WorldWideScience

Sample records for fuel supply shutdown

  1. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  2. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  3. 300 Area fuel supply shutdown facility hazards assessment

    International Nuclear Information System (INIS)

    Campbell, L.R.

    1998-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 300 Area Fuel Supply Shutdown Facilities on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone, is demonstrated

  4. Hazard Classification for Fuel Supply Shutdown Facility

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    Final hazard classification for the 300 Area N Reactor fuel storage facility resulted in the assignment of Nuclear Facility Hazard Category 3 for the uranium metal fuel and feed material storage buildings (303-A, 303-B, 303-G, 3712, and 3716). Radiological for the residual uranium and thorium oxide storage building and an empty former fuel storage building that may be used for limited radioactive material storage in the future (303-K/3707-G, and 303-E), and Industrial for the remainder of the Fuel Supply Shutdown buildings (303-F/311 Tank Farm, 303-M, 313-S, 333, 334 and Tank Farm, 334-A, and MO-052)

  5. Quality assurance program plan fuel supply shutdown project

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1998-01-01

    This Quality Assurance Program plan (QAPP) describes how the Fuel Supply Shutdown (FSS) project organization implements the quality assurance requirements of HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) and the B and W Hanford Company Quality Assurance Program Plan (QAPP), FSP-MP-004. The QAPP applies to facility structures, systems, and components and to activities (e.g., design, procurement, testing, operations, maintenance, etc.) that could affect structures, systems, and components. This QAPP also provides a roadmap of applicable Project Hanford Policies and Procedures (PHPP) which may be utilized by the FSS project organization to implement the requirements of this QAPP

  6. Basis for Interim Operation for Fuel Supply Shutdown Facility

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2003-01-01

    This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the current and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment

  7. Plasma shutdown device

    International Nuclear Information System (INIS)

    Hosogane, Nobuyuki; Nakayama, Takahide.

    1985-01-01

    Purpose: To prevent concentration of plasma currents to the plasma center upon plasma shutdown in a torus type thermonuclear device by the injection of fuels to the plasma center thereby prevent plasma disruption at the plasma center. Constitution: The plasma shutdown device comprises a plasma current measuring device that measures the current distribution of plasmas confined within a vacuum vessel and outputs a control signal for cooling the plasma center when the plasma currents concentrate to the plasma center and a fuel supply device that supplies fuels to the plasma center for cooling the center. The fuels are injected in the form of pellets into the plasmas. The direction and the velocity of the injection are set such that the pellets are ionized at the center of the plasmas. (Horiuchi, T.)

  8. Preliminary Evaluation of Removing Used Nuclear Fuel From Nine Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul

    2013-04-30

    The Blue Ribbon Commission on America’s Nuclear Future identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. In this report, a preliminary evaluation of removing used nuclear fuel from nine shutdown sites was conducted. The shutdown sites included Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion. At these sites a total of 7649 used nuclear fuel assemblies and a total of 2813.2 metric tons heavy metal (MTHM) of used nuclear fuel are contained in 248 storage canisters. In addition, 11 canisters containing greater-than-Class C (GTCC) low-level radioactive waste are stored at these sites. The evaluation was divided in four components: • characterization of the used nuclear fuel and GTCC low-level radioactive waste inventory at the shutdown sites • an evaluation of the onsite transportation conditions at the shutdown sites • an evaluation of the near-site transportation infrastructure and experience relevant to the shipping of transportation casks containing used nuclear fuel from the shutdown sites • an evaluation of the actions necessary to prepare for and remove used nuclear fuel and GTCC low-level radioactive waste from the shutdown sites. Using these evaluations the authors developed time sequences of activities and time durations for removing the used nuclear fuel and GTCC low-level radioactive waste from a single shutdown site, from three shutdown sites located close to each other, and from all nine shutdown sites.

  9. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  10. Controlled shutdown of a fuel cell

    Science.gov (United States)

    Clingerman, Bruce J.; Keskula, Donald H.

    2002-01-01

    A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.

  11. The shutdown reactor: Optimizing spent fuel storage cost

    International Nuclear Information System (INIS)

    Pennington, C.W.

    1995-01-01

    Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wet and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec's findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest

  12. Development of Start-up and Shutdown Procedure for the HANARO Fuel Test Loop

    International Nuclear Information System (INIS)

    Park, S. K.; Sim, B. S.; Chi, D. Y.; Lee, J. M.; Lee, C. Y.; Ahn, S. H.

    2009-06-01

    A start-up and shutdown procedure for the HANARO fuel test loop has been developed. This is a facility for fuel and material irradiation tests. The facility provides experimental conditions similar to the normal operational pressures and temperatures of commercial PWR and CANDU plants. The normal operation modes of the HANARO fuel test loop are classified into loop shutdown, cold stand-by 1, cold stand-by 2, hot stand-by, and hot operation. The operation modes depend on the fission power of test fuels and the coolant temperature at the inlet of the in-pile test section. The HANARO must maintain a shutdown mode if the HANARO fuel test loop is loop shutdown, cold stand-by 1, cold stand-by 2, or hot stand-by. As the HANARO becomes power operation mode, the operation mode of the HANARO fuel test loop comes to hot operation from hot stand-by. The procedure for the HANARO fuel test loop consists of four main parts such as check of initial conditions, stat-up operation procedure, shutdown operation procedure, and check lists for operations. Several hot test operations ensure that the procedure is appropriate

  13. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Massaro, Lawrence M. [Fermi Research Alliance (FRA), Batavia, IL (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power plant sites was performed. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: Characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory A description of the on-site infrastructure at the shutdown sites An evaluation of the near-site transportation infrastructure and transportation experience at the shutdown sites An evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. The primary sources for the inventory of SNF and GTCC waste were the U.S. Department of Energy (DOE) spent nuclear fuel inventory database, industry publications such as StoreFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of on-site infrastructure and near-site transportation infrastructure and experience included information collected during site visits, information provided by managers at the shutdown sites, Facility Interface Data Sheets compiled for DOE in 2005, Services Planning Documents prepared for DOE in 1993 and 1994, industry publications such as Radwaste Solutions, and Google Earth. State staff, State Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative have participated in nine of the shutdown site visits. Every shutdown site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an

  14. Analysis of HFETR shut-down state caused by loss of off-site power supply

    International Nuclear Information System (INIS)

    Wang Jinghu

    1997-01-01

    During the last 15 years, there are more than 40 unplanned shut-downs caused by loss of off-site power in HFETR. Because HFETR is a special research reactor, the author describes the shut-down state as three period. The author also discusses the influence of the number of shut-down due to loss of off-site power supply on the reactor safety, and propose some suggestions and measures to reduce the effects

  15. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Massaro, Lawrence M. [Federal Railroad Administration (FRA) (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportation of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site

  16. Evaluation of reactivity shutdown margin for nuclear fuel reload optimization

    International Nuclear Information System (INIS)

    Wong, Hing-Ip; Maldonado, G.I.

    1995-01-01

    The FORMOSA-P code is a nuclear fuel management optimization package that combines simulated annealing (SA) and nodal generalized perturbation theory (GPT). Recent studies at Electricite de France (EdF-Clamart) have produced good results for power-peaking minimizations under multiple limiting control rod configurations. However, since the reactivity shutdown margin is not explicitly treated as an objective or constraint function, then any optimal loading patterns (LPs) are not guaranteed to yield an adequate shutdown margin (SDM). This study describes the implementation of the SDM calculation within a FORMOSA-P optimization. Maintaining all additional computational requirements to a minimum was a key consideration

  17. Evaluation of reactivity shutdown margin for nuclear fuel reload optimization

    International Nuclear Information System (INIS)

    Engrand, P.; Wong, H. I.; Maldonado, G.I.

    1996-01-01

    The FORMOSA-P code is a nuclear fuel management optimization package which combines simulated annealing (SA) and nodal generalized perturbation theory (GPT). Recent studies at Electricite de France have produced good results for power peaking minimizations under multiple limiting control rod configurations. However, since the reactivity shutdown margin is not explicitly treated as an objective or constraint function, then any optimal loading patterns (LPs) are not guaranteed to yield an adequate shutdown margin (SDM). This study describes the implementation of the SDM calculation within a FORMOSA-P optimization. Maintaining all additional computational requirements to a minimum was a key consideration. (authors). 4 refs., 2 figs

  18. Identification of passive shutdown system parameters in a metal fueled LMR

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1992-01-01

    This document discusses periodic testing of the passive shutdown system in a metal fueled liquid metal reactor which has been proposed as a Technical Specification requirement. In the approach to testing considered in this paper, perturbation experiments performed at normal operation are used to predict an envelope that bounds reactor response to flowrate, inlet temperature and external reactivity forcing functions. When the envelope for specific upsets lies within safety limits, one concludes that the passive shutdown system is operation properly for those upsets. Simulation results for the EBR-II reactor show that the response envelope for loss of flow and rod reactivity insertion events does indeed bound these events

  19. Inherently safe SNR shutdown system with Curie point controlled sensor/switch unit

    International Nuclear Information System (INIS)

    Mueller, K.; Norajitra, P.; Reiser, H.

    1987-02-01

    Inherent shutdown due to increase in the sodium temperature at the core outlet is triggered by interruption of the current supply to the electromagnet coupling of absorber elements via curie point controlled sensor/switch units. These switches are arranged above suitable fuel element positions and spatially independent of the shutdown elements. Compared with other similar systems very short response times are achieved. A prototype switch unit has already undergone extensive testing. These tests have confirmed that switching takes place in a very narrow temperature range. (orig./HP) [de

  20. Fuel supply security

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki

    1987-01-01

    Stable fuel supply is a prerequisite for any nuclear power program including ISER-PIUS. It encompasses procurement of uranium ore, enriched uranium and fuel elements. Uranium is different from oil in that it can be stockpiled for more than a decade besides the fact that the core residence time is as long as six years, for example in the case of ISER-PIUS. These basic fuel characteristics are favoring nuclear fuel over others in terms of supply security. The central concern will be a gradual increase in prices of uranium and enrichment. Under the present glut situation with the worldwide prevalence of LWRs, fuel supply security seems ensured for the time being till the middle of 21st century. It is estimated that by the turn of the century, the free world will have roughly 450 GWe capacity of nuclear power. If 10 % is supplied for ISER-PIUS, more than 200 modules of 200 MWe ISER-PIUS may be deployed all over the world probably starting around 2000. As part of the fuel supply security consideration, heavy water reactor (HWR) may seem interesting to such a country as Indonesia where there is uranium resources but no enrichment capability. But it needs heavy water instead and the operation is not so easy as of LWR, because of the positive void coefficient as was seen at the Chernobyl-4. Safeguarding of the fuel is also difficult, because it lends itself to on line refueling. The current and future situation of the fuel supply security for LWR seem well founded and established long into the future. (Nogami, K.)

  1. Reactor shutdown device

    International Nuclear Information System (INIS)

    Inoue, Toyokazu.

    1982-01-01

    Purpose: To obtain a highly reliable reactor shutdown device capable of checking its function irrespective of the state whether shutdown or operation in a gas-cooled type reactor. Constitution: A hopper is disposed above a guide tube inserted into the reactor core and particulate neutron absorbers are contained in the hopper. An opening for falling particles is disposed to the bottom of the hopper in opposition to the upper end of the guide pipe and the opening is closed by a plug suspended by way of a weld line so as to be capable of dropping. A power source for supplying electrical current to the weld line is disposed. Accordingly, if the current is supplied to the weld line, the line is cut by welding to fall the plug so that the neutron-absorbing particles fall from the opening into the guide pipe to shutdown the reactor, whereby high reliability is obtained for the operation. (Seki, T.)

  2. Internal fuel motion as an inherent shutdown mechanism for LMFBR accidents: PINEX-3, PINEX-2, and HUT 5-2A experiments

    International Nuclear Information System (INIS)

    Ferrell, P.C.; Porten, D.R.; Martin, F.J.

    1981-01-01

    The PINEX-2 experiment verified the concept of axial internal molten fuel motion within annular fuel, representing an inherent shutdown mechanism for hypothetical transient overpower excursions on the order of 5$/s. The PINEX-3 experiment, simulating a 50 cents/s transient overpower, showed that limitations on the effectiveness of fuel motion may arise from freezing of the fuel and blockage of the internal movement. Analysis of these experiments was performed to assess the physical processes that dominate fuel relocation potential and to apply them to prototypic LMFBR pin conditions. Results indicate that internal fuel motion should be reliable as a shutdown mechanism in LMFBR's for a range of reactivity insertion rates beyond presently available experimental data

  3. Proceedings of workshop on reactor shutdown system

    International Nuclear Information System (INIS)

    1997-03-01

    India has gained considerable experience in design, development, construction and operation of research and power reactors during the last four decades. Reactor shutdown system (RSS) is the most important engineered safety system of any reactor. A lot of technological developments have taken place to improve the reactor shutdown systems, particularly with advancement in reliability analysis and instrumentation and control. If the reactor is not shutdown, the fuel may melt, releasing radioactivity and possibly reactivity addition as in the case of Fast Breeder Reactor (FBR). Apart from radiological safety consequences, large investment has to be written off. The function of the RSS is to stop fission chain reaction and prevent breach of fuel. The design of RSS is multidisciplinary. It requires reactor physics analysis, design of absorber rods, drive mechanisms, safety logic to order shutdown and instrumentation to detect unsafe conditions. High reliability is essential and this requires two independent shutdown systems. This book contains the proceedings of the workshop on reactor shutdown system and papers relevant to INIS are indexed separately

  4. Letter report seismic shutdown system failure mode and effect analysis

    International Nuclear Information System (INIS)

    KECK, R.D.

    1999-01-01

    The Supply Ventilation System Seismic Shutdown ensures that the 234-52 building supply fans, the dry air process fans and vertical development calciner are shutdown following a seismic event. This evaluates the failure modes and determines the effects of the failure modes

  5. Transport and supply logistics of biomass fuels: Vol. 1. Supply chain options for biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Browne, M; Palmer, H; Hunter, A; Boyd, J

    1996-10-01

    The study which forms part of a wider project funded by the Department of Trade and Industry, looks at the feasibility of generating electricity from biomass-fuelled power stations. Emphasis is placed on supply availabilty and transport consideration for biomass fuels such as wood wastes from forestry, short rotation coppice products, straw, miscanthus (an energy crop) and farm animal slurries. The study details the elements of the supply chain for each fuel from harvesting to delivery at the power station. The delivered cost of each fuel, the environmental impact of the biomass fuel supply and other relevant non-technical issues are addressed. (UK)

  6. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McConnell, Paul E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Massaro, Lawrence M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power reactor sites was conducted. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: (1) characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory, (2) a description of the on-site infrastructure and conditions relevant to transportation of SNF and GTCC waste, (3) an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing SNF and GTCC waste, including identification of gaps in information, and (4) an evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. Every site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.

  7. Security of supply and line flow following the shut-down of nuclear power plants in Germany. Have shortages to be expected?

    International Nuclear Information System (INIS)

    Kunz, Friedrich; Moest, Dominik

    2011-01-01

    This paper, which examines the impacts of phasing out nuclear power in Germany, is the first to include an analysis of energy supply security and critical line flows in both the German and Central European electricity networks. The technical-economic model of the European electricity market, ELMOD, is used to simulate alternative power plant dispatch, imports, exports, and network use for a representative winter day. The results suggest that the shutdown of Germany's nuclear plants will result in higher net imports, especially from the Netherlands, Austria, and Poland, and that electricity generation from fossil fuels will increase slightly in Germany and in Central Europe. We find that no additional imports will come from nuclear plants since they are already fully utilized in the merit order, and that electricity prices will rise on average by a few Euros per MWh. We conclude that closing the seven nuclear power plants within the government's moratorium will cause no significant supply security issues or network constraints and an eventual full phase-out seem to be possible due to the completion of several new conventional power plants now under construction. Finally, we suggest that a nuclear phase-out in Germany within the next 3-7 years will not undermine security of supply and network stability in Germany and Central Europe.

  8. 14 CFR 27.959 - Unusable fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Unusable fuel supply. 27.959 Section 27.959... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.959 Unusable fuel supply. The unusable fuel supply for each tank must be established as not less than the quantity at which the first evidence...

  9. 14 CFR 29.959 - Unusable fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Unusable fuel supply. 29.959 Section 29.959... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.959 Unusable fuel supply. The unusable fuel supply for each tank must be established as not less than the quantity at which the first evidence...

  10. 14 CFR 23.959 - Unusable fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Unusable fuel supply. 23.959 Section 23.959 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Unusable fuel supply. (a) The unusable fuel supply for each tank must be established as not less than that...

  11. Supply, operation and radioactive waste disposal of nuclear power plants

    International Nuclear Information System (INIS)

    Mohrhauer, H.; Krey, M.; Haag, G.; Wolters, J.; Merz, E.; Sauermann, P.F.

    1981-07-01

    The subject of 'Nuclear Fuel Cycle' is treated in 5 reports: 1. Uranium supply; 2. Fabrication and characteristics of fuel elements; 3. Design, operation and safety of nuclear power plants after Harrisburg; 4. Radioactive waste disposal of nuclear power plants - changed political scenery after 1979; 5. Shutdown and dismantling of LWR-KKW - state of knowledge and feasibility. (HP) [de

  12. 30 CFR 36.27 - Fuel-supply system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel-supply system. 36.27 Section 36.27 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... Construction and Design Requirements § 36.27 Fuel-supply system. (a) Fuel tank. (1) The fuel tank shall not...

  13. Forest industry wood fuel supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The potential for wood fired energy production in the UK is significant. Large scale developments are currently underway which could utilise over 100,000 green tonnes of forest residues. The fuel supply chain is likely to be complicated and there are perceived risks in its organisation and security. This report sets out to address some of these perceived risks and suggest suitable measures to reduce it. Six areas of the fuel supply chain have been studied, namely; Extraction, Comminution, Transport, Assessment and payment of wood fuel; Environmental impact; Nutrient recycling (ash disposal). (author)

  14. CANDU passive shutdown systems

    Energy Technology Data Exchange (ETDEWEB)

    Hart, R S; Olmstead, R A [AECL CANDU, Sheridan Park Research Community, Mississauga, ON (Canada)

    1996-12-01

    CANDU incorporates two diverse, passive shutdown systems, independent of each other and from the reactor regulating system. Both shutdown systems function in the low pressure, low temperature, moderator which surrounds the fuel channels. The shutdown systems are functionally different, physically separate, and passive since the driving force for SDS1 is gravity and the driving force for SDS2 is stored energy. The physics of the reactor core itself ensures a degree of passive safety in that the relatively long prompt neutron generation time inherent in the design of CANDU reactors tend to retard power excursions and reduces the speed required for shutdown action, even for large postulated reactivity increases. All passive systems include a number of active components or initiators. Hence, an important aspect of passive systems is the inclusion of fail safe (activated by active component failure) operation. The mechanisms that achieve the fail safe action should be passive. Consequently the passive performance of the CANDU shutdown systems extends beyond their basic modes of operation to include fail safe operation based on natural phenomenon or stored energy. For example, loss of power to the SDS1 clutches results in the drop of the shutdown rods by gravity, loss of power or instrument air to the injection valves of SDS2 results in valve opening via spring action, and rigorous self checking of logic, data and timing by the shutdown systems computers assures a fail safe reactor trip through the collapse of a fluctuating magnetic field or the discharge of a capacitor. Event statistics from operating CANDU stations indicate a significant decrease in protection system faults that could lead to loss of production and elimination of protection system faults that could lead to loss of protection. This paper provides a comprehensive description of the passive shutdown systems employed by CANDU. (author). 4 figs, 3 tabs.

  15. 14 CFR 25.959 - Unusable fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Unusable fuel supply. 25.959 Section 25.959 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.959 Unusable fuel supply. The unusable...

  16. Methanol supply issues for alternative fuels demonstration programs

    International Nuclear Information System (INIS)

    Teague, J.M.; Koyama, K.K.

    1995-01-01

    This paper surveys issues affecting the supply of fuel-grade methanol for the California Energy Commission's alternative fuels demonstration programs and operations by other public agencies such as transit and school districts. Establishing stable and reasonably priced sources of methanol (in particular) and of alternative fuels generally is essential to their demonstration and commercialization. Development both of vehicle technologies and of fuel supply and distribution are complementary and must proceed in parallel. However, the sequence of scaling up supply and distribution is not necessarily smooth; achievement of volume thresholds in demand and through-put of alternative fuels are marked by different kinds of challenges. Four basic conditions should be met in establishing a fuel supply: (1) it must be price competitive with petroleum-based fuels, at least when accounting for environmental and performance benefits; (2) bulk supply must meet volumes required at each phase; necessitating resilience among suppliers and a means of designating priority for high value users; (3) distribution systems must be reliable, comporting with end users' operational schedules; (4) volatility in prices to the end user for the fuel must be minimal. Current and projected fuel volumes appear to be insufficient to induce necessary economies of scale in production and distribution for fuel use. Despite their benefits, existing programs will suffer absent measures to secure economical fuel supplies. One solution is to develop sources that are dedicated to fuel markets and located within the end-use region

  17. Spent fuel acceptance scenarios devoted to shutdown reactors: A preliminary analysis

    International Nuclear Information System (INIS)

    Wood, T.W.; Plummer, A.M.; Dippold, D.G.; Short, S.M.

    1989-10-01

    Spent fuel acceptance schedules and the allocation of federal acceptance capacity among commercial nuclear power reactors have important operational and cost consequences for reactor operators. Alternative allocation schemes were investigated to some extent in DOE's MRS Systems Study. The current study supplements these analyses for a class of acceptance schemes in which the acceptance capacity of the federal radioactive waste management system is allocated principally to shutdown commercial power reactors, and extends the scope of analysis to include considerations of at-reactor cask loading rates. The operational consequences of these schemes for power reactors, as measured in terms of quantity of spent fuel storage requirement above storage pool capacities and number of years of pool operations after last discharge, are estimated, as are the associated utility costs. This study does not attempt to examine the inter-utility equity considerations involved in departures from the current oldest-fuel-first (OFF) allocation rule as specified in the ''Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste.'' In the sense that the alternative allocations are more economically efficient than OFF, however, they approximate the allocations that could result from free exchange of acceptance rights among utilities. Such a process would result in the preservation of inter-utility equity. 13 refs., 9 figs., 9 tabs

  18. Nuclear fuel supply: challenges and opportunities

    International Nuclear Information System (INIS)

    Lowen, S.

    2006-01-01

    Prices of uranium, conversion services and enrichment services have all significantly increased in the last few years. These price increases have generally been driven by a tightening in the supply of these products and services, mostly due to long lead times required to bring these products and services to the market. This paper will describe the various steps in the nuclear fuel cycle for natural and enriched uranium fuel, will discuss the development of the front-end fuel cycle for low void reactivity fuel, and will address the challenges faced in the long-term supply of each component, particularly in the light of potential demand increases as a result of a nuclear renaissance. The opportunities for new capacity and uranium production will be outlined and the process required to achieve sufficient new supply will be discussed. (author)

  19. Multiple fuel supply system for an internal combustion engine

    Science.gov (United States)

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  20. Petroleum supply annual 1996: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The summary statistics section show 16 years of data depicting the balance between supply, disposition and ending stocks for various commodities including crude oil, motor gasoline, distillate fuel oil, residual fuel oil, jet fuel propane/propylene, and liquefied petroleum gases. The detailed statistics section provide 1996 detailed statistics on supply and disposition, refinery operations, imports and exports, stocks, and transportation of crude oil and petroleum products. The refinery capacity contain listings of refineries and associated crude oil distillation and downstream capacities by State, as of January 1, 1997, as well as summaries of corporate refinery capacities and refinery storage capacities. In addition, refinery receipts of crude oil by method of transportation for 1996 are provided. Also included are fuels consumed at refineries, and lists of shutdowns, sales, reactivations, and mergers during 1995 and 1996. 16 figs., 59 tabs.

  1. Petroleum supply annual 1996: Volume 1

    International Nuclear Information System (INIS)

    1997-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1996 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains three sections: Summary Statistics, Detailed Statistics, and Refinery Capacity; each with final annual data. The summary statistics section show 16 years of data depicting the balance between supply, disposition and ending stocks for various commodities including crude oil, motor gasoline, distillate fuel oil, residual fuel oil, jet fuel propane/propylene, and liquefied petroleum gases. The detailed statistics section provide 1996 detailed statistics on supply and disposition, refinery operations, imports and exports, stocks, and transportation of crude oil and petroleum products. The refinery capacity contain listings of refineries and associated crude oil distillation and downstream capacities by State, as of January 1, 1997, as well as summaries of corporate refinery capacities and refinery storage capacities. In addition, refinery receipts of crude oil by method of transportation for 1996 are provided. Also included are fuels consumed at refineries, and lists of shutdowns, sales, reactivations, and mergers during 1995 and 1996. 16 figs., 59 tabs

  2. Supply Security in Future Nuclear Fuel Markets

    Energy Technology Data Exchange (ETDEWEB)

    Seward, Amy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Thomas W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gitau, Ernest T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ford, Benjamin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-18

    Previous PNNL work has shown the existing nuclear fuel markets to provide a high degree of supply security, including the ability to respond to supply disruptions that occur for technical and non-technical reasons. It is in the context of new reactor designs – that is, reactors likely to be licensed and market ready over the next several decades – that fuel supply security is most relevant. Whereas the fuel design and fabrication technology for existing reactors are well known, the construction of a new set of reactors could stress the ability of the existing market to provide adequate supply redundancy. This study shows this is unlikely to occur for at least thirty years, as most reactors likely to be built in the next three decades will be evolutions of current designs, with similar fuel designs to existing reactors.

  3. Supply Security in Future Nuclear Fuel Markets

    International Nuclear Information System (INIS)

    Seward, Amy M.; Wood, Thomas W.; Gitau, Ernest T.; Ford, Benjamin E.

    2013-01-01

    Previous PNNL work has shown the existing nuclear fuel markets to provide a high degree of supply security, including the ability to respond to supply disruptions that occur for technical and non-technical reasons. It is in the context of new reactor designs - that is, reactors likely to be licensed and market ready over the next several decades - that fuel supply security is most relevant. Whereas the fuel design and fabrication technology for existing reactors are well known, the construction of a new set of reactors could stress the ability of the existing market to provide adequate supply redundancy. This study shows this is unlikely to occur for at least thirty years, as most reactors likely to be built in the next three decades will be evolutions of current designs, with similar fuel designs to existing reactors.

  4. Fire hazard analysis for the fuel supply shutdown storage buildings

    International Nuclear Information System (INIS)

    REMAIZE, J.A.

    2000-01-01

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility

  5. Effect of dc-power-system reliability on reactor-shutdown cooling

    International Nuclear Information System (INIS)

    Kolaczkowski, A.M.; Baranowsky, P.W.; Hickman, J.W.

    1981-01-01

    The DC power systems in a nuclear power plant provide control and motive power to valves, instrumentation, emergency diesel generators, and many other components and systems during all phases of plant operation including abnormal shutdowns and accident situations. A specific area of concern is the adequacy of the minimum design requirements for DC power systems, particularly with regard to multiple and common cause failures. This concern relates to the application of the single failure criterion for assuring a reliable DC power supply which may be required for the functionability of shutdown cooling systems. The results are presented of a reliability based study performed to assess the adequacy of DC power supply design requirements for currently operating light water reactors with particular attention to shutdown cooling requirements

  6. Fuel Supply Defaults for Regional Fuels and Fuel Wizard Tool in MOVES201X

    Science.gov (United States)

    The fuel supply report documents the data and methodology used to derive the default gasoline, diesel and fuel-blend fuel properties, and their respective fuel market share in MOVES. The default market share of the individual fuels varies by calendar year, seasons, and several do...

  7. LMFBR self-activated shutdown systems

    International Nuclear Information System (INIS)

    Sowa, E.S.; Barthold, W.P.; Eggen, D.T.; Huebotter, P.R.; Josephson, J.; Pizzica, P.A.; Turski, R.B.; van Erp, J.B.

    1976-01-01

    Self-actuated shutdown systems (SASSs), fully contained within the dimensions of a fuel subassembly and installed in the core in judiciously chosen locations, can provide an important additional safety feature for LMFBRs. If actuated by phenomena inherent to the system and its immediate environment, these systems can contribute considerably to the total reliability of the overall plant protection system, in particular as regards protection against human error. It was shown that this type of shutdown system is capable of inserting a substantial amount of negative reactivity into the core with a relatively small impact on plant performance. Furthermore, it was shown that a coolable geometry can be maintained in LMFBRs of current design for a wide spectrum of accident initiators, and for a range of response times and insertion rates which appear to be achievable within practical design limits. Experiments showed that Curie-point-operated devices have considerable promise for application in self-actuated shutdown systems, in particular as regards meeting the requirements of testability and resettability

  8. Supply assurance in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1979-01-01

    Nuclear fuel assurance, in the face of world and political uncertainties, is interrelated with nuclear technology development plans and international safeguards considerations. This has led some countries to accelerate their commitments to nuclear commercialization faster than necessary and has made non-proliferation policies harder to enforce. Fuel assurance is described on a national basis in three time scales: short-term, or resilience to supply interruptions; mid-term, or contract conditions in which governments make commitments to purchase or deliver; and long-term, or resource adequacy. A review of former assurance problems and current trends in the enrichment and uranium markets indicates that supplier concentration is no longer the major problem so much as non-proliferation actions. The present state of unstable equilibrium is expected to move in the direction of less fuel-supply assurance for countries having a small market or not subscribing to non-proliferation criteria. The authors, while generally optimistic that the fuel-supply system will function, express concern that policies for fuel stockpiles and the condition of uranium markets need improvement. 21 references

  9. Complement of existing ASAMPSA2 guidance for Level 2 PSA for shutdown states of reactors, Spent Fuel Pool and recent R and D results

    International Nuclear Information System (INIS)

    Kumar, M.; Olsson, A.; Loeffler, H.; Morandi, S.; Gumenyuk, D.; Dejardin, P.; Yu, S.; Jan, P.; Kubicek, J.; Serrano, C.; Raimond, E.; Dirksen, G.; Ivanov, I.; Groudev, P.; Kowal, K.; Prosek, Andrej; Nitoi, M.; Vitazkova, J.; Hirata, K.; Burgazzi, L.

    2016-01-01

    This report can be considered as an addendum to the existing ASAMPSA2 guidance for Level 2 PSA. It provides complementary guidance for Level 2 PSA for accident in the NPP shutdown states and on spent fuel pool and comments on the importance of these accidents on nuclear safety. It includes also information on recent research and development useful for Level 2 PSA developments. The conclusions of the ASAMPSA-E end-users survey and of technical meetings of WP10, WP21, WP22, and WP30 at Vienna University in September 2014 which are relevant for Level 2 PSA have been reflected and are taken into account as much as it is possible with the current status of knowledge. For Level 2 PSA in shutdown states, two plant conditions are to be distinguished: - accident sequences with RPV head closed, - accident sequences with RPV head open. When the RPV head is closed, core melt accident phenomena are very similar to the sequences going on in full power mode. Therefore, the large body of guidance which is available for full power mode is basically applicable to shutdown mode with RPV closed as well. When the RPV is open, some of the L2 PSA issues become irrelevant compared to full power mode, while others come into existence. The situation is different for aspects which do not exist or which are less pronounced in sequences with RPV closed. The report also covers containment issues in shutdown states and discusses the applicability of existing guidance, potential gaps and deficiencies and recommendations are provided. For spent fuel pool accidents in Level 2 PSA, a set of issues is identified and addressed. If the spent fuel pool is located inside the containment, the potential release paths to the environment are almost the same as for core melt accidents in the RPV. If the spent fuel pool is located outside the containment, the potential release paths to the environment depend very much on plant specific properties, e.g. ventilation systems, building doors, roof under thermal

  10. Diesel fuel filtration system

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel's hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system

  11. 10 CFR 503.21 - Lack of alternate fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New Facilities § 503.21 Lack of alternate fuel supply. (a) Eligibility. Section 211(a)(1) of the Act provides for...

  12. The current and perspective problems of nuclear power fuel supply

    International Nuclear Information System (INIS)

    Solonin, M.I.; Konovalov, I.I.

    2003-01-01

    Conception of fuel supply is comprised of supplying of natural uranium resources, nuclear fuel production including engineering stages of refining, enriching, production, use of secondary uranium and plutonium raw materials. The structure of nuclear fuel cycle is considered. Enterprises of the Russian nuclear fuel cycle, world recourses and fundamental producers of uranium are performed, demands in natural uranium of Russian and frontier NPP to 2010 are demonstrated. Dynamics of the development of separate methods - diffusion and centrifugal is presented as well as parameters of fuel supply at Russian and frontier NPP are compared [ru

  13. Air/fuel supply system for use in a gas turbine engine

    Science.gov (United States)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  14. Fuel Cooling in Absence of Forced Flow at Shutdown Condition with PHTS Partially Drained

    Energy Technology Data Exchange (ETDEWEB)

    Parasca, L.; Pecheanu, D.L., E-mail: laurentiu.parasca@cne.ro, E-mail: doru.pecheanu@cne.ro [Cernavoda Nuclear Power Plant, Cernavoda (Romania)

    2014-09-15

    During the plant outage for maintenance on primary side (e.g. for the main Heat Transport System pumps maintenance, the Steam Generators inspection), there are situations which require the primary heat transport system (HTS) drainage to a certain level for opening the circuit. The primary fuel heat sink for this configuration is provided by the shutdown cooling system (SDCS). In case of losing the forced cooling (e.g. due to the loss of SDCS, design basis earthquake-DBE), flow conditions in the reactor core may become stagnant. Inside the fuel channels, natural circulation phenomena known as Intermittent Buoyancy Induced Flow (IBIF) will initiate, providing an alternate heat sink mechanism for the fuel. However, this heat sink is effective only for a limited period of time (recall time). The recall time is defined as the elapsed time until the water temperature in the HTS headers exceeds a certain limit. Until then, compensatory measures need to be taken (e.g. by re-establishing the forced flow or initiate Emergency Core Cooling system injection) to preclude fuel failures. The present paper briefly presents the results of an analysis performed to demonstrate that fuel temperature remains within acceptable limits during IBIF transient. One of the objectives of this analysis was to determine the earliest moment since the reactor shut down when maintenance activities on the HTS can be started such that IBIF is effective in case of losing the forced circulation. The resulting peak fuel sheath and pressure tube temperatures due to fuel heat up shall be within the acceptable limits to preclude fuel defect or fuel channel defects.Thermalhydraulic circuit conditions were obtained using a CATHENA model for the primary side of HTS (drained to a certain level), an ECC system model and a system model for SDCS. A single channel model was developed in GOTHIC code for the fuel assessment analysis. (author)

  15. Fluid shut-down system for a nuclear reactor

    International Nuclear Information System (INIS)

    Barclay, F.W.; Frey, J.R.; Wilson, J.N.; Besant, R.W.

    1975-01-01

    A nuclear reactor shut-down system is described which comprises a fluidic vortex valve for releasably maintaining a liquid neutron poison outside of the reactor core, the poison being contained by a reservoir and biased by pressure for flow into poison tubes within the reactor. The upper ends of the poison tubes communicate with the supply port of the vortex valve. A continuous gas flow into the control port maintains normal controlled operation. Shut-down is effected by interruption of the control input. One embodiment comprises three groups of poison tubes and one vortex valve associated with each group wherein shut-down is effected by poison release in two out of the three groups. Preferably, each vortex valve comprises three control ports which operate on a ''voting'' or two-out-of-three basis. (Official Gazette)

  16. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  17. Transient fission-product release during reactor shutdown and startup

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Lewis, B.J.; Dickson, L.W.

    1997-12-01

    Sweep-gas experiments performed at AECL's Chalk River Laboratories from 1979 to 1985 have been further analysed to determine the fraction of the gaseous fission-product inventory that is released on reactor shutdown and startup. Empirical equations were derived and applied to calculate the stable xenon release from companion fuel elements and from a well-documented experimental fuel bundle irradiated in the NRU reactor. The calculated gas release could be matched to the measured values within about a factor of two for an experimental irradiation with a burnup of 217 MWh/kgU. There was also limited information on the fraction of the radioactive iodine that was exposed, but not released, on reactor shutdown. An empirical equation is proposed for calculating this fraction. (author)

  18. ARBRE monitoring - the fuel supply chain

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, B.; Garstang, J.; Groves, S.; King, J.; Metcalfe, P.; Pepper, T.; McCrae, I.

    2005-07-01

    In this report the results of a study monitoring the fuel supply chain for the Arbre power plant from the growth of the crops is discussed as well as the handling, transport, and storage of the fuel, and monitoring the exhaust emissions and energy consumption of all the different stages of the process. The background to the study is traced and the objective of establishing confidence in the fuel supply is discussed. Details are given of the emissions to atmosphere from vehicles and machinery and of spores and dust. Energy and carbon requirements are examined along with the modelled water use of short rotation cultivation (SRC), water quality monitoring, the quality of runoff from wood stores, and soil carbon and fertility change. The performance of the SRC plantations is outlined and the practical lessons learnt are highlighted.

  19. ARBRE monitoring - the fuel supply chain

    International Nuclear Information System (INIS)

    Hilton, B.; Garstang, J.; Groves, S.; King, J.; Metcalfe, P.; Pepper, T.; McCrae, I.

    2005-01-01

    In this report the results of a study monitoring the fuel supply chain for the Arbre power plant from the growth of the crops is discussed as well as the handling, transport, and storage of the fuel, and monitoring the exhaust emissions and energy consumption of all the different stages of the process. The background to the study is traced and the objective of establishing confidence in the fuel supply is discussed. Details are given of the emissions to atmosphere from vehicles and machinery and of spores and dust. Energy and carbon requirements are examined along with the modelled water use of short rotation cultivation (SRC), water quality monitoring, the quality of runoff from wood stores, and soil carbon and fertility change. The performance of the SRC plantations is outlined and the practical lessons learnt are highlighted

  20. Core shutdown report: Subcycle K-14.1

    International Nuclear Information System (INIS)

    Gough, S.T.

    1992-05-01

    When a reactor is shut down, there is a set of rules that must be followed to guarantee that the reactor remains in a safe shutdown state. Some of these rules involve the cooling of heat generating assemblies before, during, and after charge-discharge (C ampersand D) operations. These rules ensure that C ampersand D operations will not endanger the integrity of the fuel or targets by allowing them to overheat. DPSOL 105-1225, Assembly Discharge and Forced Cooling Requirements, is the primary operations procedure that governs these cooling rules. The specific shutdown cooling limits that are input into this procedure are contained within this report

  1. Development of a new WWER-440 fuel design

    International Nuclear Information System (INIS)

    Coucil, D.; Totev, T.

    1998-01-01

    In March 1996 British Nuclear Fuel Limited signed a contract with Imatran Voima and Paks Nuclear Power Plant to design, develop, license and supply 5 Lead Test Assemblies to the WWER-440 reactor at Loviisa in Finland. In June 1998 the manufacture of these 5 assemblies (4 fixed assemblies and 1 follower assembly) was completed. The fuel is expected to be loaded into Loviisa Unit 2 reactor during the shutdown scheduled for September of this year. (Authors)

  2. Approach to securing of stable nuclear fuel supplies

    International Nuclear Information System (INIS)

    Koike, Kunihisa; Imamura, Isao; Noda, Tetsuya

    2010-01-01

    With the dual objectives of not only ensuring stable electric power supplies but also preventing global warming, the construction of new nuclear power plants is being planned in many countries throughout the world. Toshiba and Westinghouse Electric Company (WEC), a member of the Toshiba Group, are capable of supplying both boiling water reactor (BWR) and pressurized water reactor (PWR) plants to satisfy a broad range of customer requirements. Furthermore, to meet the growing demand for the securing of nuclear fuel supplies, Toshiba and WEC have been promoting the strengthening and further expansion of supply chains in the fields of uranium production, uranium hexafluoride (UF 6 ) conversion, uranium enrichment, and fuel fabrication. (author)

  3. INTERACTION OF AIR TRANSPORTATION AND FUEL-SUPPLY COMPANIES

    Directory of Open Access Journals (Sweden)

    I. P. Zheleznaya

    2014-01-01

    Full Text Available The article describes the role of aviation fuel in the life of air transport. Fueling industry worldwide solves two main tasks - ensuring the safety and economy of air traffic. In Russia, there is one more task of airlines fuel supply. The article deals with fuel pricing taking into consideration today's realities.

  4. Legal aspects of nuclear fuel supply

    International Nuclear Information System (INIS)

    Sartorelli, C.

    1981-10-01

    This paper discusses the problems of nuclear fuel supply in the context of the types of purchase of uranium, the different technical operations involved (enrichment, reprocessing) and finally, the control exercised over such materials in the framework of IAEA Safeguards and the ''London Club'' agreement between the supplying countries. A description follows of the functions of the Euratom Supply Agency in application of the Euratom's Treaty's provisions on the principle of equal access to ores, source and special fissile materials for Community countries. (NEA) [fr

  5. International light water nuclear fuel fabrication supply. Are fabrication services assured?

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2010-01-01

    This paper examines the cost structure of fabricating light water reactor (LWR) fuel with low-enriched uranium (LEU, with less than 5% enrichment). The LWR-LEU fuel industry is decades old, and (except for the high entry cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added at Nth-of-a-Kind cost to the maximum capacity allowed by a site license. The industry appears to be competitive: nuclear fuel fabrication capacity is assured with many competitors and reasonable prices. However, nuclear fuel assurance has become an important issue for nations now to considering new nuclear power plants. To provide this assurance many proposals equate 'nuclear fuel banks' (which would require fuel for specific reactors) with 'LEU banks' (where LEU could be blended into nuclear fuel with the proper enrichment) with local fuel fabrication. The policy issues (which are presented, but not answered in this paper) become (1) whether the construction of new nuclear fuel fabrication facilities in new nuclear power nations could lead to the proliferation of nuclear weapons, and (2) whether nuclear fuel quality can be guaranteed under current industry arrangements, given that fuel failure at one reactor can lead to forced shutdowns at many others. (author)

  6. Nuclear fuel cycle and its supply industrial system

    Energy Technology Data Exchange (ETDEWEB)

    Takei, M [Japan Energy Economic Research Inst., Tokyo

    1976-04-01

    This paper discusses problems about the supply and costs of nuclear fuel cycle referring to the discussions of IAEA's Advisory Group Meeting. As for natural uranium resources, prospect is given to the demand, supply, and cost trend up to 2000. As for uranium enrichment, the increasing capacity is compared with the projected demand. The comparison of cost characteristics between diffusion and centrifuge plants is presented with respect to plant scale, investment cost, electric power cost, and operation and maintenance cost. The fabrication cost for fuel is analyzed, and it is suggested that some cost down can be expected for the future. As for the mixed oxide fuel fabrication, the capacity in each country and the estimated fabrication costs for PWR, prototype fast breeder reactor and commercial fast breeder reactor are presented. As for reprocessing, the shortage of supply capacity and the needs for more storage capacity are emphasized. The estimated reprocessing cost for a new plant is also presented. Finally, the present status and future trend of fuel storage in each major country are reviewed.

  7. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  8. Supply of fossil heating and motor fuels

    International Nuclear Information System (INIS)

    Kaegi, W.; Siegrist, S.; Schaefli, M.; Eichenberger, U.

    2003-01-01

    This comprehensive study made for the Swiss Federal Office of Energy (SFOE) within the framework of the Energy Economics Fundamentals research programme examines if it can be guaranteed that Swiss industry can be supplied with fossil fuels for heating and transport purposes over the next few decades. The results of a comprehensive survey of literature on the subject are presented, with a major focus being placed on oil. The study examines both pessimistic and optimistic views and also presents an overview of fossil energy carriers and the possibilities of substituting them. Scenarios and prognoses on the availability of fossil fuels and their reserves for the future are presented. Also, new technologies for exploration and the extraction of fossil fuels are discussed, as are international interdependencies that influence supply. Market and price scenarios are presented that take account of a possible increasing scarcity of fossil fuels. The implications for industry and investment planning are examined

  9. Nuclear fuel supply view in Argentina

    International Nuclear Information System (INIS)

    Cirimello, R.O.

    1997-01-01

    The Argentine Atomic Energy Commission promoted and participated in a unique achievement in the R and D system in Argentina: the integration of science technology and production based on a central core of knowledge for the control and management of the nuclear fuel cycle technology. CONUAR SA, as a fuel manufacturer, FAE SA, the manufacturer of Zircaloy tubes, CNEA and now DIOXITEC SA producer of Uranium Dioxide, have been supply, in the last ten years, the amount of products required for about 1300 Tn of equivalent U content in fuels. The most promising changes for the fuel cycle economy is the Slight Enriched Uranium project which begun in Atucha I reactor. In 1997 seventy five fuel assemblies, equivalent to 900 Candu fuel bundles, will complete its irradiation. (author)

  10. Fuel price and supply projections, 1980 to 2000

    International Nuclear Information System (INIS)

    1980-06-01

    In 1978, over 95% of California's energy was derived from conventional fuels - oil, natural gas, coal, and uranium. Approximately one-third of these conventional fuels was produced within the state, the remaining two-thirds coming from other states and foreign countries. Dependence on these fuels is not likely to diminish rapidly in the near future, therefore the factors that contribute to the future supplies and prices of these fuels will have a major influence on the state's energy future. This report serves as a basis for Commission analysis and is also intended as a tool to be used by others who must make decisions involving the future cost and availability of fuels. This report documents the staff's projections on future supply, price, and availability of these fuels and presents information on historical fuel use and price for background and perspective. Analyses of commercially developable derived fuels and of recent Federal statutory restrictions on the use of oil and gas are also presented. These analyses include economic, logistic, environmental, geologic, and social and institutional considerations. This report does not focus on the costs included in fuel production and preparation; nor does the report go into detail on the transportation, disposal, and downstream costs of the various fuels

  11. Loss-of-benefits analysis for nuclear power plant shutdowns: methodology and illustrative case study

    International Nuclear Information System (INIS)

    Peerenboom, J.P.; Buehring, W.A.; Guziel, K.A.

    1983-11-01

    A framework for loss-of-benefits analysis and a taxomony for identifying and categorizing the effects of nuclear power plant shutdowns or accidents are presented. The framework consists of three fundamental steps: (1) characterizing the shutdown; (2) identifying benefits lost as a result of the shutdown; and (3) quantifying effects. A decision analysis approach to regulatory decision making is presented that explicitly considers the loss of benefits. A case study of a hypothetical reactor shutdown illustrates one key loss of benefits: net replacement energy costs (i.e., change in production costs). Sensitivity studies investigate the responsiveness of case study results to changes in nuclear capacity factor, load growth, fuel price escalation, and discount rate. The effects of multiple reactor shutdowns on production costs are also described

  12. Design Optimization of a Low Pressure LNG Fuel Supply System

    OpenAIRE

    Nguyen, Kim

    2015-01-01

    In 2014 there were 50 liquefied natural gas (LNG) fuelled ships in operation and around 70 on order worldwide. LNG proves to emit less pollution and considering the present and future emission regulations and optimistic gas fuel prices, LNG would be a preferable option as a marine fuel. The number of LNG fuelled ships is therefore likely to increase significantly the next five to ten years. There are many ways to configure the fuel supply system. The fuel supply system consists of a tank,...

  13. Nuclear fuel supplies

    International Nuclear Information System (INIS)

    1960-01-01

    When the International Atomic Energy Agency was set up nearly three years ago, it was widely believed that it would soon become a world bank or broker for the supply of nuclear fuel. Some observers now seem to feel that this promise has been rather slow to come to fruition. A little closer analysis would, however, show that the promise can be fulfilled only in a certain objective context, and to the extent that this context exists, the development of the Agency's role has been commensurate with the actual needs of the situation

  14. Development of Abnormal Operating Strategies for Station Blackout in Shutdown Operating Mode in Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Duk-Joo; Lee, Seung-Chan; Sung, Je-Joong; Ha, Sang-Jun [KHNP CRI, Daejeon (Korea, Republic of); Hwang, Su-Hyun [FNC Tech. Co., Yongin (Korea, Republic of)

    2016-10-15

    Loss of all AC power is classified as one of multiple failure accident by regulatory guide of Korean accident management program. Therefore we need develop strategies for the abnormal operating procedure both of power operating and shutdown mode. This paper developed abnormal operating guideline for loss of all AC power by analysis of accident scenario in pressurized water reactor. This paper analyzed the loss of ultimate heat sink (LOUHS) in shutdown operating mode and developed the operating strategy of the abnormal procedure. Also we performed the analysis of limiting scenarios that operator actions are not taken in shutdown LOUHS. Therefore, we verified the plant behavior and decided operator action to taken in time in order to protect the fuel of core with safety. From the analysis results of LOUHS, the fuel of core maintained without core uncovery for 73 minutes respectively for opened RCS states after the SBO occurred. Therefore, operator action for the emergency are required to take in 73 minutes for opened RCS state. Strategy is to cooldown by using spent fuel pool cooling system. This method required to change the plant design in some plant. In RCS boundary closed state, first abnormal operating strategy in shutdown LOUHS is first abnormal operating strategy in shutdown LOUHS is to remove the residual heat of core by steam dump flow and auxiliary feedwater of SG.

