fuel rods and compacted assembly hardware in canisters

  5. Postulated accident scenarios for the on-site transport of spent nuclear fuel

    International Nuclear Information System (INIS)

    Morandin, G.; Sauve, R.

    2004-01-01

    Once a spent fuel container is loaded with spent fuel it typically travels on-site to a processing building for permanent lid attachment. During on-site transport a lid clamp is utilized to ensure the container lid remains in place. The safe on-site transport of spent nuclear fuel must rely on the structural integrity of the transport container and system of transport. Regard for on-site traffic and safe, efficient travel routes are important and manageable with well thought-out planning. Non-manageable incidences, such as flying debris from tornado force winds or postulated blasts in proximity to the transport container, that may result in high velocity impact and shock loading on the transport system must be considered. This paper consists of simulations that consider these types of postulated accident scenarios using detailed nonlinear finite element techniques

  6. Preliminary assessment of costs and risks of transporting spent fuel by barge

    International Nuclear Information System (INIS)

    Tobin, R.L.; Meshkov, N.K.; Jones, R.H.

    1985-12-01

    The purpose of this study is to analyze the costs and risks associated with transporting spent fuel by barge. The barge movements would be made in combination with rail movements to transport spent fuel from plants to a repository. For the purpose of this analysis, three candidate repository sites are analyzed: Yucca Mountain, Nevada, Deaf Smith, Texas, and Hanford, Washington. This report complements a report prepared by Sandia National Laboratories in 1984 that analyzes the costs and risks of transporting spent fuel by rail and by truck to nine candidate repository sites

  7. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    International Nuclear Information System (INIS)

    Dr. Michael A. Lehto; MAL

    2007-01-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC's effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. (1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety

  8. Fuel Prices as a Factor of Shaping Profitability of Road Transport in Poland

    Directory of Open Access Journals (Sweden)

    Marzantowicz Łukasz

    2016-12-01

    Full Text Available The goal of this article is to determine the relation between the price of fuel and the profitability of the company. For this purpose, the article defines the profitability of transport enterprises and points the source of the impact of changes in fuel prices on the profitability of companies in the road transport sector. The case of the ABC transport company shows the relationship between the costs incurred for the purchase of fuel and the cost of transport activities. To test the theoretical assumptions, case study method was used.

  9. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass

    OpenAIRE

    Delucchi, Mark; Lipman, Timothy

    2003-01-01

    An Appendix to the Report, “A Lifecycle Emissions Model (LEM): Lifecycle Emissions From Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materialsâ€

  10. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET mode--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet)

  11. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  12. Full core operation in JRR-3 with LEU fuels

    International Nuclear Information System (INIS)

    Murayama, Y.; Issiki, M.

    1995-01-01

    The new JRR-3 a 20MWT swimming pool type research reactor, is made up of plate type LEU fuel elements with U-Al x fuel at 2.2 gU/cm 3 . Reconstruction work for the new JR-3 was a good success, and common operation started in November 1990, and 7 cycles (26 days operation/cycle) have passed. We have no experience in using such a high uranium density fuel element with aluminide fuel. So we plan to examine the condition of the irradiated fuel elements with three methods, that is, measurement of the value of FFD in operation, observation of external view of the fuels in refueling work and postirradiation examination after maximum burn-up will be established. In the results of the first two methods, the fuel elements of JRR-3 is burned up normally and have no evidence of failure. (author)

  13. Reliabilityy and operating margins of LWR fuels

    International Nuclear Information System (INIS)

    Strasser, A.A.; Lindquist, K.O.

    1977-01-01

    The margins to fuel thermal operating limits under normal and accident conditions are key to plant operating flexibility and impact on availability and capacity factor. Fuel performance problems that do not result in clad breach, can reduce these margins. However, most have or can be solved with design changes. Regulatory changes have been major factors in eroding these margins. Various methods for regaining the margins are discussed

  14. Transportation impact analysis for shipment of irradiated N-reactor fuel and associated materials

    International Nuclear Information System (INIS)

    Daling, P.M.; Harris, M.S.

    1994-12-01

    An analysis of the radiological and nonradiological impacts of highway transportation of N-Reactor irradiated fuel (N-fuel) and associated materials is described in this report. N-fuel is proposed to be transported from its present locations in the 105-KE and 105-KW Basins, and possibly the PUREX Facility, to the 327 Building for characterization and testing. Each of these facilities is located on the Hanford Site, which is near Richland, Washington. The projected annual shipping quantity is 500 kgU/yr for 5 years for a total of 2500 kgU. It was assumed the irradiated fuel would be returned to the K- Basins following characterization, so the total amount of fuel shipped was assumed to be 5000 kgU. The shipping campaign may also include the transport and characterization of liquids, gases, and sludges from the storage basins, including fuel assembly and/or canister parts that may also be present in the basins. The impacts of transporting these other materials are bounded by the impacts of transporting 5000 kgU of N-fuel. This report was prepared to support an environmental assessment of the N-fuel characterization program. The RADTRAN 4 and GENII computer codes were used to evaluate the radiological impacts of the proposed shipping campaign. RADTRAN 4 was used to calculate the routine exposures and accident risks to workers and the general public from the N-fuel shipments. The GENII computer code was used to calculate the consequences of the maximum credible accident. The results indicate that the transportation of N-fuel in support of the characterization program should not cause excess radiological-induced latent cancer fatalities or traffic-related nonradiological accident fatalities. The consequences of the maximum credible accident are projected to be small and result in no excess latent cancer fatalities

  15. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  16. Probabilistic Risk Assessment on Maritime Spent Nuclear Fuel Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Robby; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Spent nuclear fuel (SNF) management has been an indispensable issue in South Korea. Before a long term SNF solution is implemented, there exists the need to distribute the spent fuel pool storage loads. Transportation of SNF assemblies from populated pools to vacant ones may preferably be done through the maritime mode since all nuclear power plants in South Korea are located at coastal sites. To determine its feasibility, it is necessary to assess risks of the maritime SNF transportation. This work proposes a methodology to assess the risk arising from ship collisions during the transportation of SNF by sea. Its scope is limited to the damage probability of SNF packages given a collision event. The effect of transport parameters' variation to the package damage probability was investigated to obtain insights into possible ways to minimize risks. A reference vessel and transport cask are given in a case study to illustrate the methodology's application.

  17. Operation control device for a nuclear reactor fuel exchanger

    International Nuclear Information System (INIS)

    Aida, Takashi.

    1984-01-01

    Purpose: To provide a operation control device for a nuclear reactor fuel exchanger with reduced size and weight capable of optionally meeting the complicated and versatile mode of the operation scope. Constitution: The operation range of a fuel exchanger is finely divided so as to attain the state capable of discriminating between operation-allowable range and operation-inhibitive range, which are stored in a memory circuit. Upon operating the fuel exchanger, the position is detected and a divided range data corresponding to the present position is taken out from the memory circuit so as to determine whether the fuel exchanger is to be run or stopped. Use of reduced size and compact IC circuits (calculation circuit, memory circuit, data latch circuit) and input/output interface circuits or the likes contributes to the size reduction of the exchanger control system to enlarge the floor maintenance space. (Moriyama, K.)

  18. Ethanol as a Fuel for Road Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, U.; Johansen, T.; Schramm, J.

    2009-05-15

    Bioethanol as a motor fuel in the transportation sector, mainly for road transportation, has been subject to many studies and much discussion. Furthermore, the topic involves not only the application and engine technical aspects, but also the understanding of the entire life cycle of the fuel, well-to-wheels, including economical, environmental, and social aspects. It is not, however, the aim of this report to assess every single one of these aspects. The present report aims to address the technical potential and problems as well as the central issues related to the general application of bioethanol as an energy carrier in the near future. A suitable place to start studying a fuel is at the production stage, and bioethanol has been found to have a potential to mitigate greenhouse gases, depending on the production method. This and a potential for replacing fossil fuel-based oil (and being renewable) are the main reasons why ethanol is considered and implemented. Therefore, we must focus on two central questions related to ethanol implementation: how much carbon dioxide (CO2) can be mitigated and how much fossil fuel can be replaced? A number of life cycle assessments have been performed in order to provide estimates. These assessments have generally shown that bioethanol has very good potential and can mitigate CO2 emissions very effectively, but It has also been shown that the potential for both fossil fuel replacement and CO2 mitigation is totally dependent on the method used to produce the fuel. Bioethanol can be made from a wide range of biomass resources, not all equally effective at mitigating CO2 emissions and replacing fossil fuel. The Brazilian ethanol experience has in many ways shown the way for the rest of the world, not least in the production stage. Brazil was the first and biggest producer of bioethanol, but the United States, China, India, and European Union have since then increased their production dramatically. Overall, bioethanol represents the

  19. Spent fuel transportation regulatory and institutional issues

    International Nuclear Information System (INIS)

    Lippek, H.E.

    1978-01-01

    The problems that could result from state and local governments and other groups with relation to regulations concerning the transportation of spent nuclear fuels are discussed. The powers of the individual states as spelled out in the Clean Air Act Amendments of 1977 are set forth in some detail. The possibility of transportation employees gaining a position to demand and receive more stringent protections from hazards of radiation is pointed out

  20. Assessment of health risks brought about by transportation of spent fuel

    International Nuclear Information System (INIS)

    Suolanen, V.; Lautkaski, R.; Rossi, J.

    1999-03-01

    In the study health risks caused by transportation of spent fuel from Olkiluoto and from Loviisa NPP's to the planned disposal site have been evaluated. The Olkiluoto NPP is owned by Teollisuuden Voima Oy (TVO) and the Loviisa NPP, situated at Haestholmen, by Fortum Power and Heat Oy. According to the base scenario of 40 years use of the current NPP's the total amount of spent fuel will be 1840 tU (TVO) and 860 tU (Fortum). Annually, 110 tU on the average and at most 250 tU will be transported to the disposal site. The considered transportation routes are from Olkiluoto to Haestholmen, from Olkiluoto to Kivetty, from Olkiluoto to Romuvaara, from Haestholmen to Olkiluoto, from Haestholmen to Kivetty and from Haestholmen to Romuvaara. The considered transportation modes are truck, rail or ship, or combinations of these modes. Each transportation route has been divided into homogenised sequences with respect to population density and/or route type. Total amount of analysed route options were 40, some route sequences are overlapping. Radiation exposures to the population along the routes have been calculated in normal, incident and accident situations during transportation. Occupational radiation doses to the personnel have been estimated for normal transportation only. The consequences of normal transportation have been evaluated based on RADTRAN-model, developed by the Sandia National Laboratories. As incidents, stopping of spent fuel transportation for an exceptionally long period of time, and in another case contamination of outer surface of spent fuel cask have been considered. Expected collective doses and health risks of transportation accidents connected to the routes have been calculated with RADTRAN-model. Single hypothetical transport accidents with pessimistic release assumptions have been further analysed in more detail with the ARANO-model, developed by VTT (Technical Research Centre of Finland). (orig.)

  1. Transport of Spent Nuclear Fuels, High and Intermediate Level Wastes: A Continuous Challenge

    International Nuclear Information System (INIS)

    Otton, C.; Blachet, L.

    2009-01-01

    For more than 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the used nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfil the needs for new transport or storage casks design to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. In this presentation we will focus on the casks for the spent fuel, high level waste and intermediate level waste transportation. Answering to the constant evolution of the nuclear industry transport needs is a challenge that TN International faces routinely. Concerning the spent nuclear fuel transportation, TN International has developed in the early 80's a fleet of TN12 type casks fitted with several types of baskets able to safely transport all the spent fuel from the nuclear power plant or the research laboratories to AREVA La Hague plant. The current challenge is the design of a new transport cask generation taking into account the needs of the industry for the next 30 years. The replacement of the TN12 cask generation is to be scheduled as the regulations have changed and the fuel characteristics have evolved. The new generation of casks will take into account all the technical evolutions made during the TN12 thirty years of use. MOX spent fuel has now its dedicated cask: the TN112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in 2008 in the EDF nuclear power plant of Saint-Laurent-des-Eaux. Concerning the high level waste such as the La Hague vitrified residues a whole fleet of casks has been developed such as the TN 28 VT dedicated to transport, the TN81 and TN85 dedicated to transport and storage. These casks have permitted the

  2. Homogeneity of blended nuclear fuel powders after pneumatic transport

    International Nuclear Information System (INIS)

    Smeltzer, E.E.; Skriba, M.C.; Lyon, W.L.

