WorldWideScience

Sample records for fuel system automobiles

  1. Developments in fuel cell systems for automotive application; Entwicklungstendenzen von Brennstoffzellensystemen fuer die Anwendung im Automobil

    Energy Technology Data Exchange (ETDEWEB)

    Treffinger, P.; Thalau, O. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Fahrzeugkonzepte; Friedrich, K.A. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Thermodynamik

    2008-07-01

    In recent years, fuel cell systems for passenger cars have reached a high technological level leading to attractive vehicle concepts. It is expected that the future progress regarding power density increase will be slower. However, there are still a number of open questions, e.g. if the combination of cost targets and requested life time will be achieved. Also there is no final evidence, whether the actual operating parameters will meet customer's requirements. A progress in fundamental technology, e.g. improved electrolyte membranes, would be very beneficial for commercialisation. (orig.)

  2. Automobile Starting and Lighting System Maintenance Training ...

    African Journals Online (AJOL)

    Automobile Starting and Lighting System Maintenance Training Manual for Effective Learning ... Journal Home > Vol 10, No 2 (2015) > ... College Minna and Automobile Supervisors in automobile companies in Minna to establish its reliability.

  3. The promise of fuel cell-based automobiles

    Indian Academy of Sciences (India)

    A K Shukla; C L Jackson; K Scott

    2003-02-01

    Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of $ca$. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. The advantages and disadvantages of candidate fuel-cell systems and various fuels are considered together with the issue of whether the fuel should be converted directly in the fuel cell or should be reformed to hydrogen onboard the vehicle. For fuel cell vehicles to compete successfully with conventional internal-combustion engine vehicles, it appears that direct conversion fuel cells using probably hydrogen, but possibly methanol, are the only realistic contenders for road transportation applications. Among the available fuel cell technologies, polymer–electrolyte fuel cells directly fueled with hydrogen appear to be the best option for powering fuel cell vehicles as there is every prospect that these will exceed the performance of the internal-combustion engine vehicles but for their first cost. A target cost of $ 50/kW would be mandatory to make polymer–electrolyte fuel cells competitive with the internal combustion engines and can only be achieved with design changes that would substantially reduce the quantity of materials used. At present, prominent car manufacturers are deploying important research and development efforts to develop fuel cell vehicles and are projecting to start production by 2005.

  4. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  5. Approaches of Japan and Western nations to automobile fuel consumption improvement; Jidosha nenpi kaizen ni kansuru Nippon Obei no torikumi

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, M. [Japan Automobile Manufacturers Association Inc., Tokyo (Japan)

    1996-04-01

    Some views are expressed toward the improvement of automobile fuel consumption. There is no need to give up the convenience that the automobile offers for the purpose of energy-saving. What is needed is the effective use of energy, and the most important technological tasks in this connection is the improvement of fuel consumption. Thanks to the efforts exerted by Japanese businesses, and to reduction in automobile size and improvement on engine performance in the Western countries, fuel consumption has steadily improved, only to reach a level where no more large-scale progress is expected without innovative technologies. For example, the adoption of the lean-burn system for higher performance will deteriorate the convenience that automobiles offer and efforts for lightening automobile bodies will encounter constraints (germane to recycling and pricing) in choosing proper materials. This report also evaluates alternate-energy automobiles and comments on Japan`s decision on its fuel consumption improvement targets. 4 figs., 4 tabs.

  6. Mind the Gap: The Vicious Circle of Measuring Automobile Fuel Use

    DEFF Research Database (Denmark)

    Figueroa, Maria; author), L. Schipper (main; Price, L.

    1993-01-01

    We review the circularity between estimates of automobile use, fuel consumption and fuel intensity. We find that major gaps exist between estimates of road gasoline, the quantity most often used to represent automobile fuel use in economic studies of transport fuel use, and the actual sales data...... of gasoline, diesel and other fuels used for automobiles. We note that significant uncertainties exist in values of both the number of automobiles in use and the distance each is driven, which together yield total automobile use. We present our own calculations for total automobile fuel use for a variety...

  7. 76 FR 31467 - Guide Concerning Fuel Economy Advertising for New Automobiles

    Science.gov (United States)

    2011-06-01

    ... CFR Part 259 Guide Concerning Fuel Economy Advertising for New Automobiles AGENCY: Federal Trade... Advertising for New Automobiles (``Fuel Economy Guide'' or ``Guide'') pending completion of ongoing review by... prevent deceptive fuel economy advertising for new automobiles and to facilitate the use of fuel...

  8. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  9. Mind the gap; The vicious circle of measuring automobile fuel use

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Figueroa, M.J.; Price, L. (Strategic Air Command, Offutt AFB, NE (United States). Aircraft Engineering Div.); Espey, M. (California Univ., Davis, CA (United States). Dept. of Agricultural Economics)

    1993-12-01

    We review the circularity between estimates of automobile use, fuel consumption and fuel intensity. We find that major gaps exist between estimates of road gasoline, the quantity most often used to represent automobile fuel use in economic studies of transport fuel use, and the actual sales data of gasoline, diesel and other fuels used for automobiles. Significant uncertainties exist in values of both the number of automobiles in use and the distance each is driven, which together yield total automobile use. We present our own calculations for total automobile fuel use for a variety of OECD countries. We comment briefly on the impact of these gaps on econometric estimates of the price and income elasticities of automobile fuel use. (author)

  10. 40 CFR 600.311-08 - Range of fuel economy for comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... automobiles. 600.311-08 Section 600.311-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.311-08 Range of fuel economy for comparable automobiles. (a) The Administrator will determine the range of combined fuel economy values...

  11. 40 CFR 600.311-86 - Range of fuel economy for comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... automobiles. 600.311-86 Section 600.311-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.311-86 Range of fuel economy for comparable automobiles. (a) The Administrator will determine the range of city and the range of highway...

  12. A life-cycle comparison of alternative automobile fuels.

    Science.gov (United States)

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  13. Automobile active suspension system with fuzzy control

    Institute of Scientific and Technical Information of China (English)

    刘少军; 黄中华; 陈毅章

    2004-01-01

    A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.

  14. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Fuel efficient passenger automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.1-Fuel Efficient...

  15. Testing system of automobile fuel pump performance based on PLC%基于PLC的汽车电子燃油泵性能检测系统

    Institute of Scientific and Technical Information of China (English)

    山海峰; 刘涵; 郭吉丰

    2013-01-01

    针对目前无刷电机式汽车电子燃油泵性能检测系统的缺失以及生产过程中燃油泵驱动控制器的质量检验问题,分析了燃油泵运行环境及目前测试方法的不足,以西门子S7-200系列PLC、触摸屏、各种传感器及测试治具为核心部件,运用VB6.0进行了上位机测试软件以及梯形图PLC软件的编写,构建了基于PLC的燃油泵性能在线自动检测系统;在现有已知参数燃油泵的基础上对测试系统进行了验证,得出了系统测试精度以及测试过程中发现的一些常见燃油泵质量问题.研究结果表明,设计的基于PLC的燃油泵自动检测测试系统具有成本较低、测试可靠、使用寿命长、操作方便等特点,对无刷式燃油泵的设计有一定的指导作用.%In order to solve the problems of the weakness of current designed brushless fuel pump detection system and the detection of quality in production process, the test system was investigated. After the analysis of the working principle and test method of fuel pump, the sys tem was established, which was based on Siemens PLC , touch win, pressure sensor, flow sensor and so on, and the VB6.0 was used to de sign the computer software, ladder diagram to PLC program. The known parameters fuel pump was evaluated on the test system, the precision and test error of system were determined. The experimental results show that the designed test system has the advantages of high precision, long life, easy to operate, conduce to the design of brushless fuel pump.

  16. Market Energy efficient and new fuel automobile developments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Tsinghua University develops mini electric car OUYANG Mingbao, dean of automotive engineering and director of the key national laboratory of automobile safety and energy efficiency, has recently delivered a speech on the development of mini electric car in the university.

  17. Cold start characteristics of ethanol as an automobile fuel

    Science.gov (United States)

    Greiner, Leonard

    1982-01-01

    An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

  18. On the incentives to provide fuel-efficient automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Degryse, H. [CentER for Economic Research, Tilburg University, Tilburg (Netherlands); Irmen, A. [Fakultaet fuer Volkswirtschaftslehre A5, Mannheim (Germany)

    1998-05-01

    It is argued that the provision of more fuel-efficient cars should be analyzed within the framework of a multi-dimensional product placement decision where attributes are dependent. This dependency arises because fuel-efficiency is linked to certain aerodynamic shapes. It is shown that the presence of this constraint may reduce the incentives to provide fuel-efficiency. In equilibrium, cars become more similar and aerodynamic as fuel prices increase. However, the provided level of fuel efficiency falls short of the social one such that a minimum fuel economy standard is called for. 19 refs.

  19. Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.

    2015-10-01

    For a typical spark ignition engine approximately 40% of available thermal energy is lost as hot exhaust gas. To improve fuel economy, researchers are currently evaluating technology which exploits exhaust stream thermal power by use of thermoelectric generators (TEGs) that operate on the basis of the Seebeck effect. A 5% improvement in fuel economy, achieved by use of TEG output power, is a stated objective for light-duty trucks and personal automobiles. System modeling of thermoelectric (TE) components requires solution of coupled thermal and electric fluxes through the n and p-type semiconductor legs, given appropriate thermal boundary conditions at the junctions. Such applications have large thermal gradients along the semiconductor legs, and material properties are highly dependent on spatially varying temperature profiles. In this work, one-dimensional heat flux and temperature variations across thermoelectric legs were solved by using an iterative numerical approach to optimize both TE module and TEG designs. Design traits were investigated by assuming use of skutterudite as a thermoelectric material with potential for automotive applications in which exhaust gas and heat exchanger temperatures typically vary from 100°C to over 600°C. Dependence of leg efficiency, thermal fluxes and electric power generation on leg geometry, fill fractions, electric current, thermal boundary conditions, etc., were studied in detail. Optimum leg geometries were computed for a variety of automotive exhaust conditions.

  20. 基于喷油脉宽测试法的汽车油耗智能测试技术%Automobile fuel consumption intelligent testing technology based on fuel injection pulse-width test method

    Institute of Scientific and Technical Information of China (English)

    付百学; 胡胜海

    2014-01-01

    With the rapid growth of automobile ownership in China, the control of automobile fuel consumption is not only an energy problem, but also an environmental one. The carbon balance method is a major, indirect way of testing the automobile fuel consumption with high precision, but the test equipment is expensive, bulky, and hard to move, and the demands of the test environment are high; the sampling connection needs sealing and connecting to the exhaust pipe, so its application is limited. The direct test method tests the automobile fuel consumption through measuring fuel volume and quality within a certain distance or time, and the engine oil circuit needs to be taken apart in order to put in the fuel consumption meter. This method is inconvenient, time-consuming, and poses a security risk, which affects the test precision. At present, the electronic fuel injection system (EFI) engine adopts a special EFI fuel consumption sensor to test automobile fuel consumption, or uses two sets of ordinary flow sensors. Its testing principle is roughly the same: They all concatenate engine oil flow sensors to fuel line of engine, they are complicated operations, and the signal lag of the sensor is greater. Because the fuel injection pressure of the EFI engine is high, the amount of oil return is greater, and the oil temperature is higher, which may easily cause the return pipe of connection on the sensor to inflate and explode. Aiming at the existing problem of automobile fuel-consumption testing, using the single chip microcomputer control technology, we tested automobile fuel consumption through direct measurement of the fuel injection pulse width. We then developed an intelligent testing instrument for automobile fuel consumption. The injection pulse signal from the engine ECU is directly collected by the automobile fuel consumption test system. After it is filtered and embedded into single-chip microcomputer, the injector's cumulative injection time and the number of fuel

  1. Perspectives of Biogas Conversion into Bio-CNG for Automobile Fuel in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. S. Shah

    2017-01-01

    Full Text Available The need for liquid and gaseous fuel for transportation application is growing very fast. This high consumption trend causes swift exhaustion of fossil fuel reserve as well as severe environment pollution. Biogas can be converted into various renewable automobile fuels such as bio-CNG, syngas, gasoline, and liquefied biogas. However, bio-CNG, a compressed biogas with high methane content, can be a promising candidate as vehicle fuel in replacement of conventional fuel to resolve this problem. This paper presents an overview of available liquid and gaseous fuel commonly used as transportation fuel in Bangladesh. The paper also illustrates the potential of bio-CNG conversion from biogas in Bangladesh. It is estimated that, in the fiscal year 2012-2013, the country had about 7.6775 billion m3 biogas potential equivalent to 5.088 billion m3 of bio-CNG. Bio-CNG is competitive to the conventional automobile fuels in terms of its properties, economy, and emission.

  2. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    Science.gov (United States)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  3. Fuel consumption and pollution level by automobiles in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Nazrl Islam, S.M.; Sarkar, A.R. [Dacca Univ. (Bangladesh); Talukder, M.A.B.S. [Bangladesh Ordnance Factory, Dhaka (Bangladesh)

    1996-08-01

    Due to economic conditions, a substantial number of people use old models of cars on roads. Actual fuel consumption of these cars is remarkably high in comparison to new models. The new models have more efficient engines, better transmission and better aerodynamics which tend to decrease consumption of new models. In this study a sample of cars of models ranging from 1972 to 1993 was taken, and tested on roads. The results show a substantial reduction of fuel consumption in the case of new models. The fuel consumption at variable loads on cars was measured, and its dependency on car mass and piston displacement was estimated. (author)

  4. Life cycle assessment of automobile/fuel options.

    Science.gov (United States)

    MacLean, Heather L; Lave, Lester B

    2003-12-01

    We examine the possibilities for a "greener" car that would use less material and fuel, be less polluting, and would have a well-managed end-of-life. Light-duty vehicles are fundamental to our economy and will continue to be for the indefinite future. Any redesign to make these vehicles greener requires consumer acceptance. Consumer desires for large, powerful vehicles have been the major stumbling block in achieving a "green car". The other major barrier is inherent contradictions among social goals such as fuel economy, safety, low emissions of pollutants, and low emissions of greenhouse gases, which has led to conflicting regulations such as emissions regulations blocking sales of direct injection diesels in California, which would save fuel. In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid electric, and hydrogen fuel cells], we find no option dominates the others on all dimensions. The principles of green design developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A) and the use of a life cycle approach provide insights on the key sustainability issues associated with the various options.

  5. Viability study of automobile shredder residue as fuel.

    Science.gov (United States)

    Edo, Mar; Aracil, Ignacio; Font, Rafael; Anzano, Manuela; Fullana, Andrés; Collina, Elena

    2013-09-15

    Car Fluff samples collected from a shredding plant in Italy were classified based on particle size, and three different size fractions were obtained in this way. A comparison between these size fractions and the original light fluff was made from two different points of view: (i) the properties of each size fraction as a fuel were evaluated and (ii) the pollutants evolved when each size fraction was subjected to combustion were studied. The aim was to establish which size fraction would be the most suitable for the purposes of energy recovery. The light fluff analyzed contained up to 50 wt.% fines (particle size<20 mm). However, its low calorific value and high emissions of polychlorinated dioxins and furans (PCDD/Fs), generated during combustion, make the fines fraction inappropriate for energy recovery, and therefore, landfilling would be the best option. The 50-100 mm fraction exhibited a high calorific value and low PCDD/F emissions were generated when the sample was combusted, making it the most suitable fraction for use as refuse-derived fuel (RDF). Results obtained suggest that removing fines from the original ASR sample would lead to a material product that is more suitable for use as RDF.

  6. Estimation of Gasoline Price Elasticities of Demand for Automobile Fuel Efficiency in Korea: A Hedonic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Tae [Sungkyunkwan University, Seoul (Korea); Lee, Myunghun [Keimyung University, Taegu (Korea)

    2001-03-01

    This paper estimates the gasoline price elasticities of demand for automobile fuel efficiency in Korea to examine indirectly whether the government policy of raising fuel prices is effective in inducing less consumption of fuel, relying on a hedonic technique developed by Atkinson and Halvorsen (1984). One of the advantages of this technique is that the data for a single year, without involving variation in the price of gasoline, is sufficient in implementing this study. Moreover, this technique enables us to circumvent the multicollinearity problem, which had reduced reliability of the results in previous hedonic studies. The estimated elasticities of demand for fuel efficiency with respect to the price of gasoline, on average, is 0.42. (author). 30 refs., 3 tabs.

  7. Design of MEMS accelerometer based acceleration measurement system for automobiles

    Science.gov (United States)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  8. Fungal contamination of stored automobile-fuels in a tropical environment

    Institute of Scientific and Technical Information of China (English)

    Carlos E.Rodríguez-Rodríguez; Evelyn Rodríguez; Rigoberto Blanco; Ivannia Cordero; Daniel Segura

    2010-01-01

    Because of the lack of reports,the base levels of microbial contamination on stored fuels are unknown in tropical regions and it is unclear whether these levels have some influence on fuel quality parameters.Therefore,fungal quality in automobile fuels stored across Costa Rican territory was evaluated during two years according to the standard ASTM D6974-04.For a total of 96 samples,counts and identification of molds and yeasts were performed on regular gas,premium gas and diesel taken from the bottom and superior part of the container tanks.The highest contamination was found on the bottom of the tanks,where an aqueous phase was usually identified,showing populations over the ones present in the hydrocarbon itself (up to 108 CFU/L).Diesel was the most contaminated fuel (up to 107 CFU/L);however,an alteration on the physicochemical parameters was not observed in any kind of fuel.Seventy-five mold strains were isolated,Penicillium sp.being the most common genus (45.8% of the samples),and ten yeast strains,from the genera Candida sp.and Rhodotorula sp.Four of the yeasts were able to grow on diesel as the sole carbon source,at concentrations ranging from 0.5% to 25%.Increasing the frequency of tank cleaning,adding antimicrobial agents and monitoring microbial populations are recommended strategies to improve microbial quality of stored fuels.

  9. Solar Powered Automobile Interior Climate Control System

    Science.gov (United States)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  10. Estimation of cumulative exposures to naphtha at an automobile fuel-injector manufacturing plant.

    Science.gov (United States)

    Rocskay, A Z; Robins, T G; Echeverria, D; Schork, M A; Seixas, N S; White, R F; Proctor, S P

    1993-09-01

    As part of an epidemiologic study of neuropsychological and renal effects of occupational exposure to organic solvents, estimates of cumulative exposure to naphtha were derived for workers at an automobile fuel-injector manufacturing plant. The approach to exposure estimation was relatively unusual in three respects: (1) a marked association between indoor naphtha air concentration and outdoor temperature was modeled and applied to detailed historical temperature data to calculate cumulative exposure estimates; (2) the large number of investigator-generated air samples allowed the use of analyses of variance to compare alternative job-grouping schemes; and (3) the young age of the plant and few process changes allowed for historical exposure estimates with a high degree of confidence. The derived estimates of cumulative exposure appear to offer a firm basis for epidemiologic analyses of exposure-health outcome relationships.

  11. A knowledge-based system for controlling automobile traffic

    Science.gov (United States)

    Maravas, Alexander; Stengel, Robert F.

    1994-01-01

    Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.

  12. Hydrogen storage for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.

    1979-01-01

    Results of an analysis of hydrogen-fueled automobiles are presented as a part of a continuing study conducted by Lawrence Livermore Laboratory (LLL) on Energy Storage Systems for Automobile Propulsion. The hydrogen is stored either as a metal hydride at moderate pressure in TiFe/sub 0/ /sub 9/Mn/sub 0/ /sub 1/H/sub x/ and at low pressure in MgH/sub x/ catalyzed with 10 wt % Ni, or it is stored in hollow glass microspheres at pressures up to about 400 atm. Improved projections are given for the two hydrides, which are used in combination to take advantage of their complementary properties. In the dual-hydride case and in the microsphere case where Ti-based hydride is used for initial operation, hydrogen is consumed in an internal-combustion engine; whereas in the third case, hydrogen from Ti-based hydride is used with air in an alkaline fuel cell/Ni-Zn battery combination which powers an electric vehicle. Each system is briefly described; and the results of the vehicle analysis are compared with those for the conventional automobile and with electric vehicles powered by Pb-acid or Ni-Zn batteries. Comparisons are made on the basis of automobile weight, initial user cost, and life-cycle cost. In this report, the results are limited to those for the 5-passenger vehicle in the period 1985-1990, and are provided as probable and optimistic values.

  13. The Feasibility Study of the Waste Heat Air—Conditioning System for Automobile

    Institute of Scientific and Technical Information of China (English)

    Gui-pingLin; Xiu-ganYuan; 等

    1994-01-01

    In this paper,the feasibility of application of a solid-absorption system using ammonia and chlorides as working pair to automobile air-conditioning system is investigated.This system has the advantages of minimum environmental problem and utilizing waste heat from the automobile engine as thermal energy input.Analyses show that the main problem associated with the application of solid-absorption system is the size of the reactors.Techniques to solve this problem are discussed.

  14. Gas prices and fuel efficiency in the U.S. automobile industry: Policy implications of endogenous product choice

    Science.gov (United States)

    Gramlich, Jacob Pleune

    I develop, estimate, and utilize an economic model of the U.S. automobile industry. I do so to address policy questions concerning automotive fuel efficiency (the relationship between gasoline used and distance traveled). Fuel efficiency has played a prominent role in our domestic energy policy for over 30 years. Recently it has received even more attention due to rising gas prices and concern over the environment and energy dependence. The model gives quantitative predictions for market fuel efficiency at various gas prices and taxes. The model makes contributions that are both methodological and policy based, and the two chapters of the dissertation focus on each in turn. The first chapter discusses the economic model of the U.S. automobile industry. The model allows firms to choose the fuel efficiency of their new vehicles, which allows me to predict fuel efficiency responses to policy and market conditions. These predictions were not possible with previous economic models which held fuel efficiency fixed. In the model, consumers care more about fuel efficiency when gas prices are high, and firms face a technological tradeoff between providing fuel efficiency and other quality. The level of the gas price, therefore, working through consumer demand, shifts firms' optimal locations along this technology frontier. Demand is nested logit, supply is differentiated products oligopoly, and data are from the U.S. automobile market from 1971-2007. In addition to endogenizing product choice, I also contribute to the modeling literature by relaxing restrictive identifying assumptions and obtaining more realistic estimates of fuel efficiency preference. The model predicts sales declines and compositions from the summer of 2008 with reasonable success. The second chapter discusses two counterfactual policy scenarios: maintained summer 2008 gas prices, and achieving 35 mpg (miles per gallon). At 3.43 per gallon (the summer 2008 price, 23% above 2007), the model predicts

  15. Automobile with fuel cell and supercapacitor drive; Personenwagen mit Brennstoffzellen und Supercap-Antrieb - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Ph.

    2002-12-15

    In a Volkswagen BORA a power train has been realized, which includes a fuel cell system consisting of 6 stacks of 8 kW electrical power output each, an electrical storage device made of 282 supercap cells storing 360 Wh of electrical energy, a DC/DC converter and an electric motor which delivers up to 75 kW. The power distribution between supercaps and fuel cell is managed by an energy management device, which optimizes the distribution taking the actual operation points into account. The fuel cell system operates in a wide range with an efficiency higher than 40%. The power train has been integrated in a five seat car. This car named HY.POWER{sup R}, realized as technology platform, drove over the Simplon pass (elevation 2000 m over sea level) on 16 January 2002. This test drive proved the maturity of this concept to drive using this technology on public roads and that also severe operating conditions can be handled successfully. The key aspects of that concepts are the new manufacturing process of the bipolar plates for the fuel cells, the system configuration of the fuel cell system and the enhanced energy density of the supercap cells. The combination of a fuel cell system and of a supercap storage device, together with the integration of the DC/DC converter lead to a new power train concept. The consumption in the NEDC is equal to the energy of 5-6 l gasoline, which is quite impressive if it is remembered that the car has an empty mass of nearly 2000 kg. The HY.POWER{sup R} has been used heavily for the communication of the new technology to the public. The first event was the test drive across the Simplon pass. The main other events was the international auto motor show in Geneva in March 2002 and the presentation of the vehicle at the Earth Summit in Johannesburg in September 2002. (author)

  16. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-07-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  17. The automobile of the future: engine technologies and automotive fuels developed by IFP; l'automobile du futur: les technologies moteurs et carburants developpes par l'IFP

    Energy Technology Data Exchange (ETDEWEB)

    Appert, O.; Pinchon, Ph.

    2004-07-01

    In front of the challenges of climate change and depletion of petroleum reserves, in front of the continuous strengthening of pollution regulations applied to automobile (Euro IV and V) and the advances of R and D, several ways of research can be explored to answer the mobility needs of the coming decades. The IFP takes stock of these topics in this press kit which comprises 11 documents: the synthesis of O. Appert and P. Pinchon's talk about 'the cleaner and multi-energies automobile of the future', the slides of this presentation, the future evolutions of automobiles motorizations, the long-term evolutions of engines/fuels (brief for the Panorama 2004 colloquium), diesel fuel in the USA (brief for the Panorama 2004 colloquium), bio-fuels in Europe (brief for the Panorama 2004 colloquium), diesel pollution abatement: efficient results from the IFP's diesel combustion process 'NADI'(TM), the presentation of the IFP scientific meeting of September 22-23, 2004 'which fuels for low CO{sub 2} engines?', the strategic positioning of IFP in the world energy and environmental context, the brochures 'IFP engines and fuels: a competitive advantage' and 'innovating for a sustainable development in the domain of energy'. (J.S.)

  18. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  19. Effects of automobile steering characteristics on driver vehicle system dynamics in regulation tasks

    Science.gov (United States)

    Mcruer, D. T.; Klein, R.

    1975-01-01

    A regulation task which subjected the automobile to a random gust disturbance which is countered by driver control action is used to study the effects of various automobile steering characteristics on the driver/vehicle system. The experiments used a variable stability automobile specially configured to permit insertion of the simulated gust disturbance and the measurement of the driver/vehicle system characteristics. Driver/vehicle system dynamics were measured and interpreted as an effective open loop system describing function. Objective measures of system bandwidth, stability, and time delays were deduced and compared. These objective measures were supplemented by driver ratings. A tentative optimum range of vehicle dynamics for the directional regulation task was established.

  20. A Comparison of Two Air Compressors for PEM Fuel Cell Systems

    OpenAIRE

    Kulp, Galen W.

    2001-01-01

    Proton exchange membrane (PEM) fuel cells are considered one of the best potential alternative power sources for automobiles. For this application, high efficiency and high power density are required. Pressurizing the fuel cell system can give higher efficiency, higher power density and better water balance characteristics for the fuel cell, but pressurization uses a percentage of the fuel cell output power. The compressor used to elevate the pressure has a direct effect on the system effi...

  1. Adaptive Backstepping Sliding-Mode Control of the Electronic Throttle System in Modern Automobiles

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available In modern automobiles, electronic throttle is a DC-motor-driven valve that regulates air inflow into the vehicle’s combustion system. The electronic throttle is increasingly being used in order to improve the vehicle drivability, fuel economy, and emissions. Electronic throttle system has the nonlinear dynamical characteristics with the unknown disturbance and parameters. At first, the dynamical nonlinear model of the electronic throttle is built in this paper. Based on the model and using the backstepping design technique, a new adaptive backstepping sliding-mode controller of the electronic throttle is developed. During the backstepping design process, parameter adaptive law is designed to estimate the unknown parameter, and sliding-mode control term is applied to compensate the unknown disturbance. The proposed controller can make the actual angle of the electronic throttle track its set point with the satisfactory performance. Finally, a computer simulation is performed, and simulation results verify that the proposed control method can achieve favorable tracking performance.

  2. Ethanol as an Alternative Fuel for Automobiles: Using the First Law of Thermodynamics to Calculate the "Corn-Area-per-Car" Ratio

    Science.gov (United States)

    Pietro, William J.

    2009-01-01

    Students will use the first law of thermodynamics to determine the feasibility of using corn ethanol as an alternative to fossil fuels in automobiles. Energy flow is tracked from the Sun, to photosynthesized carbohydrate, to ethanol through fermentation, and finally to work in the combustion engine. Feasibility is gauged by estimating a…

  3. Ethanol as an Alternative Fuel for Automobiles: Using the First Law of Thermodynamics to Calculate the "Corn-Area-per-Car" Ratio

    Science.gov (United States)

    Pietro, William J.

    2009-01-01

    Students will use the first law of thermodynamics to determine the feasibility of using corn ethanol as an alternative to fossil fuels in automobiles. Energy flow is tracked from the Sun, to photosynthesized carbohydrate, to ethanol through fermentation, and finally to work in the combustion engine. Feasibility is gauged by estimating a…

  4. Automobile air pollution: Automotive fuels. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning the use of fuels and fuel additives for the reduction of automotive air pollution. Alternative fuels discussed include gasohol, methane, natural gas, and hydrogen. Improvements to gasoline and its properties which affect air pollution are considered, as well as lead and other fuel additives. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Fault Diagnosis of Automobile Crane Power Steering System Aided by ICP-AES

    Directory of Open Access Journals (Sweden)

    Lidan Chen

    2013-01-01

    Full Text Available The objective of this paper is to evaluate an innovative application of inductively coupled plasma atomic emission spectroscopy (ICP-AES on the fault diagnosis of automobile crane hydraulic power steering (HPS system. Contents of Fe, Cu and Al were examined by ICP-AES in the oil samples of HPS system for four different mileages of Puyuan QY50H. The mileages were 2000-9000 km, 11000-19000 km, 21000-28000 km and 32000-40000 km separately. Database of major mental contents in automobile crane HPS system of Puyuan QY50H with different mileage were calibrated. Results showed that, major mental contents were increased with the increasing of driving mileage and the normal contents laid between two trend lines. Through the determination of mental contents in HPS oil sample and further compared them with the values in their database, we could not only evaluate the wear condition of automobile crane HPS system, but also helped to diagnose the faults without dissembled the problematic vehicle. The results further indicated that, in time maintenance, high quality and low cost reparation could be realized by the application of ICP-AES technology on fault diagnosis of automobile crane power steering system.

  6. Carburation automobile. Contribution à l' étude d'un dispositif d'injection de GPL en phase gazeuse Automotive Fuel: Research on a New Gas-Phase Lpg Injection System

    Directory of Open Access Journals (Sweden)

    Dubois J. P.

    2006-11-01

    Full Text Available Les systèmes de carburation traditionnels aux GPL (induction donnent lieu à un certain nombre d'insatisfactions dues, en particulier, aux difficultés de réglages et à une adéquation imparfaite entre matériels et véhicules. Le système d'injection gazeuse mis au point comporte : - un débitmètre à volet mesurant le débit d'air admis au moteur; - un doseur, lié mécaniquement au volet, et fournissant le mélange air-gaz prédéterminé. Un dispositif d'ouverture forcée du volet permet, lorsqu'on fonctionne à l'essence, de ne pas perturber les performances du carburateur; - un vaporiseur détendeur à deux étages dont les fonctions essentielles sont : - la prédétente à 1,5 bar; - la détente finale à 250 mbar; - l'enrichissement à haut régime; - la sécurité intégrée en cas d'arrêt moteur; - un module de démarrage à froid évitant l'envahissement liquide du vaporiseur jusqu'à 10°C Les avantages de ce dispositif sont : - l'universalité : le même modèle est utilisé sur tous véhicules de 60 à 130 ch; - l'absence de réglage : seul le ralenti est à ajuster; - la maîtrise du rapport air/gaz à la valeur choisie; - le bon compromis performances/consommations; - la prise en compte des paramètres réels de fonctionnement. Conventional LPG induction systems used for transportation purposes do not usually work satisfactory, in particular due to adjustment difficulties and to unsuitable equipment/vehicle matching. The LPG injection system that has been developed comprises:(aa flap flowmeter measuring the air flow into the- engine;(b a proportioning device mechanically connected to the flap and supplying the predetermined air/gas mixture (a device forcing the flap open keeps carburettor performances the same when running on gasoline;(c a two-stage pressure regulator having the following main functions:- initial expansion down to 1. 5 bar;- final expansion down to 250 mbar;- high-speed enrichment;- built-in safety in case

  7. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    Science.gov (United States)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  8. Profile and Perceptions of Biogas as Automobile Fuel : A Study of Svensk Biogas

    OpenAIRE

    Larsson, Anneli

    2008-01-01

    From an environmental- and health perspective, biogas and other biomass-based fuels have several advantages; nevertheless the majority of motorists fill their cars with petroleum-based fuels. This thesis is designed to explore the profile of biogas in relation to its perceptions. It is a study concerning the communication between the biogas producing company Svensk Biogas and their biogas users and non biogas users. To obtain a thorough understanding of the profile and perceptions of biogas a...