  15. Demand and supply of wood fuels in the emission trade

    International Nuclear Information System (INIS)

    Ranta, T.; Lahtinen, P.; Laitila, J.

    2005-01-01

    The emission trade according to the EU directive on greenhouse gas emission allowance started at the beginning of the year 2005. This will boost the demand for wood fuels because of the addition-al value of CO 2 neutrality compared to fossil fuels. This bulletin covers the development of the demand and supply of wood fuels from 2002 to 2010 both at a national and a provincial level. The demand and supply balance of wood fuels will be evaluated both without the effect of emission trade and when the emission trade price level is 20 euro/ton- CO 2 for emission rights in 2010. The evaluations of fuel consumption for individual boilers were made with the help of the databases of Electrowatt-Ekono Ltd. The demand for wood fuels was estimated to double by the year 2010, being almost 50 TWh. The share of forest chips of the demand was one third, i.e. 17 TWh. The supply potential was divided into forest chips and solid by-products from forest industry. Forest chip sources included small diameter wood from young forests and logging residues and stumps from re-generation felling sites. The supply potential calculations of logging residues and stump biomass were based on databases of regeneration felling stands. The biomass potential from small diamreter wood was evaluated on the basis of field measurements of NFI 8 and 9 at a provincial level and multi-source data at a municipal level. In 2010, the supply potential of by-products was estimated to be 28 TWh of which 11 TWh was marketable out-side of the internal use of forest industry. Correspondingly, the theoretical potential of forest chips was estimated to be 51 TWh and the techno-economical potential 24 TWh. As a result of the regional optimization model, the energy use of wood fuels was 29 TWh, which was 59 % of the potential demand. In emission trade the demand was 33 TWh, which was 68 % of the potential demand. Regionally, the potential demand for wood fuels for energy use was higher than the supply in all provinces

  16. Shutdown chemistry optimization at Maanshan NPP

    International Nuclear Information System (INIS)

    Sun Yuanlung; Chuang Benjamin; Su Kouhwa; Kao Jueiting

    2009-01-01

    At Maanshan PWRs, a significant piping radiation buildup caused by crud burst from fuel surface in the beginning of RFO used to be blamed as a contribution to high personal exposures during outage. Therefore, several modifications on shutdown chemistry procedures such as, early lithium removal, rapid boration, dissolved hydrogen removal, extended RCP operation, and maintaining maximum let down flow, have been consecutively conducted since no.1RFO-16, 2006. The important operational and chemical parameters of modified shutdown chemistry procedures adopted in no.2 RFO-17, 2008 and superiority in low reading (2 mSv/hr) from let down heat exchangers area radiation monitor over 11mSv/hr of no.1 RFO-16 at the same area will be addressed in this paper. At the end of no.2 RFO-17, low personal exposures of 765 man-mSv (TLD)verified the absence of crud burst during shutdown chemistry process and broke records of Maanshan NPP as well. Even with a new job on PZR pre-emptive dissimilar weld overlay which exhausting 17.37% of total 797 man-mSv(TLD) in the latest no.1 RFO-18, 659 man-mSv (TLD) made another record low in the history of Maanshan. (author)

  17. A valuation study of fuel supply stability of nuclear energy

    International Nuclear Information System (INIS)

    Nagano, Koji; Nagata, Yutaka; Hitomi, Kazumi; Hamagata, Sumio; Asaoka, Yoshiyuki

    2008-01-01

    In order to assess potential benefits of nuclear power with regard to its characteristics of fuel supply stability, the following three aspects are valuated under the Japanese energy and electricity mix: a) economic stability; i.e. nuclear power's contribution to the whole energy and electricity mix in terms of resistance to fluctuation and/or fuel price hikes, b) procurement stability; i.e. natural uranium, the raw fuel material for nuclear power generation, is being imported from more reliable sources through adequately diverse markets than in the cases of oil and natural gas, and, c) passive reserve effect; i.e. fuel materials as running stocks at power stations and fuel service facilities could maintain nuclear power generation running for a certain duration under unexpected disruption of fuel supply. (author)

  18. The search of the best mode of the reserve power supply consumption during the nuclear reactor’s emergency shutdown procedures in case of force majeure circumstances

    Science.gov (United States)

    Zagrebaev, A. M.; Trifonenkov, A. V.

    2017-01-01

    This article deals with the problem of the control mode choice for a power supply system in case of force majeure circumstances. It is not known precisely, when a force majeure incident occurs, but the threatened period is given, when the incident is expected. It is supposed, that force majeure circumstances force nuclear reactor shutdown at the moment of threat coming. In this article the power supply system is considered, which consists of a nuclear reactor and a reserve power supply, for example, a hydroelectric pumped storage power station. The reserve power supply has limited capacity and it doesn’t undergo the threatened incident. The problem of the search of the best reserve supply time-distribution in case of force majeure circumstances is stated. The search is performed according to minimization of power loss and damage to the infrastructure. The software has been developed, which performs automatic numerical search of the approximate optimal control modes for the reserve power supply.

  19. Probabilities of inherent shutdown of unprotected events in innovative liquid metal reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Wade, D.C.

    1988-01-01

    The uncertainty in predicting the effectiveness of inherent shutdown in innovative liquid metal cooled reactors with metallic fuel results from three broad contributing areas of uncertainty: (1) the inability to exactly predict the frequency of ATWS events with potential to challenge the safety systems and require inherent shutdown; (2) the approximation of representing all such events by a selected set of ''generic scenarios''; and (3) the inability to exactly calculate the core response to the selected generic scenarios. This paper discusses the work being done to address each of these contributing areas, identifies the design and research approaches being used at Argonne National Laboratory to reducing the key contributions to uncertainties in inherent shutdown, and presents results. The conditional probabilities (given ATWS initiation) of achieving temperatures capable of defeating inherent shutdown are shown to range from /approximately/0.1% to negligible for current designs

  20. Study on secondary shutdown systems in Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, H.R.; Fadaei, A.H., E-mail: Fadaei_amir@aut.ac.ir; Gharib, M.

    2015-09-15

    Highlights: • A study was undertaken to summarize the techniques for secondary shutdown systems (SSS). • Neutronic calculation performed for proposed systems as SSS. • Dumping the heavy water stored in the reflector vessel is capable to shut down reactor. • Neutronic and transient calculation was done for validating the selected SSS. • All calculation shown that this system has advantages in safety and neutron economy. - Abstract: One important safety aspect of any research reactor is the ability to shut down the reactor. Usually, research reactors, currently in operation, have a single shutdown system based on the simultaneous insertion of the all control rods into the reactor core through gravity. Nevertheless, the International Atomic Energy Agency currently recommends use of two shutdown systems which are fully independent from each other to guarantee secure shutdown when one of them fails. This work presents an investigative study into secondary shutdown systems, which will be an important safety component in the research reactor and will provide another alternative way to shut down the reactor emergently. As part of this project, a study was undertaken to summarize the techniques that are currently used at world-wide research reactors for recognizing available techniques to consider in research reactors. Removal of the reflector, removal of the fuels, change in critical shape of reactor core and insertion of neutron absorber between the core and reflector are selected as possible techniques in mentioned function. In the next step, a comparison is performed for these methods from neutronic aspects. Then, chosen method is studied from the transient behavior point of view. Tehran research reactor which is a 5 MW open-pool reactor selected as a case study and all calculations are carried out for it. It has 5 control rods which serve the purpose of both reactivity control and shutdown of reactor under abnormal condition. Results indicated that heavy

  1. Security of supply of uranium as nuclear fuel

    International Nuclear Information System (INIS)

    Guzman Gomez-Selles, L.

    2011-01-01

    When we talk about Sustainability related to nuclear fuel, the first concern that comes to our mind is about the possibility of having guarantees on the uranium supply for a sufficient period of time. In this paper we are going to analyze the last Reserves data published by the OCD's Red Book and also how the Reserve concept in fully linked to the uranium price. Additionally, it is demonstrated how the uranium Security of supply is guaranteed for, at least, the next 100 years. finally, some comments are made regarding other sources of nuclear fuel as it is the uranium coming from the phosphates or the thorium. (Author)

  2. Nuclear fuel cycles : description, demand and supply estimates

    International Nuclear Information System (INIS)

    Gadallah, A.A.; Abou Zahra, A.A.; Hammad, F.H.

    1985-01-01

    This report deals with various nuclear fuel cycles description as well as the world demand and supply estimates of materials and services. Estimates of world nuclear fuel cycle requirements: nuclear fuel, heavy water and other fuel cycle services as well as the availability and production capabilities of these requirements, are discussed for several reactor fuel cycle strategies, different operating and under construction fuel cycle facilities in some industrialized and developed countries are surveyed. Various uncertainties and bottlenecks which are recently facing the development of some fuel cycle components are also discussed, as well as various proposals concerning fuel cycle back-end concepts. finally, the nuclear fuel cycles activities in some developing countries are reviewed with emphasis on the egyptian plans to introduce nuclear power in the country. 11 fig., 16 tab

  3. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  4. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    International Nuclear Information System (INIS)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-01-01

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  5. Nuclear Fuel Supply Arrangements through the IAEA

    International Nuclear Information System (INIS)

    Phuong, Ha-Vinh

    1981-10-01

    By virtue of its statutory functions, the International Atomic Energy Agency may be the depositary and also the supplier of nuclear materials made available to it by Member States, and these may then be stored in facilities it has acquired or which it has established under its control. However, this possibility did not materialize, mainly because the supplying states -few in number- do not want an international organization to become directly involved in bilateral transactions in that field. This paper analyses in particular the provisions of supply agreements concluded with the United Kingdom, the USA and the USSR. The Annex contains a Table of Agreements on supply of nuclear fuel and equipment concluded between supplying and consumer states through the IAEA. (NEA) [fr

  6. Transient fission product release during reactor shutdown and startup

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Lewis, B.J.

    1995-01-01

    Sweep gas experiments performed at CRL from 1979 to 1985 have been analysed to determine the fraction of the fission product gas inventory that is released on reactor shutdown and startup. Empirical equations were derived and applied to calculate the xenon release from companion fuel elements and from a well documented experimental fuel bundle irradiated in the NRU reactor. The measured gas release could be matched to within about a factor of two for an experimental irradiation with a burnup of 217 MWh/kgU. (author)

  7. Shutdown problems in large tokamaks

    International Nuclear Information System (INIS)

    Weldon, D.M.

    1978-01-01

    Some of the problems connected with a normal shutdown at the end of the burn phase (soft shutdown) and with a shutdown caused by disruptive instability (hard shutdown) have been considered. For a soft shutdown a cursory literature search was undertaken and methods for controlling the thermal wall loading were listed. Because shutdown computer codes are not widespread, some of the differences between start-up codes and shutdown codes were discussed along with program changes needed to change a start-up code to a shutdown code. For a hard shutdown, the major problems are large induced voltages in the ohmic-heating and equilibrium-field coils and high first wall erosion. A literature search of plasma-wall interactions was carried out. Phenomena that occur at the plasma-wall interface can be quite complicated. For example, material evaporated from the wall can form a virtual limiter or shield protecting the wall from major damage. Thermal gradients that occur during the interaction can produce currents whose associated magnetic field also helps shield the wall

  8. 300 Area fuel supply facilities deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 300 Area fuel supply facilities (formerly call ''N reactor fuel fabrication facilities'') Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process

  9. Shutdown Chemistry Process Development for PWR Primary System

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.B. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This study report presents the shutdown chemistry of PWR primary system to reduce and remove the radioactive corrosion products which were deposited on the nuclear fuel rods surface and the outside of core like steam generator channel head, RCS pipings etc. The major research results are the follows ; the deposition radioactive mechanism of corrosion products, the radiochemical composition, the condition of coolant chemistry to promote the dissolution of radioactive cobalt and nickel ferrite, the control method of dissolved hydrogen concentration in the coolant by the mechanical and chemical methods. The another part of study is to investigate the removal characteristics of corrosion product ions and particles by the demineralization system to suggest the method which the system could be operate effectively in shut-down purification period. (author). 19 refs., 25 figs., 48 tabs.

  10. Worldwide supply of Framatome ANP Fuel

    International Nuclear Information System (INIS)

    Jouan, J.

    2002-01-01

    Framatome-ANP is organized according to a matrix structure with 4 business groups and 3 regional divisions. The fuel business group with a workforce of about 4600 people is active in all the trades needed to design and manufacture nuclear fuel. The activity ranges from the production of zirconium alloys to the production of finished fuel assemblies, facilities are located in France, Germany and Usa. Framatome-ANP is the foremost vendor of LWR fuel worldwide with 41 % of the PWR market share and 22 % of the BWR market share. The global operating experience built up is based on more than 150.000 fuel assemblies delivered to 169 reactors in 18 countries. This long history has allowed Framatome-ANP to develop an efficient quality-improvement program based on experience feedback, for instance fuel rod failures induced by debris have been almost completely eliminated with the introduction of anti-debris devices equipping bottom nozzles. Framatome-ANP has developed a large range of engineering services, for instance core design teams can provide the most cost-effective fuel management schemes for cycle lengths from 6 to 24 months. The first technology transfer between China entities and Framatome related to the AFA-2G technology started in 1991 and was completed successfully in 1994. Since this date the Chinese manufacturer has supplied fuel reload for the units of Daya-Bay. (A.C.)

  11. Moisture management, energy density and fuel quality in forest fuel supply chains

    Energy Technology Data Exchange (ETDEWEB)

    Tahvanainen, T. [Joensuu Science Park Ltd., Joensuu (Finland); Sikanen, L. [Joensuu Univ. (Finland); Roser, D. [Finnish Forest Research Inst., Joensuu (Finland)

    2009-07-01

    This presentation provided tools for reducing the moisture content (MC) in wood chips, as moisture is one of the main quality factors for woody biomass, along with energy density and cleanness. The amount of water in solid wood fuels has a considerable effect on transportation efficiency, combustion efficiency and emissions. Under favourable storage conditions, MC can be decreased from typical fresh cut 50-55 per cent to 20-30 per cent in relatively short periods of storing by natural or artificial drying. Minor modifications can boost natural drying in fuel wood supply chains. This natural drying effect can have significant effects on the total energy efficiency and emissions of supply chains. The effect of improved packing density on transportation phase was discussed along with the need to control chip purity and size distribution. A procedure developed at the University of Joensuu and in the Finnish Forest Research Institute was used to estimate transportation costs and emissions according to transportation fleet and MC of the transported fuel. tabs., figs.

  12. The logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant

    International Nuclear Information System (INIS)

    2005-01-01

    The paper describe the logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant, located in Juzbado in the province of Salamanca. In the the article are described the principal elements in the supply chain and the difficulties of its management derived from the short period for the manufacturing of the nuclear fuel. It's also given a view in relation to the transportation by land sea of the nuclear components, uranium oxide powder and the manufactured fuel. The characteristics of the supply chain are determined by the plant production forecast, by the origin and high technology of the raw materials and by nuclear fuel delivery site locations. (Author)

  13. Nuclear reactor unit shutdown planning

    International Nuclear Information System (INIS)

    Gardais, J.P.

    1994-01-01

    In order to optimize the reactor maintenance shutdown efficiency and the reactor availability, an audit had been performed on the shutdown organization at EDF: management, skills, methods and experience feedback have been evaluated; several improvement paths have been identified: project management, introduction of shutdown management professionals, shutdown permanent industrialization, and experience feedback engineering

  14. Reactor Shutdown Mechanism by Top-mounted Hydraulic System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Haun; Cho, Yeong Garp; Choi, Myoung Hwan; Lee, Jin Haeng; Huh, Hyung; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    There are two types of reactor shutdown mechanisms in HANARO. One is the mechanism driven by a hydraulic system, and the other is driven by a stepping motor. In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The rods in CRDMs also drop by gravity together as a redundant shutdown mechanism. When a trip is commended by the reactor regulating system (RRS), the absorber rods of CRDM only drop; while the absorber rods of SO units stay at the top of the core by the hydraulic system. The reactivity control mechanisms of in JRTR, one of the new research reactor with plate type fuels, consist of four CRDMs driven by an individual step motor and two second shutdown drive mechanisms (SSDMs) driven by an individual hydraulic system as shown in Fig. 1. The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the SSDM in the process of the basic design. The major differences of the shutdown mechanisms by the hydraulic system are compared between HANARO and JRTR, and the design features, system, structure and

  15. Neutron physical investigations on the shutdown effect of small boronated absorbing spheres for pebble-bed high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Sgouridis, S.; Schurrer, F.; Muller, H.; Ninaus, W.; Oswald, K.; Neef, R.D.; Schaal, H.

    1987-01-01

    An emergency shutdown system for high-temperature gas-cooled pebble-bed reactors is proposed in addition to the common absorber rod shutdown system. This system is based on the strongly absorbing effect of small boronated graphite spheres (called KLAK), which trickle in case of emergency by gravity from the top reflector into the reactor core. The inner reflector of the Siemens-Argonaut reactor was substituted by an assembly of spherical Arbeitsgemeinschaft Versuchsreaktor fuel elements, and the shutdown effect was examined by installing well-defined KLAK nests inside this assembly. The purpose was to develop and prove a calculational procedure for determining criticality values for assemblies of large fuel spheres and small absorbing spheres

  16. FUEL SUPPLY IN ACCUMULATOR DIESEL SYSTEMS WITH ELECTRONIC CONTROL AT STARTING REGIME

    Directory of Open Access Journals (Sweden)

    G. M. Kuharenok

    2009-01-01

    Full Text Available The paper contains review and analysis of fuel supply process in accumulator diesel systems with electronic control at starting regime. The necessity has been shown to  develop and use programs of mathematic simulation pertaining to fuel supply processes with the purpose to decrease number of bench tests and time period required for a fuel system adaptation. The paper cites results of practical investigations on starting engines  equipped with the mentioned-above systems.

  17. Quality assurance in nuclear fuel element component supply

    International Nuclear Information System (INIS)

    Jenkins, B.P.

    1987-01-01

    The paper describes the application of Quality Assurance to nuclear fuel element component supply. The Quality Assurance programme includes integrated procurement, purchasing, surveillance and receipt inspection functions. Purchasing policy is based on a consistent preference for competitive tendering. Multiple sourcing is used to encourage competitive pricing and increase security of supply. A receipt inspection facility is maintained to ensure the high product quality levels demanded by the nuclear industry. (U.K.)

  18. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  19. Summary report of already published guidance on L2 PSA for external hazards, shutdown states, spent fuel storage

    International Nuclear Information System (INIS)

    Dirksen, Gerben; Sauvage, Estelle

    2014-01-01

    This report (deliverable D40.2 of the project ASAMPSA-E) proposes a review of the existing guidance with relevance to ASAMPSA-E PSA Level 2 topics (external hazards, shutdown states, spent fuel pool). As a complement of this task, the deliverable D40.2 tries to identify any potential missing guidance for the development of an extended PSA level 2, and any sources of knowledge beyond existing guidance which might help generating extended PSA level 2. Based on this approach the last section provides a summary compilation which identifies possibilities for completing existing guidelines (especially the guidance developed in the previous ASAMPSA2 project) and/or creating new guidelines for extended PSA Level 2. (authors)

  20. Maintenance implementation plan for fuel supply shutdown

    International Nuclear Information System (INIS)

    Stephenson, R.L.

    1995-06-01

    This Maintenance Implementation Plan is written to satisfy the requirements of DOE Order 4330.4B, ''MAINTENANCE MANAGEMENT PROGRAM'', that specifies the general policy and objectives for the establishment of DOE controlled maintenance programs. These Programs provide for the management and performance of cost-effective maintenance and repair of Department of Energy (DOE) property, which includes facilities. A review of DOE Order 4330.4B, particularly Chapter II the nuclear portion, against existing WHC site programs and policies has provided assurance that most requirements of this order have already been implemented by existing WHC programs. Applicable requirements and guidelines of 4330.4B that are deficient or not implemented are presently being developed and implemented through WHC site policies and programs. Where no program is presently identified or being developed for 4330.4B requirements, responsibility for implementation has been assigned within this plan

  1. Alternative transport fuels: supply, consumption and conservation

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1990-01-01

    Road-based passenger and freight transport almost exclusively uses petroleum/hydrocarbon fuels in the fluid form. These fuels will probably continue to be major transport fuels well into the 21st century. As such there is need to prolong their use which can be done through: (1) conservation of fuel by increasing efficiency of internal combustion engines, and (2) conversion of natural gas, coal and peat, and biomass into alternate fuels such as ethanol, methanol, CNG, LNG, LPG, low heat-content (producer) gas and vegetable oils. Research, development and demonstration (RD and D) priorities in supply, consumption and conservation of these alternate fuels are identified and ranked in the context of situation prevailing in Brazil. Author has assigned the highest priority for research in the impact of pricing, economic, fiscal and trade policies, capital allocation criteria and institutional and legislative framework. It has also been emphasised that an integrated or systems approach is mandatory to achieve net energy gains in transport sector. (M.G.B.). 33 refs., 11 tabs., 4 figs

  2. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  3. Probabilistic analysis of 900 MWe PWR. Shutdown technical specifications

    International Nuclear Information System (INIS)

    Mattei, J.M.; Bars, G.

    1987-11-01

    During annual shutdown, preventive maintenance and modifications which are made on PWRs cause scheduled unavailabilities of equipment or systems which might harm the safety of the installation, in spite of the low level of decay heat during this period. The pumps in the auxiliary feedwater system, component cooling water system, service water system, the water injection arrays (LPIS, HPIS, CVCS), and the containment spray system may have scheduled unavailability, as well as the power supply of the electricity boards. The EDF utility is aware of the risks related to these situations for which accident procedures have been set up and hence has proposed limiting downtime for this equipment during the shutdown period, through technical specifications. The project defines the equipment required to ensure the functions important for safety during the various shutdown phases (criticality, water inventory, evacuation of decay heat, containment). In order to be able to judge the acceptability of these specifications, the IPSN, the technical support of the Service Central de Surete des Installations Nucleaires, has used probabilistic methodology to analyse the impact on the core melt probability of these specifications, for a French 900 MWe PWR

  4. Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles

    Directory of Open Access Journals (Sweden)

    Ono Yusuke

    2017-01-01

    Full Text Available Residential polymer electrolyte fuel cells cogeneration systems (residential PEFC systems produce hydrogen from city gas by internal gas-reformer, and generate electricity, the hot water at the same time. From the viewpoint of the operation, it is known that residential PEFC systems do not continuously work but stop for long time, because the systems generate enough hot water for short operation time. In other words, currently residential PEFC systems are dominated by the amount of hot water demand. This study focuses on the idle time of residential PEFC systems. Since their gas-reformers are free, the systems have potential to produce hydrogen during the partial load operations. The authors expect that residential PEFC systems can take a role to supply hydrogen for fuel cell vehicles (FCVs before hydrogen fueling stations are distributed enough. From this perspective, the objective of this study is to evaluate the hydrogen production potential of residential PEFC systems. A residential PEFC system was modeled by the mixed integer linear programming to optimize the operation including hydrogen supply for FCV. The objective function represents annual system cost to be minimized with the constraints of energy balance. It should be noted that the partial load characteristics of the gas-reformer and the fuel cell stack are taken into account to derive the optimal operation. The model was employed to estimate the possible amount of hydrogen supply by a residential PEFC system. The results indicated that the system could satisfy at least hydrogen demand for transportation of 8000 km which is as far as the average annual mileage of a passenger car in Japan. Furthermore, hydrogen production by sharing a residential PEFC system with two households is more effective to reduce primary energy consumption with hydrogen supply for FCV than the case of introducing PEFC in each household.

  5. Domestic nuclear fuels supply: possibility of an independent technology

    International Nuclear Information System (INIS)

    Cirimello, R.O.

    1982-01-01

    After considering the different energy sources, their consumption and their respective periods of exploitation, technological considerations in the nuclear fuel field are made. The main subject is the Domestic Supply Project of Embalse Fuel (CANDU type). The different aspects which had to be developed during the realization of this project still under progress, and which are fundamental for the command of the technology, are described: 1) Qualification of the produced fuel elements: fuel elements' characteristics; the reactors' operating parameters, and the prototype fuel elements' characteristics; 2) Development of materials and/or suppliers: the obtainment of UO 2 and its physical properties are considered, as well as those of Zircaloy-4, the development of suppliers and the respective developments for the obtainment of materials such as beryllium, helium and colloidal graphite; 3) Processes development; the following processes are studied and defined: UO 2 pellets fabrication with UO 2 granulated powder; beryllium coating under vaccum; and induction brazing of bearing pads and spacers, end cap and end plate resistance welding and stamping of Zircaloy components, graphite-coating of cladding's internal face; 4) Development of special production equipments; automatic equipment for end cap-to-cladding resistance welding among others. The need for a specific program of quality assurance for nuclear fuels supply is emphasized and the basic criteria are established. The IAEA's quality asssurance requirements are also analyzed. (M.E.L.) [es

  6. Influence of performance characteristic of a gaseous fuel supply system on hydrocarbon emissions of a dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Ren, J.; Wang, Z.Y.; Zhong, H.; Hao, S.H. [Xi' an Jiaotong Univ., Dept. of Automobile Engineering, Xi' an (China)

    2000-11-01

    The performance of the gaseous fuel supply and its influence on hydrocarbon (HC) emissions of dual-fuel engines have been investigated. A new design of manifold respirators with mixers is also presented in the paper. The design of the gaseous fuel supply system has a great influence on HC emissions in the dual-fuel engine at light load. The problem of scavenging is discussed and solved by using the manifold respirators in the dual-fuel engine. It performs the function of retarding the gaseous fuel entry timing from the moment of intake valve opening, and its delaying effects have been measured and tested. Experimental results show that the manifold respirator gives the best performance in reducing HC emissions compared with a common pipe mixer and a respirator with bo miser. In addition, the mixing effects are sensitive to the mixer configuration. (Author)

  7. Study of transient heat transfer in a fuel rod 3D, in a situation of unplanned shutdown of a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Martins, Rodolfo Ienny; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: rodolfoienny@gmail.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The study, in situations involving accidents, of heat transfer in fuel rods is of known importance, since it can be used to predict the temperature limits in designing a nuclear reactor, to assist in making more efficient fuel rods, and to increase the knowledge about the behavior of the reactor's components, a crucial aspect for safety analysis. This study was conducted using as parameter the fuel rod that has the highest average power in a typical PWR reactor. For this, we developed a program (Fuel{sub R}od{sub 3}D) in Fortran language using the Finite Elements Method (FEM) for the discretization of a fuel rod and coolant channel, in order to study the temperature distribution in both the fuel rod and the coolant channel. Transient parameters were coupled to the heat transfer equations in order to obtain details of the behavior of the rod and the channel, which allows the analysis of the temperature distribution and its change over time. This work aims to present a study case of an accident where there is a lack of energy in the reactor's coolant pumps and in the diesel engines, resulting in an unplanned shutdown of the reactor. In order to achieve the intended goal, the present work was divided as follows: a short introduction about heat transfer, including the equations concerning the fuel rod and the energy equation in the channel, an explanation about how the verification of the Fuel{sub R}od{sub 3}D program was made, and the analysis of the results. (author)

  8. International co-operation in the supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    Recent changes in the United States' nuclear policy, in recognition of the increased proliferation risk, have raised questions of US intentions in international nuclear fuel and fuel-cycle service co-operation. This paper details those intentions in relation to the key elements of the new policy. In the past, the USA has been a world leader in peaceful nuclear co-operation with other nations and, mindful of the relationships between civilian nuclear technology and nuclear weapon proliferation, remains strongly committed to the Non-Proliferation Treaty, IAEA safeguards and other elements concerned with international nuclear affairs. Now, in implementing President Carter's nuclear initiatives, the USA will continue its leading role in nuclear fuel and fuel-cycle co-operation in two ways, (1) by increasing its enrichment capacity for providing international LWR fuel supplies and (2) by taking the lead in solving the problems of near and long-term spent fuel storage and disposal. Beyond these specific steps, the USA feels that the international community's past efforts in controlling the proliferation risks of nuclear power are necessary but inadequate for the future. Accordingly, the USA urges other similarly concerned nations to pause with present developments and to join in a programme of international co-operation and participation in a re-assessment of future plans which would include: (1) Mutual assessments of fuel cycles alternative to the current uranium/plutonium cycle for LWRs and breeders, seeking to lessen proliferation risks; (2) co-operative mechanisms for ensuring the ''front-end'' fuel supply including uranium resource exploration, adequate enrichment capacity, and institutional arrangements; (3) means of dealing with short-, medium- and long-term spent fuel storage needs by means of technical co-operation and assistance and possibly establishment of international storage or repository facilities; and (4) for reprocessing plants, and related fuel

  9. PFP supply fan motor starters

    International Nuclear Information System (INIS)

    Keck, R.D.

    1995-01-01

    The Plutonium Finishing Plant (PFP) is currently stabilizing about 25 kg of Pu sludge; upon completion of this task, PFP will be maintained in a safe standby condition to await decision from the PFP NEPA review. It can take about 10 years to initiate and complete terminal cleanout after this; the facility will then be decommissioned and decontaminated. The 234-5Z ventilation system must continue to operate until terminal cleanout. Part of the ventilation system is the seismic fan shutdown system which shuts down the ventilation supply fans in case of strong earthquake. This document presents criteria for installing solid state, reduced voltage motor starters and isolation contactors for the 8 main ventilation supply fans. The isolation contactors will shutdown the supply fans in event of earthquake

  10. Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective

    Science.gov (United States)

    Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz

    2016-08-01

    Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework

  11. Addressing the supply security of the nuclear fuel cycle: a US merchant generator risk acceptance perspective

    International Nuclear Information System (INIS)

    Jordan, R. P.; Benavides, P.A.

    2006-01-01

    With the current rising markets across the nuclear fuel supply spectrum, understanding and managing nuclear fuel cycle supply security risk becomes an increasingly important consideration. In addressing this area, Constellation Energy is implementing an integrated multifaceted approach as consistent with a comprehensive risk profile covering the nuclear fuel supply industry. This approach is founded on use of a utility traditional procurement strategy, as dependent on the qualitative parameters of supply origination diversification, geopolitical stability, contracting duration and individual supplier financial bases. However, Constellation also adds an additional consideration into development of this nuclear fuel supply risk profile. To do such, qualitative assessments covering specific supplier risks, as based on the parameters of supplier management and organizational structure, design capacities (applicable to fabrication and enrichment only), operational history as applicable to forward-looking performance, regulatory or legal history and financial performance are also considered. Constellation overlays the risks of future availabilities, catastrophic occurrences and prices for each nuclear fuel material and service component onto a quantitative set of results. The overall focus of these assessments is the creation of a risk management perspective directed towards determining the potential loss or delay of nuclear fuel supply for our operating reactors. The conclusion of this effort is an integrated assessment of the nuclear fuel supply security as applicable to the Constellation-specific structured risk profile. Use of this assessment allows Constellation to target appropriate suppliers of interest in the marketplace and form the fundamental bases for the Constellation procurement strategy while managing risks associated with nuclear fuel cycle supply security. (authors)

  12. Brief account of the design philosophy for third Qinshan NPP shutdown safety system based on practical application

    International Nuclear Information System (INIS)

    Xiong Weihua

    2005-01-01

    Qinshan CANDU power plant is uses the Canadian proven CANDU6 nuclear power technology. It has two characteristic: 1. heavy water-as moderator and coolant; 2. natural uranium as the fuel and change fuel during normal operating. CANDU6 include four special safety system: the No.1 shutdown system (SDS No.1), the No.2 shutdown system (SDS No.2), the containment system, the emergency core cooling system (ECCS). QinShan CANDU power plant is the first commercial PHWR nuclear power plant in China. And some aspect is not similar to everybody. The intention of the article is to introduce the basic design and functions. (authors)

  13. Supply chain modeling of forest fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, Helene; Lundgren, Jan T.; Roennqvist, Mikael

    2001-04-01

    We study the problem of deciding when and where forest residues are to be converted into forest fuel, and how the residues are to be transported and stored in order to satisfy demand at heating plants. Decisions also include whether or not additional harvest areas and saw-mills are to be contracted. In addition, we consider the flow of products from saw-mills and import harbors, and address the question about which terminals to use. The planning horizon is one year and monthly time periods are considered. The supply chain problem is formulated as a large mixed integer linear programming model. In order to obtain solutions within reasonable time we have developed a heuristic solution approach. Computational results from a large Swedish supplying entrepreneur are reported.

  14. Supply chain modeling of forest fuel

    International Nuclear Information System (INIS)

    Gunnarsson, Helene; Lundgren, Jan T.; Roennqvist, Mikael

    2001-04-01

    We study the problem of deciding when and where forest residues are to be converted into forest fuel, and how the residues are to be transported and stored in order to satisfy demand at heating plants. Decisions also include whether or not additional harvest areas and saw-mills are to be contracted. In addition, we consider the flow of products from saw-mills and import harbors, and address the question about which terminals to use. The planning horizon is one year and monthly time periods are considered. The supply chain problem is formulated as a large mixed integer linear programming model. In order to obtain solutions within reasonable time we have developed a heuristic solution approach. Computational results from a large Swedish supplying entrepreneur are reported

  15. LHC Report: The shutdown work nearing completion

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The work planned for the LHC injector chain during the winter shutdown is nearing completion. The PS Booster (PSB) and PS will be closed to access next week, and the control of machine access will be transferred to the CERN Control Centre in preparation for the resumption of machine operation. Hardware tests are being performed in all the machines.   Tests are under way in the LHC tunnel. The technical teams are putting the finishing touches to the work planned for the winter shutdown. At the Linac2, the PS Booster and the PS, work will be completed next week and hardware tests will be carried out soon after. POPS, the new powering system for the PS, will be commissioned for the first time in the coming days after the necessary preliminary tests have been carried out. At the SPS, various magnets have been replaced over recent weeks and the performance tests on the main power supply and other hardware tests will be able to start shortly. After that, the machine will be ready for operation with b...

  16. On line test of trip channels and actuators in primary shutdown system for RAPP-3,4/KAIGA-1,2 reactors

    International Nuclear Information System (INIS)

    Pramanik, M.; Gupta, P.K.; Ravi Prakash

    1997-01-01

    Several types of system design and logic arrangements have been used for reactor shutdown systems to avoid the possibility that a single failure within the trip channels/shutdown system actuators can prevent a shutdown system actuation. The trip channels and the logic arrangements associated with the shutdown systems use redundancy to allow them to continue to operate successfully even after having a certain number of failures. A periodic test is thus needed to detect and repair/replace failed elements to prevent accumulation and eventual system failure. The test must be capable of detecting the first failure. The design initiates shutdown system actuation by deenergising the logic relays and turning off the power to the final electrical actuators. Thus, the systems are fail safe with respect to loss of electrical power to the instruments, logic channels and the actuators. Several system/logic arrangements are used to reduce the chances of spurious actuation caused by the loss of a single power supply and other single failures. In general, the systems use coincidence of instrument channel trips and have separate power supplies for the individual instrument channel and dual power supplies where a single final control element is used. These features also permit on line test of instrument channels and logic train. On line test detects component failures not found by other means. The test determines whether gross failure has occurred rather than perform a calibration. As far as practicable the whole channel from sensors to logic and final control element is to be tested. (author)

  17. Security of supply: a neglected fossil fuel externality

    International Nuclear Information System (INIS)

    Cavallo, A.J.

    1995-01-01

    Various groups have attempted to set a monetary value on the externalities of fossil fuel usage based on damages caused by emissions of particulates, sulfur dioxide, and oxides of nitrogen and carbon. One externality that has been neglected in this type of analysis, however, is the cost of maintaining a secure supply of fossil fuels. Military expenditures for this purpose are relatively easy to quantify based on US Department of Defense and Office of Management and Budget figures, and amount to between $1 and more than $3 per million Btu, based on total fossil fuel consumption in the US. Open acknowledgment of such expenses would, at the very least, have a profound effect on the perceived competitiveness of all non-fossil fuel technologies. It should also provide a simple and easily comprehended rationale for an energy content (Btu) charge on all fossil fuels. (Author)

  18. Research on assurance system of nuclear fuel supply (Contract research)

    International Nuclear Information System (INIS)

    Kobayashi, Naoki; Naoi, Yosuke; Wakabayashi, Shuji; Tazaki, Makiko; Senzaki, Masao

    2010-08-01

    Assurance of supply (AOS) of nuclear fuel is a special arrangement in case of nuclear fuel supply disruption caused by political reasons other than nonproliferation. It aims to support a stable supply of nuclear fuel while avoiding spread of sensitive enrichment technology. Current discussions on AOS have been initiated by the IAEA Director-General's article published in The Economist entitled 'Towards a Safer World' Oct. 2003. Since then, various proposals on AOS have been presented. In order to facilitate international discussions on AOS, authors have conducted studies of AOS system based on Japanese Government's proposal 'IAEA Standby Arrangement System (INFCIRC/683)'. In this paper, we have been able to discuss feasibility of AOS system more specifically by including additional costs and period required for AOS, and to present a system which could work as a practical system. Issues we have tried to tackle here include definitions of AOS, and roles of consumer States, supplier States, IAEA and nuclear industries. We present some solutions including broadening coverage of AOS, declaration by supplier States on AOS, establishing advisory committee in the IAEA on the actual application of AOS, and setting up an IAEA fund for AOS. (author)

  19. Issues Associated with IAEA Involvement in Assured Nuclear Fuel Supply Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Carol E.; Mathews, Carrie E.

    2008-02-08

    Assured nuclear fuel supply has been discussed at various times as a mechanism to help limit expansion of enrichment and reprocessing (E&R) capability beyond current technology holders. Given the events in the last few years in North Korea and Iran, concern over weapons capabilities gained from acquisition of E&R capabilities has heightened and brought assured nuclear fuel supply (AFS) again to the international agenda. Successful AFS programs can be valuable contributions to strengthening the nonproliferation regime and helping to build public support for expanding nuclear energy.

  20. The Supply of Medical Radioisotopes. An Economic Study of the Molybdenum-99 Supply Chain

    International Nuclear Information System (INIS)

    2010-01-01

    The reliable supply of molybdenum-99 (Mo-99) and its decay product, technetium-99m (Tc-99m), is a vital component of modern medical diagnostic practices. Disruptions in the supply chain of these radioisotopes - which cannot be effectively stored - can suspend important medical testing services. Unfortunately, supply reliability has declined over the past decade, due to unexpected or extended shutdowns at the few ageing, Mo-99 producing, research reactors and processing facilities. These shutdowns have created global supply shortages. The full study offers a unique analysis of the economic structure and present state of the Mo-99/Tc-99m supply chain. It finds that the shortages are a symptom of a longer-term problem linked to insufficient capital investment, which has been brought about by an economic structure that does not provide sufficient remuneration for producing Mo-99 or support for developing additional production and processing infrastructure. To assist governments and other decision makers in their efforts to ensure long-term, reliable supply of these important medical isotopes, the study presents options for creating a sustainable economic structure. The study will also enhance understanding amongst stakeholders of the costs of supplying Mo-99 and ultimately contribute to a better functioning market. (authors)

  1. Another driver of the Brazilian fuel ethanol supply chain: the consumers' preferences

    Directory of Open Access Journals (Sweden)

    Giuliana Isabella

    Full Text Available Abstract Many factors have been discussed in the literature as the causes for setbacks in the Brazilian ethanol supply chain, such as the low price of petroleum and the high price of sugar in the financial crisis in 2008. However, there is an important gap that was not explored yet, how do drivers choose to refuel their cars? Do the supply chain managers know their consumers? Based on that, this paper aims to demonstrate how the ethanol supply chain stakeholders perceive consumers' preferences and compare them to the factors that are taken into consideration by Brazilian flexible-fuel vehicles drivers when choosing types of fuel gasoline or ethanol. For that, we illustrated the case by using a sample of announcements collected from Brazilian news media featuring the supply chain managers' view and the survey taken by drivers to understand the consumer's actions. Our results indicate that there is a significant difference between the actual preferences of fuel consumers and the perceived consumers' preferences by the stakeholders. This disparity is probably the (or one of the main cause of the second setback in the Brazilian supply chain (2009–2012. Based on these results we point out the strategic implications in managing this supply chain and also the role of public policy in improving the diffusion of ethanol in Brazil.

  2. Analysis of shutdown and aftercooling cycles of the A-1 nuclear power plant

    International Nuclear Information System (INIS)

    Mueller, V.; Vopatril, M.

    1977-01-01

    A new concept is described of the emergency shut-down and after-cooling of the A-1 reactor based on the elimination of pressure shock and minimization of thermal shock. After-cooling is effected by all circulators which had not been defective before shut-down. During shut-down the pumps run at reduced speed. A diesel generator is used as a self-contained power supply. The after-cooling is classified into three types depending on the machinery power consumption, i.e., normal, emergency and super-emergency. The selection of the power supply and the after-cooling conditions proceeds automatically. A mathematical model is described of A-1 reactor behaviour during different accidents requiring the shut-down and after-cooling. Computer programmes are briefly indicated for the analysis of transients in the primary coolant circuit (ZVJE-73-23, SHOCK A-1), for the analysis of transients resulting from a neutron power controller failure or from a circulator failure (HAZARD), for the analysis of after-cooling processes (DENDEL), and programme SAULIS as an auxiliary programme for processing the results and for the print-out of the DENDEL programme. Steady-state parameters before the failure were found as initial conditions for the calculation of transients. The mathematical model was solved using a system of three computer programmes linked by interprogramme communication. The analysis is described of the cooperation of reactor safety circuits and of the automatic equipment for the reduction of thermal shock in the primary coolant circuit, as is the analysis of reactor accidents related to reactor control and to the safety circuits. Theoretical results are compared with experimental values obtained during the experimental A-1 reactor shut-down and after-cooling. The accuracy of the calculated value for the cooling gas temperature at the central and marginal channel outputs is -10 to +15% during the first 30 s of after-cooling. (J.P.)

  3. The global nuclear fuel market - supply and demand 1995-2015

    International Nuclear Information System (INIS)

    Keese, H.; Kidd, S.

    1996-01-01

    The findings and main conclusions of the 1996 supply and demand report of the Uranium Institute are summarised. The previous report was published in June 1994. In 1994 and 1995, world uranium production remained at a relatively depressed level, accounting for just over half reactor requirements only. Since mid 1995, however, some increase in production has occurred alongside rises in uranium spot market prices. This may indicate that supply is becoming tighter and indicate the end of the perception that supply availability is unlimited. Answers are attempted to the questions about the future which arise from this development. Nuclear power is first set in the context of the market for energy and for electricity in particular. The report then identifies key issues for the longer term future for nuclear power and considers various aspects of nuclear fuel supply and demand over the next 20 years. Three demand scenarios are explored. Even in the lower requirements case, the overall conclusion is that supply will only meet demand from 2002 onwards when all the projected new mine capacity is in place. Adequate supply is heavily dependent on other supply sources in the higher case scenarios. The market will need the entry of blended down high enriched uranium from dismantled weapons and an increased contribution from the reprocessing of spent fuel. Additional primary production is only likely if financial incentives are available and the regulatory framework permits. Finally, there is the possibility of re-enriching depleted uranium. (9 figures). (UK)

  4. Supplying the six. [Supplies of nuclear fuels and ores to the European Community

    Energy Technology Data Exchange (ETDEWEB)

    Oboussier, F

    1975-07-01

    Under the Euratom Treaty, the European Community must ensure that all users in the Community receive a regular and equitable supply of ores and nuclear fuels. Supply to users in the Community of ores, source materials, and special fissile materials is based on the principle of equal access of the users to the supply sources. To ensure such equal access, the Treaty prohibits all practices designed to secure a privileged position for certain users. In addition, an agency has been set up with two essential rights--that of an option on all ores, source materials, and special fissile materials produced in the territories of the Member States; and the exclusive right to conclude all contracts relating to the supply of ores, source materials, and special fissile materials coming from inside the Community or from outside. Dealings of the Agency with outside agencies, especially the former US AEC, are described. The uranium market and its economics and the availability of special fissile materials are summarized. (MCW)

  5. Wood fuel supply as a function of forest owner preferences and management styles

    International Nuclear Information System (INIS)

    Bohlin, F.; Roos, A.

    2002-01-01

    The commercial demand for wood fuel is rapidly increasing in Sweden, and the domestic supply comes primarily from private non-industrial forest owners. A model was developed to analyse decision-making among these private forest owners. The model covers five factors: economics, transaction costs, concerns about soil fertility, forestry, and previous experience. It was applied in a survey among forest owners in four communities in central Sweden in 1999. Wood fuels had been sold from 60% of the estates. Analysis suggests that the price paid had little influence on the decision to sell. Transaction costs had been alleviated by the traditional timber buyer organizing the fuel trade, and by minimizing measurement in the forest. The primary reason for selling wood fuel was that the harvesting operation cleared the ground of debris. There is a general concern for loss in soil fertility due to wood fuel harvesting which is why some owners do not sell forest fuels. Two types of fuel-selling forest owners were identified: (1) an active manager seeking different gains from wood fuel harvest, and (2) an owner who primarily relies on the advice of the timber buyer. The findings indicate that large-scale traders of wood fuels have to be active in increasing supply, making direct contact with forest owners, and connecting trade with information on ecological and silvicultural effects. Offering ash recycling may enhance supply more than marginal price increases. (author)

  6. Accounting for Unliquidated Obligations for the Defense Fuel Supply Center

    National Research Council Canada - National Science Library

    1996-01-01

    .... The Defense Finance and Accounting Service (DFAS) Columbus Center, Columbus, Ohio, and the Defense Fuel Supply Center share responsibility for accurate accounting information and financial reporting...

  7. Characteristics of a direct methanol fuel cell system with the time shared fuel supplying approach

    International Nuclear Information System (INIS)

    Na, Youngseung; Kwon, Jungmin; Kim, Hyun; Cho, Hyejung; Song, Inseob

    2013-01-01

    DMFC (direct methanol fuel cell) systems usually employ two pumps for supplying the methanol solution. The conventional system configuration, however, may bring about free flow from the methanol reservoir and malfunctions in the self-priming of the pumps. When instruments such as check valves and pressure regulators are applied, they result in excessive weight and control system malfunctions. In this paper, a light and robust DMFC system is proposed. By using the time sharing approach to supply fuel with a 3-way valve, free flow does not occur because only one inlet is opened at one time which means that both the circulation flow from gas liquid separator and the fuel flow from the methanol cartridge are not allowed to be opened at same time. As a result, back flow and self-priming problems do not occur. This makes the system stable and robust due to the removal of both the check valves and the fluctuation from unstable back pressure. Stabilized system doesn't need excessive battery buffering and recycling water any more, which are responsible for the heavy system. The proposed system performs the same level of power and efficiency with the conventional system. Adaptability is also carried out in various environmental temperature conditions. - Highlights: ►A light and robust DMFC system is proposed. ► The circulation pump is able to self-prime by itself after long term storage. ► The time sharing approach to supply fuel enables to control the methanol concentration precisely. ► The methanol concentration is controlled without free flow and the back flow from the fuel feeding pump. ► The excessive buffer of the batteries and the recycling water level are reduced

  8. Trends vs. reactor size of passive reactivity shutdown and control performance

    International Nuclear Information System (INIS)

    Wade, D.C.; Fujita, E.K.