    1982-01-01

    A study of the pneumatic transport of fine (approx. 1μm) cohesive nuclear fuel powders was conducted for the U.S. Department of Energy to demonstrate the feasibility of this method of transport and to develop a design data base for use in a large scale nuclear fuel production facility. As part of this program, a considerable effort was directed at following the homogeneity of blended powders. Since different reactors require different enrichments, blending and subsequent transport are critical parts of the fabrication sequence. The various materials used represented analogs of a wide range of powders and blends that could be expected in a commercial mixed oxide fabrication facility. All UO 2 powders used were depleted and a co-precipitated master mix of (U, Th)O 2 was made specifically for this program, using thorium as an analog for plutonium. In order to determine the effect of pneumatic transport on a blended powder, samples were taken from a feeder vessel before each test, and from a receiver vessel and a few line sections after each transfer test. The average difference between the before and after degree of non-homogeneity was < 1%, for the 21 tests considered. This shows that overall, the pneumatic transport of blended, fine nuclear fuel powders is possible, with only minor unblending occurring

  3. Transport safety of irradiated fuel; Seguridad en el transporte de combustible irradiado.

    Energy Technology Data Exchange (ETDEWEB)

    Rosa Giménez, R. de la

    2016-07-01

    The complication of the transport of spent fuel is significant not only because of the danger of the transported good itself but also for the size of the package. The number of this kind of expeditions are supposed to increase considerably in the coming years, for that reason is necessary for specialized companies such as ETSA be prepared. To this end, ETSA has already implemented most of the measures necessary to ensure safety - security of transport, not only during its execution but throughout the preparation.

  4. Ecological aspects of water coal fuel transportation and application

    Directory of Open Access Journals (Sweden)

    Anna SHVORNIKOVA

    2010-01-01

    Full Text Available This paper deals with the aspects of influence of transportation process and burning of water coal fuel on an ecological condition of environment. Also mathematical dependences between coal ash level and power consumption for transportation are presented.

  5. Operating a locomotive on liquid methane fuel

    International Nuclear Information System (INIS)

    Stolz, J.L.

    1992-01-01

    This paper reports that several years ago, Burlington Northern Railroad looked into the feasibility of operating a diesel railroad locomotive to also run on compressed natural gas in a dual-fuel mode. Recognizing the large volume of on-board storage required and other limitations of CNG in the application, a program was begun to fuel a locomotive with liquefied natural gas. Because natural gas composition can vary with source and processing, it was considered desirable to use essentially pure liquid methane as the engine fuel. Initial testing results show the locomotive system achieved full diesel-rated power when operating on liquid methane and with equivalent fuel efficiency. Extended testing, including an American Association of Railroad 500-hour durability test, was undertaken to obtain information on engine life, wear rate and lubrication oil life

  6. Microalgal and terrestrial transport biofuels to displace fossil fuels

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn,

  7. Alternate aircraft fuels: Prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  8. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    Science.gov (United States)

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use... Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  9. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels

    Directory of Open Access Journals (Sweden)

    Lucas Reijnders

    2009-02-01

    Full Text Available Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, sugar beet or wheat and biodiesel from rapeseed. When terrestrial biofuels are to replace mineral oil-derived transport fuels, large areas of good agricultural land are needed: about 5x108 ha in the case of biofuels from sugarcane or oil palm, and at least 1.8-3.6x109 ha in the case of ethanol from wheat, corn or sugar beet, as produced in industrialized countries. Biofuels from microalgae which are commercially produced with current technologies do not appear to outperform terrestrial plants such as sugarcane in their ability to displace fossil fuels. Whether they will able to do so on a commercial scale in the future, is uncertain.

  10. Operational Experience of Nuclear Fuel in Finnish Nuclear Power Plants (with Emphasis on WWER Fuel)

    International Nuclear Information System (INIS)

    Teraesvirta, R.

    2009-01-01

    The four operating nuclear reactors in Finland, Loviisa-1 and -2 and Olkiluoto-1 and -2 have now operated approximately 30 years. The overall operational experience has been excellent. Load factors of all units have been for years among the highest in the world. The development of the fuel designs during the years has enabled remarkable improvement in the fuel performance in terms of burnup. Average discharge burnup has increased more than 30 percent in all Finnish reactor units. A systematic inspection of spent fuel assemblies, and especially all failed fuel assemblies, is a good and useful practise employed in Finland. A possibility to inspect the fuel on site using a pool side inspection facility is a relatively economic way to find out root causes of fuel failures and thereby facilitate developing remedies to prevent similar failures in the future

  11. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wenbin [General Motors LLC, Pontiac, MI (United States)

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  12. Transport of oxide spent fuel. Industrial experience of COGEMA

    International Nuclear Information System (INIS)

    Lenail, B.

    1983-01-01

    COGEMA is ruling all transports of spent fuel to La Hague reprocessing plant. The paper summarizes some aspects of the experience gained in this field (road, rail and sea transports) and describes the standards defined by COGEMA as regards transport casks. These standards are as follows: - casks of dry type, - casks of the maximum size compatible with rail transports, - capability to be unloaded with standardized equipment and following standard procedures

  13. Review of BNFL's operational experience of wet type flasks

    International Nuclear Information System (INIS)

    McWilliam, D.S.

    2004-01-01

    BNFL International Transport's operational experience includes shipping 6000te of spent fuel from Japan to Sellafield, through its dedicated terminal at Barrow, and to Cogema La Hague. This fuel was shipped under the PNTL (Pacific Nuclear Transport Ltd) banner for which BNFL is responsible. PNTL owned and operated a fleet of 5 ships for Japanese business and a fleet of 80 wet and 58 dry flasks, for the transport of Light Water Reactor (LWR) spent fuel, from both Pressurised Water Reactors (PWR) and Boiling Water Reactors (BWR). ''Wet'' or ''dry'' flask is the common terminology used to distinguish between spent fuel flasks transporting fuel where the fuel is immersed in water, or spent fuel flasks that have been drained of water and dried. This paper concentrates on the wet type of flask utilised to transport fuel to Sellafield, that is the Excellox type (including similar type NTL derivatives). It aims to provide a summary of operational experience during handling at power stations, shipment, unloading at reprocessors and from scheduled maintenance

  14. A complete NUHOMS {sup registered} solution for storage and transport of high burnup spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bondre, J. [Transnuclear, Inc. (AREVA Group), Fremont, CA (United States)

    2004-07-01

    The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS {sup registered} solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS {sup registered} solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS {sup registered} 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS {sup registered} 32PTH system for higher crane capacity. These systems include NUHOMS {sup registered} - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask.

  15. Transport systems - solid indigenous fuels. [Identification of fuel transport problems in Sweden]. Transportsystem foer fasta inhemska braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Colliander, J

    1985-12-01

    The following problems have been indentified: - A rational structure of transporting requires an established and relatively open market. - The necessary rolling stock for fuel conveyance by rail is not available. - Roads have to be improved and new roads have to be built. Railways with low load now might get a motivation for reinforcement. - Because of the irregular spread of consumption storing and terminals problems will arise and increase the cost of transport. - Terminals and stores are situated at a convenient place for one single enterprice. On a far-away aim this will not be rational.

  16. Alternative Fuels Data Center: Fleet Application for School Transportation

    Science.gov (United States)

    Propane Buses Jan. 26, 2016 Video thumbnail for Biodiesel Offers an Easy Alternative for Fleets Biodiesel thumbnail for Biodiesel Fuels Education in Alabama Biodiesel Fuels Education in Alabama May 1, 2012 Video School Transportation Videos on YouTube Video thumbnail for New Hampshire Cleans up with Biodiesel Buses

  17. Operational limitations of light water reactors relating to fuel performance

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed

  18. Influence of the fuel operational parameters on the aluminium cladding quality of discharged fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Czajkowski, W.; Borek-Kruszewska, E. [Institute of Atomic Energy, Otwock Swierk (POLAND)

    2002-07-01

    In the last two years, the new MR6 type fuel containing 1550 g of U with 36% enrichment has been loaded into MARIA reactor core. Its aluminium cladding thickness is 0,6 mm and typical burnup -about 4080 MWh (as compared to 2880 MWh for the 80% enriched fuel used). However, increased fission product release from these assemblies was observed near the end of its operational time. The results presented earlier [1] show that the corrosion behaviour of aluminium cladding depends on the conditions of fuel operation in the reactor. The corrosion process in the aluminum of fuel cladding proceeds faster then in the aluminum of constructional elements. This tendency was also observed in MR-6/80% and in WWR- SM fuel assemblies. Therefore the visual tests of discharged MR-6/36% fuel elements were performed. Some change of appearance of aluminum cladding was observed, especially in the regions with large energy generation i.e. in the centre of reactor core and in the strong horizontal gradient of neutron flux. In the present paper, the results of visual investigation of discharged fuel assemblies are presented. The results of the investigation are correlated with the operational parameters. (author)

  19. Areva solutions for management of defective fuel

    International Nuclear Information System (INIS)

    Morlaes, I.; Vo Van, V.

    2014-01-01

    Defective fuel management is a major challenge for nuclear operators when all fuel must be long-term managed. This paper describes AREVA solutions for managing defective fuel. Transport AREVA performs shipments of defective fuel in Europe and proposes casks that are licensed for that purpose in Europe and in the USA. The paper presents the transport experience and the new European licensing approach of defective fuel transport. Dry Interim Storage AREVA is implementing the defective fuel storage in the USA, compliant with the Safety Authority's requirements. In Europe, AREVA is developing a new, more long-term oriented storage solution for defective fuel, the best available technology regarding safety requirements. The paper describes these storage solutions. Treatment Various types of defective fuel coming from around the world have been treated in the AREVA La Hague plant. Specific treatment procedures were developed when needed. The paper presents operational elements related to this experience. (authors)

  20. Transport and storage of spent fuel in Germany - possibilities for more safety

    International Nuclear Information System (INIS)

    Brennecke, P.; Fasten, Ch.; Nitsche, F.

    2004-01-01

    The safe transport of spent fuel from nuclear power plants in Germany is ensured by compliance with the dangerous goods transport regulations of class 7 which are fully consistent with the IAEA Transport Regulations and in parallel with the regulations of the German Atomic Energy Act. The purpose of this paper is to give an overview of this legal basis and the appropriate regulations applicable to spent fuel transport in Germany. Some aspects of the status and the future development of spent fuel shipments are described including experiences since resumption of those shipments in 2001. Furthermore, the status of licensing of on-site interim storage, assessments of an terrorist attack as well as consequences resulting from changes in energy policy are given

  1. Alternative Fuels in Transportation : Workforce needs and opportunities in support of reducing reliance on petroleum fuels

    Science.gov (United States)

    2016-01-01

    An overreliance on foreign oil and the negative impacts of using petroleum fuels on the worlds climate have prompted energy policies that support the diversification of transport fuels and aggressive work to transition to non-petroleum options. Th...

  2. Crew Transportation Operations Standards

    Science.gov (United States)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  3. Operations monitoring concept. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Kerr, H.T.

    1985-01-01

    Operations monitoring is a safeguards concept which could be applied in future fuel cycle facilities to significantly enhance the effectiveness of an integrated safeguards system. In general, a variety of operations monitoring techniques could be developed for both international and domestic safeguards application. The goal of this presentation is to describe specific examples of operations monitoring techniques as may be applied in a fuel reprocessing facility. The operations monitoring concept involves monitoring certain in-plant equipment, personnel, and materials to detect conditions indicative of the diversion of nuclear material. An operations monitoring subsystem should be designed to monitor operations only to the extent necessary to achieve specified safeguards objectives; there is no intent to monitor all operations in the facility. The objectives of the operations monitoring subsystem include: verification of reported data; detection of undeclared uses of equipment; and alerting the inspector to potential diversion activities. 1 fig

  4. Programmatic and technical requirements for the FMDP fresh MOX fuel transport package

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michelhaugh, R.D.; Pope, R.B.