  9. Profile and perceptions of biogas as automobile fuel : A study of Svensk Biogas

    OpenAIRE

    Larsson, Anneli

    2008-01-01

    From an environmental- and health perspective, biogas and other biomass-based fuels have several advantages; nevertheless the majority of motorists fill their cars with petroleum-based fuels. This thesis is designed to explore the profile of biogas in relation to its perceptions. It is a study concerning the communication between the biogas producing company Svensk Biogas and their biogas users and non biogas users. To obtain a thorough understanding of the profile and perceptions of biogas a...

  10. Integration of Bass Enhancement and Active Noise Control System in Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2008-01-01

    Full Text Available With the advancement of digital signal processing technologies, consumers are more concerned with the quality of multimedia entertainment in automobiles. In order to meet this demand, an audio enhancement system is needed to improve bass reproduction and cancel engine noise in the cabins. This paper presents an integrated active noise control system that is based on frequency-sampling filters to track and extract the bass information from the audio signal, and a multifrequency active noise equalizer to tune the low-frequency engine harmonics to enhance the bass reproduction. In the noise cancellation mode, a maximum of 3 dB bass enhancement can be achieved with significant noise suppression, while higher bass enhancement can be achieved in the bass enhance mode. The results show that the proposed system is effective for solving both the bass audio reproduction and the noise control problems in automobile cabins.

  11. Metal hydride work pair development and its application on automobile air conditioning systems

    Institute of Scientific and Technical Information of China (English)

    QIN Feng; CHEN Jiang-ping; ZHANG Wen-feng; CHEN Zhi-jiu

    2007-01-01

    Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/La0.6Y0.4Ni4.8Mn0.2 was developed working at 393~473 K/293~323 K/263~273 K. Property tests showed that both alloys have flat plateau slopes and small hystereses; system theoretical coefficient of performance (COP) is 0.711. Based on this work pair, a function proving automobile metal hydride refrigeration system was constructed. The equivalent thermal conductivities of the activated reaction beds were merely 1.1~1.6 W/(m·K), which had not met practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power was 84.6 W at 423 K/303 K/273 K with COP being 0.26. By altering cycling parameters, experiment data showed that cooling power and system COP increase with the growth of heat source temperature as well as pre-heating and regeneration time while decrease with heat sink temperature increment. This study confirms the feasibility of automobile metal hydride refrigeration systems, while heat transfer properties of reaction beds still need to be improved for better performance.

  12. Research on simulation based material delivery system for an automobile company with multi logistics center

    Science.gov (United States)

    Luo, D.; Guan, Z.; Wang, C.; Yue, L.; Peng, L.

    2017-06-01

    Distribution of different parts to the assembly lines is significant for companies to improve production. Current research investigates the problem of distribution method optimization of a logistics system in a third party logistic company that provide professional services to an automobile manufacturing case company in China. Current research investigates the logistics leveling the material distribution and unloading platform of the automobile logistics enterprise and proposed logistics distribution strategy, material classification method, as well as logistics scheduling. Moreover, the simulation technology Simio is employed on assembly line logistics system which helps to find and validate an optimization distribution scheme through simulation experiments. Experimental results indicate that the proposed scheme can solve the logistic balance and levels the material problem and congestion of the unloading pattern in an efficient way as compared to the original method employed by the case company.

  13. Report on requests by General Motors and Ford to reduce fuel econoMY standards for my 1981-85 passenger automobiles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The 1981-84 Fuel Economy Standards for Passenger Automobiles were issued in June, 1977. However, in December, 1978 General Motors and Ford began claiming that reduced standards would result in a slower rate of car price increases that would save consumers money. After a review of the GM and Ford information the NHTSA concluded that initiating rulemaking to reduce the standards was not warranted.

  14. Main Influencing Factors of Automobile Fuel Consumption Testing with Ultrasonic Technology%汽车超声波油耗测试主要影响因素

    Institute of Scientific and Technical Information of China (English)

    付百学; 胡胜海

    2014-01-01

    Combining with the development level and development trend of automotive fuel consumption test technology, and adopting the ultrasonic technology and single-chip microcomputer control technology, a research was made on the automotive fuel consumption test technology. The mathematical calculation model of automobile fuel consumption test was established based on the fuel consumption test theory of ultrasonic time difference method. The fuel flow rate was modified by means of flow correction coefficient based on fluid mechanics theory. Analyzing the geometry parameters’ influence of the ultrasonic flow sensor on automobile fuel consumption test, and using the 3 d coordinate method, the ultrasonic flow sensor’s geometry parameters can be accurately calculated. By analyzing the environmental temperature’s influence on the flow rate correction coefficient and the propagation velocity of ultrasonic wave in the fuel, modification measures were put forward. Quantitatively analyzing the parameters of sound and threshold value which influence calculating ultrasonic transmission time, eliminating the frequency noise using the maximum likelihood estimation method, and reasonably choosing the threshold value, the simulation results showed that automobile fuel consumption testing accuracy was up to 12 ns. Comprehensively taking into account the influencing factors of fuel consumption test and taking corrective measures can optimize the mathematical calculation model of automobile fuel consumption test, and improve the automobile fuel consumption test accuracy. Thus, it will lay a theoretical foundation for the research and development of an ultrasonic automobile fuel consumption testing instrument.%结合汽车油耗测试技术的研发水平及发展趋势,采用超声波技术和单片机控制技术,进行汽车油耗测试技术研究。基于超声波时差法油耗测试理论,构建汽车油耗测试的数学计算模型。基于流体力学理论,采用

  15. Managing bottlenecks in manual automobile assembly systems using discrete event simulation

    Directory of Open Access Journals (Sweden)

    Dewa, M.

    2013-08-01

    Full Text Available Batch model lines are quite handy when the demand for each product is moderate. However, they are characterised by high work-in-progress inventories, lost production time when changing over models, and reduced flexibility when it comes to altering production rates as product demand changes. On the other hand, mixed model lines can offer reduced work-in-progress inventory and increased flexibility. The object of this paper is to illustrate that a manual automobile assembling system can be optimised through managing bottlenecks by ensuring high workstation utilisation, reducing queue lengths before stations and reducing station downtime. A case study from the automobile industry is used for data collection. A model is developed through the use of simulation software. The model is then verified and validated before a detailed bottleneck analysis is conducted. An operational strategy is then proposed for optimal bottleneck management. Although the paper focuses on improving automobile assembly systems in batch mode, the methodology can also be applied in single model manual and automated production lines.

  16. Fuel storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Tison, R.R.

    1979-08-01

    Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

  17. Impact of air conditioning system operation on increasing gases emissions from automobile

    Science.gov (United States)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  18. Critical assessment of power trains with fuel-cell systems and different fuels

    Science.gov (United States)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  19. Characterization of biological aerosol exposure risks from automobile air conditioning system.

    Science.gov (United States)

    Li, Jing; Li, Mingzhen; Shen, Fangxia; Zou, Zhuanglei; Yao, Maosheng; Wu, Chang-yu

    2013-09-17

    Although use of automobile air conditioning (AC) was shown to reduce in-vehicle particle levels, the characterization of its microbial aerosol exposure risks is lacking. Here, both AC and engine filter dust samples were collected from 30 automobiles in four different geographical locations in China. Biological contents (bacteria, fungi, and endotoxin) were studied using culturing, high-throughput gene sequence, and Limulus amebocyte lysate (LAL) methods. In-vehicle viable bioaerosol concentrations were directly monitored using an ultraviolet aerodynamic particle sizer (UVAPS) before and after use of AC for 5, 10, and 15 min. Regardless of locations, the vehicle AC filter dusts were found to be laden with high levels of bacteria (up to 26,150 CFU/mg), fungi (up to 1287 CFU/mg), and endotoxin (up to 5527 EU/mg). More than 400 unique bacterial species, including human opportunistic pathogens, were detected in the filter dusts. In addition, allergenic fungal species were also found abundant. Surprisingly, unexpected fluorescent peaks around 2.5 μm were observed during the first 5 min use of AC, which was attributed to the reaerosolization of those filter-borne microbial agents. The information obtained here can assist in minimizing or preventing the respiratory allergy or infection risk from the use of automobile AC system.

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  1. Hybrid GPS-GSM Localization of Automobile Tracking System

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Khedher

    2012-01-01

    Full Text Available An integrated GPS-GSM system is proposed to track vehicles using Google Earth application. Theremote module has a GPS mounted on the moving vehicle to identify its current position, and to betransferred by GSM with other parameters acquired by the automobile’s data port as an SMS to arecipient station. The received GPS coordinates are filtered using a Kalman filter to enhance theaccuracy of measured position. After data processing, Google Earth application is used to view thecurrent location and status of each vehicle. This goal of this system is to manage fleet, policeautomobiles distribution and car theft cautions.

  2. Advances and trends of head-up and head-down display systems in automobiles

    Science.gov (United States)

    Betancur, J. Alejandro; Osorio-Gomez, Gilberto; Agudelo, J. David

    2014-06-01

    Currently, in the automotive industry the interaction between drivers and Augmented Reality (AR) systems is a subject of analysis, especially the identification of advantages and risks that this kind of interaction represents. Consequently, this paper attempts to put in evidence the potential applications of Head-Up (Display (HUD) and Head-Down Display (HDD) systems in automotive vehicles, showing applications and trends under study. In general, automotive advances related to AR devices suggest the partial integration of the HUD and HDD in automobiles; however, the right way to do it is still a moot point.

  3. High energy efficiency desiccant assisted automobile air-conditioner and its temperature and humidity control system

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, K. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan)]. E-mail: nagaya@me.gunma-u.ac.jp; Senbongi, T. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Li, Y. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Zheng, J. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Murakami, I. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan)

    2006-10-15

    The energy efficiency is of importance in air conditioning systems for automobiles. The present article provides a new type air conditioning system for automobiles in which energy loss is small in comparison with the previous system. In the system, a desiccant is installed in the air conditioning system for controlling both temperature and humidity. The control is performed by an electromagnetic control valve, which controls an inclination of the rotating plate of a compressor. It is difficult to control both temperature and humidity precisely, because there are some delays in the control due to the time of heat exchange and that of coolant flow from the actuator (electromagnetic valve) to the evaporator. In order to have precise control, this article also presents a method of control with consideration of control delays. The energy of our system is compared with that in the previous conventional system in the same condition. It is shown that our controlled results and energy efficiency are better than those in the previous system.

  4. Knowledge based Supplier Quality Management System for Automobile Industry

    Directory of Open Access Journals (Sweden)

    S. N. Teli

    2012-08-01

    Full Text Available A large industrial products component manufacturer was challenged to reduce supplier quality issues in response to changing market dynamics. The manufacturer faced increased competition in their core product segments and needed to reduce their overall costs and improve product quality to stay ahead. After a detailed analysis, the manufacturer identified supplier quality as one of the three key operational improvement opportunities. Supplier quality management has emerged as one of the leading business practices in the past few years. World-class manufacturers are making significant investments in systems and processes to improve supplier quality. This paper briefly outlines some of the best practices implemented by such manufacturers in supplier quality management.

  5. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  6. Determination of Close Loop System Stability in Automobile Adaptive Cruise Control Systems

    Directory of Open Access Journals (Sweden)

    Owunna Ikechukwu

    2016-07-01

    Full Text Available The beginning of the 21st century sees auto makers pursuing research in advanced features like collision warning and avoidance system into their product. Automotive cruise control system has been undergoing development in EU since the PROMETHEUS programme in the late 1980’s, and has currently metamorphous into Adaptive Cruise Control (ACC technology which is presently emerging in the automotive market as a convenience function intended to reduce driver workload. Adaptive cruise control is the first of the new generation of advanced driver’s assistance devices to reach the market, which partially automates the driver’s task and bringing the drivers comfort into perspective. It allows the host vehicle to maintain a set speed and distance from preceding vehicles by a forward object detection sensor. The forward object detection sensor is the focal point of the ACC system, which determines and regulates vehicle acceleration and deceleration through a powertrain torque control system and an automatic brake control system. This study presents overview of adaptive cruise control system, operation principles and the advantages of integrating ACC system in automobiles. Also, the system must be stable for optimum performance, and stability of a close loop system which the cruise system is an example, was determined by calculating the controller gain (K1, K2, K3 and substituting into the characteristic equations. The stability of a close loop system for the values of K1, K2 and K3 when substituted into the characteristic equation produced a negative real part. To achieve stability in close loop systems, all the poles must have negative real values and this is in line with the values obtain for p1, p2 and p3. From the pole zero plots of 1 = (-7 ± 7.14, 2 = (-7± 11.60 and 3 = (-0.08 and -13.91, stability of the system was achieved

  7. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems

    Science.gov (United States)

    Williams, George M.

    2017-03-01

    Newly emerging accident-reducing, driver-assistance, and autonomous-navigation technology for automobiles is based on real-time three-dimensional mapping and object detection, tracking, and classification using lidar sensors. Yet, the lack of lidar sensors suitable for meeting application requirements appreciably limits practical widespread use of lidar in trucking, public livery, consumer cars, and fleet automobiles. To address this need, a system-engineering perspective to eyesafe lidar-system design for high-level advanced driver-assistance sensor systems and a design trade study including 1.5-μm spot-scanned, line-scanned, and flash-lidar systems are presented. A cost-effective lidar instrument design is then proposed based on high-repetition-rate diode-pumped solid-state lasers and high-gain, low-excess-noise InGaAs avalanche photodiode receivers and focal plane arrays. Using probabilistic receiver-operating-characteristic analysis, derived from measured component performance, a compact lidar system is proposed that is capable of 220 m ranging with 5-cm accuracy, which can be readily scaled to a 360-deg field of regard.

  8. Robot Vision System for Coordinate Measurement of Feature Points on Large Scale Automobile Part

    Institute of Scientific and Technical Information of China (English)

    Pongsak Joompolpong; Pradit Mittrapiyanuruk; Pakorn Keawtrakulpong

    2016-01-01

    In this paper, we present a robot vision based system for coordinate measurement of feature points on large scale automobile parts. Our system consists of an industrial 6-DOF robot mounted with a CCD camera and a PC. The system controls the robot into the area of feature points. The images of measuring feature points are acquired by the camera mounted on the robot. 3D positions of the feature points are obtained from a model based pose estimation that applies to the images. The measured positions of all feature points are then transformed to the reference coordinate of feature points whose positions are obtained from the coordinate measuring machine (CMM). Finally, the point-to-point distances between the measured feature points and the reference feature points are calculated and reported. The results show that the root mean square error (RMSE) of measure values obtained by our system is less than 0.5mm. Our system is adequate for automobile assembly and can perform faster than conventional methods.

  9. Research and application of online measurement system of tire tread profile in automobile tire production

    Science.gov (United States)

    Wang, Pengyao; Chen, Xiangguang; Yang, Kai; Liu, Xuejiao

    2017-01-01

    To improve the measuring efficiency of width and thickness of tire tread in the process of automobile tire production, the actual condition for the tire production process is analyzed, and a fast online measurement system based on moving tire tread of tire specifications is established in this paper. The coordinate data of tire tread profile is acquired by 3D laser sensor, and we use C# language for programming which is an object-oriented programming language to complete the development of client program. The system with laser sensor can provide real-time display of tire tread profile and the data to require in the process of tire production. Experimental results demonstrate that the measuring precision of the system is <= 1mm, it can meet the measurement requirements of the production process, and the system has the characteristics of convenient installation and testing, system stable operation.

  10. Ratio analysis and Piotroski scoring system in the automobile industry in Croatia

    Directory of Open Access Journals (Sweden)

    Morana Mesarić

    2014-10-01

    Full Text Available To gain insight into operational efficiency, sustainable profitability, the ability to fulfil commitments, use of funds borrowed or investment risk or operational self-sufficiency, it is necessary to conduct analyses of financial statements usually known as ratio analysis. The paper provides analyses of five Croatian general distributors of the automobile industry. Ratios used in the analyses are those used in the Piotroski f-scoring analyses, which are famous for assessing financial capacities of enterprises on the stock exchange market. Based on ratios used in Piotroski scoring systems the assessment of five enterprises, as well as the sector as a whole was carried out. The analysis covers the period 2007-2012. That is the period of the rise, falling and recovery of the automotive industry throughout the world as well as the rise, falling and recession of the whole economy including the automobile market. In general, the sector itself is financially unstable and consequently risk exposed. Results are used for preliminary analyses and prediction of the future financial strength of the auto industry in Croatia.

  11. Free-piston Stirling hydraulic engine and drive system for automobiles

    Science.gov (United States)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  12. 汽车超声波油耗测试计算方法%Ultrasonic Method for Automobile Fuel Consumption Testing

    Institute of Scientific and Technical Information of China (English)

    付百学; 胡胜海; 袁纲; 刘伟

    2012-01-01

    Aimed at the shortcoming of indirect or direct testing methods for automobile fuel consumption, a mathematical computational model of automobile fuel consumption testing was designed on the basis of the ultrasonic technology, single-chip microcomputer control technology and the ultrasonic flow testing principle of time difference method. Fuel flow was tested with the ultrasonic flow sensor on the basis of ultrasonic propagation time and geometrical parameters and time difference was calculated using the extended Kalman filtering method. The geometrical parameters of the ultrasonic flow sensor were estimated by 3D coordinate method and their calculation errors were analyzed and corrected. Finally, an integral correction and calibration was made on the flow errors generated from the limited information calculation of ultrasonic path speed. The results show that the computational method lays the theoretical foundation for optimizing the mathematical model of fuel consumption testing and for improving the testing accuracy of automobile fuel consumption.%针对汽车油耗间接测试法和直接测试法存在的不足,基于超声波技术和单片机控制技术,根据时差法超声波流量测试原理,构建汽车油耗测试数学计算模型。超声波流量传感器基于声时和几何参数测试燃油流量,采用扩展卡尔曼滤波法计算声时;利用三维坐标法测算超声波流量传感器的几何参数,进行了几何参数计算误差分析与修正。最后,对采用有限数量声路速度信息计算得到的流量误差进行了积分修正和校准。分析结果表明:该方法可为优化油耗测试数学模型、提高汽车油耗测试精度提供理论依据。

  13. New technologies for the reduction of the use of fossil fuels in automobiles; Nuevas tecnologias para la reduccion del uso de combustibles fosiles en automoviles

    Energy Technology Data Exchange (ETDEWEB)

    Maya Violante, A.; Dorantes Rodriguez, R. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Energia, Mexico D. F. (Mexico)

    1995-12-31

    The new technologies developed for the reduction of the use of fossil fuels in automobiles can be classified by the way these try to reduce the use of energy. In the search for the technologies for the conservation of it the environmental problem is added, that although it is not the subject of this presentation results decisive for the evaluation of the performance of type of technology. The development of technologies in this field has followed three basic tendencies. First: The efficient improvement of internal combustion motors, which consist in the control and constant monitoring the functioning of these motors in order to determine the strictly necessary consumption for the motor operation in accordance with its load conditions. Second, the development of a system that utilizes alternate fuels, as is the case of hybrid vehicles, that utilize gas turbines that can burn these fuels. Third the development of electric driven and energy regeneration systems avoiding the use of fossil fuels. A fourth tendency could be considered, which consists in determining the best way of controlling and using the transportation time, with all the implicit benefits. The purpose of this paper is to answer all these questions beginning with a detailed revision of the main technological innovations developed by the leading car manufacturers at world level, such as BMW, Mercedes Benz, Ford, etc. concerned in bringing to the market the best vehicles that burn less or none fossil fuels and at the same time comply with the every day more strict standards on the environmental pollution subject. Through these innovations the advantages and disadvantages of each one of them are set forth, with special emphasis in the technologies that, to our concern, will be the most convenient to promote in the years to come. [Espanol] Las nuevas tecnologias desarrolladas para la reduccion del uso de combustibles fosiles en automoviles se pueden caracterizar por la manera en que estas tratan de reducir

  14. Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Feng; Chen, Jiangping; Chen, Zhijiu [Institute of Refrigeration and Cryogenics Engineering, Shanghai Jiaotong University, Shanghai 200030 (China); Lu, Manqi; Yang, Ke [Engineering Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province 110016 (China); Zhou, Yimin [Research Center, Zhejiang Yinlun Machinery Co. Ltd., Tiantai County, Zhejiang Province 317200 (China)

    2007-10-15

    Aiming at developing exhaust gas-driven automobile air conditioners, two types of systems varying in heat carriers were preliminarily designed. A new hydride pair LaNi{sub 4.61}Mn{sub 0.26}Al{sub 0.13}/La{sub 0.6}Y{sub 0.4}Ni{sub 4.8}Mn{sub 0.2} was developed working at 120-200 C/20-50 C/-10-0 C. P-C isotherms and reaction kinetics were tested. Reaction enthalpy, entropy and theoretical cycling coefficient of performance (COP) were deducted from Van't-Hoff diagram. Test results showed that the hydride pair has flat plateau slopes, fast reaction dynamics and small hystereses; the reaction enthalpy of the refrigeration hydride is -27.1 kJ/mol H{sub 2} and system theoretical COP is 0.711. Mean particle sizes during cycles were verified to be an intrinsic property affected by constitution, heat treatment and cycle numbers rather than initial grain sizes. Based on this work pair, cylindrical reactors were designed and a function proving metal hydride intermittent refrigeration system was constructed with heat conducting oil as heat source and water as heat sink. The reactor equivalent thermal conductivity is merely 1.3 W/(m K), which still has not meet practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power is 84.6 W at 150 C/30 C/0 C with COP being 0.26. The regulations of cycling performance and minimum refrigeration temperature (MRT) were determined by altering heat source temperature. Results showed that cooling power and system COP increase while MRT decreases with the growth of heat source temperature. This study develops a new hydride pair and confirms its application in automobile refrigeration systems, while their heat transfer properties still need to be improved for better performance. (author)

  15. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  16. Determination of minimum sample size for fault diagnosis of automobile hydraulic brake system using power analysis

    Directory of Open Access Journals (Sweden)

    V. Indira

    2015-03-01

    Full Text Available Hydraulic brake in automobile engineering is considered to be one of the important components. Condition monitoring and fault diagnosis of such a component is very essential for safety of passengers, vehicles and to minimize the unexpected maintenance time. Vibration based machine learning approach for condition monitoring of hydraulic brake system is gaining momentum. Training and testing the classifier are two important activities in the process of feature classification. This study proposes a systematic statistical method called power analysis to find the minimum number of samples required to train the classifier with statistical stability so as to get good classification accuracy. Descriptive statistical features have been used and the more contributing features have been selected by using C4.5 decision tree algorithm. The results of power analysis have also been verified using a decision tree algorithm namely, C4.5.

  17. Optimum design of automobile seat using statistical design support system; Tokeiteki sekkei shien system no jidoshayo seat eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwamura, T. [NHK Spring Co. Ltd., Yokohama (Japan); Shiratori, M.; Yu, Q.; Koda, I. [Yokohama National University, Yokohama (Japan)

    1997-10-01

    The authors proposed a new practical optimum design method called statistical design support system, which consists of five steps: the effectivity analysis, reanalysis, evaluation of dispersion, the optimiza4ion and evaluation of structural reliability. In this study, the authors applied the present system to analyze and optimum design of an automobile seat frame subjected to crushing. This study should that the present method could be applied to the complex nonlinear problems such as large deformation, material nonlinearity as well as impact problem. It was shown that the optimum design of the seat frame has been solved easily using the present system. 6 refs., 5 figs., 5 tabs.

  18. 46 CFR 28.335 - Fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fuel systems. 28.335 Section 28.335 Shipping COAST GUARD... Than 16 Individuals on Board § 28.335 Fuel systems. (a) Applicability. Except for the components of an...) Portable fuel systems. Portable fuel systems including portable tanks and related fuel lines and...

  19. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  20. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  1. Comparative study of regulated and unregulated air pollutant emissions before and after conversion of automobiles from gasoline power to liquefied petroleum gas/gasoline dual-fuel retrofits.

    Science.gov (United States)

    Yang, Hsi-Hsien; Chien, Shu-Mei; Cheng, Man-Ting; Peng, Chiung-Yu

    2007-12-15

    Liquefied petroleum gas (LPG) is increasingly being examined as an alternative to gasoline use in automobiles as interest grows in reducing air pollutant emissions. In this study, emissions of regulated (CO, THC, NO(x)) and unregulated air pollutants, including CO2, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and BTEX (acronym for benzene, toluene, ethylbenzene, xylene), were measured before and after conversion of nine gasoline-powered automobiles to LPG/ gasoline dual-fuel retrofits. The tests were conducted on a standard chassis dynamometer in accordance with the United States Environmental Protection Agency FTP-75 test procedure, with the exception that all tests were conducted under hot-start driving conditions. The influences of LPG on air pollutant emission levels and carcinogenic potency were investigated and compared with gasoline. The results showed average emission factors of 0.14 g/km, 0.33 mg/km, 0.09 g/km, 0.44 g/km, and 197 g/km for CO, THC, NO(x), PM, and CO2, respectively, for LPG/ gasoline dual-fuel retrofits. Paired-sample t-test results indicated that the emissions of CO (p = 0.03), THC (p = 0.04), and CO2 (p = 4.6 x 10(-8)) were significantly reduced with the retrofit in comparison with gasoline-powered automobiles. The reduction percentages were 71%, 89%, and 14% for CO, THC, and CO2, respectively. The average total PAH emission factor for LPG was 217 microg/km, which is significantly lower than gasoline (863 microg/km; p = 0.05). The PAH corresponding carcinogenicities (BaP(eq)) were calculated via toxic equivalencies based on benzo(a)pyrene (BaP). Paired-sample t-test results fortotal BaP(eq) emissions showed no significant difference between gasoline (30.0 microg/km) and LPG (24.8 microg/km) at a confidence level of 95%. The discrepancy between PAH and BaP(eq) emissions resulted from the higher emission percentages of high molecular weight PAHs for LPG, which might be from lubricant oil. The average emission factors of

  2. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  3. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  4. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  5. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  6. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  7. 40 CFR Appendix I to Part 600 - Highway Fuel Economy Driving Schedule (Applicable to 1978 and Later Model Year Automobiles)

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Highway Fuel Economy Driving Schedule... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. I Appendix I to Part 600—Highway Fuel Economy Driving Schedule (Applicable...

  8. Fuel nitrogen conversion in solid fuel fired systems

    Energy Technology Data Exchange (ETDEWEB)

    P. Glarborg; A.D. Jensen; J.E. Johnsson [Technical University of Denmark, Lyngby (Denmark). Department of Chemical Engineering

    2003-07-01

    Understanding of the chemical and physical processes that govern formation and destruction of nitrogen oxides (NOx) in combustion of solid fuels continues to be a challenge. There are still unresolved issues that may limit the potential of primary measures for NOx control. In most solid fuel fired systems oxidation of fuel-bound nitrogen constitutes the dominating source of nitrogen oxides. The paper reviews some fundamental aspects of fuel nitrogen conversion in these systems, emphasizing combustion of coal since most previous work deal with this fuel. Results on biomass combustion are also discussed. Homogeneous and heterogeneous pathways in fuel NO formation and destruction are discussed and the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N{sub 2} is evaluated. Results indicate that even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood. Light gases, tar, char and soot may all be important vehicles for fuel-N conversion, with their relative importance depending on fuel rank and reaction conditions. Oxygen availability and fuel-nitrogen level are major parameters determining the oxidation selectivity of fuel-N towards NO and N{sub 2}, but also the ability of char and soot to reduce NO is potentially important. The impact of fuel/oxidizer mixing pattern on NO formation appears to be less important in solid-fuel flames than in homogeneous flames. 247 refs., 14 figs., 2 tabs.

  9. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel

    2017-01-01

    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  10. Ergonomics and workplace design: application of Ergo-UAS System in Fiat Group Automobiles.

    Science.gov (United States)

    Vitello, M; Galante, L G; Capoccia, M; Caragnano, G

    2012-01-01

    Since 2008 Fiat Group Automobiles has introduced Ergo-UAS system for the balancing of production lines and to detect ergonomic issues. Ergo-UAS system integrates 2 specific methods: MTM-UAS for time measurement and EAWS as ergonomic method to evaluate biomechanical effort for each workstation. Fiat is using a software system to manage time evaluation and ergo characterization of production cycle (UAS) to perform line balancing and obtain allowance factor in all Italian car manufacturing plant. For new car models, starting from New Panda, FGA is applying Ergo-UAS for workplace design since the earliest phase of product development. This means that workplace design is based on information about new product, new layout, new work organization and is performed by a multidisciplinary team (Work Place Integration Team), focusing on several aspects of product and process: safety, quality and productivity. This allows to find and solve ergonomic threats before the start of production, by means of a strict cooperation between product development, engineering and design, manufacturing. Three examples of workstation design are presented in which application of Ergo-UAS was determinant to find out initial excessive levels of biomechanical load and helped the process designer to improve the workstations and define limits of acceptability. Technical activities (on product or on process), or organizational changes, that have been implemented in order to solve the problems are presented. A comparison between "before" and "new" ergonomic scores necessary to bring workstations in acceptable conditions were made.

  11. 33 CFR 183.542 - Fuel systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel systems. 183.542 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.542 Fuel systems. (a) Each fuel system in a boat must have been tested by the boat manufacturer and not leak when subjected to the...

  12. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-01

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  13. Allocation of Energy Use in the Biomass-based Fuel Ethanol System and Its Use in Decision Making

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; YU Sui-ran; FANG Fang; DAI Du; WANG Cheng-tao

    2005-01-01

    The Chinese government is developing biomass ethanol as one of its automobile fuels for energy security and environmental improvement reasons. The energy efficiency of the biomass-based fuel ethanol is critical issue. To investigate the energy use in the three biomass-base ethanol fuel systems, energy content approach, Market value approach and Product displacement approach methods were used to allocate the energy use based on life cycle energy assessment. The results shows that the net energy of corn based, wheat based, and cassava-based ethanol fuel are 12543MJ, 10299MJ and 13112MJ when get one ton biomassbased ethanol, respectively, and they do produce positive net energy.