    1988-01-01

    The focus of the US advanced reactor program since the cancellation of CRBR has been on inherent safety and cost reduction. The notion is to so design the reactor that in the event of an off normal condition, it brings itself to a safe shutdown condition and removes decay heat by reliance on ''inherent processes'' i.e., without reliance on devices requiring switching and outside sources of power. Such a reactor design would offer the potential to eliminate costly ''Engineered Safety Features,'' to lower capital costs, and to assuage public unease concerning reactor safety. For LMR concepts, the goal of passive reactivity shutdown has been approached in the US by designing the reactors for favorable relationships among the power, power/flow, and inlet temperature coefficients of reactivity, for high internal conversion ratio (yielding small burnup control swing), and for a primary pump coastdown time appropriately matched to the delayed neutron hold back of power decay upon negative reactivity input. The use of sodium bonded metallic fuel pins has facilitated the achievement of the passive shutdown design goals as a consequence of their high thermal conductivity and high effective heavy metal density. Alternately, core designs based on derated oxide pins may be able to achieve the passive shutdown features at the cost of larger core volume and increased initial fissile inventory. 8 refs., 12 figs., 1 tab

  9. Research on assurance system of nuclear fuel supply (Contract research)

    International Nuclear Information System (INIS)

    Kobayashi, Naoki; Naoi, Yosuke; Wakabayashi, Shuji; Tazaki, Makiko; Senzaki, Masao

    2010-03-01

    Assurance of supply (AOS) of nuclear fuel is a special arrangement in case of nuclear fuel supply disruption caused by political reasons other than nonproliferation. It aims to support a stable supply of nuclear fuel while avoiding unnecessary spread of sensitive enrichment technology. Current discussions on AOS have been initiated by the IAEA Director-General's article published in The Economist entitled 'Towards a Safer World' Oct. 2003. Since then, various proposals on AOS have been presented. In order to facilitate international discussions on AOS, authors have conducted studies of AOS system based on Japanese Government's proposal 'IAEA Standby Arrangement System (INFCIRC/683)'. In this paper, we gave an overview of discussions on AOS since World War II, and elaborated on some of current proposals. We have been able to discuss feasibility of AOS system more specifically by including additional costs and period required for AOS, and to present a system which could work as a practical system. Issues we have tried to tackle here include definitions of AOS, and roles of consumer states, supplier states, IAEA and nuclear industries. We present some solutions including broadening coverage of AOS, declaration by supplier states on AOS, establishing advisory committee in the IAEA on the actual application of AOS, and setting up an IAEA fund for AOS. (author)

  10. The supply of medical radioisotopes - The Path to Reliability

    International Nuclear Information System (INIS)

    2011-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. Disruptions in the supply chain of these radioisotopes can delay or prevent important medical testing services. Unfortunately, supply reliability has declined over the past decade, due to unexpected or extended shutdowns at the few ageing, 99 Mo-producing, research reactors and processing facilities. These shutdowns have recently created global supply shortages. This report provides the findings and analysis of two years of extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It puts forth a comprehensive policy approach that would help ensure long-term supply security of 99 Mo/ 99m Tc, detailing the essential steps to be taken by governments, industry and the health community to address the vulnerabilities of the supply chain, including its economic structure. (authors)

  11. Mountain forest wood fuel supply chains: comparative studies between Norway and Italy

    International Nuclear Information System (INIS)

    Valente, Clara; Spinelli, Raffaele; Hillring, Bengt Gunnar; Solberg, Birger

    2014-01-01

    Case studies of mountain forest wood fuel supply chains from Norway and Italy are presented and compared. Results from previous studies in which greenhouse gas emissions and costs were evaluated using life cycle assessment and cost analysis respectively, are compared. The supply chain is more mechanized in Norway than Italy. Steeper terrain and low road density partly explain the persistence of motor-manual felling in the Italian case. Mechanized forest harvesting can increase productivity and reduce costs, but generates more greenhouse gas (GHG) emissions than motor-manual harvesting. In both cases, the main sources of GHG emissions are truck transportation and chipping. The total emissions are 22.9 kg CO 2 /m 3 s.o.b. (Norway) and 13.2 kg CO 2 /m 3 s.o.b. (Italy). The Norwegian case has higher costs than the Italian one, 64 €/m 3 s.o.b. and 41 €/m 3 s.o.b. respectively, for the overall supply chain. The study shows that mountain forests constitute an interesting source for fuel biomass in both areas, but are a rather costly source, particularly in Norway. The study also exemplifies the care needed in transferring LCA results between regions and countries, particularly where forest biomass is involved. - Highlights: • We compare two mountain forest wood fuel supply chains in Norway and in Italy. • Transportation by truck generate the highest emissions in both case studies. • The energy use of the Norwegian supply chain was approximately twice as high as the Italian one. • Changes in fuel consumption affect significantly emissions and energy use from transportation and chipping operations. • Cable yarding and transportation by truck were the most expensive phases respectively in the Italian and Norwegian supply chain

  12. The Supply of Medical Radioisotopes An Economic Study of the Molybdenum-99 Supply Chain: Summary

    International Nuclear Information System (INIS)

    2010-01-01

    The reliable supply of molybdenum-99 (Mo-99) and its decay product, technetium-99m (Tc-99m), is a vital component of modern medical diagnostic practices. Disruptions in the supply chain of these radioisotopes - which cannot be effectively stored - can suspend important medical testing services. Unfortunately, supply reliability has declined over the past decade, due to unexpected or extended shutdowns at the few ageing, Mo-99 producing, research reactors and processing facilities. These shutdowns have created global supply shortages. The full study offers a unique analysis of the economic structure and present state of the Mo-99/Tc-99m supply chain. It finds that the shortages are a symptom of a longer-term problem linked to insufficient capital investment, which has been brought about by an economic structure that does not provide sufficient remuneration for producing Mo-99 or support for developing additional production and processing infrastructure. To assist governments and other decision makers in their efforts to ensure long-term, reliable supply of these important medical isotopes, the study presents options for creating a sustainable economic structure. The study will also enhance understanding amongst stakeholders of the costs of supplying Mo-99 and ultimately contribute to a better functioning market. (authors)

  13. 300 Area fuel supply facilities deactivation function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate the 300 Area Fuel Supply Facilities

  14. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  15. Architecture Study for a Fuel Depot Supplied from Lunar Assets

    Science.gov (United States)

    Perrin, Thomas M.; Casler, James G.

    2016-01-01

    This architecture study sought to determine the optimum architecture for a fuel depot supplied from lunar assets. Four factors - the location of propellant processing (on the Moon or on the depot), the depot location (on the Moon, L1, GEO, or LEO), the propellant transfer location (L1, GEO, or LEO), and the propellant transfer method (bulk fuel or canister exchange) were combined to identify 18 candidate architectures. Two design reference missions (DRMs) - a commercial satellite servicing mission and a Government cargo mission to Mars - created demand for propellants, while a propellant delivery DRM examined supply issues. The study concluded Earth-Moon L1 is the best location for an orbiting depot. For all architectures, propellant boiloff was less than anticipated, and was far overshadowed by delta-v requirements and resulting fuel consumption. Bulk transfer is the most flexible for both the supplier and customer. However, since canister exchange bypasses the transfer of bulk cryogens and necessary chilldown losses, canister exchange shows promise and merits further investigation. Overall, this work indicates propellant consumption and loss is an essential factor in assessing fuel depot architectures.

  16. Multi-unit shutdown due to boiler feedwater chemical excursion

    International Nuclear Information System (INIS)

    Diebel, M.E.

    1991-01-01

    Ontario Hydro's Bruce Nuclear Generating Station 'B' consists of four 935 W CANDU units located on the east shore of Lake Huron in the province of Ontario, Canada. On July 25 and 26, 1989 three of the four operating units were shutdown due to boiler feedwater chemical excursions initiated by a process upset in the Water Treatment Plant that provides demineralized make-up water to all four units. The chemicals that escaped from an ion exchange vessel during a routine regeneration very quickly spread through the condensate make-up system and into the boiler feedwater systems. This resulted in boiler sulfate levels exceeding shutdown limits. A total of 260 GWH of electrical generation was unexpectedly made unavailable to the grid at a time of peak seasonal demand. This event exposed several unforeseen deficiencies and vulnerabilities in the automatic demineralized water make-up quality protection scheme, system designs, operating procedures and the ability of operating personnel to recognize and appropriately respond to such an event. The combination of these factors contributed towards turning a minor system upset into a major multi-unit shutdown. This paper provides the details of the actual event initiation in the Water Treatment Plant and describes the sequence of events that led to the eventual shutdown of three units and near shutdown of the fourth. The design inadequacies, procedural deficiencies and operating personnel responses and difficulties are described. The process of recovering from this event, the flushing out of system piping, boilers and the feedwater train is covered as well as our experiences with setting up supplemental demineralized water supplies including trucking in water and the use of rental trailer mounted demineralizing systems. System design, procedural and operational changes that have been made and that are still being worked on in response to this event are described. The latest evidence of the effect of this event on boiler tube

  17. Interim safety basis for fuel supply shutdown facility

    International Nuclear Information System (INIS)

    Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings

  18. Interim Safety Basis for Fuel Supply Shutdown Facility

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines

  19. NPP fuel cycle and assessment of possible options for long-term fuel supply

    International Nuclear Information System (INIS)

    Ignatenko, E.I.; Lebedev, V.M.; Davidenko, N.N.

    1999-01-01

    The purpose of this paper is to present some results of the analysis of the possible options for Russian NPPs fuel supply. In the classical consideration these are four fuel cycles: uranium cycle based on natural uranium, this cycle has several economical advantages with the use of CANDU type reactors with a heavy-water moderator; uranium cycle based on enriched uranium, it is a basis for the current and future nuclear power; uranium-thorium fuel cycle with capabilities which are very promising but unfortunately difficult to implement in practice; plutonium-uranium cycle, in terms of its potential capabilities it is an excellent option, but it is extremely difficult to implement it in practice due to a high activity and toxicity of nuclear materials under recycle. The nuclear power of Russia is currently aimed at using the cheapest fuel resources, that is first of all, uranium reprocessed from industrial reactor fuel and slag-heaps accumulated on the past in isotope-separation plant sites. These resources are enough for the Russian large-scale nuclear power to be developed [ru

  20. Operation of SST-1 TF power supply during SST-1 campaigns

    International Nuclear Information System (INIS)

    Sharma, Dinesh Kumar; Vora, Murtuza M.; Ojha, Amit; Singh, Akhilesh Kumar; Bhavsar, Chirag

    2015-01-01

    Highlights: • SST-1 TF power supply is 12 pulse SCR converter circuit. • TF power supply protection, measurement and control scheme are explained. • Quench, emergency and normal shot process is explained and results of SST-1 campaigns are shown. • Dynamic control of TF current. • The paper shows the results of last ten SST-1 campaigns. - Abstract: SST-1 TF power supply provides the direct current for the required magnetic field of TF coil. TF power supply includes transformer, 12-pulse converter, bus bar, water-cooled cable, protection and measuring equipments, and isolator, VME DAC system and GUI software. TF power supply is operated through GUI software built in TCL/Tk. VME DAC system monitors the parameters, provides On/Off commands, voltage and current references and initiates predefined reference to emergency shutdown. The emergency shutdown is hardwired to TF power supply from central control. During quench power supply converter opens DCCB and dump resistor is connected in the circuit and VME DAC system acquires bus bar voltage, dump voltage and dump current. Operation of TF power supply also requires monitoring of SCR and transformer temperature and water flow rate of water-cooled cable during high current long pulse shot. Before start up of TF power supply a quench simulation is performed to check the readiness of protection. This paper describes pre startup operation, normal shot operation, emergency and quench process, dynamic control and complete shutdown operation of TF power supply.

  1. Operation of SST-1 TF power supply during SST-1 campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dinesh Kumar, E-mail: dinesh@ipr.res.in; Vora, Murtuza M.; Ojha, Amit; Singh, Akhilesh Kumar; Bhavsar, Chirag

    2015-10-15

    Highlights: • SST-1 TF power supply is 12 pulse SCR converter circuit. • TF power supply protection, measurement and control scheme are explained. • Quench, emergency and normal shot process is explained and results of SST-1 campaigns are shown. • Dynamic control of TF current. • The paper shows the results of last ten SST-1 campaigns. - Abstract: SST-1 TF power supply provides the direct current for the required magnetic field of TF coil. TF power supply includes transformer, 12-pulse converter, bus bar, water-cooled cable, protection and measuring equipments, and isolator, VME DAC system and GUI software. TF power supply is operated through GUI software built in TCL/Tk. VME DAC system monitors the parameters, provides On/Off commands, voltage and current references and initiates predefined reference to emergency shutdown. The emergency shutdown is hardwired to TF power supply from central control. During quench power supply converter opens DCCB and dump resistor is connected in the circuit and VME DAC system acquires bus bar voltage, dump voltage and dump current. Operation of TF power supply also requires monitoring of SCR and transformer temperature and water flow rate of water-cooled cable during high current long pulse shot. Before start up of TF power supply a quench simulation is performed to check the readiness of protection. This paper describes pre startup operation, normal shot operation, emergency and quench process, dynamic control and complete shutdown operation of TF power supply.

  2. PUMA code simulation of recovery power transients after a short shutdown of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Villar, Javier; Pomerantz, Marcelo E.

    2003-01-01

    A simulation of recovery power transients after a short shutdown on Embalse nuclear power plant equilibrium core with slightly enriched uranium fuel was performed in order to know the response of the reactor under such conditions. Also, comparison against the same event in a natural uranium core were done. No significant restrictions were found in operating with enriched fuel in the conditions of the analyzed event and in fact, slightly differences arose with natural uranium fuels. (author)

  3. Shut-down margin study for the next generation VVER-1000 reactor including 13 x 13 hexagonal annular assemblies

    International Nuclear Information System (INIS)

    Faghihi, Farshad; Mirvakili, S. Mohammad

    2011-01-01

    Highlights: → Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated. → The MCNP-5 code is run for many cases with different core burn up at various core temperatures. → There is a substantial drop in SDM in the case of annular fuel for the same power level. → SDM for our proposed VVER-1000 annular pins is calculated for specific average fuel burn up values at the BOC, MOC, and EOC. - Abstract: Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated as the main aim of the present research. We have applied the MCNP-5 code for many cases with different values of core burn up at various core temperatures, and therefore their corresponding coolant densities and boric acid concentrations. There is a substantial drop in SDM in the case of annular fuel for the same power level. Specifically, SDM for our proposed VVER-1000 annular pins is calculated when the average fuel burn up values at the BOC, MOC, and EOC are 0.531, 11.5, and 43 MW-days/kg-U, respectively.

  4. 10 CFR 503.31 - Lack of alternate fuel supply for the first 10 years of useful life.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply for the first 10 years of useful life. 503.31 Section 503.31 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Permanent Exemptions for New Facilities § 503.31 Lack of alternate fuel supply for the first 10 years of...

  5. Shutdown risk monitoring in TEPCO

    International Nuclear Information System (INIS)

    Sato, Hiroki; Masuda, Takahiro; Denda, Yasutaka; Yoneyama, Mitsuru; Imai, Shun-ichi; Miyata, Koichi

    2009-01-01

    At present, we are introducing risk monitors into our all three nuclear power stations; Fukushima Daiichi, Fukushima Daini and Kashiwazaki Kariwa, with technical support of TEPSYS. By monitoring shutdown risk of each unit, we are trying to optimize risks during outage inspection, and raising staff's awareness for reactor safety. This paper presents our recent shutdown risk monitoring activities in Fukushima Daiichi NPS. Shutdown risk monitoring has been carried out for the past five outages of Fukushima Daiichi NPS. Daily-changing shutdown risk is evaluated in the form of core damage frequency (CDF [/day/reactor]). We also examine high-risk point of outage plan if CDF is greater than the threshold at anytime of outage. The results are delivered to operational and maintenance staff before outage. The threshold value is set ten times as much as CDF of unit in operation. As CDF exceeds the threshold, we try to either change the system configuration, or let workers pay more attention to their works during the high-risk period. We already have some examples of outage plan modification to reduce CDF using the risk monitoring information. Greater number of station staff tends to pay more attention to shutdown risk thanks to these activities. (author)

  6. Experience using individually supplied heater rods in critical power testing of advanced BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Majed, M.; Morback, G.; Wiman, P. [ABB Atom AB, Vasteras (Sweden)] [and others

    1995-09-01

    The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give large advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.

  7. Fueling our future: four steps to a new reliable, cleaner, decentralized energy supply based on Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    Evers, A.

    2005-01-01

    In examining various market strategies, this presentation demonstrates the possible driving factors and necessary elements needed to move Hydrogen and Fuel Cells (H2/FC) to worldwide commercialisation. Focusing not only on the technology itself, this presentation looks at the 'bigger picture' explaining how certain trends have impacted the progress of new technologies developments in the past. The presentation demonstrates how these models can be applied to our present day situation. In this process, the consumer has played and will continue to play the key and leading role. Due to such strong influence, the consumer will ultimately fuel the future of H2/FC commercialisation by a desire for new and not yet discovered products and services. Examining different Distributed Generation scenarios, the catalyst to the Hydrogen Economy may be found through distributed generation via fuel cells. One possible step could be the use of Personal Power Cars equipped with Fuel Cells which not only drive on Hydrogen, but also supply (while standing) electricity /heat to residential and commercial buildings. The incentive for car owners driving and using these vehicles is twofold: either save (at his own home) or earn (at his office) money while their cars are parked and plugged into buildings via smart docking stations available at key parking sites. Cars parked at home in the garage will supply electricity to the homes and additionally, replace the function of the existing boiler. Car owners can earn money by selling the electricity generated (but not needed at that time) to the utilities and feed it into the existing electricity grid. The inter-dependability between supply and consumer-driven demand (or better, demand and supply) and other examples are explained. The steps necessary to achieve a new, reliable, cleaner and decentralized Energy Supply based on H2/FC are also presented and examined. (author)

  8. Magnetic disconnect for secondary shutdown

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1972-01-01

    A description is given of studies to develop a magnetic holding clutch in the control rod drive line as an alternate shutdown device for the FFTF. Results indicate that a three-phase disconnect, hold, and backup shutdown system can be designed to operate satisfactorily. (U.S.)

  9. Fossil fuel subsidy removal and inadequate public power supply: Implications for businesses

    International Nuclear Information System (INIS)

    Bazilian, Morgan; Onyeji, Ijeoma

    2012-01-01

    We briefly consider the impact of fossil fuel subsidy removal policies in the context of inadequate power supply, with a focus on the implications for businesses. In doing so, we utilize the case of the early 2012 fuel subsidy removal in Nigeria. The rationale for such subsidy-removal policies is typically informed by analysis showing that they lead to an economically inefficient allocation of resources and market distortions, while often failing to meet intended objectives. However, often the realities of infrastructural and institutional deficiencies are not appropriately factored into the decision-making process. Businesses in many developing countries, already impaired by the high cost of power supply deficiencies, become even less competitive on an unsubsidized basis. We find that justifications for removal often do not adequately reflect the specific environments of developing country economies, resulting in poor recommendations – or ineffective policy. - Highlights: ► We consider the impact of fuel subsidy removal in the context of energy poverty. ► Calls for subsidy removal often do not reflect the developing country realities. ► Businesses impaired by power supply deficiencies, become even less competitive.

  10. Can fuel services supply be secured? Building trust in a multi-lateral approach to nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Antoine, B. [Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room E40-261, Cambridge, MA 02139 (United States); Rodriguez-Vieitez, E. [Belfer Center for Science and International Affairs, Kennedy School of Government, Harvard University, One Brattle Sq., Room 503, Cambridge, MA 02138 (United States)

    2009-06-15

    Global climate change and concerns about energy supply security fuelling the nuclear desires of an increasing number of states, there is growing interest within the nonproliferation community to promote the establishment of an international system for the provision of nuclear fuel cycle services that would be 'equitable and accessible to all users of nuclear energy' (Rauf, 2008) while reducing proliferation risks. Although the idea was already voiced on the cradle of civilian use of nuclear energy (Baruch, 1946), the IAEA director's 2003 call for a group of international experts to examine the issue (ElBaradei, 2003) triggered renewed interest that resulted in up to twelve different proposals for multilateral nuclear fuel cycle arrangements (Rauf, 2008; Simpson, 2008). Nonproliferation experts have examined the conditions under which equitable and accessible access to enrichment, reprocessing and spent fuel disposal services can be granted to all users (Rauf, 2008; Braun 2006; Pellaud and al 2005). They suggested putting together multilateral nuclear approaches (MNA) that could consist in the establishment of mechanisms to assure fuel cycle services, or the shared ownership by recipient and host countries of fuel services facilities through either the creation of new multilateral centers or the conversion of existing national facilities into multinational enterprises. While countries that possess nuclear fuel facilities would benefit from the increased global security and strengthened non-proliferation situation that would result from the establishment of these MNAs, they would also be baited into participating by possible attraction of foreign investments as well as the opportunity to export high value services (Rushkin, 2006). Yet, what incentives would there be for a recipient non-nuclear state to participate in an arrangement that would intrinsically strip it of its sovereign right to ensure its fuel supply security? In addition to the economic

  11. Trends vs. reactor size of passive reactivity shutdown and control performance

    International Nuclear Information System (INIS)

    Wade, D.C.; Fujita, E.K.

    1987-01-01

    For LMR concepts, the goal of passive reactivity shutdown has been approached in the US by designing the reactors for favorable relationships among the power, power/flow, and inlet temperature coefficients of reactivity, for high internal conversion ratio (yielding small burnup control swing), and for a primary pump coastdown time appropriately matched to the delayed neutron hold back of power decay upon negative reactivity input. The use of sodium bonded metallic fuel pins has facilitated the achievement of the massive shutdown design goals as a consequence of their high thermal conductivity and high effective heavy metal density. Alternately, core designs based on derated oxide pins may be able to achieve the passive shutdown features at the cost of larger core volume and increased initial fissile inventory. For LMR concepts, the passive decay heat removal goal of inherent safety has been approached in US designs by use of pool layouts, larger surface to volume ratio of the reactor vessel with natural draft air cooling of the vessel surface, elevations and redans which promote natural circulation through the core, and thermal mass of the pool contents sufficient to absorb that initial transient decay heat which exceeds the natural draft air cooling capacity. This paper describes current US ''inherently safe'' reactor design

  12. Fuel supply investment cost: coal and nuclear. Commercial electric power cost studies (6)

    International Nuclear Information System (INIS)

    1979-04-01

    This study presents an accounting model for calculating the capital investment requirements for coal and nuclear fuel supply facilities. The study addresses mining, processing, fabrication, and transportation of coal and nuclear fuels. A generic example is provided, for coal from different sources, and for nuclear fuel. The relationship of capital investment requirements to delivered prices is included in each example

  13. 14 CFR 121.646 - En-route fuel supply: flag and supplemental operations.

    Science.gov (United States)

    2010-01-01

    ... supply requirements are met: (1) The airplane has enough fuel to meet the requirements of § 121.645(b); (2) The airplane has enough fuel to fly to the Adequate Airport— (i) Assuming a rapid decompression... for flight a turbine-engine powered airplane with more than two engines for a flight more than 90...

  14. LARGE-scale forest fuel supply solution trough a regional terminal network; Terminaalitoimintoihin perustuvan metsaepolttoaineen hankintalogistiikkajaerjestelmaen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, T. [Etelae-Savon Energia Oy, Mikkeli (Finland)

    2006-12-19

    The aim of the study is to develop logistic systems for supply of forest fuel where a terminal is part of the supply chain. Operations in the terminal, supply chains of the forest fuel and joining them to the terminal network are testing and following p. Also operation and business models are under analyzing. Costs, cost factors, benefits and space requirement of the terminal and cost-effectiveness of the entrepreneurship of the terminal are carried out. (orig.)

  15. Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

  16. 14 CFR 121.639 - Fuel supply: All domestic operations.

    Science.gov (United States)

    2010-01-01

    ... nontransport category airplanes type certificated after December 31, 1964, to fly for 30 minutes at normal... § 121.639 Fuel supply: All domestic operations. No person may dispatch or take off an airplane unless it has enough fuel— (a) To fly to the airport to which it is dispatched; (b) Thereafter, to fly to and...

  17. RECAP, Replacement Energy Cost for Short-Term Reactor Plant Shut-Down

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Daun, C.J.; Jusko, M.J.

    1995-01-01

    1 - Description of program or function: RECAP (Replacement Energy Cost Analysis Package) determines the replacement energy costs associated with short-term shutdowns or de-ratings of one or more nuclear reactors. Replacement energy cost refers to the change in generating-system production cost that results from shutting down a reactor. The cost calculations are based on the seasonal, unit-specific cost estimates for 1988-1991 for all 117 nuclear electricity-generating units in the U.S. RECAP is menu-driven, allowing the user to define specific case studies in terms of parameters such as the units to be included, the length and timing of the shutdown or de-rating period, the unit capacity factors, and the reference year for reporting cost results. In addition to simultaneous shutdown cases, more complicated situations, such as overlapping shutdown periods or shutdowns that occur in different years, can be examined through use of a present-worth calculation option. 2 - Method of solution: The user selects a set of units for analysis, defines a shutdown (or de-rating) period, and specifies any planned maintenance outages, delays in unit start-ups, or changes in default capacity factors. The program then determines which seasonal cost numbers to apply, estimates total and daily costs, and makes the appropriate adjustments for multiple outages if they are encountered. The change in production cost is determined from the difference between the total variable costs (variable fuel cost, variable operation and maintenance cost, and purchased energy cost) when the reactor is available for generation and when it is not. Changes in reference-year dollars are based on gross national product (GNP) price deflators or on optional use inputs. Once RECAP has completed the initial cost estimates for a case study (or series of case studies), present-worth analysis can be conducted using different reference-year dollars and discount rates, as specified by the user. The program uses

  18. Behavior of antimony isotopes in the primary coolant of WWER-1000-type nuclear reactors in NPP Kozloduy during operation and shutdown

    International Nuclear Information System (INIS)

    Dobrevski, Ivan D.; Zaharieva, Neli N.; Minkova, Katia F.; Gerchev, Nikolay B.

    2009-01-01

    This paper focuses on the behavior of the antimony isotopes 122 Sb and 124 Sb in the coolant of the WWER reactors in the nuclear power plant Kozloduy (Bulgaria) during operation and shutdown. It is concluded that the chemical properties of their actual precursor, the isotope 121 Sb, determine the behavior of 122 Sb and 124 Sb during operation, load fluctuations, and shutdown as well as during the reactor coolant purification process. It is supposed that differences between the reactor bulk and the core fuel cladding surface chemistry as well as the presence of sub-cooled nucleate boiling at the fuel cladding may create conditions under which a local oxidizing environment may come into existence. (orig.)

  19. Simulation of Darlington shutdown and regulation systems

    International Nuclear Information System (INIS)

    1986-10-01

    This report describes the development of a simulation of the Darlington Nuclear Generating Station shutdown and regulating systems, DARSIM. The DARSIM program simulates the spatial neutron dynamics, the regulation of the reactor power, and Shutdown System 1, SDS1, and Shutdown System 2, SDS2, software. The DARSIM program operates in the interactive simulation (INSIM) program environment

  20. Supply of wood fuel from small-scale woodlands for small-scale heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report summarises the findings of a study aimed at stimulating a market for wood fuels. A desk study of harvesting in existing small woodland was conducted, and thirteen case studies covering early broadleaved thinnings, mixed broadleaved coppice, and crownwood, scrub and residues were examined to obtain information on woodland types, wood fuel supply, and combustion equipment. Details are given of the measurement of moisture content of woodchips and stacked roundwood, wood volume and green density, harvesting options, crop and site variables, and production and costs of wood fuels. Usage of wood fuels, and the drying of small roundwood was considered. (UK)

  1. MTR fuel element supply by CERCA through CECCN after the production transfer from NUKEM

    International Nuclear Information System (INIS)

    Hassel, H.W.

    1991-01-01

    The transfer of fuel element supply contracts, the corresponding Al-materials, structure parts, documents, uranium metal, customers related know-how, tools and equipment from NUKEM to CERCA has been completed, thus now giving a high flexibility for CERCA's workshop to fabricate and inspect large quantities of several types of fuel elements simultaneously. Based on this fact, on strategic planning for the next couple of years and on the fact that after 10 years of RERTR program the necessary high density fuel has been successfully developed and implemented, 'business as usual' in the field of fabrication has well become possible. The RERTR community should now use the great chance to concentrate all its efforts on problems which still strongly influence the fabrication and the use of MTR fuel elements: supply of enriched uranium,reprocessing capabilities and politics, transports of nuclear materials. (author)

  2. Gas engine driven freon-free heat supply system complying with multiple fuels (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Sumio; Maekawa, Koich; Sugawara, Koich; Hayashida, Masaru; Fujishima, Ichiro; Fukuyama, Yuji; Morikawa, Tomoyuki; Yamato, Tadao; Obata, Norio [Advanced Technology Lab., Kubota Corp., Amagasaki, Hyogo (Japan)

    1999-07-01

    This paper describes recent results at Kubota to develop a gas engine driven freon-free heat supply system. Utilizing a gas mixture which consists of CO and H{sub 2} supplied from a broad area energy utilization network, the system produces four heat sources (263 K, 280 K, 318 K, and 353 K) for air-conditioning, hot water supply, and refrigeration in a single system. It also conforms to fuel systems that utilize methane and hydrogen. This multi-functional heat supply system is composed of an efficient gas engine (methanol gas engine) and a freon-free heat pump (heat-assisted Stirling heat pump). The heat-assisted Stirling heat pump is mainly driven by engine shaft power and is partially assisted by thermal power provided by engine exhaust heat. By proportioning the two energy sources to match the characteristics of the driving engine, the heat pump is supplied with the maximum share of the original energy fueling the engine. Developing the system will establish freon-free thermal utilization system technology that satisfies both wide heat demands and various fuel systems. (orig.)

  3. Consumers' risk elimination in fuel supply chain. The Attica's Marinas yacht fuelling case study

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Nikolaos [ELINOIL-HELLENIC PETROLEUM COMPANY, S.A., Kifisia (Greece); Zannikos, Fanourios [National Technical Univ. of Athens (Greece). Lab. of Fuels Technology and Lubricants

    2013-06-01

    Oil products distribution system is a complicated supply chain and includes a lot of uncertainties. A limited but quite interesting part of this system is yachting supply in marinas. Yachts usually are equipped with high efficiency and big horsepower modem engines; sea travelling is risky itself so fuel quality contributes significant in safety; many of the yachts are chartered for hired cruises and so operators have the right to purchase tax-free marine diesel, which creates conditions for smuggling and adulteration. All above create a great need for quality control in these fuels, as Greek oil companies do not apply at the moment Total Quality Management (TQM) for securing both quality specifications and quantity paid by the end user. In this research project the Laboratory of Fuel Technology and Lubricants of NTUA collected samples and analysed fuels delivered by tank trucks to yachts in six marinas in the district of Attica. These fuels were marketed by ELINOIL SA, a medium size oil distribution company, operating in Greece. ELINOIL has a market share of 6% of the Greek fuel market but is a market leader in yachting supply in Attica, having more than 50% of the specific market. Problems concerning fuel quality were analysed, direct or indirect causes were tracked, recorded and analysed, always in comparison with data from other Quality Control procedures applied from the company. A specially developed database was updated with facts and figures from incidents and quality issues covering this activity of the company during this period. The project, as it was targeted, detected the quality problems of the specific supply chain and ended to suggestions concerning the building of Quality Assurance System in yachting fuel supply. (orig.)

  4. 500 Watt Diesel Fueled TPV Portable Power Supply

    Science.gov (United States)

    Horne, W. E.; Morgan, M. D.; Sundaram, V. S.; Butcher, T.

    2003-01-01

    A test-bed 500 watt diesel fueled thermophotovoltaic (TPV) portable power supply is described. The goal of the design is a compact, rugged field portable unit weighing less than 15 pounds without fuel. The conversion efficiency goal is set at 15% fuel energy to electric energy delivered to an external load at 24 volts. A burner/recuperator system has been developed to meet the objectives of high combustion air preheat temperatures with a compact heat exchanger, low excess air operation, and high convective heat transfer rates to the silicon carbide emitter surface. The burner incorporates a air blast atomizer with 100% of the combustion air passing through the nozzle. Designed firing rate of 2900 watts at 0.07 gallons of oil per hour. This incorporates a single air supply dc motor/fan set and avoids the need for a system air compressor. The recuperator consists of three annular, concentric laminar flow passages. Heat from the combustion of the diesel fuel is both radiantly and convectively coupled to the inside wall of a cylindrical silicon carbide emitter. The outer wall of the emitter then radiates blackbody energy at the design temperature of 1400°C. The cylindrical emitter is enclosed in a quartz envelope that separates it from the photovoltaic (PV) cells. Spectral control is accomplished by a resonant mesh IR band-pass filter placed between the emitter and the PV array. The narrow band of energy transmitted by the filter is intercepted and converted to electricity by an array of GaSb PV cells. The array consists of 216 1-cm × 1-cm GaSb cells arranged into series and parallel arrays. An array of heat pipes couple the PV cell arrays to a heat exchanger which is cooled by forced air convection. A brief status of the key TPV technologies is presented followed by data characterizing the performance of the 500 watt TPV system.

  5. Performance Analyses of Renewable and Fuel Power Supply Systems for Different Base Station Sites

    Directory of Open Access Journals (Sweden)

    Josip Lorincz

    2014-11-01

    Full Text Available Base station sites (BSSs powered with renewable energy sources have gained the attention of cellular operators during the last few years. This is because such “green” BSSs impose significant reductions in the operational expenditures (OPEX of telecom operators due to the possibility of on-site renewable energy harvesting. In this paper, the green BSSs power supply system parameters detected through remote and centralized real time sensing are presented. An implemented sensing system based on a wireless sensor network enables reliable collection and post-processing analyses of many parameters, such as: total charging/discharging current of power supply system, battery voltage and temperature, wind speed, etc. As an example, yearly sensing results for three different BSS configurations powered by solar and/or wind energy are discussed in terms of renewable energy supply (RES system performance. In the case of powering those BSS with standalone systems based on a fuel generator, the fuel consumption models expressing interdependence among the generator load and fuel consumption are proposed. This has allowed energy-efficiency comparison of the fuel powered and RES systems, which is presented in terms of the OPEX and carbon dioxide (CO2 reductions. Additionally, approaches based on different BSS air-conditioning systems and the on/off regulation of a daily fuel generator activity are proposed and validated in terms of energy and capital expenditure (CAPEX savings.

  6. Design, integration and demonstration of a 50 W JP8/kerosene fueled portable SOFC power generator

    Science.gov (United States)

    Cheekatamarla, Praveen K.; Finnerty, Caine M.; Robinson, Charles R.; Andrews, Stanley M.; Brodie, Jonathan A.; Lu, Y.; DeWald, Paul G.

    A man-portable solid oxide fuel cell (SOFC) system integrated with desulfurized JP8 partial oxidation (POX) reformer was demonstrated to supply a continuous power output of 50 W. This paper discusses some of the design paths chosen and challenges faced during the thermal integration of the stack and reformer in aiding the system startup and shutdown along with balance of plant and power management solutions. The package design, system capabilities, and test results of the prototype unit are presented.

  7. Loss of benefits resulting from mandated nuclear plant shutdowns

    International Nuclear Information System (INIS)

    Peerenboom, J.P.; Buehring, W.A.

    1982-01-01

    This paper identifies and discusses some of the important consequences of nuclear power plant unavailability, and quantifies a number of technical measures of loss of benefits that result from regulatory actions such as licensing delays and mandated nuclear plant outages. The loss of benefits that accompany such regulatory actions include increased costs of systems generation, increased demand for nonnuclear and often scarce fuels, and reduced system reliability. This paper is based on a series of case studies, supplemented by sensitivity studies, on hypothetical nuclear plant shutdowns. These studies were developed by Argonne in cooperation with four electric utilities

  8. Safety shutdown separators

    Science.gov (United States)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  9. Reliability of dc power supplies in nuclear power plant application

    International Nuclear Information System (INIS)

    Eisenhut, D.G.

    1978-01-01

    In June 1977 the reliability of dc power supplies at nuclear power facilities was questioned. It was postulated that a sudden gross failure of the redundant dc power supplies might occur during normal plant operation, and that this could lead to insufficient shutdown cooling of the reactor core. It was further suggested that this potential for insufficient cooling is great enough to warrant consideration of prompt remedies. The work described herein was part of the NRC staff's efforts aimed towards putting the performance of dc power supplies in proper perspective and was mainly directed towards the particular concern raised at that time. While the staff did not attempt to perform a systematic study of overall dc power supply reliability including all possible failure modes for such supplies, the work summarized herein describes how a probabilistic approach was used to supplement our more usual deterministic approach to reactor safety. Our evaluation concluded that the likelihood of dc power supply failures leading to insufficient shutdown cooling of the reactor core is sufficiently small as to not require any immediate action

  10. Availability of nuclear fuels: an aspect of supply assurance. [German Federal Republic

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, U; Ziesing, H J [Deutsches Inst. fuer Wirtschaftsforschung, Berlin (F.R. Germany)

    1976-08-01

    The future supply possibilities for the Federal Republic of Germany with nuclear fuel are investigated by the German Institute for Economy Research in an expertise on 'the safety, price and environmental aspects in the energy supply'. The requirements of natural uranium in the Federal Republic of Germany are dealt with, as well as the world-wide assured and probable deposits of natural uranium in relation to the extraction costs. After indicating the restrictive changes in the export policy of the supplying countries, the international and national state of development of recycling is shown.

  11. Supply chain management applications for forest fuel procurement. Cost or benefit?

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, J.; Roeser, D. (Finnish Forest Research Inst., Joensuu Research Unit (Finland)), email: johannes.windisch@metla.fi; Sikanen, L.; Gritten, D. (Univ. of Eastern Finland, School of Forest Science, Joensuu (Finland))

    2010-07-01

    It is commonly agreed that logistics is very demanding in forest fuel business. Even though logistics and supply chain management (SCM) tools already have found their way into forestry business, for example, in roundwood operations, they are not yet very widespread in the field of forest fuel procurement. The present study investigates if modern supply chain management applications are capable of increasing the profitability of forest fuel procurement operations. Since margins are low, decreasing the provision costs could boost wood-based bioenergy business. The study is based on the investigation of two Finnish forest owners associations (FOA) involved in forest fuel procurement using a modern SCM tool. The investigation is done by cost-benefit analysis (CBA) using the net present value (NPV) methodology to determine the profitability. According to the estimates made by the staff, which are based on data such as work time records and delivery notes from before and after introduction of the new system, in both FOAs, the benefits far outweigh the costs over a considered timespan of ten years. However, the amount of the NPV varied significantly. For FOA1, with an annual chip production of 150 000 loose m3, the NPV is 212 739 euro, while for FOA2, with an annual chip production of 37 000 loose m3, the NPV is 969 841 euro. Even if the NPV of FOA2 seems to be very high, the profitability of SCM tools in forest fuel procurement is clearly demonstrated. Additionally, the results indicate that a considerable cost saving potential in forest fuel procurement is attainable through improving work flows and thus reduce the work input. (orig.)

  12. ORNL Isotopes Facilities Shutdown Program Plan

    International Nuclear Information System (INIS)

    Gibson, S.M.; Patton, B.D.; Sears, M.B.

    1990-10-01

    This plan presents the results of a technical and economic assessment for shutdown of the Oak Ridge National Laboratory (ORNL) isotopes production and distribution facilities. On December 11, 1989, the Department of Energy (DOE), Headquarters, in a memorandum addressed to DOE Oak Ridge Operations Office (DOE-ORO), gave instructions to prepare the ORNL isotopes production and distribution facilities, with the exception of immediate facility needs for krypton-85, tritium, and yttrium-90, for safe shutdown. In response to the memorandum, ORNL identified 17 facilities for shutdown. Each of these facilities is located within the ORNL complex with the exception of Building 9204-3, which is located at the Y-12 Weapons Production Plant. These facilities have been used extensively for the production of radioactive materials by the DOE Isotopes Program. They currently house a large inventory of radioactive materials. Over the years, these aging facilities have inherited the problems associated with storing and processing highly radioactive materials (i.e., facilities' materials degradation and contamination). During FY 1990, ORNL is addressing the requirements for placing these facilities into safe shutdown while maintaining the facilities under the existing maintenance and surveillance plan. The day-to-day operations associated with the surveillance and maintenance of a facility include building checks to ensure that building parameters are meeting the required operational safety requirements, performance of contamination control measures, and preventative maintenance on the facility and facility equipment. Shutdown implementation will begin in FY 1993, and shutdown completion will occur by the end of FY 1994

  13. Strategies for fuel cell product development. Developing fuel cell products in the technology supply chain

    International Nuclear Information System (INIS)

    Hellman, H.L.

    2004-01-01

    Due to the high cost of research and development and the broad spectrum of knowledge and competences required to develop fuel cell products, many product-developing firms outsource fuel cell technology, either partly or completely. This article addresses the inter-firm process of fuel cell product development from an Industrial Design Engineering perspective. The fuel cell product development can currently be characterised by a high degree of economic and technical uncertainty. Regarding the technology uncertainty: product-developing firms are more often then not unfamiliar with fuel cell technology technology. Yet there is a high interface complexity between the technology supplied and the product in which it is to be incorporated. In this paper the information exchange in three current fuel cell product development projects is analysed to determine the information required by a product designer to develop a fuel cell product. Technology transfer literature suggests that transfer effectiveness is greatest when the type of technology (technology uncertainty) and the type of relationship between the technology supplier and the recipient are carefully matched. In this line of thinking this paper proposes that the information required by a designer, determined by the design strategy and product/system volume, should be met by an appropriate level of communication interactivity with a technology specialist. (author)

  14. Fuel cell/photovoltaic integrated power system for a remote telecommunications repeater

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P.; Chamberlin, C.; Zoellick, J.; Engel, R.; Rommel, D. [Humbolt State University, Arcata, CA (United States). Schatz Energy Research Center

    2002-07-01

    There is a special energy supply challenge associated with remote telecommunication systems, as they require reliable, unattended power system operation in areas and locations where there is no grid power. To supply back-up power to the Schoolhouse Peak remote photovoltaic-powered radio-telephone repeater located in Redwood National Park in northwestern California, the Schatz Energy Research Center built and operated a proton exchange membrane (PEM) fuel cell power system. In those instances where solar insolation is insufficient to maintain state-of-charge of the system's battery, the fuel cell automatically starts. Remote monitoring and control is made possible with the use of a cellular modem. The original fuel cell stack logged 3239 hours of run time in 229 days of operation. Subsequent to improvements and a rebuilt fuel cell stack, it operated for 3836 hours during 269 days. In this paper, system performance, long-term fuel cell voltage decay, and lessons learned and applied in system refurbishment were discussed. During this trial, the flawless performance of the hydrogen storage and delivery subsystem, the battery voltage-sensing relay, the safety shutdowns, and the remote data acquisition and control equipment was noted. To protect the stack from sudden temperature increases while minimizing unneeded parasitic loads, experience showed that a temperature-controlled fan switch, despite its additional complexity, was justified. 4 refs., 10 figs.

  15. Reactor shut-down device

    International Nuclear Information System (INIS)

    Otsuka, Fumio; Horikawa, Yuji.

    1990-01-01

    The present invention concerns an externally disposed reactor shut-down device for an FBR type reactor using liquid sodium as coolants. An introducing pipe having an outlet port disposed at an upper portion thereof is disposed at a lower end of an upper guide tube. An extension tube, an L-shaped measuring wire support and a measuring wire are disposed at the inside of the guide tube. With such a constitution, low temperature coolants flown out from the lower guide tube of a control rod and a great amount of high temperature coolants flown out from the lower guide tube of a fuel assembly are introduced smoothly to the introducing tube having the measuring wire support disposed therein. Accordingly, the high temperature coolants can be prevented from flowing out to the outside of the introducing tube and coolants after mixing can be flown and hit against a curie point electromagnet efficiently. This can make the response to abnormal temperature rise of coolants satisfactory and can provide reliable reactor scram. (I.N.)

  16. Design philosophy of PFBR shutdown systems

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Vijayashree, R.; Govindarajan, S.; Vaidyanathan, G.; Muralikrishna, G.; Shanmugam, T.K.; Chetal, S.C.; Raghavan, K.; Bhoje, S.B.

    1996-01-01

    This paper presents the overall design philosophy of shutdown system of 500 MWe Prototype Fast Breeder Reactor (PFBR). It discusses design criteria, parameters calling for safety action, different safety actions and the concepts conceived for shutdown systems. In tune with the philosophy of defence-in-depth, additional passive shutdown features, viz., Self Actuating Device (SADE) and Curie Point Magnetic (CPM) switch and protective feature like absorber rod Stroke Limiting Device (SLD) are contemplated. It also discusses about suitability of Gas Expansion Module (GEM) as one of the safety devices in PFBR. (author). 3 refs, 3 figs, 1 tab

  17. The use of digital computers in CANDU shutdown systems

    International Nuclear Information System (INIS)

    Gilbert, R.S.; Komorowski, C.W.

    1986-01-01

    This paper summarizes the application of computers in CANDU shutdown systems. A general description of systems that are already in service is presented along with a description of a fully computerized shutdown system which is scheduled to enter service in 1987. In reviewing the use of computers in the shutdown systems there are three functional areas where computers have been or are being applied. These are (i) shutdown system monitoring, (ii) parameter display and testing and (iii) shutdown initiation. In recent years various factors (References 1 and 2) have influenced the development and deployment of systems which have addressed two of these functions. At the present time a system is also being designed which addresses all of these areas in a comprehensive manner. This fully computerized shutdown system reflects the previous design, and licensing experience which was gained in earlier applications. Prior to describing the specific systems which have been designed a short summary of CANDU shutdown system characteristics is presented

  18. LNG as vehicle fuel and the problem of supply: The Italian case study

    International Nuclear Information System (INIS)

    Arteconi, A.; Polonara, F.

    2013-01-01

    The transport sector represents a major item on the global balance of greenhouse gas (GHG) emissions. Natural gas is considered the alternative fuel that, in the short-medium term, can best substitute conventional fuels in order to reduce their environmental impact, because it is readily available at a competitive price, using technologies already in widespread use. It can be used as compressed gas (CNG) or in the liquid phase (LNG), being the former more suitable for light vehicles, while the latter for heavy duty vehicles. The purpose of this paper is to outline the potential of LNG as vehicle fuel, showing positive and negative aspects related to its introduction and comparing the different supply options with reference to the Italian scenario, paying particular attention to the possibility of on site liquefaction. The analysis has highlighted that purchasing LNG at the regasification terminal is convenient up to a terminal distance of 2000 km from the refuelling station. The liquefaction on site, instead, asks for liquefaction efficiency higher than 70% and low natural gas price and, as liquefaction technology, the let-down plants at the pressure reduction points along the pipeline are the best option to compete with direct supply at the terminal. -- Highlights: •LNG potential as vehicles fuel is analysed. •A SWOT analysis for LNG introduction in the Italian market is presented. •An economic comparison of different supply options is performed. •Possible micro-scale liquefaction technologies are evaluated

  19. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  20. Preliminary Calculations of Shutdown Dose Rate for the CTS Diagnostics System

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Nonbøl, Erik; Lauritzen, Bent

    2015-01-01

    DTU and IST 2 are partners in the design of a collective Thomson Scattering (CTS) diagnostics for ITER through a contract with F4E. The CTS diagnostic utilizes probing radiation of ~60 GHz emitted into the plasma and, using a mirror, collects the scattered radiation by an array of receivers. Having...... on supplying input which affect the system design. Examples include: - Heatloads on plasma facing mirrors and preliminary stress and thermal analysis - Port plug cooling requirements and it's dependence on system design (in particular blanket cut-out) - Shutdown dose-rate calculations (relative analysis...

  1. Inventory of radioactive corrosion products on the primary surfaces and release during shutdown in Ringhals 2

    International Nuclear Information System (INIS)

    Aronsson, O.

    1994-01-01

    In Ringhals 2 a retrospective study using gamma scans of system surfaces, fuel crud sampling and reactor coolant analyses during operation and shutdown has been done. The data have been used to prepare a balance of activity inventory. The inventory has been fairly stable from 1986 to 1993, expressed as a gamma source term. The steam generator replacement in 1989 removed some 40-50% of the Co-60 inventory in the reactor system. After the steam generator replacement, the gamma source term has got an increasing contribution from Co-58, absolutely as well as relatively. The reason for this is probably the switch from high pH operation to modified pH operation. Corrosion from fresh alloy 690 surfaces in the new steam generators is probably another contributing factor. The inventory and production rate of Co-60 is decreasing over the years. It has also been found that clean-up of the reactor coolant during start-up, operation, and shutdown as well as the fuel pool during refuelling removes about the same amounts of Co-60. (author). 11 figs., 15 refs

  2. SPES, Fuel Cycle Optimization for LWR

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: Determination of optimal fuel cycle at equilibrium for a light water reactor taking into account batch size, fuel enrichment, de-rating, shutdown time, cost of replacement energy. 2 - Method of solution: Iterative method

  3. Electricity-market price and nuclear power plant shutdown: Evidence from California

    International Nuclear Information System (INIS)

    Woo, C.K.; Ho, T.; Zarnikau, J.; Olson, A.; Jones, R.; Chait, M.; Horowitz, I.; Wang, J.

    2014-01-01

    Japan's Fukushima nuclear disaster, triggered by the March 11, 2011 earthquake, has led to calls for shutting down existing nuclear plants. To maintain resource adequacy for a grid's reliable operation, one option is to expand conventional generation, whose marginal unit is typically fueled by natural-gas. Two timely and relevant questions thus arise for a deregulated wholesale electricity market: (1) what is the likely price increase due to a nuclear plant shutdown? and (2) what can be done to mitigate the price increase? To answer these questions, we perform a regression analysis of a large sample of hourly real-time electricity-market price data from the California Independent System Operator (CAISO) for the 33-month sample period of April 2010–December 2012. Our analysis indicates that the 2013 shutdown of the state's San Onofre plant raised the CAISO real-time hourly market prices by $6/MWH to $9/MWH, and that the price increases could have been offset by a combination of demand reduction, increasing solar generation, and increasing wind generation. - Highlights: • Japan's disaster led to calls for shutting down existing nuclear plants. • We perform a regression analysis of California's real-time electricity-market prices. • We estimate that the San Onofre plant shutdown has raised the market prices by $6/MWH to $9/MWH. • The price increases could be offset by demand reduction and renewable generation increase

  4. Reactor shutdown system of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Govindarajan, S.; Singh, Om Pal; Kasinathan, N.; Paramasivan Pillai, C.; Arul, A.J.; Chetal, S.C.