    1997-12-01

    This document is intended to guide the designers of the package to all pertinent regulatory and other design requirements to help ensure the safe and efficient transport of the weapons-grade (WG) fresh MOX fuel under the Fissile Materials Disposition Program. To accomplish the disposition mission using MOX fuel, the unirradiated MOX fuel must be transported from the MOX fabrication facility to one or more commercial reactors. Because the unirradiated fuel contains large quantities of plutonium and is not sufficient radioactive to create a self-protecting barrier to deter the material from theft, DOE intends to use its fleet of safe secure trailers (SSTs) to provide the necessary safeguards and security for the material in transit. In addition to these requirements, transport of radioactive materials must comply with regulations of the Department of Transportation and the Nuclear Regulatory Commission (NRC). In particular, NRC requires that the packages must meet strict performance requirements. The requirements for shipment of MOX fuel (i.e., radioactive fissile materials) specify that the package design is certified by NRC to ensure the materials contained in the packages are not released and remain subcritical after undergoing a series of hypothetical accident condition tests. Packages that pass these tests are certified by NRC as a Type B fissile (BF) package. This document specifies the programmatic and technical design requirements a package must satisfy to transport the fresh MOX fuel assemblies

  5. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  6. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Nutt, Mark; Shuler, James

    2012-01-01

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  7. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  8. The role of bio-fuels in satisfying US transportation fuel demands

    Energy Technology Data Exchange (ETDEWEB)

    Akinci, Berk; Fitch, Jonathan V. [Department of Electrical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 (United States); Kassebaum, Paul G. [Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 (United States); Thompson, Robert W. [Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 (United States)

    2008-09-15

    In spite of the abundant interest in conversion of agricultural products into useful energy carriers, there have been relatively few studies assessing the magnitude of the impact these fuels can make on satisfying US energy demands. There have been fewer studies of unintended consequences stemming from these enterprises, although several research groups have begun questioning the appropriate levels of subsidies provided to individuals and companies to stimulate production of bio-fuels. In this paper, the production capacities for bio-fuels - ethanol and biodiesel - are evaluated for their potential impact on the US energy market. Several ramifications of these technologies are reviewed. This study concludes that ethanol or biodiesel production do not appear scalable to make a significant difference on the US fossil fuel demand for transportation. Aspects of this study point to systemic changes that may be required in lifestyles and attitudes toward energy consumption. Finally, comments regarding US energy policies are included to stimulate discussion. (author)

  9. The role of bio-fuels in satisfying US transportation fuel demands

    International Nuclear Information System (INIS)

    Akinci, Berk; Kassebaum, Paul G.; Fitch, Jonathan V.; Thompson, Robert W.

    2008-01-01

    In spite of the abundant interest in conversion of agricultural products into useful energy carriers, there have been relatively few studies assessing the magnitude of the impact these fuels can make on satisfying US energy demands. There have been fewer studies of unintended consequences stemming from these enterprises, although several research groups have begun questioning the appropriate levels of subsidies provided to individuals and companies to stimulate production of bio-fuels. In this paper, the production capacities for bio-fuels-ethanol and biodiesel-are evaluated for their potential impact on the US energy market. Several ramifications of these technologies are reviewed. This study concludes that ethanol or biodiesel production do not appear scalable to make a significant difference on the US fossil fuel demand for transportation. Aspects of this study point to systemic changes that may be required in lifestyles and attitudes toward energy consumption. Finally, comments regarding US energy policies are included to stimulate discussion

  10. 10 CFR 51.52 - Environmental effects of transportation of fuel and waste-Table S-4.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental effects of transportation of fuel and waste... Environmental effects of transportation of fuel and waste—Table S-4. Under § 51.50, every environmental report... detailed analysis of the environmental effects of transportation of fuel and wastes to and from the reactor...

  11. Energy system aspects of hydrogen as an alternative fuel in transport

    International Nuclear Information System (INIS)

    Ramesohl, Stephan; Merten, Frank

    2006-01-01

    Considering the enormous ecological and economic importance of the transport sector the introduction of alternative fuels-together with drastic energy efficiency gains-will be a key to sustainable mobility, nationally as well as globally. However, the future role of alternative fuels cannot be examined from the isolated perspective of the transport sector. Interactions with the energy system as a whole have to be taken into account. This holds both for the issue of availability of energy sources as well as for allocation effects, resulting from the shift of renewable energy from the stationary sector to mobile applications. With emphasis on hydrogen as a transport fuel for private passenger cars, this paper discusses the energy systems impacts of various scenarios introducing hydrogen fueled vehicles in Germany. It identifies clear restrictions to an enhanced growth of clean hydrogen production from renewable energy sources (RES). Furthermore, it points at systems interdependencies that call for a priority use of RES electricity in stationary applications. Whereas hydrogen can play an increasing role in transport after 2030 the most important challenge is to exploit short-mid-term potentials of boosting car efficiency

  12. Intermediate review on the transportation of spent fuel assemblies

    International Nuclear Information System (INIS)

    2000-10-01

    The transportation of spent fuel from the Swiss nuclear power plants to the reprocessing facilities in France and England was interrupted in May 1998 because of contamination that occurred. These measures were presented in the March 1999 statement made by the Office for the Safety of Nuclear Plants (HSK). The transport of spent fuel has been once more permitted and carried out under new conditions since August 1999. In its interim report of October 2000, HSK analyses and evaluates the experience gained since the resumption of transports. For each measure required, it compares the advantages and drawbacks and makes decisions on the maintenance or reduction of the measures to be taken. Between August 1999 and July 2000, 12 spent fuel transports were carried out between the Swiss nuclear power plants and the COGEMA reprocessing facility in France (7 from Goesgen, 4 from Beznau and 1 from Leibstadt). Neither noticeable disagreement with nor exceeding of contamination limits were noted during those 12 transports. This satisfactory result demonstrates that the measures required to be taken are effective. HSK expected from the measures a reduction of the frequency of exceeding contamination limits to less than 5% and also a marked reduction in their frequency. The present results correspond to this expectation; however, the statistical basis is not yet sufficient to be able to draw definitive conclusions. Nevertheless it is noticed that the situation in France, where similar measures have been taken, was very clearly improved. The frequency of exceeding contamination limits was reduced to 2% during the first semester of the year 2000, while it amounted to more than 30% before April 1998. It is the comprehensiveness of the measures required by HSK which allows the avoidance of contamination. The analysis shows that just a small number of measures only contribute insignificantly to the goal sought after. Therefore, two measures will be suppressed (packing of the empty

  13. Existing experimental criticality data applicable to nuclear-fuel-transportation systems

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1983-02-01

    Analytical techniques are generally relied upon in making criticality evaluations involving nuclear material outside reactors. For these evaluations to be accepted the calculations must be validated by comparison with experimental data for a known set of conditions having physical and neutronic characteristics similar to those conditions being evaluated analytically. The purpose of this report is to identify those existing experimental data that are suitable for use in verifying criticality calculations on nuclear fuel transportation systems. In addition, near term needs for additional data in this area are identified. Of the considerable amount of criticality data currently existing, that are applicable to non-reactor systems, those particularly suitable for use in support of nuclear material transportation systems have been identified and catalogued into the following groups: (1) critical assemblies of fuel rods in water; (2) critical assemblies of fuel rods in water containing soluble neutron absorbers; (3) critical assemblies containing solid neutron absorber; (4) critical assemblies of fuel rods in water with heavy metal reflectors; and (5) critical assemblies of fuel rods in water with irregular features. A listing of the current near term needs for additional data in each of the groups has been developed for future use in planning criticality research in support of nuclear fuel transportation systems. The criticality experiments needed to provide these data are briefly described and identified according to priority and relative cost of performing the experiments

  14. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  15. Sustainable fuel for the transportation sector.

    Science.gov (United States)

    Agrawal, Rakesh; Singh, Navneet R; Ribeiro, Fabio H; Delgass, W Nicholas

    2007-03-20

    A hybrid hydrogen-carbon (H(2)CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H(2) and CO(2) recycled from the H(2)-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H(2)CAR process. (i) The land area needed to grow the biomass is transportation sector. (ii) Whereas the literature estimates known processes to be able to produce approximately 30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H(2)CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. (iii) The synthesized liquid provides H(2) storage in an open loop system. (iv) Reduction to practice of the H(2)CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H(2) in the H(2)CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H(2)CAR is that there is no additional CO(2) release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO(2).

  16. Aircraft transporting container for nuclear fuel

    International Nuclear Information System (INIS)

    Kurakami, Jun-ichi; Kubo, Minoru.

    1991-01-01

    The present invention concerns an air craft transporting container for nuclear fuels. A sealing container that seals a nuclear fuel container and constitutes a sealed boundary for the transporting container is incorporated in an inner container. Shock absorbers are filled for absorbing impact shock energy in the gap between the inner container and the sealing container. The inner container is incorporated with wooden impact shock absorbers being filled so that it is situated in a substantially central portion of an external container. Partitioning cylinders are disposed coaxially in the cylindrical layer filled with wooden impact shock absorbers at an intermediate portion between the outer and the inner containers. Further, a plurality of longitudinally intersecting partitioning disks are disposed each at a predetermined distance in right and left cylindrical wooden impact shock absorbing layers which are in contact with the end face of the inner container. Accordingly, the impact shock energy can be absorbed by the wooden impact shock absorbers efficiently by a plurality of the partitioning disks and the partitioning cylinders. (I.N.)

  17. Safety analysis to support a safe operating envelope for fuel

    International Nuclear Information System (INIS)

    Gibb, R.A.; Reid, P.J.

    1998-01-01

    This paper presents an approach for defining a safe operating envelope for fuel. 'Safe operating envelope' is defined as an envelope of fuel parameters defined for application in safety analysis that can be related to, or used to define, the acceptable range of fuel conditions due to operational transients or deviations in fuel manufacturing processes. The paper describes the motivation for developing such a methodology. The methodology involved four steps: the update of fission product inventories, the review of sheath failure criteria, a review of input parameters to be used in fuel modelling codes, and the development of an improved fission product release code. This paper discusses the aspects of fuel sheath failure criteria that pertain to operating or manufacturing conditions and to the evaluation and selection of modelling input data. The other steps are not addressed in this paper since they have been presented elsewhere. (author)

  18. Economical motor transport operations

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, P

    1979-09-01

    Motor transport is one area in a company where energy conservation is a function primarily of operative education and motivation rather than mechanical or technical control and monitoring. Unless the driver wants to save energy by proper operation of the vehicle, there is nothing the company can do to force him, whatever equipment it fits to the vehicles, or incentives it offers. This article gives an overview of the use of energy in road transport and examines a number of actions that can be taken to conserve energy. It discusses the question of the cost-effectiveness of transport energy conservation in the light of the complex issues involved. The problems and opportunities of implementing energy-saving programs are examined. (MCW)

  19. The operational efficiency of waterway transport of forest chips on Finland's Lake Saimaa

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, K.; Ranta, T. [Lappeenranta Univ. of Technology, LUT Savo Sustainable Technologies, Mikkeli (Finland); Vaatainen, K.; Asikainen, A. [The Finnish Forest Research Inst., Joensuu (Finland)], E-mail: kalle.karttunen@lut.fi