  14. Challenges facing air management for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P.B. [Department of Energy (United States); Sutton, R. [Argonne National Lab. (United States); Wagner, F.W. [Energetics Incorporated (United States)

    2000-07-01

    The U.S. Department of Energy (DOE) and the U.S. automotive industry are working cooperatively under the auspices of the Partnership for a New Generation of Vehicles (PNGV) to develop a six-passenger automobile that can achieve up to 80 mpg. while meeting customer needs and all safety and emission requirements. These partners are continuing to invest heavily in the research and development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient energy conversion system for the PNGV. A critical challenge facing fuel cell systems for the PNGV is the development of efficient, compact, cost-effective air management systems. The U.S. Department of Energy has been exploring several compressor/expander options for pressurized fuel cell systems, including scroll, toroidal intersecting vane, turbine, twin screw, and piston technologies. Each of these technologies has strengths and weaknesses regarding efficiency, pressure ratio over turndown, size and weight, and cost. This paper will present data from the U.S. Department of Energy's research and development efforts on air management systems and will discusses recent program developments resulting from an independent peer review evaluation. (author)

  15. Fuel nitrogen conversion in solid fuel fired systems

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Jensen, A.D.; Johnsson, J.E. [Technical University of Denmark, Lyngby (Denmark). Department of Chemical Engineering

    2003-07-01

    Understanding of the chemical and physical processes that govern formation and destruction of nitrogen oxides (NO{sub x}) in combustion of solid fuels continues to be a challenge. Even though this area has been the subject of extensive research over the last three decades, there are still unresolved issues that may limit the potential of primary measures for NO{sub x} control. In most solid fuel fired systems oxidation of fuel-bound nitrogen constitutes the dominating source of nitrogen oxides. The present paper reviews some fundamental aspects of fuel nitrogen conversion in these systems, emphasizing mostly combustion of coal since most previous work deal with this fuel. However, also results on biomass combustion is discussed. Homogeneous and heterogeneous pathways in fuel NO formation and destruction are discussed and the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N{sub 2} is evaluated. Results indicate that even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood. Light gases, tar, char and soot may all be important vehicles for fuel-N conversion, with their relative importance depending on fuel rank and reaction conditions. Oxygen availability and fuel-nitrogen level are major parameters determining the oxidation selectivity of fuel-N towards NO and N{sub 2}, but also the ability of char and soot to reduce NO is potentially important. The impact of fuel/oxidizer mixing pattern on NO formation appears to be less important in solid-fuel flames than in homogeneous flames. (author)

  16. Fuel Cell/Battery Powered Bus System. Final Report for period August 1987 - December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, R.

    1999-01-01

    Today, fuel cell systems are getting much attention from the automotive industry as a future replacement for the internal combustion engine (ICE). Every US automobile manufacturer and most foreign firms have major programs underway to develop fuel cell engines for transportation. The objective of this program was to investigate the feasibility of using fuel cells as an alternative to the ICE. Three such vehicles (30-foot buses) were introduced beginning in 1994. Extensive development and operational testing of fuel cell systems as a vehicle power source has been accomplished under this program. The development activity investigated total systems configuration and effectiveness for vehicle operations. Operational testing included vehicle performance testing, road operations, and extensive dynamometer emissions testing.

  17. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  18. Compressed gas fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  19. L'auto adaptation à des mélanges essence/alcool utilisés comme carburant automobile: le moteur souple The Self-Adapting of Gasoline/Alcohol Mixtures Used As Automotive Fuel: the Flexible Engine

    Directory of Open Access Journals (Sweden)

    Dorbon M.

    2006-11-01

    Full Text Available Le moteur souple est un moteur susceptible d'être alimenté par des carburants constitués de mélanges d'une essence classique et d'un alcool léger (méthanol ou éthanol; si la concentration de chacun des composants de ces mélanges varie, les réglages nécessaires au bon fonctionnement du véhicule se font automatiquement. Dans cet article, sont tout d'abord exposées les propriétés caractéristiques en tant que carburant automobile de l'un de ces alcools légers, le méthanol. Puis viennent les descriptions des dispositifs qui font le moteur souple c'est-à-dire d'une part les systèmes de reconnaissance du carburant et d'autre part les appareillages susceptibles de modifier les réglages du moteur (alimentation et allumage en fonction de la qualité du mélange consommé. A flexible engine is one capable of running on fuels consisting of mixtures of conventional gasoline and a light alcohol (methanol or ethanol. If the concentration of each of these components of such mixtures varies, the tuning required for the proper running of the vehicle takes place automatically. This article begins by describing the characteristic properties of one of these light alcohols (methanol as an automotive fuel. Then the equipment is described that makes an engine flexible, i. e. both the fuel recognition systems and the equipment capable of changing engine tuning (feed and ignition as a function of the quality of the mixture burned.

  20. Ratio analysis and Piotroski scoring system in the automobile industry in Croatia

    OpenAIRE

    Morana Mesarić

    2014-01-01

    To gain insight into operational efficiency, sustainable profitability, the ability to fulfil commitments, use of funds borrowed or investment risk or operational self-sufficiency, it is necessary to conduct analyses of financial statements usually known as ratio analysis. The paper provides analyses of five Croatian general distributors of the automobile industry. Ratios used in the analyses are those used in the Piotroski f-scoring analyses, which are famous for assessing financial capaciti...

  1. Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems.

    Science.gov (United States)

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2012-11-30

    As back diffusion gases from automobiles are significant sources of in-vehicular pollution, we investigated eight automobiles, five for back diffusion (driving) measurements and three for reference conditions (non-driving). To characterize the back diffusion emission conditions, seven volatile organic compounds (VOC) and four carbonyl compounds (CCs) were measured along with dilution-to-threshold (D/T) ratio. The data obtained from back diffusion measurements were examined after having been divided into three subcategories: (i) driving and non-driving, (ii) with and without automobile upgrading (sealing the inner line), and (iii) differences in CO emission levels. Among the VOCs, the concentrations of toluene (T) was found to be the highest (range: 13.6-155 ppb), while benzene (0.19-1.47 ppb) was hardly distinguishable from its ambient levels. Other VOCs (xylene, trimethylbenzene, and styrene) were generally below <1 ppb. Unlike VOCs, the concentrations (ppb) of CCs were seen at fairly enhanced levels: 30.1-95 (formaldehyde), 34.6-87.2 (acetaldehyde), 4.56-34.7 (propionaldehyde), and 3.45-68.8 (butyraldehyde). The results of our study suggest that the back diffusion phenomenon, if occurring, can deteriorate in-vehicle air, especially with the most imminent health hazards from a compound such as formaldehyde in view of its exceedance pattern over common guidelines.

  2. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  3. Thermal energy storage for the Stirling engine powered automobile. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D T [ed.

    1979-03-01

    A detailed design of a thermal energy storage (TES) system for use with the Stirling engine as an automotive power system has been developed. The gravimetric and volumetric storage densities are competitive with electric battery storage systems. The TES/Stirling engine system meets all operational requirements for a practical vehicle and can be packaged in compact-sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept developed in this study is also useful for a dual-mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short-duration trips (approx. 10 miles or less) and liquid fuel carried onboard the vehicle used for long-duration trips (as in current automobiles). The dual-mode approach permits an automobile with the convenience and flexibility of current automobiles while offering the potential of 50% savings in the consumption of premium liquid fuels for automotive propulsion in the United States. Relative to the TES-only vehicle, the dual mode approach also reduces the TES cost significantly because of the much smaller TES capacity required.

  4. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  5. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  6. Comfort model for automobile seat.

    Science.gov (United States)

    da Silva, Lizandra da; Bortolotti, Silvana Ligia Vincenzi; Campos, Izabel Carolina Martins; Merino, Eugenio Andrés Díaz

    2012-01-01

    Comfort on automobile seats is lived daily by thousands of drivers. Epistemologically, comfort can be understood under the theory of complexity, since it emerges from a chain of interrelationships between man and several elements of the system. This interaction process can engender extreme comfort associated to the feeling of pleasure and wellbeing or, on the other hand, lead to discomfort, normally followed by pain. This article has for purpose the development of a theoretical model that favours the comfort feature on automobile seats through the identification of its facets and indicators. For such, a theoretical study is resorted to, allowing the mapping of elements that constitute the model. The results present a comfort model on automobile seats that contemplates the (physical, psychological, object, context and environment) facets. This model is expected to contribute with the automobile industry for the development of improvements of the ergonomic project of seats to increase the comfort noticed by the users.

  7. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  8. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  9. Dynamic Analysis of Condenser Assembly of Automobile Air Conditioning System Using CAE Tools

    Science.gov (United States)

    Singh, M.; Singh, D.; Saini, J. S.

    2013-04-01

    With the automotive air-conditioning industry aiming at higher levels of quality, cost effectiveness and a short time to market, the need for simulation is at an all time high. In the present work, the use of dynamics analysis is proposed in the simulation of the automobile air conditioning condenser assembly for the vibration loads. The condenser assembly has been analyzed using the standard testing conditions. The results revealed that the components of condenser assembly may fail due to resonance in dynamic analysis. Thereafter, the condenser assembly was optimized, resulting in a 2 % reduction in mass.

  10. CRUISE FUZZY CONTROL FOR AUTOMOBILE WITH CVT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To develop cruise control system of an automobile with the metal pushing V-belt type CVT, the dynamic model of automobile travelling longitudinally is established, and the fuzzy controller of control system is designed. Considering uncertainty system parameter and exterior resistance disturbances, the stability of controller is investigated by simulating. The results of its simulation show that the fuzzy controller designed has practicability.

  11. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  12. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  13. Fuel Cycle System Analysis Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic

  14. Automobile technology in a CO{sub 2}-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Barreto Gomez, L.; Dietrich, Ph. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schafer, A.; Jacoby, H.D. [MIT, Cambridge (United States)

    1999-08-01

    This study identifies the environmental conditions under which less CO{sub 2}-emitting and more expensive automobile technology might enter the North American transportation sector. For that purpose, different exogenous CO{sub 2}-reduction targets are imposed and the resulting market shares of hypothetical future automobile technologies calculated. The criteria for the selection of different types of automobiles/fuels is the minimisation of discounted, cumulative transport sector costs over the scenario time horizon. (author) 1 tab., 6 refs.

  15. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  16. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  17. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  18. System for injecting fuel in a gas turbine combustor

    Science.gov (United States)

    Berry, Jonathan Dwight

    2016-10-25

    A combustion system uses a fuel nozzle with an inner wall having a fuel inlet in fluid communication with a fuel outlet in a fuel cartridge. The inner wall defines a mounting location for inserting the fuel cartridge. A pair of annular lip seals around the cartridge outer wall on both sides of the fuel outlet seals the fuel passage between the fuel inlet and the fuel outlet.

  19. Variable volume combustor with nested fuel manifold system

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  20. Liquid fuel utilization in SOFC hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Marco; Traverso, Alberto; Magistri, Loredana [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2009-10-15

    The interest in solid oxide fuel cell systems comes from their capability of converting the chemical energy of traditional fuels into electricity, with high efficiency and low pollutant emissions. In this paper, a study of the design space of solid oxide fuel cell and gas turbine hybrids fed by methanol and kerosene is presented for stationary power generation in isolated areas (or transportation). A 500 kW class hybrid system was analysed using WTEMP original software developed by the Thermochemical Power Group of the University of Genoa. The choice of fuel-processing strategy and the influence of the main design parameters on the thermoeconomic characteristics of hybrid systems were investigated. The low capital and fuel cost of methanol systems make them the most attractive solutions among those investigated here. (author)

  1. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  2. Shortcut model for water-balanced operation in fuel processor fuel cell systems

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Kramer, G.J.

    2004-01-01

    In a fuel processor, a hydrocarbon or oxygenate fuel is catalytically converted into a mixture rich in hydrogen which can be fed to a fuel cell to generate electricity. In these fuel processor fuel cell systems (FPFCs), water is recovered from the exhaust gases and recycled back into the system. We

  3. 汽车整车性能检测系统的设计%Design of Detection System for Automobile Performance

    Institute of Scientific and Technical Information of China (English)

    高红红; 劳奇成; 卢春霞

    2011-01-01

    为了保证汽车安全行驶和减少环境污染,需要对汽车的操纵稳定性、行驶平稳性和环保性等进行检测.该检测系统以工业计算机和插入式数据采集控制板为核心,利用网络及通信技术等实现了汽车整车性能的流水线式检测.正常情况下,可以供至少三辆车同时在线检测,且检测过程不需要辅助人员(驾驶员除外),从而减少了人为误差,提高了检测效率.%The drive stability, ride stationarity, arid environmental conservation of automobile are necessary to be tested to ensure safe traffic and reduce environmental pollution of automobiles. The industrial computer, plug-in data acquisition and control boards are the core of the detection system, and the network and communication technology are used to realize pipeline the automobiles. Normally, at least three automobiles can be tested simultaneously, and the assistant personnel (except the driver) are not needed in the test process, thus the artificial errors are reduced and the detection efficiency is improved.

  4. 汽车悬架系统建模与仿真研究%The Model Building And Simulation Of The Automobile Suspension System Reserch

    Institute of Scientific and Technical Information of China (English)

    赵海宾; 赵巍

    2016-01-01

    The automobile suspension is a multi-body system and the motion relationship among the parts is very complicated, so it brings many difficulties to compute the various characteristics with traditional methods. The Automobile suspension kinetics and dynamic simulation has been a very critical task in automobile design and development and it provides a rapid and effective method to design automobile suspension.%汽车悬架系统是一个比较复杂的多体系统,其构件之间的运动关系十分复杂,这就给使得传统的计算方法分析悬架的各种特性带来许多的困难。因此,悬架的运动学和动力学仿真分析在汽车悬架特性的研究中起着重要作用,并为悬架系统的设计和开发提供了一种先进高效快捷的方法。

  5. External fuel thermionic reactor system.

    Science.gov (United States)

    Mondt, J. F.; Peelgren, M. L.

    1971-01-01

    Thermionic reactors are prime candidates for nuclear electric propulsion. The national thermionic reactor effort is concentrated on the flashlight concept with the external-fuel concept as the backup. The external-fuel concept is very adaptable to a completely modular power subsystem which is attractive for highly reliable long-life applications. The 20- to 25-cm long, externally-fueled converters have been designed, fabricated, and successfully tested with many thermal cycles by electrical heating. However, difficulties have been encountered during encapsulation for nuclear heated tests and none have been started to date. These nuclear tests are required to demonstrate the concept feasibility.

  6. Spirosoma metallicus sp. nov., isolated from an automobile air conditioning system.

    Science.gov (United States)

    Lee, Hyosun; Kim, Dong-Uk; Lee, Suyeon; Park, Sooyeon; Yoon, Jung-Hoon; Park, So Yoon; Ka, Jong-Ok

    2017-08-05

    A Gram-stain-negative and orangish yellow-pigmented bacterial strain, designated PR1014K(T), was isolated from an automobile evaporator core collected in Korea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PR1014K(T) was related with the members of the genus Spirosoma (94.7-90.2%) and closely related with Spirosoma lacussanchae CPCC 100624(T) (94.7%), Spirosoma knui 15J8-12(T) (94.3%), and Spirosoma soli MIMBbqt12(T) (93.3%). The strain grew at 15-40°C (optimum, 25°C), pH 6.5-7.0 (optimum, 6.5) and 0-1% (w/v) NaCl (optimum, 0%). The predominant fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, iso-C15:0, C16:1 ω5c, and iso-C17:0 3-OH. The major menaquinone was MK-7. The polar lipid profile of the strain indicated that the presence of one phosphatidylethanolamine, one unidentified aminolipid, two unidentified aminophospholipids, and three unidentified lipids. The DNA G+C content of the strain was 47.4 mol%. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, strain PR1014K(T) represents a novel species in the genus Spirosoma, for which the name Spirosoma metallicus sp. nov. (=KACC 17940(T) =NBRC 110792(T)) is proposed.

  7. Spirosoma metallum sp. nov., isolated from an automobile air conditioning system.

    Science.gov (United States)

    Kim, Dong-Uk; Lee, Hyosun; Lee, Suyeon; Park, Sooyeon; Yoon, Jung-Hoon; Park, So Yoon; Ka, Jong-Ok

    2017-08-10

    A Gram-stain-negative and yellow-pigmented bacterial strain, designated TX0653(T), was isolated from an automobile evaporator core collected in Korea. The cells were aerobic and rod-shaped. The strain grew at 10-28 °C (optimum, 25 °C), at pH 6.0-7.5 (optimum, 6.5), and in the presence of 0-1% (w/v) NaCl (optimum, 0%). Phylogenetically, the strain was related to members of the genus Spirosoma (95.1-90.8% 16S rRNA sequence similarity) and distantly related to Spirosoma pulveris JSH5-14(T) (95.1%), Spirosoma fluviale MSd3(T) (95.0%), Spirosoma endophyticum DSM 26130(T) (94.8%), and Spirosoma linguale DSM 74(T) (94.6%). The major fatty acids of the strain were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:1 ω5c, iso-C15:0, iso-C17:0 3-OH, and C16:0. MK-7 was identified as the predominant menaquinone. The polar lipids profile indicated the presence of one phosphatidylethanolamine, one unidentified aminolipid, one unidentified aminophospholipid, two unidentified phospholipids, and three unidentified lipids. On the basis of the phenotypic, genotypic, and chemotaxonomic characteristics, strain TX0653(T) represents a novel species in the genus Spirosoma, for which the name Spirosoma metallum sp. nov. (= KACC 19278(T) = NBRC 112495(T)) is proposed.

  8. 26 CFR 48.4061(a)-5 - Sale of automobile truck bodies and chassis.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Sale of automobile truck bodies and chassis. 48..., Tread Rubber, and Taxable Fuel Automotive and Related Items § 48.4061(a)-5 Sale of automobile truck bodies and chassis. (a) Sale of completed vehicle. An automobile truck (as defined by §...

  9. Experimental Investigation of an Automobile Air-Conditioning System using Integrated Brushless Direct Current Motor Rotary Compressor

    Directory of Open Access Journals (Sweden)

    Sukri M.F.

    2016-01-01

    Full Text Available The present study presents an experimental investigation on the effect of condenser air inlet temperature and dimensionless parameter of X on the performance of automobile air-conditioning (AAC system using integrated brushless direct current motor-rotary compressor and electronic expansion valve. The other components of AAC system are from original component of AAC system used for medium size passenger car. The experimental results showed that the increment of the condenser air inlet temperature and X caused an increase in condensing temperature, cooling capacity and compressor work, while decreasing the coefficient of performance (COP. Meanwhile, the evaporating temperature increase with the increment of condenser air inlet temperature, but decrease with decrement of X. In general, AAC system have to work at higher value of X in order to produce more cooling capacity, thereby increment in compressor work also occurs due to energy balance. However, at higher value of X, the COP of the system dropped due to dominant increase in compressor power, as opposed to a rise in cooling capacity. Due to this reason, the best operation of this compressor occurs at X = 4.96 for constant T5 (35ºC, or at T5 = 30ºC for constant X (4.96.

  10. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ...) For alcohol dual fuel automobiles and natural gas dual fuel automobiles, the procedures of paragraphs... from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on... values for the model type. (5) For alcohol dual fuel automobiles and natural gas dual fuel automobiles...

  11. Fuel System Compatibility Issues for Prometheus-1

    Energy Technology Data Exchange (ETDEWEB)

    DC Noe; KB Gibbard; MH Krohn

    2006-01-20

    Compatibility issues for the Prometheus-1 fuel system have been reviewed based upon the selection of UO{sub 2} as the reference fuel material. In particular, the potential for limiting effects due to fuel- or fission product-component (cladding, liner, spring, etc) chemical interactions and clad-liner interactions have been evaluated. For UO{sub 2}-based fuels, fuel-component interactions are not expected to significantly limit performance. However, based upon the selection of component materials, there is a potential for degradation due to fission products. In particular, a chemical liner may be necessary for niobium, tantalum, zirconium, or silicon carbide-based systems. Multiple choices exist for the configuration of a chemical liner within the cladding; there is no clear solution that eliminates all concerns over the mechanical performance of a clad/liner system. A series of tests to evaluate the performance of candidate materials in contact with real and simulated fission products is outlined.

  12. 14 CFR 33.67 - Fuel system.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With fuel supplied to the engine at the flow and pressure specified by the applicant, the engine...

  13. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    Science.gov (United States)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  14. Macstor system for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Pattantyus, P. (Atomic Energy of Canada Ltd., Montreal, PQ (Canada). Power Projects)

    1993-01-01

    In 1989, Transnuclear Inc. and AECL jointly developed the conceptual design for the Modular Aircooled Canister Storage System (Macstor) for LWR fuel. The development effort has proceeded to the completion of successful full-scale thermal testing. In 1990, AECL adapted the Macstor System approach for use with Candu fuel. The adapted design, called Canstor, has also successfully completed full-scale thermal testing, and the final system design has been completed. (author) 1 fig.

  15. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  16. Modeling and control of fuel cell systems and fuel processors

    Science.gov (United States)

    Pukrushpan, Jay Tawee

    Fuel cell systems offer clean and efficient energy production and are currently under intensive development by several manufacturers for both stationary and mobile applications. The viability, efficiency, and robustness of this technology depend on understanding, predicting, and controlling the unique transient behavior of the fuel cell system. In this thesis, we employ phenomenological modeling and multivariable control techniques to provide fast and consistent system dynamic behavior. Moreover, a framework for analyzing and evaluating different control architectures and sensor sets is provided. Two fuel cell related control problems are investigated in this study, namely, the control of the cathode oxygen supply for a high-pressure direct hydrogen Fuel Cell System (FCS) and control of the anode hydrogen supply from a natural gas Fuel Processor System (FPS). System dynamic analysis and control design is carried out using model-based linear control approaches. A system level dynamic model suitable for each control problem is developed from physics-based component models. The transient behavior captured in the model includes flow characteristics, inertia dynamics, lumped-volume manifold filling dynamics, time evolving spatially-homogeneous reactant pressure or mole fraction, membrane humidity, and the Catalytic Partial Oxidation (CPOX) reactor temperature. The goal of the FCS control problem is to effectively regulate the oxygen concentration in the cathode by quickly and accurately replenishing oxygen depleted during power generation. The features and limitations of different control configurations and the effect of various measurement on the control performance are examined. For example, an observability analysis suggests using the stack voltage measurement as feedback to the observer-based controller to improve the closed loop performance. The objective of the FPS control system is to regulate both the CPOX temperature and anode hydrogen concentration. Linear

  17. 汽车企业逆向物流系统的构建和运行%Establishment and Operation of Reverse Logistics System of Automobile Enterprises

    Institute of Scientific and Technical Information of China (English)

    刘瑛; 方娜

    2015-01-01

    首先从汽车逆向物流的流程入手,分析了汽车企业逆向物流系统的构成.而后对汽车企业逆向物流系统的节点选择进行建模和实例分析.最后提出了汽车企业逆向物流系统构建和运行的策略.%In this paper, starting from the process of the automobile reverse logistics, we analyzed the composition of the reverse logistics system of the automobile enterprise, then modeled and analyzed empirically the nodal selection of the system, and at the end, proposed the strategy for the establishment and operation of the system.

  18. Fuel cell power generation system. Nenryo denchi hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Shiba, Y.

    1993-06-11

    It is general to fabricate the primary cooling water system including the fuel cell main body using corrosion resistant stainless steel, while the secondary cooling system including absorption type freezer is made of carbon steel. For this structure, returning the cooling water of the secondary cooling system to the primary cooling system can cause the corrosion of the primary cooling system. That is, the water of inferior quality in the secondary system can corrode the primary system including the fuel cell. This invention solves the problem. The fuel cell bypass which is branched from the fuel cell cooling water inlet, detours the fuel cell, and it is connected to the water-vapor separator installed to the fuel cell. And the heat exchanger is installed at any of fuel cooling water outlet line, fuel cell cooling water inlet line, or fuel cell bypass line. With this structure, recovering the heat generated during the power generation by the fuel cell at the secondary side of the heat exchanger can be achieved while separating the primary and secondary cooling water. So that the trouble of fuel cell operation caused by the contamination of the primary cooling water with the secondary cooling water which contains corrosive impurities can be avoided. 6 figs.

  19. Analyse de la sensibilité aux paramètres gazoles d'un moteur diesel d'automobile à injection directe Small Direct Injection Diesel Engine Sensitivity to the Diesel Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Montagne X.

    2006-12-01

    particules totales sont plutôt dépendantes de la viscosité et des fractions légères des carburants. Les émissions sonores sont étroitement liées à l'indice de cétane. Par ailleurs, l'ensemble des résultats acquis semble indiquer que les paramètres pilotant le délai d'auto-inflammation sont importants sur ce type de convertisseur. Il serait cependant nécessaire de disposer de mesures directes des caractéristiques des jets d'injection (taille des gouttelettes, pénétration du spray en fonction des différents carburants pour pouvoir quantifier l'effet des paramètres tels que la viscosité et la densité sur la partie physique du délai d'auto-inflammation. Among the technical solutions that can lead to energy converters with low pollutant emissions and low fuel consumption, diesel engines rank, by nature, in a good position. On this base, direct injection diesel engine has been developed and are now spreading in private passanger cars because of their performances, especially in terms of fuel consumption. However, this equipment requires an efficient injection system, electronically driven, needs EGR and an oxidation catalyst to improve the pollutant emissions and the noise level. Thus, it is a major concern to be able to assess precisely the sensitivity to fuel characteristics of direct injection engines as to take the best advantage of this technology. With a set of fuels formulated to cover a large range of chemical nature, viscosity, cetane number and density, an Audi direct injection engine (1Z model was run at the test bench. The impact of the fuel characteristics on pollutant emissions, regulated or unregulated (PAH, aldehydes, and on noise levels was assessed either under standard tuning conditions, either by changing the EGR rate and the injection timing. The results obtained at the end of this program point out the main criteria that have an influence on emissions. They also allow a comparison between direct injection engines and their homologues

  20. Coal slurry fuel supply and purge system

    Science.gov (United States)

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  1. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  2. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  3. SOFC system with integrated catalytic fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, C.; Tompsett, G.A.; Kendall, K.; Ormerod, R.M. [Birchall Centre for Inorganic Chemistry and Materials Science, Keele Univ. (United Kingdom)

    2000-03-01

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm{sup -2} at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H{sub 2}/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack. (orig.)

  4. SOFC system with integrated catalytic fuel processing

    Science.gov (United States)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  5. Overview of the Research of Automobile Energy Recovery Systems%汽车能量回收系统研究概述

    Institute of Scientific and Technical Information of China (English)

    苏玉青; 李舜酩; 王勇

    2016-01-01

    在汽车节能化发展趋势下,能量回收系统研究受到广泛关注。汽车能量回收系统当前研究热点主要集中于再生制动能量回收、馈能悬架以及发动机废热能量回收三个方面。首先对这三类汽车能量回收系统的特点与发展现状进行详细回顾;然后指出各能量回收系统的优势与待解决的关键问题;最后提出相应解决方案并对新的能量回收利用途径进行有益的探索,为今后学者的研究提供借鉴。%Due to the trend of automobile energy saving development, the vehicle energy recovery system has become more and more attractive for many automobile researchers and engineers. Recently, the research hotspots of the automobile energy recovery system mainly focus on three kinds of energy recovery systems: regenerative braking, regenerative suspension and waste energy recovery of engines. In this article, the features and the advances of the three kinds of automobile energy recovery systems were explicitly reviewed. Their advantages and key problems were stated. The corresponding solution suggestions were proposed and the new ways of energy recovery were explored. This work may provide the reference for further research.

  6. Testing system of automobile synchronizer based on PLC and computer%基于PLC和计算机的汽车同步器测试系统

    Institute of Scientific and Technical Information of China (English)

    王欣

    2012-01-01

    Because the synchronizers are the core part of automobile gearbox,it has important significance for the performance of both automobile and automobile gearbox.To evaluate the performance and longevity of automobile synchronizer,a PLC and computer based testing system is developed.The computer is used to complete the task of man-machine interface interaction,analysis and storage related data.The PLC is use to real-time gather data and real-time control,according to orders coming from the computer.The testing system can achieve three types of long-time and high-repeated tests and keep its operation stable and reliable.This paper presents its structure,control system design,application of PLC and control program design.%同步器是汽车变速箱的核心部件,其性能对汽车变速箱以及汽车性能的提高有着重要意义。为了评价汽车变速器中同步器的性能与寿命,相应设计了基于PLC和计算机共同控制的测试系统;计算机主要完成人机界面交互任务以及相关数据的分析与存储,PLC根据计算机命令实现数据实时采集和对整个系统的实时控制;测试系统能够进行三类长时间、高重复性的主要测试,运行稳定可靠。本文主要介绍了测试系统的组成结构、系统设计、PLC在测试系统中的应用和控制程序设计。

  7. Aircraft Fuel Systems Career Ladder.

    Science.gov (United States)

    1985-09-01

    type fittings remove and install fuel cells clean work areas inspect aircraft for safety pin installation purge tanks or cells using blow purge method...INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 84 H254 PURGE TANKS OR CELLS USING BLOW PURGE METHOD 83 H227 CHECK AIRCRAFT FOR LIQUID OXYGEN (LOX...H243 INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 52 M483 MIX SEALANTS BY HAND 48 K372 CONNECT OR DISCONNECT WIGGINS TYPE FITTINGS 48 H236 DISCONNECT

  8. Chrysotile asbestos exposure associated with removal of automobile exhaust systems (ca. 1945-1975) by mechanics: results of a simulation study.

    Science.gov (United States)

    Paustenbach, Dennis J; Madl, Amy K; Donovan, Ellen; Clark, Katherine; Fehling, Kurt; Lee, Terry C

    2006-03-01

    For decades, asbestos-containing gaskets were used in virtually every system that involved the transport of fluids or gases. Prior to the mid-1970s, some automobile exhaust systems contained asbestos gaskets either at flanges along the exhaust pipes or at the exhaust manifolds of the engine. A limited number of automobile mufflers were lined with asbestos paper. This paper describes a simulation study that characterized personal and bystander exposures to asbestos during the removal of automobile exhaust systems (ca. 1945-1975) containing asbestos gaskets. A total of 16 pre-1974 vehicles with old or original exhaust systems were studied. Of the 16 vehicles, 12 contained asbestos gaskets in the exhaust system and two vehicles had asbestos lining inside the muffler. A total of 82 samples (23 personal, 38 bystander, and 21 indoor background) were analyzed by Phase Contrast Microscopy (PCM) and 88 samples (25 personal, 41 bystander, and 22 indoor background) by Transmission Electron Microscopy (TEM). Only seven of 25 worker samples analyzed by TEM detected asbestos fibers and 18 were below the analytical sensitivity limit (mean 0.013 f/cc, range 0.001-0.074 f/cc). Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results showed an average (1 h) adjusted PCM worker exposure of 0.018 f/cc (0.002-0.04 f/cc). The average (1 h) adjusted PCM airborne concentration for bystanders was 0.008 f/cc (range 0.0008-0.015 f/cc). Assuming a mechanic can replace four automobile single exhaust systems in 1 workday, the estimated 8-h time-weighted average (TWA) for a mechanic performing this work was 0.01 f/cc. Under a scenario where a mechanic might repeatedly conduct exhaust work, these results suggest that exposures to asbestos from work with automobile exhaust systems during the 1950s through the 1970s containing asbestos gaskets were substantially below 0.1 f/cc, the current PEL for chrysotile asbestos, and quite often were

  9. 40 CFR 600.207-93 - Calculation of fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... base level. (7) For alcohol dual fuel automobiles and natural gas dual fuel automobiles the procedures... combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate... economy values for the model type. (5) For alcohol dual fuel automobiles and natural gas dual fuel...

  10. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be—...

  11. 14 CFR 23.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954 Section 23.954 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged...

  12. 14 CFR 23.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961 Section 23.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor...

  13. Fuel Flexible Turbine System (FFTS) Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was

  14. Fuel Flexible Turbine System (FFTS) Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone's lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector

  15. Recent trends in automobile recycling: An energy and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

    1994-03-01

    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

  16. Development of a Micro-Step Voltage-Fed Actuator with a Novel Stepper Motor for Automobile AGS Systems

    Directory of Open Access Journals (Sweden)

    Se-Hyun Rhyu

    2014-05-01

    Full Text Available This paper presents an improved micro-step voltage-fed actuator for an automobile active grill shutter (AGS system. A novel structured stepper motor, which contains both the main and auxiliary teeth in the stator, is proposed for the actuator. In a normal permanent magnet (PM motor coils are generally wound on all the stator teeth, however, in the proposed motor, the winding is only on the main teeth. Because of the absence of coils in the auxiliary teeth, the proposed stepper motor possesses the following advantages: simple structure, lighter weight, smaller volume, and less time consumption. The unique auxiliary poles in the stepper motor supply the flux path to increase the step resolution even without any coils. The characteristics of the proposed stepper motor were investigated using finite element analysis. In particular, the effect of the magnetization distribution of the PM on the motor performance was investigated during the analysis. Cogging torque, which causes noise and vibration issues, was minimized by the tooth-shape optimization. In addition, a micro-step voltage-fed algorithm was implemented for a high-resolution position control. By employing a current close to a sine wave using space vector pulse-width modulation, a high-quality current waveform with a high resolution was obtained. Finally, the proposed prototype was fabricated, and the cogging torque, back-electromotive force, and current characteristics were measured by mounting the prototype on the AGS system. Both the analysis and experimental results validate the performance improvement from the proposed motor and its possible application for the flap control of the AGS system.