    2002-01-01

    Full text: The shutdown system of PFBR is designed to assure a very high reliability by employing well known principles of redundancy, diversity and independence. The failure probability of the shutdown system limited to -6 / ry. Salient features of the shutdown system are: Two independent shutdown systems, each of them able to accommodate an additional single failure and made up of a trip system and an associated absorber rod group. Diversity between trip systems, rods and mechanisms. Initiation of SCRAM by two diverse physical parameters of the two shutdown systems for design events leading potentially to unacceptable conditions is the core. The first group of nine rods called control and safety rods (CSR) is used for both shutdown as well as power regulation. The second group consisting of three rods known as diverse safety rods (DSR) is used only for shutdown. Diversity between the two groups is ensured by varying the operating conditions of the electromagnets and the configurations of the mobile parts. The reactivity worth of the absorber rods have been chosen such that each group of rods would ensure cold shutdown on SCRAM even when the most reactive rod of the group fails to drop. Together the two groups ensure a shutdown margin of 5000 pcm. The speed and individual rod worth of the CSR is chosen from operational and safety considerations during reactor start up and raising of power. Required drop time of rods during SCRAM depends on the incident considered. For a severe reactivity incident of 3 $/s this has to be limited to 1s and is ensured by limiting electromagnet response time and facilitating drop by gravity. Design safety limits for core components have been determined and SCRAM parameters have been identified by plant dynamic analysis to restrict the temperatures of core components within the limits. The SCRAM parameters are distributed between the two systems appropriately. Fault tree analysis of the system has been carried out to determine the

  5. Stochastic Optimization of Supply Chain Risk Measures –a Methodology for Improving Supply Security of Subsidized Fuel Oil in Indonesia

    Directory of Open Access Journals (Sweden)

    Adinda Yuanita

    2015-08-01

    Full Text Available Monte Carlo simulation-based methods for stochastic optimization of risk measures is required to solve complex problems in supply security of subsidized fuel oil in Indonesia. In order to overcome constraints in distribution of subsidized fuel in Indonesia, which has the fourth largest population in the world—more than 250,000,000 people with 66.5% of productive population, and has more than 17,000 islands with its population centered around the nation's capital only—it is necessary to have a measurable and integrated risk analysis with monitoring system for the purpose of supply security of subsidized fuel. In consideration of this complex issue, uncertainty and probability heavily affected this research. Therefore, this research did the Monte Carlo sampling-based stochastic simulation optimization with the state-of-the-art "FIRST" parameter combined with the Sensitivity Analysis to determine the priority of integrated risk mitigation handling so that the implication of the new model design from this research may give faster risk mitigation time. The results of the research identified innovative ideas of risk based audit on supply chain risk management and new FIRST (Fairness, Independence, Reliable, Sustainable, Transparent parameters on risk measures. In addition to that, the integration of risk analysis confirmed the innovative level of priority on sensitivity analysis. Moreover, the findings showed that the new risk mitigation time was 60% faster than the original risk mitigation time.

  6. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Malfunction, startup, and shutdown..., startup, and shutdown regulations. (a) The following regulations are disapproved because they would permit... malfunctions and/or fail to sufficiently limit startup and shutdown exemptions to those periods where it is...

  7. Fuel supply strategy for power projects in Asia

    International Nuclear Information System (INIS)

    Boyd, D.

    1997-01-01

    Electricity generation is forecast to grow in Asia over the next twenty years. This will bring with it a significant growth in demand for energy resources. Major Asian utility coal procurement strategy to date has aimed at securing a balance between two conflicting needs - security of supply and low cost of supply. Despite the oversupply of coal in the eighties, the two countries experiencing significant growth in demand, Japan and Korea, planned their fuel strategies to ensure security of supply. The supply shortage over the past two years has justified their forward thinking in keeping long term coal contracts in place. Changes are already happening. Recent developments are seeing a move towards the positive attributes of low ash/low sulphur coals appropriately focusing suppliers thoughts on the need in the future to develop and concentrate on environmentally attractive coals to achieve greater returns. Indeed, generally there is a trend in North Asia to demand coal with lower sulphur, and lower ash. The aim now should be to persuade consumers to amend the narrow benchmark view in favour of one that considers the value in use of a particular coal to the customer. The method of pricing thermal coals is also likely to be influenced by the liberalization of the electricity market itself. The introduction of competition amongst generators and the appearance and growth of the Independent Power Producers could well see further pressure on the current simplistic benchmark system. Those financing such projects will seek to reduce risk by every means possible and, in particular, will want to be confident of the long term security of coal supplies

  8. Design of emergency shutdown system for the Tehran Research Reactor; Part I: Neutronics investigation

    International Nuclear Information System (INIS)

    Safarinia, M.; Faghihi, F.; Mirvakili, S.M.; Fakhraei, A.

    2017-01-01

    Highlights: • An emergency shutdown system for the TRR is carried out based on a heavy water tank. • The performance of the heavy water tank are carried out based on “first and equilibrium cores”. • Heavy water discharging flow rate is also studied in the current research. • Thermal flux in the radioisotope channel with and without the heavy water tank are studied. • A core with and without the heavy water tank for the cases of 5 × 6, 5 × 5, 5 × 4, and 4 × 4 fuel assemblies are investigated (for two types of fuel loading—first and equilibrium cores). - Abstract: In this paper, a neutronics design of the secondary (i.e., emergency) shutdown system for the Tehran Research Reactor (TRR) is carried out based on a heavy water tank design. The heavy water tank in a cylindrical shape is around the core, and calculations for the optimized radius and height of the tank are performed. The performance of the heavy water tank calculations are carried out based on two types of fuel loading, which are called the “first and equilibrium cores” of the TRR. For both cases, neutronics and standard safety analysis are taken into account, benchmarked, and described herein. Heavy water discharging flow rate is also studied in the current research, and the results are compared with the IAEA criteria. Moreover, thermal flux in the radioisotope channel with and without the heavy water tank (as the reflector) are studied herein. Specifically, a core with and without the heavy water tank for the cases of 5 × 6, 5 × 5, 5 × 4, and 4 × 4 fuel assemblies are investigated (for two types of fuel loading—first and equilibrium cores). Based on our optimization, the 5 × 5 fuel assembly, which is called “B configuration,” has better performance and efficiency than that of the other described layouts.

  9. Performance of fuel cell for energy supply of passive house

    Energy Technology Data Exchange (ETDEWEB)

    Badea, G.; Felseghi, R. A., E-mail: Raluca.FELSEGHI@insta.utcluj.ro; Mureşan, D.; Naghiu, G. [Technical University of Cluj-Napoca, Building Services Engineering Department, Bd. December 21, no. 128-130, 400600, Cluj-Napoca (Romania); Răboacă, S. M. [National R& D Institute for Cryogenic and Isotopic Technologies, str. Uzinei, no. 4, Rm. Vălcea, 240050 (Romania); Aşchilean, I. [SC ACI Cluj SA, Avenue Dorobanţilor, no. 70, 400609, Cluj-Napoca (Romania)

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  10. Design of shutdown system no.2 liquid poison injection system for 500 MWe PHWR

    International Nuclear Information System (INIS)

    Bhatnagar, S.; Balasubrahmanian, A.K.; Pillai, A.V.

    1997-01-01

    Defence in depth and two group system concepts form the basic design philosophy for the shutdown systems. There are two independent, diverse and fast acting shutdown systems provided for the 500 MWe PHWR. The design is based on fail-safe principle, sufficient component redundancy and on-line testing. Liquid poison injection system, as shutdown system 2, is newly developed for the 500 MWe PHWRs. The system operates by rapidly injecting gadolinium nitrate solution into bulk moderator using stored helium pressure thereby inserting negative reactivity. A high pressure helium supply tank which provides the energy for system actuation, is connected, through an array of fast acting valves in series-parallel arrangement, to the individual poison tanks storing gadolinium nitrate solution. The valves, belonging to three different channels of reactor Protection System 2, are the only active components in the system. The valves are fail safe and are periodically tested on-line without actually firing the system. The system comprising of in-core assemblies and the external process system has been engineered. Experimental work is being carried out by BARC for design validation and data generation. This paper describes the conceptual development, design basis, design parameters and detailed engineering of the system. (author)

  11. Material streams in the fuel supply to and disposal of waste from nuclear power stations

    International Nuclear Information System (INIS)

    Merz, E.

    1990-01-01

    The nuclear fuel cycle is characterized by specifically small, but complex material streams. The fresh fuel derived from natural uranium is fed into the cycle at the stage of fuel element fabrication, while at the end stage, waste from spent fuel element reprocessing, or non-reprocessible fuel elements, are taken out of the cycle and prepared for ultimate disposal. The alternative methods of waste management, reprocessing or direct ultimate disposal, are an issue of controversial debate with regard to their differences in terms of supply policy, economic and ecological aspects. (orig.) [de

  12. The Path to a Reliable Supply of Medical Radioisotopes

    International Nuclear Information System (INIS)

    Gas, Serge; Westmacott, Chad; Cameron, Ron; Lokhov, Alexey

    2011-06-01

    Medical imaging techniques using technetium-99m account for roughly 80% of all nuclear medicine procedures, representing over 30 million examinations worldwide every year. Disruptions in the supply chain of these medical isotopes - which have half-lives of 66 hours for molybdenum-99 ( 99 Mo) and 6 hours for technetium-99m ( 99m Tc), and thus must be produced continually - can lead to cancellations or delays in important medical testing services. Unfortunately, supply reliability has declined over the past decade, due to unexpected or extended shutdowns at the few ageing, 99 Mo-producing, research reactors and processing facilities. These shutdowns have created global supply shortages. At the request of its member countries, the OECD Nuclear Energy Agency (NEA) established the High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) in 2009. During its two-year mandate, the HLG-MR assessed the factors rendering the supply chain vulnerable and identified practical measures - near, medium and long term - to ensure the security of supply of this important medical isotope. Building on its findings and assessments, the HLG-MR developed a comprehensive policy approach to encourage long-term supply security of 99 Mo/' 99m Tc, detailing the essential steps to be taken by governments, industry and the health community to address the vulnerabilities within the supply chain, including changing an economic structure that does not support or reinforce reliable supply

  13. First commercial fuel cells in emergency power supplies; Erste kommerzielle Brennstoffzellen im Notstrombereich. Praxistest als USV fuer eine Mobilfunkbasisstation

    Energy Technology Data Exchange (ETDEWEB)

    Trachte, U.

    2008-07-01

    This article takes a look at the testing of a fuel-cell-based uninterruptible power supply for a cell-phone base station. The working principles of various types of fuel cell are examined and their areas of application are discussed. The use of polymer-electrolyte-membrane (PEM) fuel cells as a back-up power supply for a cell-phone base station was examined by the University of Applied Sciences in Lucerne, Switzerland. Several designs and models of fuel cells were examined. The installation of the cell-phone station is described and experience gained from the use of fuel cells in practice is presented and discussed.

  14. Mixed Reload Design Using MOX and UOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Ramon, Ramirez Sanchez J.; Perry, R.T.

    2002-01-01

    As part of the studies involved in plutonium utilization assessment for a Boiling Water Reactor, a conceptual design of MOX fuel was developed, this design is mechanically the same design of 10 X 10 BWR fuel assemblies but different fissile material. Several plutonium and gadolinium concentrations were tested to match the 18 months cycle length which is the current cycle length of LVNPP, a reference UO 2 assembly was modeled to have a full cycle length to compare results, an effective value of 0.97 for the multiplication factor was set as target for 470 Effective Full Power days for both cycles, here the gadolinium concentration was a key to find an average fissile plutonium content of 6.55% in the assembly. A reload of 124 fuel assemblies was assumed to simulate the complete core, several load fractions of MOX fuel mixed with UO 2 fresh fuel were tested to verify the shutdown margin, the UO 2 fuel meets the shutdown margin when 124 fuel assemblies are loaded into the core, but it does not happen when those 124 assemblies are replaced with MOX fuel assemblies, so the fraction of MOX was reduced step by step up to find a mixed load that meets both length cycle and shutdown margin. Finally the conclusion is that control rods losses some of their worth in presence of plutonium due to a more hardened neutron spectrum in MOX fuel and this fact limits the load of MOX fuel assemblies in the core, this results are shown in this paper. (authors)

  15. 10 CFR 503.32 - Lack of alternate fuel supply at a cost which does not substantially exceed the cost of using...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply at a cost which does not... (CONTINUED) ALTERNATE FUELS NEW FACILITIES Permanent Exemptions for New Facilities § 503.32 Lack of alternate... alternate fuel supply at a cost which does not substantially exceed the cost of using imported petroleum. To...

  16. About economy of fuel and energy resources in the hot water supply system

    Science.gov (United States)

    Rotov, P. V.; Sivukhin, A. A.; Zhukov, D. A.; Zhukova, A. V.

    2017-11-01

    The assessment of the power efficiency realized in the current of heat supply system of technology of regulation of loading of the hot water supply system, considering unevenness consumption of hot water is executed. For the purpose of definition the applicability boundary of realized technology comparative analysis of indicators of the effectiveness of its work within the possible range of the parameters of regulations. Developed a software application “The calculation of the total economy of fuel and energy resources in the hot water supply system when you change of the parameters of regulations”, which allows on the basis of multivariate calculations analyses of their results, to choose the optimum mode of operation heat supply system and to assess the effectiveness of load regulation in the hot water supply system.

  17. Stochastic Optimization of Supply Chain Risk Measures –a Methodology for Improving Supply Security of Subsidized Fuel Oil in Indonesia

    OpenAIRE

    Adinda Yuanita; Andi Noorsaman Sommeng; Anondho Wijonarko

    2015-01-01

    Monte Carlo simulation-based methods for stochastic optimization of risk measures is required to solve complex problems in supply security of subsidized fuel oil in Indonesia. In order to overcome constraints in distribution of subsidized fuel in Indonesia, which has the fourth largest population in the world—more than 250,000,000 people with 66.5% of productive population, and has more than 17,000 islands with its population centered around the nation's capital only—it is necessary to have a...

  18. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  19. LMFBR fuel analysis. Task C: Reliability aspects of LMFBRs. Final report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Bastl, W.; Kastenberg, W.E.

    1977-10-01

    An analysis is presented for the availability of the electrical power supplies upon reactor shutdown. Successful power supply is defined in terms of the ability of the associated pumps (pump motors) to provide forced circulation and to deliver sufficient feedwater for proper cooldown of the core. Previous investigations of the reliability of the CRBR shutdown heat removal system concentrated on the mechanical systems and/or did not yet consider the diverse power supply. The shutdown heat removal system (SHRS) is discussed in the light of the availability of the electrical power systems, depending upon various types of initiating events. The unavailabilities of the essential power distribution and power supply buses are estimated, so that they can easily be used in connection with analyses of the entire SHRS. Further estimates include mechanical failure of the pumps

  20. Risks Associated with Shutdown in PWRs

    International Nuclear Information System (INIS)

    Grlicarev, I.

    1996-01-01

    The selected set of risks associated with reactor shutdown in PWRs are outlined and discussed (e. g. outage planning, residual heat removal capability, rapid boron dilution, containment integrity, fire protection). The contribution of different outage strategies to overall core damage risk during shutdown is assessed for a particular basic outage plan. The factors which increase or minimize the probability of reactor coolant boiling or core damage are analysed. (author)

  1. Sustainable electricity supply in the world by 2050 for economic growth and automotive fuel

    International Nuclear Information System (INIS)

    Kruger, P.

    2010-01-01

    Over the next 40 years, the combustion of fossil fuels for generation of electricity and vehicle transportation will be significantly reduced. In addition to the business-as-usual growth in electric energy demand for the growing world population, new electricity-intensive industries, such as battery electric vehicles and hydrogen fuel-cell vehicles will result in further growth in world consumption of electric energy. Planning for a sustainable supply of electric energy in the diverse economies of the world should be carried out with appropriate technology for selecting the appropriate large-scale energy resources based on their specific energy. Analysis of appropriate technology for the available large-scale energy resources with diminished use of fossil fuel combustion shows that sustainable electricity supply can be achieved with equal contributions of renewable energy resources for large numbers of small-scale distributed applications and nuclear energy resources for the smaller number of large-scale centralised applications. (author)

  2. The turbulent liquid fuel industry in Zimbabwe: options for resolving the crisis and improving supply to the poor

    International Nuclear Information System (INIS)

    Mashange, Krispen

    2002-01-01

    Towards the end of the last decade, supplies in petroleum fuel have been erratic to the extent that Zimbabwe has at times operated with as low as 40% of normal supplies. These shortages were attributed mainly to foreign exchange shortages and alleged mismanagement and corruption at the National Oil Company of Zimbabwe (NOCZIM). As shortages intensified, problems of product shortage began to unfold, which adversely impacted on the urban poor. The public began to question the industry's policies on the sustainability of the liquid fuel sector policies in Zimbabwe. Of particular concern was policies regarding regulatory mechanisms, pricing, distribution, utilisation of storage facilities, supply routes and NOCZIM management. This paper evaluates the challenges facing the Zimbabwean petroleum sector and presents recommendations that could assist in ensuring a robust and functional national fuel sector. (Author)

  3. A portable backup power supply to assure extended decay heat removal during natural phenomena-induced station blackout

    International Nuclear Information System (INIS)

    Proctor, L.D.; Merryman, L.D.; Sallee, W.E.

    1989-01-01

    The High Flux Isotope Reactor (HFIR) is a light water cooled and moderated flux-trap type research reactor located at Oak Ridge National Laboratory (ORNL). Coolant circulation following reactor shutdown is provided by the primary coolant pumps. DC-powered pony motors drive these pumps at a reduced flow rate following shutdown of the normal ac-powered motors. Forced circulation decay heat removal is required for several hours to preclude core damage following shutdown. Recent analyses identified a potential vulnerability due to a natural phenomena-induced station blackout. Neither the offsire power supply nor the onsite emergency diesel generators are designed to withstand the effects of seismic events or tornadoes. It could not be assured that the capacity of the dedicated batteries provided as a backup power supply for the primary coolant pump pony motors is adequate to provide forced circulation cooling for the required time following such events. A portable backup power supply added to the plant to address this potential vulnerability is described

  4. TRIGA forced shutdowns analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Laslau, Florica

    2008-01-01

    The need for improving the operation leads us to use new methods and strategies. Probabilistic safety assessments and statistical analysis provide insights useful for our reactor operation. This paper is dedicated to analysis of the forced shutdowns during the first reactor operation period, between 1980 to 1989. A forced shutdown data base was designed using data on forced shutdowns collected from the reactor operation logbooks. In order to sort out the forced shutdowns the records have the following fields: - current number, date, equipment failed, failure type (M for mechanical, E for electrical, D for irradiation device, U for human factor failure; - scram mode, SE for external scram, failure of reactor cooling circuits and/or irradiation devices, SR for reactor scram, exceeding of reactor nuclear parameters, SB for reactor scram by control rod drop, SM for manual scram required by the abnormal reactor status; - scram cause, giving more information on the forced shutdown. This data base was processed using DBase III. The data processing techniques are presented. To sort out the data, one of the criteria was the number of scrams per year, failure type, scram mode, etc. There are presented yearly scrams, total operation time in hours, total unavailable time, median unavailable time period, reactor availability A. There are given the formulae used to calculate the reactor operational parameters. There are shown the scrams per year in the 1980 to 1989 period, the reactor operation time per year, the reactor shutdown time per year and the operating time versus down time per year. Total number of scrams in the covered period was 643 which caused a reactor down time of 4282.25 hours. In a table the scrams as sorted on the failure type is shown. Summarising, this study emphasized some problems and difficulties which occurred during the TRIGA reactor operation at Pitesti. One main difficulty in creating this data base was the unstandardized scram record mode. Some times

  5. Stochastic Programming for Fuel Supply Planning of Combined Heat and Power Plants

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    The consumption of biomass to produce power and heat has increased due to the carbon neutral policies. Combined heat and power (CHP) plants often combine biomass with other fuels, e.g., natural gas. The negotiation process for supply contracts involves many uncertainties due to the long planning...... horizon. The demand for biomass is uncertain, and heat demand and electricity prices vary during the planning period. We propose a method using stochastic optimization to support the biomass and natural gas supply planning for CHP plants including short-term decisions for optimal market participation....

  6. A novel reactor type for autothermal reforming of diesel fuel and kerosene

    International Nuclear Information System (INIS)

    Pasel, Joachim; Samsun, Remzi Can; Tschauder, Andreas; Peters, Ralf; Stolten, Detlef

    2015-01-01

    Highlights: • Development and experimental evaluation of Juelich’s novel ATR reactor type. • Constructive integration of steam generation chamber and nozzle for water injection. • Internal steam generator modified to reduce pressure drop to approx. a thirtieth. • Novel concept for ATR heat management proven to be suitable for fuel cell systems. • Reaction conditions during shut-down and start-up optimized to reduce byproducts. - Abstract: This paper describes the development and experimental evaluation of Juelich’s novel reactor type ATR AH2 for autothermal reforming of diesel fuel and kerosene. ATR AH2 overcomes the disadvantages of Juelich’s former reactor generations from the perspective of the fuel cell system by constructively integrating an additional pressure swirl nozzle for the injection of cold water and a steam generation chamber. As a consequence, ATR AH2 eliminates the need for external process configurations for steam supply. Additionally, the internal steam generator has been modified by increasing its cross-sectional area and by decreasing its length. This measure reduces the pressure drop of the steam generator from approx. 500 mbar to roughly a thirtieth. The experimental evaluation of ATR AH2 at steady state revealed that the novel concept for heat management applied in ATR AH2 is suitable for fuel cell systems at any reformer load point between 20% and 120% when the mass fractions of cold water to the newly integrated nozzle are set to values between 40% and 50%. The experimental evaluation of ATR AH2 during start-up and shut-down showed that slight modifications of the reaction conditions during these transient phases greatly reduced the concentrations of ethene, ethane, propene and benzene in the reformate. From the fuel cell system perspective, these improvements provide a very beneficial contribution to longer stabilities for the catalysts and adsorption materials

  7. Supplementary shutdown system of 220 MWe standard PHWR in India

    International Nuclear Information System (INIS)

    Muktibodh, U.C.

    1997-01-01

    The design objective of the shutdown system is to make the reactor subcritical and hold it in that state for an extended period of time. This objective must be realised under all anticipated operational occurrences and postulated abnormal conditions even during most reactive state of the core. PHWR design criteria for shutdown stipulates requirement of two independent diverse and fast acting shutdown systems, either of which acting alone should meet the above objectives. This requirement would normally call for a large number of reactivity mechanism penetrations into the calandria. From the point of view of space availability at the reactivity mechanism area on top of calandria, for the relatively small core of 220 MWe PHWRs, and ease of maintenance realisation of the total worth by either of the shutdown systems acting alone was difficult. To overcome this engineering constraint and at the same time to satisfy the design criteria, a unique approach to meet the reactivity demands for shutdown was adopted. The reactivity requirements of the shutdown consists of fast and slow reactivity changes. For the shutdown system of 220 MWe PHWRs, the approach of realizing fast reactivity changes with dual redundant, diverse, fast acting shutdown systems aided by a slow acting shutdown system to counter delayed reactivity changes was conceived. The supplementary slow acting shutdown system is called upon to act after actuation of either of the two redundant fast acting systems and is referred to as Liquid Poison Injection System (LPIS). The system adds bulk amount of neutron poison (boric acid), equivalent to 45 mk, directly into the moderator through two nozzles in calandria using pneumatic pressure. This paper describes the design of LPIS as envisaged for the standardised 220 MWe PHWRs. (author)

  8. An innovative system for supplying air and fuel mixture to a combustion chamber of an engine

    Science.gov (United States)

    Saikumar, G. R. Bharath

    2018-04-01

    Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.

  9. Experience with after-shutdown decay heat removal - BWRs and PWRs

    International Nuclear Information System (INIS)

    Haugh, J.J.; Mollerus, F.J.; Booth, H.R.

    1992-01-01

    Boiling-water reactors (BWRs) and pressurized-water reactors (PWRs) make use of residual heat removal systems (RHRSs) during reactor shutdown. RHRS operational events involving an actual loss or significant degradation of an RHRS during shutdown heat removal are often prompted or aggravated by complex, changing plant conditions and by concurrent maintenance operations. Events involving loss of coolant inventory, loss of decay heat removal capability, or inadvertent pressurization while in cold shutdown have occurred. Because fewer automatic protective fetures are operative during cold shutdowns, both prevention and termination of events depend heavily on operator action. The preservation of RHRS cooling should be an important priority in all shutdown operations, particularly where there is substantial decay heat and a reduced water inventory. 13 refs., 3 figs., 4 tabs

  10. Characteristics of wood chip fuel demand and supply in south-west Japan

    Energy Technology Data Exchange (ETDEWEB)

    Teraoka, Y.; Sato, M.; Ijichi, S. [Faculty of Agriculture, Kagoshima Univ., Kagoshima (Japan)

    2012-11-01

    Although fossil fuel has been still important energy source in Japan, business managers who examine to sift energy source from oil to bio-fuels would increase for reducing CO{sub 2} emission and high energy cost. It would be quite reasonable choice for Japanese people to use woody biomass for energy sources but woody biomass fuel market hasn't been expanded. One of the reasons is that the Japanese timber production, processing and distribution sectors haven't considered the wood fuel production as by-product. Therefore, this study investigated a potential wood chip boiler demand in south-west Japan through a questionnaire survey for industrial sectors. Second aim is to explain the importance of management information such as a quantity of chip fuel production or distribution and a moisture content of chips from the example cases of installed chip boiler facilities. Expected facilities that would introduce a chip boiler are a hotel, a large hospital, a liquor factory and an aquaculture pool. There will be an annual wood chip fuel demand of 0.756 million green-ton (6.0 PJ) in Kagoshima Prefecture. Problems in more chip boilers introduction are a stable fuel supply and fuel moisture control in addition to the reduction of an initial and operational running cost.

  11. Safety analysis of Ignalina NPP during shutdown conditions

    International Nuclear Information System (INIS)

    Kaliatka, A.; Uspuras, E.

    2000-01-01

    The accident analysis for the Ignalina NPP with RBMK-1500 reactors at normal operating conditions and at minimum controlled power level (during startup of the reactor) has been performed in the frame of the project I n-Depth Safety Assessment of the Ignalina NPP , which was completed in 1996. However, the plant conditions during the reactor shutdown differ from conditions during reactor operation at full power (equipment status in protection systems, set points for actuation of safety and protection systems, etc.). Results of RELAP5 simulation of two worst initiating events during reactor shutdown - Pressure Header rupture in case of steam reactor cooldown as well as Pressure Header rupture in case of water reactor cooldown are discussed in the paper. Results of analysis shown that reactor are reliably cooled in both cases. Further analysis for all range of initial events during reactor shutdown and at shutdown conditions is recommended. (author)

  12. First LHC Shutdown: Coordination and Schedule Issues

    CERN Document Server

    Coupard, J; Grillot, S

    2010-01-01

    The first LHC shutdown started in fall 2008, just after the incident on the 19th of September 2008. In addition to the typical work of a shutdown, a large number of interventions, related to the “consolidation after the incident” were performed in the LHC loop. Moreover the amount of work increased during the shutdown, following the recommendations and conclusions of the different working groups in charge of the safety of the personnel and of the machine. This paper will give an overview of the work performed, the organization of the coordination, emphasizing the new safety risks (electrical and cryogenic), and how the interventions were implemented in order to ensure both the safety of personnel and a minimized time window.

  13. Kinetic analyses on startup and shutdown chemistry of BWR plant

    International Nuclear Information System (INIS)

    Domae, Masafumi; Fujiwara, Kazutoshi; Inagaki, Hiromitsu

    2012-09-01

    During startup and shutdown of Boiling Water Reactor (BWR) plants, temperature and dissolved oxygen (DO) concentration of reactor water change in a wide range. The changes result in variation of conductivity and pH of the reactor water. It has been speculated that the water chemistry change is due to dissolution of the oxides on fuel claddings and structural materials. However, detailed mechanism is not known. In the present paper, trend of recent water chemistry in several BWR plants during startup and shutdown is presented. Conductivity and pH are convenient indication of coolant purity. We tried to clarify the mechanism of the change in the conductivity and the pH value during startup and shutdown, based on the water chemistry data measured. In the water chemistry data, change in chromate concentration and Ni 2+ concentration is rather large. It is assumed that change in the chromate concentration and the Ni 2+ concentration results in the time variation of the conductivity and the pH value. It is reasonable to consider that the increase in the chromate concentration and the Ni 2+ concentration is ascribed to dissolution of Cr oxides and Ni oxides, respectively. A model of dissolution of the Cr oxides and the Ni oxides is proposed. A concept of finite inventory of the Cr oxides and the Ni oxides in the coolant system is introduced. The model is as follows. Chromate is generated by oxidation of the Cr oxides and the Cr dissolution rate depends on the DO concentration. The dissolution rate of chromate is in proportion to DO concentration, the inventory of Cr and difference between solubility limit and the chromate concentration. On the other hand, Ni 2+ is formed by dissolution of the Ni oxides, and DO is not necessary in this process. The dissolution rate of Ni 2+ is in proportion to the inventory of Ni and difference between solubility limit and the Ni 2+ concentration. Coolant is continuously purified, and the chromate concentration and the Ni 2+ concentration

  14. Fueling our future: four steps to a new, reliable, cleaner, decentralized energy supply based on hydrogen and fuel cells

    International Nuclear Information System (INIS)

    Evers, A.A.

    2004-01-01

    'Full text:' This manuscript demonstrates the possible driving factors and necessary elements needed to move Hydrogen and Fuel Cells (H2/FC) to worldwide commercialisation. Focusing not only on the technology itself, we look at the 'bigger picture' explaining how certain trends have impacted the progress of new technologies developments in the past. In this process, the consumer has played and will continue to play the key and leading role. We also examine different Distributed Generation scenarios including distributed generation via fuel cells for automotive applications which may be the catalyst to the Hydrogen Economy. One possible step could be the use of Personal Power Cars equipped with Fuel Cells which not only drive on Hydrogen, but also supply (while standing) electricity /heat to residential and commercial buildings. With 1.3 billion potential customers, P.R. China is one country where such a scenario may fit. The up-and-coming Chinese H2/FC industry deals with applied fundamental research such as advances in Hydrogen production from Natural Gas, Methanol and Gasoline. The current activities in P.R. China certain to further accelerate the trend towards the coming Hydrogen Economy, together with the steps necessary to achieve a new reliable, cleaner and decentralized Energy Supply based on H2/FC are examined. (author)

  15. The future supply of and demand for candidate materials for the fabrication of nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Grover, L.K.

    1990-01-01

    This report summarizes the findings of a literature survey carried out to assess the future world supply of and demand for titanium, copper and lead. These metals are candidate materials for the fabrication of containers for the immobilization and disposal of Canada's nuclear used-fuel waste for a reference Used-fuel Disposal Centre. Such a facility may begin operation by approximately 2020, and continue for about 40 years. The survey shows that the world has abundant supplies of titanium minerals (mostly in the form of ilmenite), which are expected to last up to at least 2110. However, for copper and lead the balance between supply and demand may warrant increased monitoring beyond the year 2000. A number of factors that can influence future supply and demand are discussed in the report

  16. Evolution of shutdown mechanism for PHWRs

    International Nuclear Information System (INIS)

    Singh, Manjit; Govindarajan, G.

    1997-01-01

    In 500 MWe PHWR, there are two independent fast acting shutdown systems namely (1) mechanical shut-off rod system and (2) liquid poison injection system. Both systems are independently capable of keeping the reactor in sub-critical condition during long shutdown. Mechanical shut-off rod system being primary shutdown system calls for a very high reliability of operation as well as effectiveness, which are mainly governed by its ability to operate within a very short time and the magnitude of negative reactivity worth it can provide. Mechanical shut-off rods are normally parked above the core by shut-off rod drive mechanism. On receiving a scram signal, shut-off rods are released from the holding electromagnetic clutch and fall under gravity into the core. This paper discusses the salient features of mechanical shut-off rod system. A brief account of detailed design and development of sub-assemblies of shut-off rod drive mechanism is also presented. (author)

  17. Impact of Multilateral Approaches for Assurances of Nuclear Fuel Supply

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Yang, M. H.; Oh, K. B.; Lee, K. S

    2007-12-15

    This study consists of 3 parts : analysis of the characteristics of the recent proposals for a nuclear fuel supply and the progress of them, responses from various sectors in the world, and measures for them. In response to recent proposals, majority of countries possessing sensitive nuclear fuel facilities are supportive in general. In contrast, many countries not possessing such facilities are reluctant about the proposals. To satisfy both parties, an ideal proposal could suggest measures to assure a non-proliferation as well as measures to acquire confidence from the so-called user nations. To get strong support from all countries concerned, the proposal should contain some critical elements such as clear attractiveness for a participation, equal opportunities for the participating countries, voluntarily in decision on a participation, and a gradual approach to remove any future obstacles encountered. The criteria to judge a legitimate need of a country for the introduction of nuclear fuel facilities should be prepared by a consensus. Compliance of a nonproliferation obligation, scale of an economy, and an energy security can be proposed as such criteria.

  18. Impact of Multilateral Approaches for Assurances of Nuclear Fuel Supply

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Yang, M. H.; Oh, K. B.; Lee, K. S.

    2007-12-01

    This study consists of 3 parts : analysis of the characteristics of the recent proposals for a nuclear fuel supply and the progress of them, responses from various sectors in the world, and measures for them. In response to recent proposals, majority of countries possessing sensitive nuclear fuel facilities are supportive in general. In contrast, many countries not possessing such facilities are reluctant about the proposals. To satisfy both parties, an ideal proposal could suggest measures to assure a non-proliferation as well as measures to acquire confidence from the so-called user nations. To get strong support from all countries concerned, the proposal should contain some critical elements such as clear attractiveness for a participation, equal opportunities for the participating countries, voluntarily in decision on a participation, and a gradual approach to remove any future obstacles encountered. The criteria to judge a legitimate need of a country for the introduction of nuclear fuel facilities should be prepared by a consensus. Compliance of a nonproliferation obligation, scale of an economy, and an energy security can be proposed as such criteria

  19. Event sequence quantification for a loss of shutdown cooling accident in the GCFR

    International Nuclear Information System (INIS)

    Frank, M.; Reilly, J.

    1979-10-01

    A summary is presented of the core-wide sequence of events of a postulated total loss of forced and natural convection decay heat removal in a shutdown Gas-Cooled Fast Reactor (GCFR). It outlines the analytical methods and results for the progression of the accident sequence. This hypothetical accident proceeds in the distinct phases of cladding melting, assembly wall melting and molten steel relocation into the interassembly spacing, and fuel relocation. It identifies the key phenomena of the event sequence and the concerns and mechanisms of both recriticality and recriticality prevention

  20. PSA-operations synergism for the advanced test reactor shutdown operations PSA

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1996-01-01

    The Advanced Test Reactor (ATR) Probabilistic Safety Assessment (PSA) for shutdown operations, cask handling, and canal draining is a successful example of the importance of good PSA-operations synergism for achieving a realistic and accepted assessment of the risks and for achieving desired risk reduction and safety improvement in a best and cost-effective manner. The implementation of the agreed-upon upgrades and improvements resulted in the reductions of the estimated mean frequency for core or canal irradiated fuel uncovery events, a total reduction in risk by a factor of nearly 1000 to a very low and acceptable risk level for potentially severe events

  1. Evaluation of slow shutdown system flux detectors in Point Lepreau Generating Station - II: dynamic compensation error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V.N.P.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Taylor, D. [New Brunswick Power Nuclear, Point Lepreau, New Brunswick (Canada)

    2009-07-01

    CANDU reactors are protected against reactor overpower by two independent shutdown systems: Shut Down System 1 and 2 (SDS1 and SDS2). At the Point Lepreau Generating Station (PLGS), the shutdown systems can be actuated by measurements of the neutron flux from Platinum-clad Inconel In-Core Flux Detectors. These detectors have a complex dynamic behaviour, characterized by 'prompt' and 'delayed' components with respect to immediate changes in the in-core neutron flux. It was shown previously (I: Dynamic Response Characterization by Anghel et al., this conference) that the dynamic responses of the detectors changed with irradiation, with the SDS2 detectors having 'prompt' signal components that decreased significantly. In this paper we assess the implication of these changes for detector dynamic compensation errors by comparing the compensated detector response with the power-to-fuel and the power-to-coolant responses to neutron flux ramps as assumed by previous error analyses. The dynamic compensation error is estimated at any given trip time for all possible accident flux ramps. Some implications for the shutdown system trip set points, obtained from preliminary results, are discussed. (author)

  2. Tracking of fuel particles after pin failure in nominal, loss-of-flow and shutdown conditions in the MYRRHA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Sophia; Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Van Tichelen, Katrien [SCK- CEN, Boeretang 200, 2400 Mol (Belgium)

    2017-02-15

    Highlights: • Quantification of the design and safety of the MYRRHA reactor in the event of a pin failure. • Simulation of different accident scenarios in both forced and natural convection regime. • The accumulation areas at the free-surface in case of the least dense particles depend on the flow regime. • The densest particles form an important deposit at the bottom of the vessel. • Further study of the risk of core blockage requires a detailed model of the core. - Abstract: This work on fuel dispersion aims at quantifying the design and safety of the MYRRHA nuclear reactor. A number of accidents leading to the release of a secondary phase into the primary coolant loop are investigated. Among these scenarios, an incident leading to the failure of one or more of the fuel pins is simulated while the reactor is operating in nominal conditions, but also in natural convection regime either during accident transients such as loss-of-flow or during the normal shut-down of the reactor. Two single-phase CFD models of the MYRRHA reactor are constructed in ANSYS Fluent to represent the reactor in nominal and natural convection conditions. An Euler–Lagrange approach with one-way coupling is used for the flow and particle tracking. Firstly, a steady state RANS solution is obtained for each of the three conditions. Secondly, the particles are released downstream from the core outlet and particle distributions are provided over the coolant circuit. Their size and density are defined such that test cases represent potential extremes that may occur. Analysis of the results highlights different particle behaviors, depending essentially on gravity forces and kinematic effects. Statistical distributions highlight potential accumulation regions that may form at the free-surfaces, on top of the upper diaphragm plate or at the bottom of the vessel. These results help to localize regions of fuel accumulation in order to provide insight for development of strategies for

  3. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1998-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes because of the complexity of their calculation model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equation adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuraniums for different MOX fuel loading fractions and irradiating conditions

  4. CANDU 6 liquid injection shutdown system waterhammer analysis using PTRAN

    International Nuclear Information System (INIS)

    Ko, Deuk Yoon; Kim, Eun Ki; Ko, Yong Sang; Park, Byung Ho; Kim, Seok Bum

    1996-06-01

    An in-core LOCA could result in flooding of the helium header in the liquid injection shutdown system. Flooding of the helium header will result in severe pressure transients (waterhammer) in the liquid injection shutdown system when the shutdown signal is initiated. To evaluate the impact of the dynamic effects of this event, a pressure transient analysis has been performed. This analysis is performed using PTRAN, which is a computer program based on the method of characteristics. The results of this analysis are used in the stress analysis of the piping and pipe supports to ensure that the liquid injection shutdown system can withstand the pressure transient loadings. This analysis report documents the results of waterhammer analysis performed for the liquid injection shutdown system for the Wolsung nuclear power plant unit 2, 3 and 4. 4 tabs., 11 figs., 15 refs. (Author)

  5. CANDU 6 liquid injection shutdown system waterhammer analysis using PTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Deuk Yoon; Kim, Eun Ki; Ko, Yong Sang; Park, Byung Ho; Kim, Seok Bum [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    An in-core LOCA could result in flooding of the helium header in the liquid injection shutdown system. Flooding of the helium header will result in severe pressure transients (waterhammer) in the liquid injection shutdown system when the shutdown signal is initiated. To evaluate the impact of the dynamic effects of this event, a pressure transient analysis has been performed. This analysis is performed using PTRAN, which is a computer program based on the method of characteristics. The results of this analysis are used in the stress analysis of the piping and pipe supports to ensure that the liquid injection shutdown system can withstand the pressure transient loadings. This analysis report documents the results of waterhammer analysis performed for the liquid injection shutdown system for the Wolsung nuclear power plant unit 2, 3 and 4. 4 tabs., 11 figs., 15 refs. (Author).

  6. Fuel performance evaluation through iodine activity monitoring

    International Nuclear Information System (INIS)

    Anantharaman, K.; Chandra, R.

    1995-01-01

    The objective of the failed fuel detection system is to keep a watch on fuel behaviour during operation. This paper describes the evaluation of fuel behaviour by monitoring the activities of various isotopes of iodine both during steady state and during a reactor shutdown. The limitations of this approach also has been explained. The monitoring of tramp uranium for different types of release, namely fixed contamination and continuous release from fuel, is also presented. (author)

  7. Criteria for remote shutdown for light water reactors

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This Standard provides design criteria which require that: (1) specific controls and monitoring equipment shall be provided for achieving and maintaining the plant in a safe shutdown condition; (2) these controls be installed at a location (or locations) that is physically remote from the control room and cable spreading areas; (3) simultaneous control from both locations shall be prevented by administrative controls or devices for transfer of control from the control room to the remote location(s); and (4) the remote controls be used as defense-in-depth measure in addition to the control room shutdown controls and as a minimum shall provide for one complete channel of shutdown equipment

  8. CAREM-25 Reactor Second Shutdown System Consolidation Analysis

    International Nuclear Information System (INIS)

    Gimenez, Marcelo; Zanocco, Pablo; Schlamp, Miguel

    2000-01-01

    CAREM Reactor Second Shutdown System (SSS) injects boron into the primary circuit in case of First Shutdown System failure in order to stop the nuclear reaction and to maintain the core in a safe condition during cold shutdown.It also has another safety function which is to inject water in the primary system at any pressure in case of LOCA.Different system requirements are analyzed during a SSS spurious trip and LOCA's transients.Two different alternatives are presented for the stand by condition pressurized system, they are solid mode and hot water layer. Both cases fulfill the design requirements from the safety point of view

  9. Certificate for Safe Emergency Shutdown of Wind Turbines

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Svenstrup, Mikael; Pedersen, Andreas Søndergaard

    2013-01-01

    To avoid damage to a wind turbine in the case of a fault or a large wind gust, a detection scheme for emergency shutdown is developed. Specifically, the concept of a safety envelope is introduced. Within the safety envelope, the system can be shutdown without risking structural damage to the turb...

  10. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1997-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes, because of the complexity of their calculational model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equilibrium adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuranium for different MOX fuel loading fractions and irradiating conditions. (author)

  11. Recent experience about the influence of primary coolant and shutdown chemistry on cobalt activity at Beznau NPP

    International Nuclear Information System (INIS)

    Mailand, I.; Venz, H.

    2007-01-01

    The Beznau nuclear power plant comprises two identical 380 MWe PWR units, commissioned in 1969 and 1971. The surfaces of the new steam generator tube material, Inconel 690, are the main source of 58 Co. The 60 Co originates predominantly from the Cobalt alloy, Stellite, which is installed in valves and pump bearings because of the very good hardness of this material. By means of optimised shutdown chemistry it is possible to reduce the amount of NiO on the fuel rods, leading to reduced Co-58 peaks in subsequent cycles. The optimised shutdown chemistry during the past few years and especially the strict separation of acid-reducing phase from the acid-oxidising phase as well as the results of studies and the resulting operational experiences are important basics for the actual operation mode of the Beznau NPP. (orig.)

  12. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  13. Design Options for Thermal Shutdown Circuitry with Hysteresis Width Independent on the Activation Temperature

    Directory of Open Access Journals (Sweden)

    PLESA, C.-S.

    2017-02-01

    Full Text Available This paper presents several design options for implementing a thermal shutdown circuit with hysteretic characteristic, which has two special features: a programmable activation temperature (the upper trip point of the characteristic and a hysteresis width largely insensitive to the actual value of the activation temperature and to variations of the supply voltage. A fairly straightforward architecture is employed, with the hysteresis implemented by a current source enabled by the output of the circuit. Four possible designs are considered for this current source: VBE/R, modified-VBE/R, Widlar and a peaking current source tailored for this circuit. First, a detailed analytical analysis of the circuit implemented with these current sources is performed; it indicates the one best suited for this application and provides key sizing equations. Next, the chosen current source is employed to design the thermal shutdown protection of an integrated Low-Dropout Voltage Regulator (LDO for automotive applications. Simulation results and measurements performed on the silicon implementation fully validate the design. Moreover, they compare favorably with the performance of similar circuits reported recently.

  14. AREVA 10x10 BWR fuel experience feedback and on going upgrading

    International Nuclear Information System (INIS)

    Lippert, Hans Joachim; Rentmeister, Thomas; Garner, Norman; Tandy, Jay; Mollard, Pierre

    2008-01-01

    Established with engineering and manufacturing operations in the US and Europe, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to boiling water reactors worldwide, representing today more than 63 000 fuel assemblies. The evolution of BWR fuel rod arrays from early 6x6 designs to the 10x10 designs first introduced in the mid 1990's yielded significant improvements in thermal mechanical operating limits, critical power level, cold shutdown margin, discharge burnup, as well as other key operational capabilities. Since first delivered in 1992, ATRIUM T M 1 0 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. This article presents in detail the operational experience consolidated by these more than 20 000 ATRIUM T M 1 0 BWR assemblies already supplied to utilities. Within the different 10x10 fuel assemblies available, the Fuel Assembly design is chosen and tailored to the operating strategies of each reactor. Among them, the latest versions of ATRIUM T M a re ATRIUM T M 1 0XP and ATRIUM T M 1 0XM fuel assemblies which have been delivered to several utilities worldwide. The article details key aspects of ATRIUM T M 1 0 fuel assemblies in terms of reliability and performance. Special attention is paid to key proven features, ULTRAFLOW T M s pacer grids, the use of part length fuel rods (PLFRs) and their geometrical optimization, water channel and load chain, upgraded features available for inclusion with most advanced designs. Regular upgrading of the product has been made possible thanks to a continuous improvement process with the aim of further upgrading BWR fuel assembly performance and reliability. Regarding thermal mechanical behavior of fuel rods, chromia (Cr2O3) doped fuel pellets, described in Reference 1, well illustrate this improvement strategy to reduce fission gas release, increase power thresholds for PCI

  15. The logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant; Cadena logistica en la fabrica de elementos combustibles de Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The paper describe the logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant, located in Juzbado in the province of Salamanca. In the the article are described the principal elements in the supply chain and the difficulties of its management derived from the short period for the manufacturing of the nuclear fuel. It's also given a view in relation to the transportation by land sea of the nuclear components, uranium oxide powder and the manufactured fuel. The characteristics of the supply chain are determined by the plant production forecast, by the origin and high technology of the raw materials and by nuclear fuel delivery site locations. (Author)

  16. Safety aspects of unplanned shutdowns and trips

    International Nuclear Information System (INIS)

    1986-05-01

    The issue of unplanned shutdowns and trips is receiving increased attention worldwide in view of its importance to plant safety and availability. There exists significant variation in the number of forced shutdowns for nuclear power plants of the same type operating worldwide. The reduction of the frequency of these events will have safety benefits in terms of reducing the frequency of plant transients and the challenges to the safety systems, and the risks of possible incidents. This report provides an insight into the causes of unplanned shutdowns experienced in operating nuclear power plants worldwide, the good practices that have been found effective in minimizing their occurrence, and the measures that have been taken to reduce these events. Specific information on the experiences, approaches and practices of some countries in dealing with this issue is presented in Appendix A

  17. SASSYS validation with the EBR-II shutdown heat removal tests

    International Nuclear Information System (INIS)

    Herzog, J.P.

    1989-01-01

    SASSYS is a coupled neutronic and thermal hydraulic code developed for the analysis of transients in liquid metal cooled reactors (LMRs). The code is especially suited for evaluating of normal reactor transients -- protected (design basis) and unprotected (anticipated transient without scram) transients. Because SASSYS is heavily used in support of the IFR concept and of innovative LMR designs, such as PRISM, a strong validation base for the code must exist. Part of the validation process for SASSYS is analysis of experiments performed on operating reactors, such as the metal fueled Experimental Breeder Reactor -- II (EBR-II). During the course of a series of historic whole-plant experiments, EBR-II illustrated key safety features of metal fueled LMRs. These experiments, the Shutdown Heat Removal Tests (SHRT), culminated in unprotected loss of flow and loss of heat sink transients from full power and flow. Analysis of these and earlier SHRT experiments constitutes a vital part of SASSYS validation, because it facilitates scrutiny of specific SASSYS models and of integrated code capability. 12 refs., 11 figs

  18. Nuclear fuel cycle requirements and supply considerations, through the long-term

    International Nuclear Information System (INIS)

    1978-02-01

    The OECD Nuclear Energy Agency and the International Atomic Energy Agency have for many years published a joint report entitled ''Uranium Resources, Production and Demand'', and a revised edition of this work, dated December 1977, is now available. This report, on the other hand, is the result of a separate study of the supply and demand outlook for all fuel cycle services, as well as for uranium, through the long-term. The work was undertaken by the Nuclear Energy Agency's Working Party on Uranium Demand, whose members are listed in Appendix III. The intent here has been to contribute to the orderly development of nuclear power, by: 1. identifying potential problems in the supply of uranium and fuel cycle services, and possible areas for international co-operation in the resolution of such problems; 2. examining several long-range scenarios to determine the comparative needs of advanced reactors for uranium and for supporting services, thereby establishing the basis for the further development of uranium resources and specific reactor systems; and 3. assisting those having responsibilities in planning, forecasting, and programme management. This report is the work of a group of technical experts and does not necessarily reflect official policy or endorsement of the report's projections and conclusions by the Member Governments of the Nuclear Energy Agency

  19. Gas release from a failed fuel pin after reactor shut-down

    International Nuclear Information System (INIS)

    Pshenichnikov, B.V.