    2012-11-01

    New and cost-efficient methods for use in supply chains for energy wood should be found, to reach the targets of the renewable energy utilisation set by the European Union. The long-distance waterway transportation of forest fuels should be thoroughly investigated, especially in areas where the transport distance is long and waterways could provide a feasible method of conveying forest fuel. In comparison to transport of forest chips by truck, barge-based waterway transport shows a competitive advantage due to the larger loads and higher bulk density of chips it allows. The cost-efficiency of waterway transportation operations related to forest chips in Finland's Lake Saimaa region was studied using practical demonstrations and discrete-event simulation. The varying demand for fuel wood in three separate bio-power plants on the Saimaa lakeside (near the cities of Varkaus, Mikkeli, and Savonlinna) was addressed in several barge transportation scenarios. Finally, the economy of barge transportation was compared to the economy of truck transportation as a function of transportation distance and in terms of the annual performance of the transportation methods examined. The waterway supply chain of forest chips was cost-competitive to road transport by truck after 100-150 km. According to the simulation study, the most economical waterway transport options were based on fixed barge system and shift-independent harbor logistics where loading and unloading of barges were carried-out with a wheeled loader and a belt conveyor. Total supply chain costs including the best waterway logistics from road side storage to power plant ranged from 10.75 euros to 11.64 euros/MWh in distances of 100-150 km by waterways. The energy-density of forest chips in the barge load was found to be, on average, 25% higher than that in truck hauling, because of the better compaction of chips. Waterway transport is a viable option for long-distance transportation of forest chips in Eastern

  20. Fresh MOX fuel transport in Germany: experience for using the MX6

    Energy Technology Data Exchange (ETDEWEB)

    Lallemant, T. [COGEMA Logistics (AREVA Group), Bagnols/sur Ceze (France); Marien, L. [FBFC-I (AREVA Group), Dessel (Belgium); Wagner, R. [RWE, Gundremmingen (Germany); Jahreiss, W. [FRAMATOME ANP GmbH (AREVA Group), Erlangen (Germany); Tschiesche, H. [NCS, Hanau (Germany)

    2004-07-01

    The MX6 packaging developed by COGEMA LOGISTICS replaces the BWR SIEMENS packaging and SIEMENS III packaging for the transport of either BWR or PWR fresh MOX assemblies. It is licensed in France, Germany and Belgium according to TS-R-1 requirements (IAEA 1996). The associated security transport system was developed in co-operation with NCS (Nuclear Cargo + Service GmbH). The MX6 packaging is based on innovative solutions implemented at each step of the design. In 2004, RWE GUNDREMMINGEN Nuclear Power Plant (NPP) will be the first NPP delivered with the MX6 system and MOX assemblies manufactured by BELGONUCLEAIRE and FBFC in Belgium. Before this first transport, successful cold tests were performed for qualification of the whole system with the participation of all parties involved: NPP, carrier, fuel supplier and local Authorities. These tests were conducted by the NPP's operators in FBFC and GUNDREMMINGEN facilities and lead to the validation of the operating manual. Specific conditions for the return of the empty MX6 were also agreed between all parties. Similar operation will be conducted in each NPP before the first use of the MX 6. The large payload of the MX6: - 16 BWR MOX assemblies in one packaging instead of 2 - 6 PWR MOX assemblies in one packaging instead of 3 contributes to the optimisation of the dose uptake during unloading in the NPP. In this paper, the main contributors to the first MOX transport to Germany with the MX6 will present their involvement and feedback at each step of the transport of this new type of packaging, including loading and unloading operations. The use of the MX6 will be extended to other German NPP's from the next year. After FBFC in Belgium, MELOX in France will load the MX6 as well as the current MX8 packaging for the delivery to the French NPP's.

  1. Fresh MOX fuel transport in Germany: experience for using the MX6

    International Nuclear Information System (INIS)

    Lallemant, T.; Marien, L.; Wagner, R.; Jahreiss, W.; Tschiesche, H.

    2004-01-01

    The MX6 packaging developed by COGEMA LOGISTICS replaces the BWR SIEMENS packaging and SIEMENS III packaging for the transport of either BWR or PWR fresh MOX assemblies. It is licensed in France, Germany and Belgium according to TS-R-1 requirements (IAEA 1996). The associated security transport system was developed in co-operation with NCS (Nuclear Cargo + Service GmbH). The MX6 packaging is based on innovative solutions implemented at each step of the design. In 2004, RWE GUNDREMMINGEN Nuclear Power Plant (NPP) will be the first NPP delivered with the MX6 system and MOX assemblies manufactured by BELGONUCLEAIRE and FBFC in Belgium. Before this first transport, successful cold tests were performed for qualification of the whole system with the participation of all parties involved: NPP, carrier, fuel supplier and local Authorities. These tests were conducted by the NPP's operators in FBFC and GUNDREMMINGEN facilities and lead to the validation of the operating manual. Specific conditions for the return of the empty MX6 were also agreed between all parties. Similar operation will be conducted in each NPP before the first use of the MX 6. The large payload of the MX6: - 16 BWR MOX assemblies in one packaging instead of 2 - 6 PWR MOX assemblies in one packaging instead of 3 contributes to the optimisation of the dose uptake during unloading in the NPP. In this paper, the main contributors to the first MOX transport to Germany with the MX6 will present their involvement and feedback at each step of the transport of this new type of packaging, including loading and unloading operations. The use of the MX6 will be extended to other German NPP's from the next year. After FBFC in Belgium, MELOX in France will load the MX6 as well as the current MX8 packaging for the delivery to the French NPP's

  2. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  3. Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  4. Transport fuel demand responses to fuel price and income projections : Comparison of integrated assessment models

    NARCIS (Netherlands)

    Edelenbosch, O. Y.; van Vuuren, Detlef; Bertram, C.; Carrara, S.; Emmerling, J.; Daly, H.; Kitous, A.; McCollum, D. L.; Saadi Failali, N.

    Income and fuel price pathways are key determinants in projections of the energy system in integrated assessment models. In recent years, more details have been added to the transport sector representation in these models. To better understand the model dynamics, this manuscript analyses transport

  5. An economic analysis of transportation fuel policies in Brazil: Fuel choice, land use, and environmental impacts

    International Nuclear Information System (INIS)

    Nuñez, Hector M.; Önal, Hayri

    2016-01-01

    Brazil uses taxes, subsidies, and blending mandates as policy instruments to manage and stabilize its transportation fuel markets. The fuel sector has been very dynamic in recent years due to frequent policy adjustments and variable market conditions. In this paper, we use a price endogenous economic simulation model to analyze the impacts of such policy adjustments under various challenging conditions in the global ethanol and sugar markets. Our analysis specifically focuses on Brazilian producers' supply responses, consumers' driving demand and fuel choice, ethanol trade, land use, greenhouse gas emissions, and social welfare. The model results show that (i) under a low ethanol blending rate, conventional vehicles would be driven significantly less while flex-fuel and ethanol-dedicated vehicles would not be affected significantly; (ii) lowering the fuel taxes adversely affects the competitiveness of sugarcane ethanol against gasoline blends, thus lowering producers' surplus; and (iii) while a reduction in fuel taxes is advantageous in terms of overall social welfare, it has serious environmental impacts by increasing the GHG emissions from transportation fuels consumed in Brazil. - Highlights: • We examine the economic and environmental impacts of Brazilian fuel policies. • We also analyze impacts under different sugar and ethanol markets conditions. • Lowering blending rate reduces distance driven by conventional cars. • Lowering fuel tax rates affects competitiveness of ethanol against gasoline blend. • Reducing fuel tax rates has dramatic environmental impacts by increasing emissions.

  6. Energy and the transport sector. [For countries with no fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, P E

    1979-01-01

    This article describes the current energy situation from both the global viewpoint and the viewpoint of countries with no indigenous sources of fossil fuels. The lack of fossil fuels necessitates a substitution with indigenous sources of energy, where feasible. Long-distance railway transport is a self-evident element in the expanding transport sector. In view of the proven high energy efficiency of electric railway systems, there is every incentive for a more active investment policy in railway electrification. This applies to both medium-distance transportation of freight and passengers and different electric mass transit systems.

  7. Regulations concerning the transport of nuclear fuel materials outside the works or the enterprise

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for its execution, and to enforce the law. Basic terms are defined, such as vehicle transport, simplified transport, nuclear fuel transport goods, exclusive loading, worker, cumulative dose and exposure radiation dose. Nuclear fuel transport goods are classified into types of L, A, BM and BU according to their radioactivities. Radiation dose rate shall not exceed 0.5 milli-rem an hour on the surface of the type L, and 200 milli-rem an hour on the surface of the type A. For the type BM, the rate shall not surpass 1,000 milli-rem an hour at the distance of 1 meter from the surface in the special test conditions. The transport goods of fissile materials must not reach criticality on the way, but also shall conform to the stipulated technical standards. The particular things contaminated by nuclear fuel materials can be transported without specifying as nuclear fuel transport goods, and their radiation dose rate shall not go beyond 0.5 milli-rem an hour on the surface. The transport by special measures, the technical standards of simplified transport and measures to be taken in danger in transit are defined, respectively.(Okada, K.)

  8. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  9. Environmental economics of lignin derived transport fuels

    NARCIS (Netherlands)

    Obydenkova, Svetlana V.; Kouris, Panos D.; Hensen, Emiel J. M.; Heeres, Hero J.; Boot, Michael D.

    2017-01-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative

  10. A conceptual model for the fuel oxidation of defective fuel

    International Nuclear Information System (INIS)

    Higgs, J.D.; Lewis, B.J.; Thompson, W.T.; He, Z.

    2007-01-01

    A mechanistic conceptual model has been developed to predict the fuel oxidation behaviour in operating defective fuel elements for water-cooled nuclear reactors. This theoretical work accounts for gas-phase transport and sheath reactions in the fuel-to-sheath gap to determine the local oxygen potential. An improved thermodynamic analysis has also been incorporated into the model to describe the equilibrium state of the oxidized fuel. The fuel oxidation kinetics treatment accounts for multi-phase transport including normal diffusion and thermodiffusion for interstitial oxygen migration in the solid, as well as gas-phase transport in the fuel pellet cracks. The fuel oxidation treatment is further coupled to a heat conduction equation. A numerical solution of the coupled transport equations is obtained by a finite-element technique with the FEMLAB 3.1 software package. The model is able to provide radial-axial profiles of the oxygen-to-uranium ratio and the fuel temperatures as a function of time in the defective element for a wide range of element powers and defect sizes. The model results are assessed against coulometric titration measurements of the oxygen-to-metal profile for pellet samples taken from ten spent defective elements discharged from the National Research Universal Reactor at the Chalk River Laboratories and commercial reactors

  11. Leveling the playing field of transportation fuels: Accounting for indirect emissions of natural gas

    International Nuclear Information System (INIS)

    Sexton, Steven; Eyer, Jonathan

    2016-01-01

    Natural gas transportation fuels are credited in prior studies with greenhouse gas emissions savings relative to petroleum-based fuels and relative to the total emissions of biofuels. These analyses, however, overlook a source of potentially large indirect emissions from natural gas transportation fuels, namely the emissions from incremental coal-fired generation caused by price-induced substitutions away from natural-gas-fired electricity generation. Because coal-fired generation emits substantially more greenhouse gases and criteria air pollutants than natural-gas-fired generation, this indirect coal-use change effect diminishes potential emissions savings from natural gas transportation fuels. Estimates from a parameterized multi-market model suggest the indirect coal-use change effect rivals in magnitude the indirect land-use change effect of biofuels and renders natural gas fuels as carbon intensive as petroleum fuels. - Highlights: •Natural gas used in transport causes indirect emissions in the electricity sector. •These emissions result from increased coal use in electricity generation. •They rival in magnitude indirect land use change (ILUC) emissions of biofuels. •Natural gas fuels are estimated to be as carbon intensive as the petroleum fuels. •Policy ignores indirect emissions from natural gas.

  12. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  13. Promoting biogas production and using it as transport fuel in the Helsinki region; Suunnitelma liikennebiokaasun tuotannon ja kaeytoen edistaemiseksi Helsingin seudulla

    Energy Technology Data Exchange (ETDEWEB)

    Rasi, S.; Havukainen, J.; Uusitalo, V.; Andersson, R.; Manninen, K.; Aro-Heinilae, E.; Rintala, J.