  17. Design and Analysis of the Gemini Chain System in Dual Clutch Transmission of Automobile

    Institute of Scientific and Technical Information of China (English)

    CHENG Yabing; GUO Haitao; FU Zhenming; WAN Nen; LI Lei; WANG Yang

    2015-01-01

    Chain drive system is widely used in the conditions of high-speed, overload, variable speed and load. Many studies are focused on the meshing theory and wear characteristics of chain drive system, but system design, analysis, and noise characteristics of the chain drive system are weak. System design and noise characteristic are studied for a new type Gemini chain of dual-clutch automatic transmission. Based on the meshing theory of silent chain, the design parameters of the Gemini chain system are calculated and the mathematical models and dynamic analysis models of the Gemini chain system are established. Dynamic characteristics of the Gemini chain system is simulated and the contact force of plate and pin, plate and sprockets, the chain tension forces, the transmission error and the stress of plates and pins are analyzed. According to the simulation results of the Gemini chain system, the noise experiment about system is carried out. The noise values are tested at different speed and load and spectral characteristics are analyzed. The results of simulation and experimental show that the contact forces of plate and pin, plate and sprockets are smaller than the allowable stress values, the chain tension force is less than ultimate tension and transmission error is limited in 1.2%. The noise values can meet the requirements of industrial design, and it is proved that the design and analysis method of the Gemini chain system is scientific and feasible. The design and test system is built from analysis to test of Gemini chain system. This research presented will provide a corresponding theoretical guidance for the design and dynamic characteristics and noise characteristics of chain drive system.

  18. Design and analysis of the Gemini chain system in dual clutch transmission of automobile

    Science.gov (United States)

    Cheng, Yabing; Guo, Haitao; Fu, Zhenming; Wan, Nen; Li, Lei; Wang, Yang

    2015-01-01

    Chain drive system is widely used in the conditions of high-speed, overload, variable speed and load. Many studies are focused on the meshing theory and wear characteristics of chain drive system, but system design, analysis, and noise characteristics of the chain drive system are weak. System design and noise characteristic are studied for a new type Gemini chain of dual-clutch automatic transmission. Based on the meshing theory of silent chain, the design parameters of the Gemini chain system are calculated and the mathematical models and dynamic analysis models of the Gemini chain system are established. Dynamic characteristics of the Gemini chain system is simulated and the contact force of plate and pin, plate and sprockets, the chain tension forces, the transmission error and the stress of plates and pins are analyzed. According to the simulation results of the Gemini chain system, the noise experiment about system is carried out. The noise values are tested at different speed and load and spectral characteristics are analyzed. The results of simulation and experimental show that the contact forces of plate and pin, plate and sprockets are smaller than the allowable stress values, the chain tension force is less than ultimate tension and transmission error is limited in 1.2%. The noise values can meet the requirements of industrial design, and it is proved that the design and analysis method of the Gemini chain system is scientific and feasible. The design and test system is built from analysis to test of Gemini chain system. This research presented will provide a corresponding theoretical guidance for the design and dynamic characteristics and noise characteristics of chain drive system.

  19. Energy autonomous sensors in the automobile; Energieautarke Sensorik im Automobil

    Energy Technology Data Exchange (ETDEWEB)

    Kuehne, Ingo [Hochschule Heilbronn (Germany). Studiengang Energieoekologie; Schreiter, Matthias [Siemens AG, Muenchen (Germany); Li, Xiaoming [Daimler AG, Sindelfingen (Germany); Hehn, Thorsten [Hahn-Schickard-Gesellschaft fuer angewandte Forschung e.V., Freiburg (Germany). HSG-IMIT, Inst. fuer Mikro- und Informationstechnik; Thewes, Marcell; Scholl, Gerd [Helmut-Schmidt-Univ., Univ. der Bundeswehr, Hamburg (Germany); Wagner, Dieter [Continental Automotive GmbH, Regensburg (Germany); Manoli, Yiannos [Univ. Freiburg (Germany). IMTEK; Frey, Alexander [Hochschule Augsburg (Germany). Fakultaet Elektrotechnik

    2013-04-01

    A brief outline of energy autonomous sensors in the automobile is given. For this purpose the variety of sensors in today's automotive vehicles is reported. The rationale for the deployment of energy autonomous sensors is given. In addition the potential of using environmental energy and the possibilities of their energy conversion are presented. As part of the funded project ASYMOF, two pioneer applications - a tire pressure monitoring and an anti-theft alarm system - are studied and discussed.

  20. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    Science.gov (United States)

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  1. Solar Energy Automobile

    OpenAIRE

    He, Jianhua

    2014-01-01

    The thesis was to design a solar energy automobile, which is using solar power as energy re-source. At the moment, Finland was chosen as an example place. It was necessary to calculate the related data, which are the solar angle and the day length when designing the solar energy automobile. Also the seats and dashboard to improve the performance. Actually, in Finland it is possible to use solar energy automobile in summer. But in winter, the day length is so short and the solar constant i...

  2. Solar Energy Automobile

    OpenAIRE

    He, Jianhua

    2014-01-01

    The thesis was to design a solar energy automobile, which is using solar power as energy re-source. At the moment, Finland was chosen as an example place. It was necessary to calculate the related data, which are the solar angle and the day length when designing the solar energy automobile. Also the seats and dashboard to improve the performance. Actually, in Finland it is possible to use solar energy automobile in summer. But in winter, the day length is so short and the solar constant i...

  3. 14 CFR 23.993 - Fuel system lines and fittings.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 23.993 Section 23.993 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System Components § 23.993 Fuel system lines and fittings. (a) Each fuel line must be...

  4. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  5. A Novel Approach for Enhancement of Automobile Clutch Engagement Quality Using Mechatronics Based Automated Clutch System

    Science.gov (United States)

    Tripathi, K.

    2013-01-01

    In automated manual clutch (AMC) a mechatronic system controls clutch force trajectory through an actuator governed by a control system. The present study identifies relevant characteristics of this trajectory and their effects on driveline dynamics and engagement quality. A new type of force trajectory is identified which gives the good engagement quality. However this trajectory is not achievable through conventional clutch control mechanism. But in AMC a mechatronic system based on electro-hydraulic or electro-mechanical elements can make it feasible. A mechatronic system is presented in which a mechatronic add-on system can be used to implement the novel force trajectory, without the requirement of replacing the traditional diaphragm spring based clutch in a vehicle with manual transmission.

  6. Quantifying physical characteristics of wildland fuels using the fuel characteristic classification system.

    Science.gov (United States)

    Cynthia L. Riccardi; Susan J. Prichard; David V. Sandberg; Roger D. Ottmar

    2007-01-01

    Wildland fuel characteristics are used in many applications of operational fire predictions and to understand fire effects and behaviour. Even so, there is a shortage of information on basic fuel properties and the physical characteristics of wildland fuels. The Fuel Characteristic Classification System (FCCS) builds and catalogues fuelbed descriptions based on...

  7. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    Directory of Open Access Journals (Sweden)

    S.N. Sidek and M.J.E. Salami

    2012-08-01

    Full Text Available An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time duration, cost, efficiency and comfortability. The impact of such design and development will cater for the need of contemporary society that aspires to a quality drive as well as to accommodate the advancement of technology especially in the area of smart sensors and actuators.  The emergence of digital signal processor enhances the capacity and features of universal microcontroller.  This paper introduces the use of TI DSP, TMS320LF2407 as an engine of the system. The overall system is designed so that the value of inter-vehicle distance from infrared laser sensor and speed of follower car from speedometer are fed into the DSP for processing, resulting in the DSP issuing commands to the actuator to function appropriately.Key words:  Smart Vehicle, Digital Signal Processor, Fuzzy Controller, and Infra Red Laser Sensor

  8. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype fiat 131TC 2.4 liter automobile

    Science.gov (United States)

    Quayle, S. S.

    1982-01-01

    The results obtained from fuel economy and emission tests conducted on a prototype Fiat 131 turbocharged diesel vehicle are presented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a United States number 2 diesel and a European diesel fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that turbocharging accompanied by complementary modifications results in small but substantial improvements in regulated emissions, fuel economy, and performance. Notably, particulate levels were reduced by 30 percent.

  9. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions.

  10. 30 CFR 36.27 - Fuel-supply system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel-supply system. 36.27 Section 36.27 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... Construction and Design Requirements § 36.27 Fuel-supply system. (a) Fuel tank. (1) The fuel tank shall...

  11. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  12. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  13. Research on Switched Reluctance Motor for Automobile Starter/Generator System

    Institute of Scientific and Technical Information of China (English)

    QUAN Li; LIU Qiang; ZHAO De-an; LIU Di-ji

    2006-01-01

    A self-designed and developed 12/10 switched reluctance motor(SRM)is chosen as the object of study and a prototype of 2.5 kW switched reluctance starter/generator with fly-wheel is designed based on the requirements of the selected engine (Changan Aotooc three-cylinder engine wagon) for the starter, generator and drive. The 36 V/42 V DC source system is applied to establishing the simulation-analyzing model of the motor. A finite-element (FE) analysis of its two-dimensional electromagnetic field is conducted to obtain the exact model of the motor. Systematic simulation is carried out combining with its power conversion circuit and control element. Meanwhile the starting process and performance of the system are studied and analyzed with special efforts. Satisfactory result is derived from the testing of the prototype:theoretical analysis is basically matched with the tested data, which proves the rationality and feasibility of the design procedures, systematic modeling and control strategies. Therefore, the new 12/10-structure scheme is put forward based on the development and analysis of various SRM and it meets the requirements of the researched motor in terms of the structural parameters.

  14. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  15. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  16. Les émissions par perméabilité à travers les canalisations des véhicules automobiles Emissions Due to Permeation Through the Vehicule Fuel Lines

    Directory of Open Access Journals (Sweden)

    Dewimille B.

    2006-12-01

    Full Text Available Un des objectifs de la politique environnementale de l'Union européenne est de réduire les émissions des véhicules automobiles. Les normes Euro 96 et Euro 2000 s'intéressent en particulier aux émissions par évaporation dues à la perméation du carburant à travers les matériaux polymères. Dans ce papier, nous exposons la méthode d'essai des lignes de carburant développée à l'IFP avec PSA et Renault. Nous présentons également des résultats obtenus avec divers types de canalisations et plusieurs fluides d'essai. Au vu de ces résultats et de la sévérité des nouvelles normes, les équipementiers et les fournisseurs de matières doivent développer de nouvelles solutions afin d'améliorer la résistance à la perméation. The aim of the environmental policy of the European Union is to reduce the automotive hydrocarbon emissions. The Euro 96 and future Euro 2000 standards are particularly dealing with the emissions due to fuel permeation through polymeric materials. In this paper, the testing procedure for fuel lines developed at IFP, PSA, and Renault, is described. Results obtained with various types of fuel lines and several fuels are detailed. According to these results and to the new stringent standards, equipment and material suppliers will have to develop new solutions with improved permeation resistance.

  17. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Fuel System Supply Point

    Science.gov (United States)

    2014-06-19

    utilizing Fuel System Supply Point Joel Schmitigal U S Army Tank Automotive Research DISTRIBUTION STATEMENT A. Approved for public release; distribution...UNCLASSIFIED 6 UNCLASSIFIED Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18...Test Center while AMRDEC was conducting Alcohol to Jet (ATJ) fuel flight tests (17). The test results indicated that on-line particle counters

  18. Spontaneously Igniting Hybrid Fuel-Oxidiser Systems

    Directory of Open Access Journals (Sweden)

    S. R. Jain

    1995-01-01

    Full Text Available After briefly outlining the recent developments in hybrid rockets, the work carried out by the author on self-igniting (hypergolic solid fuel-liquid oxidiser systems has been reviewed. A major aspect relates to the solid derivatives of hydrazines, which have been conceived as fuels for hybrid rockets. Many of these N-N bonded compounds ignite readily, with very short ignition delays, on coming into contact with liquid oxidisers, like HNO/sub 3/ and N/sub 2/ O/sub 4/. The ignition characteristics have been examined as a function of the nature of the functional group in the fuel molecule, in an attempt to establish a basis for the hypergolic ignition in terms of chemical reactivity of the fuel-oxidiser combination. Important chemical reactions occurring in the pre-ignition stage have been identified by examining the quenched reaction products. Hybrid systems exhibiting synergistic hypergolicity in the presence of metal powders have investigated. An estimation of the rocket performance parameters, experimental determination of the heats of combustion in HNO/sub 3/, thermal decomposition characteristics, temperature profile by thin film thermometry and product identification by the rapid scan FT-IR, are among the other relevant studies made on these systems. A significant recent development has been the synthesis of new N-N bonded viscous binders, capable of rataining the hypergolicity of the fuel powders embedded therein as well as providing the required mechanical strength to the grain. Several of these resins have been characterised. Metallised fuel composites of these resins having high loading of magnesium are found to have short ignition delays and high performance parameters.

  19. Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine

    Directory of Open Access Journals (Sweden)

    Gürbüz Habib

    2015-01-01

    Full Text Available In this study, we have investigated the recovery of energy lost as waste heat from exhaust gas and engine coolant, using an improved thermoelectric generator (TEG in a LPG fueled SI engine. For this purpose, we have designed and manufactured a 5-layer heat exchanger from aluminum sheet. Electrical energy generated by the TEG was then used to produce hydrogen in a PEM water electrolyzer. The experiment was conducted at a stoichiometric mixture ratio, 1/2 throttle position and six different engine speeds at 1800-4000 rpm. The results of this study show that the configuration of 5-layer counterflow produce a higher TEG output power than 5-layer parallel flow and 3-layer counterflow. The TEG produced a maximum power of 63.18 W when used in a 5-layer counter flow configuration. This resulted in an improved engine performance, reduced exhaust emission as well as an increased engine speed when LPG fueled SI engine is enriched with hydrogen produced by the PEM electrolyser supported by TEG. Also, the need to use an extra evaporator for the LPG fueled SI engine is eliminated as LPG heat exchangers are added to the fuel line. It can be concluded that an improved exhaust recovery system for automobiles can be developed by incorporating a PEM electrolyser, however at the expense of increasing costs.

  20. 40 CFR 600.307-95 - Fuel economy label format requirements.

    Science.gov (United States)

    2010-07-01

    ... accordance with § 600.209 (a) and (b). (B) For alcohol dual fuel automobiles and natural gas dual fuel automobiles, the city and highway fuel economy estimates for operation on gasoline or diesel fuel as... in a bold condensed type and no smaller than 12 points in size. (C) For alcohol dual fuel automobiles...

  1. Fuel Cost Estimation for Sumatra Grid System

    Science.gov (United States)

    Liun, Edwaren

    2010-06-01

    Sumatra has a high growth rate electricity energy demand from the first decade in this century. At the medium of this decade the growth is 11% per annum. On the other side capability of Government of Indonesia cq. PLN authority is limited, while many and most old existing power plants will be retired. The electricity demand growth of Sumatra is increasing the fuel consumption for several next decades. Based on several cases by vary growth scenarios and economic parameters, it shown that some kinds of fossil fuel keep to be required until next several decades. Although Sumatra has abundant coal resource, however, the other fuel types such as fuel oil, diesel, gas and nuclear are needed. On the Base Scenario and discount rate of 10%, the Sumatra System will require 11.6 million tones of coal until 2030 producing 866 TWh with cost of US10558 million. Nuclear plants produce about 501 TWh or 32% by cost of US3.1 billion. On the High Scenario and discount rate 10%, the coal consumption becomes 486.6 million tones by fuel cost of US12.7 billion producing 1033 TWh electricity energy. Nuclear fuel cost required in this scenario is US7.06 billion. The other fuel in large amount consumed is natural gas for combined cycle plants by cost of US1.38 billion producing 11.7 TWh of electricity energy on the Base Scenario and discount rate of 10%. In the High Scenario and discount rate 10% coal plants take role in power generation in Sumatra producing about 866 TWh or 54% of electricity energy. Coal consumption will be the highest on the Base Scenario with discount rate of 12% producing 756 TWh and required cost of US17.1 billion. Nuclear plants will not applicable in this scenario due to its un-competitiveness. The fuel cost will depend on nuclear power role in Sumatra system. Fuel cost will increase correspond to the increasing of coal consumption on the case where nuclear power plants not appear.

  2. Gaseous fuel reactor systems for aerospace applications

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.

    1977-01-01

    Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

  3. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    in which fuel cell appli‐ cations create synergy effects with other components of the system, as well as in which the efficiency improvements achieved by using fuel cells are lost elsewhere in the system. In order to identify suitable applications of fuel cells and electrolysers in future energy sys‐ tems...... be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency...

  4. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype Chrysler Volare, 225 CID (3.7-liter) automobile

    Science.gov (United States)

    Walter, R. A.

    1982-01-01

    The results obtained from fuel economy and emission tests conducted on a prototype Chrysler Volare diesel vehicle are documented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. The fuel used, was a DOE/BETC referee fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. The vehicle obtained 32.7 mpg for the FTP urban cycle and 48.8 mpg for the highway cycle. The emissions rates were 0.42/1.58/1.17/0.28 g/mile of HC, CO, NOx and particulates respectively.

  5. Determination of the mutagenic and genotoxic potential of simulated leachate from an automobile workshop soil on eukaryotic system.

    Science.gov (United States)

    Alabi, Okunola Adenrele; Omosebi, Omotoyosi; Chizea, Ifychukwwu

    2015-07-01

    Contamination of soil and water bodies with spent engine oil and petroleum products is a serious ecological problem, primarily in the automobile workshops and garages. This has potential short and chronic adverse health risks. Information is currently scarce on the potential mutagenicity and genotoxicity of such wastes. In this study, the potential mutagenic and genotoxic effects of simulated leachate from automobile workshop soil in Sagamu, Ogun state, Nigeria, were investigated. The assays utilized were bone marrow micronucleus (MN) and chromosome aberration (CA), sperm morphology and sperm count in mice. The physicochemical analysis of the leachate was also carried out. Experiments were carried out at concentrations of 1, 5, 10, 25, 50, 75 and 100% (volume per volume; leachate:distilled water) of the leachate sample. MN analysis showed a concentration-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. In the CA test, there was concentration-dependent significant reduction in mitotic index and induction of different types of CAs. Assessment of sperm shape showed a significant increase in sperm abnormalities with significant decrease in mean sperm count in treated groups. Heavy metals analyzed in the tested sample are believed to contribute significantly to the observed genetic damage. This indicates that automobile workshop soil-simulated leachate contains potential genotoxic agents and constitutes a genetic risk in exposed human population.

  6. Military Fuel and Alternative Fuel Effects on a Modern Diesel Engine Employing a Fuel-Lubricated High Pressure Common Rail Fuel Injection System

    Science.gov (United States)

    2011-08-09

    Fuel-lubricated High Pressure Common Rail Fuel Injection System, Adam C. Brandt, et al. Page 3 of 7 UNCLASSIFIED contains a two lobe camshaft ... camshafts rotation. These follower assemblies are then used to actuate the fuel plunger within the barrel to generate high pressure fuel. Fuel entering...top & bottom Camshaft light polish, seal contact wear light polish, very light burnish, seal contact wear light polish, light burnish, seal

  7. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

    Science.gov (United States)

    Johannsen, G.; Rouse, W. B.

    1978-01-01

    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

  8. Future possibilities for energy-storage automobiles

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, L.G.

    1981-04-23

    Because of the potential threat of a future petroleum shortage, there is increased interest in developing alternative propulsion systems for automobiles, systems that will allow the nation to reduce its demand for petroleum by this part of the transportation sector. A four-year study which assessed the future of energy storage devices for use in automobile propulsion systems has been completed. Results of the energy storage device evaluation are presented. This includes projections of future device characteristics. In addition, the results of the propulsion system analysis are given. Future energy storage automobiles were conceptually designed and they are compared to each other and the baseline internal combustion engine vehicle for several levels of performance.

  9. The comparison of performance by using alternative refrigerant R152a in automobile climate system with different artificial neural network models

    Science.gov (United States)

    Kalkisim, A. T.; Hasiloglu, A. S.; Bilen, K.

    2016-04-01

    Due to the refrigerant gas R134a which is used in automobile air conditioning systems and has greater global warming impact will be phased out gradually, an alternative gas is being desired to be used without much change on existing air conditioning systems. It is aimed to obtain the easier solution for intermediate values on the performance by creating a Neural Network Model in case of using a fluid (R152a) in automobile air conditioning systems that has the thermodynamic properties close to each other and near-zero global warming impact. In this instance, a network structure giving the most accurate result has been established by identifying which model provides the best education with which network structure and makes the most accurate predictions in the light of the data obtained after five different ANN models was trained with three different network structures. During training of Artificial Neural Network, Quick Propagation, Quasi-Newton, Levenberg-Marquardt and Conjugate Gradient Descent Batch Back Propagation methodsincluding five inputs and one output were trained with various network structures. Over 1500 iterations have been evaluated and the most appropriate model was identified by determining minimum error rates. The accuracy of the determined ANN model was revealed by comparing with estimates made by the Multi-Regression method.

  10. A Cooling System for an Automobile Based on Vapour Absorption Refrigeration Cycle Using Waste Heat of an Engine.

    Directory of Open Access Journals (Sweden)

    Satish K. Maurya

    2014-03-01

    Full Text Available Now a days the air conditioning system of cars is mainly uses “Vapour Compression Refrigerant System” (VCRS which absorbs and removes heat from the interior of the car that is the space to be cooled and rejects the heat to atmosphere. In vapour compression refrigerant system, the system utilizes power from engine shaft as the input power to drive the compressor of the refrigeration system, hence the engine has to produce extra work to run the compressor of the refrigerating system utilizing extra amount of fuel. This loss of power of the vehicle for refrigeration can be neglected by utilizing another refrigeration system i.e. a “Vapour Absorption Refrigerant System”. As well known thing about VAS that these machines required low grade energy for operation. Hence in such types of system, a physicochemical process replaces the mechanical process of the Vapour Compression Refrigerant System by using energy in the form of heat rather than mechanical work. This heat obtained from the exhaust of high power internal combustion engines.

  11. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype Fiat 131 NA 2.4 liter automobile

    Science.gov (United States)

    Quayle, S. S.; Davis, M. M.; Walter, R. A.

    1981-01-01

    The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a U.S. no. 2 diesel and a European diesel fuel. The vehicle was tested with retarded timing and with and without an oxidation catalyst. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that while the catalyst was generally effective in reducing hydrocarbon and carbon monoxide levels, it was also a factor in increasing particulate emissions. Increased particulate emission rates were particularly evident when the vehicle was operated on the European fuel which has a high sulfur content.

  12. 中国汽车产业燃油经济性标准与诱导性技术创新研究%Automobile Fuel Economy Regulation and Induced Innovation:Evidence from China

    Institute of Scientific and Technical Information of China (English)

    范群林; 吴花平; 邵云飞

    2014-01-01

    本文从汽车特征、汽油价格和燃油效率技术入手,探求我国近年来建立的燃油经济性管制对汽车制造企业的燃油经济性技术是否产生诱导性创新。通过建立理论模型,并运用结构方程模型的方法实证检验后发现:包括整车重量等在内的汽车特征对燃油经济性存在正向影响,同时,管制所诱导的燃油效率技术的创新也对燃油经济性提升具有正向影响。因此,汽车制造企业应对政府燃油经济性管制的途径除了考虑优化整车质量、功率/重量、变速器类型、车辆种类和排量等汽车传统特征这个途径外,还应着重考虑燃油效率技术的研发,当前,国内各大汽车制造企业均投入大量资源,研发新能源汽车即为明证。此外,我国汽油价格虽然对燃油经济性也具有正向影响,但微乎其微,这说明消费者考虑到汽油价格不断上涨,用车成本不断增加,也会给汽车制造企业和政府管制带来压力,迫使其从产业和市场的持续发展出发,做出一些思考与行动,只是这种作用在当前还体现得不够显著。%From the aspects of auto characteristics , gasoline prices and fuel efficiency technology , this paper examines whether Chinese fuel economy regulations established in recent years induced fuel efficiency technology innovation in automaker'technology for pro-viding fuel economy . By building the theoretical model and employing structural equation model method to empirical tests , we find that:auto characteristics including vehicle weight own positive influence on fuel economy , simultaneously , fuel efficiency technology induced by regulation also owns positive influence on fuel economy elevation . Therefore , the way to reply the fuel economy regulation for auto makers is to optimize automobile weight , power/weight , transmission types , vehicle types and volume , and also to put more emphasis on research and

  13. Test and analysis of the reaction time of the automobile pneumatic braking system%某汽车气压制动系统制动反应时间的测试及分析

    Institute of Scientific and Technical Information of China (English)

    郭伟

    2014-01-01

    The braking reaction time is one of the important performance parameters of automobile braking system, is one of the main factors influencing the automobile braking distance. This paper tested the braking reaction time of pneumatic braking system of an automobile, and analyzes its braking system performance.%汽车制动反应时间是汽车制动系统的重要性能参数之一,是影响汽车制动距离的主要因素之一。本文对某汽车气压制动系统进行制动反应时间测试,并分析其制动系统特性。

  14. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed...... fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  15. BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem

    Science.gov (United States)

    Robert E. Burgan; Richard C. Rothermel

    1984-01-01

    This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.

  16. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  17. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  18. Regenerative fuel cell systems R and D

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  19. Effect of automobile operating condition on the subjective equivalence of steering wheel vibration and sound

    OpenAIRE

    2007-01-01

    For the manufacturers of automobiles, automobile components and fuels, subjective equivalence relationships between vibration and sound can be used as a reference against which to plot the results from simulations or tests of specific operational conditions. The research described here was performed to define curves of subjective equivalence between steering wheel rotational vibration and sound using stimuli from different automobile operating conditions. The steering wheel acceleration stimu...

  20. A comparison of mechanical algorithms of fuel performance code systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C

    2003-11-01

    The goal of fuel rod performance evaluation is to identify the robustness of fuel rod with cladding material during fuel irradiation. Computer simulation of fuel rod performance becomes important to develop new nuclear systems. To construct the computing code system for fuel rod performance, we compared several algorithms of existing fuel rod performance code systems and summarized the details and tips as a preliminary work. Among several code systems, FRAPCON, FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. The computational algorithms related to mechanical interaction of the fuel rod are compared including methodologies and subroutines. This work will be utilized to develop the computing code system for dry process fuel rod performance.

  1. A review of fuel cell systems for maritime applications

    Science.gov (United States)

    van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P. V.

    2016-09-01

    Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution, since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel, and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented, and maritime fuel cell application is reviewed with regard to efficiency, gravimetric and volumetric density, dynamic behaviour, environmental impact, safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours, but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles, hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study.

  2. On the automobile lightweight

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; Yi Hongliang; Lu Hongzhou; Wan Xinming

    2012-01-01

    The significance, description parameters, evaluation method, implement way and design for lightweight of au- tomobile are comprehensively reviewed. The relationship among the performances of auto parts & components, the prop- erties of materials and application of advanced technologies is also elaborated. According to recently related progress of lightweight and authors' research and developing work, lightweight of automobile is comprehensively and systematically overviewed.

  3. Applying visual attention theory to transportation safety research and design: evaluation of alternative automobile rear lighting systems.

    Science.gov (United States)

    McIntyre, Scott E; Gugerty, Leo

    2014-06-01

    This field experiment takes a novel approach in applying methodologies and theories of visual search to the subject of conspicuity in automobile rear lighting. Traditional rear lighting research has not used the visual search paradigm in experimental design. It is our claim that the visual search design uniquely uncovers visual attention processes operating when drivers search the visual field that current designs fail to capture. This experiment is a validation and extension of previous simulator research on this same topic and demonstrates that detection of red automobile brake lamps will be improved if tail lamps are another color (in this test, amber) rather than the currently mandated red. Results indicate that when drivers miss brake lamp onset in low ambient light, RT and error are reduced in detecting the presence and absence of red brake lamps with multiple lead vehicles when tail lamps are not red compared to current rear lighting which mandates red tail lamps. This performance improvement is attributed to efficient visual processing that automatically segregates tail (amber) and brake (red) lamp colors into distractors and targets respectively.

  4. Simplified Load-Following Control for a Fuel Cell System

    Science.gov (United States)

    Vasquez, Arturo

    2010-01-01

    A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.

  5. 基于MATLAB GUI的汽车外灯控制系统演示模型%DEMONSTRATION MODEL OF CONTROL SYSTEM FOR EXTERIOR AUTOMOBILE LIGHTING BASED ON MATLAB GUI

    Institute of Scientific and Technical Information of China (English)

    郭洪源; 许维胜; 余有灵

    2012-01-01

    This paper proposes a demonstration model of control system for exterior automobile lighting based on Matlab GUI after analysed the control pattern of exterior automobile lighting of existing electronic appliances in automobile industry, and which has been adopted at last. The Matlab software has the characteristic of good scalability, and has powerful computation function, the Matlab Guide development environment it integrates is convenient in establishing friendly man-machine interface. The application of this scheme makes the function management of exterior automobile lighting more intuitive; moreover, it facilitates the modification of control logic and function of exterior automobile lighting.%在分析现有汽车行业电子电器汽车外灯控制方式的基础上,提出一种基于Matlab GUI的汽车外灯控制系统演示模型,并最终得到应用.Matlab软件具有很好的拓展性,并且具有强大的计算功能,其集成的Matlab Guide开发环境方便建立良好的人机交互界面.该方案的应用使得汽车外灯功能管理变得更加直观,并且便于对汽车外灯控制逻辑以及功能进行修改.

  6. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saxe, Maria

    2008-10-15

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  7. Mathematical Model of the Jet Engine Fuel System

    Science.gov (United States)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  8. Mathematical Model of the Jet Engine Fuel System

    Directory of Open Access Journals (Sweden)

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  9. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  10. Application of Wireless Sensor Networks to Automobiles

    Science.gov (United States)

    Tavares, Jorge; Velez, Fernando J.; Ferro, João M.

    2008-01-01

    Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture and the choice/implementation of the protocols are identified. Security aspects are also addressed.

  11. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  12. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  13. 41 CFR 102-34.45 - How are passenger automobiles classified?

    Science.gov (United States)

    2010-07-01

    ... MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.45 How are passenger automobiles classified... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How are passenger automobiles classified? 102-34.45 Section 102-34.45 Public Contracts and Property Management Federal...

  14. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  15. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  16. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  17. Low NO/x/ combustion systems for burning heavy residual fuels and high-fuel-bound nitrogen fuels

    Science.gov (United States)

    White, D. J.; Batakis, A.; Lecren, R. T.; Yacobucci, H. G.

    1981-01-01

    Design concepts are presented for lean-lean and staged rich-lean combustors. The combustors are designed for the dry reduction of thermal NO(x), control of NO(x) from fuels containing high levels of organic nitrogen, and control of smoke from low hydrogen content fuels. The combustor concepts are tested with a wide variety of fuels including a middle distillate, a petroleum based heavy residual, a coal derived synthetic, and ratios of blends of these fuels. The configurations of the lean-lean and rich-lean combustion systems are provided along with a description of the test rig and test procedure.