    1975-01-01

    A mathematical model of gassing from a hypothetical core fuel element in the active zone of a stopped water-moderated reactor was analysed to investigate the process of liberation of gaseous fission products from an unpressurized fuel element. A one-dimensional problem was obtained as a result of the accepted hypotheses. A fault was assumed to have occured during reactor operation; at the same time, a vapour-gas mixture was considered to be present under the envelope at reactor working pressure by the moment of stoppage. An approximative estimation was made of the retardation time of pressure balancing at the open end of the fuel element, and also of the amount of total gas remaining in the gap under the fuel element envelope after pressure drop in the reactor. Estimation of retardation time permitted to conclude that pressure in the nonhermetic fuel element envelope follows pressure fluctuation in the reactor in the course of cooling, the retardation time of pressure balancing outside and inside the fuel element lasting but a few seconds

  20. Perspectives on Low Power and Shutdown Risk

    International Nuclear Information System (INIS)

    Camp, Allen L.; Whitehead, Donnie W.; Wheeler, Timothy A.; Lehner, John; Chu, Tsong-Lun; Lois, Erasmai; Drouin, Mary

    2000-01-01

    This paper presents results from a program sponsored by the US Nuclear Regulatory Commission to examine the risks from low power and shutdown operations. Significant progress has been made by the industry in reducing such risks; however, important operational events continue to occur. Current perceptions of low power and shutdown risks are discussed in the paper along with an assessment of the current methods for understanding important events and quantifying their associated risk

  1. Concept of passive safe small reactor for distributed energy supply system

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Nakajima, Nobuya; Sawada, Ken-ichi; Yoritsune, Tsutomu; Shimada, Shoichiro; Nakano, Yoshihiro; Yonomoto, Taisuke; Takahashi, Hiroki

    2003-01-01

    This paper presents a concept of a Passive Safe Small Reactor for Distributed energy supply system (PSRD). The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down. To comply with a severe operation condition of PSRD, material of the ball bearing with graphite retainer has been selected by test. For improvement of economy, simplification of the reactor system and long operation of the core are achieved. Optimization of core design concerning the burnable poison ensures the burn-up of 28 GWd/t for low enriched UO 2 fuel rods. (author)

  2. Italy: Analysis of Solutions for Passively Actuated Safety Shutdown Devices

    International Nuclear Information System (INIS)

    Burgazzi, L.

    2015-01-01

    This article looks at different special shutdown systems specifically engineered for prevention of severe accidents, to be implemented on Fast Reactors, with main focus on the investigation of the performance of the self-actuated shutdown systems in Sodium Fast Reactors. The passive shut-down systems are designed to shut-down system only by inherent passive reactivity feedback mechanism, under unprotected accident conditions, implying failure of reactor protection system. They are conceived to be self-actuated without any signal elaboration, since the actuation of the system is triggered by the effects induced by the transient like material dilatation, in case of overheating of the coolant for instance, according to Fast Reactor design to meet the safety requirements

  3. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Science.gov (United States)

    2010-01-01

    ... operating nontransport category airplanes type certificated after December 31, 1964, to fly for 30 minutes...-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes...

  4. Fuel Application Efficiency in Ideal Cycle of Gas Turbine Plant with Isobaric Heat Supply

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available The paper reveals expediency to use in prospect fuels with maximum value  Qнр∑Vi and minimum theoretical burning temperature in order to obtain maximum efficiency of the ideal cycle in GTP with isobaric heat supply.

  5. Nuclear fuel supply and demand in Western Europe 1991-2004

    International Nuclear Information System (INIS)

    Brusa, L.

    1992-01-01

    For the past ten years, Unipede and Open have jointly conducted an annual survey among their respective European members about nuclear programmes and nuclear fuel cycle requirements and supplies (uranium and enrichment). Its geographical scope is Western Europe, restricted to those countries having a current nuclear power programme. The respondents are the electric utilities in Belgium, Finland, France, Germany (western Laender only), Italy, the Netherlands, Spain, Sweden, Switzerland and the United Kingdom. Exclusively electric utilities are surveyed here, i.e. excluding national procurement organizations, traders, brokers, financial institutions, etc. For those countries where more than one utility is active, the responses covers the whole of the country electrical system and not only that of the respondents. The data, obtained from the individual utilities in the same format, are aggregated and form the basis of the report. This surveys cover uranium and enrichment requirements and supplies, recycling of uranium and plutonium, inventories; the quality of the data is guaranteed by the fact that the respondents are generally those people who are responsible for the day-to-day management of the nuclear fuel cycle in their country. The 1991 survey was launched in early June and replies were received between late June and September. This report aims at analysing the aggregated results of the survey and at providing some comments on the evolution of major parameters from the previous years. (author) 13 figs., refs

  6. Test Firing of chunk wood - Is it possible to automate the fuel supply?; Proveldning av knubbved - Aer det moejligt att automatisera braenslematningen?

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas; Danielsson, Bengt-Olof

    2013-05-15

    Chunk wood is a wood fuel with a fuel particle length typically between 50 and 150 mm. The ad-vantage of chunk wood compared to wood chips is that the fuel dry as fast as fuel wood, but can be produced and handled as wood chip. Technologies for efficient producing, drying and distribution of Chunk wood have been developed since the 1970:s and machines for manufacturing the fuel is available on the market, but still there is no small-scale heating equipment in operation to burn the fuel automatically. The aim of the study was to investigate how the feeding and firing of chunk wood works in a standard 200 kW biomass boiler for various types of biofuels. The main focus was on studying how the fuel feeding system works using chunk wood and if the combustion and emissions are satisfactory. The boiler have a main fuel feeding auger screw connected to the bottom of the fuel storage, followed by a cell feeder and another auger screw that is feeding the fuel into the combustion chamber. The power consumption for the fuel feeding auger screws and the CO-emissions were measured during the firing period. In order to obtain reference values for the stresses in the fuel feeding system and the CO-emissions, regular wood chips were initially fired followed by the chunk wood firing. During the chunk wood firing period several interruptions in the fuel feeding occurred, as the trigger mechanism for the motor protection stopped the fuel supply. Most of the interruptions, however, could be resolved through manual reversing of the fuel feeding auger screw. Only at two occasions the entrance to the auger screw were manually cleared from large fuel pieces. The cell feeder and the auger screw feeding the fuel into the combustion chamber were stopped twice, and to continue operating the boiler it was enough to restart the feeding system. However, as they are both operated by the same motor we do not know whether the two shutdowns that occurred were caused by feeding problems in the auger

  7. Optimization of reactor coolant shutdown chemistry practices for crud inventory management

    International Nuclear Information System (INIS)

    Fellers, B.; Barnette, J.; Stevens, J.; Perkins, D.

    2002-01-01

    This report describes reactor coolant shutdown chemistry control practices at Comanche Peak Steam Electric Station (CPSES, TXU-Generation, USA). The shutdown evolution is managed from a process control perspective to achieve conditions most favorable to crud decomposition and to avoiding re-precipitation of metals. The report discusses the evolution of current industry practices and the necessity for greater emphasis on shutdown chemistry control in response to Axial Offset Anomaly and growth of ex-core radiation fields during outage conditions. Nuclear Industry experience with axial offset anomaly (AOA), radiation field growth and unexpected behavior of crud during reactor shutdowns has encouraged the refinement of chemistry control practices during plant shutdown and startup. The strong implication of nickel rich crud as a cause of AOA and unexpected crud behavior has resulted in a focus on nickel inventory management. The goals for Comanche Peak Steam Electric Station (CPSES) include maintaining solubility of metals and radioisotopes, maximizing nickel removal and effective cleanup with demineralizers. This paper provides results and lessons learned from long term efforts to optimize the shutdown process. (authors)

  8. Startup, Shutdown, & Malfunction (SSM) Emissions

    Science.gov (United States)

    EPA issued a final action to ensure states have plans in place that are fully consistent with the Clean Air Act and recent court decisions concerning startup, shutdown and malfunction (SSM) operations.

  9. Site Characterization Report ORGDP Diffusion Facilities Permanent Shutdown K-700 Power House and K-27 Switch Yard/Switch House

    Energy Technology Data Exchange (ETDEWEB)

    Thomas R.J., Blanchard R.D.

    1988-06-13

    The K-700 Power House area, initially built to supply power to the K-25 gaseous diffusion plant was shutdown and disassembled in the 1960s. This shutdown was initiated by TVA supplying economical power to the diffusion plant complex. As a result of world wide over production of enriched, reactor grade U{sup 235}, the K-27 switch yard and switch house area was placed in standby in 1985. Subsequently, as the future production requirements decreased, the cost of production increased and the separation technologies for other processes improved, the facility was permanently shutdown in December, 1987. This Site Characterization Report is a part of the FY-88 engineering Feasibility Study for placing ORGDP Gaseous Diffusion Process facilities in 'Permanent Shutdown'. It is sponsored by the Department of Energy through Virgil Lowery of Headquarters--Enrichment and through Don Cox of ORO--Enrichment Operations. The primary purpose of these building or site characterization reports is to document, quantify, and map the following potential problems: Asbestos; PCB containing fluids; Oils, coolants, and chemicals; and External contamination. With the documented quantification of the concerns (problems) the Engineering Feasibility Study will then proceed with examining the potential solutions. For this study, permanent shutdown is defined as the securing and/or conditioning of each facility to provide 20 years of safe service with minimal expenditures and, where feasible, also serving DOE's needs for long-term warehousing or other such low-risk use. The K-700 power house series of buildings were either masonry construction or a mix of masonry and wood. The power generating equipment was removed and sold as salvage in the mid 1960s but the buildings and auxiliary equipment were left intact. The nine ancillary buildings in the power house area use early in the Manhattan Project for special research projects, were left intact minus the original special equipment

  10. Long term assurance of supply of back end of fuel cycle facilities and services

    International Nuclear Information System (INIS)

    1978-01-01

    The paper deals with the long-term assurance of supply of the back end of fuel cycle facilities and services. 11 fundamental questions are posed and commented on by representatives of 7 countries. Non-proliferation aspects are not considered as they will be discussed elsewhere

  11. Supply guarantee initiatives for nuclear fuel materials and services and their compatibility with the market

    International Nuclear Information System (INIS)

    Nagano, Koji

    2009-01-01

    This paper first discusses where and why those ideas for nuclear fuel supply assurance and guarantee mechanisms came out, and attempts to draw a comparison among the proposed schemes and thereby examine possible steps forward. (author)

  12. Stabilization and shutdown of Oak Ridge National Laboratory's Radioisotopes Production Facility

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1992-01-01

    The Oak Ridge National Laboratory (ORNL) has been involved in the production and distribution of a variety of radioisotopes for medical, scientific and industrial applications since the late 1940s. Production of these materials was concentrated in a number of facilities primarily built in the 1950s and 1960s. Due to the age and deteriorating condition of these facilities, it was determined in 1989 that it would not be cost effective to upgrade these facilities to bring them into compliance with contemporary environmental, safety and health standards. The US Department of Energy (DOE) instructed ORNL to halt the production of isotopes in these facilities and maintain the facilities in safe standby condition while preparing a stabilization and shutdown plan. The goal was to place the former isotope production facilities in a radiologically and industrially safe condition to allow a 5-year deferral of the initiation of environmental restoration (ER) activities. In response to DOE's instructions, ORNL identified 17 facilities for shutdown, addressed the shutdown requirements for each facility, and prepared and implemented a three-phase, 4-year plan for shutdown of the facilities. The Isotopes Facilities Shutdown Program (IFSP) office was created to execute the stabilization and shutdown plan. The program is entering its third year in which the actual shutdown of the facilities is initiated. Accomplishments to date have included consolidation of all isotopes inventory into one facility, DOE approval of the IFSP Environmental Assessment (EA), and implementation of a detailed management plan for the shutdown of the facilities

  13. Cost of Oil and Biomass Supply Shocks under Different Biofuel Supply Chain Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Uria Martinez, Rocio [ORNL; Leiby, Paul Newsome [ORNL; Brown, Maxwell L. [National Renewable Energy Laboratory (NREL)

    2018-04-01

    This analysis estimates the cost of selected oil and biomass supply shocks for producers and consumers in the light-duty vehicle fuel market under various supply chain configurations using a mathematical programing model, BioTrans. The supply chain configurations differ by whether they include selected flexibility levers: multi-feedstock biorefineries; advanced biomass logistics; and the ability to adjust ethanol content of low-ethanol fuel blends, from E10 to E15 or E05. The simulated scenarios explore market responses to supply shocks including substitution between gasoline and ethanol, substitution between different sources of ethanol supply, biorefinery capacity additions or idling, and price adjustments. Welfare effects for the various market participants represented in BioTrans are summarized into a net shock cost measure. As oil accounts for a larger fraction of fuel by volume, its supply shocks are costlier than biomass supply shocks. Corn availability and the high cost of adding biorefinery capacity limit increases in ethanol use during gasoline price spikes. During shocks that imply sudden decreases in the price of gasoline, the renewable fuel standard (RFS) biofuel blending mandate limits the extent to which flexibility can be exercised to reduce ethanol use. The selected flexibility levers are most useful in response to cellulosic biomass supply shocks.

  14. Shutdown cooling temperature perturbation test for analysis of potential flow blockages

    International Nuclear Information System (INIS)

    Handbury, J.; Newman, C.; Shynot, T.

    1996-01-01

    This paper details the methods and results of the 'shutdown cooling test' in October 1995. This novel test was conducted at PLGS while the reactor was shutdown and shutdown cooling (SDC) waster was recirculating to find potential channel blockages resulting from the introduction of wood debris. This test discovered most of the channels that contained major wood and metal debris. (author)

  15. Shutdown Safety in NEK

    International Nuclear Information System (INIS)

    Gluhak, Mario; Senegovic, Marko

    2014-01-01

    Industry performance analysis since 2004 has revealed that 23% of the events reported to WANO occurred during outage periods. Given the fact that a plant is in the outage only 5 percent of the time, this emphasizes the importance of shutdown safety and measures station staffs undertake to maintain effective barriers to safety margins during the outage. Back in 1990s, the industry adopted guidance to meet safety requirements by focusing on safety functions. Both WANO and INPO released various documents, reports and guidelines to help accomplish those requirements. However, in the last decade inadequate 'defence in depth' has led to several events affecting shutdown safety and challenging one of the most important nuclear safety principles: 'The special characteristics of nuclear technology are taken into account in all decisions and actions. Reactivity control, continuity of core cooling, and integrity of fission product barriers are valued as essential, distinguishing attributes of nuclear station work environment'. NEK has recognized the importance of 'defence in depth'Industry performance analysis since 2004 has revealed that 23% of the events reported to WANO occurred during outage periods. Given the fact that a plant is in the outage only 5 percent of the time, this emphasizes the importance of shutdown safety and measures station staffs undertake to maintain effective barriers to safety margins during the outage. Back in 1990s, the industry adopted guidance to meet safety requirements by focusing on safety functions. Both WANO and INPO released various documents, reports and guidelines to help accomplish those requirements. However, in the last decade inadequate 'defence in depth' has led to several events affecting shutdown safety and challenging one of the most important nuclear safety principles: 'The special characteristics of nuclear technology are taken into account in all decisions and actions. Reactivity

  16. Method of performing shutdown reactivity measurements in spent nuclear fuel storage pools

    International Nuclear Information System (INIS)

    Levine, S.H.; Schultz, M.A.; Chang, D.

    1981-01-01

    The objective of this paper is to develop a device to measure the k/infinity/ of a spent fuel assembly used in light water reactors. A subcritical assembly having a cross configuration is designed to allow measurement of the k/sub //infinity/ of a spent fuel assembly by comparing the change in its multiplication with that of a fuel assembly of known k/infinity/. Calculations have been performed using nucleonic codes to develop polynomial equations that relate the k/infinity/ of the spent fuel assembly to measured data. The measurements involve taking count rates with the spent fuel assembly in the center position of the subcritical assembly, and the measured data are the count rate ratio of the spent fuel assembly over the count rate taken with a fuel assembly of known k/infinity/. The polynomial equations are easy to program on a microcomputer, which, together with the subcritical assembly, form the k/infinity/ meter. 9 refs

  17. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions

    DEFF Research Database (Denmark)

    Zhou, Fan

    performance loss caused by CO poisoning can be alleviated by the presence of water vapor. The CO oxidation via the water gas shift reaction is the main reason for the mitigated CO poisoning with the presence of water vapor. Meanwhile, the CO poisoning can deteriorate with the presence of CO2, although the CO2...... for HT-PEM fuel cell based micro-CHP units for households, the daily startup/shutdown operation is necessary. Moreover, the faults in the H2 supply system or in controlling the reformer can cause the H2 starvation of the HT-PEM fuel cell. The effects of these operating conditions to the degradation...... results in the degradation in cell performance of the HT-PEM fuel cell by increasing the charge transfer resistance and mass transfer resistance. The CO with volume fraction of 1% – 3% can cause significant performance loss to the HT-PEM fuel cell at the operating temperature of 150 oC. The cell...

  18. The accidents during shutdown conditions Temelin NPP

    International Nuclear Information System (INIS)

    Sykora, M.; Mlady, O.

    1996-01-01

    Two parallel activities oriented for the accidents during shutdown conditions are performed at Temelin NPP: Development of symptom based emergency operating procedures (EOPs) applicable for the accidents which could occur during operational modes 1 through 4; independent evaluation of plant safety as part of the Temelin Shutdown probabilistic assessment to define the accidents which could occur during mode 5 and 6 for which the EOPs must be extended. Both these activities are in progress now because Temelin plant is still in the construction phase

  19. Dependence of the time-constant of a fuel rod on different design and operational parameters

    International Nuclear Information System (INIS)

    Elenkov, D.; Lassmann, K.; Schubert, A.; Laar, J. van de

    2001-01-01

    The temperature response during a reactor shutdown has been measured for many years in the OECD-Halden Project. It has been shown that the complicated shutdown processes can be characterized by a time constant τ which depends on different fuel design and operational parameters, such as fuel geometry, gap size, fill gas pressure and composition, burnup and linear heat rate. In the paper the concept of a time constant is analyzed and the dependence of the time constant on various parameters is investigated analytically. Measured time constants for different designs and conditions are compared with those derived from calculations of the TRANSURANUS code. Employing standard models results in a systematic underprediction of the time constant, i.e. the heat transfer during shutdown is overestimated. (author)

  20. Reactor shutdown device

    International Nuclear Information System (INIS)

    Matsumiya, Hirohito; Endo, Hiroshi; Tsuboi, Yasushi.

    1993-01-01

    The present invention concerns a reactor shutdown device capable of suppressing change of a core insertion amount relative to temperature change during normal operation and having a great extension amount due to thermal expansion and high mechanical strength. A control rod main body is contained vertically movably in a guide tube disposed in a reactor core. An extension member extends upward from the upper end of a control rod main body and suspends the control rod main body. A shrinkable member intervenes at a midway of the extension member and is made shrinkable. A temperature sensitive member contains coolants at the inside and surrounds the shrinkable member. Thus, if the temperature of external coolants rises abruptly, the shrinkable member is extended by thermal expansion of the coolants in the temperature sensitive member. Upon usual reactor startup, the coolants in the temperature sensitive member cause no substantial thermal expansion by temperature elevation from a cold shutdown temperature to a rated power operation temperature, and the shrinkable member maintains its original state, so that the control rod main body is not inserted into the reactor core. However, upon abrupt temperature elevation, the control rod main body is inserted into the reactor core. (I.S.)

  1. Industry shutdown rates and permanent layoffs: evidence from firm-worker matched data

    Directory of Open Access Journals (Sweden)

    Kim P. Huynh

    2017-06-01

    Full Text Available Abstract Firm shutdown creates a turbulent situation for workers as it leads directly to layoffs for its workers. An additional consideration is whether a firm’s shutdown within an industry creates turbulence for workers at other continuing firms. Using data drawn from the Longitudinal Worker File, a Canadian firm-worker matched employment database, we investigate the impact of industry shutdown rates on workers at continuing firm. This paper exploits variation in shutdown rates across industries and within an industry over time to explain the rate of permanent layoffs and the growth of workers’ earnings. We find an increase in industry shutdown rates increases the probability of permanent layoffs and decreases earnings growth for workers at continuing firms.

  2. Monitoring the risk of loss of heat sink during plant shutdowns at Bruce Generating Station 'A'

    International Nuclear Information System (INIS)

    Krishnan, K.S.; Mancuso, F.; Vecchiarelli, D.

    1996-01-01

    A relatively simple loss of shutdown heat sink fault tree model has been developed and used during unit outages at Bruce Nuclear Generation Station 'A' to assess, from a risk and reliability perspective, alternative heat sink strategies and to aid in decisions on allowable outage configurations. The model is adjusted to reflect the various unit configurations planned during a specific outage, and identifies events and event combinations leading to loss of fuel cooling. The calculated failure frequencies are compared to the limits consistent with corporate and international public safety goals. The importance measures generated by the interrogation of the fault tree model for each outage configuration are also used to reschedule configurations with high fuel damage frequency later into the outage and to control the configurations with relatively high probability of fuel damage to short intervals at the most appropriate time into the outage. (author)

  3. Startup and shutdown of the PULSAR Tokamak Reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1994-01-01

    Start-up conditions are examined for a pulsed tokamak reactor that uses only inductive plasma current drive for startup, burn and shutdown. A zero-dimensional (profile-averaged) model that describes plasma power and particle balance equations is used to study several aspects of plasma startup and shutdown, including optimization of the startup pathway tradeoff of auxiliary startup heating power versus startup time, volt-second consumtion, thermal stability and partial-power operations

  4. Availability of nuclear fuels: one aspect of the reliability of supply. [German Federal Republic

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, U; Ziesing, H J [Deutsches Inst. fuer Wirtschaftsforschung, Berlin (F.R. Germany)

    1976-09-01

    In connection with the future supply of nuclear fuels to the Federal Republic of Germany the authors discuss the problems which arise. They describe the future development of the demand for natural uranium and the work involved in separation and deal with the possibilities of meeting the demand. They pay particular attention to the changed market situation and to the policies of the countries which produce uranium. The article is a detailed examination of the report by the German Institute for Economic Research (DIW) on aspects of the reliability of supply to the electricity supply industry in the Federal Republic of Germany, which was prepared under the aegis of the Bavarian Ministry for Economic and Transport. This investigation will be published, omitting the regional aspects, towards the middle of 1976, by the German Institute for Economic Research under the title 'Reliability, price and environmental protection aspects of energy supply'.

  5. Fuel from the Sky: Solar Power's Potential for Western Energy Supply

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, A.

    2002-07-01

    A reliable and affordable supply of electricity is essential to protect public health and safety and to sustain a vigorous economy in the West. Renewable energy in the form of wind or solar provides one of the means of meeting the demand for power while minimizing adverse impacts on the environment, increasing fuel diversity, and hedging against fuel price volatility. Concentrating solar power (CSP) is the most efficient and cost-effective way to generate electricity from the sun. Hundreds of megawatts of CSP solar-generating capacity could be brought on-line within a few years and make a meaningful contribution to the energy needs of the West.

  6. A Study on Fire Ignition Frequency of UCN 3 during Shutdown

    International Nuclear Information System (INIS)

    Kim, Kilyoo; Kang, DaeIl; Jang, Seung-Cheol

    2014-01-01

    A fire ignition frequency of UCN 3 during shutdown, i.e., during POS 3, 4, 5, 6 was calculated by using the new fire PSA method suggested in NUREG/CR-7114. As the fire ignition frequency during full power is calculated by the fixed ignition source and the transient ignition source, the one during shutdown is also calculated by the fixed and the transient ignition source. Since the fixed ignition source was already verified through the walkdown although the walkdown is for the fixed ignition source during full power, additional walkdown for the one during shutdown is not necessary. In the paper, how the fire ignition frequency of UCN 3 during shutdown was calculated is described. A fire ignition frequency of UCN 3 during shutdown, i.e., during POS 3, 4, 5, 6 was calculated by using the new fire PSA method suggested in NUREG/CR-7114. We make the transient ignition fire frequency of each BIN vary according to the daily work order of each POS

  7. Alternative aviation jet fuel sustainability evaluation report - task 3 : sustainability criteria and rating systems for the use in aircraft alternative fuel supply chain

    Science.gov (United States)

    2013-03-31

    This report identifies criteria that can be used to evaluate the sustainability of biofuels introduced into the aviation fuel supply chain. It describes the inputs, criteria and outputs that can be used in a sustainability rating system. It identifie...

  8. Safety considerations for research reactors in extended shutdown

    International Nuclear Information System (INIS)

    2004-01-01

    According to the IAEA Research Reactor Database, in the last 20 years, 367 research reactors have been shut down. Of these, 109 have undergone decommissioning and the rest are in extended shutdown with no clear definition about their future. Still other research reactors are infrequently operated with no meaningful utilization programme. These two situations present concerns related to safety such as loss of corporate memory, personnel qualification, maintenance of components and systems and preparation and maintenance of documentation. There are many reasons to shut down a reactor; these may include: - the need to carry out modifications in the reactor systems; - the need for refurbishment to extend the lifetime of the reactor; - the need to repair reactor structures, systems, or components; - the need to remedy technical problems; - regulatory or public concerns; - local conflicts or wars; - political convenience; - the lack of resources. While any one of these reasons may lead to shutdown of a reactor, each will present unique problems to the reactor management. The large variations from one research reactor to the next also will contribute to the uniqueness of the problems. Any option that the reactor management adopts will affect the future of the facility. Options may include dealing with the cause of the shutdown and returning to normal operation, extending the shutdown period waiting a future decision, or decommissioning. Such options are carefully and properly analysed to ensure that the solution selected is the best in terms of reactor type and size, period of shutdown and legal, economic and social considerations. This publication provides information in support of the IAEA safety standards for research reactors

  9. BWR startup and shutdown activity transport control

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, A.J., E-mail: jgiannelli@finetech.com, E-mail: ajarvis@finetech.com [Finetech, Inc., Parsippany, New Jersey (United States)

    2010-07-01

    This paper summarizes BWR industry experience on good practices for controlling the transport of corrosion product activity during shutdowns, particularly refueling outages, and for startup chemistry control to minimize IGSCC (intergranular stress corrosion cracking). For shutdown, overall goals are to minimize adverse impacts of crud bursts and the time required to remove activated corrosion products from the reactor coolant during the shutdown process prior to refueling, and to assist plants in predicting and controlling radiation exposure during outages. For startup, the overall goals are to highlight conditions during early heatup and startup when sources of reactor coolant oxidants are high, when there is a greater likelihood for chemical excursions associated with refueling outage work activities, and when hydrogen injection is not available to mitigate IGSCC due to system design limitations. BWR water chemistry has changed significantly in recent years with the adoption of hydrogen water chemistry, zinc addition and noble metal chemical applications. These processes have, in some instances, resulted in significant activity increases during shutdown evolutions, which together with reduced time for cleanup because of shorter outages, has consequently increased outage radiation exposure. A review several recent outages shows that adverse effects from these conditions can be minimized, leading to the set of good practice recommendations for shutdown chemistry control. Most plants lose the majority of their hydrogen availability hours during early startup because feedwater hydrogen injection systems were not originally designed to inject hydrogen below 20% power. Hydrogen availability has improved through modifications to inject hydrogen at lower power levels, some near 5%. However, data indicate that IGSCC is accelerated during early startup, when dissolved oxygen and hydrogen peroxide levels are high and reactor coolant temperatures are in the 300 to 400 {sup o

  10. Operating and maintenance experience of Dhruva secondary shutdown system

    International Nuclear Information System (INIS)

    Sharma, U.L.; Bharathan, R.

    1997-01-01

    Nine numbers of cadmium shut-off rods are used as primary fast acting shutdown devices while moderator dumping is used as secondary shutdown system. The secondary shutdown system in Dhruva reactor comprises of 3 dump valves and 3 control valves. Under normal operations, the control valves are used to control the moderator level and thereby the reactor power. Under Trip conditions the dump valves as well as the control valves open fully, dumping the moderator to the dump tank, thereby acting as secondary shutdown devices. While the failure of any of these valves to close fully is an incident, the failure of any of these valves to open on a demand is a safety related unusual occurrence and needs to be viewed seriously. During the last 11 years of operation of these valves, there was one incidence of a valve not closing fully and there were two instances of a valve not opening fully on demand. The possible causes, the corrective action taken to rehabilitate these valves and the elaborate system preparations undertaken to enable maintenance jobs are described. (author)

  11. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  12. Effect of surface oxidation of ZIRLO fuel cladding tube on crud deposition

    International Nuclear Information System (INIS)

    Park, Moon Sic; Baek, Seung Heon; Shim, Hee-Sang; Kim, Jung Gu; Hur, Do Haeng

    2016-01-01

    Crud has often led a lot of problems in the primary coolant system such as fuel cladding corrosion, power distortion and reduction, and radio-activity build-up of out-of-core [2-3]. Although a crud-induced localized corrosion (CILC) is a severe accident, in which fuel is leaked into the coolant, it is rarely happened but a crud-induced power shift (CIPS) has frequently occurred in worldwide PWR plants. CIPS, or power axial offset anomaly (AOA) has long been realized in the nuclear industry since early 1970s. In late 1980s, severe AOA phenomena were found in Callaway plants in U. S. and later in many power plants around the world. The axial offset (AO) is defined by the power distortion between the top half of the core and the bottom half of the core. When the plant exceeds acceptable limit of 3% in AO value, it is judged as AOA occurrence and this is forced to reduce power or shutdown. AOA is caused by a hideout for large accumulation of boron into porous crud and its formation is accelerated by increased sub-cooled nucleate boiling (SNB) with sufficient corrosion product supply. Crud has often led a lot of problems in the primary coolant system such as fuel cladding corrosion, power distortion and reduction, and radio-activity build-up of out-of-core. Although a crud-induced localized corrosion (CILC) is a severe accident, in which fuel is leaked into the coolant, it is rarely happened but a crud-induced power shift (CIPS) has frequently occurred in worldwide PWR plants. CIPS, or power axial offset anomaly (AOA) has long been realized in the nuclear industry since early 1970s. In late 1980s, severe AOA phenomena were found in Callaway plants in U. S. and later in many power plants around the world. The axial offset (AO) is defined by the power distortion between the top half of the core and the bottom half of the core. When the plant exceeds acceptable limit of 3% in AO value, it is judged as AOA occurrence and this is forced to reduce power or shutdown. AOA is

  13. Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels

    International Nuclear Information System (INIS)

    Palander, Teijo

    2011-01-01

    In this paper, a multiple objective model to large-scale and long-term industrial energy supply chain scheduling problems is considered. The problems include the allocation of a number of fossil, peat, and wood-waste fuel procurement chains to an energy plant during different periods. This decision environment is further complicated by sequence-dependent procurement chains for forest fuels. A dynamic linear programming model can be efficiently used for modelling energy flows in fuel procurement planning. However, due to the complex nature of the problem, the resulting model cannot be directly used to solve the combined heat and electricity production problem in a manner that is relevant to the energy industry. Therefore, this approach was used with a multiple objective programming model to better describe the combinatorial complexity of the scheduling task. The properties of this methodology are discussed and four examples of how the model works based on real-world data and optional peat fuel tax, feed-in tariff of electricity and energy efficiency constraints are presented. The energy industry as a whole is subject to policy decisions regarding renewable energy production and energy efficiency regulation. These decisions should be made on the basis of comprehensive techno-economic analysis using local energy supply chain models. -- Highlights: → The energy policy decisions are made using comprehensive techno-economic analysis. → Peat tax, feed-in tariff and energy efficiency increases renewable energy production. → The potential of peat procurement deviates from the current assumptions of managers. → The dynamic MOLP model could easily be adapted to a changing decision environment.

  14. Outsourcing fuel supplies - to-do-or-not-to-do is the question

    Energy Technology Data Exchange (ETDEWEB)

    Buhari, A.A.R. [Coal and Oil Company L.L.C. (United Arab Emirates)

    2003-07-01

    Fifteen slides/overheads outline the talk on the trends towards outsourcing a function, activity or process from a company as a means to achieve competitive advantage. Coal and Oil, Dubai takes care of sourcing shipping and finance and Coastal Energy handles logistics. The benefits of outsourcing and how to minimise risks are discussed. Examples are given of companies that have benefitted in India by outsourcing fuel supplies through the author's company.

  15. Study on fuel supplying method and methanol concentration sensor for the high efficient operation of methanol fuel cells. Methanol nenryo denchi no unten ni okeru nenryo kyokyu hoho no kento to methanol nodo sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, Tsutomu; Doi, Ryota; Yasukawa, Saburo; Kuroda, Osamu [Hirachi, Ltd., Tokyo, (Japan)

    1990-01-20

    A fuel supplying method was studied and demonstrated, essential to the high efficient operation of methanol fuel cells. Methanol and water were supplied independently from each tank to an anordic electrolyte tank in a circulating system, detecting a methanol concentration and liquid level of anordic electrolyte by each sensor, respectively. A methanol sensor was also developed to detect accurately the concentration based on electrochemical reaction under a constant voltage. A detection control circuit was insulated from a constant-voltage power supply to prevent external noises. The methanol sensor output was compensated for temperature, and a new level sensing method was adopted to send out a command comparing different responses to electrolyte shortage. As the methanol fuel cell was operated with this fuel supplying system, the stable characteristics of the cell were obtained within the variation of {plus minus} 0.1mol/l from the specified methanol concentration. 6 refs., 17 figs., 1 tab.

  16. 46 CFR 61.35-3 - Required tests and checks.

    Science.gov (United States)

    2010-10-01

    ... heaters without water level controls) must be tested by interrupting the feed water supply. Manual reset... alarm and visible indicator must be verified. The shutdown times must be verified. (3) Fuel supply... draft loss interlock switch must be tested to ensure proper operation. The draft limit control must...

  17. The Brazilian fuel substitution dilemma: Recent experience from an energy supply study

    International Nuclear Information System (INIS)

    Aringhoff, R.

    1984-01-01

    The paper is intended as a basis for discussing strategic supply options and their economic impacts for an advanced developing country. It represents a first brief assessment of an energy systems analysis project which was carried out by the Secretaria de Tecnologia do Ministerio das Minas e Energia and Kernforschungsanlage Juelich between May 1982 and May 1984. In view of the fact that Brazil had to spend 50% of its annual export revenues to import oil in 1980 and taking into account that this import bill of roughly US $10x10 9 affects the balance of payments and foreign debt burden significantly, the Brazilian Ministry of Energy and Mines decided to evaluate the consequences of alternative supply strategies utilizing domestic energy resources with priority. There is a big challenge and opportunity to develop and utilize domestic energy resources, mainly hydropower, coal for thermal uses in industry and biomass for the rural and residential sectors. Supplying the Brazilian energy system in general will not be the problem. The oil substitution dilemma becomes obvious when one looks at the specific requirements of the transport sector. For historical reasons the transport system is nearly totally based on road transport. Around two thirds of the total fuel consumption is swallowed up by this sector. Replacing crude oil means replacing gasoline and diesel. This means producing ethanol from sugar-cane and methanol from hard coal. These alternatives are leading to a significantly higher overall system cost of the energy system. The efforts of the Brazilian Government to replace imported fuel oil and ensure a self-sufficient domestic energy supply of high security were financed until now by a significant public budget deficit. This strategy will run into difficulties in the future, as the latest IMF negotiations show. One way to escape this dilemma can be a careful examination of ways to reconstruct the transport system. (author)

  18. Application of self-assessment in the nuclear fuel supply activities of Siemens AG

    International Nuclear Information System (INIS)

    Nilson, F.; Schaule, B.

    2000-01-01

    The quality of fuel assemblies supplied to our customers is defined by more than just their expected functionality (performance) during reactor operation and beyond but also by their cost (price) and the timeliness of their supply (including related services). This perspective implies a comprehensive view of the quality of business, - the same focus that the IAEA Code, Basic Requirement 9, addresses regarding management self-assessment. Siemens has adopted a comprehensive management philosophy in the Nuclear Fuels Business in the early Nineties under the header of 'TQM' that is similar to the one mentioned above. For this approach we found valuable guidance in the Business Excellence model of the European Foundation for Quality Management (EFQM) which is comparable to the self-assessment criteria listed by IAEA. In this contribution we are presenting examples and experiences of how such system of self-assessment and continuous improvement was implemented by senior management. Our experience of more than 6 years of TQM and 4 years of self-assessment yielded an increasing alignment and focus of our organization and all its members on the continuous improvement of our processes (business, management and support) - on the way to a learning organization. (author)

  19. Inspection maintenance and planning of shutdown in thermal electric generating plants

    International Nuclear Information System (INIS)

    Dezordi, W.L.; Correa, D.A.; Kina, M.

    1984-01-01

    The schedule shutdown of an industrial plant and, more specifically, of an electrical generating station, is becoming increasingly important. The major parameters to be taken into account for the planning of such a shutdown are basically of economic-financial nature such as costs of the related services (materials, equipment, manpower, etc), loss of revenue caused by the station's shutdown as well as by the station availability, and other requirements expected from it by the Load Dispatch and consumers. Improving the equipment's performances and the station's availability are the fundamental objectives to be strived for. The authors present in this paper, in an abridged form, the planning tools used for thermal electric generating plants shutdowns for inspections, maintenance and design changes implementation. (Author) [pt

  20. 77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Science.gov (United States)

    2012-12-19

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0299] Standard Format and Content for Post-Shutdown... regulatory guide (DG), DG-1272, ``Standard Format and Content for Post-shutdown Decommissioning Activities... Content for Post-shutdown Decommissioning Activities Report,'' which was issued in July 2000. DG-1271...

  1. Hastelloy X fuel element creep relaxation and residual effects

    International Nuclear Information System (INIS)

    Castle, R.A.

    1971-01-01

    A worst case, seven element, asymmetric fuel, thermal environment was assumed and a creep relaxation analysis generated. The fuel element clad is .020 inch Hastelloy X. The contact load decreased from 11.6 pounds to 5.87 pounds in 100,000 hours. The residual stresses were then computed for various shutdown times. (U.S.)

  2. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Requirements for startups, shutdowns, and malfunctions. 63.310 Section 63.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Coke Oven Batteries § 63.310 Requirements for startups, shutdowns...

  3. 76 FR 81998 - Methodology for Low Power/Shutdown Fire PRA

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY..., ``Methodology for Low Power/Shutdown Fire PRA--Draft Report for Comment.'' DATES: Submit comments by March 01... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  4. Shutdowns/scrams at BWRs reported under new 1984 LER rule

    International Nuclear Information System (INIS)

    Mays, G.T.

    1985-01-01

    Operating experience data from nuclear power plants are essential for safety and reliability analyses. The Licensee Event Reports (LERs), submitted to the NRC by nuclear power plant utilities, contain much of this data. One of the significant aspects of the new LER rule includes the requirement to report all plant shutdowns whereas prior to 1984, not all shutdowns were reported as LERs. This paper reviews the shutdowns and scrams occurring during the first six months of 1984 at BWRs as reported under the new LER rule. The review focused on systems involved, causes, and personnel interactions

  5. Alternative Shutdown Panel. Amaraz Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Saenz de Santa Maria Valin, J.

    2016-07-01

    Between 2010 and 2014 the Nuclear Power Plant of Almaraz conducted one of the most complex projects in its history: The installation of an Alternative Shutdown Panel with the capability to stop the plant in case of fire in the Control room or in the Cable room. This project represented a great economic and organizational effort for the plant, but at the same time has been a great improvement in the safety of the installation, which was demonstrated by the achievement of a major milestone in the history of Almaraz: The actual shutdown from outside of the Control room. (Author)

  6. Training simulator for advanced gas-cooled reactor (AGR) shutdown sequence equipment

    International Nuclear Information System (INIS)

    Shankland, J.P.; Nixon, G.L.

    1978-01-01

    Successful shutdown of nuclear plant is of prime importance for both safety and economic reasons and large sums of money are spent on equipment to make shutdowns fully automatic, thus removing the possibility of operator errors. While this aim can largely be realized, one must consider the possibility of automatic equipment or plant failures when operators are required to take manual action, and off-line training facilities should be available to operating staff to minimize the risk of incorrect actions being taken. This paper presents the practice adopted at Hunterston 'B' Nuclear Power Station to solve this problem and concerns the computer-based training simulator for the Reactor Shutdown Sequence Equipment (RSSE) which was commissioned in January 1977. The plant associated with shutdown is briefly described and the reasoning which shows the need for a simulator is outlined. The paper also gives details of the comprehensive facilities available on the simulator and goes on to describe the form that shutdown training takes and the experience gained at this time. (author)

  7. 77 FR 10576 - Methodology for Low Power/Shutdown Fire PRA

    Science.gov (United States)

    2012-02-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY.../Shutdown Fire PRA.'' In response to request from members of the public, the NRC is extending the public... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  8. Impact of UO{sub 2} Enrichment of Fuel Zoning Rods in Long Cycle Operation of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Cheol; Lee, Deokjung [KHNP CRI, Daejeon (Korea, Republic of); Jeong, Eun; Choe, Jiwon [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Extending the cycle length can not only increase the energy production, but also bring down outage costs by reducing the number of refueling outages during the lifetime of a nuclear power plant. It is reasonable that more fresh fuels are loaded for long cycle operation. However, minimizing the number of fresh fuels is essential in aspect of fuel economics. This can cause high power peaking near the water holes, due to increased thermalization of neutrons in those regions. To prevent this, special fuel zoning rods are used and surround the water holes. These rods use lower-enriched uranium (they have an enrichment rate lower than the other fuel rods). If we adjust the enrichment rate of fuel zoning rods, we can reduce power peaking and moreover increase cycle length. In this paper, we designed a core suitable for long cycle operation and we conducted sensitivity tests of fuel cycle length on UO2 enrichment rate in fuel zoning region in order to extend the cycle length while using the same number of fresh fuels. The correlations between the fuel zoning enrichment and cycle length, peaking factor, CBC and shutdown margin were analyzed. The more the enrichment rate in fuel zoning region increases, the more the fuel cycle length increases. At the same time, CBC, Fq and shutdown margin do not change significantly. Increasing the fuel zoning enrichment rate presents the right property of increasing the fuel cycle length without causing a large change to CBC, Fq and shutdown margin. In conclusion, by increasing the uranium enrichment rate in fuel zoning region, fuel cycle length can be increased and the safety margins can be maintained for long cycle operation of cores.

  9. Development of self-actuated shutdown system using curie point electromagnet

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Park, Jin Ho

    1999-01-01

    An innovative concept for a passive reactor shutdown system, so called self-actuated shutdown system (SASS), is inevitably required for the inherent safety in liquid metal reactor, which is designed with the totally different concept from the usual reactor shutdown system in LWR. SASS using Curie point electromagnet (CPEM) was selected as the passive reactor shutdown system for KALIMER (Korea Advanced Liquid Metal Reactor). A mock-up of the SASS was designed, fabricated and tested. From the test it was confirmed that the mockup was self-actuated at the Curie point of the temperature sensing material used in the mockup. An articulated control rod was also fabricated and assembled with the CPEM to confirm that the control rod can be inserted into core even when the control rod guide tube is deformed due to earthquake. The operability of SASS in the actual sodium environment should be confirmed in the future. All the design and test data will be applied to the KALIMER design. (author)

  10. Fueling our future: Four steps to a new, reliable, cleaner, decentralized energy supply based on hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Evers, A. A. [Arno A. Evers FAIR-PR, Starnberg (Germany)

    2004-07-01

    The necessary preconditions and the driving forces operating to move hydrogen and fuel cells to world-wide commercialization are examined, focusing on trends that impacted the progress of new technologies in the past. The consensus is that consumers have played a vital role in the past, and will continue to play an even more vital role in the future as drivers in the mass market evolution of technological progress. The automobile, aircraft and cell phone industries are examined as examples of consumer influence on technology development. One such scenario, specific to the hydrogen economy is the potential dual role played by fuel cell-powered personal automobiles which may not only provide transportation but also supply electricity and heat to residential and commercial buildings while in a stationary mode. It is suggested that given the size of the population and the current level of economic development in the Peoples' Republic of China, conditions there are most favourable to accelerate the development of a hydrogen and fuel cell-based economy. Details of developments in China and how the hydrogen-fuel cells scenario may develop there, are discussed. 11 figs.

  11. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, B.; Mishra, R.; Gu, F. [Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom); Powles, N. [Chemistry and Forensic Science, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom)

    2010-12-15

    Biodiesel is a promising non-toxic and biodegradable alternative fuel used in the transport sector. Nevertheless, the higher viscosity and density of biodiesel poses some acute problems when it is used it in unmodified engine. Taking this into consideration, this study has been focused towards two objectives. The first objective is to identify the effect of temperature on density and viscosity for a variety of biodiesels and also to develop a correlation between density and viscosity for these biodiesels. The second objective is to investigate and quantify the effects of density and viscosity of the biodiesels and their blends on various components of the engine fuel supply system such as fuel pump, fuel filters and fuel injector. To achieve first objective density and viscosity of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel blends (0B, 5B, 10B, 20B, 50B, 75B, and 100B) were tested at different temperatures using EN ISO 3675:1998 and EN ISO 3104:1996 standards. For both density and viscosity new correlations were developed and compared with published literature. A new correlation between biodiesel density and biodiesel viscosity was also developed. The second objective was achieved by using analytical models showing the effects of density and viscosity on the performance of fuel supply system. These effects were quantified over a wide range of engine operating conditions. It can be seen that the higher density and viscosity of biodiesel have a significant impact on the performance of fuel pumps and fuel filters as well as on air-fuel mixing behaviour of compression ignition (CI) engine. (author)

  12. ELECTRICITY SUPPLY, FOSSIL FUEL CONSUMPTION, CO2 EMISSIONS AND ECONOMIC GROWTH: IMPLICATIONS AND POLICY OPTIONS FOR SUSTAINABLE DEVELOPMENT IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chibueze Eze Nnaji

    2013-01-01

    Full Text Available This paper investigates the causal relationship among electricity supply, fossil fuel consumption, CO2 emissions and economic growth in Nigeria for the period 1971-2009, in a multivariate framework.Using the bound test approach to cointegration, we found a short-run as well as a long-run relationship among the variables with a positive and statistically significant relationship between CO2 emissions and fossil fuel consumption. The findings also indicate that economic growth is associated with increased CO2 emissions while a positive relationship exists between electricity supply and CO2 emissions revealing the poor nature of electricity supply in Nigeria. Further, the Granger causality test results indicate that electricity supply has not impacted significantly on economic growth in Nigeria. The results also strongly imply that policies aimed at reducing carbon emissions in Nigeria will not impede economic growth. The paper therefore concludes that a holistic energy planning and investment in energy infrastructure is needed to drive economic growth. In the long-run however, it is possible to meet the energy needs of the country, ensure sustainable development and at the same time reduce CO2 emissions by developing alternatives to fossil fuel consumption, the main source of CO2 emissions.

  13. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the applicable...

  14. Benefits of actinide-only burnup credit for shutdown PWRs

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.; Kang, C.; Rivard, D.

    1998-02-01

    Owners of PWRs that are shutdown prior to resolution of interim storage or permanent disposal issues have to make difficult decisions on what to do with their spent fuel. Maine Yankee is currently evaluating multiple options for spent fuel storage. Their spent fuel pool has 1,434 assemblies. In order to evaluate the value to a utility of actinide-only burnup credit, analysis of the number of canisters required with and without burnup credit was made. In order to perform the analysis, loading curves were developed for the Holtec Hi-Star 100/MPC-32. The MPC-32 is hoped to be representative of future burnup credit designs from many vendors. The loading curves were generated using the actinide-only burnup credit currently under NRC review. The canister was analyzed for full loading (32 assemblies) and with partial loadings of 30 and 28 assemblies. If no burnup credit is used the maximum capacity was assumed to be 24 assemblies. this reduced capacity is due to the space required for flux traps which are needed to sufficiently reduce the canister reactivity for the fresh fuel assumption. Without burnup credit the 1,343 assemblies would require 60 canisters. If all the fuel could be loaded into the 32 assembly canisters only 45 canisters would be required. Although the actinide-only burnup credit approach is very conservative, the total number of canisters required is only 47 which is only two short of the minimum possible number of canisters. The utility is expected to buy the canister and the storage overpack. A reasonable cost estimate for the canister plus overpack is $500,000. Actinide-only burnup credit would save 13 canisters and overpacks which is a savings of about $6.5 million. This savings is somewhat reduced since burnup credit requires a verification measurement of burnup. The measurement costs for these assemblies can be estimated as about $1 million. The net savings would be $5.5 million

  15. PSA for the shutdown mode for nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The meeting, which was attended by more than 75 participants from 20 countries, provided a broad discussion forum where all the currently active major shutdown PSA programmes were reviewed. The meeting also addressed the issues related to actual performance of shutdown PSA studies as well as insight gained from the studies. This document, which was prepared during the TCM, contains the results of extensive discussions which were held in specific working groups. The papers presented at the meeting provide a comprehensive overview of the state of the art of shutdown risk assessment and remedial measures taken to reduce the risk in outages. It is hoped that this document will be very useful to all individuals with interest in increasing safety during outages at NPPs. Refs, figs and tabs

  16. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    International Nuclear Information System (INIS)

    Gaudard, G.; Gilles, B.; Mesnage, F.; Cattant, F.