    2012-11-01

    The main objective of the project was to promote biogas production and its use as transport fuel. The aims in the four Finnish and two Estonian case areas were to reduce the amount and improve the sustainable use of waste and sludge, to promote biogas production, to start biogas use as transport fuel and to provide tools for implementing the aims. The total biomethane potential in the Helsinki region corresponds to approximately 450 GWh/a. The most potential user for biomethane is public transport. The total amount of biomethane would suffice for 80% of the busses operating in the Helsinki region. Using biogas as a transport fuel instead of energy production in the Helsinki region would result in emission reductions (13 000 t{sub CO2,eq}/a). However if the fuel replacing biogas in energy production would be renewable, the emission reductions would be significantly greater. The economical assessment indicates that the production of biogas is economically feasible if all the produced gas can be sold. Biogas produced near the natural gas grid can also be transported to the Helsinki region where there are better possibilities to find uses for it. In this way, for example, gas that is produced in Kymenlaakso but is not consumed there can be transported via the natural gas grid, assuming that the production plant is reasonably close to the grid. (orig.)

  14. Life cycle analysis of transportation fuel pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-24

    The purpose of this work is to improve the understanding of the concept of life cycle analysis (LCA) of transportation fuels and some of its pertinent issues among non-technical people, senior managers, and policy makers. This work should provide some guidance to nations considering LCA-based policies and to people who are affected by existing policies or those being developed. While the concept of employing LCA to evaluate fuel options is simple and straightforward, the act of putting the concept into practice is complex and fraught with issues. Policy makers need to understand the limitations inherent in carrying out LCA work for transportation fuel systems. For many systems, even those that have been employed for a 100 years, there is a lack of sound data on the performance of those systems. Comparisons between systems should ideally be made using the same tool, so that differences caused by system boundaries, allocation processes, and temporal issues can be minimized (although probably not eliminated). Comparing the results for fuel pathway 1 from tool A to those of fuel system 2 from tool B introduces significant uncertainty into the results. There is also the question of the scale of system changes. LCA will give more reliable estimates when it is used to examine small changes in transportation fuel pathways than when used to estimate large scale changes that replace current pathways with completely new pathways. Some LCA tools have been developed recently primarily for regulatory purposes. These tools may deviate from ISO principles in order to facilitate simplicity and ease of use. In a regulatory environment, simplicity and ease of use are worthy objectives and in most cases there is nothing inherently wrong with this approach, particularly for assessing relative performance. However, the results of these tools should not be confused with, or compared to, the results that are obtained from a more complex and rigorous ISO compliant LCA. It should be

  15. A methodology for the evaluation of fuel rod failures under transportation accidents

    International Nuclear Information System (INIS)

    Rashid, J.Y.R.; Machiels, A.J.

    2004-01-01

    Recent studies on long-term behavior of high-burnup spent fuel have shown that under normal conditions of stor-age, challenges to cladding integrity from various postulated damage mechanisms, such as delayed hydride crack-ing, stress-corrosion cracking and long-term creep, would not lead to any significant safety concerns during dry storage, and regulatory rules have subsequently been established to ensure that a compatible level of safety is maintained. However, similar safety assurances for spent fuel transportation have not yet been developed, and further studies are currently being conducted to evaluate the conditions under which transportation-related safety issues can be resolved. One of the issues presently under evaluation is the ability and the extent of the fuel as-semblies to maintain non-reconfigured geometry during transportation accidents. This evaluation may determine whether, or not, the shielding, confinement, and criticality safety evaluations can be performed assuming initial fuel assembly geometries. The degree to which spent fuel re-configuration could occur during a transportation accident would depend to a large degree on the number of fuel rod failures and the type and geometry of the failure modes. Such information can only be developed analytically, as there is no direct experimental data that can provide guidance on the level of damage that can be expected. To this end, the paper focuses on the development of a modeling and analysis methodology that deals with this general problem on a generic basis. First consideration is given to defining acci-dent loading that is equivalent to the bounding, although analytically intractable, hypothetical transportation acci-dent of a 9-meter drop onto essentially unyielding surface, which is effectively a condition for impact-limiters de-sign. Second, an analytically robust material constitutive model, an essential element in a successful structural analysis, is required. A material behavior model

  16. Effects of AFR storage location on spent fuel transportation

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.

    1979-01-01

    In order to assess the impact of Away-From-Reactor (AFR) siting on the spent fuel transportation system, five different sites were studied: Argonne, Oak Ridge, Savannah River, Idaho Falls, and Richland. Transportation costs, cask fleet sizes, and radiation exposures received by transportation workers and the general public were calculated for each site. Results show that the eastern three sites are best. 5 figures, 5 tables

  17. k-eff of the Bn-350 reactor fuel by transportation

    International Nuclear Information System (INIS)

    Lado, A. V.; Romanenko, O. G.; Tazhibaeva, I. L.

    2001-01-01

    There is packaging of nuclear fuel on the BN-350 fast breeder reactor, Actau, now. The analysis of criticality while this procedure was done in the Safety Analysis Report . Keeping in mind the planning displacement of the fuel to a site of long-term storage, the criticality assessment of the fuel packed into transportation cask carried out in this paper

  18. Transfer of radioactive materials in the fuel cycle. Transportation systems, transportation volume and radiation protection

    International Nuclear Information System (INIS)

    Schwarz, G.

    1997-01-01

    No other aspect of the carriage of hazardous goods has been provoking such long-lived concern in the general public and in the press during the last few years as the transport of spent nuclear fuels and high-level radioactive wastes to the storage facility at Gorleben. One reason for this controversy, besides clear-cut opposition in principal against such transfer activities, is the fact that there is an information gap, so that large parts of the population are not well informed about the relevant legal safety requirements and obligations governing such transports. The article therefore tries to fill this gap, presenting information on the number and necessity of transports of radioactive materials in the nuclear fuel cycle, the relevant scenarios, the transportation systems and packing and shielding requirements, as well as information on the radiological classification and hazardousness of waste forms. (Orig.) [de

  19. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  20. Fuel deposits, chemistry and CANDU reactor operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2013-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU reactor, the first being the Nuclear Power Demonstration-2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channel led to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5, and subsequently utilized for each CANDU unit since. The difference being that during 'hot conditioning' of CANDU heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  1. Handling and transfer operations for partially-spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, J K [PUSPATI, Kuala Lumpur (Malaysia)

    1983-12-01

    This project involved the handling and transfer of partially-spent reactor fuel from the Oregon State University TRIGA Reactor in Corvallis, Oregon to Hanford Engineering Development Laboratory in Richland, Washington. The method of handling is dependent upon the burn-up history of the fuel elements. Legal constraints imposed by standing U.S. nuclear regulations determine the selection of transport containers, transportation procedures, physical security arrangements in transit and nuclear material accountability documentation. Results of in-house safety evaluations of the project determine the extent of involvement of pertinent nuclear regulatory authorities. The actual handling activities and actual radiation dose rates are also presented.

  2. Fuel choices for fuel-cell vehicles : well-to-wheel energy and emission impacts

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Because of their high energy efficiencies and low emissions, fuel-cell vehicles (FCVs) are undergoing extensive research and development. While hydrogen will likely be the ultimate fuel to power fuel-cell vehicles, because of current infrastructure constraints, hydrogen-carrying fuels are being investigated as transitional fuel-cell fuels. A complete well-to-wheels (WTW) evaluation of fuel-cell vehicle energy and emission effects that examines (1) energy feedstock recovery and transportation; (2) fuel production, transportation, and distribution; and (3) vehicle operation must be conducted to assist decision makers in selecting the fuel-cell fuels that achieve the greatest energy and emission benefits. A fuel-cycle model developed at Argonne National Laboratory--called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model--was used to evaluate well-to-wheels energy and emission impacts of various fuel-cell fuels. The results show that different fuel-cell fuels can have significantly different energy and greenhouse gas emission effects. Therefore, if fuel-cell vehicles are to achieve the envisioned energy and emission reduction benefits, pathways for producing the fuels that power them must be carefully examined.

  3. Needs of anticipation for transport operations

    International Nuclear Information System (INIS)

    Galtier, J.

    2005-01-01

    COGEMA LOGISTICS (formerly Transnucleaire) has designed and manufactured several thousands of casks, and owns fleet of more than 4000 casks. Benefiting from more than 40 years of experience in cask shipment COGEMA LOGISTICS has demonstrated an outstanding performance in transportation and has integrated all feed back from past successful operations in current ones. Early anticipation of needs, i.e. at preliminary design step, is of major importance from a technical point of view (capacity, interface, handling means, licensing), and also in terms of political and public acceptance issues from the design step. This paper will highlight for each step required for the implementation of an optimal transport and storage system: Decision to proceed (including political aspects)-Design of casks to be used (including operational interface)-Licensing process-Manufacturing process-Transport plan, Public Acceptance-Loading Operations-Transport-Maintenance operations. (authors)

  4. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  5. Operational indices of WWER-1000 fuel assemblies and their improvements

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, I; Demin, E [Opytno-Konstruktorskoe Byuro Gidropress, Podol` sk (Russian Federation)

    1994-12-31

    The most general design features of WWER-1000 fuel assembly are discussed. The following advantages of design are stated as well as their operational confirmation and occurrences: (1) `packing` density (tight-lattice) of fuel rods within the fuel assemblies; (2) simple handling of fuel assemblies and its small vulnerability; (3) good conditions for coolant mixing; (4) protection of the absorber rods against coolant effect; (5) adaptability to manufacture that provides stable quality. The main operational indices gathered during a ten-year period (1982-1992) at 17 WWER-1000 units in Russia and Ukraine are outlined. Provisions for emergency protection reliability are described. Future directions to improve fuel economy and control rod operability are discussed. 1 fig.

  6. Operational indices of WWER-1000 fuel assemblies and their improvements

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Demin, E.

    1994-01-01

    The most general design features of WWER-1000 fuel assembly are discussed. The following advantages of design are stated as well as their operational confirmation and occurrences: 1) 'packing' density (tight-lattice) of fuel rods within the fuel assemblies; 2) simple handling of fuel assemblies and its small vulnerability; 3) good conditions for coolant mixing; 4) protection of the absorber rods against coolant effect; 5) adaptability to manufacture that provides stable quality. The main operational indices gathered during a ten-year period (1982-1992) at 17 WWER-1000 units in Russia and Ukraine are outlined. Provisions for emergency protection reliability are described. Future directions to improve fuel economy and control rod operability are discussed. 1 fig

  7. Physics operating experience and fuel management of RAPS-1

    International Nuclear Information System (INIS)

    Nakra, A.N.; Purandare, H.D.; Srinivasan, K.R.; Rastogi, B.P.

    1976-01-01

    Rajasthan Atomic Power Station Unit-1 achieved criticality on August 11, 1972. Thereafter the reactor was brought to power, in November, 1972. Due to non-availability of the depleted fuel, the loading of which was necessary to obtain full power to begin with, the core was loaded with all natural uranium fuel and only 70% of the full power could be achieved. During the reactor operation for the last three years, the reactor has seen more than one effective full power year and about 1400 fresh fuel bundles have been loaded in the core. The reactor was subjected to about 150 power cycles resulting in more than 30% variation in operating power level and about 10 fuel bundles have failed. For satisfactory fuel management and refuelling decisions, a three dimensional simulator TRIVENI was developed. This was extensively tested during the start-up experiments and was found to be a satisfactory tool for day to day operation of the plant. In this paper, a brief account of analysis of the start-up experiments, approach to full power, power distortions and flux peaking, fuel management service and analysis of the failed fuel data has been given. (author)

  8. Mutual influences of reactor operation and fuel cycle management

    International Nuclear Information System (INIS)

    Lewiner, C.; Schaerer, R.