  18. Interim report spent nuclear fuel retrieval system fuel handling development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  19. Development of DUPIC fuel cycle technology - Assessment of Wolsong NPP fuel handling system for DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Na, Bok Gyun; Nam, Gung Ihn [Korea Power Engineering Company, Taejon (Korea)

    2000-04-01

    The DUPIC fuel loading and discharge path of Wolsong NPP is studied assuming that DUPIC fuel is used at Wolsong NPP. Spent DUPIC fuel discharge path is irrelevant, since it uses the same spent fuel discharge path. Number of factors such as safety, economics of design change, radiation exposure to operators, easy of operation and maintenance, etc, are considered in the evaluation of path. A more detailed analysis of cost estimation of the selected path is also carried out. The study shows that DUPIC fuel loading path following through Spent Fuel Storage Bay and Spent Fuel Discharge Port in reverse direction will minimize the design change and additional equipment and radiation exposure to operators. The estimated total cost of using DUPIC fuel in Wolsong NPP based on price index of year 2000 is around 4.5 billion won. 4 refs., 30 figs., 13 tabs. (Author)

  20. 14 CFR 29.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 29.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard...) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far...

  1. 14 CFR 27.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 27.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard...) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far...

  2. Environmentally Benign Automobiles

    OpenAIRE

    Sperling, Daniel; Schipper, Lee; Deluchi, Mark; Wang, Quanlu

    1992-01-01

    His dream has come true. There's now more than one vehicle for every licensed driver in the United States, and other developed countries are not far behind. But has the car's success created the conditions for its own demise? Conventional wisdom of market researchers, consultants, and other experts is that the automobile and its petroleum-powered internal combustion engine will be with us for a long time and that any energy and environmental problems can be readily solved. T...

  3. High oil price compel automobile to 'slim',Light metal castings enjoy great popularity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The fuel consumption of automobiles has a close relationship with their weight, and due to short supply and high prices of energy sources, numerous automakers are trying every means to make the automobile "slim" (or less heavy).According to available data, every 100-kg reduction in automobile weight will result in a 0.3-liter gasoline saving for every hundred kilometers of driving. Therefore, automobile parts with light weight, thin wall, excellent dimensional accuracy and high strength and toughness become the development trend.

  4. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  5. Conceptual design study of advanced fuel fabrication systems

    Energy Technology Data Exchange (ETDEWEB)

    Ken-ya, Tanaka; Shusaku, Kono; Kiyoshi, Ono [Japan Nuclear Cycle Development JNC, Fuel Fabrication System Group, O-Arai Engineering Center, Ibaraki (Japan)

    2001-07-01

    The fuel fabrication plant images based on the advanced equipment with availability to operate in hot-cell facility are constructed. The characteristics of each fuel fabrication system for economical and environmental are evaluated roughly. The advanced fuel fabrication routes such as simplified pelletizing, vibration compaction and casting process would have the potential for reducing plant construction cost and minimizing the radioactive waste generated from fuel fabrication process. (author)

  6. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  7. Effect of automobiles on global warming: A modeling study

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2017-09-01

    Full Text Available Global warming threatens our environment as well as basic human needs. In the present scenario, increasing demand and excessive use of automobiles have increased the level of carbon dioxide emission in the environment, providing a significant contribution to increase the global warming. This paper deals with the modeling of the effect of automobiles on global warming. For this, three nonlinearly interacting variables namely; density of human population, density of automobiles and the concentration of carbon dioxide have been taken into account. In the modeling process, it is assumed that the density of automobiles increases in proportion to human population following a logistic growth. The model is analyzed using stability theory of ordinary differential equations. Local and global stability conditions are established to study the feasibility of the model system. It is shown that with increase in human population, the demand for automobiles increases which has significant effect on global warming increase.

  8. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  9. PEM fuel stack dynamics, constraining supervisory control for propulsion systems in fuel cell busses

    NARCIS (Netherlands)

    Tazelaar, Edwin; Veenhuizen, Bram; Middelman, E.; Bosch, P. van den

    2013-01-01

    The last decade several prototypes of fuel cell busses have been presented [1, 2]. A closer observation of these prototypes shows remarkable differences in both sizing and control of the system components. Some busses are essentially electric vehicles with a relative low power fuel cell system used

  10. 我国汽车零部件企业的精益生产应用%Application of Lean Production System by Chinese Automobile Spare Parts Manufacturers

    Institute of Scientific and Technical Information of China (English)

    倪呈英

    2014-01-01

    In this paper, we introduced briefly the connotation of the lean production practice as well as the current status and existing problems of the lean production system of the Chinese automobile spare parts manufacturers, and then established the lean production mode suitable for these enterprises.%简述了精益生产的内涵与我国汽车零部件企业的现状及汽车零部件企业精益生产存在的问题,从精益生产的布局与精益生产的改善两方面构建了汽车零部件企业的精益生产模式。

  11. 49 CFR 523.4 - Passenger automobile.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Passenger automobile. 523.4 Section 523.4... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.4 Passenger automobile. A passenger automobile is any automobile (other than an automobile capable of off-highway operation)...

  12. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  13. 46 CFR 62.35-40 - Fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel systems. 62.35-40 Section 62.35-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-40 Fuel systems. (a) Level alarms. Where...

  14. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  15. High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California’s future

    Science.gov (United States)

    Chester, Mikhail; Horvath, Arpad

    2012-09-01

    Sustainable mobility policy for long-distance transportation services should consider emerging automobiles and aircraft as well as infrastructure and supply chain life-cycle effects in the assessment of new high-speed rail systems. Using the California corridor, future automobiles, high-speed rail and aircraft long-distance travel are evaluated, considering emerging fuel-efficient vehicles, new train designs and the possibility that the region will meet renewable electricity goals. An attributional per passenger-kilometer-traveled life-cycle inventory is first developed including vehicle, infrastructure and energy production components. A consequential life-cycle impact assessment is then established to evaluate existing infrastructure expansion against the construction of a new high-speed rail system. The results show that when using the life-cycle assessment framework, greenhouse gas footprints increase significantly and human health and environmental damage potentials may be dominated by indirect and supply chain components. The environmental payback is most sensitive to the number of automobile trips shifted to high-speed rail, and for greenhouse gases is likely to occur in 20-30 years. A high-speed rail system that is deployed with state-of-the-art trains, electricity that has met renewable goals, and in a configuration that endorses high ridership will provide significant environmental benefits over existing modes. Opportunities exist for reducing the long-distance transportation footprint by incentivizing large automobile trip shifts, meeting clean electricity goals and reducing material production effects.

  16. Model of U3Si2 Fuel System using BISON Fuel Code

    Energy Technology Data Exchange (ETDEWEB)

    K. E. Metzger; T. W. Knight; R. L. Williamson

    2014-04-01

    This research considers the proposed advanced fuel system: U3Si2 combined with an advanced cladding. U3Si2 has a number of advantageous thermophysical properties, which motivate its use as an accident tolerant fuel. This preliminary model evaluates the behavior of U3Si2 using available thermophysical data to predict the cladding-fuel pellet temperature and stress using the fuel performance code: BISON. The preliminary results obtained from the U3Si2 fuel model describe the mechanism of Pellet-Clad Mechanical Interaction for this system while more extensive testing including creep testing of U3Si2 is planned for improved understanding of thermophysical properties for predicting fuel performance.

  17. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  18. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  19. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  20. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    Science.gov (United States)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  1. Okoliš i automobil

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger

    2012-10-01

    Full Text Available Constant increase of the number of automobiles causes demand for individual materials to get on the rise, thus giving an impulse to the development of recycling logistics. Used automobiles get disassembled and individual parts which can be used as raw materials or additives get recycled. Automobile tires can be reclaimed or vulcanized. In July 1978 the environmental-friendly "Blauer Engel" or "Blue Angel" symbol was first introduced for reclaimed tires. Later, emblems were introduced for other recycled automobile pans. The awarding of the emblem is being controlled and approved by authorized institutes, because the emblem rightfully designates traffic safety.

  2. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  3. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  4. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  5. LFMCW Radar Applied in Automobile Safety Systems%一种应用于汽车安全系统的LFMCW雷达

    Institute of Scientific and Technical Information of China (English)

    李洋; 李浩; 王占平; 郭婧

    2014-01-01

    More and more automobiles are designed with forward-looking radar system at 24GHz or 77GHz. The hardware architecture of a LFMCW radar at K band is presented for measuring distance and velocity of target vehi-cles. The significance and status of studying on automobile radar are firstly reviewed; and then, the principle of LFMCW radar is analyzed on basis of mathematical model and the expression on distance and velocity is deduced;the transmitter of the radar utilizes tuning VCO, and a one-transmitting-two-receiving microstrip array antenna is designed;The data acquisition circuit and processing algorithms based on FPGA and DSP are also introduced. In the end, the calculation results prove the feasibility of radar measurements and how to improve the performance is discussed.%越来越多的汽车设计了24 GHz 或77 GHz 的前视雷达系统。本文提出了一个 K 波段的LFMCW雷达的硬件结构,用于对目标车辆距离和速度的测量。文中首先回顾了关于汽车雷达研究的意义和现状,用数学模型分析了LFMCW雷达的原理,推导了距离和速度测量的表达式;其中发射机采用了调谐VCO的方式,设计了一个一发两收的微带阵列天线,也对采用了FPGA和DSP进行数据采集和处理算法部分作了介绍;最后计算结果表明了雷达测量的可行性,并讨论了如何提高性能。

  6. Vehicles motors and environment; Moteurs automobiles et environnement

    Energy Technology Data Exchange (ETDEWEB)

    Dionnet, F.

    2005-07-01

    This paper presents the problem of the pollutants emission by the motors of automobiles. The european regulations lead the automotive industry to develop research programs to decrease the emission level more and more difficult to raise. He discusses the new catalysts, the diesel engines, the direct injection and the natural gas fuels. (A.L.B.)

  7. 40 CFR 600.315-08 - Classes of comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... vehicles (such as battery electric vehicles, fuel cell vehicles, plug-in hybrid electric vehicles and... accordance with 49 CFR part 523. (1) The Administrator will classify passenger automobiles by car line into... seaters. A car line shall be classed as “Two Seater” if the majority of the vehicles in that car line have...

  8. Crop production without fossil fuel: production systems for tractor fuel and mineral nitrogen based on biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, Serina

    2009-12-15

    With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this thesis was to evaluate different systems for biomass-based production of tractor fuel and mineral nitrogen fertilisers, which at present are the two largest fossil energy carriers in Swedish agriculture. The land use, energy input and environmental load of the systems were calculated using life cycle assessment methodology. Two categories of renewable tractor fuel were studied: first generation fuels and second generation fuels, the latter defined as fuels not yet produced on a commercial scale. An organic farm self-sufficient in tractor fuel was modelled. Raw material from the farm was assumed to be delivered to a large fuel production facility and fuel transported back to the farm, where it was utilised. In general, the second generation renewable fuels had higher energy balance and lower environmental impact than the first generation fuels. However all systems studied reduced the use of fossil fuels to a great extent and lowered the contribution to global warming. The land needed to be set aside for tractor fuel varied between 2% and 5% of the farm's available land. Two major routes for biomass-based production of mineral nitrogen for conventional agriculture were studied, one based on anaerobic digestion and one on thermochemical gasification of biomass. The crops studied were able to produce between 1.6 and 3.9 tonnes N per hectare in the form of ammonium nitrate. The use of fossil fuel for ammonium nitrate production was 35 MJ per kg N in the fossil reference scenario, but only 1-4 MJ per kg N in the biomass systems. The contribution to global warming can be greatly reduced by the biomass systems, but there is an increased risk of eutrophication and acidification. It is clear that the agricultural sector has great potential to reduce the use of fossil fuel and to lower the emissions of greenhouse

  9. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  10. Novel proton exchange membrane fuel cell electrodes to improve performance of reversible fuel cell systems

    Science.gov (United States)

    Brown, Tim Matthew

    Proton exchange membrane (PEM) fuel cells react fuel and oxidant to directly and efficiently produce electrical power, without the need for combustion, heat engines, or motor-generators. Additionally, PEM fuel cell systems emit zero to virtually zero criteria pollutants and have the ability to reduce CO2 emissions due to their efficient operation, including the production or processing of fuel. A reversible fuel cell (RFC) is one particular application for a PEM fuel cell. In this application the fuel cell is coupled with an electrolyzer and a hydrogen storage tank to complete a system that can store and release electrical energy. These devices can be highly tailored to specific energy storage applications, potentially surpassing the performance of current and future secondary battery technology. Like all PEM applications, RFCs currently suffer from performance and cost limitations. One approach to address these limitations is to improve the cathode performance by engineering more optimal catalyst layer geometry as compared to the microscopically random structure traditionally used. Ideal configurations are examined and computer modeling shows promising performance improvements are possible. Several novel manufacturing methods are used to build and test small PEM fuel cells with novel electrodes. Additionally, a complete, dynamic model of an RFC system is constructed and the performance is simulated using both traditional and novel cathode structures. This work concludes that PEM fuel cell microstructures can be tailored to optimize performance based on design operating conditions. Computer modeling results indicate that novel electrode microstructures can improve fuel cell performance, while experimental results show similar performance gains that bolster the theoretical predictions. A dynamic system model predicts that novel PEM fuel cell electrode structures may enable RFC systems to be more competitive with traditional energy storage technology options.

  11. 46 CFR 63.15-3 - Fuel system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel system. 63.15-3 Section 63.15-3 Shipping COAST... General Requirements § 63.15-3 Fuel system. (a) Firing of an automatic auxiliary boiler by natural gas is... pump and its piping system must be designed in accordance with § 56.50-65 of this chapter....

  12. Dual-fuel versus single-fuel propulsion systems for AMLS applications. [Advanced Manned Launch System

    Science.gov (United States)

    Stanley, Douglas O.; Talay, T. A.

    1989-01-01

    The results of using a computerized preliminary design system to integrate propulsion systems examined as a part of the Space Transportation Main Engine (STME) and Space Transportation Booster Engine (STBE) studies with reference vehicle concepts from the Advanced Manned Launch System (AMLS) study are presented. The major trade study presented is an analysis of the effect of using a single fuel for both stages of two-stage AMLS reference vehicles as opposed to using a separate fuel for the boosters. Other trade studies presented examine the effect of varying relevant engine parameters in an attempt to optimize the reference engines for use with the AMLS launch vehicles. In each propulsion trade discussed, special attention is given to the major vehicle performance and operational issues involved.

  13. The ergonomics simulation and evaluation architecture for the automobile

    Science.gov (United States)

    Wu, Jianfeng; Yang, Ying; Sun, Shouqian; Liu, Tao

    2005-12-01

    The architecture of ergonomics simulation and evaluation for the automobile was described. Ergonomics analysis and evaluation is one of the most important processes in product design at present. This ergonomics simulation system based on the elements of ergonomics analysis and evaluation can provide an excellent solution to take human element into account earlier in the design phase and make proactive choices in automobile design than those traditional methods. Thinking of the characteristics of the automobile industry, this system adopted the anatomy-based and parameterized human model for Chinese, the simulation technique using motion editing and the mathematical models of ergonomics to solve real ergonomic design problems in the design phases.

  14. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  15. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  16. The automobile after tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, L. [Swiss Federal Inst. of Technology (ETH), Zurich (Switzerland)

    1996-11-01

    This talk discusses the technical options available for automobiles within the next 5 to 10 years. With the objective to reduce consumption and pollution, several alternative approaches are presented and analyzed using simplified but realistic calculations. Main emphasis is laid on CO{sub 2} emission of the complete energy transformation path from the primary energy carrier to the energy dissipated in test cycles. It is shown that no single optimal solution exist but that a trade-off between consumption, pollution and cost must be made for each specific situation. (author) 17 figs., 2 tabs.

  17. Production System and Its Scheduling Optimization on Mixed Flow Assembly Line for Automobile Seat%汽车座椅混流装配线生产系统及其排产优化

    Institute of Scientific and Technical Information of China (English)

    蒋华

    2016-01-01

    Production mode of mixed flow assembly line for automobile seat can satisfy the market demand of mass production. Three compositional structures including production equipment, logistics system and information system of production system on mixed flow assembly line for automobile seat are stated. Further, the scheduling optimization on mixed flow assembly line for automobile seat is deeply investigated from aspects of equalization and normalization. Finally, by taking the example of an automobile seat production corporation in Wuhan, the effects to mixed flow assembly line is described through balance efficiency of production line, indicating the feasibility of optimization strategy. Such an optimization strategy can be a reference for actual production of all automobile corporations to improve their production efficiency.%汽车座椅混流装配线生产方式可以很好地满足大规模生产的市场需求。鉴于此,对汽车座椅混流装配线生产系统的三大组成结构——生产设备、物流系统及信息系统进行了论述,应用均衡化和平准化排序方法,对汽车座椅混流装配线的排产优化问题展开深入探究。最后,以武汉某汽车座椅公司为实例,通过分析生产线的平衡效率问题说明其对混流装配线排产的影响。研究表明:优化策略具有可行性,可供各大汽车公司在实际生产过程中作为参考,以提高生产效率。

  18. 基于蓝牙的汽车 OBD II 电控故障诊断系统%OBD-I I Electric Control Fault Diagnosis System for Automobiles Based on Bluetooth

    Institute of Scientific and Technical Information of China (English)

    吉永卿; 龚元明

    2014-01-01

    Aiming at the shortcomings of traditional handheld fault diagnosis devices for automobiles,a wireless automobile fault diagnos-tics system based on Bluetooth technology is constructed by combining Bluetooth,CAN(Controller Area Network)bus and smart phone so as to monitor and diagnose automobile faults on line.The system can meet the real-time and mobile demands of automobile diagnosis technology,and realize the wireless fault diagnosis of automobile engine OBD-II.This paper elaborates the technical scheme,system structure,communication protocols and software/hardware circuits.%针对传统手持式汽车故障诊断设备的不足,为了能够在线监测和诊断汽车故障,将蓝牙(Blue tooth)、CAN (Con-troller Area Network)总线、智能手机三者结合在一起,构建基于蓝牙技术的汽车无线故障诊断系统。该系统能满足对汽车诊断技术的实时性和移动性的需求,实现对汽车发动机 OBD II 的无线故障诊断。本文详细地描述了构建的技术方案、系统结构、通信协议和软硬件实现电路。

  19. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  20. Development of information management system on LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility.

  1. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  2. On the hazard-controllability of distance-warning systems for automobiles; Shakan kyori keiho sochi no anzensei kojodo no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y. [Tokyo University of Mercantile Marine, Tokyo (Japan); Kato, E.; Machida, K. [Hino Motors, Ltd., Tokyo (Japan)

    1995-04-20

    A distance warning system for automobiles with the use of an infrared laser beam has been put to practical use, but the effect has not been clarified for the prevention of accidents with the system equipped. This paper reports the verification of the effect based on a deductive methodology. Accidents caused by human errors without the system equipped were classified as a primary hazard, and those caused by the malfunction or human errors with the system equipped were classified as a secondary hazard. Then, each cause and effect model was prepared on a fault tree (FT). For instance, the mechanism of occurrence of accidents was structured such that the event of a `driver`s error in maneuvering` was `dozing`(or `wrong handling` or `wrong judgment`) with the warning system `not equipped`. An evaluation was made on the frequency of the top event by quantifying each basic event and checking the minimal cut set of FT; and as a result, it was assessed that the outbreak of a rear-end collision was reduced to 1/4 to 1/6 by the equipment of the system. 9 refs., 2 figs.

  3. 40 CFR 600.209-95 - Calculation of fuel economy values for labeling.

    Science.gov (United States)

    2010-07-01

    ... mpg; or (ii) For general labels for alcohol dual fuel and natural gas dual fuel automobiles: (A) Multiply the city model type fuel economy calculated from the tests performed using gasoline or diesel test... dual fuel and natural gas dual fuel automobiles: (A) Multiply the city model type fuel economy...

  4. Continuously acting fuel injection system. Kontinuierlich arbeitende Kraftstoffeinspritzanlage

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, H.; Hofbauer, A.; Steinbeck, H.

    1986-02-20

    A continuously acting fuel injection system with an air quantity meter in the suction pipe and a fuel distributor controlled by it is provided with an additional device for use in a multi-cylinder aircraft engine, which is used to give the best possible performance, fuel saving and safety. An altitude control pressure controller is connected in parallel with a warming up controller to the control pressure pipe going to the fuel distributor, which measures the control pressure and therefore the fuel dosing according to the air density varying with the temperature and pressure. By fitting a fixed throttle between the control pressure pipe and the fuel return pipe to the fuel tank, emergency running of the engine is ensured on failure of both controllers. (orig./BWI).

  5. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  6. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K D; Donnert, H J; Yang, T F

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron temperature is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  7. System Design and Performance Analysis on Automobile Air Conditioning System with Dual Evaporators%双蒸发器汽车空调系统设计与性能分析

    Institute of Scientific and Technical Information of China (English)

    邵世婷; 王文

    2016-01-01

    部件设计及系统匹配作为双蒸发器汽车空调系统开发最为重要的一项内容直接影响系统稳定性及制冷性能。本文按照整车冷负荷及乘员舒适性等要求,设计了一套应用于乘用车的双蒸发器汽车空调系统,通过台架试验和计算流体力学(CFD)模拟分析完成系统部件选型、匹配工作,并在整车上进行最大制冷性能测试。结果表明本系统的稳定性及制冷性能均达到了设计要求,提供了一个双蒸发器汽车空调系统设计开发的成功案例。%As the most important item of the development of dual evaporator automobile air conditioning system, the components design and the system matching can dramatically affect the stability and cooling performance of the system. Considering the cooling load of the vehicle and comfortable requirement of the passenger, a dual evaporator automobile air conditioning system is designed which can be used in SUV (Sport Utility Vehicle) and MPV (Multi-Purpose Vehicle) in this paper. The performance of the components and system are validated by bench test and CFD (Computational Fluid Dynamics) simulation, and finally tested by vehicle max pull down test. The result shows that the stability and cooling performance of this system can both meet the requirements, and this system is a quite meaningful case for the development of dual evaporator automobile air conditioning system.

  8. A natural-gas fuel processor for a residential fuel cell system

    Science.gov (United States)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  9. Automobile Club CERN

    CERN Multimedia

    Automobile Club CERN

    2010-01-01

     L’Assemblée Générale Ordinaire de «L’Automobile Club du CERN» s’est tenue le mercredi 12 janvier 2010. Le Président, J. Pierlot, souhaite la bienvenue aux membres présents, annonce l’agenda et résume les activités et événements du club pour l’année 2009. Le Club compte environ 600 membres, une petite diminution par rapport aux précédentes années dû surtout aux départs anticipés à la retraite. La cotisation reste inchangée : 50 CHF. Notre trésorier, E. Squadrani, présente de façon détaillée la situation du compte d’exploitation pour 2009 ainsi que le bilan de l’Automobile Club. Les comptes sont équilibrés, la situation de la trés...

  10. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  11. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  12. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  13. Bubble Effect in Heterogeneous Nuclear Fuel Solution System

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Xiao-ping; LUO; Huang-da; ZHANG; Wei; ZHU; Qing-fu

    2013-01-01

    Bubble effect means system reactivity changes due to the bubble induced solution volume,neutron leakage and absorption properties,neutron energy spectrum change in the nuclear fuel solution system.In the spent fuel dissolver,during uranium element shearing,the oxygen will be inlet to accelerate the

  14. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  15. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  16. Design and implementation of automobile intelligent range-finding system based on Internet of Things%基于物联网的汽车智能测距系统的设计与实现

    Institute of Scientific and Technical Information of China (English)

    王建宇

    2015-01-01

    基于物联网进行汽车智能测距,可以实现汽车车距的准确控制,对汽车安全设计和智能防撞控制具有重要意义.传统的汽车测距系统设计方法采用多处理器接口测距方法,随着物联网中汽车节点数据增加而测距效果不好.提出基于传感节点数据融合和分布式程序控制的汽车智能测距系统设计方法.首先构建汽车智能测距系统设计的总体模型,给出基于宽带自模糊度特征提取的车辆测距算法.基于物联网的汽车智能测距系统包括了超声波雷达信号的声学基阵、测距雷达信号收发转换和功率放大器以及模拟信号预处理机这三大部分.系统具有测距数据的测量、智能测距的回波模拟、多车道数据记录分析、上位机通信、多通道可编程信号处理等功能.采用TI5000 系列DSP进行测距核心编程,实现系统硬件模块设计和软件编程设计.实验结果表明,采用该系统,具有较好的测距精度,稳定性和可靠性较好.%The automobile intelligent range-finding based on the Internet of Things can realize the accuracy control of the distance between automobiles. It is significant for the safety design and the intelligent collision avoidance control of automobiles. The traditional design method of the automobile range-finding system adopts the range-finding method of multi-processor inter-face,and the range-finding effect is getting bad with the increasing of the automobile's node data in the Internet of Things. The design method of the automobile intelligent range-finding system based on sensor node data fusion and distributed program con-trol is proposed. The overall design model of the automobile range-finding system is constructed,and the automobile range-finding algorithm based on the feature extraction of the broadband self-ambiguity is provided. The automobile intelligent range-finding system based on the Internet of Things is composed of three parts(acoustic array

  17. EVermont Renewable Hydrogen Production and Transportation Fueling System

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  18. 46 CFR 28.835 - Fuel systems.

    Science.gov (United States)

    2010-10-01

    ... flame screen. (c) Test cocks must not be fitted to fuel oil tanks. (d) Valves for removing water or...) Flexible connections of a short length (no more than 762mm, (30 inches)), suitable metallic or nonmetallic flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by...

  19. The system architecture for renewable synthetic fuels

    DEFF Research Database (Denmark)

    Ridjan, Iva

    To overcome and eventually eliminate the existing heavy fossil fuels in the transport sector, there is a need for new renewable fuels. This transition could lead to large capital costs for implementing the new solutions and a long time frame for establishing the new infrastructure unless a suitab...

  20. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  1. Mathematical Modeling of Fuel Pressure inside High Pressure Fuel Pipeline of Combination Electronic Unit Pump Fuel Injection System

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2013-08-01

    Full Text Available In order to completely understand the trend of pressure variations inside High Pressure (HP fuel pipeline of Combination Electronic Unit Pump (CEUP fuel injection system and study the impact of two major physical properties of fuel i.e., density and dynamic viscosity on pressure a 1D nonlinear dynamic mathematical model of fuel pressure inside pipeline using Wave Equation (WE has been developed in MATLAB using finite difference method. The developed model is based on the structural parameters of CEUP fuel injection system. The impact of two major physical properties of the fuel has been studied as a function of pressure at various operating conditions of diesel engine. Nearly 13.13 bars of increase in pressure is observed by increasing the density from 700 kg/m3 to 1000 kg/m3. Whereas an increase of viscosity from 2 kg/m.s to 6 kg/m.s results in decrease of pressures up to 44.16 bars. Pressure corrections in the mathematical model have been incorporated based on variations of these two fuel properties with the pressure. The resultant pressure profiles obtained from mathematical model at various distances along the pipeline are verified by correlating them with the profiles obtained from simulated AMESim numerical model of CEUP. The results show that MATLAB mathematical results are quite coherent with the AMESim simulated results and validate that the model is an effective tool for predicting pressure inside HP pipelines. The application of the this mathematical model with minute changes can therefore be extended to pressure modeling inside HP rail of Common Rail (CR fuel injection system.

  2. Macstor dry spent fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. E. [Atomic Energy of Canada Limited, Montreal (Canada)

    1996-04-15

    AECL, a Canadian Grown Corporation established since 1952, is unique among the world's nuclear organizations. It is both supplier of research reactors and heavy water moderated CANDU power reactors as well as operator of extensive nuclear research facilities. As part of its mandate, AECL has developed products and conceptual designs for the short, intermediate and long term storage and disposal of spent nuclear fuel. AECL has also assumed leadership in the area of dry storage of spent fuel. This Canadian Crown Corporation first started to look into dry storage for the management of its spent nuclear fuel in the early 1970's. After developing silo-like structures called concrete canisters for the storage of its research reactor enriched uranium fuel, AECL went on to perfect that technology for spent CANDU natural uranium fuel. In 1989 AECL teamed up with Trans nuclear, Inc.,(TN), a US based member of the international Trans nuclear Group, to extend its dry storage technology to LWR spent fuel. This association combines AECL's expertise and many years experience in the design of spent fuel storage facilities with TN's proven capabilities of processing, transportation, storage and handling of LWR spent fuel. From the early AECL-designed unventilated concrete canisters to the advanced MACSTOR concept - Modular Air-Cooled Canister Storage - now available also for LWR fuel - dry storage is proving to be safe, economical, practical and, most of all, well accepted by the general public. AECL's experience with different fuels and circumstances has been conclusive.

  3. Power Conversion System Strategies for Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    Kaushik Rajashekara

    2005-01-01

    Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.

  4. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Adams, J.A.; Kinnelly, A.A. [and others

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  5. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  6. Alternative fuel information sources

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  7. 汽车动力总成橡胶悬置系统分析与设计%Analysis and Design of Automobile Powertrain Rubber Suspension System

    Institute of Scientific and Technical Information of China (English)

    皮连根

    2012-01-01

    论文在分析汽车动力总成悬置系统的基础上,构建悬置系统的力学模型和数学模型,对橡胶悬置系统进行优化设计,建立相关数学模型,并结合某车型的实际参数,设计橡胶悬置,通过运用MATLAB软件进行仿真和验证,证明橡胶悬置设计基本满足要求。%The paper built suspension system mechanics model and the mathematical model ,and designed rubber suspension system optimization, on the based of automobile powertrain mount system. Mathematical model is established combined with a model parameter, and designed rubber suspension by using MATLAB software to carry out the simulation and verification, proofed rubber suspension design to meet the basic requirements.

  8. ARC System fuel cycle analysis capability, REBUS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation.

  9. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Douglas [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  10. Design of gasifiers to optimize fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  11. Design of gasifiers to optimize fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  12. Burn-up characteristics of ADS system utilizing the fuel composition from MOX PWRs spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marsodi E-mail: marsodi@batan.go.id; Lasman, K.A.S.; Nishihara, K. E-mail: nishi@omega.tokai.jaeri.go.jp; Osugi, T.; Tsujimoto, K.; Marsongkohadi; Su' ud, Z. E-mail: szaki@fi.itb.ac.id

    2002-12-01

    Burn-up characteristics of accelerator-driven system, ADS has been evaluated utilizing the fuel composition from MOX PWRs spent fuel. The system consists of a high intensity proton beam accelerator, spallation target, and sub-critical reactor core. The liquid lead-bismuth, Pb-Bi, as spallation target, was put in the center of the core region. The general approach was conducted throughout the nitride fuel that allows the utilities to choose the strategy for destroying or minimizing the most dangerous high level wastes in a fast neutron spectrum. The fuel introduced surrounding the target region was the same with the composition of MOX from 33 GWd/t PWRs spent-fuel with 5 year cooling and has been compared with the fuel composition from 45 and 60 GWd/t PWRs spent-fuel with the same cooling time. The basic characteristics of the system such as burn-up reactivity swing, power density, neutron fluxes distribution, and nuclides densities were obtained from the results of the neutronics and burn-up analyses using ATRAS computer code of the Japan Atomic Energy research Institute, JAERI.

  13. System for operating solid oxide fuel cell generator on diesel fuel

    Science.gov (United States)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  14. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  15. Microbial contamination control in fuels and fuel systems since 1980 - a review

    Energy Technology Data Exchange (ETDEWEB)

    Passman, Frederick J. [Biodeterioration Control Associates, Inc (United States)], email: fredp@biodeterioration-control.com

    2011-07-01

    This paper presents a review of microbial contamination control in fuel and fuel systems. Some examples of the biodeterioration of components of fuel systems are given. Root cause analysis (RCA) and modeling can help in condition monitoring of fuel systems. RCA is a systematic process that starts after symptoms become apparent and facilitates improvement. Modeling, by contrast, starts before the problem occurs and the objective is to improve understanding of the process. Some of the different areas creating risk due to the process are climate, microbiology, chemistry, maintenance, and engineering. Condition monitoring is explained in detail, using representative samples. Contamination control plays a very important role. Various aspects of microbial contamination control are design, inventory control, house keeping and remediation. These aspects are explained in detail, using various examples. Since the deterioration cost involved is very high, its is important to avoid this problem by reducing the quantity of water used and using better risk assessment models.