    2002-01-01

    In the framework of a radiation exposure management program entitled >, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on 110m Ag, 122 Sb, 124 Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  17. A novel proton exchange membrane fuel cell based power conversion system for telecom supply with genetic algorithm assisted intelligent interfacing converter

    International Nuclear Information System (INIS)

    Kaur, Rajvir; Krishnasamy, Vijayakumar; Muthusamy, Kaleeswari; Chinnamuthan, Periasamy

    2017-01-01

    Highlights: • Proton exchange membrane fuel cell based telecom tower supply is proposed. • The use of diesel generator is eliminated and battery size is reduced. • Boost converter based intelligent interfacing unit is implemented. • The genetic algorithm assisted controller is proposed for effective interfacing. • The controller is robust against input and output disturbance rejection. - Abstract: This paper presents the fuel cell based simple electric energy conversion system for supplying the telecommunication towers to reduce the operation and maintenance cost of telecom companies. The telecom industry is at the boom and is penetrating deep into remote rural areas having unreliable or no grid supply. The telecom industry is getting heavily dependent on a diesel generator set and battery bank as a backup for continuously supplying a base transceiver station of telecom towers. This excessive usage of backup supply resulted in increased operational expenditure, the unreliability of power supply and had become a threat to the environment. A significant development and concern of clean energy sources, proton exchange membrane fuel cell based supply for base transceiver station is proposed with intelligent interfacing unit. The necessity of the battery bank capacity is significantly reduced as compared with the earlier solutions. Further, a simple closed loop and genetic algorithm assisted controller is proposed for intelligent interfacing unit which consists of power electronic boost converter for power conditioning. The proposed genetic algorithm assisted controller would ensure the tight voltage regulation at the DC distribution bus of the base transceiver station. Also, it will provide the robust performance of the base transceiver station under telecom load variation and proton exchange membrane fuel cell output voltage fluctuations. The complete electric energy conversion system along with telecom loads is simulated in MATLAB/Simulink platform and

  18. Electrometallurgical treatment of sodium-bonded spent nuclear fuel

    International Nuclear Information System (INIS)

    Benedict, R.W.; McFarlane, H.F.; Goff, K.M.

    2001-01-01

    For 20 years Argonne National Laboratory has been developing electrometallurgical technology for application to spent nuclear fuel. Progress has been rapid during the past 5 years as 1,6 tonnes spent fuel from the Experimental Breeder Reactor-II was treated and preparations were made for processing the remaining 25 tonnes of sodium-bonded fuel from the shutdown reactor. Two high level waste forms are being qualified for geologic disposal. Extension of the technology to oxide fuels or to actinide recycling has been on hold because of US policy on reprocessing. (author)

  19. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  20. The Alternative Design Features for Safety Enhancement in Shutdown Operation

    International Nuclear Information System (INIS)

    Oh, Hae Cheol; Kim, Myung Ki; Chung, Bag Soon; Seo, Mi Ro

    2009-01-01

    PSA can be used to confirm that the new plant design is complied with the applicable safety goals, and to select among the alternate design options. A shutdown PSA provides insight for outage planning schedule, outage management practices, and design modifications. Considering the results of both LPSD PSA studies and operating experiences for low power and shutdown, the improvements can be proposed to reduce the high risk contribution. The improvements/enhancements during shutdown operation may be divided into categories such as hardware, administrative management, and operational procedure. This paper presents on an example how the risk related to an accidental situation can be reduced, focusing the hardware design changes for the newly designed NPPs

  1. Study of methodology for low power/shutdown fire PSA

    International Nuclear Information System (INIS)

    Yan Zhen; Li Zhaohua; Li Lin; Song Lei

    2014-01-01

    As a risk assessment technology based on probability, the fire PSA is accepted abroad by nuclear industry in its application in the risk assessment for nuclear power plants. Based on the industry experience, the fire-induced impact on the plant safety during low power and shutdown operation cannot be neglected, therefore fire PSA can be used to assess the corresponding fire risk. However, there is no corresponding domestic guidance/standard as well as accepted analysis methodology up to date. Through investigating the latest evolvement on fire PSA during low power and shutdown operation, and integrating its characteristic with the corresponding engineering experience, an engineering methodology to evaluate the fire risk during low power and shutdown operation for nuclear power plant is established in this paper. In addition, an analysis demonstration as an example is given. (authors)

  2. Updating of the program for simulation of Darlington shutdown and regulation systems

    International Nuclear Information System (INIS)

    1988-07-01

    This report describes the current status of the developments of a simulation of the Darlington Nuclear Generating Station shutdown and regulating systems, DARSIM done under contract to the Atomic Energy Control Board (AECB). The DARSIM program simulates the spatial neutron dynamics, the regulation of the reactor power, and shutdown system 1 and shutdown system 2 software. The DARSIM program operates in the interactive simulation program environment. DARSIM was installed on the APOLLO computer at the AECB and a version for an IBM-PC was also provided for the exclusive use of the AECB. Shutdown system software was updated to incorporate the latest revisions in the functional specifications. Additional developments have been provided to assist in the use and interpretation of the DARSIM results

  3. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  4. CNE (Embalse nuclear power plant): probabilistic safety study. Electric power supply. Events sequence

    International Nuclear Information System (INIS)

    Figueroa, N.

    1987-01-01

    The plant response to the occurrence of the starting event 'total loss of electric power supply to class IV and class III' is analyzed. This involves the study of automatical actions of safety and process systems as well as the operator actions. The probabilistic evaluation of starting event frequency is performed through fault-tree techniques. The frequency of occurrence 'loss of electric power supply to class IV (λIV = 0.56/year) and the probability of failure to demand of 'reserve' generating groups (Pd III 6.79 x 10 -3 ) contribute to the mentioned frequency. As soon as the starting event occurs, the reactor power must be reduced to 0%, the fuel must be cooled through the thermo siphon and decay heat has to be removed. The events sequence analysis leads to the conclusion that the non shutting down of the reactor with any of the shutdown systems is 'incredible' (10 -6 /year). In all cases the fuel is cooled by building the thermo siphon except when a substantial inventory loss exist due to a closure failure of some valve of pressure and inventory control system. The order of magnitude of the failure of decay heat removal through the steam generators is 4 x 10 -4 . This removal would be assured by the emergency water system. Therefore, the frequency of the sequence of possible core meltdown, when the reactor does not shut down is: λ = 5 x 10 -9 /year and for the failure of heat removal: λ = 2 x 10 -6 /year. (Author)

  5. Correlation between fuel rack sticking and unintentional re-starting of EDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Cheol; Chung, Woo geun; Kang, Seung Hee; Kim, Myeong hoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Emergency Diesel Generator (EDG) was being tested after overhaul maintenance. While the EDG was running at the rated speed (450 rpm), an operator pressed the manual stop button. But the EDG failed to stop and unintentionally started again. After the unintentional re-start, the EDG maintained running speed of 340 rpm. In the category of a governing system, this paper analyzes the cause of unintentional restart of the EDG that unintentionally re-started and maintained a speed at 340 rpm. The results of the analysis were then verified by a test run. Finally, we identified a correlation between fuel rack sticking and unintentional re-starting of the EDG. An analysis was conducted to confirm the cause of an EDG which was unintentionally restarting and running at 340rpm (rated speed is 450 rpm). Through a test run, it was confirmed that the results of the analysis are correct. The cause of the EDG unintentionally restarting was that it still rotated at 55 rpm over the minimum starting speed at the moment when the shutdown cylinder stopped blocking the fuel, because of a stuck fuel rack at the R7 cylinder. At the same time, the fuel that had been supplied into the cylinders (combustion chamber) by the governing system exploded and the EDG restarted unintentionally.

  6. Backup passive reactivity shutdown systems

    International Nuclear Information System (INIS)

    Ashurko, Yu.M.; Kuznetsov, L.A.

    1996-01-01

    The paper reviews self-actuated shutdown systems (SASSs) for liquid metal-cooled fast reactors (LMFRs). Principles of operation are described, advantages and drawbacks analyzed, and prospects for application in advanced fast reactors examined. Ways to improve reactor self-protection via reactivity feedback amplification and related problems are discussed. (author). 9 refs, 12 figs

  7. Backup passive reactivity shutdown systems

    Energy Technology Data Exchange (ETDEWEB)

    Ashurko, Yu M; Kuznetsov, L A [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-12-01

    The paper reviews self-actuated shutdown systems (SASSs) for liquid metal-cooled fast reactors (LMFRs). Principles of operation are described, advantages and drawbacks analyzed, and prospects for application in advanced fast reactors examined. Ways to improve reactor self-protection via reactivity feedback amplification and related problems are discussed. (author). 9 refs, 12 figs.

  8. Development of a 2kWe LPG fuel processor for PEFC

    International Nuclear Information System (INIS)

    Cipiti, F.; Pino, L.; Vita, A.; Cordaro, M.; Lagana, M.; Recupero, V.

    2004-01-01

    The successful development of Polymer Electrolyte Fuel Cells (PEFC's) for stationary and/or transportation purposes is strictly dependent on the choice of a proper fuel processor. This paper covers the in progress activities performed at CNR-ITAE on the development of a 2 kWequivalent hydrogen generator unit, (under testing) feed by LPG (propane). The main issues that should be satisfied by the hydrogen generator will be high fuel conversion, stable performance for repeated start-up and shut-down cycles, capability to process different hydrocarbons, etc. The actual unit, is constituted by an autothermal reactor (ATR) with a proprietary CNR/ITAE catalyst, an intermediate water gas shift (ITS) and a CO preferential oxidation (PROX) reactors containing commercial catalysts; the system includes heat exchangers, manual and automatic valves, pressure regulators and transducers, flow meters and ancillaries. External heating is supplied only during the start-up; on regime operations the global heat balance is smoothly exothermic. The main objectives of the experimental tests are: evaluation of reactors and system performance (in steady state and in transient response), identification of main operating limits of the reactors, to validate heat and mass balance. Preliminary results, for the 2 kW prototype, are presented. (author)

  9. Fuse and application of said fuse to the construction of an emergency shutdown system for a nuclear reactor

    International Nuclear Information System (INIS)

    Taulier, H.H.L.; Brugeille, G.

    1978-01-01

    A fuse device for an automatic emergency shutdown system in fast reactors provides a coupling between a casing tube placed within a fuel can and a series of neutron-absorbing masses held together above the reactor core under normal operating conditions but released in free fall to the lower portion of the casing tube at the level of the reactor core as a result of melting of the fuse when operating characteristics such as temperature or neutron flux attain a level which exceeds a predetermined threshold

  10. Fuse and application of said fuse to the construction of an emergency shutdown system for a nuclear reactor

    International Nuclear Information System (INIS)

    Taulier, H.H.L.; Brugeilles, G.

    1976-01-01

    A fuse device for an automatic emergency shutdown system in fast reactors provides a coupling between a casing tube placed within a fuel can and a series of neutron-absorbing masses held together above the reactor core under normal operating conditions. They are released in free fall to the lower portion of the casing tube at the level of the reactor core as a result of melting of the fuse when operating characteristics such as temperature or neutron flux attain a level which exceeds a predetermined threshold

  11. Risk impact of BWR technical specifications requirements during shutdown

    International Nuclear Information System (INIS)

    Staple, B.D.; Kirk, H.K.; Yakle, J.

    1994-10-01

    This report presents an application of probabilistic models and risk based criteria for determining the risk impact of the Limiting Conditions of Operations (LCOs) in the Technical Specifications (TSs) of a boiling water reactor during shutdown. This analysis studied the risk impact of the current requirements of Allowed Outage Times (AOTs) and Surveillance Test Intervals (STIs) in eight Plant Operational States (POSs) which encompass power operations, shutdown, and refueling. This report also discusses insights concerning TS action statements

  12. Assessment of nuclear fuel cycles with respect to assurance of energy supply; economic aspects; environmental aspects; non-proliferation

    International Nuclear Information System (INIS)

    1979-01-01

    This paper, which was presented to all INFCE Working Groups gives a broad qualitative assessment in tabular form of the following five fuel cycles: LWR once-through, LWR with thermal recycle, HWR once-through, HTR with uranium recycle, fast breeder reactor. The assessment is given of the assurance of supply aspects, the macro- and micro-economic aspects, the environmental aspects, and the non-proliferation, including safeguards, aspects of each fuel cycle

  13. Post Fire Safe Shutdown Analysis Using a Fault Tree Logic Model

    International Nuclear Information System (INIS)

    Yim, Hyun Tae; Park, Jun Hyun

    2005-01-01

    Every nuclear power plant should have its own fire hazard analysis including the fire safe shutdown analysis. A safe shutdown (SSD) analysis is performed to demonstrate the capability of the plant to safely shut down for a fire in any given area. The basic assumption is that there will be fire damage to all cables and equipment located within a common fire area. When evaluating the SSD capabilities of the plant, based on a review of the systems, equipment and cables within each fire area, it should be determined which shutdown paths are either unaffected or least impacted by a postulated fire within the fire area. Instead of seeking a success path for safe shutdown given all cables and equipment damaged by a fire, there can be an alternative approach to determine the SSD capability: fault tree analysis. This paper introduces the methodology for fire SSD analysis using a fault tree logic model

  14. Operation strategy for solid oxide fuel cell systems for small-scale stationary applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Solid oxide fuel cell micro cogeneration systems have the potential to reduce domestic energy consumption by providing both heat and power on site without transmission losses. The high grade heat produced during the operation of the power causes high thermal transients during startup/shutdown pha......Solid oxide fuel cell micro cogeneration systems have the potential to reduce domestic energy consumption by providing both heat and power on site without transmission losses. The high grade heat produced during the operation of the power causes high thermal transients during startup....../shutdown phases and degrades the fuel cells. To counteract the degradation, the system has not to be stressed with rapid load variation during the operation. The analysis will consider an average profile for heat and power demand of a family house. Finally data analysis and power system limitations will be used...

  15. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  16. Maintenance, repair and operation (MRO) of shutdown facilities

    International Nuclear Information System (INIS)

    Kenny, S.

    2006-01-01

    What level of maintenance does one apply to a shutdown facility? Well it depends on who you ask. Operations staff sees facilities that have completed their useful life cycle as a cost drain while Decommissioning staff sees this as the start of a new life cycle. Based on the decommissioning plan for the particular facility the building could complete another full life cycle while under decommissioning whether it is in storage with surveillance mode or under active decommissioning. This paper will explore how you maintain a facility and systems for many years after its useful life until final decommissioning is completed. When a building is declared redundant, who looks after it until the final decommissioning end state is achieved? At the AECL, Chalk River Labs site the safe shutdown and turnover process is one key element that initiates the decommissioning process. The real trick is orchestrating maintenance, repair and operation plans for a facility that has been poorly invested in during its last years of useful life cycle. To add to that usually shutdowns are prolonged for many years beyond the expected turnover period. During this presentation I will cover what AECL is doing to ensure that the facilities are maintained in a proper state until final decommissioning can be completed. All facilities or systems travel through the same life cycle, design, construction, commissioning, operation, shutdown and demolition. As we all know, nuclear facilities add one more interesting twist to this life cycle called Decommissioning that lands between shutdown and demolition. As a facility nears the shutdown phase, operations staff loose interest in the facility and stop investing in upgrades, repairs and maintenance but continue to invest and focus on maximizing operations. Facility maintenance standards produced by the International Facility Maintenance Association (IFMA) based on a survey done every year state that 2.2% of the total operating costs for the site should be

  17. Nuclear power: energy security and supply assurances

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2008-01-01

    Expectations are high for nuclear power. This paper first summarizes recent global and regional projections for the medium-term, including the 2007 updates of IAEA projections plus International Energy Agency and World Energy Technology Outlook projections to 2030 and 2050. One driving force for nuclear power is concern about energy supply security. Two potential obstacles are concerns about increased nuclear weapon proliferation risks, and concerns by some countries about potential politically motivated nuclear fuel supply interruptions. Concerning supply security, the paper reviews different definitions, strategies and costs. Supply security is not free; nor does nuclear power categorically increase energy supply security in all situations. Concerning proliferation and nuclear fuel cut-off risks, the IAEA and others are exploring possible 'assurance of supply' mechanisms with 2 motivations. First, the possibility of a political fuel supply interruption is a non-market disincentive discouraging investment in nuclear power. Fuel supply assurance mechanisms could reduce this disincentive. Second, the risk of interruption creates an incentive for a country to insure against that risk by developing a national enrichment capability. Assurance mechanisms could reduce this incentive, thereby reducing the possible spread of new national enrichment capabilities and any associated weapon proliferation risks. (orig.)

  18. Spent fuel storage and transportation - ANSTO experience

    International Nuclear Information System (INIS)

    Irwin, Tony

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10 MW DIDO class High Flux Materials Test Reactor (HIFAR) since 1958. Refuelling the reactor produces about 38 spent fuel elements each year. Australia has no power reactors and only one operating research reactor so that a reprocessing plant in Australia is not an economic proposition. The HEU fuel for HIFAR is manufactured at Dounreay using UK or US origin enriched uranium. Spent fuel was originally sent to Dounreay, UK for reprocessing but this plant was shutdown in 1998. ANSTO participates in the US Foreign Research Reactor Spent Fuel Return program and also has a contract with COGEMA for the reprocessing of non-US origin fuel

  19. Reliability of Offshore Wind Turbine Drivetrains based on Measured Shut-down Events

    DEFF Research Database (Denmark)

    Natarajan, Anand; Buhl, Thomas

    2015-01-01

    by initiating blade pitching to feather and also sometimes using the generator torqueas a brake mechanism. The shutdowns due to wind speed variation nearcut-out are predicted using an Inverse First Order Reliability Model(IFORM) whereby an expected annual frequency of normal shutdownsat cut-out is put forth...... normal operation and with shutdowns. The maximum coefficient of variation (CoV) due to varying wind conditions was found on the low speed shaft torsion, but the shutdowns by themselves were not seento significantly change the fatigue loads....

  20. Radiologic states of the WWR-S Bucharest Reactor following definitive shutdown

    International Nuclear Information System (INIS)

    Garlea, C.; Kelerman, C.; Mocioiu, D.; Garlea, I.

    2001-01-01

    The definitive shutdown of a reactor raises problems related to the management of the radioactive inventory. To define the radioactive inventory contained in the burned nuclear fuel and in the neutron activated structural materials computation methods are to be used. Besides the radioactive inventory contained in the main block of the reactor, the one due to the primary circuit contaminated mainly with fission products and corrosion products activated in the reactor core, transported and deposed on the components of the cooling primary circuit should be added. Also another component of the radioactive inventory intervenes, namely, the one due to the contamination of the technological rooms used for various operations the nuclear activities (hot cells, pump room, reactor hall, passage ways to the hot cells and for radioactive source, radioisotope and radioactive waste transport). The activities which made used of the neutron and gamma fluxes for radioisotope production, materials irradiation, research, component testing, resulted in radioactive waste, technological or accidental contaminations of the technological rooms of the reactor. Inspections and current repair interventions resulted also in radioactive waste an contaminations. Consequently systematic measurements with qualified equipment dedicated to alpha, beta, gamma contamination measurements as well as to dose rates determinations for the personnel exposed are necessary. Irrespective of the duration of the reactor conservation or shutdown, the radiologic monitoring should continue. This work presents the results obtained by the research group 'Restoration of Nuclear Sites', working with the IFIN-HH, regarding both the radioactive inventory calculation and measurements of contamination of technological rooms and environment in the reactor vicinity

  1. Creation of reactor's reliable system of emergency energy supply

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Brovkin, A.Yu.; Petukhov, V.K.; Chekushin, A.I.; Chernyaev, V.P.; Yagotinets, N.A.

    1998-01-01

    System of reliable power supply of the WWR-K reactor complex is described, which completely provides safety operation of reactor equipment in the case of total voltage loss from external power transmission lines as well as under destruction of accumulation batteries by earthquake more than 6 balls. Switching on in operation of diesel-generators and system of constant current supply from accumulator batteries is occurred automatically under cessation of voltage supply from centralized power system. Reliable reactor dampening in case it work on capacity has been ensured. Reactor cooling under its emergency shutdown during both the partial or the total loss of coolant in first counter has been carried out. Under full coolant loss the system of emergency reactor cooling has been switched on in operation

  2. Analysis of solutions for passively activated safety shutdown devices for SFR

    International Nuclear Information System (INIS)

    Burgazzi, Luciano

    2013-01-01

    Highlights: • Innovative systems for emergency shut down of fast reactors are proposed. • The concepts of inherent and passive safety are put forward. • The relative analysis in terms of safety and reliability is presented. • A comparative assessment among the concepts is performed. • Path forward is tracked. -- Abstract: In order to enhance the inherent safety of fast reactors, innovative reactivity control systems have been proposed for intrinsic ultimate shut-down instead of conventional scram rods, to cope with the potential consequences of severe unprotected transient accidents, such as an energetic core disruptive accident, as in case of sodium fast reactors. The passive shut-down systems are designed to shut-down system only by inherent passive reactivity feedback mechanism, under unprotected accident conditions, implying failure of reactor protection system. They are conceived to be self-actuated without any signal elaboration, since the actuation of the system is triggered by the effects induced by the transient like material dilatation, in case of overheating of the coolant for instance, according to fast reactor design to meet the safety requirements. This article looks at different special shutdown systems specifically engineered for prevention of severe accidents, to be implemented on fast reactors, with main focus on the investigation of the performance of the self-actuated shutdown systems in sodium fast reactors

  3. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  4. Biomass as fuel: Some general supply and demand considerations for developing countries

    International Nuclear Information System (INIS)

    Barron, W.F.

    1992-01-01

    A major expansion of biomass energy is probably only possible where several factors jointly hold: (1) fossil fuels are priced well above their current international market prices (e.g., to reflect environmental externalities) or otherwise limited in availability, and (2) there is not serious competition for growing sites with food and other non-energy biomass production regimes, and (3) investment resources are available at opportunity costs which make their application to biofuel development an attractive local option. Obvious policy recommendations include: (1) provide expanded support to small-scale biofuel supply and demand programs in areas where wood resources are being mined to satisfy energy needs, and (2) fund SRIC-type experiments in selected areas (e.g., where they may be financially attractive today, where the ecosystems are of particular interest) so as to begin to build-up developing country databases on species, plantation establishment techniques and cost-effective operational activities in support of possible future expansion of industrial-scale biofuels supply systems

  5. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  6. 77 FR 73968 - Reconsideration of Certain New Source and Startup/Shutdown Issues: National Emission Standards...

    Science.gov (United States)

    2012-12-12

    ...; FRL-9762-1] RIN 2060-AR62 Reconsideration of Certain New Source and Startup/Shutdown Issues: National... Source and Startup/Shutdown Issues: National Emission Standards for Hazardous Air Pollutants from Coal... November 30, 2012, proposed ``Reconsideration of Certain New Source and Startup/Shutdown Issues: National...

  7. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  8. BWR shutdown analyzer using artificial intelligence (AI) techniques

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A prototype alarm system for detecting abnormal reactor shutdowns based on artificial intelligence technology is described. The system incorporates knowledge about Boiling Water Reactor (BWR) plant design and component behavior, as well as knowledge required to distinguish normal, abnormal, and ATWS accident conditions. The system was developed using a software tool environment for creating knowledge-based applications on a LISP machine. To facilitate prototype implementation and evaluation, a casual simulation of BWR shutdown sequences was developed and interfaced with the alarm system. An intelligent graphics interface for execution and control is described. System performance considerations and general observations relating to artificial intelligence application to nuclear power plant problems are provided

  9. Evaluating Steam Generator Tubing Corrosion through Shutdown Nickel and Cobalt Releases

    International Nuclear Information System (INIS)

    Marks, Chuck; Little, Mike; Krull, Peter; Dennis Hussey; Kenny Epperson

    2012-09-01

    During power operation in PWRs, steam generator tubing corrodes. In PWRs with nickel alloy steam generator tubing this leads to the release of nickel into the coolant. While not structurally significant, this process leads to corrosion product deposition on the fuel surfaces that can threaten fuel integrity, provide a site for boron precipitation, and, through activation and subsequent release, lead to increased out-of-core radiation fields. During shutdown, decreases in temperature and pH and an increase in the oxidation potential lead to dissolution of some corrosion products from the core. This work evaluated the masses of corrosion products released during shutdown as a proxy for steam generator tubing corrosion rates. The masses were evaluated for trends with time (e.g., the number of cycles) and for the influence of design and operating features such as tubing manufacturer, plant design (e.g., three loop versus four loop), and operating chemistry program. This project utilized the EPRI PWR Chemistry Monitoring and Assessment database. Data from over 20 units, many over several cycles, were assessed. The focus was on corrosion product release from Alloy 690TT tubing and all data were from units that had replaced steam generators. Data were analyzed using models developed from corrosion rate test data reported in the literature with a heavy reliance on data from the EDF BOREAL testing. The most striking result of this analysis was a clear division between plants that exhibited corrosion with a falling rate (i.e., following an exponential decay as has been observed, for example, in the BOREAL testing) and those that showed a constant corrosion rate, sustained for many outages. This difference appears to be most closely correlated with the manufacturer of the tubing. Within the two distinct plant groups (decaying corrosion rate and constant corrosion rate), details of the trends were evaluated for correlation with zinc addition history, plant type, and operating

  10. Control device of air-fuel ratio of alcohol-gasoline mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuo

    1987-08-19

    Concerning alcohol-gasoline mixed fuel, even the same amount of the fuel shows different air-fuel ratio depending upon alcohol concentration in the fuel, accordingly it is required to know the alcohol concentration when it is intended to make the air-fuel ratio to be the same as the predetermined ratio. Although a sensor which can detect in quick response and exactly the alcohol concentration has not been developed, the alcohol concentration in gasoline can be detected by detecting the concentration of the water in exhaust gas and many hygrometers which can detect the concentration of the water with high precision are available. With regard to an internal combustion engine equipped with a fuel supply device in order to supply alcohol-gasoline mixed fuel into an engine suction passage, this invention offers an air-fuel ratio control device to control the amount of the fuel to be supplied from the fuel supply device by detecting the concentration of alcohol in the gasoline from among the output signals of the main hygrometer and the auxiliary hygrometer. The former hygrometer to detect the concentration of the water in the exhaust gas is set in the engine exhaust gas passage and the latter is installed to detect the concentration of the water in the air. (4 figs)

  11. Fuel Management Study for a CANDU reactor Using New Physics Codes Suite

    International Nuclear Information System (INIS)

    Kim, Won Young; Kim, Bong Ghi; Park, Joo Hwan

    2008-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. The primary reactivity control in a CANDU reactor is the on-power refueling on a daily basis and an additional reactivity control is provided through an individual reactivity device movement, which includes 21 adjusters, 6 liquid zone controllers, 4 mechanical control absorbers and 2 shutdown systems. The refueling in CANDU is carried out on power and this makes the in-core fuel management different from that in a reactor refueled during shutdowns. The objective of a fuel management is to determine a fuel loading and fuel replacement procedure which will result in a minimum total unit energy cost in a safe and reliable operation. In this article, the in-core fuel management for the CANDU reactor was studied by using the new physics code suite of WIMS-IST/DRAGON-IST/RFSP-IST with the model of Wolsong-1 NPP

  12. SEPRA - shutdown PSA for the OLKILUOTO nuclear power plant

    International Nuclear Information System (INIS)

    Himanen, R.

    1995-01-01

    The utility TVO has extended the PSA study to the analysis of refueling, shutdown and startup. The Shutdown Event PRA (SEPRA) was reported to the authority in September 1992. The study consists of the analysis of leaks and loss of decay heat removal in the planned shutdown conditions. Special studies were performed for the cold pressurization, for local criticality events, for heavy load transport and for the transients during startup and shutdown. A remarkable effort was put to identify risks, i.e. to the qualitative analysis. The regular preventive maintenance tasks in the refueling outages were analyzed and the important tasks were selected for further studies. Besides the severe core damage risk the utility was interested in less grave consequences, e.g. the economic risks, causing significant extension of outages. The plant specific screening of initiators consisted of a study on the incident history and of interviewing the plant personnel on selected tasks. A number of thermohydraulic calculations were carried out to support the analysis of accident sequences. The operator actions after an initiating event were verified with the operating staff. The annual core damage risk from the refueling outage is about one forth of the total annual risk. The modifications decreased significantly the core damage frequency. It is foreseen that the SEPRA will form a basis of the procedure enhancement for the low power states. (author) 5 figs., 1 tab., 10 refs

  13. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  14. Evaluation of fuel cell hybrid electric light commercial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.M.

    2002-07-01

    This report summarised the results of tests both in the laboratory and in operation on the roads in London carried out to determine the performance of the Zetek Fuel Cell Vehicle operated by Westminster County Council. Details are given of the vehicle's data logging system, and measurement of its acceleration and power, driveability, vehicle range, and the energy efficiency of the fuel cell, and its environmental performance. The frequent shutdowns of the fuel cell system and the problems with the DC/DC converter are discussed.

  15. Setting up fuel supply strategies for large-scale bio-energy projects using agricultural and forest residues. A methodology for developing countries

    International Nuclear Information System (INIS)

    Junginger, M.

    2000-08-01

    The objective of this paper is to develop a coherent methodology to set up fuel supply strategies for large-scale biomass-conversion units. This method will explicitly take risks and uncertainties regarding availability and costs in relation to time into account. This paper aims at providing general guidelines, which are not country-specific. These guidelines cannot provide 'perfect fit'-solutions, but aim to give general help to overcome barriers and to set up supply strategies. It will mainly focus on residues from the agricultural and forestry sector. This study focuses on electricity or both electricity and heat production (CHP) with plant scales between 1040 MWe. This range is chosen due to rules of economies of scale. In large-scale plants the benefits of increased efficiency outweigh increased transportation costs, allowing a lower price per kWh which in turn may allow higher biomass costs. However, fuel-supply risks tend to get higher with increasing plant size, which makes it more important to assess them for large(r) conversion plants. Although the methodology does not focus on a specific conversion technology, it should be stressed that the technology must be able to handle a wide variety of biomass fuels with different characteristics because many biomass residues are not available the year round and various fuels are needed for a constant supply. The methodology allows for comparing different technologies (with known investment and operational and maintenance costs from literature) and evaluation for different fuel supply scenarios. In order to demonstrate the methodology, a case study was carried out for the north-eastern part of Thailand (Isaan), an agricultural region. The research was conducted in collaboration with the Regional Wood Energy Development Programme in Asia (RWEDP), a project of the UN Food and Agricultural Organization (FAO) in Bangkok, Thailand. In Section 2 of this paper the methodology will be presented. In Section 3 the economic

  16. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    Science.gov (United States)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  17. Experimental investigation on a turbine compressor for air supply system of a fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Masayasu [Sumitomo Heavy Industries, Ltd., Yokosuka (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Minato-ku, Tokyo (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns a study on the air supply system for the PEFC, with particular reference to system components.

  18. The Bulgaria before shut-down of next two blocks

    International Nuclear Information System (INIS)

    Dobak, D.

    2005-01-01

    The Ministry of Trade and Industry of United Kingdom in the frame of realization of programmes for the Middle and East Europe in the area of nuclear energetics during October 5 - 7, 2005 in Kozloduj has organized the Second International Conference on the theme 'Liquidation, social and economic changes'. In this paper author informs about Kozloduj NPP and plans for shut-down of this NPP as well as consequences of the shut-down. One of them the increase of unemployment and social impact for this region are presented

  19. Primary shutdown system monitoring unit for nuclear power plants

    International Nuclear Information System (INIS)

    Khan, Tahir Kamal; Balasubramanian, R.; Agilandaeswari, K.

    2013-01-01

    Shut off rods made up of neutron absorbing material are used as Primary Shutdown System. To reduce the power of the reactor under certain abnormal operating conditions, these rods must go down into the core within a specified time. Any malfunctioning in the movement of rods cannot be tolerated and Secondary Shutdown System (SSS) must be actuated within stipulated time to reduce the reactor power. A special safety critical, hardwired electronics unit has been designed to detect failure of PSS Shut off rods movements and generate trip signals for initiating SSS. (author)

  20. MTR fuel testing in BR2

    International Nuclear Information System (INIS)

    Jacquet, P.; Verwimp, A.; Wirix, S.

    2000-01-01

    New fuel design for MTR 's requires to be qualified under representative conditions, that is geometry, neutron spectrum, heat flux and thermo hydraulic conditions. An irradiation device for fuel plates has been designed to derive the maximum benefit from the BR2 irradiation capacities. The fuel plates can be easily extracted from their support during a shutdown to undergo additional tests. One of these tests is the measurement of the thickness changes along the fuel plate. To that purpose, a facility in the reactor water pool has been designed to measure the fuel swelling with an accuracy of 5 μm using inductive probes. At SCK-CEN, the full range of destructive and non-destructive PIE can be performed, including γ-scanning, wet sipping, surface examination and other methods. (author)

  1. Postirradiation examination and evaluation of Peach Bottom fuel test element FTE-6

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Holzgraf, J.F.; Jensen, D.D.

    1977-09-01

    Fuel test element FTE-6 was irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) for 645 equivalent full power days. Four fuel varieties, contained in H-327 graphite bodies, were tested. A primary result of this test has been to demonstrate acceptable performance even with calculated high stresses in the graphite bodies. Heterogeneous fuel loadings in the element caused local power peaking and azimuthal power variations, deforming the graphite fuel bodies and thereby causing bowing nearly five times as large as the diametral clearance within the sleeve. The axial stresses resulting from interference between the fuel bodies and sleeve were estimated to have reached 45% of the ultimate material strength at the end of the irradiation. Residual stresses from differential contraction within the fuel body resulted in probable in-plane stress levels of 130% of the material strength at the end-of-life shutdown and of up to 150% of the strength at shutdown during the irradiation cycle. The high in-plane stresses are local peaks at the corners of a sharp notch in the element, which may account for the stresses failing to cause damage. The lack of observable damage, however, indicates that the methods and data used for stress analysis give results that are either fairly accurate or conservative

  2. Standardization of the time for the execution of HANARO start-up and shutdown procedures

    International Nuclear Information System (INIS)

    Choi, H. Y.; Lim, I. C.; Hwang, S. R.; Kang, T. J.; Youn, D. B.

    2003-01-01

    For the standardization of the time to execute HANARO start-up and shutdown procedures, code names were assigned to the individual procedures and the work time were investigated. The data recorded by the operators during start-up and shutdown were statistically analyzed. The analysis results will be used for the standardization of start-up and shutdown procedures and it will be reflected in the procedure document

  3. Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties

    Science.gov (United States)

    2013-01-31

    fuel in NATO countries will have some amount of FAME present. There is some work being done on hydrocarbon alternatives but the regulatory structure ... synthesis or hydrotreatment – Requirements and test methods.” According to the specification, paraffinic diesel fuel does not meet the current requirements...or international specification for triglyceride based fuel oils (straight vegetable oil / raw vegetable oil). The same holds true for alcohol-based

  4. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Kucuk, Aylin; Cheng, Bo; Potts, Gerald A.; Shiralkar, Bharat; Morgan, Dave; Epperson, Kenny; Gose, Garry

    2014-01-01

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  5. Increasing the flexibility of base-load generating units in operation on fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Girshfel' d, V Ya; Khanaev, V A; Volkova, E D; Gorelov, V A; Gershenkroi, M L

    1979-01-01

    Increasing the flexibility of base-load generating units operating on fossil fuel by modifying them is a necessary measure. The highest economic effect is attained with modification of gas- and oil-fired generating units in the Western United Power Systems of the European part of the SPSS. On the basis of available experience, 150- and 200-MW units can be extensively used to regulate the power in the European part of the SPSS through putting them into reserve for the hours of the load dip at night. The change under favorable conditions of 150- and 200-MW units operating on coal to a district-heating operating mode does not reduce the possibilities for flexible operation of these units because it is possible greatly to unload the turbines while the minimum load level of the pulverized fuel fired boiler is retained through transferring a part of the heat load to the desuperheater. It is necessary to accumulate and analyze experience with operation of generating units (especially of supercritical units) with regular shutdowns and starts of groups of units and to solve the problems of modification of generating units, with differentiation with respect to types of fuel and to the united power supply system.

  6. Probabilistic safety assessments of nuclear power plants for low power and shutdown modes

    International Nuclear Information System (INIS)

    2000-03-01

    Within the past several years the results of nuclear power plant operating experience and performance of probabilistic safety assessments (PSAs) for low power and shutdown operating modes have revealed that the risk from operating modes other than full power may contribute significantly to the overall risk from plant operations. These early results have led to an increased focus on safety during low power and shutdown operating modes and to an increased interest of many plant operators in performing shutdown and low power PSAs. This publication was developed to provide guidance and insights on the performance of PSA for shutdown and low power operating modes. The preparation of this publication was initiated in 1994. Two technical consultants meetings were conducted in 1994 and one in February 1999 in support of the development of this report

  7. Data mining in the study of nuclear fuel cells

    International Nuclear Information System (INIS)

    Medina P, J. A.; Ortiz S, J. J.; Castillo, A.; Montes T, J. L.; Perusquia, R.

    2015-09-01

    In this paper is presented a study of data mining application in the analysis of fuel cells and their performance within a nuclear boiling water reactor. A decision tree was used to fulfill questions of the type If (condition) and Then (conclusion) to classify if the fuel cells will have good performance. The performance is measured by compliance or not of the cold shutdown margin, the rate of linear heat generation and the average heat generation in a plane of the reactor. It is assumed that the fuel cells are simulated in the reactor under a fuel reload and rod control patterns pre designed. 18125 fuel cells were simulated according to a steady-state calculation. The decision tree works on a target variable which is one of the three mentioned before. To analyze this objective, the decision tree works with a set of attribute variables. In this case, the attributes are characteristics of the cell as number of gadolinium rods, rods number with certain uranium enrichment mixed with a concentration of gadolinium, etc. The found model was able to predict the execution or not of the shutdown margin with a precision of around 95%. However, the other two variables showed lower percentages due to few learning cases of the model in which these variables were or were not achieved. Even with this inconvenience, the model is quite reliable and can be used in way coupled in optimization systems of fuel cells. (Author)

  8. Optimal test intervals for shutdown systems for the Cernavoda nuclear power station

    International Nuclear Information System (INIS)

    Negut, Gh.; Laslau, F.

    1993-01-01

    Cernavoda nuclear power station required a complete PSA study. As a part of this study, an important goal to enhance the effectiveness of the plant operation is to establish optimal test intervals for the important engineering safety systems. The paper presents, briefly, the current methods to optimize the test intervals. For this reason it was used Vesely methods to establish optimal test intervals and Frantic code to survey the influence of the test intervals on system availability. The applications were done on the Shutdown System no. 1, a shutdown system provided whit solid rods and on Shutdown System no. 2 provided with injecting poison. The shutdown systems receive nine total independent scram signals that dictate the test interval. Fault trees for the both safety systems were developed. For the fault tree solutions an original code developed in our Institute was used. The results, intended to be implemented in the technical specifications for test and operation of Cernavoda NPS are presented

  9. Uranium supply of the Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Clausen, A.

    1991-01-01

    Securing the supply to Swiss nuclear power stations takes into account the fact that finished fuel elements must be introduced. The situation is, however, relieved by the fact there are excess capacities both in the amount of natural uranium available as well as in all processing stages. As further security, each nuclear power station keeps a reload of fuel elements in stock, so that if supplies are disrupted, continued operation is guaranteed for 1-2 years. Political influences should be taken into account, as should any repercussions that fuel disposal may have on fuel supply. 3 figs

  10. Influence of start-ups with fuel-oil on the operation of electrostatic precipitators in pulverised coal boilers

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, B.; Vilches, L.F.; Canadas, L.; Salvador, L. [University of Seville, Seville (Spain)

    2004-04-01

    This article describes the results of a series of tests carried out in a pilot fly ash electrostatic precipitation facility operating with real gases from a 550 MWe pulverized coal-fired power station. The main goal of these tests was to determine the effects of boiler start-ups on the performance of the electrostatic preciptator. The tests were carried out during start-ups of the power station boiler. All tests were carried out with the same fuel. An evaluation was made of the effects of the use of fuel-oil as auxillary fuel in start-ups and shut-downs of the boiler, and different electrostatic precipitators operation procedures were tested during start-ups and shut-downs. The results of the experiments made it possible to assess the relative importance of different variables on the possible deterioration of the efficiency of the precipitators. Also evaluated were operational modes that have demonstrated an improvement in the performance of the precipitators after the transient stage of these operations. As a result of this study, a number of important operational recommendations are made on boiler start-up and shut-down procedures.

  11. MCR2S unstructured mesh capabilities for use in shutdown dose rate analysis

    International Nuclear Information System (INIS)

    Eade, T.; Stonell, D.; Turner, A.

    2015-01-01

    Highlights: • Advancements in shutdown dose rate calculations will be needed as fusion moves from experimental reactors to full scale demonstration reactors in order to ensure the safety of personnel. • The MCR2S shutdown dose rate tool has been modified to allow shutdown dose rates calculations using an unstructured mesh. • The unstructured mesh capability of MCR2S was used on three shutdown dose rate models, a simple sphere, the ITER computational benchmark and the DEMO computational benchmark. • The results showed a reasonable agreement between an unstructured mesh approach and the CSG approach and highlighted the need to carefully choose the unstructured mesh resolution. - Abstract: As nuclear fusion progresses towards a sustainable energy source and the power of tokamak devices increases, a greater understanding of the radiation fields will be required. As well as on-load radiation fields, off-load or shutdown radiation field are an important consideration for the safety and economic viability of a commercial fusion reactor. Previously codes such as MCR2S have been written in order to predict the shutdown dose rates within, and in regions surrounding, a fusion reactor. MCR2S utilises a constructive solid geometry (CSG) model and a superimposed structured mesh to calculate 3-D maps of the shutdown dose rate. A new approach to MCR2S calculations is proposed and implemented using a single unstructured mesh to replace both the CSG model and the superimposed structured mesh. This new MCR2S approach has been demonstrated on three models of increasing complexity. These models were: a sphere, the ITER computational shutdown dose rate benchmark and the DEMO computational shutdown dose rate benchmark. In each case the results were compared to MCR2S calculations performed using MCR2S with CSG geometry and a superimposed structured mesh. It was concluded that the results from the unstructured mesh implementation of MCR2S compared well to the CSG structured mesh

  12. On line testing of shutdown system

    International Nuclear Information System (INIS)

    Ramnath, S.; Swaminathan, P.; Sreenivasan, P.

    1997-01-01

    For ensuring high reliability and availability, safety related Instrumentation channels are triplicated. Solid state electronics can fail in safe or unsafe mode. Hence, it is necessary to supervise the safety related Instrumentation channels from sensor to final shutdown system. Microprocessor/ Microcontroller/ ASIC based online supervision systems are detailed in this paper. (author)

  13. 78 FR 38739 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Science.gov (United States)

    2013-06-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0299] Standard Format and Content for Post-Shutdown Decommissioning Activities Report AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance..., ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a...

  14. Characterization and supply of coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  15. Safety shutdowns and failures of the RA reactor equipment; Sigurnosna zaustavljanja i kvarovi opreme na reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Mitrovic, S [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    This report is an attempt of statistical analysis of the failures occurred during RA reactor operation. A list of failures occurred on the RA equipment during 1965 is included. Failures were related to the following systems: dosimetry system (22%), safety and control system (7%), heavy water system (2%), technical water (4%), helium system (2%), measuring instruments (30%), transport, ventilation, power supply systems (32%). A review of safety shutdowns from 1962 to 1966 is included as well, as a comparison with three similar reactors. Although the number of events used for statistical analysis was not adequate, it has been concluded that RA reactor operation was stable and reliable.

  16. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  17. A Supply-Chain Analysis Framework for Assessing Densified Biomass Solid Fuel Utilization Policies in China

    Directory of Open Access Journals (Sweden)

    Wenyan Wang

    2015-07-01

    Full Text Available Densified Biomass Solid Fuel (DBSF is a typical solid form of biomass, using agricultural and forestry residues as raw materials. DBSF utilization is considered to be an alternative to fossil energy, like coal in China, associated with a reduction of environmental pollution. China has abundant biomass resources and is suitable to develop DBSF. Until now, a number of policies aimed at fostering DBSF industry have been proliferated by policy makers in China. However, considering the seasonality and instability of biomass resources, these inefficiencies could trigger future scarcities of biomass feedstocks, baffling the resilience of biomass supply chains. Therefore, this review paper focuses on DBSF policies and strategies in China, based on the supply chain framework. We analyzed the current developing situation of DBSF industry in China and developed a framework for policy instruments based on the supply chain steps, which can be used to identify and assess the deficiencies of current DBSF industry policies, and we proposed some suggestions. These findings may inform policy development and identify synergies at different steps in the supply chain to enhance the development of DBSF industry.

  18. 75 FR 8323 - National Fuel Gas Supply Corporation; Notice of Intent To Prepare an Environmental Assessment for...

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF10-1-000] National Fuel Gas Supply Corporation; Notice of Intent To Prepare an Environmental Assessment for the Planned Line N Projects, Notice of Public Scoping Meeting, and Request for Comments on Environmental Issues February 18, 2010. The staff of the Federal Energy...

  19. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  20. CV activities on the LHC complex during the long shutdown

    CERN Document Server

    Deleval, S; Body, Y; Obrecht, M; Moccia, S; Peon, G

    2011-01-01

    The presentation gives an overview of the major projects and work foreseen to be performed during next long shutdown on cooling and ventilation plants. Several projects are needed following the experience of the last years when LHC was running, in particular the modifications in the water cooling circuits presently in overflow. Some other projects are linked to the CV consolidation plan. Finally, most of the work shall be done to respond to additional requests: SR buildings air conditioning, the need to be able to clean and maintain the LHC cooling towers without a complete stop of cooling circuits, the upgrade of the air conditioning of the CCC rack room cooling etc. For all these activities, the author will detail constraints and the impact on the schedule and on the operation of the plants that will however need to run for most of the shutdown duration. The consequence of postponing the long shutdown from 2012 to 2013 will be also covered.

  1. Burst failures of water cooling rubber pipes of TRISTAN MR magnet power supplies and magnets

    International Nuclear Information System (INIS)

    Kubo, Tadashi

    1994-01-01

    In 1992, from June to September, the rubber pipes of magnet and magnet power supply for water cooling burst in succession. All the rubber pipes to be dangerous to leave as those were had been replaced to new rubber pipes before the end of the summer accelerator shutdown. (author)

  2. A Supply and Demand Update of the Molybdenum-99 Market

    International Nuclear Information System (INIS)

    2012-08-01

    Medical diagnostic imaging techniques using technetium-99m account for roughly 80% of all nuclear medicine procedures, representing over 30 million examinations worldwide every year. Disruptions in the supply chain of these medical isotopes - which have half-lives of 66 hours for molybdenum-99 ( 99 Mo) and 6 hours for its daughter isotope, technetium-99m (' 99m Tc), and thus must be produced continually - can lead to cancellations or delays in important medical testing services. Unfortunately, supply reliability has declined over the past decade due to unexpected or extended shutdowns at the few ageing 99 Mo-producing research reactor and processing facilities. These shutdowns have created global supply shortages. In 2011, the OECD Nuclear Energy Agency (NEA), along with its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR), released a report that presents the reasons behind the lack of infrastructure that led to global supply shortages and a policy approach to encourage long-term medical isotope supply security. In that report, The Supply of Medical Radioisotopes: The Path to Reliability, the NEA also provides potential futures of supply and demand out to 2030. Since the release of The Path there have been a number of changes in the market and therefore this document provides an update on the 2011 supply and demand situation. This update is based on information provided to the NEA by members of the HLG-MR and other key stakeholders. This presentation of supply and demand future scenarios for the 99 Mo market revises previous NEA future scenarios based on new data and target conversion commitments from the supply chain. The update, unfortunately, does not present a more optimistic future scenario than previous presentations - the concern around the uneconomic situation of the supply chain continues to dominate the potential for new projects. This results in the potential for long-term shortages within the decade. However, there are a

  3. Securing a safer, greener, expandable nuclear fuel cycle supply chain for future power production

    International Nuclear Information System (INIS)

    Capus, Georges

    2009-01-01

    After looking at what is necessary to sustainably ensure the global nuclear power plant fleet expansion, it becomes appearant that advanced reactor design should be accompanied with a greener and more flexible fuel cycle capability. The financial crisis has invaded all the front pages and our thoughts. However it has not rescheduled the growth of world population or reduced the desire of people in emerging economies to achieve a higher level of 'development'; nor has it alleviated climate change issues that demand CO2 constrained power sources. What is the outlook for nuclear power? On a worldwide basis, we have today a significant fleet of nuclear power plants, operating well, upgrading output, extending lifetime, and producing not only a safe reliable flow of electricity but a good flow of cash as well. For the countries hosting significant shares of this fleet, their nuclear power plants are increasingly precious assets, and despite the financial crisis, most of them are considering expansion of their nuclear fleets. For the others, the desire to access such a reliable and ultimately cheap source of energy will last longer than the temporary difficulties to get its financing. In short, the outlook for a massive phase of new nuclear builds remains very likely. Then comes the consequential issue of the nuclear fuel supply chain. From uranium exploration and production to back end solutions, most of the existing facilities were designed and startup decades ago. The question is therefore, does this supply chain offer the requested characteristics to sustain the nuclear power plants fleet for the long run? By requested characteristics, it is meant not only adequate capacity and improvement of quality, but also environmentally friendly new designs and processes. This paper is aimed at recalling the current situation of the supply chain, then at describing the status of major projects, and finally at identifying some gaps and issues

  4. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    International Nuclear Information System (INIS)

    Gallardo, J.; Marquino, W.; Mistreanu, A.; Yang, J.