    1989-01-01

    OPEN (Organisation des Producteurs d'Energie Nucleaire) comprises the electricity producers from seven European countries which now operate or intend to operate nuclear power plants. Its activities include the study of technical, economic and legal subjects related to nuclear electricity. A continuous analysis of the fuel cycle market has been pursued within OPEN for almost 15 years. For the past few years, OPEN has also been concerned with the subject of fuel management in the reactors operated by its members. The purpose of this effort was to obtain an overall picture of possible fuel improvements and to evaluate the effects, in particular the economic ones, of diverse fuel reload managements and of reprocessed uranium and plutonium recycling. The conclusions of this study are as follows: Increase in burn-ups produces notable savings in electricity generating costs. It also permits adaptation of fuel loading mode to the desirable irradiation campaign length. This allows for better management of the country's overall means of electricity generation (nuclear, fossil-fuelled or hydro plants), and adjustment to the electrical demand. These new reload schemes have various impacts on natural uranium consumption and enrichment, but, above all, they affect directly all fuel cycle operations linked to the number of assemblies (fabrication, reprocessing, etc.). 6 figs

  9. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  10. MX 8: the next generation high capacity system for the transport of fresh MOX fuel

    International Nuclear Information System (INIS)

    Potelle, F.; Issard, H.

    1998-01-01

    The choice of reprocessing policy was made a long time ago in France, leading to the development of an advanced Pu recycling industry. In 1987, Saint Laurent was the first French reactor to be loaded with fresh MOX fuel. Transnucleaire, then in charge of transport packaging development, created the FS 69 concept, derived from the classical RCC concept for the transport of UO 2 fresh fuel. On the other hand, Cogema, as the main actor in the field of fuel cycle and thus in transport matters, developed the associated security truck and security caisson in order to provide the transport system with the acceptable Physical Protection devices required by French Authorities. As a whole, the security truck and the FS 69 have now been used for more than ten years with a remarkable level of efficiency and safety. Indeed, more than 600 fresh MOX fuel elements have been delivered, without any incident, both regarding safety or fuel integrity requirements. But, as a matter of fact, the replacement of FS 69 transport system is now scheduled for several reasons. First of all, the burnups achieved with UO 2 fuel progressed together with its enrichment within the last ten years, and the MOX 'equivalence' also implies that its Pu content be increased to enhance its reactor performances: from 5.25 % of Pu content today, the MOX fuel will reach 7% tomorrow, and almost 10% the day after tomorrow. Lastly, the reprocessing/recycling policy has been confirmed and amplified, leading to an increasing number of 'moxified' reactors. As a consequence, the French utility (EDF), the fuel designer (Fragema, the joint venture between Framatome and Cogema), the fuel manufacturer (Cogema), and the transporter (Transnucleaire) joined in a specific working group devoted to the development of the MX 8, the next generation high capacity system for the land transport of MOX fuel. (authors)

  11. Introduction of HTR-PM Operation and Fuel Management System

    International Nuclear Information System (INIS)

    Liu Fucheng; Luo Yong; Gao Qiang

    2014-01-01

    There is a big difference between High Temperature Gas-cooled Reactor Pebble-modules Demonstration Project(HTR-PM) and PWR in operation mode. HTR-PM is a continually refuelled reactor, and the operation and fuel management of it, which affect each other, are inseparable. Therefore, the analysis of HTR-PM fuel management needs to be carried out “in real time”. HTR-PM operation and fuel management system is developed for on-power refuelling mode of HTR-PM. The system, which calculates the core neutron flux and power distribution, taking high-temperature reactor physics analysis software-VSOP as a basic tool, can track and predict the core state online, and it has the ability to restructure core power distribution online, making use of ex-core detectors to correct and check tracking calculation. Based on the ability to track and predict, it can compute the core parameters to provide support for the operation of the reactor. It can also predict the operation parameters of the reactor to provide reference information for the fuel management.The contents of this paper include the development purposes, architecture, the main function modules, running process, and the idea of how to use the system to carry out HTR-PM fuel management. (author)

  12. On direct and indirect methanol fuel cells for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfield, S.

    1996-04-01

    Research on direct oxidation methanol fuel cells (DMFCs) and polymer electrolyte fuel cells (PEFCs) is discussed. Systems considered for transportation applications are addressed. The use of platinum/ruthenium anode electrocatalysts and platinum cathode electrocatalysts in polymer electrolyte DMFCs has resulted in significant performance enhancements.

  13. Current issues in the transport of radioactive waste and spent fuel: work by the World Nuclear Transport Institute

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H-J.; Bonnardel-Azzarelli, B. [World Nuclear Transport Inst., London (United Kingdom)

    2014-07-01

    Various kinds of radioactive waste are generated from nuclear power and fuel cycle facilities. These materials have to be treated, stored and eventually sent to a repository site. Transport of wastes between these various stages is crucial for the sustainable utilization of nuclear energy. The IAEA Regulations for the Safe Transport of Radioactive Material (SSR-6) have, for many decades, provided a safe and efficient framework for radioactive materials transport and continue to do so. However, some shippers have experienced that in the transport of certain specific radioactive wastes, difficulties can be encountered. For example, some materials produced in the decommissioning of nuclear facilities are unique in terms of composition or size and can be difficult to characterize as surface contaminated objects (SCO) or homogeneous. One way WNTI (World Nuclear Transport Institute) helps develop transport methodologies is through the use of Industry Working Groups, bringing together WNTI members with common interests, issues and experiences. The Back-End Transport Industry Working Group focuses on the following issues currently. - Characterization of Waste: techniques and methods to classify wastes - Large Objects: slightly contaminated large objects (ex. spent steam generators) transport - Dual Use Casks: transportable storage casks for spent nuclear fuels, including the very long term storage of spent fuel - Fissile Exceptions: new fissile exceptions provisions of revised TS-R-1 (SSR-6) The paper gives a broad overview of current issues for the packaging and transport of radioactive wastes and the associated work of the WNTI. (author)

  14. Transport and supply logistics of biomass fuels: Vol. 1. Supply chain options for biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Browne, M; Palmer, H; Hunter, A; Boyd, J

    1996-10-01

    The study which forms part of a wider project funded by the Department of Trade and Industry, looks at the feasibility of generating electricity from biomass-fuelled power stations. Emphasis is placed on supply availabilty and transport consideration for biomass fuels such as wood wastes from forestry, short rotation coppice products, straw, miscanthus (an energy crop) and farm animal slurries. The study details the elements of the supply chain for each fuel from harvesting to delivery at the power station. The delivered cost of each fuel, the environmental impact of the biomass fuel supply and other relevant non-technical issues are addressed. (UK)

  15. Analysis of the risk of transporting spent nuclear fuel by train

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H.K.

    1981-09-01

    This report uses risk analyses to analyze the safety of transporting spent nuclear fuel for commercial rail shipping systems. The rail systems analyzed are those expected to be used in the United States when the total electricity-generating capacity by nuclear reactors is 100 GW in the late 1980s. Risk as used in this report is the product of the probability of a release of material to the environment and the consequences resulting from the release. The analysis includes risks in terms of expected fatalities from release of radioactive materials due to transportation accidents involving PWR spent fuel shipped in rail casks. The expected total risk from such shipments is 1.3 x 10/sup -4/ fatalities per year. Risk spectrums are developed for shipments of spent fuel that are 180 days and 4 years out-of-reactor. The risk from transporting spent fuel by train is much less (by 2 to 4 orders of magnitude) than the risk to society from other man-caused events such as dam failure.

  16. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, V.

    2007-07-01

    This dissertation layes out detailed descriptions for heterogeneous chemistry, electrochemistry, and porous media transport models to simulate solid oxide fuel cells (SOFCs). An elementary like heterogeneous reaction mechanism for the steam reforming of CH4 developed in our research group is used throughout this work. Based on assumption of hydrogen oxidation as the only electrochemical reaction and single step electron transfer reaction as rate limiting, a modified Butler-Volmer equation is used to model the electrochemistry. The pertinence of various porous media transport models such as Modified Fick Model (MFM), Dusty Gas Model (DGM), Mean Transport Pore Model, Modified Maxwell Stefan Model, and Generalized Maxwell Stefan Model under reaction conditions are studied. In general MFM and DGM predictions are in good agreement with experimental data. Physically realistic electrochemical model parameters are very important for fuel cell modeling. Button cell simulations are carried out to deduce the electrochemical model parameters, and those parameters are further used in the modeling of planar cells. Button cell simulations are carried out using the commercial CFD code FLUENT coupled with DETCHEM. For all temperature ranges the model works well in predicting the experimental observations in the high current density region. However, the model predicts much higher open circuit potentials than that observed in the experiments, mainly due to the absence of coking model in the elementary heterogeneous mechanism leading to nonequilibrium compositions. Furthermore, the study presented here employs Nernst equation for the calculation of reversible potential which is strictly valid only for electrochemical equilibrium. It is assumed that the electrochemical charge transfer reaction involving H2 is fast enough to be in equilibrium. However, the comparison of model prediction with thermodynamic equilibrium reveals that this assumption is violated under very low current

  17. Transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lung, M.; Lenail, B.

    1987-01-01

    From a safety standpoint, spent fuel is clearly not ideal for permanent disposal and reprocessing is the best method of preparing wastes for long-term storage in a repository. Furthermore, the future may demonstrate that some fission products recovered in reprocessing have economic applications. Many countries have in fact reached the point at which the recycling of plutonium and uranium from spent fuel is economical in LWR's. Even in countries where this is not yet evident, (i.e., the United States), the French example shows that the day will come when spent fuel will be retrieved for reprocessing and recycle. It is highly questionable whether spent fuel will ever be considered and treated as waste in the same sense as fission products and processed as such, i.e., packaged in a waste form for permanent disposal. Even when recycled fuel material can no longer be reused in LWR's because of poor reactivity, it will be usable in FBR's. Based on the considerable experience gained by SGN and Cogema, this paper has provided practical discussion and illustrations of spent fuel transport and storage of a very important step in the nuclear fuel management process. The best of spent fuel storage depends on technical, economic and policy considerations. Each design has a role to play and we hope that the above discussion will help clarify certain issues

  18. Typical IAEA operations at a fuel fabrication plant

    International Nuclear Information System (INIS)

    Morsy, S.

    1984-01-01

    The IAEA operations performed at a typical Fuel Fabrication Plant are explained. To make the analysis less general the case of Low Enriched Uranium (LEU) Fuel Fabrication Plants is considered. Many of the conclusions drawn from this analysis could be extended to other types of fabrication plants. The safeguards objectives and goals at LEU Fuel Fabrication Plants are defined followed by a brief description of the fabrication process. The basic philosophy behind nuclear material stratification and the concept of Material Balance Areas (MBA's) and Key Measurement Points (KMP's) is explained. The Agency operations and verification methods used during physical inventory verifications are illustrated

  19. Packaging and transportation system for K-Basin spent fuel-component testing

    International Nuclear Information System (INIS)

    Kee, A.T.

    1998-01-01

    This paper describes the cask/transportation system that was designed, procured and delivered to the Hanford K-Basin site at Richland, Washington. The performance requirements and design of the various components -- cask, trailer with cask tie-down system, and the cask operation equipment for the load-out pit -- will be discussed. The presentation will include the details of the factory acceptance testing and its results. The performance requirements for the cask/transportation system was dictated by the constraints imposed by the large number of high priority shipments and the spent fuel pool environment, and the complex interface requirements with other equipment and facility designs. The results of the testing form the basis for the conclusion that the system satisfies the site performance requirements. The cask/transportation system design was driven by the existing facility constraints and the limitations imposed by the large number of shipments over a short two-year period. This system may be useful information for other DOE facilities that may be or will be in a similar situation

  20. Criticality safety requirements for transporting EBR-II fuel bottles stored at INTEC

    International Nuclear Information System (INIS)

    Lell, R. M.; Pope, C. L.