  16. Application of high-strength steel sheets for automobiles in Japan; Utilisation des aciers a haute resistance dans l'industrie automobile au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M.; Ohashi, H. [Nippon Steel Corporation (United Kingdom)

    2001-10-01

    In Japan, automobile and steel engineers are working together for automotive body weight reduction. They are focusing on weight reduction from the point of view of both body structure and material. In order to meet the increasingly severe requirements for weight reduction, aiming at the limitation of the fuel consumption, an expansion in the range of application of HSS is vital. To realize further reduction, joint research by steelmakers and automobile manufacturers will become increasingly important. (authors)

  17. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  18. Basic data for integrated assessment of nuclear fuel cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Tamaki, Hitoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ito, Chihiro; Saegusa, Toshiari [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-03-01

    In our country, where natural energy resources such as oil and coal are scarce, it is vital to establish a nuclear fuel cycle to reprocess spent fuel and reuse valuable nuclear fuel in electric power generation reactors. However spent fuel is now being accumulated too much so that, for the time being, it is necessary to establish a system for tentatively storing spent fuel. In this report, in order to deal with these issues, evaluation methods, which were developed, prepared and discussed by Japan Atomic Energy Research Institute (JAERI) and Central Research Institute of Electric Power Industry (CRIEPI), are rendered together with sample results of their application. Also reported is some important information on the data and methods for the safety assessment of nuclear fuel cycle facilities, which have been surveyed by JAERI and CRIEPI. (author)

  19. Progress on coal-derived fuels for aviation systems

    Science.gov (United States)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  20. Design package test weights for fuel retrieval system (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1999-10-26

    This is a design package that documents the development of test weights used in the Spent Nuclear Fuels subproject Fuel Retrieval System. The K Basins Spent Nuclear Fuel (SNF) project consists of the safe retrieval, preparation, and repackaging of the spent fuel stored at the K East (KE) and K West (KW) Basins for interim safe storage in the Canister Storage Building (CSB). Multi-Canister Overpack (MCO) scrap baskets and fuel baskets will be loaded and weighed under water. The equipment used to weigh the loaded fuel baskets requires daily calibration checks, using test weights traceable to National Institute of Standards Testing (NIST) standards. The test weights have been designated as OCRWM related in accordance with HNF-SD-SNF-RF'T-007 (McCormack).

  1. Dry spent fuel storage with the MACSTOR system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations

    1996-10-01

    Atomic Energy of Canada Limited (AECL), and Transnuclear Inc. (TNI) began in 1989 the development of the concrete spent fuel storage system, called MACSTOR (Modular Air-Cooled Canister STORage) for use with LWR spent fuel assemblies. It is a hybrid system which combines the operational economies of metal cask technology with the capital economies of concrete technology. The MACSTOR Module is a monolithic, shielded concrete vault structure that can accommodate up to 20 spent fuel canisters. Each canister typically holds up to 21 PWR or 44 BWR spent fuel assemblies with a nominal fuel burn up rate of 40,000 MWD/MTU and a 7 year minimum cooling period. The structure is passively cooled by natural convection through an array of inlet and outlet gratings and galleries serving a central plenum where the (vertically) stored canisters are located. The canisters are continuously monitored by means of a pressure monitoring system developed by TNI. Thus, the utility can be assured of both positive cooling of the fuel and verification of the integrity of the fuel confinement boundary. The structure is seismically designed and is capable of withstanding site design basis accident events. The MACSTOR system includes the storage module(s), an overhead gantry system for cask handling, a transfer cask for moving fuel from wet to dry storage and a cask transporter. The canister and transfer cask designs are based on Transnuclear transport cask designs and proven hot cell transfer cask technology, adapted to requirements for on-site spent fuel storage. The MACSTOR system can economically address a wide range of storage capacity requirements. The modular concept allows for flexibility in determining each module`s capacity. Starting with 8 canisters, the capacity can be increased by increments of 4 up to 20 canisters. The MACSTOR system is also flexible in accommodating the various spent fuel types from such reactors as VVER-440, VVER-1000 and RBMK 1500. (J.P.N.)

  2. 49 CFR 523.3 - Automobile.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Automobile. 523.3 Section 523.3 Transportation..., DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.3 Automobile. (a) An automobile is any 4-wheeled... pounds and less than 10,000 pounds gross vehicle weight are determined to be automobiles: (1)...

  3. 19 CFR 148.39 - Rented automobiles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Rented automobiles. 148.39 Section 148.39 Customs... automobiles. (a) Importation for temporary period. An automobile rented by a resident of the United States... (HTSUS) (19 U.S.C. 1202), without payment of duty. The automobile shall be used for the transportation...

  4. Fuel switching in Harare: An almost ideal demand system approach

    NARCIS (Netherlands)

    Chambwera, M.; Folmer, H.

    2007-01-01

    In urban areas several energy choices are available and the amount of (a given type of) fuel consumed is based on complex household decision processes. This paper analyzes urban fuel (particularly firewood) demand in an energy mix context by means of an Almost Ideal Demand System based on a survey

  5. Fuel switching in Harare : An almost ideal demand system approach

    NARCIS (Netherlands)

    Chambwera, Muyeye; Folmer, Henk

    In urban areas several energy choices are available and the amount of (a given type of) fuel consumed is based on complex household decision processes. This paper analyzes urban fuel (particularly firewood) demand in an energy mix context by means of an Almost Ideal Demand System based on a survey

  6. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  7. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  8. Fuel switching in Harare : An almost ideal demand system approach

    NARCIS (Netherlands)

    Chambwera, Muyeye; Folmer, Henk

    2007-01-01

    In urban areas several energy choices are available and the amount of (a given type of) fuel consumed is based on complex household decision processes. This paper analyzes urban fuel (particularly firewood) demand in an energy mix context by means of an Almost Ideal Demand System based on a survey c

  9. Fuel switching in Harare: An almost ideal demand system approach

    NARCIS (Netherlands)

    Chambwera, M.; Folmer, H.

    2007-01-01

    In urban areas several energy choices are available and the amount of (a given type of) fuel consumed is based on complex household decision processes. This paper analyzes urban fuel (particularly firewood) demand in an energy mix context by means of an Almost Ideal Demand System based on a survey c

  10. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  11. Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat

    Science.gov (United States)

    Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.

    2011-05-01

    Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.

  12. Analysis of Proliferation Resistance of Nuclear Fuel Cycle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Lae; Ko, Won Il; Kim, Ho Dong

    2009-11-15

    Proliferation resistance (PR) has been evaluated for the five nuclear fuel cycle systems, potentially deployable in Korea in the future, using the fourteen proliferation resistance attributes suggested in the TOPS report. Unidimensional Utility Theory (UUT) was used in the calculation of utility value for each of the fourteen proliferation resistance attributes, and Multi-Attribute Utility Theory (MAUT), a decision tool with multiple objectives, was used in the evaluation of the proliferation resistance of each nuclear fuel cycle system. Analytic Hierarchy Process (AHP) and Expert Elicitation (EE) were utilized in the derivation of weighting factors for the fourteen proliferation resistance attributes. Among the five nuclear fuel cycle systems evaluated, the once-through fuel cycle system showed the highest level of proliferation resistance, and Pyroprocessing-SFR fuel cycle system showed the similar level of proliferation resistance with the DUPIC fuel cycle system, which has two time higher level of proliferation resistance compared to that of the thermal MOX fuel cycle system. Sensitivity analysis was also carried out to make up for the uncertainty associated with the derivation of weighting factors for the fourteen proliferation resistance attributes.

  13. 基于LabVIEW汽车操纵稳定性试验系统的开发%Study on automobile controllability and stability test system based on LabVIEW

    Institute of Scientific and Technical Information of China (English)

    孙泽海; 徐延海; 赵文杰

    2011-01-01

    基于当今对汽车操纵稳定性试验的灵活性、便捷性、可靠性和图形化的要求,结合GPS、AHRS及AM-2012转向力角测试仪的特点,开发了基于LabVIEW的汽车操纵稳定性试验测试系统.在介绍了操纵稳定性的重要性以及试验系统的要求的基础上,详细的介绍了该操纵稳定性试验系统的组成.并给出了数据采集、处理以及实时显示的软件流程以及相关关键技术的实现方法.最后进行了具体的实车道路试验,通过对试验数据进行分析,验证了该试验系统的可靠性和便捷性.%With the requirements of convenience,flexibility, re liability and graphics of the controlla-bility and stability test system, an automobile controllability and stability test system was developed based on Lab VIEW, combining the properties of GPS,AHRS and AM-2012 steering angle and power tester.Then the composition of the automobile controllability and stability test system was mainly introduced in detail based on the analysis of the importance of automobile controllability and stability and the request of the test system.Afterwards the software, flows for data acquisition, processing and real-time displaying were given, as well as the method of implementing relative key techniques were also given.Finally automobile road test is done, which results after analyzing prove that the system is reliable and convenient.

  14. Analysis for Effect of Steering-by-Wire System on Automobile Handling Stability%线控转向系统对汽车操纵稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    于蕾艳; 金涛; 伊剑波; 鲍长勇; 郑亚军

    2014-01-01

    The dynamics model of the steering -by-wire system is established based on the MATLAB /Simulink software .Then structural parameters of its key parts such as the moment inertia , damp coefficient and stiffness of the steering motor which affect the automobile handling stability are analyzed .The automobile handling stability can be improved by designing reasonable structural parameters of the motor of the steering -by-wire system properly .%基于MATLAB/Simulink软件建立线控转向系统的动力学模型,分析线控转向系统关键部件---转向电机的转动惯量、阻尼系数、刚度等对汽车操纵稳定性的影响。合理设计线控转向系统转向电机的结构参数,可提高汽车的操纵稳定性。

  15. Catalyst development and systems analysis of methanol partial oxidation for the fuel processor - fuel cell integration

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Mizsey, P.; Hottinger, P.; Truong, T.B.; Roth, F. von; Schucan, Th.H. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Methanol partial oxidation (pox) to produce hydrogen for mobile fuel cell applications has proved initially more successful than hydrocarbon pox. Recent results of catalyst screening and kinetic studies with methanol show that hydrogen production rates have reached 7000 litres/hour/(litre reactor volume) for the dry pox route and 12,000 litres/hour/(litre reactor volume) for wet pox. These rates are equivalent to 21 and 35 kW{sub th}/(litre reactor volume) respectively. The reaction engineering problems remain to be solved for dry pox due to the significant exotherm of the reaction (hot spots of 100-200{sup o}C), but wet pox is essentially isothermal in operation. Analyses of the integrated fuel processor - fuel cell systems show that two routes are available to satisfy the sensitivity of the fuel cell catalysts to carbon monoxide, i.e. a preferential oxidation reactor or a membrane separator. Targets for individual system components are evaluated for the base and best case systems for both routes to reach the combined 40% efficiency required for the integrated fuel processor - fuel cell system. (author) 2 figs., 1 tab., 3 refs.

  16. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  17. Development of machine vision system for PHWR fuel pellet inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kamalesh Kumar, B.; Reddy, K.S.; Lakshminarayana, A.; Sastry, V.S.; Ramana Rao, A.V. [Nuclear Fuel Complex, Hyderabad, Andhra Pradesh (India); Joshi, M.; Deshpande, P.; Navathe, C.P.; Jayaraj, R.N. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh (India)

    2008-07-01

    Nuclear Fuel Complex, a constituent of Department of Atomic Energy; India is responsible for manufacturing nuclear fuel in India . Over a million Uranium-di-oxide pellets fabricated per annum need visual inspection . In order to overcome the limitations of human based visual inspection, NFC has undertaken the development of machine vision system. The development involved designing various subsystems viz. mechanical and control subsystem for handling and rotation of fuel pellets, lighting subsystem for illumination, image acquisition system, and image processing system and integration. This paper brings out details of various subsystems and results obtained from the trials conducted. (author)

  18. Status of commercial phosphoric acid fuel cell system development

    Science.gov (United States)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  19. Application of delay nitrogen spring system in stamping dies for automobiles%延时氮气弹簧在汽车冲模中的应用

    Institute of Scientific and Technical Information of China (English)

    马宝顺

    2015-01-01

    The working principle of delay nitrogen spring system and its application in stamping dies for automobiles were presented in details. The local impact of nitrogen spring on the part in the return stroke of machine tool slider is effectively controlled, in which the nitrogen spring does not springback or has just a little springback and delayed return. The application protects the product and extends the die service life.%详细介绍了延时氮气弹簧系统的工作原理及在汽车冲模中的应用,机床滑块回程时氮气弹簧对制件的局部冲击进行有效控制,使氮气弹簧不回弹或者微小回弹,延时回程,具有保护制件及延长模具使用寿命的作用。

  20. A Study of the Start-Stop System of Automobile Engine%汽车发动机启停系统的研究

    Institute of Scientific and Technical Information of China (English)

    布仁

    2013-01-01

    Due to the rapid increase of car ownership, traffic jam becomes very serious and consequently automobile exhaust has become the important factor affecting the urban air quality and oil resources consumption becomes huge. This paper mainly studies the working process of the start-stop system, which automatically cuts off the engine in stopping phase to reduce oil consumption and starts the engine automatically again when the driver is going to start thus reducing pollution and oil consumption in idle speed.%  由于汽车保有量迅速增加,拥堵十分严重,导致废气排放成为影响城市空气质量的重要因素,石油资源消耗巨大。本文主要研究启停装置工作过程,是在停车阶段自动切断发动机使油耗减少,并在驾驶员欲起步时自动再次启动发动机,减少在怠速时产生的污染物及油耗。

  1. Construction of Internal Training System for Automobile Manufacturing Industry%汽车制造业内部培训体系的建设

    Institute of Scientific and Technical Information of China (English)

    甘文辉

    2016-01-01

    员工培训是企业特别是汽车制造业内企业人力资源管理的重要内容。开展员工培训是系统性的工作,企业内部实施培训体系的建设与管理,依靠企业内部力量为主,培训效果往往会更好,有利于改善员工工作质量和提高企业的业绩,也有利于员工实现自我价值。%Staff training is an imp ortant co ntent of human resource management in enterprises of automobile manufacturing industry. Staff training is a systematic work. Enterprise internal implement training system construction and management. Mainly rely on enterprise internal resource,Training effect will be better. Improve staff work quality and improving enterprise achievement, Promote staff achieve self-value.

  2. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... calculate the fuel economy for the base level. (7) For alcohol dual fuel automobiles and natural gas dual... diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests... fuel economy values for the model type. (5) For alcohol dual fuel automobiles and natural gas dual fuel...

  3. The Linguistic Features of English Automobile Advertisements

    Institute of Scientific and Technical Information of China (English)

    李琼璐

    2014-01-01

    Household cars are largely demanded today, stimulating the economic development throughout the automobile industry. To enlarge market, all automobile producers pay great efforts to advertisements which result in a large quantity of automobile advertisements. Due to the rare analysis on the linguistic features of automobile advertisements, this essay makes a specific study on this. Analysis will be done through the perspectives of the lexical level, the syntactic level and the rhetoric level. Hence, valid references could be offered to future automobile advertisers.

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  5. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  6. Advisory Systems Save Time, Fuel for Airlines

    Science.gov (United States)

    2012-01-01

    Heinz Erzberger never thought the sky was falling, but he knew it could benefit from enhanced traffic control. Throughout the 1990s, Erzberger led a team at Ames Research Center to develop a suite of automated tools to reduce restrictions and improve the efficiency of air traffic control operations. Called CTAS, or Center-TRACON (Terminal Radar Approach Control) Automation System, the software won NASA s Software of the Year award in 1998, and one of the tools in the suite - the traffic management advisor - was adopted by the Federal Aviation Administration and implemented at traffic control centers across the United States. Another one of the tools, Direct-To, has followed a different path. The idea behind Direct-To, explains Erzberger, a senior scientist at Ames, was that airlines could save fuel and money by shortening the routes they flew between take-off and landing. Aircraft are often limited to following established airways comprised of inefficient route segments. The routes are not easily adjusted because neither the pilot nor the aircraft controller can anticipate the constantly changing air traffic situation. To make the routes more direct while in flight, Erzberger came up with an idea for a software algorithm that could automatically examine air traffic in real-time, check to see if a shortcut was available, and then check for conflicts. If there were no conflicts and the shortcut saved more than 1 minute of flight time, the controller could be notified. "I was trying to figure out what goes on in the pilot and controller s minds when they decide to guide the aircraft in a certain way. That resulted in a different kind analysis," Erzberger says. As the engineer s idea went from theory to practice, in 2001, NASA demonstrated Direct-To in the airspace of Dallas-Ft. Worth. Estimations based on the demonstration found the technology was capable of saving 900 flying minutes per day for the aircraft in the test area.

  7. 基于AVR单片机的汽车尾气检测系统设计%Design of automobile exhaust gas detection system based on AVR

    Institute of Scientific and Technical Information of China (English)

    姚宁; 郭朝龙; 翁凌云; 葛承滨

    2014-01-01

    针对当前汽车尾气污染加重和检测标准日益完善的现状,为了弥补传统汽车尾气检测系统在测量精度、稳定性、人机操作等方面存在的不足,提出了一种基于AVR单片机的汽车尾气检测系统设计方案。系统以ATMEGA8L为核心控制器,主要由传感器模块、信号采集调理电路、A/D转换器以及显示模块等组成。实验结果表明,系统具有测量精度高、稳定可靠、人机交互性好等优点。%Nowadays the automotive exhaust pollution has been increasing and the detecting standard is increasingly sophis⁃ticated. A design scheme of an automobile exhaust detecting system based on AVR is proposed to overcome the shortage of tradi⁃tional automotive exhaust detection systems in measuring accuracy,stability and man⁃machine operation. ATMEGA8L is taken as the core controller of the system,which is composed of the sensor module,signal acquisition and conditioning circuit,A/D converter,and display module. The tested results show that the system has the advantages of high⁃accuracy,high stability,high reliability and good human⁃computer interaction.

  8. 汽车起动电机综合性能测试系统%Integrated Performance Test System for Automobile Starting Motor

    Institute of Scientific and Technical Information of China (English)

    何成平

    2013-01-01

    In order to obtain starting performance of the automobile engine system operating state,it needs to acquire,analysis parameters such as torque and rotor speed etc.A measuring system platform for integrated performance starting motor was designed combined with PLC,touch screen and Delphi,and related measurement principles.It shows experimentally that the system presented is simple,reliable,easy realized. The system can realize rapid measurements of starting motor parameters,and accurately describe the dynamic process motor starting.It can be applied to other motor performance test and analysis if a little change be made.%为了获取汽车发动机系统的起动性能,需对起动电机的转矩、转速等参数进行采集、分析。结合PLC、触摸屏及Delphi编程技术,基于相关测量原理,设计起动电机性能综合测试系统平台。试验表明,该系统精度高、简单可靠,易于实现。系统可实现起动电机参数的快速测量,准确描述电机起动的动态过程,稍作改动,可适用于其他电机的性能测试和分析。

  9. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  10. Control of Fuel Cell Power System

    OpenAIRE

    KOCALMIŞ BİLHAN, Ayşe; Wang, Caisheng

    2017-01-01

    In recent years, it is gettingattention for renewable energy sources such as Fuel Cell (FC), batteries,ultracapacitors or photovoltaic panels (PV) for distributed power generationsystems (DG) or electrical vehicles. This paper proposes a DC/DC converter andDC/AC inverter scheme to combine the Fuel Cell Stack (FC). The power systemconsist of a FC stack, a DC/DC converter, inverter and load. A FC mostly couldnot produce necessary output voltage, the DC/DC boost converter is used forobtaining th...

  11. Fuel-cell-system and its components for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Massimo [NuCellSys GmbH, Kirchheim/Teck-Nabern (Germany)

    2013-06-01

    In the past years the development of fuel cell systems for mobile applications has made significant progress in power density, performance and robustness. For a successful market introduction the cost of the fuel system powertrain needs to be competitive to diesel hybrid engine. The current development activities are therefore focusing on cost reduction. There are 3 major areas for cost reduction: functional integration, materials and design, supplier competitiveness and volume. Today unique fuel cell system components are developed by single suppliers, which lead to a monopoly. In the future the components will be developed at multiple suppliers to achieve a competitor situation, which will further reduce the component cost. Using all these cost reduction measures the fuel cell system will become a competitive alternative drive train. (orig.)

  12. High Efficiency Direct Methane Solid Oxide Fuel Cell System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  13. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  14. Engine control system having fuel-based adjustment

    Science.gov (United States)

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  15. Advanced fuel developments for an industrial accelerator driven system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Delage, Fabienne; Ottaviani, Jean Pierre [Commissariat a l' Energie Atomique CEA (France); Fernandez-Carretero, Asuncion; Staicu, Dragos [JRC-ITU (Germany); Boccaccini, Claudia-Matzerath; Chen, Xue-Nong; Mascheck, Werner; Rineiski, Andrei [Forschungszentrum Karlsruhe - FZK (Germany); D' Agata, Elio [JRC-IE (Netherlands); Klaassen, Frodo [NRG, PO Box 25, NL-1755 ZG Petten (Netherlands); Sobolev, Vitaly [SCK-CEN (Belgium); Wallenius, Janne [KTH Royal Institute of Technology (Sweden); Abram, T. [National Nuclear Laboratory - NNL (United Kingdom)

    2009-06-15

    Fuel to be used in an Accelerator Driven System (ADS) for transmutation in a fast spectrum, can be described as a highly innovative concept in comparison with fuels used in critical cores. ADS fuel is not fertile, so as to improve the transmutation performance. It necessarily contains a high concentration ({approx}50%) of minor actinides and plutonium. This unusual fuel composition results in high gamma and neutron emissions during its fabrication, as well as degraded core performance. So, an optimal ADS fuel is based on finding the best compromise between thermal, mechanical, chemical, neutronic and technological constraints. CERCER and CERMET composite fuels consisting of particles of (Pu,MA)O{sub 2} phases dispersed in a magnesia or molybdenum matrix are under investigation within the frame of the ongoing European Integrated Project EUROTRANS (European Research programme for Transmutation) which aims at performing a conceptual design of a 400 MWth transmuter: the European Facility for Industrial Transmutation (EFIT). Performances and safety of EFIT cores loaded with CERCER and CERMET fuels have been evaluated. Out-of-pile and in-pile experiments are carried out to gain knowledge on the properties and the behaviour of these fuels. The current paper gives an overview of the work progress. (authors)

  16. Applicability of the SCALE code system to MOX fuel transport systems for criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toshihiro; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Toshiaki; Takasugi, Masahiro; Natsume, Toshihiro; Tsuda, Kazuaki

    1996-11-01

    In order to ascertain feasibilities of the SCALE code system for MOX fuel transport systems, criticality analyses were performed for MOX fuel (Pu enrichment; 3.0 wt.%) criticality experiments at JAERI`s TCA and for infinite fuel rod arrays as parameters of Pu enrichment and lattice pitch. The comparison with a combination of the continuous energy Monte Carlo code MCNP and JENDL-3.2 indicated that the SCALE code system with GAM-THERMOS 123-group library can produce feasible results. Though HANSEN-ROACH 16-group library gives poorer results for MOS fuel transport systems, the errors are conservative except for high enriched fuels. (author)

  17. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-07-11

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  18. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  19. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  20. 基于KPI的某汽车整车厂生产物流绩效评价体系的构建%Construction of Performance Evaluating System for Automobile Plant Based on KPI

    Institute of Scientific and Technical Information of China (English)

    肖燕; 周康渠; 贾秋红

    2012-01-01

    绩效考核作为汽车企业生产物流管理的一个重要手段,有着重要的导向作用,而汽车企业各阶层KPI指标的制定是一项复杂的系统工程.基于汽车整车厂以降低成本,提高效率为目标,提出绩效管理必须以顾客满意为导向、向社会提供产品和服务,并以此来为企业创造利润的关键绩效管理思想.主要从价值链的角度出发,根据“SMART”指导原则,通过SQDCME等KPI绩效指标对某汽车整车厂内部生产物流进行科学合理的评价与考核,从而有效提升企业的整体经营管理水平.%Performance evaluating is one of the important means for the production logistics management of automobile enterprises, and it has an important guiding rule.But the KPI indexes established at all levels is a complex systems engineering towards automobile enterprises.Because the target of automobile enterprises is to reduce cost and improve efficiency,the performance management must take customer satisfaction as the guidance and provide production and service, so the key performance management thinking is proposed here.From the view of value chain,according to the "SMART"guiding principle and the KPI performance index,such as SQDCME,the internal production logistics of some automobile enterprise are evaluated and appraised scientifically,which will promote the overall management effectively of enterprise.

  1. Desulfurization of jet fuel for fuel cell-based APU systems in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Pasel, J.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    To prevent the catalysts in fuel cell systems from poisoning by sulfur containing substances the fuel to be used must be desulfurized to a maximum of 10 ppmw of sulfur. Since the conventional hydrodesulfurization process employed in the refinery industry is not suitable for mobile fuel cell applications (e.g. auxiliary power units, APUs), the present study aims at developing an alternative process and determining its technical feasibility. A large number of processes were assessed with respect to their application in fuel cell APUs. The results revealed that a two-step process combining pervaporation and adsorption is a suitable process for the on-board desulfurization of jet fuel. The investigations to evaluate this process are presented in this paper. Seven different membrane materials and ten sorbent materials were screened to choose the most suitable candidates. Further laboratory experiments were conducted to optimize the operating conditions and to collect data for a pilot plant design. Different jet fuel qualities with up to 1650 ppmw of sulfur can be desulfurized to a level of 10 ppmw. (orig.)

  2. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  3. COED Transactions, Vol. X, No. 1, January 1978. Design and Simulation of an Automobile Guidance Control System.

    Science.gov (United States)

    Stefani, R. T.

    This document describes the design of an automatic guidance and control system for a passenger car. A simulation of that system is presented. Analog outputs are provided which compare human operator control to automatic control. One human control possibility is to provide the operator with sufficient feedback information that resulting performance…

  4. COED Transactions, Vol. X, No. 1, January 1978. Design and Simulation of an Automobile Guidance Control System.

    Science.gov (United States)

    Stefani, R. T.

    This document describes the design of an automatic guidance and control system for a passenger car. A simulation of that system is presented. Analog outputs are provided which compare human operator control to automatic control. One human control possibility is to provide the operator with sufficient feedback information that resulting performance…

  5. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  6. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  7. Gas Conversion Systems Reclaim Fuel for Industry

    Science.gov (United States)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  8. Automobile Driver Fingerprinting

    Directory of Open Access Journals (Sweden)

    Enev Miro

    2016-01-01

    Full Text Available Today’s automobiles leverage powerful sensors and embedded computers to optimize efficiency, safety, and driver engagement. However the complexity of possible inferences using in-car sensor data is not well understood. While we do not know of attempts by automotive manufacturers or makers of after-market components (like insurance dongles to violate privacy, a key question we ask is: could they (or their collection and later accidental leaks of data violate a driver’s privacy? In the present study, we experimentally investigate the potential to identify individuals using sensor data snippets of their natural driving behavior. More specifically we record the in-vehicle sensor data on the controllerarea- network (CAN of a typical modern vehicle (popular 2009 sedan as each of 15 participants (a performed a series of maneuvers in an isolated parking lot, and (b drove the vehicle in traffic along a defined ~ 50 mile loop through the Seattle metropolitan area. We then split the data into training and testing sets, train an ensemble of classifiers, and evaluate identification accuracy of test data queries by looking at the highest voted candidate when considering all possible one-vs-one comparisons. Our results indicate that, at least among small sets, drivers are indeed distinguishable using only incar sensors. In particular, we find that it is possible to differentiate our 15 drivers with 100% accuracy when training with all of the available sensors using 90% of driving data from each person. Furthermore, it is possible to reach high identification rates using less than 8 minutes of training data. When more training data is available it is possible to reach very high identification using only a single sensor (e.g., the brake pedal. As an extension, we also demonstrate the feasibility of performing driver identification across multiple days of data collection

  9. Systems impacts of spent fuel disassembly alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  10. Fuel Lubricity Impact on Shipboard Engine and Fuel Systems and Sensitivity of U.S. Navy Diesel Engines to Low-Sulfur Diesel Fuel

    Science.gov (United States)

    2011-06-30

    ABSTRACT This project attempted to determine the kerosene and Ultra Low Sulfur Diesel fuel lubricity requirements of Delphi DPA rotary fuel injection...pumps and Detroit Diesel unit injectors . A test stand was configured to operate a rotary fuel injection pump and a stand configured to operated four...unit injectors simultaneously, with data acquisition and control systems for logging data. Results suggest that synthetic kerosene fuel adversely

  11. Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles

    Directory of Open Access Journals (Sweden)

    Ono Yusuke

    2017-01-01

    Full Text Available Residential polymer electrolyte fuel cells cogeneration systems (residential PEFC systems produce hydrogen from city gas by internal gas-reformer, and generate electricity, the hot water at the same time. From the viewpoint of the operation, it is known that residential PEFC systems do not continuously work but stop for long time, because the systems generate enough hot water for short operation time. In other words, currently residential PEFC systems are dominated by the amount of hot water demand. This study focuses on the idle time of residential PEFC systems. Since their gas-reformers are free, the systems have potential to produce hydrogen during the partial load operations. The authors expect that residential PEFC systems can take a role to supply hydrogen for fuel cell vehicles (FCVs before hydrogen fueling stations are distributed enough. From this perspective, the objective of this study is to evaluate the hydrogen production potential of residential PEFC systems. A residential PEFC system was modeled by the mixed integer linear programming to optimize the operation including hydrogen supply for FCV. The objective function represents annual system cost to be minimized with the constraints of energy balance. It should be noted that the partial load characteristics of the gas-reformer and the fuel cell stack are taken into account to derive the optimal operation. The model was employed to estimate the possible amount of hydrogen supply by a residential PEFC system. The results indicated that the system could satisfy at least hydrogen demand for transportation of 8000 km which is as far as the average annual mileage of a passenger car in Japan. Furthermore, hydrogen production by sharing a residential PEFC system with two households is more effective to reduce primary energy consumption with hydrogen supply for FCV than the case of introducing PEFC in each household.

  12. Fuel-cell powered uninterruptible power supply systems: Design considerations

    Science.gov (United States)

    Choi, Woojin; Howze, Jo. W.; Enjeti, Prasad

    A 1-kVA fuel cell powered, line-interactive uninterruptible power supply (UPS) system that employs modular (fuel cell and power converter) blocks is introduced. Two commercially available proton-exchange membrane fuel cell (25-39 V, 500 W) modules together with suitable dc-dc and dc-ac power electronic converter modules are employed. A supercapacitor module is also used to compensate for the instantaneous power fluctuations and to overcome the slow dynamics of the fuel processor (reformers). Further energy stored in the supercapacitor is also utilized to handle a momentary overload such as 200% for a short duration. Due to the absence of batteries, the system satisfies the demand for an environmentally clean source of energy. A complete design that defines the amount of hydrogen storage required for a power outage of 1 h, and the sizing of the supercapacitors for transient load demand is presented for a 1-kVA UPS.

  13. Designing and optimization of a micro CHP system based on Solid Oxide Fuel Cell with different fuel processing technologies

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    of the Micro Combined Heat and Power plant (mCHP) will be identified including fuel and air supply, fuel management anode re-circulation, exhaust gas heat management, power conditioning and control system. Using mass and energy balance, different types of fuel reforming including steam reforming...