    2015-09-01

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  5. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Marquino, W.; Mistreanu, A.; Yang, J., E-mail: euqrop@hotmail.com [General Electric Hitachi Nuclear Energy, Wilmington, 28401 North Carolina (United States)

    2015-09-15

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  6. 40 CFR 63.2852 - What is a startup, shutdown, and malfunction plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What is a startup, shutdown, and... Production Compliance Requirements § 63.2852 What is a startup, shutdown, and malfunction plan? You must...)(2) malfunction period, or the § 63.2850(c)(2) or (d)(2) initial startup period. The SSM plan must...

  7. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...

  8. Republic of Korea: Design Study for Passive Shutdown System of the PGSFR

    International Nuclear Information System (INIS)

    Lee, J.H.

    2015-01-01

    There have been no experiences of implementing a passive shutdown system in operating or operated SFRs around the world. However, new SFRs are considered to adopt a self-actuated shutdown system (SASS) in the future to provide an alternate means of passively shutting down the reactor. The Prototype Gen-IV SFR (PGSFR) developed by KAERI also adopts this system for the same reason. This passive shutdown design concept is combined with a group of secondary control rod drive mechanisms (SCRDM). The system automatically releases the control rod assembly (CRA) around the set temperature, and then drops the CRA by gravity without any external control signals and any actuating power in an emergency of the reactor. This paper describes the parametric design study of a passive shutdown system, which consists of a thermal expansion device, an electromagnet, and a secondary control rod assembly head. The conceptual design values of each component are also suggested. Parametric calculations are performed to check the suitability of the performance requirements of the thermal expansion device and electromagnets

  9. Reliability analysis of self-actuated shutdown system

    International Nuclear Information System (INIS)

    Itooka, S.; Kumasaka, K.; Okabe, A.; Satoh, K.; Tsukui, Y.

    1991-01-01

    An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)

  10. 78 FR 49553 - Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report

    Science.gov (United States)

    2013-08-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-320; NRC-2013-0183] Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report AGENCY: Nuclear Regulatory Commission. ACTION: Notice of receipt... Shutdown Decommissioning Activity Report (PSDAR) for Three Mile Island, Unit 2 (TMI-2). The PSDAR provides...

  11. Startup, Shutdown, & Malfunction (SSM) Emissions at Industrial Facilities

    Science.gov (United States)

    EPA issued a final action to ensure states have plans in place that are fully consistent with the Clean Air Act and recent court decisions concerning startup, shutdown and malfunction (SSM) operations.

  12. Passive safe small reactor for distributed energy supply system sited in water filled pit at seaside

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Imayoshi, Shou

    2003-01-01

    Japan Atomic Energy Research Institute has developed a Passive Safe Small Reactor for Distributed Energy Supply System (PSRD) concept. The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down device. For improvement of economy, simplification of the reactor system and long operation of the core over five years without refueling with low enriched UO 2 fuel rods are achieved. To avoid releasing the radioactive materials to the circumstance even if a hypothetical accident, the containment is submerged in a pit filled with seawater at a seaside. Refueling or maintenance of the reactor can be conducted using an exclusive barge instead of the reactor building. (author)

  13. Elementary calculation of the shutdown delay of a pile

    International Nuclear Information System (INIS)

    Yvon, J.

    1949-04-01

    This study analyzes theoretically the progress of the shutdown of a nuclear pile (reactor) when a cadmium rod is introduced instantaneously. For simplification reasons, the environment of the pile is considered as homogenous and only thermal neutrons are considered (delayed neutrons are neglected). Calculation is made first for a plane configuration (plane vessel, plane multiplier without reflector, and plane multiplier with reflector), and then for a cylindrical configuration (multiplier without reflector, multiplier with infinitely thick reflector, finite cylindrical piles without reflector and with reflector). The self-sustain conditions are calculated for each case and the multiplication length and the shutdown delay are deduced. (J.S.)

  14. Effect of fuel string relocation on the consequences of postulated inlet header LBLOCA in KANUPP reactor

    International Nuclear Information System (INIS)

    Ahmed, I.; Chow, H.C.; Younis, M.H.

    1996-01-01

    An investigation aimed at determining the effect of fuel string relocation on reactivity excursion and power pulse following a hypothetical Large Break Loss of Coolant Accident in KANUPP reactor is reported. The assessment of reactivity insertion was performed making use of global (reactor) core analysis computer code RFSP. The reactor kinetics module CERBERUS of the RFSP code and the SOPHT (thermal-hydraulics code) were subsequently employed for the neutronic transient analysis. The effect was evaluated in context of determining the adequacy of moderator dump shutdown system. Because of the presence of the gap between the inlet shield plug and the fuel string, the fuel bundles may shift in such a manner that low-irradiated fuel is moved towards the core centre. This represents an additional reactivity increase to be accounted for in the analysis. The reactivity excursion, however, is alleviated by an earlier reactor trip. The net impact is that the energy deposited in the maximum rated fuel pencil is increased from 56% of the 960 kJ/kg fuel-centre-line melting limit to 63%. The result demonstrated the adequacy of the shutdown system against the maximum credible accident event. (author)

  15. Design of an equilibrium nucleus of a BWR type reactor based in a Thorium-Uranium fuel

    International Nuclear Information System (INIS)

    Francois, J.L.; Nunez C, A.

    2003-01-01

    In this work the design of the reactor nucleus of boiling water using fuel of thorium-uranium is presented. Starting from an integral concept based in a type cover-seed assemble is carried out the design of an equilibrium reload for the nucleus of a reactor like that of the Laguna Verde Central and its are analyzed some of the main design variables like the cycle length, the reload fraction, the burnt fuel, the vacuum distribution, the generation of lineal heat, the margin of shutdown, as well as a first estimation of the fuel cost. The results show that it is feasible to obtain an equilibrium reload, comparable to those that are carried out in the Laguna Verde reactors, with a good behavior of those analyzed variables. The cost of the equilibrium reload designed with the thorium-uranium fuel is approximately 2% high that the uranium reload producing the same energy. It is concluded that it is convenient to include burnable poisons, type gadolinium, in the fuel with the end of improving the reload design, the fuel costs and the margin of shutdown. (Author)

  16. 40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during CISWI unit startups, shutdowns, or malfunctions. (b) Each...

  17. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  18. Flowsheet for shear/leach processing of N Reactor fuel at PUREX

    International Nuclear Information System (INIS)

    Enghusen, M.B.

    1995-01-01

    This document was originally prepared to support the restart of the PUREX plant using a new Shear/Leach head end process. However, the PUREX facility was shutdown and processing of the remaining N Reactor fuel is no longer considered an alternative for fuel disposition. This document is being issued for reference only to document the activities which were investigated to incorporate the shear/leach process in the PUREX plant

  19. Security of energy supply: Account of the security of supply in Denmark; Energiforsyningssikkerhed. Redegoerelse om forsyningssikkerheden i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    2010-02-15

    A secure and stable energy supply is a prerequisite for a society like the Danish. Through many years of active energy policy we in Denmark have developed an efficient energy system with a very high security of supply. In coming decades it is necessary to implement a major transformation of our energy supplies to more renewable energy and phase out fossil fuels. The Government's vision is that we must have a Denmark that is independent of fossil fuels. With such a fundamental transformation of our energy supply and energy system it becomes a challenge to maintain the high security of supply, as we know it today. Conversely, it is not a long term solution to continue to allow society to be dependent on fossil fuels. And it is against this background, the Danish Minister for Climate and Energy submit this account on security of energy supplies in Denmark. The account shows that we in Denmark have a high security of supply. There is still access to sufficient energy resources, we have a well-functioning infrastructure, and we have good access to the exchange of energy within the EU and other countries. This places Denmark in a good situation. Today, Denmark has a significant import of especially petroleum and coal and export of petroleum and gas. The future declining production of oil and gas in the North Sea means an increasing need for imported fuels from fewer and fewer countries and regions, and at the same time there will be an increased international demand for the same fuels. This brings Denmark in the same situation as the other EU countries. Thus we have the basis for reducing consumption of fossil fuels and instead accommodate increasing amounts of renewable energy in our energy supply, but it requires a further development of the system to be possible to store energy and manage energy consumption. It will be necessary if the growing parts of our energy must come from fluctuating sources like wind and solar energy. Efficiency in energy supply has

  20. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  1. Anode protection system for shutdown of solid oxide fuel cell system

    Science.gov (United States)

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  2. Do we soon run out of uranium? Long-term concepts of nuclear fuel supply

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2008-01-01

    The extension of the worldwide light water reactor fleet will cause the demand for uranium to grow. The static reach of identified resources might soon fall below the life time of new nuclear power plants which are usually designed for 60 years of operation, if the exploration of new uranium deposits will stop resulting in exploitable resources. The article discusses, if, as frequently claimed, the energy consumption in the uranium mines renders impossible to secure the nuclear fuel supply in the long term. (orig.)

  3. Reload safety evaluation of boron dilution accident related to shutdown margin proportional to boron concentration

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Lee, Ki Bog; Song, Jae Woong

    1993-06-01

    This report investigates the efficient safety evaluation method and analysis procedure on Boron Dilution Accident(BDA) under the proportional shutdown margin to boron concentration. Also investigated are problems caused by applying this shutdown margin limit. Through this investigation, the safety of Kori-3 Cycle-8, Yonggwang-2 Cycle-7, Kori-4 Cycle-8 and Yonggwang-1 Cycle-8 with respect to BDA is verified. In order to satisfy the shutdown margin requirement in the Technical Specifications, it is shown that the High Flux Alarm at Shutdown Setting for Kori-4 Cycle-8 and Yonggwang-1 Cycle-8 at Mode 5 should be set at 2 or the Technical Specification should be revised. (Author)

  4. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  5. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  6. Stranded Fuel, Orphan Sites, Dead Plants: Transportation Planning Considerations After the BRC Report - 13393

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, Alex W. [The Thrower Group LLC, Richmond, VA (United States)

    2013-07-01

    The author explores transportation, packaging and storage questions related to a primary recommendation of the Blue Ribbon Commission on America's Nuclear Future; i.e., that fuel from shutdown plants be removed to consolidated storage as soon as possible to enable final decommissioning and beneficial re-use of those sites. The paper discusses the recommendations of the BRC, the implications and challenges that implementing those recommendations present, and provides recommended solutions for beginning the multi-year planning, coordination, material acquisition, and communications processes that will be needed to move fuel from shutdown plants when a destination site becomes available. Removal of used nuclear fuel from shutdown reactor sites (which are serving no other purpose other than storing SNF and GTCC, at considerable expense) was a central recommendation of the BRC, for a number of reasons. This recommendation was one of the most widely acclaimed that the Commission put forward. However, there are significant challenges (such as availability of fuel canister overpacks, lack of infrastructure, handling constraints and others) that will need to be addressed, apart from the critically important identification of a suitable and workable storage destination site. Resolving these logistical challenges will need to begin even before a destination site is identified, given the long lead-times required for planning and procurement. Based on information available today, it is possible to make informed predictions about what will be needed to modify existing contractual arrangements with utilities, address equipment and infrastructure needs, and begin working with states, tribes and local governments to start initial preparation needs. If DOE, working with industry and other experienced parties, can begin planning and acquisition activities in the near term, overall schedule risk can be reduced and potential cost avoidance achieved. The most immediate benefit will

  7. Stranded Fuel, Orphan Sites, Dead Plants: Transportation Planning Considerations After the BRC Report - 13393

    International Nuclear Information System (INIS)

    Thrower, Alex W.

    2013-01-01

    The author explores transportation, packaging and storage questions related to a primary recommendation of the Blue Ribbon Commission on America's Nuclear Future; i.e., that fuel from shutdown plants be removed to consolidated storage as soon as possible to enable final decommissioning and beneficial re-use of those sites. The paper discusses the recommendations of the BRC, the implications and challenges that implementing those recommendations present, and provides recommended solutions for beginning the multi-year planning, coordination, material acquisition, and communications processes that will be needed to move fuel from shutdown plants when a destination site becomes available. Removal of used nuclear fuel from shutdown reactor sites (which are serving no other purpose other than storing SNF and GTCC, at considerable expense) was a central recommendation of the BRC, for a number of reasons. This recommendation was one of the most widely acclaimed that the Commission put forward. However, there are significant challenges (such as availability of fuel canister overpacks, lack of infrastructure, handling constraints and others) that will need to be addressed, apart from the critically important identification of a suitable and workable storage destination site. Resolving these logistical challenges will need to begin even before a destination site is identified, given the long lead-times required for planning and procurement. Based on information available today, it is possible to make informed predictions about what will be needed to modify existing contractual arrangements with utilities, address equipment and infrastructure needs, and begin working with states, tribes and local governments to start initial preparation needs. If DOE, working with industry and other experienced parties, can begin planning and acquisition activities in the near term, overall schedule risk can be reduced and potential cost avoidance achieved. The most immediate benefit will

  8. Shutdown and low-power operation at commercial nuclear power plants in the United States

    International Nuclear Information System (INIS)

    1993-09-01

    The report contains the results of the NRC Staff's evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements

  9. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  10. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Science.gov (United States)

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  11. Crushing method for nuclear fuel powder

    International Nuclear Information System (INIS)

    Hasegawa, Shin-ichi; Tsuchiya, Haruo.

    1997-01-01

    A crushing medium is contained in mill pots disposed at the circumferential periphery of a main axis. The diameter of each mill pot is determined such that powdery nuclear fuels containing aggregated powders and ground and mixed powders do not reach criticality. A plurality of mill pots are revolved in the direction of the main axis while each pots rotating on its axis. Powdery nuclear fuels containing aggregated powders are conveyed to a supply portion of the moll pot, and an inert gas is supplied to the supply portion. The powdery nuclear fuels are supplied from the supply portion to the inside of the mill pots, and the powdery nuclear fuels containing aggregated powders are crushed by centrifugal force caused by the rotation and the revolving of the mill pots by means of the crushing medium. UO 2 powder in uranium oxide fuels can be crushed continuously. PuO 2 powder and UO 2 powder in MOX fuels can be crushed and mixed continuously. (I.N.)

  12. Extending reactor time-to-poison and reducing poison shutdown time by pre-shutdown power alterations

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Edward

    1963-10-15

    Manipulation of reactor power prior to shutdown and increasing the time- to-poison a sufficient amount to enable the required maintenance work to be completed and the reactor immediately restarted are discussed. The method employed in the NRU Reactor to gain the maximum timeto-poison with the least production loss is outlined. The method is based on intuition and is described by means of an analog of the iodine--xenon equations rather than the equations themselves. (C.E.S.)

  13. Seismic qualification of SPX1 shutdown systems - tests and calculations

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.

    1988-01-01

    The SUPERPHENIX 1 shutdown system is composed of two main systems: the Complementary Shutdown System SAC (Systeme d'Arret Complementaire) and the Primary Shutdown System (SCP) (Systeme de Commande Principal). In case of a seismic event, the insertability of the different shutdown systems has to be demonstrated. Tests have been performed on the SAC and have shown that this system was not sensitive to the seismic excitation (the drop time increases of 10% at SSE level). For the SCP, as an analytical demonstration was felt difficult to achieve, it was decided to perform a full scale testing program. These tests have been performed for the two types of SCP which are present in Superphenix: SCP 1 (Creusot Loire design), SCP 2 (Novatome design). As there was no existing facility in France to test this kind of slender structure (21 metres high) a new facility named VESUBIE was designed and installed in an existing pit located at the Saclay nuclear research center. The objectives of the tests were the following: to demonstrate insertability of control rod; to demonstrate absence of seismic induced damage to the SCP; to measure increase of scram time; to measure seismic induced stresses; to obtain data for code correlation. After completion of the tests, measurements have been correlated with results obtained from a non-linear finite element model. Time history correlations were achieved for SCP 1. Afterwards a calculation was performed in hot condition to find if there was some effect of temperature on SCP seismic response. 2 refs, 8 figs

  14. On the Development of Fuel-Free Power Supply Sources on Pneumatic Energy Conversion Principles

    Science.gov (United States)

    Son, E. E.; Nikolaev, V. G.; Kudryashov, Yu. I.; Nikolaev, V. V.

    2017-12-01

    The article is devoted to the evaluation of capabilities and problems of creation of fuel-free power supply of isolated and autonomous Russian consumers of low (up to several hundreds kW) power based on the joint use of wind power plants and progressive systems of pneumatic accumulation and conversion of energy. The basic and functional schemes and component structure of the system prototype are developed and proposed, the evaluations of the expected technical and economic indicators of system are presented, and the ways of its further practical implementation are planned.

  15. Correction device for fuel positioning value

    International Nuclear Information System (INIS)

    Nakahara, Toshiro.

    1993-01-01

    In a computer for a fuel exchanger for controlling handling of fuels such as loading and unloading based on the data for settling values of fuels installed in a reactor core or fuel pool, data for burnup degree during reactor operation are inputted from a computer computing the reactor output into a correction device for fuel settling values in which fuel irradiation growth rate is calculated to determine a correction value. This makes it unnecessary for sampling measurement of fuel settling values in the reactor core practiced at the same time with the reactor opening and exchange operation for the stored date of settling values in the computer for the fuel exchanger conducted on every time. New data for settling values can be exchanged automatically based on the data for the burnup degree at the same time with the reactor shutdown, which can be conducted easily over the whole number. Accordingly, it is possible to improve reliability and safety of the fuel exchanging operation including the setting for the interlock of the fuel exchanging operation relevant to the fuel settling values, as well as moderate operator's burden. (N.H.)

  16. The management of large cabling campaigns during the Long Shutdown 1 of LHC

    CERN Document Server

    Meroli, Stefano; Formenti, Fabio; Frans, Marten; Guillaume, Jean Claude; Ricci, Daniel

    2014-01-01

    The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a ...

  17. Failure of PWR-RHRS under cold shutdown conditions: Experimental results from the PKL test facility

    International Nuclear Information System (INIS)

    Mandl, R.M.; Umminger, K.J.; Logt, J.V.D.

    1991-01-01

    The Residual Heat Removal System (RHRS) of a PWR is designed to transfer thermal energy from the core after plant shutdown and maintain the plant in cold shutdown or refuelling conditions for extended periods of time. Initial reactor cooling after shutdown is achieved by dissipating heat through the steam generators (SGs) and discharging steam to the condenser by means of the Turbine Bypass System (TBS). When the reactor coolant temperature has dropped to about 160C and pressure has been reduced to 30 bar the RHRS is placed into operation. it reduces the coolant temperature to 50C within 20 hours after shutdown. The time margin for establishing alternate methods of heat removal following a failure of the RHRS depends on the Reactor Coolant System (RCS) temperature, the decay heat rate and the amount of RCS inventory. During some shutdown operations the RCS may be partially drained (e. g. to perform SG inspections). Decreased primary system inventory can significantly reduce the time available to recover the RHRS's function prior to bulk boiling and possible core uncovery. In the PKL test facility, which simulates a 1,300 MWe 4-loop PWR on a scale 1:145, a failure of RHRS under cold shutdown conditions was performed. This presentation gives a brief description of the test facility followed by the test objectives and results of this experiment

  18. Shutdown reactivity meter system for nuclear fuel storage cells

    International Nuclear Information System (INIS)

    Schultz, M.A.

    1981-01-01

    A system for determining whether a self-sustaining neutron chain reaction (I.E., criticality) may occur as each successive nuclear fuel element is added to a liquid-filled tank. This is accomplished by determining whether a multiplication factor, k, approaches unity after each element is added to the tank in accordance with the equation: cr ( Alpha s)/(1-k) where: S is the emission rate of the neutron source; alpha is a term that reflects the detector sensitivity as well as the attenuation of the neutron between source and detector and various geometric considerations in the tank; cr is the counting rate from a neutron detector; and K is a multiplication factor of the assembly at any given time for any given element configuration

  19. Supply and cost factors for metals in the Canadian nuclear fuel waste immobilization program

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1982-11-01

    Estimates have been made of the demand for immobilization containers to accommodate the irradiated fuel bundles arising from Canadian nuclear generating stations to the year 2020. The resulting estimates for container shells and container-filling alloys were compared to estimates for Canadian and Western World production of the candiate metals. The results indicate that, among the container shell metals, supply difficulties might arise only for Grade 7 titanium. Among the filling metals, only lead-antimony alloy might present supply problems. Current cost figures for plate made of each shell metal, and bulk quantities of filling metals, were compared. Materials costs would be least for a supported shell of stainless steel, followed by copper, titanium alloys Grades 2, 12 and 7, and Inconel 625. Aluminum-silicon is the lowest-cost filling matrix, followed by zinc, lead, and lead-antimony. Container durability, vault conditions, groundwater composition and other factors may play an overriding role in the final selection of materials for container construction

  20. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    The equivalent solid plate method, in conjunction with two-dimensional plane stress and plane strain analyses, was used in assessing the thermal stress behavior of HTGR fuel and control rod fuel blocks. For the control rod fuel blocks, particular attention was given to ascertaining the effects of the reserve shutdown hole and the control rod channel holes. The assumed safety factor of 2 on the failure criteria was considered adequate to account for neglecting the axial temperature gradient in the plane analyses of the ends of the blocks. The analyses indicated that the maximum calculated tensile stress values were smaller than the criteria values except for the plane strain analysis of the control rod fuel block end surfaces and the axisymmetric analysis of the fuel block as a circular cylinder. However, most of the maximum calculated strain values were greater than the criteria values

  1. Component failures that lead to manual shutdowns

    International Nuclear Information System (INIS)

    1979-01-01

    The data for this report are taken from a population of thirty-five LWRs, al of which differ appreciably in size, design, and age. Appendix A provides a graphical display of the number of manual shutdowns per operating year as a function of plant age, with the frequency adjusted to reflect plant availability

  2. Modeling transient thermal hydraulic behavior of a thermionic fuel element for nuclear space reactors

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Klein, A.C.

    1994-01-01

    A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down

  3. Impacts of reactivity feedback uncertainties on inherent shutdown in innovative designs

    International Nuclear Information System (INIS)

    Mueller, C.J.

    1986-01-01

    The concept of inherent shutdown is emphasized in the approach to the design of innovative, small pool-type liquid-metal reactors (LMRs). This paper reports an evaluation of reactivity feedback uncertainties used in the analyses of anticipated transients without scram for innovative LMRs, and the associated impacts on safety margins and inherent shutdown success probabilities on unprotected loss-of-flow (LOF) events. It then assesses the ultimate importance of these uncertainties on LOF and transient overpower events in evolving metal and oxide innovative designs

  4. Impacts of reactivity feedback uncertainties on inherent shutdown in innovative designs

    International Nuclear Information System (INIS)

    Mueller, C.J.

    1986-01-01

    The concept of ''inherent shutdown'' is emphasized in the approach to the design of innovative, small pool-type liquid metal reactors (LMRs). This paper reports an evaluation of reactivity feedback uncertainties used in the analyses of anticipated transients without scram (ATWS) for innovative LMRs, and the associated impacts on safety margins and inherent shutdown success probabilities on unprotected loss-of-flow (LOF) events. It then assesses the ultimate importance of these uncertainties on LOF and transient overpower (TOP) events in evolving metal and oxide innovative designs

  5. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  6. European experience with spent fuel transport

    International Nuclear Information System (INIS)

    Hunter, I.A.

    1995-01-01

    Nuclear Transport Ltd has transported 5000 tonnes of spent fuel from 35 reactors in 8 European countries since 1972. Transport management is governed by the Quality Plan for: transport administration, packaging and shipment procedures at the shipping plant, operations at the power plant, and packaging and shipment organization at the power plant. Selection of a suitable carrier device is made with regard to the shipping plant requirements, physical limitations of the reactor, fuel characteristics, and transport route constraints. The transport plan is set up taking into account exploitation of the casks, reactor shut-down requirements, fuel acceptance plans at the reprocessing plant, and cask maintenance periods. A transport cycle involving spent fuel shipment to La Hague or to Sellafield takes typically two or four weeks, respectively. Most transports through Europe are by rail. A special-design railway ferry boat serves transports to the United Kingdom. Both wet or dry casks are employed. Modern casks are designed for high burnups and for oxide fuels. (J.B.)

  7. Corrosion Studies of Platinum Nano-Particles for Fuel Cells

    DEFF Research Database (Denmark)

    Shim, Signe Sarah

    The main focus of the present thesis is on corrosion and prevention of corrosion of platinum particles supported on carbon. This is important for instance in connection with start up and shutdown of fuel cells. The degradation mechanism of platinum particles supported on carbon has been character......The main focus of the present thesis is on corrosion and prevention of corrosion of platinum particles supported on carbon. This is important for instance in connection with start up and shutdown of fuel cells. The degradation mechanism of platinum particles supported on carbon has been...... characterized during oxygen reduction reaction (ORR) condition using identical location (IL) transmission electron microscopy (TEM). A TEM grid was used as the working electrode in an electrochemical setup allowing a direct correlation between the electrochemical response and the TEM analysis. The main results...... thirds and one monolayer of gold on platinum supported on carbon were synthesized by an inverse micelle method. The results obtained appear independent of the gold coverage. It has been shown that the electrochemical active surface areas of the platinum and platinum gold particles synthesized...

  8. BWRs with MOx fuel

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-01-01

    Calculations has been performed for loading BWRs with pure MOx or UOx/MOx fuel. It seems to be possible to load MOx bundles in BWRs, since most of the core characteristics are comparable with the ones of a full UOx core. Nevertheless two main problems arise: The shutdown margin at BOC is lower than 1%, this requires to have a new design for the control rods in order to increase their efficiency - but the problem can also be solved by modifying the Pu quality. The cores with MOx fuel are slightly less stable, unfortunately the simple model applied does not allow giving an absolute value for the decay ratio but only allows comparing the stability with the full UOx core

  9. Experimental study on two-stage air supply downdraft gasifier and dual fuel engine system

    Energy Technology Data Exchange (ETDEWEB)

    Nhuchhen, Daya Ram; Salam, P.A. [Asian Institute of Technology, Energy Field of Study, School of Environment Resource and Development, P. O. Box 4, Klong Luang, Pathumthani (Thailand)

    2012-06-15

    Biomass is a widely used renewable energy resource with net balanced carbon dioxide absorptions and emissions. An inefficient use of solid biomass in combustion process emits more gaseous pollutants, increasing the pollution level. Biomass gasification is one of the techniques to support efficient use of biomass. Multistage gasification is a method of gasification to improve quality of the producer gas in which two separate reactors are designed for separating gasification reactions. This study presents experimental results of gasification using Eucalyptus wood in a single long cylindrical reactor with two air supply ports, i.e., primary and secondary. The effect of different air supply rates on the heating values of the producer gas was studied. Optimum primary and secondary air supply rate of 100 and 80 l/min at equivalence ratio of 0.38 was observed with producer gas lower heating value of 4.72 MJ Nm{sup -3}. The performance of a diesel engine in the dual fuel mode was also evaluated. The overall gasifier engine system efficiency was 13.86 % at an electrical load of 10.54 kW{sub e} with specific energy consumption of 16.22 MJ kWh{sup -1}. The heat recovery system was designed and tested to recover heat from producer gas in the form of hot water. (orig.)

  10. Accident sequence analysis for a BWR [Boiling Water Reactor] during low power and shutdown operations

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs

  11. Present supply and demand on the world uranium market and decision of the nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Zhang Luqing

    1994-01-01

    The present supply and demand relationship on the world uranium market due to the change of international situation in the last years is described and the falling price on the world uranium market is estimated. It is pointed out that the falling price would continue for a long time. Based on it the three different policy decisions on the back-end of nuclear fuel cycle are analysed

  12. Loss of shutdown cooling during degassing in Doel 1

    International Nuclear Information System (INIS)

    1996-01-01

    The presentation describes loss of shutdown cooling event during degassing in Doel 1 reactor, including description of Doel 1 features,status of plant prior to incident, event sequence and incident causes

  13. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  14. Forced-convection boiling tests performed in parallel simulated LMR fuel assemblies

    International Nuclear Information System (INIS)

    Rose, S.D.; Carbajo, J.J.; Levin, A.E.; Lloyd, D.B.; Montgomery, B.H.; Wantland, J.L.

    1985-01-01

    Forced-convection tests have been carried out using parallel simulated Liquid Metal Reactor fuel assemblies in an engineering-scale sodium loop, the Thermal-Hydraulic Out-of-Reactor Safety facility. The tests, performed under single- and two-phase conditions, have shown that for low forced-convection flow there is significant flow augmentation by thermal convection, an important phenomenon under degraded shutdown heat removal conditions in an LMR. The power and flows required for boiling and dryout to occur are much higher than decay heat levels. The experimental evidence supports analytical results that heat removal from an LMR is possible with a degraded shutdown heat removal system

  15. Comparison of Qualitative and Quantitative Risk Results for Shutdown Operation

    International Nuclear Information System (INIS)

    Oh, Hae Cheol; Kim, Myung Ki; Chung, Bag Soon; Seo, Mi Ro; Hong, Sung Yull

    2006-01-01

    The Defense-In-Depth philosophy is a fundamental concept of nuclear safety. The objective of Defense-In- Depth (DID) evaluation is to assess the level of Defense- In-Depth maintained during the various plant maintenance activities. Especially for shutdown and outage operations, the Defense-In-Depth might be challenged due to the reduction in redundancy and diversity resulting from the maintenance. The qualitative defense-in-depth evaluation using deterministic trees such as SFAT (Safety Function Assessment Tree), can provide 'Safety' related information on the levels of defense-in-depth according to the plant configuration including the levels of redundancy and diversity. For the more reasonable color decision of SFAT, it is necessary to identify the risk impact of degradation of redundancy and diversity of mitigation systems. The probabilistic safety analysis for the shutdown status can provide risk information related on the degradation of redundancy and diversity level for the safety functions during outage. Insights from the both methods for the plant status can be the same or different. The results of DID approach and PSA for the shutdown state are compared in this paper

  16. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy working group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of the policy paper presented is to recommend the actions deemed necessary to assure that future US and other non-Communist countries' nuclear fuels supply will be adequate to meet future energy demand. Taken together, the recommended decisions and actions form a nuclear fuels supply policy for the United States Government and for the private sector, and new areas of responsibility for the appropriate international organizations in which the US participates. The principal conclusions and recommendations are that the US and the other industrialized non-Communist countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends upon the security of supply of energy resources and the ability to substitute one form of fuel for another. The substitutability and efficient use of energy resources are enhanced by accelerating the supply and use of electricity

  17. Theoretical and experimental analysis of fast reactor fuel performance

    International Nuclear Information System (INIS)

    Kummerer, K.R.; Freund, D.; Steiner, H.

    1982-09-01

    In order to predict behavior, performance, and capability of prototypic fuel pins a standard operational scheme for the SNR-300 fast breeder reactor is established considering besides normal operation unscheduled power changes and shutdowns. The behavior during the whole lifetime is calculated using the updated SATURN codes and - for special conditions as power transients and skewed fuel rod power - the new TRANSIENT and TEXDIF codes. The results of these calculations are compared to experimental findings. It is demonstrated that the level of modeling and the knowledge of material properties under irradiation are sufficient for a quantitative description of the fuel pin performance under the above mentioned conditions. (orig.) [de

  18. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  19. Method of detecting fuel failure in FBR type reactor and method of estimating fuel failure position

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Tamaoki, Tetsuo

    1989-01-01

    Noise components in a normal state contained in detection signals from delayed neutron monitors disposed to a coolant inlet, etc. of an intermediate heat exchanger are forecast by self-recurring model and eliminated, and resultant detection signals are monitored thereby detecting fuel failure high sensitivity. Subsequently, the reactor is controlled to a low power operation state and a new self-recurring model to the detection signals from the delayed neutron monitors are prepared. Then, noise components in this state are removed and control rods near the delayed neutron monitors are extracted in a short stroke successively to examine the change of response of the delayed neutron monitors. Accordingly, the failed position for each of the fuels can be estimated at a level of one fuel assembly or a level of several assemblies containing the above-mentioned fuel assembly. Since the fuel failure can be detected at a high sensitivity and the position can be estimated, diffusion of abnormality can be prevented and plant shutdown for fuel exchange can be minimized. (I.S.)

  20. PEP-II Large Power Supplies Rebuild Program at SLAC

    CERN Document Server

    de Lira, Antonio C; Lipari, James J; da Silva Rafael, Fernando

    2005-01-01

    At PEP-II, seven large power supplies (LGPS) are used to power quad magnets in the electron-positron collider region. The LGPS ratings range from 72kW to 270kW, and were installed in 1997. They are unipolar off-line switch mode supplies, with a 6 pulse bridge rectifying 480VAC, 3-phase input power to yield 650VDC unregulated. This unregulated 650VDC is then input into one (or two) IGBT H-bridges, which convert the DC into PWM 16 kHz square wave AC. This high frequency AC drives the primary side of a step-down transformer followed by rectifiers and low pass filters. Over the years, these LGPS have presented many problems mainly in their control circuits, making it difficult to troubleshoot and affecting the overall accelerator availability. A redesign/rebuilding program for these power supplies was established under the coordination of the Power Conversion Department at SLAC. During the 2004 accelerator summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control b...

  1. Impact of shutdown risk on risk-based assessment of technical specifications

    International Nuclear Information System (INIS)

    Deriot, S.

    1992-10-01

    This paper describes the current work performed by the Research and Development Division of EDF concerning risk-based assessment of Operating Technical Specifications (OTS). The current risk-based assessment of OTS at EDF is presented. Then, the level 1 Probabilistic Safety Assessment of unit 3 of the Paluel nuclear power station (called PSA 1300) is described. It is fully computerized and takes into account the risk in shutdown states. A case study is presented. It shows that the fact of considering shutdown risk suggests that the current OTS should be modified

  2. Tricon hardware controller implementation of CANDU nuclear power plant shutdown system

    International Nuclear Information System (INIS)

    Zahedi, P.

    2007-01-01

    This paper introduces the implementation of logic functions associated with the shutdown systems of CANDU nuclear power plants. The experimental aspects of this work include development of control program embedded in shutdown systems of CANDU based NPPs. A physical test environment is designed to simulate the measurements of in-core flux detector (ICFD) and ion chamber (I/C) signals. The programmable logic used in this experimentation provides Triple Modular Redundant (TMR) architecture as well as a voting mechanism used upon execution of control program on each independent channel. (author)

  3. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  4. Loss-of-flow transient characterization in carbide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Morgan, M.M.; Baars, R.E.; Elson, J.S.; Wray, M.L.

    1985-01-01

    One of the benefits derived from the use of carbide fuel in advanced Liquid Metal Fast Breeder Reactors (LMFBRs) is a decreased vulnerability to certain accidents. This can be achieved through the combination of advanced fuel performance with the enhanced reactivity feedback effects and passive shutdown cooling systems characteristic of the current 'inherently safe' plant concepts. The calculated core response to an unprotected loss of flow (ULOF) accident has frequently been used as a benchmark test of these designs, and the advantages of a high-conductivity fuel in relation to this type of transient have been noted in previous analyses. To evaluate this benefit in carbide-fueled LMFBRs incorporating representative current plant design features, limited calculations have been made of a ULOF transient in a small ('modular') carbide-fueled LMFBR

  5. 30 CFR 7.96 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... and automatically shuts off the fuel supply to the engine. Step (rabbet) joint. A joint comprised of... diesel engine with an intake system, exhaust system, and a safety shutdown system installed. Dry exhaust.... A system connected to the outlet of the diesel engine which includes, but is not limited to, the...

  6. In-core sipping method for the identification of failed fuel assemblies

    International Nuclear Information System (INIS)

    Wu Zhongwang; Zhang Yajun

    2000-01-01

    The failed fuel assembly identification system is an important safety system which ensures safe operations of reactor and immediate treatment of failed fuel rod cladding. The system uses an internationally recognized method to identify failed fuel assemblies in a reactor with fuel element cases. The in-core sipping method is customary used to identify failed fuel assemblies during refueling or after fuel rod cladding failure accidents. The test is usually performed after reactor shutdown by taking samples from each fuel element case while the cases are still in their original core positions. The sample activity is then measured to identify failed fuel assemblies. A failed fuel assembly identification system was designed for the NHR-200 based on the properties of the NHR-200 and national requirements. the design provides an internationally recognized level of safety to ensure the safety of NHR-200

  7. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options

    International Nuclear Information System (INIS)

    Meyer, Bettina

    2012-01-01

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  8. Functional and performance evaluation of 28 bar hot shutdown passive valve (HSPV) at integral test loop (ITL) for advanced heavy water reactor (AHWR)

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Pal, A.K.; Sharma, B.S.V.G.

    2007-02-01

    During reactor shutdown in advanced heavy water reactor (AHWR), core decay heat is removed by eight isolation condensers (IC) submerged in gravity driven water pool. Passive valves are provided on the down stream of each isolation condenser. On increase in steam drum pressure beyond a set value, these passive valves start opening and establish steam flow by natural circulation between the four steam drums and corresponding isolation condensers under hot shutdown and therefore they are termed as Hot Shut Down Passive Valves (HSPVs). The HSPV is a self acting type valve requiring no external energy, i.e. neither air nor electric supply for actuation. This feature makes the valve functioning independent of external systems such as compressed air supply or electric power supply, thereby providing inherent safety feature in line with reactor design philosophy. The high pressure and high temperature HSPV s for nuclear reactor use, are non-standard valves and therefore not manufactured by the valve industry worldwide. In the process of design and development of a prototype valve for AHWR, a 28 bar HSPV was configured and successfully tested at Integral Test Loop (ITL) at Engineering Hall No.7. During ten continuous experiments spread over 14 days, the HSPV has proved its functional capabilities and its intended use in decay heat removal system. The in-situ pressure setting and calibration aspect of HSPV has also been successfully established during these experiments. This report gives an insight into the HSPV's functional behavior and role in reactor decay heat removal system. The report not only provides the quantitative measure of performance for 28 bar HSPV in terms of valve characteristics, pressure controllability, linearity and hysteresis but also sets qualitative indicators for prototype 80 bar HSPV, being developed for AHWR. (author)

  9. Update on international uranium and enrichment supply

    International Nuclear Information System (INIS)

    Cleveland, J.M.

    1987-01-01

    Commercial nuclear power generation came upon us in the late 1950s and should have been relatively uneventful due to its similarities to fossil-powered electrical generation. Procurement of nuclear fuel appears to have been treated totally different from the procurement of fossil fuel, however, and only recently have these practices started to change. The degree of utility reliance on US-mined uranium and US Dept. of Energy (DOE)-produced enrichment services has changed since the 1970s as federal government uncertainty, international fuel market opportunity, and public service commission scrutiny has increased. Accordingly, the uranium and enrichment market has recognized that it is international just like the fossil fuel market. There is now oversupply-driven competition in the international nuclear fuel market. Competition is increasing daily, as third-world countries develop their own nuclear resources. American utilities are now diversifying their fuel supply arrangements, as they do with their oil, coal, and gas supply. The degree of foreign fuel arrangements depends on each utility's risk posture and commitment to long-term contracts. In an era of rising capital, retrofit, operating, and maintenance costs, economical nuclear fuel supply is even more important. This economic advantage, however, may be nullified by congressional and judicial actions limiting uranium importation and access to foreign enrichment. Such artificial trade barriers will only defeat US nuclear generation and the US nuclear fuel industry in the long term

  10. Line-Interactive Transformerless Uninterruptible Power Supply (UPS with a Fuel Cell as the Primary Source

    Directory of Open Access Journals (Sweden)

    Muhammad Iftikhar

    2018-03-01

    Full Text Available This paper presents line-interactive transformerless Uninterruptible Power Supply (UPS with a fuel cell as the prime energy source. The proposed UPS consists of three major parts (i.e., an output inverter, a unidirectional DC–DC converter, and a battery charger/discharger. Non-isolated topologies of both the unidirectional converter and battery charger/discharger ensure transformerless operation of the UPS system. A new topology of high gain converter is employed for boosting the low voltage of the fuel cell to a higher DC link voltage, with minimum semiconductor count, and high efficiency. A high-gain battery charger/discharger realizes the bidirectional operation between the DC link and the battery bank. Besides, it regulates the DC link voltage during the cold start of fuel cells and keeps the battery bank voltage to only 24 V. A new inverter control scheme is introduced that regulates the output voltage and minimizes the total harmonic distortion for non-linear loading condition. The proposed control scheme integrates proportional-resonant control with slide mode control, which improves the controller’s performance in transient conditions. The proposed UPS system is validated by developing a 1-kVA experimental prototype.

  11. Thermal conditions and functional requirements for molten fuel containment

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed

  12. Compact Fuel Cell Power Supplies with Safe Fuel Storage

    National Research Council Canada - National Science Library

    Powell, M. R; Chellappa, A. S; Vencill, T. R

    2004-01-01

    .... Despite its energy-density advantage, this ammonia-based power supply will not likely be deployed in military or commercial markets unless safety concerns related to the possible rapid release of ammonia are resolved...

  13. Aims of failed fuel detection and substantiation of radiation safety at implementation of new kinds of nuclear fuel and fuel cycles on NPP with WWER

    International Nuclear Information System (INIS)

    Miglo, V.; Luzanova, L.

    2011-01-01

    Limiting of number of leaking fuel rods in a core during reactor operation in the analyses which are carried out for a substantiation of radiating safety for NPP with WWER as well as problems and possibilities of FFD at implementation of new kinds of fuel and fuel cycles are the main topics discussed in this paper. Available experience of designing of the NPP with WWER shows, that for ensuring of implementation of the RS criteria regarding limiting radioactive emissions from the NPP and doses of an irradiation of the population living near to NPP, it is required to regulate more rigidly number of failed fuel rods in comparison with requirements of Rules of nuclear safety NP-082-07. The reason of it is necessity to consider a technical condition of all safety barriers on a path of radioactive FP extension in a complex, first and foremost of uncontrolled leakage of the primary coolant to the NPP premises and efficiency of filters of ventilating systems, and also spike-effect on activity of isotopes of iodine after a power unit shutdown for fuel reloading and openings of a cover of a reactor. Depending on the project of NPP, parameters of fuel loading, a place of placing of the NPP and other factors the limit level of activity of isotopes of iodine in the primary coolant will be reached at various number of leaking fuel rods which can be unequal for various power units and the NPP with WWER, constructed on one design. The quantity of leaking fuel rods at which the design limit on FP-activity in the primary coolant of operating reactor is reached, can be essential below an operational limit on number of failed fuel rods established by Rules of nuclear safety. However the reached quality of fabrication of the WWER fuel rods providing their high reliability (the probability of fuel rod failure in the course of one operation year is not higher than 10 -5 ) as well as due to the levels of the WWER fuel rod depressurization actually attainable in the normal conditions of

  14. Self-actuated shutdown system for a commercial size LMFBR. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dupen, C.F.G.

    1978-08-01

    A Self-Actuated Shutdown System (SASS) is defined as a reactor shutdown system in which sensors, release mechanisms and neutron absorbers are contained entirely within the reactor core structure, where they respond inherently to abnormal local process conditions, by shutting down the reactor, independently of the plant protection system (PPS). It is argued that a SASS, having a response time similar to that of the PPS, would so reduce the already very low probability of a failure-to-scram event that costly design features, derived from core disruptive accident analysis, could be eliminated. However, the thrust of the report is the feasibility and reliability of the in-core SASS hardware to achieve sufficiently rapid shutdown. A number of transient overpower and transient undercooling-responsive systems were investigated leading to the selection of a primary candidate and a backup concept. During a transient undercooling event, the recommended device is triggered by the associated rate of change of pressure, whereas the alternate concept responds to the reduction in core pressure drop and requires calibration and adjustment by the operators to accommodate changes in reactor power.

  15. Prevention device for rapid reactor core shutdown in BWR type reactors

    International Nuclear Information System (INIS)

    Koshi, Yuji; Karatsu, Hiroyuki.

    1986-01-01

    Purpose: To surely prevent rapid shutdown of a nuclear reactor upon partial load interruption due to rapid increase in the system frequency. Constitution: If a partial load interruption greater than the sum of the turbine by-pass valve capacity and the load setting bias portion is applied in a BWR type power plant, the amount of main steams issued from the reactor is decreased, the thermal input/output balance of the reactor is lost, the reactor pressure is increased, the void is collapsed, the neutron fluxes are increased and the reactor power rises to generate rapid reactor shutdown. In view of the above, the turbine speed signal is compared with a speed setting value in a recycling flowrate control device and the recycling pump is controlled to decrease the recycling flowrate in order to compensate the increase in the neutron fluxes accompanying the reactor power up. In this way, transient changes in the reactor core pressure and the neutron fluxes are kept within a setting point for the rapid reactor shutdown operation thereby enabling to continue the plant operation. (Horiuchi, T.)

  16. Self-actuated shutdown system for a commercial size LMFBR. Final report

    International Nuclear Information System (INIS)

    Dupen, C.F.G.

    1978-08-01

    A Self-Actuated Shutdown System (SASS) is defined as a reactor shutdown system in which sensors, release mechanisms and neutron absorbers are contained entirely within the reactor core structure, where they respond inherently to abnormal local process conditions, by shutting down the reactor, independently of the plant protection system (PPS). It is argued that a SASS, having a response time similar to that of the PPS, would so reduce the already very low probability of a failure-to-scram event that costly design features, derived from core disruptive accident analysis, could be eliminated. However, the thrust of the report is the feasibility and reliability of the in-core SASS hardware to achieve sufficiently rapid shutdown. A number of transient overpower and transient undercooling-responsive systems were investigated leading to the selection of a primary candidate and a backup concept. During a transient undercooling event, the recommended device is triggered by the associated rate of change of pressure, whereas the alternate concept responds to the reduction in core pressure drop and requires calibration and adjustment by the operators to accommodate changes in reactor power

  17. Climate consequences of low-carbon fuels: The United States Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Hill, Jason; Tajibaeva, Liaila; Polasky, Stephen

    2016-01-01

    A common strategy for reducing greenhouse gas (GHG) emissions from energy use is to increase the supply of low-carbon alternatives. However, increasing supply tends to lower energy prices, which encourages additional fuel consumption. This “fuel market rebound effect” can undermine climate change mitigation strategies, even to the point where efforts to reduce GHG emissions by increasing the supply of low-carbon fuels may actually result in increased GHG emissions. Here, we explore how policies that encourage the production of low-carbon fuels may result in increased GHG emissions because the resulting increase in energy use overwhelms the benefits of reduced carbon intensity. We describe how climate change mitigation strategies should follow a simple rule: a low-carbon fuel with a carbon intensity of X% that of a fossil fuel must displace at least X% of that fossil fuel to reduce overall GHG emissions. We apply this rule to the United States Renewable Fuel Standard (RFS2). We show that absent consideration of the fuel market rebound effect, RFS2 appears to reduce GHG emissions, but once the fuel market rebound effect is factored in, RFS2 actually increases GHG emissions when all fuel GHG intensity targets are met. - Highlights: • Low-carbon fuels partially displace petroleum via fuel market rebound effect. • Synthesis of recent analyses shows incomplete petroleum displacement by biofuels. • Fuel market rebound effect can reduce or reverse climate benefit of low-carbon fuels. • Fossil fuel displacement must exceed relative carbon footprint of a low-carbon fuel. • The Renewable Fuel Standard increases greenhouse gas emissions when mandate is met.

  18. Whole-core damage analysis of EBR-II driver fuel elements following SHRT program

    International Nuclear Information System (INIS)

    Chang, L.K.; Koenig, J.F.; Porter, D.L.

    1987-01-01

    In the Shutdown Heat Removal Testing (SHRT) program in EBR-II, fuel element cladding temperatures of some driver subassemblies were predicted to exceed temperatures at which cladding breach may occur. A whole-core thermal analysis of driver subassemblies was performed to determine the cladding temperatures of fuel elemnts, and these temperatures were used for fuel element damage calculation. The accumulated cladding damage of fuel element was found to be very small and fuel element failure resulting from SHRT transients is unlikely. No element breach was noted during the SHRT transients. The reactor was immediately restarted after the most severe SHRT transient had been completed and no driver fuel breach has been noted to date. (orig.)