    2000-01-01

    Two carrier/shipping cask options are being developed to transport bottles of EBR-II fuel elements stored at INTEC. Some fuel bottles are intact, but some have developed leaks. Reactivity control requirements to maintain subcriticality during the hypothetical transport accident have been examined for both transport options for intact and leaking bottles. Poison rods, poison sleeves, and dummy filler bottles were considered; several possible poison materials and several possible dummy filler materials were studied. The minimum number of poison rods or dummy filler bottles has been determined for each carrier for transport of intact and leaking bottles

  1. Nuclear fuel operation at Balakovo NPP

    International Nuclear Information System (INIS)

    Morozov, A.

    2015-01-01

    The presentation addressed the positive experience of the TVS-2M assemblies implementation at Balakovo NPP in 18 month fuel cycles, at uprated power (104%) and the usage of the axial profiled Gd-rods in order to minimize the power peaking factors and linear heat rate in the upper part in some of the fuel rods. The results of the test operation of fuel rods with different claddings, made by E110M, E125 and E635M alloys at Balakovo NPP were also provided. The recently observed problem with the “white crust” on the cladding surfaces was also discussed

  2. Transport of HIFAR spent fuel from Lucas Heights Research Establishment to the United Kingdom for reprocessing. Public Environmental Report

    International Nuclear Information System (INIS)

    1995-01-01

    The normal operations of HIFAR produce thirty-eight spent fuel elements annually. Since 1958, when operations began, 1,660 spent fuel elements have been accumulated and are stored in ANSTO's engineered interim storage facilities at Lucas Heights. In the light of the limited size of these storage facilities and following the Research Reactor Review (1993) and an Inter-Agency Review, the Commonwealth Government announced its decision to reduce the number of spent fuel elements stored at the site. Therefore, ANSTO has been authorised to negotiate the terms for shipment of spent fuel elements of United Kingdom (UK) origin to the Dounreay reprocessing plant in Scotland. This Public Environment Report, prepared under the Environment Protection (Impact of Proposals) Act 1974, describes the potential impacts and risks of a proposed initial shipment of 120 spent fuel elements to the Dounreay reprocessing plant. It describes the intended packaging and transport procedures and considers possible alternative methods of dealing with the continued production of spent fuel rods and the limited storage capacity at LHRL. The exhaustive analysis of every phase of operations involved in the shipping of a cask of spent HIFAR fuel elements from Lucas Heights to Dounreay, for reprocessing, has shown that there are no significant environmental or public health impacts from such a shipment conducted in accordance with standard, internationally established procedures. 18 refs., 12 tabs., 2 figs

  3. Transport of HIFAR spent fuel from Lucas Heights Research Establishment to the United Kingdom for reprocessing. Public Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-27

    The normal operations of HIFAR produce thirty-eight spent fuel elements annually. Since 1958, when operations began, 1,660 spent fuel elements have been accumulated and are stored in ANSTO`s engineered interim storage facilities at Lucas Heights. In the light of the limited size of these storage facilities and following the Research Reactor Review (1993) and an Inter-Agency Review, the Commonwealth Government announced its decision to reduce the number of spent fuel elements stored at the site. Therefore, ANSTO has been authorised to negotiate the terms for shipment of spent fuel elements of United Kingdom (UK) origin to the Dounreay reprocessing plant in Scotland. This Public Environment Report, prepared under the Environment Protection (Impact of Proposals) Act 1974, describes the potential impacts and risks of a proposed initial shipment of 120 spent fuel elements to the Dounreay reprocessing plant. It describes the intended packaging and transport procedures and considers possible alternative methods of dealing with the continued production of spent fuel rods and the limited storage capacity at LHRL. The exhaustive analysis of every phase of operations involved in the shipping of a cask of spent HIFAR fuel elements from Lucas Heights to Dounreay, for reprocessing, has shown that there are no significant environmental or public health impacts from such a shipment conducted in accordance with standard, internationally established procedures. 18 refs., 12 tabs., 2 figs.

  4. A fuel response model for the design of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Duffey, T.A.; Einziger, R.E.; Hobbins, R.R.; Jordon, H.; Rashid, Y.R.; Barrett, P.R.; Sanders, T.L.

    1989-01-01

    The radiological source terms pertinent to spent fuel shipping cask safety assessments are of three distinct origins. One of these concerns residual contamination within the cask due to handling operations and previous shipments. A second is associated with debris (''crud'') that had been deposited on the fuel rods in the course of reactor operation, and a third involves the radioactive material contained within the rods. Although the lattermost source of radiotoxic material overwhelms the others in terms of inventory, its release into the shipping cask, and thence into the biosphere, requires the breach of an additional release barrier, viz., the fuel rod cladding. Hence, except for the special case involving the transport of fuel rods containing previously breached claddings, considerations of the source terms due to material contained in the fuel rods are complicated by the need to address the likelihood of fuel cladding failure during transport. The purpose of this report is to describe a methodology for estimating the shipping cask source terms contribution due to radioactive material contained within the spent fuel rods. Thus, the probability of fuel cladding failure as well as radioactivity release is addressed. 8 refs., 2 tabs

  5. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongbing, E-mail: liuhb07@mails.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Du, Dong, E-mail: dudong@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Huang, An; Chang, Baohua; Han, Zandong [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); He, Ayada [Shanghai Electric Power Generation Group Shanghai Generator Works, Shanghai 200240 (China)

    2016-08-15

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  6. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Huang, An; Chang, Baohua; Han, Zandong; He, Ayada

    2016-01-01

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  7. Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses

    Energy Technology Data Exchange (ETDEWEB)

    Ring, S

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

  8. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  9. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  10. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  11. 14 CFR 25.991 - Fuel pumps.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 25.991 Section 25.991... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel system...

  12. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  13. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    Science.gov (United States)

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  14. Operating performance and reliability of CANDU PHWR fuel channels in Canada

    International Nuclear Information System (INIS)

    Strachan, B.; Brown, D.R.

    1983-03-01

    CANDU nuclear plants use many small-diameter high-pressure fuel channels. Good operating performance from the CANDU fuel channels has made a major contribution to the world-leading operating record of the CANDU nuclear power plants. As of 1982 December 31, there were 7,480 fuel channels installed in 18 CANDU reactors over 500 MW(e) in size. Eight of these reactors have been declared in-service and have accumulated 24,000 fuel channel-years of operation. The only significant operating problems with fuel channels have been the occurrence of leaking cracks in 70 fuel channels and a larger amount of axial creep on the early reactors than was originally provided for in the design. Both of these problems have been corrected on all CANDU reactors built since the Bruce GS 'A' station and the newer reactors should exhibit even better performance

  15. Handling and transfer operations for partially-spent nuclear fuel

    International Nuclear Information System (INIS)

    Ibrahim, J.K.

    1983-01-01

    This project involved the handling and transfer of partially-spent reactor fuel from the Oregon State University TRIGA Reactor in Corvallis, Oregon to Hanford Engineering Development Laboratory in Richland, Washington. The method of handling is dependent upon the burn-up history of the fuel elements. Legal constraints imposed by standing U.S. nuclear regulations determine the selection of transport containers, transportation procedures, physical security arrangements in transit and nuclear material accountability documentation. Results of in-house safety evaluations of the project determine the extent of involvement of pertinent nuclear regulatory authorities. The actual handling activities and actual radiation dose rates are also presented (author)

  16. Assessment of the environmental benefits of transport and stationary fuel

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.

    2000-01-01

    Fuel cells (FCs) offer significant environmental benefits over competing technologies and hence the environment is a strong driving force behind the development of FC systems for transport and stationary applications. This paper provides a comprehensive comparison of FC and competing systems, and points out strengths and weaknesses of the different FC systems, suggesting areas for improvement. The results presented build on earlier work [D. Hart, G. Hoermandinger, Initial assessment of the environmental characteristics of fuel cells and competing technologies, ETSU F/02/00111/REP/1, ETSU, Harwell, UK, 1997.] and provide a detailed analysis of a wider range of systems, The analysis takes the form of a model, which compares system emissions (global, regional and local pollutants) and energy consumption on a full fuel cycle basis. It considers a variety of primary energy sources, intermediate fuel supply steps and FC systems for transport and stationary end-uses. These are compared with alternative systems for transport and stationary applications. Energy and pollutant emission reductions of FC systems compared to alternative vehicle technology vary considerably, though all FC technologies show reduction in energy use and CO 2 emissions of at least 20%; as well as reductions of several orders of magnitude in regulated pollutants compared to the base-case vehicle. The location of emissions is also of importance, with most emissions in the case of FC vehicles occurring in the fuel supply stage. The energy, CO 2 and regulated emissions advantages of FC systems for distributed and baseload electricity are more consistent than for transport applications, with reductions in regulated pollutants generally larger than one order of magnitude compared to competing technologies. For CHP applications, the advantages of FC systems with regard to regulated pollutants remain large. However, energy and CO 2 emission advantages are reduced, depending largely on the assumptions made

  17. Regulations for safe transport of spent fuels from nuclear power plants in CMEA member countries. Part III

    International Nuclear Information System (INIS)

    Zizka, B.

    1978-11-01

    The regulations for safe transport of spent fuel from nuclear power plants in the CMEA member countries consist of general provisions, technical requirements for spent fuel transport, transport conditions, procedures for submitting reports on transport, regulations for transport and protection of radioactive material to be transported, procedures for customs clearance, technical and organizational measures for the prevention of hypothetical accidents and the elimination of their consequences. The bodies responsible for spent fuel transport in the CMEA member countries are listed. (J.B.)

  18. Results of trial operation of the WWER advanced fuel assemblies

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Dragunov, Y.; Mikhalchuk, A.

    2001-01-01

    The paper describes results from experimental operation of advanced WWER-1000 fuel assemblies (AFA) at five units in Balakovo NPP. Advanced fuel is developed according to the concept of standard WWER-1000 fuel assembly (jacket-free). The new features includes: 1) zirconium guiding channels (alloy E-635 and E-110) and spacer grids (alloy E-110); 2) integrated burnable absorber gadolinium; 3) extended service life of fuel assemblies (FA) and absorber rods (possibility of repair of FA); 4) improved adoption to reactor conditions. Some results of AFA pilot operation of a three year operation are presented and analyses of effectiveness of improvements are made concerning application of zirconium channels and grids; application of integrated burnable absorbers; extension of FA and absorbing rods service life and FA repairability. These new features of WWER-1000 fuel design allow: 1) to reduce the average fuel enrichment to the 3.77% instead of 4.31% in U-235; 2) to reduce the FA axial load in reactor hot state by 40%,; 3) increasing of fuel operation in reactor to the 30000 effective days with possibility to have a 5-year residence time in the reactor. The design of new generation FA for WWER-440 reactors involves few key changes. Fuel inventory in new fuel design is increased due to elongation of fuel stack and reducing the diameter of the central hole. Vibration stability is enhanced as a result of: no-play junction of the fuel rod with the lower grid; change of SG arrangements; strengthening of the lower grid unit; secure of the central tube in the gap. Water-uranium ration is increased. Introduction of all these kinds of modernization in a 5-year fuel cycle reduces fuel component in the energy cost to the 7%

  19. Spent fuel receipt and storage at the Morris Operation

    International Nuclear Information System (INIS)

    Astrom, K.A.; Eger, K.J.

    1978-06-01

    Operating and maintenance activities in an independent spent fuel storage facility are described, and current regulations governing such activities are summarized. This report is based on activities at General Electric's licensed storage facility located near Morris, Illinois, and includes photographs of cask and fuel handling equipment used during routine operations

  20. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Mostofa Kamal Nasir

    2014-01-01

    Full Text Available Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO, hydrocarbons (HC, carbon dioxide (CO2, particulate matter (PM, and oxides of nitrogen (NOx. Intelligent transport system (ITS technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  1. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  2. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  3. Spent fuel transport in Romania by road: An approach considering safety, risk and radiological consequences

    International Nuclear Information System (INIS)

    Vieru, G.