  14. Elimination of Fuel Pressure Fluctuation and Multi-injection Fuel Mass Deviation of High Pressure Common-rail Fuel Injection System

    Institute of Scientific and Technical Information of China (English)

    LI Pimao; ZHANG Youtong; LI Tieshuan; XIE Lizhe

    2015-01-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  15. A LOW BUDGET MOBILE LASER SCANNING SOLUTION USING ON BOARD SENSORS AND FIELD BUS SYSTEMS OF TODAY'S CONSUMER AUTOMOBILES

    Directory of Open Access Journals (Sweden)

    D. M. M. Vock

    2012-09-01

    Full Text Available Mobile laser scanning systems (MLS offer a great potential for acquiring detailed point cloud data of urban and suburban surroundings with minimum effort. In this paper a new solution for MLSs is presented, requiring solely a combination of a profile laser scanning device and systems that are included in today's serialized end consumer vehicles. While today's mobile laser scan systems require different and expensive additional hardware that needs to be mounted onto the vehicle, the devices included within vehicle electronics offer good alternatives without additional costs.The actual scan consists of a continuous profile scan together with information gathered from on-board sensor modules. In a post- processing step, the sensor data is used to reconstruct the car's trajectory for the period of the scan and, based on this information, the track of the scan device for every measured laser pixel. Synchronization of pixel data and vehicle movement is realized via a timestamp signal which is transmitted to the car's field bus system and the scan device. To generate the final point cloud scenario, the trajectory is interpolated for every single scan point and used to convert its local position within the profile into the global coordinate system (Fig.1, Left.

  16. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  17. 17. Aachen colloquium automobile and engine technology. Proceedings; 17. Aachener Kolloquium Fahrzeug- und Motorentechnik. Kolloquiumsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Proceedings of the '17th Aachener Colloquium - Automobile and Engine Tecnology', held 6. - 8.October 2008 in Aachen/Germany, contains effectively 104 papers. These contributions deal with the following main subjects:new diesel engines I and II; hybrids I and II; CAE-methods; friction estimation by sensor fusion; ADAS for increased traffic safety I and II; new spark ignition engines I-III; exhausat aftertreatment diesel engines; FVV-project reports; integrated chassis control systems; driver assistance in commercial vehicles; si engines with alternative fuels; engine acoustics; steering systems I and II; detection traffic environment for ADAS; combustion concepts EGR and VVT; engine mechanics; development of safe vehicle systems; supercharging - downsizing; emission concepts diesel engines I and II; automotive strategy concepts; suspension systems; vehicle development; integrated safety;chasis systems. (org.)

  18. Market-Based and System-Wide Fuel Cycle Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul Philip Hood [Univ. of Wisconsin, Madison, WI (United States); Scopatz, Anthony [Univ. of South Carolina, Columbia, SC (United States); Gidden, Matthew [Univ. of Wisconsin, Madison, WI (United States); Carlsen, Robert [Univ. of Wisconsin, Madison, WI (United States); Mouginot, Baptiste [Univ. of Wisconsin, Madison, WI (United States); Flanagan, Robert [Univ. of South Carolina, Columbia, SC (United States)

    2017-06-13

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  19. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  20. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  1. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  2. System design of a large fuel cell hybrid locomotive

    Science.gov (United States)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  3. System design of a large fuel cell hybrid locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.R.; Hess, K.S.; Barnes, D.L.; Erickson, T.L. [Vehicle Projects LLC, 621 17th Street, Suite 2131, Denver, CO 80293 (United States)

    2007-11-15

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads. (author)

  4. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  5. Combustion system for hybrid solar fossil fuel receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  6. Research on New Automobile Power Hydraulic Braking System by Vibratory Energy%新型振动能量主缸助力式汽车液压制动系统研究

    Institute of Scientific and Technical Information of China (English)

    李滟泽; 丁志华

    2013-01-01

    介绍了一种新型振动能量回收式液压减振系统,研究了一种振动能量主缸助力式汽车液压制动系统,油液在储液罐、减振器、蓄能器和制动液压元件之间循环流动.所述的振动能量助力式汽车液压制动系统能回收部分汽车的振动能量转化为液压能用于汽车助力制动,减小制动踏板力,降低驾驶疲劳度,缩短制动滞后时间,提高汽车制动安全性能.所述振动能量回收式液压减振系统申报了国家发明专利(CN102152778A),振动能量助力式汽车液压制动系统申报了国家实用新型专利(ZL 2011 20101080.1).%A new vibratory energy-recovery hydraulic damping system is introduced, and an automobile power hydraulic braking system by vibratory energy is researched. The oil is circulated between storage tank, energy accumulator, vibratum dampers and hydraulic components. The braking system can recycle some vibratory energy and convert to hydraulic energy which is used for automobile power braking system.It can reduce brake pedal force, lower fatigue of drive, shorten retardation time of braking, and enhance safety of braking. The vibratory energy-recovery hydraulic damping system has reported the national invention patent (CN102152778A), and the vibratory energy power-assisted automobile hydraulic braking system also has reported the national practical new patent(ZL 2011 2 0101080.1).

  7. High temperature polymer fuel cells and their Interplay with fuel processing systems

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, R.

    2003-01-01

    This paper reports recent results from our group on polymer electrolyte membrane fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all....... The high working temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  8. An automated arc spray tooling system for rapid die-making of large-sized automobile body panels

    Institute of Scientific and Technical Information of China (English)

    HE Zhong-yun; LU Bing-heng; WANG Yi-qing; HONG Jun; TANG Yi-ping

    2006-01-01

    A creative robot wrist consisting of link mechanisms and a novel robot motion control method based on the cross-sectional vector contours of an STL-formatted model was proposed.By using the wrist and the control method,an industrial robot with five degrees of freedom for rapid tooling using metal arc spraying and electric brush plating techniques was developed.The wrist of the robot including a specially designed link mechanism can maintain the position of the spraying point on the surface of the master pattern whatever the orientation of the gun.Therefore,the kinematic nonlinear coupling between the position mechanism and orientation mechanism in a traditional robot can be avoided.The only input of the control system is the STL-formatted 3D CAD model of the pattern.Without the need of any manual programming,the metal arc spraying and brush plating (if necessary)processes can be performed automatically and efficiently after receiving the 3D CAD data of the pattern.Using this robot system in new car development and trial production,the cost and lead-time can be reduced substantially as compared with the conventional tool making method.

  9. Advanced coal-fueled industrial cogeneration gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  11. Bio-fuels for the gas turbine: A review

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.K. [Mechanical Engineering Department, Medi-Caps Institute of Technology and Management, Pigdamber, Rau, Indore (M.P.) (India); Rehman, A.; Sarviya, R.M. [Department of Mechanical Engineering, MANIT, Bhopal (M.P.) (India)

    2010-12-15

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  12. Dissertation of Applying Waste Gas Treatment and Heating System in Automobile Coating Workshop%浅谈废气处理及供热系统(TAR)在汽车涂装车间的运用

    Institute of Scientific and Technical Information of China (English)

    尹春梅

    2011-01-01

    介绍了废气处理及供热系统的原理、结构和流程,并结合在汽车涂装的实际应用,分析了国内废气处理及供热系统的发展趋势。%The principles,structures and processes of waste gas treatment and heating system were introduced.And the development trend of domestic waste gas treatment and heating system was analyzed combined with the practical application of automobile coatings.

  13. Economic competitiveness of fuel cell onsite integrated energy systems

    Science.gov (United States)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  14. Impact of physical properties of mixture of diesel and biodiesel fuels on hydrodynamic characteristics of fuel injection system

    Directory of Open Access Journals (Sweden)

    Filipović Ivan M.

    2014-01-01

    Full Text Available One of the alternative fuels, originating from renewable sources, is biodiesel fuel, which is introduced in diesel engines without major construction modifications on the engine. Biodiesel fuel, by its physical and chemical properties, is different from diesel fuel. Therefore, it is expected that by the application of a biodiesel fuel, the characteristic parameters of the injection system will change. These parameters have a direct impact on the process of fuel dispersion into the engine cylinder, and mixing with the air, which results in an impact on the quality of the combustion process. Method of preparation of the air-fuel mixture and the quality of the combustion process directly affect the efficiency of the engine and the level of pollutant emissions in the exhaust gas, which today is the most important criterion for assessing the quality of the engine. The paper presents a detailed analysis of the influence of physical properties of a mixture of diesel and biodiesel fuels on the output characteristics of the fuel injection system. The following parameters are shown: injection pressure, injection rate, the beginning and duration of injection, transformation of potential into kinetic energy of fuel and increase of energy losses in fuel injection system of various mixtures of diesel and biodiesel fuels. For the analysis of the results a self-developed computer program was used to simulate the injection process in the system. Computational results are verified using the experiment, for a few mixtures of diesel and biodiesel fuels. This paper presents the verification results for diesel fuel and biodiesel fuel in particular.

  15. SLIDING MODE CONTROL FOR ACTIVE AUTOMOBILE SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Nonlinear control methods are presented based on theory of sliding mode control (SMC) or variable structure control (VSC) for application to active automobile suspensions. Requirements of reducing manufacturing cost and energy consumption of the active suspension system may be satisfiedby reasonable design of the sliding surface and hydraulic servo system. Emphasis is placed on the study of the discrete sliding mode control method (DSMC) applicable for a new sort of speed on-off solenoid valves of anti-dust capability and low price. Robustness and effectiveness of the feedback linearized controller in typical road conditions are demonstrated by numerical results fora quarter-car suspension model.

  16. Information, complexity and efficiency: The automobile model

    Energy Technology Data Exchange (ETDEWEB)

    Allenby, B. [Lucent Technologies (United States)]|[Lawrence Livermore National Lab., CA (United States)

    1996-08-08

    The new, rapidly evolving field of industrial ecology - the objective, multidisciplinary study of industrial and economic systems and their linkages with fundamental natural systems - provides strong ground for believing that a more environmentally and economically efficient economy will be more information intensive and complex. Information and intellectual capital will be substituted for the more traditional inputs of materials and energy in producing a desirable, yet sustainable, quality of life. While at this point this remains a strong hypothesis, the evolution of the automobile industry can be used to illustrate how such substitution may, in fact, already be occurring in an environmentally and economically critical sector.

  17. 40 CFR 600.315-82 - Classes of comparable automobiles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Classes of comparable automobiles. 600... 1977 and Later Model Year Automobiles-Labeling § 600.315-82 Classes of comparable automobiles. (a) The Secretary will classify automobiles as passenger automobiles or light trucks (nonpassenger automobiles)...

  18. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  19. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  20. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  1. Design of Data Acquisition System Based on LabVIEW For Hybrid Energy Automobile%基于LabVIEW的复合能源电动汽车数据采集系统的设计

    Institute of Scientific and Technical Information of China (English)

    朱洪波; 康龙云; 杨会州

    2011-01-01

    To evaluate the performance of hybrid energy automobile and to optimize the control strategy of hy brid energy management system, a data acquisition system based on LabVIEW is designed, including data ac quisition card, sensors, signal conditioning circuit, main program. This system can achieve the functions of data acquisition, analysis, display and storage of operational parameters of hybrid energy automobile. Furthermore, to improve calculation accuracy of vehicle speed signal, a method of velocity measuring which the sampling fre quency can be adjusted according to the vehicle speed is proposed. At last, the experiment that has taken on the hybrid energy automobile indicates that the system can realize data acquisition exactly.%为了评价复合能源电动汽车的性能以及优化复合能源管理系统的控制策略,设计了一种基于LabVIEW的数据采集系统,主要包括传感器、数据采集卡、信号调理电路、系统主程序.本系统实现了对复合能源电动汽车运行参数的采集、分析、显示和存储.此外,为了提高车速信号的计算精度,提出了一种可以根据车速调整采样频率的测速方法.最后在复合能源电动车上进行了实验,结果表明,系统能够对信号进行准确采集.

  2. 24 CFR 3280.704 - Fuel supply systems.

    Science.gov (United States)

    2010-04-01

    ...), shall be delivered from the system into the gas supply connection. (b) LP-gas containers—(1) Maximum... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Fuel supply systems. 3280.704 Section 3280.704 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  3. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    in individual households are not suitable for renewable en‐ ergy systems. This is due to the high losses associated with the conversion to hydrogen and the lower regulation abilities of such systems. In a short‐term perspective, natural gas mi‐ cro‐fuel cell CHP may spread the CHP production more than locally...

  4. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  5. Integration of criticality alarm system at a fuel manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Longinov, M.; Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)

    2005-07-01

    In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element CANFLEX bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. As the primary fuel supplier to the reactor site that has chosen to utilize this new fuel design, Zircatec has agreed to manufacture and supply this new fuel at their facility in Port Hope, Ontario. Under this agreement, Zircatec is challenged with converting a fuel manufacturing facility to include the processing of enriched uranium. The challenge is to introduce the new concept of criticality control to a facility that traditionally does not have to deal with such a concept. One of the elements of the implementation is the criticality detection and alarm system - CIDAS. Since a criticality could go undetected by human senses, one of the methods of ensuring safety from radiation exposure in the event of a criticality is the installation of a criticality incident detection and alarm system. This early warning device could be the difference between low dose exposure and lethal exposure. This paper describes the challenges that Zircatec has faced with the installation of a criticality incident detection and alarm system. These challenges include determining the needs and requirements, determining appropriate specifications, selecting the right equipment, installing the equipment and training personnel in the operation of the new equipment. (author)

  6. Fuel Cell System for Transportation -- 2005 Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.

    2006-10-01

    Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of

  7. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  8. Start-up analysis for automotive PEM fuel cell systems

    Science.gov (United States)

    De Francesco, M.; Arato, E.

    The development of fuel cell cars can play an important role in resolving transport problems, due to the high environmental compatibility and high efficiency of this kind of vehicle. Among the different types of fuel cells, proton-exchange membrane fuel cells (PEMFCs) are considered the best solution for automotive applications at the moment. In this work, constructive criteria are discussed with the aim of obtaining a power generation module adaptable to a wide range of cars. A particular problem in accomplishing the overall project is represented by the definition of the compressor system for air feeding. In this work, the design approach to the problem will be delineated: some options are reviewed and the best solution is analysed. The transient response of the system (fuel cell and compressor) is investigated in order to optimise the start-up running through a model of a fuel cell stack and a compressor simulation. The model and its results are proposed as a work procedure to solve the problem, by varying external conditions: in fact, to perform the system start-up under stable conditions, the air relative humidity and temperature must be maintained in a proper range of values. The approach here presented has been utilised for the definition of the characteristics of the power module and layout of a middle-size hybrid city bus in the framework of a project promoted by the European Union.

  9. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Directory of Open Access Journals (Sweden)

    Lee YongDeok

    2017-01-01

    Full Text Available A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241 was done at Korea Atomic Energy Research Institute (KAERI, using lead slowing down spectrometer (LSDS. The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with ~2% uncertainty for Pu239. By applying the covering (neutron absorber, the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  10. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Science.gov (United States)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  11. System design description for sampling fuel in K basins

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-09-17

    This System Design Description provides: (1) statements of the Spent Nuclear Fuel Project`s needs for sampling of fuel in the K East and K West Basins, (2) the sampling equipment functions and requirements, (3) a general work plan and the design logic followed to develop the equipment, and (4) a summary description of the design for the sampling equipment. This report summarizes the integrated application of both the subject equipment and the canister sludge sampling system in the characterization campaigns at K Basins.

  12. System Desining of Automobile Enterprise's Technical Data Integration Based on Human Factor Evaluating Indexes%基于人因评价指标的整车企业技术数据集成系统设计

    Institute of Scientific and Technical Information of China (English)

    张毓; 易树平; 张力

    2011-01-01

    针对整车企业中技术数据集成效率不高的问题,提出了一种基于人因评价指标的技术数据集成系统架构,尝试性地设计了一套可利用信息技术进行收集的人因评价指标的技术数据集成系统.其中分析和评价结果将直接反馈回集成系统,达到系统持续优化,数据集成效率持续提高的目的.最后,以某整车企业技术数据系统集成前后的集成效率改善为例,验证了该方案的实用性.%According to the low efficiency of technical data integration in automobile enterprise,an integrated system architecture of technical data is proposed based on human factor evaluating indexes. A technical data integrated system collecting human factor evaluating indexes is developed tentatively with information technology. The system is optimized and the integration efficiency is improved continuously via feeding back the results of analysis and evaluating of human factor evaluating indexes to system directly. Finally, the practical applicability of the project is verified by the improvement of integration efficiency of an automobile enterprise after applying the integrated system.

  13. Distributed generation system using wind/photovoltaic/fuel cell

    Science.gov (United States)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  14. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  15. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  16. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  17. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  18. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  19. Automobile air-conditioning its energy and environmental impact; La climatisation automobile impact energetique et environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Barbusse, St.; Gagnepain, L.

    2003-05-01

    Over the last three decades, automobile manufacturers have made a lot of progress in specific fuel consumption and engine emissions of pollutants. Yet the impact of these improvements on vehicle consumption has been limited by increased dynamic performances (maxi-mum speed, torque), increased safety (power steering and power brakes) and increased comfort (noise and vibration reduction, electric windows and thermal comfort). Because of this, the real CO{sub 2}-emission levels in vehicles is still high in a context where road transport is a major factor in the balance sheet of greenhouse gas emissions, thus in complying with the inter-national climate convention. Although European, Japanese and Korean manufacturers signed an important agreement with the European Commission for voluntarily reducing CO{sub 2} emissions from their vehicles, with a weighted average emission goal by sales of 140 grams per km on the MVEG approval cycle by 2008, it has to be noted that the European procedures for measuring fuel consumption and CO{sub 2} emissions do not take accessories into account, especially air-condition ng (A/C). The big dissemination of this equipment recognized as a big energy consumer and as using a refrigerant with a high global warming potential ed ADEME to implement a set of assessments of A/C's energy and environmental impact. In particular these assessments include studies of vehicle equipment rates, analyses of impact on fuel consumption as well as regulated pollutant emissions in the exhaust, a characterization of the refrigerant leakage levels and an estimate of greenhouse gas emissions for all air-conditioned vehicles. This leaflet summarizes the results of these actions. All of these studies and additional data are presented in greater detail in the document,-'Automobile Air-conditioning' (ADEME reference no. 4985). (author)

  20. Exergy & economic analysis of biogas fueled solid oxide fuel cell systems

    Science.gov (United States)

    Siefert, Nicholas S.; Litster, Shawn

    2014-12-01

    We present an exergy and an economic analysis of a power plant that uses biogas produced from a thermophilic anaerobic digester (AD) to fuel a solid oxide fuel cell (SOFC). We performed a 4-variable parametric analysis of the AD-SOFC system in order to determine the optimal design operation conditions, depending on the objective function of interest. We present results on the exergy efficiency (%), power normalized capital cost ( kW-1), and the internal rate of return on investment, IRR, (% yr-1) as a function of the current density, the stack pressure, the fuel utilization, and the total air stoichiometric ratio. To the authors' knowledge, this is the first AD-SOFC paper to include the cost of the AD when conducting economic optimization of the AD-SOFC plant. Our calculations show that adding a new AD-SOFC system to an existing waste water treatment (WWT) plant could yield positives values of IRR at today's average electricity prices and could significantly out-compete other options for using biogas to generate electricity. AD-SOFC systems could likely convert WWT plants into net generators of electricity rather than net consumers of electricity while generating economically viable rates of return on investment if the costs of SOFC systems are within a factor of two of the DOE/SECA cost targets.

  1. Automobile park and greenhouse effect. Acting upon the automobile park to reduce the greenhouse effect; Parc automobile et effet de serre. Agir sur le parc automobile pour reduire l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Cauret, L. [INESTENE, 75 - Paris (France); Crozet, Y. [Lyon-1 Univ. Louis Lumiere, LET, 69 (France); Darbera, R. [Ecole Nationale des Ponts et Chaussees (ENPC-LATTS), 75 - Paris (France); Faudry, D. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Golovtchenko, N.; Zelem, M.C. [Toulouse-2 Univ., CERTOP, 31 (France); Mirabel, F. [Universite de Montpellier, CREDEN, 34 - Montpellier (France); Nicolas, J.P. [Centre International de Recherche sur l' Evironnement et le Developpement (CIRED), 75 - Paris (France)

    2001-03-01

    This study is the result of the works carried out by eight research teams (LET, LATTS, IEPE-CNRS, CERTOP, CREDEN, ENTPE, CIRED and INESTENE). These teams belong to the same coordinated research program named Ecodev and which aims at studying the institutional, economical, fiscal, regulatory etc. conditions of selective diffusion policies of technical advances for the benefit of durable development. This study analyzes the impact of automobile development on the consumption of fossil fuels and its consequences on the local and global environment. It deals with the conditions of renewal of the automobile park for a better mastery of its impact on the greenhouse effect (purchase criteria, conditions of use and public policies to be developed): 1 - the evolution of the automobile park: development factors (economic and socio-demographic factors, pollution and public opinion), the aging of the park (causes, role of public policies), development of diesel vehicles, increase of vehicles power (impact on fuel consumptions and pollutant emissions, purchase criteria and lifestyles, fiscality regulation and evolution of vehicles characteristics); 2 - instruments of action: action on the demand (fiscality, regulation, financial incentives for an anticipated withdrawal), action on the offer (average consumption standards, voluntary agreement with makers, labelling etc..), the role of mediators, public information and education. (J.S.)

  2. Bundled automobile insurance coverage and accidents.

    Science.gov (United States)

    Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang

    2013-01-01

    This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents.

  3. Surveillance system for DUPIC fuel development facility (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. Y.; Kim, H. D.; Park, C. S.; Cha, H. R.; Hong, J. S.; Yang, M. S. [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    DUPIC Surveillance System is developed to process image data and radiation data together to diagnose intelligently the transportation status of the nuclear material, which makes it possible that usual DUPIC process be carried out without interruption under the surveillance. We developed the neutron monitor for surveillance and the system which takes and processes radiation data and image data, where the system is under the test operation after installed at DFDF (Dupic Fuel Development Facility)

  4. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  5. Simulation of Gravity Feed Oil for Areoplane Fuel Transfer System

    Science.gov (United States)

    Lv, Y. G.; Liu, Z. X.; Huang, S. Q.; Xu, T.

    Generally, it has two different ways for fuel transfer for areoplane, the simplest one is by gravity, and another is by pumps. But the simplest one mighte change to the vital method in some situation, such as electrical and mechanical accident. So the study of gravity feed oil is aslo important. Past calculations assumed that, under gravity feed, only one fuel tank in aircraft supplies the fuel needed for preventing extremely serious accident to happen. Actually, gravity feed oil is a transient process, all fuel tanks compete for supplying oil and there must have several fuel tanks offering oil simultaneously. The key problems to calculate gravity feed oil are the sumulation of the multiple-branch and transient process. Firstly, we presented mathematical models for oil flow through pipes, non-working pupms and check valves, ect. Secondly, On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Finally, we give a numerical example using the new method for a certain type of aircraft under gravity feed. achieved the variations of oil level and flow mass per second of each oil tanks which showed in Figures below. These variations show preliminarily that our proposed method of calculations is satisfactory.

  6. Fuel System Durability--U.S. Coast Guard

    Science.gov (United States)

    2008-05-01

    injection pump test facility would require a cam support, camshaft components, and fuel injection system components. Due to the low rpm, large injection...support the cam lobe and camshaft . The cam box was built with steel plates, bearings, and shafting shown in Figure 7. Machining and fabrication of the

  7. 33 CFR 183.564 - Fuel tank fill system.

    Science.gov (United States)

    2010-07-01

    ... fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five gallons per minute for at least five seconds will not enter the boat when the boat is in its static... that do not depend solely on the spring tension of the clamps for compressive force. (c) Each...

  8. Advanced energy analysis of high temperature fuel cell systems

    NARCIS (Netherlands)

    De Groot, A.

    2004-01-01

    In this thesis the performance of high temperature fuel cell systems is studied using a new method of exergy analysis. The thesis consists of three parts: ⢠In the first part a new analysis method is developed, which not only considers the total exergy losses in a unit operation, but which distingu

  9. Fluid bed gasification pilot plant fuel feeding system evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, W.A.; Fonstad, T.; Pugsley, T.; Gerspacher, R. (Univ. of Saskatchewan, Saskatoon (Canada)), Email: wac132@mail.usask.ca; Wang Zhiguo (Saskatchewan Research Council, Saskatoon (Canada)), Email: zhiguo.wang@src.sk.ca

    2009-07-01

    Fluidized bed gasification (FBG) is a method for thermally converting solid biomass to a gaseous product termed syngas, which can be used as fuel for heat or electricity generation. Accurate and consistent feeding of biomass fuel into biomass FBG converters is a continuing, challenge, and was the subject of experimentation at the University of Saskatchewan biomass FBG pilot plant. The 2-conveyor feeding system for this pilot plant was tested using meat and bone meal (MBM) as feedstock, by conveying the feedstock through the system, and measuring the output rate as the fuel was discharged. The relationship between average mass-flowrate (F{sub M}) and conveyor speed (S) for the complete feeding system was characterized to be F{sub M}=0.2188S-0.42 for the tests performed. Testing of the metering conveyor coupled to the injection conveyor showed that operating these conveyors at drive synchronized speeds, air pulsed into the injection hopper, and 50 slpm injection air, produced the most consistent feed output rate. Hot fluidized bed tests followed, which showed that plugging of the injection nozzle occurred as bed temperatures increased past 700C, resulting in loss of fuel flow. The pneumatic injection nozzle was subsequently removed, and the system was found to perform adequately with it absent. (orig.)

  10. 基于数值模拟的汽车线槽注塑模浇注系统优化%Optimization of casting system for automobile trunking injection mould based on numerical simulation

    Institute of Scientific and Technical Information of China (English)

    朱芬芳; 王宏霞; 吴燕华

    2012-01-01

    The casting system of automobile trunking injection mould was analyzed by Mold-flow software, and the filling time of the hot runner and the ordinary runner, maximum injection pressure, freezing time, clamping force and shear rate were analyzed. Then the best runner gating system was obtained by simulation results. Practice shows that, after the numerical simulation optimization of the casting system for the automobile trunking injection mould, the development cycle of new products and costs are shortened and the production efficiency and quality are improved.%利用Moldflow软件对汽车线槽注塑成型过程中浇注系统进行分析,分析了热流道和普通流道的充填时间、最大注射压力、冻结时间、锁模力和剪切速率.通过模拟结果得到了热流道的最佳浇注系统.实践表明,经过对汽车线槽注塑模浇注系统数值模拟优化,大大缩短新产品的开发周期和费用,提高了生产效率和质量.

  11. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a

  12. The fuel cell: a coming technology for the cogeneration and the automotive; La pile a combustible: une technologie d'avenir pour la cogeneration et l'automobile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In the framework of the Eco-Industries 2000 meeting, the ATEE organized a colloquium on the fuel cell use in the automotive and cogeneration industries. This book presents the six papers proposed at this colloquium bringing information on the fuel cell market, design and advantages. In the automotive domain, the fuel cell integration in the future car at Renault is presented. The PEM (Proton Exchange Membrane) concept is also detailed. (A.L.B.)

  13. Thorium as a Fuel for Accelerator Driven Subcritical Electronuclear Systems

    CERN Document Server

    Barashenkov, V S; Singh, V

    2000-01-01

    Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two times smaller, accelerator Driven subcritical Systems (ADS) with thorium fuel are very perspective at the bombarding energies higher than several hundreds MeV. An admixture of fissile elements U^{233}, U^{235}, Pu^{239} in the set-up gives larger neutron multiplication which in turn shows better energy amplification. It is argued that due to the practically complete burning of the fuel in such set-up there is no need of technology of conversion of the exhaust fuel.

  14. PV-Wind System with Fuel Cell & Electrolyzer

    Directory of Open Access Journals (Sweden)

    Deepa Sharma

    2015-12-01

    Full Text Available In this paper, a detailed modeling and simulation of solar cell/ wind turbine/ fuel cell hybrid power system is developed using a novel topology to complement each other and to alleviate the effects of environmental variations. Comparing with the other sources , the renewable energy is inexhaustible and has non-pollution characteristics. The solar energy, wind power, hydraulic power and tidal energy are natural resources of the interest to generate electrical power. As the wind turbine output power varies with the wind speed and the solar cell output power varies with both the ambient temperature and radiation, a fuel cell with ultra capacitor bank can be integrated to ensure that the system performs under all conditions. Excess wind and solar energies when available are converted to hydrogen using electrolysis for later use in the fuel cell. In this paper dynamic modeling of various components of this isolated system system is presented. Transient responses of the system to step change in the load, ambient temperature, radiation, and wind speed in a number of possible situations are studied. Modeling and simulations are conducted using MATLAB/Simulink software packages to verify the effectiveness of the proposed system. The results show that the proposed hybrid power system can tolerate the rapid change in natural conditions and suppress the effects of these fluctuations on the voltage within the acceptable range.The proposed system can be used for off grid power generation in non interconnected areas or remote isolated communities of nation.

  15. 60-WATT HYDRAZINE-AIR FUEL CELL SYSTEM.

    Science.gov (United States)

    fuel cell system as presented in our Design Plan. Prior to preparation of the Design Plan, a systems analysis of the basic electrochemical system was made. From the results of this analysis, the operating parameters of the support equipment were defined and an initial selection of components made. System components defined were: the cell stack, electrolyte tank, hydrazine feed system, cooling and chemical air blowers, voltage regulator, and thermal control system. A package design was then made for these components and the final detail design completed.

  16. CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

    Directory of Open Access Journals (Sweden)

    JONG-YOUL PARK

    2014-12-01

    Full Text Available In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

  17. The synchronous active neutron detection system for spent fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  18. Lean Gasoline System Development for Fuel Efficient Small Cars

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stuart R. [General Motors LLC, Pontiac, MI (United States)

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  19. Lean Gasoline System Development for Fuel Efficient Small Cars

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-30

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  20. Study of Hydrogen Supply System with Ammonia Fuel

    Science.gov (United States)

    Saika, Takashi; Nakamura, Mitsuhiro; Nohara, Tetsuo; Ishimatsu, Shinji

    Carbon-free fuel is effective in preventing global warming. Hydrogen has no carbon and can be made also from nuclear energy or reproducible energies other than fossil fuels. However, hydrogen lacks portability because of its difficulty in liquefying, but ammonia can easily be liquefied at a room temperature and dissociated into high-content hydrogen and nitrogen using a suitable catalyst. An ammonia dissociation system for fuel cells is proposed in this paper. The residual ammonia by 13ppm or more in the dissociated gas (H2+ N2) causes a decrease in the output of fuel cells. To separate residual ammonia, it should be sent to an ammonia separator and then to an ammonia distiller. In the experiment, the authors examine the concentrations of ammonia after dissociation at various temperatures, pressures and space velocities. The ammonia separator uses the fact that ammonia dissolves well in water. Then the ammonia water is distilled in the distiller. Thereby, the authors have proposed an ammonia circulation system that is a clean energy system.

  1. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  2. Outlook for alternative transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gushee, D.E. [Univ. of Illinois, Chicago, IL (United States)

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  3. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  4. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  5. Automobile accessories: Assessment and improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M. [Univ. of Nevada, Las Vegas, NV (United States)

    1995-11-01

    With mandates and regulatory policies to meet both the California Air Resources Board (CARB) and the Partnership for a New Generation of Vehicles (PNGV), designing vehicles of the future will become a difficult task. As we look into the use of electric and hybrid vehicles, reduction of the required power demand by influential automobile components is necessary in order to obtain performance and range goals. Among those automobile components are accessories. Accessories have a profound impact on the range and mileage of future vehicles with limited amounts of energy or without power generating capabilities such as conventional vehicles. Careful assessment of major power consuming accessories helps us focus on those that need improvement and contributes to attainment of mileage and range goals for electric and hybrid vehicles.

  6. Rethinking the Cultivating System of the Automobile Talents form the Perspective of Market Demand%面向需求的汽车类专业应用型人才培养体系再思考——以重庆理工大学汽车学院人才培养为例

    Institute of Scientific and Technical Information of China (English)

    周康渠

    2013-01-01

    汽车产业链长,关联度高,发展迅猛,我国汽车人才需求缺口巨大.作为规模性汽车人才培养的主阵地的高等院校,其人才培养体系应随着社会需求的变化而调整.以重庆理工大学汽车学院人才培养为例,探讨了在汽车产业新的发展形势下,汽车类专业的人才培养目标、人才培养方案及教学质量保证体系等问题.%Automobile industrial chain is long and high relevant to other industries, and the gap of employee is very huge with its rapid development. The cultivation system of automobile talents must be readjusted along with the change of social needs in institutions of higher learning where the mass automobile employee is trained. Take CQUT for example, the training objectives, schemes and quality control systems of the relevant specialties to automobile have been discussed according to the new situation of automobile Industry.