  19. Memory list for the ordering of nuclear fuel elements with UO2 fuel

    International Nuclear Information System (INIS)

    1977-01-01

    The memory list will help to simplify and speed up the technical procedure of fuel element supply for nuclear reactors. Operators of nuclear power plants take great interest in the latest state of thechnology, if sufficiently tested, being applied with regard to material, manufacturing and testing methods. In order to obtain an unlimited availability of the nuclear plant in the future, this application of technology should be taken care of when designing and producing fuel elements. When ordering fuel elements special attention should be drawn to the interdependence of reactor and fuel element with reqard to design and construction, about which, howevers, no further details are given. When ordering fuel elements the operator give the producer all design data of the reactor core and the fuel elements as well as the planned operation mode. He also hands in the respective graphs and the required conditions for design so that a correct and detailed offer can be supplied. An exemplary extent of supply is shown in the given memory list. The regulations required herefore on passing technical material to the fuel element producers have to be established by agreements made by the customer. The order to be given should be itemized as follows: requirements, quality controland quality assurance, warranties and conditions, limits and extent of supply, terms of delivery. (orig./HP) [de

  20. Heating subsurface formations by oxidizing fuel on a fuel carrier

    Science.gov (United States)

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  1. Plant operational states analysis in low power and shutdown PSA

    International Nuclear Information System (INIS)

    He Jiandong; Qiu Yongping; Zhang Qinfang; An Hongzhen; Li Maolin

    2013-01-01

    The purpose of Plant Operational States (POS) analysis is to disperse the continuous and dynamic process of low power and shutdown operation, which is the basis of developing event tree models for accident sequence analysis. According to the design of a 300 MW Nuclear Power Plant Project, operating experience and procedures of the reference plant, a detailed POS analysis is carried out based on relative criteria. Then, several kinds of POS are obtained, and the duration of each POS is calculated according to the operation records of the reference plant. The POS analysis is an important element in low power and shutdown PSA. The methodology and contents provide reference for POS analysis. (authors)

  2. Introduction to nuclear supply chain management. In the context of fuel cycle strategy from LWR cycle system to FR cycle system

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Ono, Kiyoshi; Namba, Takashi; Yasumatsu, Naoto; Heta, Masanori

    2011-01-01

    Supply chain management (SCM) is an important technique to maintain supply and demand balance and to achieve total optimization from upstream to downstream in manufacturers' management. One of the major reasons why SCM receives much attention recently is the trend in production and sales systems from 'Push type' to 'Pull type'. 'Push type' can be restated as 'Make to Stock' (MTS). MTS is a type of supply chain in which the production is not connected to actual demand. On the contrary, 'Pull type' can be restated as 'Make to Order' (MTO) in which the production is connected to actual demand. In this paper, the terminologies and ideas of SCM was introduced into the scenario study to give a fresh perspective for considering LWR cycle to FR cycle transition strategies in Japan. Then, an analytical tool (SCM tool) which has been developed by the authors is used to survey Japanese nuclear energy system in transition with the SCM terminologies and viewpoints. When some of the Japanese nuclear fuel cycle strategies and tools are thought back with the framework of SCM, they tend to treat nuclear fuel cycle system as 'Push type' supply chain in their simulations. For example, a reprocessing plant separates SFs (spent fuels) without considering the actual Pu demand. However, because future reprocessing plants and fuel fabrication plants will act as Pu suppliers (front-end facility) to FR as well as back-end facilities of LWRs, the reasonable plant operation principle can be 'Pull type'. The analysis was conducted by the SCM tool to simulate the behaviors of both MTS and MTO type facilities during the LWR to FR transition period. If there are large uncertainties in the Pu demand or the load factor, etc. of future reprocessing plants, SCM framework is beneficial. Furthermore, the realization of MTO type operation by SCM can reduce the recovered Pu stock in spite of the increase of the SF interim storage. As the result of the investigation on the boundary location of 'Push type

  3. Hydrogen storage by organic chemical hydrides and hydrogen supply to fuel cells with superheated liquid-film-type catalysis

    International Nuclear Information System (INIS)

    Hodoshima, S.; Shono, A.; Sato, K.; Saito, Y.

    2004-01-01

    Organic chemical hydrides, consisting of decalin / naphthalene and tetralin / naphthalene pairs, have been proposed as the storage medium of hydrogen for operating fuel cells in mobile and static modes. The target values in the DOE Hydrogen Plan, U.S., on storage ( 6.5 wt%, 62.0 kg-H 2 / m 3 ) are met with decalin ( 7.3 wt%, 64.8 kg-H 2 / m 3 ). In addition, existing gas stations and tank lorries are available for storage and supply of hydrogen by utilizing the decalin / naphthalene pair, suggesting that decalin is suitable for operating fuel-cell vehicles. Tetralin dehydrogenation proceeds quite rapidly, assuring a predominant power density, though its storage densities ( 3.0 wt%, 28.2 kg-H 2 / m 3 ) are relatively low. Efficient hydrogen supply from decalin or tetralin by heating at 210-280 o C was attained only with the carbon-supported nano-size metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions, where coke formation over the catalyst surface was prevented. The catalyst layer superheated in the liquid-film states gave high reaction rates and conversions, minimizing the evaporation loss under boiling conditions and exergy loss in hydrogen energy systems. (author)

  4. Spent fuel management of NPPs in Argentina

    International Nuclear Information System (INIS)

    Alvarez, D.E.; Lee Gonzalez, H.M.

    2010-01-01

    There are two Nuclear Power Plants in operation in Argentina: 'Atucha I' (unique PHWR design) in operation since 1974, and 'Embalse' (typical Candu reactor) which started operation in 1984. Both NPPs are operated by 'Nucleoelectrica Argentina S.A' which is responsible for the management and interim storage of spent fuel till the end of the operative life of the plants. A third NPP, 'Atucha II' is under construction, with a similar design of Atucha I. The legislative framework establishes that after final shutdown of a NPP the spent fuel will be transferred to the 'National Atomic Energy Commission', which is also responsible for the decommissioning of the Plants. In Atucha I, the spent fuel is stored underwater, until another option is implemented meanwhile in Embalse the spent fuel is stored during six years in pools and then it is moved to a dry storage. A decision about the fuel cycle back-end strategy will be taken before year 2030. (authors)

  5. Supply guarantee initiatives for nuclear fuel materials and services and their compatibility with the market. Present discussions and future prospects

    International Nuclear Information System (INIS)

    Nagano, Koji

    2008-01-01

    Under the weakening NPT (Non-Proliferation Treaty) regime, a number of proposals and initiatives for nuclear fuel supply assurance and guarantee mechanisms have been brought on the agenda of international discussions and negotiations. This report first discusses where and why those ideas came out, and then turn to the current situations of markets of nuclear fuel materials and services in terms of degree of market concentration to specific suppliers. Based on those observations, the author attempts to draw a comparison among the proposed schemes in order to examine possible steps for forward that pose least possible influences adverse to the individual markets and thereby could better attract possible recipient states' interests. The report suggests that those initiatives are classified in three types; a) physical assurance, i.e. specific nation(s) and/or entit(-y/-ies) prepare dedicated reserve of materials and/or service capacities for the purpose of supply assurance; b) collective assurance, i.e. a group of nations and/or entities collectively submit their excess materials and service capacities when assurance is activated; and c) financial measures. In view of their feasibility, a two-step approach might be found practical to implement and promote; i.e. 1) in a short-run, a 'soft' scheme which never interferes NPT signatories' right of peaceful development and use of nuclear power could be set and implemented, and 2) in a long-run, R and D efforts should be undertaken to create such a sufficient economic margin that potential recipient states may lose justification of self-development of nuclear fuel cycle technologies and businesses when compared with those services provided by foreign sources attached with a sufficient degree of supply assurances. (author)

  6. Reactor shutdown device

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kiyoshi; Aono, Hidehiro [Hitachi Ltd., Tokyo (Japan); Fujita, Kaoru; Ishikawa, Tsuyoshi

    1996-02-20

    The present invention concerns a reactor shutdown device of a LMFBR type reactor, and provides a magnetic circuit having a sharp changing property of holding force relative to temperature change. Namely, a magnetic bridge is attached to a portion of the magnetic circuit. Then, required conditions are satisfied. Alternatively, even if the temperature dependent change of magnetic saturation of a temperature sensing alloy itself is somewhat moderated, the holding force from an erroneous dropping preventive temperature to a separating temperature can be abruptly reduced while keeping the holding force at a temperature lower than the erroneous dropping preventive temperature. Provision of the magnetic bridge increases the temperature dependent change of the holding force of the entire magnetic circuit. As a result, margin for the design of the temperature sensing alloy is extended. Actual design is enabled, and the range for selecting the temperature sensing alloy can be enlarged. (I.S.).

  7. Reactor shutdown device

    International Nuclear Information System (INIS)

    Harada, Kiyoshi; Aono, Hidehiro; Fujita, Kaoru; Ishikawa, Tsuyoshi.

    1996-01-01

    The present invention concerns a reactor shutdown device of a LMFBR type reactor, and provides a magnetic circuit having a sharp changing property of holding force relative to temperature change. Namely, a magnetic bridge is attached to a portion of the magnetic circuit. Then, required conditions are satisfied. Alternatively, even if the temperature dependent change of magnetic saturation of a temperature sensing alloy itself is somewhat moderated, the holding force from an erroneous dropping preventive temperature to a separating temperature can be abruptly reduced while keeping the holding force at a temperature lower than the erroneous dropping preventive temperature. Provision of the magnetic bridge increases the temperature dependent change of the holding force of the entire magnetic circuit. As a result, margin for the design of the temperature sensing alloy is extended. Actual design is enabled, and the range for selecting the temperature sensing alloy can be enlarged. (I.S.)

  8. Safe shutdown analysis for submerged equipment inside containment

    International Nuclear Information System (INIS)

    Song, Dong Soo; Lee, Seung Chan; Yoon, Duk Joo; Ha, Sang Jun

    2017-01-01

    The purpose of the paper is to analyze internal flooding effects on the submerged safety-related components inside containment building. Safe shutdown analysis has been performed based on the criteria, assumptions and guideline provided in ANSI/ANS-56.11-1988 and ANSI/ANS-58.11-1988. Flooding can be postulated from a failure of several systems located inside the containment. Loss of coolant accident (LOCA), Feed water line break (FWLB), and other pipe breaks/cracks are assumed. The worst case flooding scenario is a large break LOCA. The maximum flood level for a large break LOCA is calculated based on the combined inventory of the reactor coolant system, the three accumulators, the boron injection tank (BIT), the chemical additive tank (CAT), and the refueling water storage tank (RWST) flooding the containment. The maximum flood level that could occur from all of the water which is available in containment is 2.3 m from the base elevation. A detailed flooding analysis for the components has been performed to demonstrate that internal flooding resulting from a postulated initiating event does not cause the loss of equipment required to achieve and maintain safe shutdown of the plant, emergency core cooling capability, or equipment whose failure could result in unacceptable offsite radiological consequences. The flood height can be calculated as h = (dh/dt) x (t-t 0 ) + h 0 , where h = time dependent flood height and subscript 0 means the initial value and height slope dh/dt. In summary, the submerged components inside containment are acceptable because they complete the mission of safety injection (SI) prior to submeregency or have no safe shutdown function including containment isolation during an accident. (author)

  9. Power technology complex for production of motor fuel from brown coals with power supply from NPPs

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Poplavskij, V.M.; Sidorov, G.I.; Bondarenko, A.V.; Chebeskov, A.N.; Chushkin, V.N.; Karabash, A.A.; Krichko, A.A.; Maloletnev, A.S.

    1998-01-01

    With the present-day challenge of efficient use of low-grade coals and current restructuring of coal industry in the Russian Federation, it is urgent to organise the motor fuel production by the synthesis from low grade coals and heavy petroleum residues. With this objective in view, the Institute of Physics and Power Engineering of RF Minatom and Combustible Resources Institute of RF Mintopenergo proposed a project of a standard nuclear power technology complex for synthetic liquid fuel (SLF) production using fast neutron reactors for power supply. The proposed project has two main objectives: (1) Engineering and economical optimization of the nuclear power supply for SLF production; and (2) Engineering and economical optimization of the SLF production by hydrogenisation of brown coals and heavy petroleum residues with a complex development of advanced coal chemistry. As a first approach, a scheme is proposed with the use of existing reactor cooling equipment, in particular, steam generators of BN-600, limiting the effect on safety of reactor facility operation at minimum in case of deviations and abnormalities in the operation of technological complex. The possibility to exclude additional requirements to the equipment for nuclear facility cooling was also taken into account. It was proposed to use an intermediate steam-water circuit between the secondary circuit sodium and the coolant to heat the technological equipment. The only change required for the BN-600 equipment will be the replacement of sections of intermediate steam superheaters at the section of main steam superheaters. The economic aspects of synthetic motor fuel production proposed by the joint project depend on the evaluation of integral balances: thermal power engineering, chemical technology, the development of advanced large scale coal chemistry of high profitability; utilisation of ash and precious microelements in waste-free technology; production of valuable isotopes; radical solution of

  10. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    International Nuclear Information System (INIS)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland; Helmut Kuhl

    2015-01-01

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs

  11. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland [GNS, Essen (Germany); Helmut Kuhl [WTI, Julich (Germany)

    2015-05-15

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs.

  12. The use of PEM united regenerative fuel cells in solar- hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Arun K Doddathimmaiah; John Andrews

    2006-01-01

    Remote area power supply (RAPS) is a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. Solar hydrogen RAPS systems commonly employ photovoltaic panels, a Proton Exchange Membrane (PEM) electrolyser, a storage for hydrogen gas, and a PEM fuel cell. Currently such systems are more costly than conventional RAPS systems employing diesel generator back up or battery storage. Unitized regenerative fuel cells (URFCs) have the potential to lower the costs of solar hydrogen RAPS systems since a URFC employs the same hardware for both the electrolyser and fuel cell functions. The need to buy a separate electrolyser and a separate fuel cell, both expensive items, is thus avoided. URFCs are in principle particularly suited for use in RAPS applications since the electrolyser function and fuel cell function are never required simultaneously. The present paper reports experimental findings on the performance of a URFC compared to that of a dedicated PEM electrolyser and a dedicated fuel cell. A design for a single-cell PEM URFC for use in experiments is described. The experimental data give a good quantitative description of the performance characteristics of all the devices. It is found that the performance of the URFC in the electrolyser mode is closely similar to that of the stand-alone electrolyser. In the fuel cell mode the URFC performance is, however, lower than that of the stand-alone fuel cell. The wider implications of these findings for the economics of future solar-hydrogen RAPS systems are discussed, and a design target of URFCs for renewable-energy RAPS applications proposed. (authors)

  13. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy Working Group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Policy Paper recommends the actions deemed necessary to assure that future U.S. and non-Communist countries' nuclear fuels supply will be adequate, considering the following: estimates of modest growth in overall energy demand, electrical energy demand, and nuclear electrical energy demand in the U.S. and abroad, predicated upon the continuing trends involving conservation of energy, increased use of electricity, and moderate economic growth (Chap. I); possibilities for the development and use of all domestic resources providing energy alternatives to imported oil and gas, consonant with current environmental, health, and safety concerns (Chap. II); assessment of the traditional energy sources which provide current alternatives to nuclear energy (Chap. II); evaluation of realistic expectations for additional future energy supplies from prospective technologies: enhanced recovery from traditional sources and development and use of oil shales and synthetic fuels from coal, fusion and solar energy (Chap. II); an accounting of established nuclear technology in use today, in particular the light water reactor, used for generating electricity (Chap. III); an estimate of future nuclear technology, in particular the prospective fast breeder (Chap. IV); current and projected nuclear fuel demand and supply in the U.S. and abroad (Chaps. V and VI); the constraints encountered today in meeting nuclear fuels demand (Chap. VII); and the major unresolved issues and options in nuclear fuels supply and use (Chap. VIII). The principal conclusions and recommendations (Chap. IX) are that the U.S. and other industrialized countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends on the secure supply of energy resources and the ability to substitute one form of fuel for another

  14. Analysis of activation and shutdown contact dose rate for EAST neutral beam port

    Science.gov (United States)

    Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong

    2017-12-01

    For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.

  15. Accelerator-driven thermal fission systems may provide energy supply advantages

    International Nuclear Information System (INIS)

    Linford, R.K.

    1992-01-01

    This presentation discusses the energy supply advantages of using accelerator-driven thermal fission systems. Energy supply issues as related to cost, fuel supply stability, environmental impact, and safety are reviewed. It is concluded that the Los Alamos Accelerator Transmutation of Waste (ATW) concept, discussed here, has the following advantages: improved safety in the form of low inventory and subcriticality; reduced high-level radioactive waste management timescales for both fission products and actinides; and a very long-term fuel supply requiring no enrichment

  16. A study on determination methods of fueling machine heavy water supply setpressure for Wolsong nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Kim, J. M.; Jeong, B. Y.; Baek, S. J.; Noh, T. S.; Kim, Y. H.; Park, W. K.

    2001-01-01

    The present Wolsong 1 Fuel Handling (F/H)D 2 O Supply Pressure Control System, based on an analog cascaded Proportional-Integral-Differential (PID) control, is less accurate and requires more labor for test and maintenance in comparison with up-to-data digital controllers. Furthermore, F/H operator and technical staff have recently encountered difficulties in operation and maintenance because of frequent occurrences of system instability and failure, and obsolescence of hardware. However the analysis and design review of F/H D 2 O Supply Pressure Control System have not been performed appropriately. Therefore, the design review of F/H D 2 O Supply Pressure Control System has been thoroughly reviewed and analyzed. Based on the analysis results, the optimum pressure setpoints and its determination methods have been proposed for Wolsong Nuclear Power Plant Unit 1

  17. Effects of shutdown chemistry on steam generator radiation levels at Point Beach Unit 2. Interim report

    International Nuclear Information System (INIS)

    Kormuth, J.W.

    1982-05-01

    A refueling shutdown chemistry test was conducted at a PWR, Point Beach Unit 2. The objective was to yield reactor coolant chemistry data during the cooldown/shutdown process which might establish a relationship between shutdown chemistry and its effects on steam generator radiation fields. Of particular concern were the effects of the presence of hydrogen in the coolant as contrasted to an oxygenated coolant. Analysis of reactor coolant samples showed a rapid soluble release (spike) in Co-58, Co-60, and nickel caused by oxygenation of the coolant. The measurement of radioisotope specific activities indicates that the material undergoing dissolution during the shutdown originated from different sources which had varying histories of activation. The test program developed no data which would support theories that oxygenation of the coolant while the steam generators are full of water contributes to increased steam generator radiation levels

  18. 14 CFR 135.209 - VFR: Fuel supply.

    Science.gov (United States)

    2010-01-01

    ... an airplane under VFR unless, considering wind and forecast weather conditions, it has enough fuel to fly to the first point of intended landing and, assuming normal cruising fuel consumption— (1) During the day, to fly after that for at least 30 minutes; or (2) At night, to fly after that for at least 45...

  19. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  20. TRIGA Mark II Ljubljana - spent fuel transportation

    International Nuclear Information System (INIS)

    Ravnik, M.; Dimic, V.

    2008-01-01

    The most important activity in 1999 was shipment of the spent fuel elements back to the United States for final disposal. This activity started already in 1998 with some governmental support. In July 1999 all spent fuel elements (219 pieces) from the TRIGA research reactor in Ljubljana were shipped back to the United Stated by the ship from the port Koper in Slovenia. At the same time shipment of the spent fuel from the research reactor in Pitesti, Romania, and the research reactor in Rome, Italy, was conducted. During the loading the radiation exposure to the workers was rather low. The loading and shipment of the spent nuclear fuel went very smoothly and according the accepted time table. During the last two years the TRIGA research reactor in Ljubljana has been in operation about 1100 hours per year and without any undesired shut-down. (authors)

  1. An attempt for economic estimate of the shutdown of uranium production

    International Nuclear Information System (INIS)

    Jonchev, L.

    1997-01-01

    Uranium ore has been obtained since the end of 30s till 1992. No measures for protection of the environment and restricting the risk for the population during the production have been taken. Among the three possible models of shutting down the most inexpedient from economic point of view has been applied . It meant that the beginning of closing down took place far behind ceasing the production itself and the expenses for restoration were as big as fourteen times more in comparison to the two ones. The investments for prospecting and preparing new resources were lost. The whole process was made extremely inefficiently and unprofessionally. Because of the sudden closing down of production activities there was no enough time for gathering, processing and analyzing of necessary data, even the radioecological and hydro-ecological evaluations were doubtfully reliable. The shutdown of uranium production as worldwide practice takes place considering ALARA (As Low As Reasonably Achievable) principle. The aim is to achieve maximum possible results by minimum investments taking into account the radioecological risk, socially accounted for and psychologically conditioned expenses. There is no statement of the radioecological risk in the preliminary evaluations of the uranium mines in Bulgaria. The investment funds for the period 1992-1996 were about 2.1 bill. leva, (equally allocated for each year) which was about 46.5 mil. US$. Because of inflation process the investments crucially decreased during the last years when most capital-intensive activities had to be carried out - the engineering shutdown and land-reclamations procedures. The biggest share of investments (about 30 mil. US$) was for environmental status maintenance, 2.5 times less (about 13 mil. US$) - for technical shutdown and only 2.1 mil. US$ - for land reclamation. The investments for the shutdown process referred to the whole production obtained were only 2.5 US$/kg U 3 O 8 while the most effective model

  2. Preliminary evaluation of supply decentralization of fuels

    International Nuclear Information System (INIS)

    Trindade, C.O.C. da.

    1990-03-01

    Energy policy in Brazil has been made in a centralized way. The total transportation costs for liquid fuel were calculated the local production of an alternative fuel was examined. It was concluded that locally produced alcohol, although is not competitive with diesel, can substitute, at this moment, the alcohol imported from other regions and approaches competitiveness with gasoline. (author)

  3. Keys to fuel supply success

    International Nuclear Information System (INIS)

    Rostorfer, C.R.

    1991-01-01

    This article examines the changes to the fuel procurement process, some brought about by acid rain legislation, and provides a step-by-step guide to handling the changes. The topics include requirements planning, market research, developing a good procurement strategy, implementing the strategy, effective administration, and a checklist for contract review

  4. Final Report: Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Rowsell, David Leon [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-06-01

    This report documents the Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation. The review followed the approved Plan of Action (POA) and Implementation Plan (IP) using the identified core requirements. The activity was limited scope focusing on the control rod drives functional isolation and fuel element movement. The purpose of this review is to ensure the facility's readiness to move fuel elements thus supporting inspection and functionally isolate the control rod drives to maintain the required shutdown margin.

  5. Impact of start-up and shut-down losses on the economic benefit of an integrated hybrid solar cavity receiver and combustor

    International Nuclear Information System (INIS)

    Lim, Jin Han; Hu, Eric; Nathan, Graham J.

    2016-01-01

    Highlights: • We present the benefits of integrating a solar cavity receiver and a combustor. • The hybrid solar receiver combustor is compared with its equivalent hybrid. • The start-up losses of the back-up boiler are calculated for a variable resource. • Levelized cost of electricity is reduced by up to 17%. • Fuel consumption is reduced by up to 31%. - Abstract: The impact of avoiding the start-up and shut-down losses of a solar thermal power plant by directly integrating the back-up boiler into a tubular solar-only cavity receiver is studied using a multiple time-step, piecewise-continuous model. A steady-state analytical model of the mass and energy flows through both this device and a solar-only cavity receiver reported previously are incorporated within a model of the solar power generating plant with storage. The performance of the Hybrid Solar Receiver Combustor (HSRC) is compared with an equivalent reference conventional hybrid solar thermal system employing a solar-only cavity receiver and a back-up boiler. The model accounts for start-up and shut-down losses of the boiler, threshold losses of the solar-only cavity receiver and the amount of trace heating required to avoid cooling of the heat transfer fluid. The model is implemented for a 12 month/five year time-series of historical Direct Normal Irradiation (DNI) at 1 h time-steps to account for the variability in the solar resource at four sites spanning Australia and the USA. A method to optimize the size of the heliostat field is also reported, based on the dumped fraction of solar power from the heliostat field. The Levelized Cost of Electricity (LCOE) for the HSRC configuration was estimated to be reduced by up to 17% relative to the equivalent conventional hybrid solar thermal system depending on the cost of the fuel, the storage capacity and the solar resource, while the fuel consumption was estimated to be reduced by some 12–31%.

  6. The global uranium market: supply and demand 1992-2010

    International Nuclear Information System (INIS)

    1994-06-01

    This document looks at the supply of and demand for uranium on markets worldwide and covers the years 1992 to 2010. Uranium and nuclear fuel markets have become truly global with the inclusion of fuel cycle companies from Eastern Europe and the Commonwealth of Independent States (CIS) leading at the same time to additional supplies becoming available and new political constraints on uranium trading. This report includes new data from China, Eastern Europe and the CIS republics. As recycling plays on ever more important role, the global supply and demand balance for uranium and fuel services is altered. Prospects for nuclear power growth and for the uranium market in the next century remain uncertain. (UK)

  7. Seismic design margin evaluation of systems and equipment required for safe shutdown of North Anna, Units 1 and 2, following an SSE (safe-shutdown earthquake) event. Technical report

    International Nuclear Information System (INIS)

    Desai, K.D.

    1981-06-01

    The Advisory Committee on Reactor Safeguards recommended that the NRC staff review in detail the capability and available seismic design margin of fluid systems and equipment used in North Anna, Units 1 and 2 to achieve safe shutdown following a site-design safe-shutdown earthquake (SSE). The staff conducted a series of plant visits and meetings with the licensee to view and discuss the seismic design methodology used for systems, equipment and their supports. The report is a description and evaluation of the seismic design criteria, design conservatisms and seismic design margin for North Anna, Units 1 and 2

  8. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  9. Method of disposing of shut-down nuclear power plants

    International Nuclear Information System (INIS)

    Gaiser, H.

    1984-01-01

    A shut-down atomic power plant or a section thereof, particularly the nuclear reactor, is disposed of by sinking it to below ground level by constructing a caisson with cutting edges from the foundations of said plant or section or by excavating a pit therebelow

  10. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  11. The Chernobyl plant shutdown

    International Nuclear Information System (INIS)

    2000-12-01

    The Chernobylsk-1 reactor, operational in september 1977 has been stopped in november 1996; the Chernobylsk-2 reactor started in november 1978 is out of order since 1991 following a fire. The Chernobylsk-3 reactor began in 1981. During the last three years it occurs several maintenance operations that stop it. In june 2000, the Ukrainian authorities decided to stop it definitively on the 15. of december (2000). This file handles the subject. it is divided in four chapters: the first one gives the general context of the plant shutdown, the second chapter studies the supporting projects to stop definitively the nuclear plant, the third chapter treats the question of the sarcophagus, and the fourth and final chapter studies the consequences of the accident and the contaminated territories. (N.C.)

  12. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  13. TopFuel 2003 conference report

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The international conference, TopFuel 2003 - Nuclear Fuel for Today and Tomorrow, Experience and Outlook, was held in Wuerzburg on March 16-19, 2003. The event, which was organized jointly by the Atomic Energy Society of Japan (AESJ), the American Nuclear Society (ANS), the German Nuclear Society and the European Nuclear Society (ENS), provided a comprehensive overview of current topics and developments in nuclear fuel supply in more than ninety papers and poster presentations. At the plenary session, more than 300 participants from 15 countries discussed basic problems of nuclear fuel development, safety research, strategies of nuclear fuel supply in the 21st century, fuel fabrication, interim storage of fuel elements, and problems of fuel element design for nuclear power plants of the next generation. Seven technical sessions dealt with other topical developments in these fields: - feedback of experience in fuel use, - nuclear fuel cycle efforts to increase burnup, - trends in nuclear fuel design, - advanced methods and codes, - fabrication, - transport, nuclear fuel services. (orig.) [de

  14. On the startup and shutdown of a tandem mirror reactor

    International Nuclear Information System (INIS)

    Chang, F.R.; DeCanio, F.T.; Fisher, J.L.; Madden, P.A.

    1979-01-01

    The startup and shutdown of a fusion reactor must be performed in such a way that the plasma remains MHD stable. In a tandem mirror the stability depends on a sufficiently high pressure ratio between the plugs and the central cell, of the order of 100. Control of the neutral beam input to the plugs by means of active feedback has been investigated to achieve an acceptable pressure ratio throughout the entire startup/shutdown transient. An algorithm to control the beam input power has been developed. The control law was subsequently tested in a tandem mirror simulation code. This paper describes the basic models incorporated in the simulation, as well as the derivation of the control algorithm. The simulation results are presented and the practicality of implementing the algorithm is discussed. 4 refs

  15. The forbidden fuel: Charcoal, urban woodfuel demand and supply dynamics, community forest management and woodfuel policy in Malawi

    International Nuclear Information System (INIS)

    Zulu, Leo Charles

    2010-01-01

    This article examines woodfuel policy challenges and opportunities in Malawi two decades after woodfuel-crisis narratives and counter-narratives. A nuanced examination of woodfuel supply, demand, use, and markets illuminated options to turn stagnant policies based on charcoal 'bans' and fuel-substitution into proactive, realistic ones acknowledging woodfuel dominance and its socio-economic importance. Findings revealed growing, spatially differentiated woodfuel deficits in southern and central Malawi and around Blantyre, Zomba and Lilongwe cities. Poverty, limited electricity access, reliability and generation exacerbated by tariff subsidies, and complex fuel-allocation decisions restricted energy-ladder transitions from woodfuels to electricity, producing an enduring urban-energy mix dominated by charcoal, thereby increasing wood consumption. Diverse socio-political interests prevented lifting of the charcoal 'ban' despite progressive forest laws. Despite implementation challenges, lessons already learnt, efficiency and poverty-reduction arguments, limited government capacity, growing illegal production of charcoal in forest reserves, and its staying power, make targeted community-based forest management (CBFM) approaches more practical for regulated, commercial production of woodfuels than the status quo. New differentiated policies should include commercial woodfuel production and licensing for revenue and ecological sustainability under CBFM or concessions within and outside selected reserves, an enterprise-based approaches for poverty reduction, smallholder/private tree-growing, woodfuel-energy conserving technologies, improved electricity supply and agricultural productivity.

  16. Measurement of the fuel temperature and the fuel-to-coolant heat transfer coefficient of Super Phenix 1 fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1995-12-01

    A new measurement method for measuring the mean fuel temperature as well as the fuel-to-coolant heat transfer coefficient of fast breeder reactor subassemblies (SA) is reported. The method is based on the individual heat balance of fuel SA's after fast reactor shut-downs and uses only the plants normal SA outlet temperature and neutron power signals. The method was used successfully at the french breeder prototype Super Phenix 1. The mean SA fuel temperature as well as the heat transfer coefficient of all SPX SA's have been determined at power levels between 15 and 90% of nominal power and increasing fuel burn-up from 3 to 83 EFPD (Equivalent of Full Power-Days). The measurements also provided fuel and whole SA time constants. The estimated accuracy of measured fuel parameters is in the order of 10%. Fuel temperatures and SA outlet temperature transients were also calculated with the SPX1 systems code DYN2 for exactly the same fuel and reactor operating parameters as in the experiments. Measured fuel temperatures were higher than calculated ones in all cases. The difference between measured and calculated core mean values increases from 50 K at low power to 180 K at 90% n.p. This is about the double of the experimental error margins. Measured SA heat transfer coefficients are by nearly 20% lower than corresponding heat transfer parameters used in the calculations. Discrepancies found between measured and calculated results also indicate that either the transient heat transfer in the gap between fuel and cladding (gap conductance) might not be exactly reproduced in the computer code or that the gap in the fresh fuel was larger than assumed in the calculations. (orig.) [de

  17. Evaluation of In-Core Fuel Management for the Transition Cores of RSG-GAS Reactor to Full-Silicide Core

    International Nuclear Information System (INIS)

    S, Tukiran; MS, Tagor; P, Surian

    2003-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 gU/cc has been done. The core-of RSG-GAS reactor has been operated full core of silicide fuels which is started with the mixed core of oxide-silicide start from core 36. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 9 transition cores (core 36 - 44) to achieve a full-silicide core (core 45). The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters. Conversion core was achieved by transition cores mixed oxide-silicide fuels. Each transition core is calculated and measured core parameter such as, excess reactivity and shutdown margin. Calculation done by Batan-EQUIL-2D code and measurement of the core parameters was carried out using the method of compensation of couple control rods. The results of calculation and experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safely to a full-silicide core

  18. ELECTRONIC CONTROL FOR FUEL SUPPLY OF DIESEL ENGINE ON THE BASIS OF PROGRAMMABLE PID-REGULATOR

    Directory of Open Access Journals (Sweden)

    A. G. Bakhanovich

    2017-01-01

    Full Text Available The article presents a schematic diagram of the Euro-3 diesel engine electronic control and describes hard- and software platform of the high pressure fuel pump pneumatic actuator control that allows to realize the concept of electronic fuel supply control of diesel engine KamAZ-740. The strategic dependence beetwen the angular position of fuel pump governor lever and the angular position of electronic accelerator pedal were put on the basis of electronic control concept. Implementation of this dependence was carried out by applying a modulated PWM signal with determined duty cycle by the controller to the coil proportional solenoid valve, which is responsible for the amount of air pressure in the working chamber of the power air cylinder, connected by articulated-type to the governor lever of the high pressure fuel pump. In this case, the feedback control by position of governor lever of the high pressure fuel pump was introduced in the control circuit, but engine crankshaft speed control was carried out using a software continuous PID governor. Developed strategy gives possibility to track the deflection  of control parameter from a predetermined value by real-time and almost instantly, to make a control action on actuators to eliminate this deflection, while providing a minimum time of transition. Governor’s setting (proportional, integral and differential component performed empirically using the classical Ziegler – Nichols method, based on the analysis of the safety factor of automatic control system. The results of calculating the coefficients of proportional integral-differential regulator and oscillograms HIL experiment on testing the proposed diesel engine throttle control strategies using visualization CoDeSys V2.3 are given in activity.

  19. Process and equipment for locating defective fuel rods of a reactor fuel element

    International Nuclear Information System (INIS)

    Jester, A.; Honig, H.

    1977-01-01

    By this equipment, well-known processes for determining defective fuel rods of a reactor fuel element are improved in such a fashion that defective fuel rods can be located individually, so that it is possible to replace them. The equipment consists of a cylindrical test vessel open above, which accommodates the element to be tested, so that an annular space is left between the latter's external circumference and the wall of the vessel, and so that the fuel rods project above the vessel. A bell in the shape of a frustrum of a cone is inverted over the test vessel, which has an infra-red measuring equipment at a certain distance above the tops of the fuel rods. The fuel element to be tested together with the test vessel and hood are immersed in a basin full of water, which displaces water by means of gas from the hood. The post-shutdown heat increases the temperature in the water space of the test vessel, which is stabilised at 100 0 C. In each defective fuel rod the water which has penetrated the defective fuel rod previously, or does so now, starts to boil. The steam rising in the fuel rod raises the temperature of the defective fuel rod compared to all the sound ones. The subsequent measurement easily determines this. Where one can expect interference with the measurement by appreciable amounts of gamma rays, the measuring equipment is removed from the path of radiation by mirror deflection in a suitably shaped measuring hood. (FW) [de

  20. The rehabilitation/upgrading of Philippine Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renato, T Banaga [Philippines Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E{sub 1}-U-Z{sub 1}-H{sub 1.6} TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  1. The rehabilitation/upgrading of Philippine Research Reactor

    International Nuclear Information System (INIS)

    Renato T, Banaga

    1998-01-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E 1 -U-Z 1 -H 1.6 TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  2. MTR fuel plate qualification in OSIRIS reactor

    International Nuclear Information System (INIS)

    Sacristan, P.; Boulcourt, P.; Naury, S.; Marchard, L.; Carcreff, H.; Noirot, J.

    2005-01-01

    Qualification of new MTR fuel needs the irradiation in research reactors under representative neutronic, heat flux and thermohydraulic conditions. The experiments are performed in France in the OSIRIS reactor by irradiating MTR full size fuel plates in the IRIS device located in the reactor core. The fuel plates are easily removed from the device during the shutdown of the reactor for performing thickness measurements along the plates by means of a swelling measurement device. Beside the calculation capabilities, the experimental platform includes: the ISIS neutron mock-up for the measurement of neutron flux distribution along the plates; the γ spectrometry for the purpose of measuring the activities of the radionuclides representative of the power and the burnup and to compare with the neutronic calculation. Owing to the experience feedback, a good agreement is observed between calculation and measurement; destructive post irradiation examinations in the LECA facility (Cadarache). New irradiations with the IRIS device and at higher heat flux are under preparation for qualification of MTR fuels. (author)

  3. Technical Meeting on Passive Shutdown Systems for Liquid Metal-Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2015-01-01

    A major focus of the design of modern fast reactor systems is on inherent and passive safety. Specific systems to improve reactor safety performance during accidental transients have been developed in nearly all fast reactor programs, and a large number of proposed systems have reached various stages of maturity. This Technical Meeting on Passive Shutdown Systems for Fast Reactors, which was recommended by the Technical Working Group on Fast Reactors (TWG-FR), addressed Member States’ expressed need for information exchange on projects and programs in the field, as well as for the identification of priorities based on the analysis of technology gaps to be covered through R&D activities. This meeting was limited to shutdown systems only, and did not include other passive features such as natural circulation decay heat removal systems etc.; however the meeting catered to passive shutdown safety devices applicable to all types of fast neutron systems. It was agreed to initiate a new study and produce a Nuclear Energy Series (NES) Technical Report to collect information about the existing operational systems as well as innovative concepts under development. This will be a useful source for member states interested in gaining technical expertise to develop passive shutdown systems as well as to highlight the importance and development in this area

  4. Development and study of a control and reactor shutdown device for FBR-type reactors with a modified open core

    International Nuclear Information System (INIS)

    Goswami, S.

    1983-01-01

    The doctoral thesis at hand presents a newly designed control and shutdown device to be used for output control and fast shutdown of modified open core FBR-type reactors. The task was the design of a new control and shutdown device having economic and operation advantages, using reactor components time-tested under reactor conditions. This control and shutdown device was adapted to the specific needs concerning dimensions and design. The actuation is based on the magnetic-jack principle, which has been upgraded for the purpose. The principle is now combined with pneumatic acceleration. The improvements mainly concern a smaller number of piece parts and system simplification. (orig./RW) [de

  5. Field experience of new nuclear fuel types on the Kola NPP

    International Nuclear Information System (INIS)

    Adeev, V.; Burlov, S.; Panov, A.; Saprykin, V.

    2008-01-01

    Specificity of the Kola nuclear power plant geographical position, conditions of region economics determine fuel management strategy. Isolation of Kola power supply system and, as a consequence, generating capacities redundancy cause operation of the nuclear power plant on reduced power level. At the same time there is a need to operate the power unit on the maximum power level in the case of not planned conditions. The basis of in-core fuel management is an achievement of the maximal burnup under providing of high installed capacity. At present there are not abilities to improve the fuel cycle based on traditional implementation fuel assemblies. Burnup maximum in these fuel cycles is achieved. At the core periphery installed highest possible quantity of the burned-up assemblies in the view of safety operation margins satisfaction. Works on application of the second generation fuel have been carried out on the Kola NPP since 2002. Fuel assemblies of this type are profiled. Burnable absorber, changed lattice spacing in relation to standard fuel, changed height of a fuel column, thickness of fuel pin clad are applied. In CR fuel followers modernized docking unit (with hafnium plates are intended for energy-release splash suppression) is used. At present 2-nd generation fuel is in experimental operation on unit 3 (18-21 fuel cycles, 2002-2007 years) and unit 4 (18-19 fuel cycles, 2005-2007 years). Safety margins did not exceeded. Coolant activity did not exceed the limiting value. There were not damaged fuel assemblies of second generation. Originally in the project of applications of new fuel it was supposed to refuel annually 78 fresh assemblies. At the moment annual refueling consists of 66 assemblies with effective enrichment 3.82 %. Cycle duration does not exceed 250-260 effective days. The part of assemblies is left on 5-th cycle of operation. In a similar fuel cycle in 2007 on the unit 1 operation with profiled fuel (enrichment of 3.82 %) of shakeproof type

  6. Commercial aviation alternative fuels initiative

    Science.gov (United States)

    2010-04-22

    This presentation looks at alternative fuels to enhance environmental stability, reduction of greenhouse gas emissions, air quality benefits (e.g., SOx and PM), fuel supply stability, and fuel price stability.

  7. SNR 2 core dynamics and shut-down signals in a protected loss-of-flow incident

    International Nuclear Information System (INIS)

    Kleefeldt, K.

    1982-01-01

    The dynamic behavior of a 1300 MWe Core during a loss-of-flow incident has been analyzed by use of the SAS3D code for a given pump coast down characteristic and constant core inlet temperature. Emphasis was placed on the questions: How fast and via which monitored parameters can the incident be recognized by the reactor protection system. What is the tolerable time span for the shut-down action without exceeding safety limits. Key prameters and limit values as well as conceivable reactivity feed-back effects are discussed. The result is, that three out of four choosen monitored parameters are capable of initiating a shut-down action in time. In addition, the amount of shut-down reactivity required for a successful scram was briefly investigated

  8. The Supply of Medical Radioisotopes. 2015 Medical Isotope Supply Review: 99Mo/99mTc Market Demand and Production Capacity Projection 2015-2020

    International Nuclear Information System (INIS)

    Charlton, Kevin; )

    2015-08-01

    Medical diagnostic imaging techniques using technetium-99m ( 99m Tc) account for approximately 80% of all nuclear medicine procedures, representing 30-40 million examinations Worldwide every year. Disruptions in the supply chain of these medical isotopes - which have half-lives of 66 hours for molybdenum-99 ( 99 Mo) and only 6 hours for 99m Tc, and thus must be produced continuously - can lead to cancellations or delays in important medical testing services. Unfortunately, supply reliability has been challenged over the past decade due to unexpected shutdowns and extended refurbishment periods at some of the mostly ageing, 99 Mo-producing research reactors and processing facilities. These shutdowns have at times created conditions for extended global supply shortages (e.g. 2009-2010). At the request of its member countries, the Nuclear Energy Agency (NEA) became involved in global efforts to ensure a secure supply of 99 Mo/ 99m Tc. Since June 2009, the NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) have examined the causes of supply shortages and developed a policy approach, including principles and supporting recommendations to address those causes. The NEA has also reviewed the global 99 Mo supply situation periodically, using the most up-to-date data available from supply chain participants, to highlight periods of potential reduced supply and to underscore the case for implementing the HLG-MR policy approach in a timely and globally consistent manner. In 2012, the NEA released a M o supply and demand forecast up to 2030, identifying periods of potential low supply relative to demand. That 2012 forecast was updated with a report 'Medical Isotope Supply in the Future: Production Capacity and Demand Forecast for the 99 Mo/ 99m Tc Market 2015-2020' (NEA, 2014) in 2014 that focused on the much shorter 2015-2020 period. This report updates the 2014 report, and continues to focus on the potentially critical 2015

  9. Safety and regulation aspects of nuclear facilities shutdown

    International Nuclear Information System (INIS)

    Clement, B.

    1977-01-01

    Technical dispositions that safety authorities will accept after shutdown of a nuclear installation and reglementation to use are examined. The different solutions from surveillance and maintenance, after removal of fissile materials and radioactive fluids, to dismantling are discussed especially for reactors. In each case the best solution has to be studied to ensure protection of public health and environment [fr

  10. Oak Ridge Research reactor shutdown maintenance and surveillance

    International Nuclear Information System (INIS)

    Coleman, G.H.; Laughlin, D.L.

    1991-05-01

    The Department of Energy ordered the Oak Ridge Research Reactor to be placed in permanent shutdown on July 14, 1987. The paper outlines routine maintenance activities and surveillance tests performed April through September, 1990, on the reactor instrumentation and controls, process system, and the gaseous waste filter system. Preparations are being made to transfer the facility to the Remedial Action Program. 6 tabs

  11. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  12. Dodewaard fuel supply agreement - a model for the future

    International Nuclear Information System (INIS)

    Raven, L.F.; Hubers, C.

    1980-01-01

    An Agreement between the Utility GKN and the Fuel Supplier BNFL has eliminated any Utility imposed penalty clauses for fuel failure due to operational conditions and, consequently, there are no restrictions imposed by the Fuel Supplier on the reactor operational manoeuvres. The result is that the Utility can now decide if the risk of fuel clad failure during a reactor power ramp outweighs the financial loss due to slower ramp rates. It is the Utility and not the Fuel Supplier who is in the best position to make this judgment provided adequate operational experience and computer codes are available to quantify the risk. The paper discusses the reactor operational experience, including the fuel failure rate and the confirmation of PCI failure by post irradiation examination. It establishes the practicality of the Agreement for the Dodewaard reactor and suggests such arrangements could be beneficial to other Utilities. (author)

  13. Evaluation of the safety margins during shutdown for NPP Krsko

    International Nuclear Information System (INIS)

    Bencik, V.; Sadek, S.; Bajs, T.

    2004-01-01

    In the paper the results of RELAP5/mod3.3 calculations of critical parameters during shutdown for NPP Krsko are presented. Conservative evaluations have been performed at NPP Krsko to determine the minimum configuration of systems required for the safe shutdown operation. Critical parameters in these evaluations are defined as the time to start of the boiling and the time of the core dry-out. In order to have better insight into the available margins, the best estimate code RELAP5/mod3.3 has been used to calculate the same parameters. The analyzed transient is the loss of the Residual Heat Removal (RHR) system, which is used to remove decay heat during shutdown conditions. Several configurations that include open and closed Reactor Coolant System (RCS) were considered in the evaluation. The RELAP5/mod3.3 analysis of the loss of the RHR system has been performed for the following cases: 1) RCS closed and water solid, 2) RCS closed and partially drained, 3) Pressurizer manway open, Steam Generator (SG) U tubes partially drained, 4) Pressurizer and SG manways open, SG U tubes completely drained, 5) Pressurizer manway open, SGs drained, SG nozzle dams installed and 6) SG nozzle dams installed, pressurizer manway open, 1 inch break at RHR pump discharge in the loop with pressurizer. Both RHR trains were assumed in operation prior to start of the transient. The maximum average steady state temperature for all analyzed cases was limited to 333 K. (author)

  14. Interim licensing criteria for physical protection of certain storage of spent fuel

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1994-11-01

    This document presents interim criteria to be used in the physical protection licensing of certain spent fuel storage installations. Installations that will be reviewed under this criteria are those that store power reactor spent fuel at decommissioned power reactor sites; independent spent fuel storage installations located outside of the owner controlled area of operating nuclear power reactors; monitored retrievable storage installations owned by the Department of Energy, designed and constructed specifically for the storage, of spent fuel; the proposed geologic repository operations area; or permanently shutdown power reactors still holding a Part 50 license. This criteria applies to both dry cask and pool storage. However, the criteria in this document does not apply to the storage of spent fuel within the owner-controlled area of operating nuclear power reactors

  15. Fuel assembly for use in BWR type reactor

    International Nuclear Information System (INIS)

    Inaba, Yuzo.

    1988-01-01

    Purpose: To attain the reduction of neutron irradiation amount to control rods by the improvement in the reactor shutdown margin and the improvement of the control rod worth, by enhancing the arrangement of burnable poisons. Constitution: The number of burnable poison-incorporated fuel rods present in the outer two rows along the sides in adjacent with a control rod among the square lattice arrangement in a fuel assembly is decreased to less than 1/4 for that of total burnable poison-incorporated fuel rods, while the remaining burnable posion-incorporated fuel rods are arranged in the region other than above (that is, those regions not nearer to the control rod). Thus, even if a sufficient number of burnable poison to prolong the controlling effect for the reactivity with the burnable contents as the fuel assembly are disposed, only the burnable poison -incorporated fuel rods by the number less than 1/4 for that of the total burnable poison-incorporated fuel rods are present near the control rod of the fuel assembly. Accordingly, the control rod worth at the initial stage of the burning is increased at both high and normal temperatures. (Kawakami, Y.)

  16. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  17. Defence in depth for electric power supplies in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Gupta, S.K.; Srivasista, K.; Solanki, R.B.

    2009-01-01

    The purpose of electric power supply system in a nuclear power plant is to supply and distribute reliable electric power to safety related systems and systems important to safety in various forms, arrangements and combinations of redundancy and diversity in order to perform safety functions required during operational states and design basis events (DBE) such as shutting down the reactor, maintaining the reactor in safe shutdown state, containment isolation and reactor core cooling preventing significant release of radioactive material to the environment. Hence the design basis of electric power supply systems includes identification of DBE that require power supplies, adequacy of redundancy and diversity, environmental conditions to which electric equipment are qualified, identification of loads requiring interrupted and uninterrupted power supplies, time sequence in which emergency loads are to be supplied in case of interruption, provisions for maintaining and testing, consideration for minimum duration capability of emergency power supplies during station blackout etc. Based on operation experience, results of probability safety assessment and certain weaknesses noticed in defence in depth of electric power supply systems, several continuous design improvements have been made in Indian nuclear power plants during operating phase and life extension. Instituting various tests during initial commissioning, subsequent operation and life extension has ensured high standards of performance of electric power supplies. Some of these aspects are highlighted in this paper

  18. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  19. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  20. 235U Holdup Measurement Program in support of facility shutdown

    International Nuclear Information System (INIS)

    Thomason, R.S.; Griffin, J.C.; Lien, O.G.; McElroy, R.D.

    1991-01-01

    In 1989, the Department of Energy directed shutdown of an enriched uranium processing facility at Savannah River Site. As part of the shutdown requirements, deinventory and cleanout of process equipment and nondestructive measurement of the remaining 235 U holdup were required. The holdup measurements had safeguards, accountability, and nuclear criticality safety significance; therefore, a technically defensible and well-documented holdup measurement program was needed. Appropriate standards were fabricated, measurement techniques were selected, and an aggressive schedule was followed. Early in the program, offsite experts reviewed the measurement program, and their recommendations were adopted. Contact and far-field methods were used for most measurements, but some process equipment required special attention. All holdup measurements were documented, and each report was subjected to internal peer review. Some measured values were checked against values obtained by other methods; agreement was generally good