    2001-01-01

    The transport of high-level radioactive wastes, involving Type B packages, is a part of the safety of the Romanian waste management programme and the overall aim of this activity is to promote the safe transport of radioactive materials in Romania. The paper presents a safety case analysis of the transport of a single spent fuel CANDU bundle, using a Romanian built Type B package, from the CANDU type nuclear power plant Cernavoda to the INR Pitesti, in order to be examined within INR's hot-cells facilities. The safety assessment includes the following main aspects: (1) evaluation and analysis of available data on road traffic accidents; (2) estimation of the expected frequency for severe road accident scenarios resulting in potential radionuclide release; and (3) evaluation of the expected radiological consequences and accident risks of transport operations. (author)

  4. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  5. Fuel cells for future transportation: The Department of Energy OTT/OUT partnership

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies; Ohi, J. [National Renewable Energy Lab., Golden, CO (United States). Center for Transportation Technologies and Systems

    1997-12-31

    The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and

  6. Chemical and toxicological characterization of exhaust emissions from alternative fuels for urban public transport

    International Nuclear Information System (INIS)

    Turrio Baldassarri, L.; Conti, R.; Crebelli, B.; Iamicelli, A.L.; De Berardis, M.; Gambino, A.L.; Iannaccone, S.

    2008-01-01

    The Istituto Superiore di Sanita (ISS, the National Institute of Health of Italy) and the Istituto dei Motori (IM) of the Consiglio Nazionale delle Ricerche (CNR, National Research Council) have carried out this study, jointly funded by the two institutes together with the Ministry of Environment. The chemical and toxicological characteristics of emissions from two urban bus engines were studied: a diesel engine fueled with both diesel oil and bio diesel blend and an equivalent spark-ignition one fuelled with compressed natural gas, operating in steady-state conditions. Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons and nitrated derivatives, carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter was also evaluated. The impact of diesel-powered transport on urban air quality, and the potential benefits for human health deriving from the use of natural gas for public transport, are discussed [it

  7. Operational support of a safe operating envelope for fuel

    International Nuclear Information System (INIS)

    Chapman, T.J.; Gibb, R.A.

    1998-01-01

    The mandate of a station safety analysis group is to ensure that the station is operated and maintained in a manner consistent with the basis for our understanding of the safety consequences of process or human failures. As operating experience has developed an awareness of the significance of fuel manufacture and operating conditions on safety consequences has also grown. This awareness has led to a program that is designed to ensure that these influences are appropriately considered. This paper describes the projects that make up this program. (author)

  8. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  9. Operation experience of the advanced fuel assemblies at Unit 1 of Volgodonsk NPP within four fuel cycles

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Kobelev, S.; Kushmanov, S.

    2006-01-01

    The first commissioning of Volgodonsk NPP Unit 1 with standard reactor WWER-1000 (project V-320) was in 2001. The reactor core, starting from the first fuel charge, was arranged completely with Advanced Fuel Assemblies (AFAs). In this way, it is possible to obtain the experience in startup and operation of the core, completely arranged with AFAs, and also to get a possibility of performing the comprehensive check for justification of newly commissioned units and justification of design solutions accepted in the design of reactor core for Taiwan NPP, Bushehr NPP and Kudankulam NPP. The first fuel charge of the Volgodonsk NPP Unit 1 is a reference and unified for Tiawan NPP (V-428), Bushehr NPP (V-446), Kudankulam NPP(V-412) with small differences caused by design features of RP V-320. The first core charge of Unit 1 of Volgodonsk NPP was arranged of 163 AFAs, comprising 61 CPS ARs and 42 BAR bundles. The subsequent fuel charges were arranged of AFAs with gadolinium oxide integrated into fuel instead of BAR. By 2005 the results of operation of the core at Unit 1 of Volgodonsk NPP during four fuel cycles showed that AFA is sufficiently reliable and serviceable. The activity of the primary coolant of the Volgodonsk NPP is at stable low level. During the whole time of the core operation of the Volgodonsk NPP Unit 1 no leaky AFAs were revealed. The modifications of the internals, made during pre-operational work, are reasonable and effective to provide for fuel mechanical stability in the course of operation. The modifications, made in AFA structure during operation of the Volgodonsk NPP Unit 1, are aimed at improving the service and operational reliability of its components. Correctness of the solutions taken is confirmed by AFAs operation experience both at the Volgodonsk NPP, and at other operating Russian NPPs

  10. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  11. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  12. Analysis of coupled proton and water transport in a PEM fuel cell using the binary friction membrane model

    International Nuclear Information System (INIS)

    Carnes, B.; Djilali, N.

    2006-01-01

    Transport of liquid water within a polymer electrolyte membrane (PEM) is critical to the operation of a PEM fuel cell, due to the strong dependence of the membrane transport coefficients on water content. In addition, enhanced predictive abilities are particularly significant in the context of passive air breathing fuel cell designs where lower water contents will prevail in the membrane. We investigate and analyze the numerical predictions of a recently proposed rational model for transport of protons and water in a PEM, when compared to a widely used empirical model. While the performance is similar for a saturated membrane, for PEMs with low water content, the difference in computed current density and membrane water crossover can be substantial. The effects of coupling partially saturated gas diffusion electrodes (GDLs) with the membrane are studied in both a 1D and 2D context. In addition, a simplified 1D analytical membrane water transport model is validated against the complete 1D model predictions. Our numerical results predict a higher current density and more uniform membrane hydration using a dry cathode instead of a dry anode, and illustrate that the strongest 2D effects are for water vapor transport

  13. Fueling profile sensitivities of trapped particle mode transport to TNS

    International Nuclear Information System (INIS)

    Mense, A.T.; Attenberger, S.E.; Houlberg, W.A.

    1977-01-01

    A key factor in the plasma thermal behavior is the anticipated existence of dissipative trapped particle modes. A possible scheme for controlling the strength of these modes was found. The scheme involves varying the cold fueling profile. A one dimensional multifluid transport code was used to simulate plasma behavior. A multiregime model for particle and energy transport was incorporated based on pseudoclassical, trapped electron, and trapped ion regimes used elsewhere in simulation of large tokamaks. Fueling profiles peaked toward the plasma edge may provide a means for reducing density-gradient-driven trapped particle modes, thus reducing diffusion and conduction losses

  14. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    Science.gov (United States)

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  15. Carbon transport and fuel retention in JT-60U with high temperature operation based on postmortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M., E-mail: yoshida.masafumi@jaea.go.jp [Japan Atomic Energy Agency, Mukoyama 801-1, Naka-shi, Ibaraki-ken 311-0193 (Japan); Tanabe, T.; Adachi, A. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Hayashi, T.; Nakano, T.; Fukumoto, M.; Yagyu, J.; Miyo, Y.; Masaki, K.; Itami, K. [Japan Atomic Energy Agency, Mukoyama 801-1, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2013-07-15

    Fuel retention rates and carbon re-deposition rates in the plasma shadowed areas, or tile gaps and remote areas, in JT-60U were measured. The total fuel retention rate in the plasma shadowed areas was more than two times higher than that in the carbon re-deposited layers on the plasma facing surfaces, or the divertor tiles. This is because of lower temperature in the plasma shadowed areas than in the plasma facing surfaces, which leads to high hydrogen saturation concentration, although the amount of the carbon re-deposited on the plasma shadowed areas was only 60% of that on the plasma facing surfaces. The total fuel retention rate in JT-60U, including previously determined for all the plasma facing areas, was evaluated to be 1.3 × 10{sup 20} H + D s{sup −1}, and this retention rate was lower than that in the other devices, due probably to high baking temperature operation in JT-60U. Distributions of the fuel retention and the carbon re-deposition in the whole in-vessel of a large tokamak were determined for the first time in the world.

  16. Carbon transport and fuel retention in JT-60U with high temperature operation based on postmortem analysis

    International Nuclear Information System (INIS)

    Yoshida, M.; Tanabe, T.; Adachi, A.; Hayashi, T.; Nakano, T.; Fukumoto, M.; Yagyu, J.; Miyo, Y.; Masaki, K.; Itami, K.

    2013-01-01

    Fuel retention rates and carbon re-deposition rates in the plasma shadowed areas, or tile gaps and remote areas, in JT-60U were measured. The total fuel retention rate in the plasma shadowed areas was more than two times higher than that in the carbon re-deposited layers on the plasma facing surfaces, or the divertor tiles. This is because of lower temperature in the plasma shadowed areas than in the plasma facing surfaces, which leads to high hydrogen saturation concentration, although the amount of the carbon re-deposited on the plasma shadowed areas was only 60% of that on the plasma facing surfaces. The total fuel retention rate in JT-60U, including previously determined for all the plasma facing areas, was evaluated to be 1.3 × 10 20 H + D s −1 , and this retention rate was lower than that in the other devices, due probably to high baking temperature operation in JT-60U. Distributions of the fuel retention and the carbon re-deposition in the whole in-vessel of a large tokamak were determined for the first time in the world

  17. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  18. The development of an operations system for the transport of spent nuclear fuel in the United States Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Peterson, R.W.; Joy, D.S.; Pope, R.B.; Ratledge, J.E.; Shappert, L.B.; Wankerl, M.W.; Klimas, M.J.; Darrough, M.E.

    1990-01-01

    In order to support the development of a Transportation Operations System for the Federal Waste Management System (FWMS) by the Office of Civilian Radioactive Waste Management, the United States Department of Energy formed the Transportation Project Office at its field office in Chicago. Planning and development activities are being performed in a number of areas including a major effort in operations support, providing the planning and assessment necessary for developing the future transportation operations capability needed by the FWMS. The purpose of this paper is to review significant planning and development accomplishments, and outline expected future efforts for the continued development, acquisition, test, and startup of the transportation operations component of the FWMS. 2 refs

  19. The contribution to the energy balance and transport in an advanced-fuel tokamak reactor

    International Nuclear Information System (INIS)

    Atzeni, S.; Vlad, G.

    1985-01-01

    The influence of synchrotron radiation emission on the energy balance of an advanced-fuel (such as D- 3 He, or catalyzed-D) tokamak plasma is considered. It is shown that a region in the β-T space exists, where the fusion energy delivered to the plasma overcomes synchrotron and bremsstrahlung energy losses, and which could then allow for ignited operation. 1-Dimensional codes results are also presented, which illustrate the main features of radial transport in a ignited, D- 3 He tokamak plasma

  20. Analysis of hydrogen as a Transportation Fuel FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Luzi, Francesco [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilcox Freeburg, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-30

    This report summarizes the results of literature reviews, surveys and analyses performed to evaluate the potential of hydrogen-fueled vehicles to be an economically viable transportation alternative. Five existing and important drivers of expanding hydrogen-fueled transportation adoption are multi-billion dollar sales reservations of Nikola Class 8 trucks, CALSTART viability analysis of hybrid-hydrogen drayage trucks in the shipyard cargo application, analysis showing economic advantages of Fuel Cell Electric Vehicles (FCEV)s over Battery Electric Vehicles (BEV)s beginning at 150-mile ranges, the announcement of a commercial 5kg electrolyzer, and commercial plans or vehicle availability by nine vehicle manufacturers of FCEV passenger vehicles. But hydrogen infrastructure availability needed to support broad adoption of hydrogen-fueled vehicles is limited to less than 50 publicly-available refueling stations, primarily in California. The demand side (consumer) economics associated with FCEV adoption showed strong economic sensitivity to the original vehicle’s fuel economy (mpg), distance traveled, and hydrogen (H2) generation costs. Seven use cases were used to evaluate the broad range of potential FCEV purchasers, including autonomous vehicle applications. Each consumer use case analysis resulted in a different hydrogen fuel cost that would be equivalent to the current fuel cost being paid by the consumer. The H2 generation costs (supply side) were sensitive to the volume of H2 supplied and H2 production costs needed to repay H2 supply facility capital costs and produce competitively-priced energy. H2FAST was used to more accurately incorporate capital, maintenance and production costs into a viable H2 supply cost to the consumer. When the H2 generation and consumer economics were combined, several applications with positive economics became clear. The availability of low-cost hydrogen pipeline connections, and therefore low-cost hydrogen, greatly benefits the