  7. Back-Up/ Peak Shaving Fuel Cell System

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL

  8. Advanced ECU Software Development Method for Fuel Cell Systems

    Institute of Scientific and Technical Information of China (English)

    TIAN Shuo; LIU Yuan; XIA Wenchuan; LI Jianqiu; YANG Minggao

    2005-01-01

    The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.

  9. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  10. Hysteretic Current Controlled Zvs Dc/Dc Converter For Automobile

    DEFF Research Database (Denmark)

    Cernat, M.; Scortarul, P.; Tanase, A.

    2007-01-01

    A novel bi-directional dc-dc converter with ZVS and interleaving for dual voltage systems in automobiles is presented. A variable frequency extended band hysteretic current control method is proposed. In comparison with classical fixed frequency current control PWM, the reverse polarity peak curr...

  11. Technology Demonstration of General Black box Standard for Automobiles (GBSA

    Directory of Open Access Journals (Sweden)

    Kishor R

    2014-05-01

    Full Text Available GBSA is an upcoming proposal towards Automobile industry and to the federal governing bodies around the world. Here we are intent to create a disciplinary system to save city sons from accident death and to abolish insurance piracy. The proposal is actually developed from the loss of mankind in society but pulled by technology and humanity facts..

  12. Principles of Fuel and Fuel Systems, 8-4. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This volume of student materials for a secondary/postsecondary level course in principles of fuel and fuel systems is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose of the individualized, self-paced course is to provide the…

  13. 49 CFR 523.5 - Non-passenger automobile.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Non-passenger automobile. 523.5 Section 523.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.5 Non-passenger automobile. A non-passenger automobile means an automobile that is not a passenger automobile or a work truck and...

  14. Fuel-cell-propelled submarine-tanker-system study

    Energy Technology Data Exchange (ETDEWEB)

    Court, K E; Kumm, W H; O' Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  15. Modeling and identification of a PEM fuel cell humidification system

    Institute of Scientific and Technical Information of China (English)

    Xianrui DENG; Guoping LIU; George WANG; Min TAN

    2009-01-01

    A theoretical model of a humidifier of proton exchange membrane (PEM) fuel cell systems is developed and analyzed first in this paper. The model shows that there exists a strong nonlinearity in the system. Then, the system is identified using a wavelet networks method. To avoid the curse-of-dimensionality problem, a class of wavelet networks proposed by Billings is employed. The experimental data acquired from the test bench are used for identification. The one-step-ahead predictions and the five-step-ahead predictions are compared with the real measurements, respectively. It shows that the identified model can effectively describe the real system.

  16. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  17. Fuel injection and mixing systems and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei; Short, John

    2010-08-03

    A fuel injection and mixing system is provided. The system includes an injector body having a fuel inlet and a fuel outlet, and defines a fuel flow path between the inlet and outlet. The fuel flow path may include a generally helical flow passage having an inlet end portion disposed proximate the fuel inlet of the injector body. The flow path also may include an expansion chamber downstream from and in fluid communication with the helical flow passage, as well as a fuel delivery device in fluid communication with the expansion chamber for delivering fuel. Heating means is also provided in thermal communication with the injector body. The heating means may be adapted and configured for maintaining the injector body at a predetermined temperature to heat fuel traversing the flow path. A method of preheating and delivering fuel is also provided.

  18. Solid oxide fuel cell power plant having a bootstrap start-up system

    Science.gov (United States)

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  19. Solid oxide fuel cell power plant having a bootstrap start-up system

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  20. Roadway Automobile Stability. A Numerical Study

    OpenAIRE

    Nikolov, Svetoslav; Nedev, Valentin; Bachvarov, Stefan

    2008-01-01

    A mathematical model of the roadway automobile motion is numerically analyzed. This model is intended to describe the roadway automobile stability. A previous paper [6] described the model in detail and the general method of qualitative analysis. In the present paper, we continue the discussion of stability by numerical simulations and the specific question we attempted to answer is: which parameter(s) of automobile geometry and quality of the roadway can serve as a reliable predictor(s) for ...

  1. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  2. Antimisting kerosene JT3 engine fuel system integration study

    Science.gov (United States)

    Fiorentino, A.

    1987-01-01

    An analytical study and laboratory tests were conducted to assist NASA in determining the safety and mission suitability of the modified fuel system and flight tests for the Full-Scale Transport Controlled Impact Demonstration (CID) program. This twelve-month study reviewed and analyzed both the use of antimisting kerosene (AMK) fuel and the incorporation of a fuel degrader on the operational and performance characteristics of the engines tested. Potential deficiencies and/or failures were identified and approaches to accommodate these deficiencies were recommended to NASA Ames -Dryden Flight Research Facility. The result of flow characterization tests on degraded AMK fuel samples indicated levels of degradation satisfactory for the planned missions of the B-720 aircraft. The operability and performance with the AMK in a ground test engine and in the aircraft engines during the test flights were comparable to those with unmodified Jet A. For the final CID test, the JT-3C-7 engines performed satisfactorily while operating on AMK right up to impact.

  3. Materials and system degradation in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, D. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering, Green Energy and Fuel Cell Group

    2007-07-01

    Various degradation processes in fuel cell anodes and cathodes can cause the release of fluoride ions that thin the ionomer membrane and allow more gases to permeate the cell. This presentation provided an overview of reliability modelling techniques used to identify the failure modes of material degradation in fuel cells. A reliability model of a fuel cell stack and hydrogen power system was presented in addition to solution methods for Nafion degradation of the main polymer chain. Changes in the molecular weight of Nafion were discussed. A case study of a model was used to demonstrate that reaction slowed as the ionomer on the cathode degraded. Equations were developed for hydrogen crossover, peroxide production; peroxide destruction; F-ion production; thickness change; diffusion through the gas diffusion layer (GDL); and open circuit voltage (OCV). It was concluded that the OCV durability experiments generated a mechanism for degradation of commercial membranes. The modelling study showed that degradation was related to the permeability of hydrogen to the cathode, and oxygen to the anode. It was concluded that at lower oxygen pressures anode degradation was limited, while at higher pressures anode degradation was more significant. A power point presentation of the University of Waterloo's alternative fuel team provided details of the team's recent research activities. tabs., figs.

  4. Air management system for automotive fuel cells; Luftversorgungssystem fuer Fahrzeugbrennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Temming, J. [Dortmund Univ. (Germany). Fachgebiet Fluidenergiemaschinen

    2001-07-01

    Fuel cells have attained a predominant position in the development of alternative automotive drives during the last few years. The Polymer Electrolyte Membrane Fuel Cell (PEMFC), preferred for automotive applications, requires compressed air for maximum efficiency. In most prototypes this is provided by twin-screw compressors. The article introduces the different types of fuel cells, and the system and requirements of mobile applications of fuel cells. The advantages and development potential of screw compressors are described. Furthermore concepts of a compressor-expander module based on screw machines are presented and discussed. (orig.) [German] Bei der Entwicklung alternativer Fahrzeugantriebe hat die Brennstoffzelle in den letzten Jahren eine vorherrschende Stellung eingenommen. Die Polymer-Elektrolyt-Membran Brennstoffzelle, PEMFC, die fuer automotive Anwendungen bevorzugt verwendet wird, benoetigt fuer einen optimalen Wirkungsgrad eine Druckluftversorgung. Als Compressor kommt derzeit insbesondere der Schraubenlader bzw. -compressor in verschiedenen Prototypenfahrzeugen zum Einsatz. Der Beitrag behandelt zunaechst die unterschiedlichen Brennstoffzellentypen, den Systemaufbau und die Anforderungen an die mobile Anwendung der Brennstoffzelle. Fuer diesen speziellen Anwendungsfall werden Vorteile und Entwicklungsmoeglichkeiten der Schraubenmaschine dargelegt. Davon ausgehend finden sich Konzepte zum Aufbau eines Compressor-Expander-Moduls (CEM) auf Basis der Schraubenmaschinen. (orig.)

  5. The construction of a Danish automobile culture

    DEFF Research Database (Denmark)

    Wagner, Michael

    The aim of this article is to discuss the way the automobile was introduced and promoted as a vehicle for modern leisure life in Denmark 1900-1970., and to demonstrate how automobilism was constructed around an ideology of consumption for leisure and recreation.......The aim of this article is to discuss the way the automobile was introduced and promoted as a vehicle for modern leisure life in Denmark 1900-1970., and to demonstrate how automobilism was constructed around an ideology of consumption for leisure and recreation....

  6. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating multiple stack building

  7. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  8. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  9. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    radiator #7. The fan blades and shroud were formed using stereo lithography; the fan motor was a brushless DC motor with motor controller. These...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--10-9253 Cooling System Design for PEM Fuel Cell Powered Air Vehicles June 18, 2010...Stroman, Michael W. Schuette,* and Gregory S. Page† Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5342 NRL/MR/6110--10-9253

  10. Liquid Hydrogen Fuel System for Small Unmanned Air Vehicles

    Science.gov (United States)

    2013-01-07

    propulsion plant comprised a hydrogen fuel cell system, built by Protonex Technology Corporation, which weighed 2.5 lbs and produced a maximum of 550... NASA for flight on long-endurance UAVs. 9 Aluminum was selected for both the inner and outer walls of the LH2 dewar because of its low H2...impact of cooling from air flow would ordinarily be tested in a wind tunnel, LH2 safety complicates indoor testing in a wind tunnel, as

  11. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  12. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  13. NASA Lewis Evaluation of Regenerative Fuel Cell (RFC) Systems

    Science.gov (United States)

    Hagedorn, N. H.; Gonzalez-Sanabria, O. D; Kohout, L. L.

    1986-01-01

    Evaluation of two regenerative fuel cell (RFC) systems was begun in-house, and under contracts and grants. The passive hydrogen-oxygen RFC offers the possibility of a high-energy density, long-life storage system for geosynchronous Earth orbit missions. The hydrogen-bromine RFC offers the combination of high efficiency and moderate energy density that could ideally suit low Earth orbit missions if successfully developed. Either or both of these systems would be attractive additions to the storage options available to designers of future missions.

  14. Design of Propulsion System for a Fuel Cell Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Andreasen, Søren Juhl; Rasmussen, Peter Omand

    2007-01-01

    This paper presents a design method of propulsion systems for fuel cell vehicles complying with the 42V PowerNet standard. The method is based on field measurements during several weeks. Several cases of combining energy storage devices to a common bus voltage are investigated, and the total mass......, volume, cost and efficiency of the propulsion system are compared. It is concluded that the number of energy storage devices and their connecting to the common bus have a significant affect of the mass, volume, cost and efficiency of the propulsion system....

  15. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  16. Carbide-based fuel system for undersea vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Burke, A. Alan; Carreiro, Louis G.; Greene, Eric S. [Naval Undersea Warfare Center, Division Newport (NUWCDIVNPT), 1176 Howell Street, Building 1302/2, Newport, RI 02841 (United States)

    2008-01-21

    In underwater applications such as unmanned undersea vehicle (UUV) propulsion, mass and volume constraints often dictate system energy density and specific energy, which are targeted to exceed 300 Wh L{sup -1} and 300 Wh kg{sup -1}, respectively, in order to compete with state-of-the-art battery technologies. To address this need, a novel carbide-based fuel system (CFS) intended for use with a solid oxide fuel cell (SOFC) is under development that is capable of achieving these energy metrics as well as sequestering carbon dioxide. The proposed CFS uses calcium carbide and calcium hydride that react with water to generate acetylene and hydrogen as the fuel and calcium hydroxide as a carbon dioxide scrubber. The acetylene is hydrogenated to ethane and then reformed to syngas (carbon monoxide and hydrogen) before being utilized by the SOFC. Carbon dioxide effluent from the SOFC is reacted with the calcium hydroxide to produce a storable solid, calcium carbonate, thus eliminating gas evolution from the UUV. A system configuration is proposed and discussion follows concerning energy storage metrics, operational parameters and preliminary safety analysis. (author)

  17. Carbide-based fuel system for undersea vehicles

    Science.gov (United States)

    Burke, A. Alan; Carreiro, Louis G.; Greene, Eric S.

    In underwater applications such as unmanned undersea vehicle (UUV) propulsion, mass and volume constraints often dictate system energy density and specific energy, which are targeted to exceed 300 Wh L -1 and 300 Wh kg -1, respectively, in order to compete with state-of-the-art battery technologies. To address this need, a novel carbide-based fuel system (CFS) intended for use with a solid oxide fuel cell (SOFC) is under development that is capable of achieving these energy metrics as well as sequestering carbon dioxide. The proposed CFS uses calcium carbide and calcium hydride that react with water to generate acetylene and hydrogen as the fuel and calcium hydroxide as a carbon dioxide scrubber. The acetylene is hydrogenated to ethane and then reformed to syngas (carbon monoxide and hydrogen) before being utilized by the SOFC. Carbon dioxide effluent from the SOFC is reacted with the calcium hydroxide to produce a storable solid, calcium carbonate, thus eliminating gas evolution from the UUV. A system configuration is proposed and discussion follows concerning energy storage metrics, operational parameters and preliminary safety analysis.

  18. MODELLING AND FUZZY LOGIC CONTROL OF PEM FUEL CELL SYSTEM POWER GENERATION FOR RESIDENTIAL APPLICATION

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2010-01-01

    This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposedinclude a fuel cell stack model, reformer model and DC/AC inverter model. More then an analytical details ofhow active and reactive power output of a proton-exchange-membrane (PEM) fuel cell system is controlled.Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. Thecontroller modifies the hydrogen flow feedback from the terminal load. Si...

  19. Fossil-Fuel C02 Emissions Database and Exploration System

    Science.gov (United States)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). This presentation introduces newly build database and web interface, reflects the present state and functionality of the Fossil-Fuel CO2 Emissions Database and Exploration System as well as future plans for expansion.

  20. Solid oxide fuel cell systems development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The main objective in this project has been to develop a generic and dynamic tool for SOFC systems simulation and development. Developing integrated fuel cell systems is very expensive and therefore having the right tools to reduce the development cost and time to market for products becomes an important feature. The tools developed in this project cover a wide range of needs in Dantherm Power, R and D, and can be divided into 3 categories: 1. Component selection modeling; to define component specification requirements and selection of suppliers. 2. Application simulation model built from scratch, which can simulate the interface between customer demand and system output and show operation behavior for different control settings. 3. System operation strategy optimization with respect to operation cost and customer benefits. a. Allows to see how system size, in terms of electricity and heat output, and operation strategy influences a specific business case. b. Gives a clear overview of how a different property, in the system, affects the economics (e.g. lifetime, electrical and thermal efficiency, fuel cost sensitivity, country of deployment etc.). The main idea behind the structure of the tool being separated into 3 layers is to be able to service different requirements, from changing stakeholders. One of the major findings in this project has been related to thermal integration between the existing installation in a private household and the fuel cell system. For a normal family requiring 4500 kWh of electricity a year, along with the possibility of only running the system during the heating season (winter), the heat storage demand is only 210kWh of heat with an approximate value of Dkr 160,- in extra gas consumption. In this case, it would be much more cost effective to dump the heat, in the house, and save the expense of adding heat storage to the system. This operation strategy is only valid in Denmark for the time being, since the feed-In-Tariff allows for a

  1. Design and Realization of Order Management System of Automobile Manufacturing Enterprises Based on ERP%基于ERP的汽车生产企业订单管理系统的设计与实现

    Institute of Scientific and Technical Information of China (English)

    刘哲; 姜玲杰

    2015-01-01

    结合实际设计与开发了一套基于ERP的汽车生产企业的订单管理信息系统,系统采用ASP.NET作为开发平台,开发语言是C#,以Microsoft SQL Server 2008为后台数据库,部分系统配置用XML文档存储.详细阐述了订单管理系统的模块结构及其运作流程,并对系统数据库及模块进行了设计说明.%In this paper, we designed and developed an order management information system based on ERP for the automobile manufacturing enterprises, then elaborated on the modular structure and operational process of the system, and at the end, explained the database and modules of it.

  2. Method of Hydrogenous Fuel Usage to Increase the Efficiency in Tandem Diverse Temperature Oxidation System

    Directory of Open Access Journals (Sweden)

    Zubkova Marina

    2016-01-01

    Full Text Available This paper presents the results of estimation energy efficiency, the collation data of thermodynamic calculations and data on material balance for an assessment of electric and thermal components in considered ways to use convention products, performance enhancement in the tandem system containing the high-temperature fuel cell and the low-temperature fuel cell with full heat regeneration for hydrogenous fuel (CH4. The overall effective efficiency (ηΣef. making full use of the recovered heat considered tandem system depends on the efficiency of its constituent fuel cells. The overall effective efficiency of the tandem installation including the fuel converter, separating system, high-temperature oxidation system, and hydrogen disposal system in case of fuel use in the low-temperature fuel cell, is higher than for each of the fuel cell elements separately.

  3. Alkaline Exchange Membrane (AEM) for High-Efficiency Fuel Cells, Electrolyzers and Regenerative Fuel Cell Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an alkaline exchange membrane (AEM)for use as a polymer electrolyte in both fuel cell and electrolyzer systems.  The ultimate goal in AEM development is...

  4. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Science.gov (United States)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  5. A Study of Transport Airplane Crash-Resistant Fuel Systems

    Science.gov (United States)

    Jones, Lisa (Technical Monitor); Robertson, S. H.; Johnson, N. B.; Hall, D. S.; Rimson, I. J.

    2002-01-01

    This report presents the results of a study, funded by the Federal Aviation Administration (FAA), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S. Army, which ultimately led to the current state of the art in CRFS technology. It describes the basic research, testing, field investigations and production efforts which have led to the highly successful military CRFS, which has saved many lives and reduced costs of accidents. Current CRFS technology used in transport category airplanes is defined and compared to the available state-of-the-art technology. The report provides information to the FAA and other government organizations which can help them plan their efforts to improve the state of crash fire protection in the transport airplane fleet. The report provides guidance to designers looking for information about CRFS design problems, analysis tools to use for product improvement, and a summary of current and proposed regulations for transport category airplane fuel systems.

  6. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Science.gov (United States)

    2012-08-07

    ... National Institute of Standards and Technology Work Group on Measuring Systems for Electric Vehicle Fueling... devices and systems used to assess charges to consumers for electric vehicle fuel. There is no cost for... residential and business locations and those used to measure and sell electricity dispensed as a vehicle fuel...

  7. Modeling and control of the output current of a Reformed Methanol Fuel Cell system

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar

    2015-01-01

    In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...

  8. Engine Performance (Section B: Fuel and Exhaust Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    Science.gov (United States)

    Rains, Larry

    This module is the third of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: fuel supply systems; carburetion; carburetor service; gasoline engine electronic fuel injection; diesel fuel injection; and exhaust systems and turbochargers. Introductory materials include a competency profile and…

  9. 高职汽车商务管理专业课程体系构建研究%Study on Construction of Courses System of Automobile Business Management in Higher Vocational College

    Institute of Scientific and Technical Information of China (English)

    何阿毜

    2014-01-01

    中国汽车后市场产值高达5500亿元,未来几年增长率在30%左右,人才培养跟不上汽车市场发展,汽车商务管理人才奇缺。由于许多高职院校刚刚开设此专业,表现在专业定位和课程体系不清晰,严重影响人才培养的质量,为此通过开展运营流程分析与诊断、市场调查、顾客调查、员工调查、各层级访谈、岗位培训与反馈、课程设计专家座谈会、营销策划等活动,结合汽车商务管理工作过程和学生形象思维的特点,重新设计出汽车商务管理专业课程体系,解决专业定位偏差与课程不清晰问题。%After-market value of Chinese automotive is higher than 550 billion Yuan, which will keep increasing at the growth rate of around 30% in the next few years. However, talent training cannot keep up with the development of automobile market, especially in the shortage of the talent of the automobile business management. Many higher vocational colleges just opened this major. Therefore, major orientation and courses system are not clear, which affect the quality of talent training seriously. By means of carrying out diagnosis and analysis of enterprise position and process, market research, customer survey, investigation, overall interview, job training and feedback, expert forum for curriculum design, marketing planning and other activities, this paper focus on taking the characteristics of the process in automotive business management and students' images thinking into account and then redesigning the courses system of automobile business management to solve the problems about deviation in major positioning and the unclear curriculums.

  10. Motor vehicle fuel economy, the forgotten HC control stragegy?

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  11. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... can be used for such analyses. Moreover, the chapter presents the results of evaluating the overall system fuel savings achieved by introducing different FC applications into different energy systems. Natural gas-based and hydrogen-based micro FC-CHP, natural gas local FC-CHP plants for district...... technologies have different strengths and weaknesses in different energy systems, but often they do not have the expected effect. Specific analyses of each individual country must be conducted including scenarios of expansion of e.g. wind power in order to evaluate where and when the best use of FC...

  12. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  13. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    Science.gov (United States)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  14. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  15. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  16. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    Science.gov (United States)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  17. GCtool for fuel cell systems design and analysis : user documentation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  18. Engine control system having fuel-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  19. Plate-Based Fuel Processing System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  20. Plate-Based Fuel Processing System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  1. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    Science.gov (United States)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  2. Anhui Jianghuai Automobile Group Co., Ltd.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      Anhui Jianghuai Automobile Group Co., Ltd (hereafter referred to as "Jiangqi Group"),established on May 18, 1997 with approval of Anhui provincial government, is one of 12 key provincial owned enterprises. Its predecessor was Hefei Jianghuai Automobile Factory built in 1964.……

  3. Anhui Jianghuai Automobile Group Co., Ltd.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Anhui Jianghuai Automobile Group Co., Ltd (hereafter referred to as "Jiangqi Group"),established on May 18, 1997 with approval of Anhui provincial government, is one of 12 key provincial owned enterprises. Its predecessor was Hefei Jianghuai Automobile Factory built in 1964.

  4. Integrated microchemical systems for fuel processing in micro fuel cell applications

    Science.gov (United States)

    Pattekar, Ashish V.

    Rapid advances in microelectronics technology over the last decade have led to the search for novel applications of miniaturization to all aspects of engineering. Microreaction engineering, which involves the development of miniature reactors on microchips for novel applications, has been a key area of interest in this quest for miniaturization. The idea of a fully integrated microplant with embedded control electronics, sensors and actuators on a single silicon chip has been gaining increasing acceptance as significant progress is being made in this area. The aim of this project has been to demonstrate a working microreaction system for hydrogen delivery to miniature proton exchange membrane (PEM) fuel cells through the catalytic steam reforming of methanol. The complete reformer - fuel cell unit is proposed as an alternative to conventional portable sources of electricity such as batteries due to its ability to provide an uninterrupted supply of electricity as long as a supply of methanol and water can be provided. This technology also offers significantly higher energy storage densities, which translates into less frequent 'recharging' through the refilling of methanol fuel. Various aspects of the design of a miniature methanol reformer on a silicon substrate are discussed with a focus on the theoretical understanding of microreactor operation and optimum utilization of the semiconductor-processing techniques used for fabricating the devices. Three prototype microreactor designs have been successfully fabricated and tested. Issues related to microchannel capping, on-chip heating and temperature sensing, introduction and trapping of catalyst particles in microchannels, microfluidic interfacing, pressure drop reduction, and thermal insulation have been addressed. Details regarding modeling and simulation of the designs to provide an insight into the working of the microreactor are presented along with a description of the microfabrication steps followed to

  5. Energy Conversion Analysis of a Novel Solar Thermochemical System Coupled with Fuel Cells

    OpenAIRE

    Vinck, Ian; Ozalp, Nesrin

    2015-01-01

    Fossil fuels have been the main supply of power generation for use in manufacturing, transportation, residential and commercial sectors. However, environmentally adverse effects of fossil fuel conversion systems combined with pending shortage raise major concerns. As a promising approach to tackle these challenges, this paper presents a novel energy conversion system comprising of a solar thermal reactor coupled with hydrogen fuel cell and carbon fuel cell for electricity generation. The syst...

  6. Social Sustainability Issues and Older Adults' Dependence on Automobiles in Low-Density Environments

    National Research Council Canada - National Science Library

    Hitomi Nakanishi; John Black

    2015-01-01

      An implicit assumption underlying government strategies to achieve a more sustainable urban transportation system is that all automobile users will be encouraged or persuaded to use more "green" transportation...

  7. Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.A. (U. of California, Irvine, CA); Brouwer, J. (U. of California, Irvine, CA); Liese, E.A.; Gemmen, R.S.

    2006-04-01

    Hybrid fuel cell/gas turbine systems provide an efficient means of producing electricity from fossil fuels with ultra low emissions. However, there are many significant challenges involved in integrating the fuel cell with the gas turbine and other components of this type of system. The fuel cell and the gas turbine must maintain efficient operation and electricity production while protecting equipment during perturbations that may occur when the system is connected to the utility grid or in stand-alone mode. This paper presents recent dynamic simulation results from two laboratories focused on developing tools to aid in the design and dynamic analyses of hybrid fuel cell systems. The simulation results present the response of a carbonate fuel cell/gas turbine, or molten carbonate fuel cell/gas turbine, (MCFC/GT) hybrid system to a load demand perturbation. Initial results suggest that creative control strategies will be needed to ensure a flexible system with wide turndown and robust dynamic operation.

  8. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2005-12-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was

  9. Satellite Attitude Control System Design considering the Fuel Slosh Dynamics

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gadelha de Souza

    2014-01-01

    Full Text Available The design of the satellite attitude control system (ACS becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR and linear quadratic Gaussian (LQG methods to perform a planar manoeuvre assuming thrusters are actuators.

  10. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recirculation is needed or not and if so then what would be the effect of anode recycling on plant efficiency. A single study with similar conditions and prerequisites will thus reveal the importance of fuel recirculation on plant performance with alternative fuels. It is also shown that increasing anode...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained...

  11. Modeling and control of fuel cell based distributed generation systems

    Science.gov (United States)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  12. Study on the Fuzzy COntrol Strategy of Automobile with CVT

    Institute of Scientific and Technical Information of China (English)

    HuJianjun; QINDatong; 等

    2002-01-01

    In order to study the dynamic characteristics of automobile with a CVT system, a bond graph analysis model of continuously variable transmission is established.On the base of the simulation state space equations that are established with bond graph theory,a fuzzy control strategy with an expert system of starting process has been introduced.Considering uncertain system parameters and exterior resistance disturbing,the effect of the profile of membership function and the defuzzification algorthm on the capacity of the fuzzy controller has been studied.The result of simulation proves that the proposed fuzzy controller is effective and feasible,Such controller has been employed in the actual control and has proved practicable.The study lays a foundation for design of the fuzzy controller for automobile with a CVT system.

  13. Analysis of a fuel cell on-site integrated energy system for a residential complex

    Science.gov (United States)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  14. Study of fuel cell and gas turbine hybrid power systems

    OpenAIRE

    Basurto, M. T.

    2002-01-01

    Environmental awareness and the interest in distributed generation caused by electricity market de-regulation are factors that promote research on renewable energies. Fuel cells transform the chemical energy stored in fuel into electricity by means of electrochemical reactions. Among the different fuel cell types, high temperature fuel cells (HTFCS) have many advantages: high efficiency, low emissions, fuel flexibility, modularity and high quality waste heat. The main disadvant...

  15. System and method having multi-tube fuel nozzle with differential flow

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight; York, William David

    2017-01-03

    A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.

  16. Study and development of a hydrogen/oxygen fuel cell in solid polymer electrolyte technology

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R.

    1992-10-29

    The hydrogen/oxygen fuel cell appears today as the best candidate to the replacing of the internal combustion engine for automobile traction. This system uses the non explosive electrochemical recombination of hydrogen and oxygen. It is a clean generator whom only reactive product is water. This thesis shows a theoretical study of this system, the synthesis of different kinds of used electrodes and finally an analysis of water movements in polymer electrolyte by different original technologies. 70 refs., 73 figs., 15 tabs.

  17. Solid polyelectrolyte fuel cell power supply system; Kotai kobunshigata nenryo denchi dengen system

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T. [Kanagawa (Japan); Kadoma, H. [Yokohama (Japan); Hashizaki, K.; Tani, T. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1996-06-11

    When a previous solid polyelectrolyte fuel cell power supply system is used underwater, the water generated by the cell reaction is stored in a water storage tank and it is necessary that the system is suspended in case the generated water is full in the water storage tank to take the system out of water and the water in the tank is discharged in the atmosphere. The solid polyelectrolyte fuel cell power supply system of this invention is equipped with a discharge pump to exhaust the generated water out of the closed vessel accommodating the system or equipped with a device to exhaust the generated water into the outside water accompanied with gushing of high-pressure gas into the outside water. As a result, the water generated by the cell reaction can be exhausted from the system into the outside water at any required time so that the fuel cell power supply system can be operated continuously as far as the supply of the fuel or the oxidizer last. By the installment of this function, a solid polyelectrolyte fuel cell power supply system can be used as an independent underwater power source or as a power source for an underwater moving body. 4 figs.

  18. 130 Modeling of the automobile suspension by the functional model

    OpenAIRE

    桐山, 啓; 角田, 鎭男; 長松, 昭男; 御法川, 学; 岩原, 光男; Kiriyama, Akira; Sumida, Shizuo; Nagamatsu, Akio; Minorikawa, Gaku; Iwahara, Mitsuo

    2003-01-01

    Modeling for an action simulation is performed focusing on the suspension system of a car using the modeling technique called the functional model that had been developed by one of the authors. Simulation analysis of the suspension system of a car was performed in the three dimensional field. It was shown that the method based on the modeling concept of functional model can express the general dynamic characteristic of the automobile suspension.

  19. Automobile materials competition: energy implications of fiber-reinforced plastics

    Energy Technology Data Exchange (ETDEWEB)

    Cummings-Saxton, J.

    1981-10-01

    The embodied energy, structural weight, and transportation energy (fuel requirement) characteristics of steel, fiber-reinforced plastics, and aluminum were assessed to determine the overall energy savings of materials substitution in automobiles. In body panels, a 1.0-lb steel component with an associated 0.5 lb in secondary weight is structurally equivalent to a 0.6-lb fiber-reinforced plastic component with 0.3 lb in associated secondary weight or a 0.5-lb aluminum component with 0.25 lb of secondary weight. (Secondary weight refers to the combined weight of the vehicle's support structure, engine, braking system, and drive train, all of which can be reduced in response to a decrease in total vehicle weight.) The life cycle transportation energy requirements of structurally equivalent body panels (including their associated secondary weights) are 174.4 x 10/sup 3/ Btu for steel, 104.6 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.2 x 10/sup 3/ Btu for aluminum. The embodied energy requirements are 37.2 x 10/sup 3/ Btu for steel, 22.1 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.1 x 10/sup 3/ Btu for aluminum. These results can be combined to yield total energy requirements of 211.6 x 10/sup 3/ Btu for steel, 126.7 x 10/sup 3/ Btu for fiber-reinforced plastics, and 174.3 x 10/sup 3/ Btu for aluminum. Fiber-reinforced plastics offer the greatest improvements over steel in both embodied and total energy requirements. Aluminum achieves the greatest savings in transportation energy.

  20. Fuel Costs, Propulsion Systems and Interplanetary Supply Chains

    Science.gov (United States)

    Smith, R.

    A perspective on the economics of space logistics in a future state where there are continuous supply routes between Earth and outlying bodies in the solar system is discussed. In particular, the dependence of the cost of transport on specific impulse and % of non-fuel mass as cargo is discussed. Also, a simple way to calculate the optimal cargo mass of a transport ship carrying a commodity with constant demand is proposed as well as qualitative issues regarding backhaul and inventory that space logistics planners will have to one day confront.